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Abstract in English 

Automated treatment planning methods have the potential to improve plan quality, standardization, and 
efficiency in radiotherapy. However, manual optimization is often still required. This thesis evaluates a 
fully automated fine-tuning process for prostate volumetric modulated arc therapy planning that 
dynamically adjusts optimization parameters to improve knowledge-based generated plans.  
 
Treatment plans were generated for 200 previously treated prostate cases using a knowledge-based 
planning model and applying the fine-tuning process. Dose-volume histogram parameters and plan 
complexity were used to evaluate differences between the initial knowledge-based generated plan and 
the fine-tuned plan. Statistical analysis of the results was performed using the Wilcoxon signed-rank 
test.  
 
In 165 of the cases, the knowledge-based generated plan required fine-tuning. Initially, 12 cases failed 
to complete the fine-tuning process. This problem was addressed by adding an extra constraint to the 
script. With this additional constraint, the fine-tuning algorithm resolved all unmet constraints in 104 of 
the cases. The results demonstrate that the fine-tuning algorithm effectively addressed unmet constraints 
of the knowledge-based generated plans in a significant number of cases. Additionally, the fine-tuning 
process reduced the plan complexity in most cases.  
 

  



 

  



 

Abstract (in Dutch) 

Automatisatie van het planningsproces in radiotherapie heeft het potentieel om de kwaliteit, 
standaardisatie en efficiëntie te verbeteren. Toch is handmatige optimalisatie van de behandelplannen 
vaak nog noodzakelijk. Deze masterproef evalueert een volledig geautomatiseerd finetuningproces voor 
prostaatbehandeling met volumetrisch gemoduleerde arctherapie, waarbij de optimalisatieparameters 
dynamisch worden aangepast om knowledge-based gegenereerde plannen te optimaliseren.  
 
Voor 200 eerder behandelde prostaatpatiënten werden nieuwe behandelplannen gegenereerd met een 
knowledge-based-planningmodel, waarop het finetuningproces werd toegepast. Verschillen tussen het 
initiële knowledge-based-plan en het geoptimaliseerd plan werden geëvalueerd op basis van dosis-
volumehistogramparameters en plancomplexiteit. De resultaten werden statistisch geanalyseerd met de 
Wilcoxon signed-rank-test.  
 
In 165 gevallen was finetuning noodzakelijk. Initieel waren er 12 plannen die er niet in slaagden het 
finetuningproces volledig te doorlopen. Dit probleem werd opgelost door een extra dosisrestrictie aan 
het script toe te voegen. Met deze aanpassing kon het algoritme in 104 gevallen alle overschreden 
dosisrestricties oplossen. De resultaten tonen aan dat het algoritme in een aanzienlijk aantal gevallen de 
overschreden dosisrestricties van de knowledge-based-plannen oplost. Bovendien zorgde het 
finetuningalgoritme in de meeste gevallen ook voor een vermindering van de plancomplexiteit.  

  



 

  



 

1 Introduction  

Radiotherapy plays a central role in cancer treatment, with approximately 50 to 70 percent of all cancer 
patients requiring radiotherapy during treatment [1]. It is used for both curative and palliative treatment 
and can be combined with other treatment methods such as surgery, chemotherapy, immunotherapy, and 
hormone therapy depending on the cancer type and stage [2].  
 
The radiotherapy workflow is a multi-step process that includes simulation imaging, target and organ at 
risk (OAR) contouring, treatment planning, quality assurance (QA) tests, treatment delivery, and post-
treatment follow-up. This process requires the cooperation of a team of physicians, physicists, 
dosimetrists, and therapists [3].  
 
The main objective of radiotherapy is to deliver the prescribed dose to the tumor while minimizing 
exposure to the surrounding healthy tissue. To optimize this objective, radiotherapy has evolved 
significantly in recent years. This evolution, driven by technological advances, has allowed for more 
precise treatment planning and dose delivery. However, it has also increased the complexity of the 
workflow and made it more time-consuming. As a result, different automation methods for each step in 
the workflow have been proposed to increase the quality, standardization, and efficiency of the workflow 
[4].  
 
In recent years, several methods have been developed for the automation of segmentation, treatment 
planning, and quality assurance. This paper focuses on the automation of treatment planning, specifically 
for volumetric modulated arc therapy (VMAT) prostate treatment. It builds upon a feasibility study, 
performed at Jessa Hospital, that was published in 2024. In this preliminary study, a novel approach was 
introduced to automate the planning process of VMAT prostate treatment. An in-house script was 
developed that combined an existing knowledge-based planning (KBP) model with an automated fine-
tuning (FT) process [5]. The fine-tuning process automatically adjusts optimization parameters based 
on unmet constraints. The script automates the different steps of the treatment planning and optimization 
process. 
 
The goal of this study is to evaluate the software that was introduced in the previous study. The fine-
tuning software is evaluated by comparing the plans generated by the KBP model with the plans 
optimized by the fine-tuning software. For each selected patient, a new treatment plan is generated using 
the automated script. The generated plans are collected in two datasets. The first dataset contains the 
initial plan generated by the KBP model and the second dataset contains the last plan that was optimized 
by the fine-tuning process. The two datasets are compared based on key parameters, such as target 
coverage, organs-at-risk sparing, and plan complexity. To evaluate plan complexity, monitor units per 
gray (MU/Gy) and a complexity metric (CM) are used. A statistical analysis is performed on these key 
parameters to assess the significance of the observed differences and the overall impact of the fine-
tuning process.
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This master’s thesis is structured into six main chapters that each focus on a specific aspect of the study. 
Following this introduction, the second chapter presents a literary review that covers relevant 
background information. The evolution of radiotherapy, the workflow used in current practice, different 
automation methods, and the preliminary study are discussed in greater detail. Chapter 3 provides an 
overview of the materials and methods used for this study. It discusses the patient selection criteria, plan 
generation and evaluation, and the process used for statistical analysis. The observed results and the 
results of the statistical analysis are presented in chapter 4 and the relevance and implications of the 
findings are discussed in chapter 5. Chapter 6 summarizes the most important conclusions of the study. 
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2 Literature Review 

2.1 Radiotherapy 

The evolution of radiotherapy treatment began with three important discoveries. In 1895, the discovery 
of the X-ray was announced by German scientist Wilhelm Röntgen [6]. Around the same time, Henri 
Becquerel discovered natural radioactivity, and in 1898, Marie and Pierre Curie discovered radium [7]. 
While the harmful effects of radiation were not initially understood, they quickly became apparent when 
both operators and patients started showing side effects [6]. These effects were taken into account to 
optimize the therapeutic ratio and improve radioprotection. 
 
In the early years of radiotherapy, patients were treated using low-energy X-rays and long exposure 
times. The X-ray tube was placed close to the skin, or even in contact with it, and the treatment was 
delivered in a single fraction [6]. The equipment used for treatment was unreliable, and the dose 
distribution was imprecise. The introduction of more reliable equipment and the development of imaging 
methods marked the beginning of treatment planning in radiotherapy. However, the first treatment 
planning methods were still limited by image quality, and treatment was planned and delivered in 2D 
[8]. The development of megavoltage linear accelerator X-ray machines and the invention of computed 
tomography (CT) scans allowed for more precise treatment planning and delivery [7].  
 
The increased use of radiotherapy in clinical practice led to the need for standard protocols and a 
common language. The International Commission on Radiation Units and Measurements (ICRU) 
introduced the concept of three main target volumes to promote uniform terminology. The ICRU 50 
report defined the gross target volume (GTV), the clinical target volume (CTV), and the planning target 
volume (PTV) [9]. The GTV is the macroscopic tumor volume that is visible on imaging. Although it is 
the easiest to define, it can be difficult to delineate in practice and is highly dependent on image quality 
[10]. The CTV is defined as the GTV plus a margin to account for the microscopic extension of the 
tumor that is not visible on imaging. The margins used for the CTV depend on the imaging techniques, 
tumor site, and prior knowledge from historical cases [10]. The PTV is the volume that receives the 
prescribed dose during treatment. It includes the CTV and additional margins to account for motion and 
setup uncertainties, ensuring full coverage of the CTV [11]. In current practice, the GTV, CTV, and PTV 
are still used to delineate the tumor.  
 
The development of 3D imaging methods and the introduction of computerized treatment planning 
systems laid the foundation for the transition from 2D to 3D planning [7]. This evolution continued with 
the development of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy. 
IMRT allows for highly conformal dose distribution by using variable intensity across multiple radiation 
beams. While IMRT minimizes the dose delivered to healthy tissue, it also increases treatment time. 
VMAT, which uses one or more arcs and allows simultaneous variation of the gantry rotation speed, 
dose rate, and multileaf collimator (MLC) leaf positions, enables faster dose delivery compared to IMRT 
[12]. Both IMRT and VMAT are currently used in clinical practice.  
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2.2 Current Workflow 

The current radiotherapy workflow consists of five main steps. The first step is the acquisition of 
simulation images [13]. The patient is placed in the treatment position, and the user origin and skin 
markers are placed. These markers are used during treatment delivery to ensure consistent patient 
positioning. The simulation CT is then acquired and reviewed by the radiation oncologist. This scan is 
exported to the treatment planning system (TPS) and used during treatment planning.  
 
The goal of the treatment planning step is to ensure that the PTV receives the prescribed dose while 
minimizing the dose to the OARs. This step starts by defining the specific location of the primary tumor 
and the extent of the spread around the tumor. The radiation oncologist uses the simulation CT to contour 
the target volumes and the organs at risk [3]. This contouring process relies on the image quality of the 
simulation CT and in some cases additional images like MRI and PET are used [14]. The second part of 
treatment planning is to determine the dose delivery plan. In current practice, most treatment plans are 
generated using inverse treatment planning methods. These methods start by setting initial planning 
goals and constraints, based on standard protocols. The first fluence map is then calculated using these 
initial parameters and the dose distribution is evaluated using institute constraints. The treatment plan is 
optimized by iteratively adjusting the planning goals and recalculating the fluence map until a clinically 
desirable plan is achieved [3].  
 
Once the treatment plan is approved, quality assurance procedures are carried out to ensure that the 
delivered dose is as close to the planned dose as possible. The two types of QA are machine-specific QA 
and patient-specific QA. Machine-specific QA ensures that the equipment used to deliver treatment 
functions safely and correctly. Patient-specific QA ensures that the treatment plan can be correctly 
delivered by the equipment [15]. 
 
The final step is treatment delivery. The patient is secured to the treatment position and new images are 
acquired. These images are used to match the simulation CT and verify the patient’s position. Skin 
markers or tattoos are often used as reference points to ensure the correct alignment of the patient. Set-
up verification can be done with 2D images, either kV or MV portal images that are matched to the 
simulation CT based on anatomy landmarks. The setup can also be verified with 3D images such as 
cone-beam CT (CBCT), which offer better spatial resolution [16]. Treatment is delivered over one or 
multiple sessions and new images are regularly taken to verify the patient’s position [13]. After treatment 
is completed, follow-up scans are performed to evaluate the outcome.  
 
While the radiotherapy workflow is highly structured and standardized, it remains a complex and time-
consuming process. Each step requires significant input from experienced professionals, and the 
planning process involves multiple iterations to achieve a clinically optimal plan.  
 
To address the challenges and improve efficiency, consistency, and plan quality, multiple automation 
methods have been proposed [4]. In recent years, several automated planning techniques have been 
developed and implemented in clinical practice.  
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2.3 Automation in Treatment Planning 

The evolution of treatment planning and delivery has been driven by the introduction of improved 
imaging and dose delivery techniques. Initially, treatment planning and delivery relied on low-quality 
2D images, and the dose was delivered heterogeneously to large treatment fields [8]. The introduction 
of CT scans, the use of computerized algorithms, and treatment planning systems enabled a transition 
from 2D to 3D planning and execution [7]. The advanced delivery techniques and equipment allowed 
for more precise treatment planning and execution.  
 
Currently, treatment planning is performed by medical physicists using simulation CT images and TPS 
[5]. Inverse planning methods, such as VMAT, are considered the gold standard in modern radiotherapy 
treatment planning. Inverse planning begins with the specification of the dose constraints for the OARs 
and the dose prescription to the PTV. The TPS generates an initial fluence map based on these 
constraints, which are derived from standard protocols. The medical physicist then adjusts the planning 
goals and constraints to optimize the dose distribution, and the TPS recalculates the new fluence map 
accordingly [3]. This trial-and-error process is repeated until a clinically acceptable plan is achieved. 
Depending on the plan’s complexity, the optimization process can be very time-consuming.  
 
Automating the treatment planning process aims to accelerate the workflow, improve plan quality, and 
reduce inter-operator variability. In recent years, several automation methods have been developed to 
enhance consistency and efficiency in treatment planning. 
 
One of the first methods developed for automation in treatment planning is atlas-based KBP. This 
approach uses prior knowledge from high-quality plans from previously treated patients. The model 
identifies geometric similarities to match the new patient to a similar prior case (or set of prior cases) 
[17]. That prior case can then be used as a starting point for inverse optimization [3]. The effectiveness 
of this method depends heavily on patient similarity as well as the quality and number of atlases in the 
database. Atlas-based KBP does not fully automate the planning process, but it can accelerate the 
planning by providing a starting point.  
 
Another method that has been developed is model-based KBP. This approach uses machine learning and 
high-quality plans from previously treated patients to train mathematical or statistical models [5]. The 
key difference from atlas-based planning KBP is that once the KBP model is trained, the original training 
data is no longer used. The model predicts the dose distribution for a new patient by applying prior 
knowledge and statistical inference [18]. Model-based KBP has been implemented in clinical practice 
through commercially available applications like Varian RapidPlanTM [3]. Although KBP reduces inter-
operator variability and increases efficiency, manual refinement of the treatment plans is often still 
required [5].  
 
A third auto-planning method is a posteriori multi-criteria optimization (MCO), which generates 
multiple treatment plans based on the Pareto optimal principle. A Pareto optimal plan is a treatment plan 
in which no planning objective can be improved without negatively affecting another [19]. The 
advantage of a posteriori MCO is that the impact of altering competing planning objectives is directly 
observable. This allows the planner to compare the generated plans and select the best trade-offs to 
achieve a clinically optimal plan for the specific patient [18]. A posteriori MCO offers a balance between 
automated planning and manual decision-making, but selecting the best plan can still be complex and is 
dependent on the planner’s experience. A posteriori MCO has been implemented in commercially 
available applications such as RayStation TPS [3].  
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Deep learning-based planning is another category of automated treatment planning. Deep learning 
models, such as U-Net, utilize deep neural network architectures to learn features from a training dataset 
[5]. These models automatically extract features from the input data, allowing more features to be 
considered in the prediction process [20]. Deep learning-based convolutional neural networks can be 
used to predict 3D dose distributions [21]. However, deep learning models require large datasets of high-
quality treatment plans for effective training [5]. A common challenge in the training process is the 
limited availability and variability of data. To ensure model robustness, training datasets should 
incorporate data from multiple institutions [22].  
 
Scripts can also be used to automate specific steps within the treatment planning process. Tasks such as 
setting optimization objectives, adjusting constraints, or modifying priorities can be automated by using 
scripts. The planning strategies and steps typically taken during manual planning can be simulated by 
using predefined rules and logic set by the planner [23]. While scripting is not a standalone auto-planning 
method, it can serve as a tool to enhance other planning approaches. 
 
Each auto-planning method has its own strengths and limitations, but most still require manual 
adjustments to meet the prespecified constraints [5]. To leverage the advantages of various approaches, 
hybrid techniques have been proposed. These techniques combine elements from different automation 
methods to improve plan quality and efficiency. For example, the fine-tuning algorithm evaluated in this 
study builds upon an existing KBP model. 
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2.4 Preliminary Study 

This study builds upon the work titled “Optimizing volumetric modulated arc therapy prostate planning 
using an automated Fine-Tuning process through dynamic adjustment of optimization parameters” [5]. 
The preliminary study, conducted at Jessa Hospital, aimed to introduce a novel approach to automate 
the fine-tuning of optimization parameters for VMAT prostate treatment. A fully automated hybrid 
technique was proposed through the development of a script that invokes the KBP model and applies 
the fine-tuning process without manual intervention.  
 
The study retrospectively selected 25 prostate cancer patients treated between 2022 and 2023 from the 
clinical database. Each patient received a prescribed dose of 60 Gy to the prostate and 44 Gy to the 
seminal vesicles, delivered over 20 fractions. Anisotropic margins were applied from the CTV to the 
PTV, with a 6 mm margin laterally and an 8 mm margin in all other directions. Treatment was delivered 
using VMAT with two opposing full arcs. The beam energy was set to 6 MV, and collimator rotations 
were positioned at 30° and 330°, respectively. Dose calculations and optimizations were performed 
using the Acuros XB algorithm with a grid size of 0.25 cm. 
 
A KBP model was developed using the RapidPlanTM (RP) application within the Varian Eclipse TPS. 
The model was trained on a dataset consisting of 41 high-quality prostate VMAT plans from cases 
treated between April 2020 and July 2022. The training dataset included structures such as the PTV, 
bladder, rectum, bowel, and both femoral heads. 
 
To fully automate the planning process, an in-house C# binary plug-in script was developed using the 
Eclipse Scripting APITM. This script automates the different steps of the treatment planning process and 
consists of three main stages, as illustrated in Figure 1.  
 

 
Figure 1: The fully automated planning process 
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In the first stage, the script generates all necessary optimization structures and treatment parameters 
required for planning. It creates the PTV-high and PTV-low structures and generates two arcs based on 
the previously described specifications. The treatment isocenter is placed at the center of the combined 
PTVs and the jaws are adjusted to be 5 mm from the total PTV. Dynamic multileaf collimators are 
incorporated in both arcs.  
 
In the second stage, the script invokes the KBP model. The PTVs and OARs are matched with their 
corresponding structures, and the PTV-high and PTV-low are each assigned the prescribed dose in 
accordance with the treatment protocol. The KBP model estimates the dose-volume histogram (DVH) 
and the optimizer function is started. Once optimization is complete, the dose distribution is calculated, 
and a treatment plan is generated. The treatment plan is then normalized to ensure that the mean target 
volume matches the prescribed dose.  
 
In the third stage, the plan is evaluated and, if necessary, the fine-tuning process is initiated. The 
generated plan is automatically evaluated using predefined constraints. If the initial plan meets all 
constraints, the script stops, and the plan is saved in the database. If the plan fails to meet all constraints, 
additional objectives are added to the optimizer. The optimization function is restarted, and the dose 
distribution is recalculated. The new treatment plan is re-evaluated and if the same constraint remains 
unmet, the priority value of the corresponding objective is increased by 10 units. If a new constraint is 
unmet, additional objectives are added to the optimizer. The fine-tuning process is repeated until the 
plan meets all constraints, or after completing 10 iterations. If, after 10 iterations, some constraints 
remain unmet, all generated plans are saved, allowing the planner to manually select the least 
unfavorable plan.  
 
The script was tested using 25 prostate cases. Of these 25 cases, 10 treatment plans met all constraints 
using only the KBP model. The remaining 15 cases required the fine-tuning process, which addressed 
the unmet constraints in 12 of them. Specifically, the fine-tuning process addressed the unmet Dmax 
(body) constraint in 7 cases, the V60Gy (rectum) constraint in 7 cases, the V60Gy (bladder) constraint 
in 2 cases, and the D50% (PTV-high) constraint in 1 case. 3 cases failed to meet all constraints after 10 
iterations.  
 
This study demonstrated that the script effectively resolved the unmet constraints in a significant number 
of treatment plans. By enabling full automation of the planning process, the script minimized the need 
for manual intervention, reducing inter-operator variability. The script can run a list of multiple patients 
with only one mouse click. Moreover, the script is easy to integrate into the TPS and can run entirely in 
the background, making it an efficient and practical tool for clinical implementation.  
 
This preliminary study was a feasibility study used to show the potential of the developed algorithm. 
The goal of this new study is to test the clinical validity of the algorithm by testing using a large number 
of previously treated patients and performing a statistical analysis.   
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3 Methods and Materials 

3.1 Patient Selection  

Prostate cancer patients treated between 2023 and 2025, were randomly selected from the clinical 
database. The prescribed dose was 60 Gy to the prostate, and 44 Gy to the seminal vesicles, delivered 
in 20 fractions. Anisotropic margins were applied from the CTV to the PTV, with a 6 mm expansion 
laterally and an 8 mm expansion in all other directions [5]. All patients were treated using VMAT with 
two opposing full arcs, a beam energy of 6 MV, and collimator rotations set to 30° and 330°, respectively. 

3.2 Automated Planning 

A new treatment plan was generated for each selected patient using the script developed in the 
preliminary study. The complete workflow used in this process is illustrated in Figure 2.  
 

 
Figure 2: Workflow for generating new treatment plans 

 

First, a new course was created for each patient, in which the contoured simulation CT was uploaded. 
The patient ID was then entered into the script interface and the script was started. The script first 
invoked the KBP model, which used patient-specific anatomy, the prescribed dose, and predefined dose 
constraints to generate the initial treatment plan. This treatment plan was then automatically evaluated 
with the preset dose constraints, shown in Table 1.  
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Table 1: Institute constraints used to evaluate the plans 

Boost D99% (%) > 90% 
Boost D95% (%) > 95% 
Boost D50% (%) > 100% 
Boost D5% (%) < 105% 
Boost Dmax (%) < 107% 
Boost V107% (cc) < 0.03 cc 
Body Dmax (%) < 107% 
Body V107% (cc) < 0.03 cc 
Rectum V60Gy (cc) < 1 cc 
Rectum V50Gy (%) < 22.2% 
Rectum V40Gy (%) < 37.7% 
Rectum V30Gy (%) < 56.7% 
Rectum V26Gy (%) < 68.2% 
Rectum V20Gy (%) < 85.2% 
Rectum Dmean (Gy) < 30 Gy 
Left femoral V41Gy (%) < 50% 
Right femoral V41Gy (%) < 50% 
Bladder V63.6Gy (cc) < 1 cc 
Bladder V60Gy (%) < 5% 
Bladder V49Gy (%) < 25% 
Bladder V41Gy (%) < 50% 
Bladder V31Gy (%) < 60% 
Bowels V58.5Gy (cc) < 1 cc 
Bowels V41Gy (cc) < 17 cc 
Bowels V36Gy (cc) < 195 cc 

 

If the initial plan met all the constraints, the script was stopped, and the plan was saved. If the plan failed 
to meet all constraints, a fine-tuning process was started. The fine-tuning process incorporated additional 
objectives into the optimizer based on the unmet constraints. The script then iteratively adjusted the 
optimization objectives until all dose constraints were met or a maximum of 10 iterations was reached. 
The objectives and priorities added to the optimizer are listed in Table 2.  
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Table 2: Objective and priorities for each structure [5] 

Type ID Objective type Vol (%) Dose (Gy) Priority 

Target PTV-high (60 Gy) Lower 100 58.8 120 
Upper 0 61.8 120 

Target PTV-low (44 Gy) Lower 100 43.56 120 
Upper 0 61.8 120 

Body External Upper 0 63.9 550 

Organ Bladder 

Upper 0 63 150 
Upper 4.5 54 120 
Upper 22.5 44.1 100 
Upper 45 36.9 100 
Upper 54 27.9 100 

Organ Rectum 

Upper 0 54 150 
Upper 20 45 100 
Upper 33.9 36 100 
Upper 51 27 100 
Upper 61.4 23.4 100 
Upper 76.7 18 100 
Mean / 27 100 

Organ Bowel 
Upper V58.5Gy x 0.9 52.7 80 
Upper V41Gy x 0.9 36.9 80 
Upper V36Gy x 0.9 32.4 80 

Organ Femoral heads Upper 45 36.9 50 
 
All generated plans were saved, and two datasets were created for each parameter. The RP dataset 
contained the DVH parameters from the initial plan generated by the KBP model. The FT dataset 
contained the DVH parameters from the plan that met all the constraints. If a plan failed to meet all 
constraints after 10 loops, the DVH parameters from the last plan were included in the FT dataset. 

3.3 Plan Evaluation 

The fine-tuning algorithm was evaluated by comparing the treatment plans that were generated using 
the KBP model with the plans that were optimized using the fine-tuning script. Two datasets were 
analyzed during the evaluation. The first included all cases that required fine-tuning after the initial plan 
failed to meet all constraints. This dataset was used to assess the overall effect of the fine-tuning process. 
The second dataset consisted of only the data from plans that met all constraints with the fine-tuning 
process. The data of the plans that met all constraints with the KBP model and those that failed to meet 
all constraints after ten loops were excluded. This subset was used to evaluate the algorithm when it 
successfully addressed all constraints.  
 
OAR sparing, target dose coverage, and complexity of the plans were used as evaluation metrics. Each 
parameter was analyzed using appropriate statistical tests, depending on the type of variable and the 
distribution. The statistical tests were performed in Excel using the Analysis ToolPak and the Real 
Statistics add-in package. 
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The first step of the data analysis was to apply descriptive statistics to summarize and visualize the 
collected data [24]. Both visual and numerical methods were used. The boxplot was used to visualize 
the data and to identify potential outliers and missing data. The mean, standard deviation, median, and 
interquartile range were calculated to summarize the central tendency and variability of the data. 
Descriptive statistics provided an initial idea of the distribution of each dataset and the difference 
between the datasets.  
 
To determine if the difference between the FT plans and the RP plans was statistically significant, 
statistical tests were used. The statistical test used to compare the two datasets was chosen according to 
the characteristics of the collected data [25]. The statistical tests can be divided into parametric methods 
and nonparametric methods [26]. Parametric tests, such as the Student’s t-test, are the most powerful 
statistical tests, but they are only reliable if the data meets the normality assumption [25]. When the data 
deviates from the normal distribution, parametric tests may lead to unreliable or misleading results. If 
the normality assumption was not met, a nonparametric equivalent was used. Nonparametric tests are 
more robust than parametric tests when the data does not follow the normal distribution because they do 
not make assumptions about the data distribution [25].  
 
The two datasets analyzed in this study were the RP and the FT datasets. Each patient has a 
corresponding FT and RP plan, resulting in paired data. If the data met the normality assumption, a 
paired t-test was used to determine if the observed difference was statistically significant. If the t-test 
assumptions were violated, the Wilcoxon signed-rank test was used as a nonparametric equivalent. The 
workflow that was used for the statistical analysis of each parameter is shown in Figure 3. 
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Figure 3: Workflow for selecting a statistical test 

 

The first step in this workflow is to test for normality. Since the paired t-test uses the mean of the 
differences, the normality of the differences between FT and RP should be tested [27]. There are several 
methods for testing normality, which can be categorized into graphical methods and statistical tests [26]. 
In this study, methods from both categories were used. The Shapiro-Wilk expanded test and D’Agostino-
Pearson test were used in combination with a normal quantile-quantile plot (Q-Q plot).  
 
The Shapiro-Wilk expanded test compares the dataset against the normal distribution to test for 
normality [28]. The expanded version of the test is used because the original Shapiro-Wilk test is limited 
to datasets with a sample of size less than 50 [29]. The null hypothesis H0 of the Shapiro-Wilk expanded 
test states that the data is normally distributed. The alternative hypothesis Ha states that the data is not 
normally distributed [30]. In this study, the test was performed with a significance level 𝛼 of 0.05. The 
Shapiro-Wilk expanded test was performed using the Real Statistics add-in package. The null hypothesis 
was rejected if the p-value was smaller than 0.05. If the p-value was greater than 0.05, the null hypothesis 
was not rejected.  
 

Statistical test for normality of
the paired differences

H0: Normal distribution 

Shapiro-Wilk expanded
test

Reject H0 Fail to Reject H0

p < 0.05 p > 0.05

D'Agostino-Pearson test
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Wilcoxon signed-rank
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Paired t-test

Reject H0 Fail to Reject H0

Use Q-Q plot: 
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The second test used for testing normality is the D’Agostino-Pearson test. This test determines the 
skewness and kurtosis of the data and calculates how far the values differ from the value that is expected 
for the normal distribution [31]. The skewness of the data is a measure of symmetry. The kurtosis of the 
data is a measure of the sharpness or heaviness of the tails of a distribution. Both the skewness and the 
kurtosis have a value of 0 for the normal distribution [32]. As with the Shapiro-Wilk test, the null 
hypothesis H0 assumes the data are normally distributed, and the alternative hypothesis Ha assumes they 
are not. The test was also conducted with a significance level 𝛼 of 0.05 using the Real Statistics add-in. 
A p-value less than 0.05 resulted in the rejection of the null hypothesis, while a p-value greater than 0.05 
indicated that the null hypothesis could not be rejected.  
 
The normal Q-Q plot was used to visualize the distribution of the data and to test for normality. The 
observed quantiles and the expected quantiles were plotted against one another [32]. A distribution is 
considered to be approximately normal if all the points are on or near the reference line while deviations 
from the reference line indicate possible outliers [31].  
 
To test the normality of the data, all three methods were used. If both the Shapiro-Wilk expanded test 
and the D’Agostino-Pearson test rejected the null hypothesis, a nonparametric statistical test was used 
to compare the FT and RP datasets. If both tests failed to reject the null hypothesis, a parametric test was 
used to compare the FT and RP datasets. If the Shapiro-Wilk expanded test and the D’Agostino-Pearson 
test had conflicting results, the Q-Q plot was used to visually assess if normality can be assumed. 
 
The two-tailed paired t-test was used to compare the datasets when the paired differences between the 
FT and RP datasets follow an approximately normal distribution. The null hypothesis H0 of this test 
states that there is no difference between the two paired datasets. This means that the population mean 
of the difference is 𝜇! = 0. The alternative hypothesis Ha of this test states that 𝜇! has a value different 
from zero. Equation 1 presents the formula used to determine the test statistic t for the paired t-test. 
 
𝑡 = "̅!$%!

&!/√)
             (1) 

 
In this formula, 𝑥̅! is the mean of the differences between FT and RP, 𝜇! is the population mean of the 
difference, 𝑠! is the standard deviation of the difference and 𝑛 is the sample size [25]. The p-value is 
determined using the observed t-statistic, the degrees of freedom, and the significance level 𝛼. The null 
hypothesis was rejected if the p-value was smaller than 0.05. If the p-value was greater than 0.05, the 
null hypothesis could not be rejected. The two-tailed paired t-test was performed using the Real Statistics 
add-in package in Excel. The test was performed with a significance level 𝛼 of 0.05. 
 
The Wilcoxon signed-rank test was used to compare the datasets when the null hypothesis of the 
normality test was rejected. The null hypothesis H0 of this test states that there is no significant difference 
between the two datasets. This means that the median of the differences is 𝑀! = 0. The alternative 
hypothesis Ha states that there is a significant difference between the two datasets. The Wilcoxon signed-
rank test uses the differences between the RP dataset and the FT dataset to calculate the test statistic. 
The absolute differences are ranked from smallest to largest and they are assigned a label according to 
the sign of the difference. Equations 2 and 3 represent the formulas used to calculate the rank sums for 
positive ranks and negative ranks, respectively. 
 
𝑊* = ∑(ranks	of	positive	differences)         (2) 
 
𝑊$ = ∑(ranks	of	negative	differences)         (3) 
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The test statistic 𝑊 is the smallest of 𝑊* and 𝑊$. The p-value is determined using the observed test 
statistic 𝑊, the sample size 𝑛, and the significance level 𝛼 [33]. The null hypothesis was rejected if the 
p-value was smaller than 0.05. If the p-value was greater than 0.05, the null hypothesis could not be 
rejected. The Wilcoxon signed-rank test was performed using the Real Statistics add-in package in Excel 
with a significance level 𝛼 of 0.05. 

3.4 Statistical Power and Sample Size 

When performing statistical tests, there are two types of errors that can lead to the wrong conclusion. A 
Type I error gives a false positive and leads to the rejection of the null hypothesis even though it is true 
[34]. The acceptable level of this error is denoted by the significance level 𝛼, resulting in a 5% chance 
of a Type I error in this study. A Type II error gives a false negative, which means the null hypothesis 
will not be rejected, even though it is false. The probability of a Type II error is given by 𝛽. The power 
of a statistical test is defined as (1 − 𝛽), representing the probability of rejecting the null hypothesis 
when it is false [35]. To ensure statistical validity of the results of this study, a high statistical power is 
required. 
 
The power of the statistical tests was determined using an a priori power analysis. This method was used 
to calculate the minimum sample size that is required to achieve the desired power [36]. In this study, 
the minimum sample sizes were calculated for both the two-tailed paired t-test and the Wilcoxon signed-
rank test using the G*Power software [35]. G*Power calculates the required sample size based on the 
selected test, desired power, significance level and the population effect size to be detected with a 
probability of (1 − 𝛽) [37]. The effect size is a standardized measure of the smallest difference to be 
detected by a statistical test [38]. 
 
The a priori power analysis tool in G*Power uses Cohen’s conventions for interpreting effect sizes [37]. 
According to these guidelines, an effect size of 0.2 is considered small, 0.5 medium, and 0.8 large. In 
this study, an effect size of 0.5 was used to perform the a priori power analysis. This indicates that the 
difference to be detected with a probability of (1 − 𝛽) corresponds to half of the standard deviation 
[38].  
 
For the two-tailed paired t-test, the required sample size was calculated with a desired power of 0.99, a 
significance level of 0.05, and an effect size of 0.5. For the Wilcoxon signed-rank test, G*Power uses 
an approximation by applying an additional parameter k. This parameter represents the asymptotic 
relative efficiency (ARE) compared to the paired t-test and is dependent on the selected parent 
distribution [37]. In this study, the “min ARE” option was used, representing the most conservative 
calculation. This choice gives the largest required sample size, ensuring sufficient statistical power.  

3.5 Evaluation Parameters 

To compare the quality and deliverability of the generated treatment plans, several evaluation parameters 
were used. First, the dose distribution to the target volumes and organs at risk were compared. For each 
relevant structure, the dose-volume parameters of the RP plan and the FT plan were compared. This 
allowed for a quantitative comparison of the clinical objectives. 
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To evaluate plan deliverability, monitor units (MU) and the complexity metric were used. The total 
number of monitor units was calculated for each plan and divided by the prescribed dose in Gray to 
obtain the monitor units per Gray. This parameter serves as a measure of delivery efficiency. An increase 
in the number of MU/Gy typically results in a lower gamma passing rate due to increased radiation 
leakage and internal scatter [39]. The gamma passing rate is a commonly used metric that quantifies the 
deviation between the calculated and the measured dose distribution [20]. A low gamma passing rate 
indicates a greater difference between the calculated and measured dose distribution.  
 
The complexity metric, introduced by Younge et al. (2012) [40], was also used to evaluate plan 
deliverability. Equation 4 represents the formula used to calculate the complexity metric. 
 
𝐶𝑀 = +

,-
∑ 𝑀𝑈. 	x	

/"
0"

)
.1+             (4) 

 
Here, MU is the total number of monitor units in the arc, n is the number of control point apertures, MUi 
is the number of monitor units delivered through aperture i, yi is the aperture perimeter excluding the 
MLC leaf ends and Ai is the open area of aperture i. A higher CM value indicates a more complex plan 
[5].  
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4 Results 

4.1 Minimum Sample Size  

The minimum sample size required was calculated using G*Power software. Figures 4 and 5 illustrate 
the required sample size as a function of power for the two tailed paired t-test and the Wilcoxon signed-
rank test, respectively.  
 

 
Figure 4: Sample size as a function of power for two-tailed paired t-test 

 

 
Figure 5: Sample size as a function of power for Wilcoxon signed-rank test 

 

For the two-tailed paired t-test, the minimum required sample size to achieve a statistical power of 0.99 
with a significance level of 0.05 and an effect size of 0.5 is 76. For the Wilcoxon signed-rank test, the 
minimum required sample size under the same conditions is 88. 
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4.2 Initial Results 

Out of the 200 prostate cases that were used, 35 plans met all constraints using only the KBP model. 
The other 165 plans were optimized using the fine-tuning algorithm. The fine-tuning process addressed 
the unmet constraints in 99 cases. In 54 cases, the plan did not meet all constraints after ten loops and 
the process automatically stopped. In the 12 remaining cases, the fine-tuning process stopped before 
completing the ten loops, however, the plans did not meet all the constraints.  
 
The fine-tuning process resolved the boost D99% constraint in 20 cases, the boost D95% constraint in 
29 cases, the boost D50% constraint in 3 cases, the boost Dmax constraint in 40 cases, the body Dmax 
constraint in 63 cases, the rectum V60Gy constraint in 58 cases, the bladder V60Gy constraint in 15 
cases and the bowels V58.8 constraint in 1 case.  
 
The 12 cases that did not complete the fine-tuning process all failed to meet the boost D99% constraint. 
To address this problem, an additional constraint was incorporated into the script and the cases were 
reprocessed. In 5 of the cases, all constraints were met after fine-tuning. The other 7 failed to meet all 
constraints after completing 10 iterations. This resulted in a total of 61 cases out of the 165 that failed 
to meet all constraints and 104 cases that met all constraints after completing the fine-tuning process. 
The specific constraints that were resolved by the fine-tuning process are shown in Table 3.  
 

Table 3: Constraints resolved by the fine-tuning process 

Boost D99% (%) 25 
Boost D95% (%) 33 
Boost D50% (%) 3 
Boost V107% (cc) 40 
Body V107% (cc) 64 
Rectum V60Gy (cc) 62 
Bladder V60Gy (cc) 15 
Bowels V58,5 (cc) 1 

4.3 Full Dataset 

To evaluate the overall impact of the fine-tuning process, all 165 cases that required fine-tuning were 
used. For cases that failed to meet all constraints after completing the fine-tuning process, the last plan 
was used in the FT dataset.  

4.3.1. Normality Test 

The first step of the statistical analysis was to test the normality of the data. Since the paired t-test uses 
the mean of the differences to determine if the observed difference is statistically significant, the 
normality of the differences in the data pairs is tested. A third dataset, containing the differences in the 
data pairs (RP – FT), was created to perform the normality tests. Table 4 provides an overview of the 
results of the normality tests for the DVH parameters of the full dataset. 
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Table 4: Normality test results for the DVH parameters of the full dataset 

 Shapiro-Wilik D’Agostino-Pearson 
 p-value Reject H0 p-value Reject H0 
Boost D99% (%) 8.87E-06 yes 2.64E-04 yes 
Boost D95% (%) 3.81E-08 yes 1.88E-09 yes 
Boost D50% (%) 2.95E-05 yes 1.59E-05 yes 
Boost D5% (%) 1.90E-10 yes 0.00E+00 yes 
Boost Dmax (%) 0.00E+00 yes 0.00E+00 yes 
Boost V107% (cc) 0.00E+00 yes 0.00E+00 yes 
Body Dmax (%) 7.17E-03 yes 2.67E-02 yes 
Body V107% (cc) 1.05E-12 yes 2.55E-15 yes 
Rectum V60Gy (cc) 2.22E-16 yes 0.00E+00 yes 
Rectum V50Gy (%) 1.11E-16 yes 0.00E+00 yes 
Rectum V40Gy (%) 0.00E+00 yes 0.00E+00 yes 
Rectum V30Gy (%) 0.00E+00 yes 0.00E+00 yes 
Rectum V26Gy (%) 9.66E-15 yes 8.44E-15 yes 
Rectum V20Gy (%) 0.00E+00 yes 0.00E+00 yes 
Rectum Dmean (Gy) 0.00E+00 yes 0.00E+00 yes 
Left femoral V41Gy (%) 0.00E+00 yes 0.00E+00 yes 
Right femoral V41Gy 
(%) 8.57E-12 yes 8.19E-07 yes 

Bladder V63,6Gy (cc) 1.26E-10 yes 3.59E-07 yes 
Bladder V60Gy (%) 4.81E-13 yes 2.22E-16 yes 
Bladder V49Gy (%) 4.44E-16 yes 0.00E+00 yes 
Bladder V41Gy (%) 0.00E+00 yes 0.00E+00 yes 
Bladder V31Gy (%) 0.00E+00 yes 2.21E-13 yes 
Bowels V58,5Gy (cc) 0.00E+00 yes 0.00E+00 yes 
Bowels V41Gy (cc) 8.87E-06 yes 2.64E-04 yes 
Bowels V36Gy (cc) 3.81E-08 yes 1.88E-09 yes 

 
The results of both the Wilcoxon signed-rank test and the D’Agostino-Pearson test indicate that the null 
hypothesis of normality should be rejected for all evaluated datasets. As a result, the Wilcoxon signed-
rank test was used for further comparison of the DVH parameters between FT and RP in the full dataset.  
 
For the complexity parameters, MU/Gy and average CM, the normality of the differences in the data 
pairs was tested using the same method. Table 5 provides an overview of the results of the normality 
tests for the complexity of the full dataset. 
 

Table 5: Normality test results for the complexity parameters of the full dataset 

 Shapiro-Wilk D’Agostino-Pearson 
 p-value Reject H0 p-value Reject H0 
MU/Gy 1.60E-05 yes 2.55E-01  no 
Average CM 2.53E-04 yes 1.25E-06 yes 
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For the average CM, the results for both the Shapiro-Wilk test and the D’Agostino-Pearson test indicated 
that the null hypothesis of normality should be rejected. For the MU/Gy parameter, the results of the 
two tests were contradicting. The Q-Q plot, shown in Figure 6, was used to decide if the assumption of 
normality should be rejected.  
 

 
Figure 6: Q-Q plot of the diSerences in MU/Gy for the full dataset 

 
The Q-Q plot for the MU/Gy differences shows that although most data points lie close to the reference 
line, there are notable deviations. These deviations, combined with the result of the Shapiro-Wilk test, 
support the rejection of the null hypothesis of normality. As a result, the Wilcoxon signed-rank test was 
used to compare MU/Gy between RP and FT plans, providing a more conservative approach.  

4.3.2. PTV 

The difference in dose coverage of the PTV between the initial KBP-generated plan (RP) and the 
optimized plan (FT) was compared using DVH parameters. The D99%, D95%, D50%, D5% and V107% 
were used in this comparison. Table 6 presents the results of the DVH analysis for the PTV, including 
mean values, standard deviations, relative difference and corresponding p-values from the statistical 
tests performed.  
 

Table 6: PTV dose results for the full dataset 

 FT RP p-value 
Relative 
difference 
(%) 

Boost D99% (%) 91.73±1.23 90.62±1.81 4.95E-16 1.23 
Boost D95% (%) 95.70±0.58 95.14±0.10 1.99E-10 0.53 
Boost D50% (%) 100.29±0.13 100.32±0.19 3.46E-01 -0.03 
Boost D5% (%) 103.26±.25 103.57±0.40 2.18E-24 -0.30 
Boost V107% (cc) 0.01±0.02 0.13±0.41 3.79E-31 -91.87 

 

The results from Table 6 show that the Boost D99% (%) and Boost D95% (%) were significantly higher 
in the FT plans compared to the RP plans, indicating improved dose coverage. The Boost D5% (%) and 
Boost V107% (cc) were significantly lower in the FT plans, suggesting a reduction in hotspots and 
excessively high-dose volumes. There was no statistically significant difference between the FT and RP 
plans for the Boost D50% (%). Although the results were statistically significant (p-value < 0.05) for 
most metrics, the relative differences only indicated a meaningful improvement for the Boost V107% 
(cc) constraint, where FT plans show a 91.87% reduction.  
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4.3.3. OAR Sparing 

The difference in OAR sparing between the initial plan, generated with the KBP model, and the 
optimized plan was compared using DVH parameters. Table 7 provides an overview of the results of the 
DVH analysis for the OARs.  

Table 7: OAR dose results for the full dataset 

 FT RP p-value 
Relative 
difference 
(%) 

Body V107% (cc) 0.02±0.03 0.19±0.47 1.34E-31 -87.12 
Rectum V60Gy (cc) 1.03±0.60 1.26±0.63 3.07E-06 -18.12 
Rectum V50Gy (%) 11.09±4.03 10.24±3.57 4.70E-23 8.29 
Rectum V40Gy (%) 17.99±6.19 16.51±5.29 1.33E-38 8.93 
Rectum V30Gy (%) 26.06±9.33 23.22±6.93 4.95E-39 12.23 
Rectum V26Gy (%) 30.14±10.68 26.30±7.57 8.72E-45 14.59 
Rectum V20Gy (%) 37.46±13.07 31.83±8.77 1.06E-39 17.71 
Rectum Dmean (Gy) 20.67±4.62 18.89±3.58 8.52E-42 9.44 
Left Femoral V41Gy (%) 0.00±0.05 0.03±.0.28 2.50E-01 -84.96 
Right Femoral V41Gy 
(%) 0.02±0.05 0.03±0.20 8.30E-02 -77.46 
Bladder V63,3 Gy (cc) 0.02±0.04 0.08±0.26 1.77E-11 -74.69 
Bladder V60Gy (%) 3.18±1.20 3.96±2.12 8.33E-04 -19.69 
Bladder V49Gy (%) 12.05±6.38 11.63±6.27 3.98E-13 3.65 
Bladder V41Gy (%) 17.17±8.49 16.39±7.99 1.20E-19 4.76 
Bladder V31Gy (%) 24.40±11.89 22.67±10.33 9.45E-35 7.60 
Bowels V58,5Gy (cc) 0.05±0.23 0.07±0.38 1.00E+00 -35.21 
Bowels V41Gy (cc) 1.64±3.79 1.63±3.84 8.47E-01 0.40 
Bowels V36 Gy (cc) 2.51±5.43 2.56±5.50 4.86E-01 -2.26 

 
The first constraint that was used is the Body V107% (cc). This constraint was significantly lower in the 
FT plans compared to the RP plans. This result indicates a significant reduction of approximately 87.1% 
in the volume of the body receiving more than 107% of the prescribed dose, suggesting that the fine-
tuning process effectively limits excessive doses outside the PTV.  
 
The Rectum V60Gy (cc) was significantly lower in the FT plans, with an average reduction of 
approximately 18.3% compared to the RP plans. This suggests improved high-dose sparing of the 
rectum. In contrast, all other rectum constraints, including V50Gy (%), V40Gy (%), V30Gy (%), V26Gy 
(%), V20Gy (%), and Dmean (Gy), were slightly but significantly higher in the FT plans. The relative 
increases ranged from approximately 5% to 18%. Overall, the fine-tuning process improved rectal 
sparing at high doses while maintaining acceptable increases at lower dose levels. 
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For both femoral heads, the V41Gy (%) values were lower in the FT plans compared to the RP plans, 
with relative reductions of approximately 85% for the left and 77% for the right femoral head. However, 
these differences were not statistically significant. Given the very low absolute values, these reductions 
are unlikely to be clinically meaningful.  
 
For the bladder, the FT plans resulted in a significantly lower volume receiving high doses. Specifically, 
Bladder V63.3Gy (cc) was reduced by approximately 75%, and Bladder V60Gy (%) by about 20%, both 
showing statistically significant improvements. At lower dose levels, V49Gy (%), V41Gy (%), and 
V31Gy (%), the FT plans showed small but statistically significant increases of 3.65%, 4.76%, and 
7.60%, respectively. These results indicate that the fine-tuning process effectively reduces high-dose 
exposure to the bladder while maintaining acceptable increases at lower dose levels. 
 
For all bowel constraints, there were no statistically significant differences between FT and RP plans. 
The values for Bowels V58.5Gy (cc), V41Gy (cc), and V36Gy (cc) were very low in both groups, with 
p-values of 1.00, 0.847, and 0.486, respectively. Although minor relative differences were observed, the 
absolute differences are minimal.  

4.3.4. Complexity 

To evaluate the effect of the fine-tuning process on the plan complexity, the number of MU/Gy and the 
average CM are used. To visualize the difference between the RP plans and the FT plans, boxplots are 
used. The boxplot comparisons of the number of MU/Gy and the average CM are illustrated in Figure 7 
and Figure 8, respectively.  
 

  

Figure 7: Boxplot comparison of the number of 
MU/Gy for the full dataset 

Figure 8: Boxplot comparison of the average CM for the full 
dataset 

 
Figure 7 shows that the distribution of both groups was similar, but FT had a lower average and mean 
number of MU/Gy compared to RP. The boxplot comparison of the average CM in Figure 8 also 
indicated a similar distribution and a small reduction of average and mean in the FT plans. This reduction 
in both MU/Gy and average CM in the FT plans was confirmed by the results of the Wilcoxon signed-
rank test, shown in Table 8. 

Table 8: Complexity results for the full dataset 

 FT RP p-value 
Relative 
difference 
(%) 

Average CM 0.151±0.03 0.160±0.03 8.42E-8 -5.4 
MU/Gy 331.5±46.2 357.8±39.9 6.94E-17 -7.4 
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The Wilcoxon signed-rank test resulted in a p-value lower than 0.05 for both parameters, indicating a 
statistically significant difference. Specifically, the average CM was reduced by 5.4% and the MU/Gy 
by 7.4%. These reductions suggest that the fine-tuning process did not increase the plan complexity.  

4.4 Successful Subset 

To specifically assess the effect of the fine-tuning process on cases that successfully met all clinical 
constraints after fine-tuning, a subset of the data was analyzed. This subset included only the cases where 
the final fine-tuned plan met all predefined dose constraints.  

4.4.1. Normality Test 

The approach for testing the normality of the paired differences in the successful subset was the same 
as that used for the full dataset. The results of the normality tests for the DVH parameters are presented 
in Table 9. 
 

Table 9: Normality test results for the DVH parameters of the successful subset 

 Shapiro-Wilik D’Agostino-Pearson 
 p-value Reject H0 p-value Reject H0 
Boost D99% (%) 5.33E-06 yes 2.41E-05 yes 
Boost D95% (%) 3.29E-07 yes 1.84E-06 yes 
Boost D50% (%) 9.00E-05 yes 1.05E-03 yes 
Boost D5% (%) 1.49E-03 yes 1.43E-03 yes 
Boost Dmax (%) 0.00E+00 yes 0.00E+00 yes 
Boost V107% (cc) 8.88E-16 yes 0.00E+00 yes 
Body Dmax (%) 2.60E-05 yes 5.56E-05 yes 
Body V107% (cc) 2.08E-11 yes 4.58E-13 yes 
Rectum V60Gy (cc) 6.88E-15 yes 0.00E+00 yes 
Rectum V50Gy (%) 4.44E-16 yes 0.00E+00 yes 
Rectum V40Gy (%) 3.66E-15 yes 0.00E+00 yes 
Rectum V30Gy (%) 1.44E-15 yes 0.00E+00 yes 
Rectum V26Gy (%) 3.65E-14 yes 0.00E+00 yes 
Rectum V20Gy (%) 0.00E+00 yes 0.00E+00 yes 
Rectum Dmean (Gy) 0.00E+00 yes 0.00E+00 yes 
Left femoral V41Gy (%) 9.50E-13 yes 1.11E-16 yes 
Right femoral V41Gy 
(%) 2.66E-12 yes 5.14E-11 yes 

Bladder V63,6Gy (cc) 2.12E-08 yes 1.52E-09 yes 
Bladder V60Gy (%) 9.80E-11 yes 8.86E-14 yes 
Bladder V49Gy (%) 4.04E-10 yes 2.21E-09 yes 
Bladder V41Gy (%) 0.00E+00 yes 0.00E+00 yes 
Bladder V31Gy (%) 2.00E-15 yes 1.48E-07 yes 
Bowels V58,5Gy (cc) 2.22E-15 yes 8.76E-08 yes 
Bowels V41Gy (cc) 5.33E-06 yes 2.41E-05 yes 
Bowels V36Gy (cc) 3.29E-07 yes 1.84E-06 yes 
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For the successful subset, the results of both the Wilcoxon signed-rank test and the D’Agostino-Pearson 
test indicated that the null hypothesis of normality should be rejected for all evaluated datasets. 
Therefore, the Wilcoxon signed-rank test was used to compare the DVH parameters between FT and RP 
plans in the subset. 
 
The same approach was used to test the normality of the differences in the data pairs for the complexity 
parameters, MU/Gy, and average CM. Table 10 provides an overview of the results of the normality 
tests for the complexity of the successful subset. 
 

Table 10: Normality test results for the complexity parameters of the successful subset 

 Shapiro-Wilk D’Agostino-Pearson 
 p-value Reject H0 p-value Reject H0 
MU/Gy 1.65E-06 yes 2.54E-02  yes 
Average CM 4.25E-03 yes 2.12E-02 yes 

 
For the average CM and the MU/Gy, the results for both the Shapiro-Wilk test and the D’Agostino-
Pearson test indicated that the null hypothesis of normality should be rejected. As a result, the Wilcoxon 
singed-rank test was used to evaluate both complexity parameters.  

4.4.2. PTV 

The difference in dose coverage of the PTV between the initial KBP-generated plan (RP) and the 
optimized plan that met all constraints (FT) was compared using DVH parameters. The D99%, D95%, 
D50%, D5% and V107% were used in this comparison. Table 11 presents the results of the DVH analysis 
for the PTV, including mean values, standard deviations, relative differences, and corresponding p-
values from the statistical tests performed.  

Table 11: PTV dose results for the successful subset 

 FT RP p-value 
Relative 
difference 
(%) 

Boost D99% (%) 91.80±0.83 91.14±1.52 1.15E-04 0.72 
Boost D95% (%) 95.71±0.53 95.42±0.08 8.07E-03 0.30 
Boost D50% (%) 100.29±0.13 100.30±0.19 5.40E-01 -0.01 
Boost D5% (%) 103.25±0.21 103.46±0.28 2.23E-13 -0.20 
Boost V107% (cc) 0.00±0.01 0.07±0.16 2.70E-18 -94.62 

 
In the subset of successfully fine-tuned plans, the Boost D99% (%) and Boost D95% (%) were 
significantly higher in FT plans compared to RP plans, although the relative increases of 0.72% and 
0.30% are minor. The Boost D5% (%) and Boost V107% (cc) values were significantly reduced, with 
relative decreases of 0.20% and 94.62%, respectively, indicating a reduction in hotspots and volumes 
receiving excessive doses. No statistically significant difference was found for the Boost D50% (%), 
which showed a negligible relative difference of -0.01%.  
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4.4.3. OAR Sparing 

The difference in OAR sparing between the initial plans generated by the KBP model and the 
successfully fine-tuned plans that met all constraints was evaluated using DVH parameters. Table 12 
summarizes the results of the DVH analysis for the OARs.  
 

Table 12: OAR dose results for the successful subset 

 FT RP p-value 
Relative 
difference 
(%) 

Body V107% (cc) 0.01±0.01 0.11±0.18 6.02E-20 -88.02 
Rectum V60Gy (cc) 0.73±0.22 1.12±0.60 2.72E-13 -34.90 
Rectum V50Gy (%) 9.80±3.68 9.39±3.42 1.64E-08 4.35 
Rectum V40Gy (%) 16.19±5.26 15.53±5.24 1.52E-20 4.29 
Rectum V30Gy (%) 23.17±7.92 22.05±6.90 1.47E-22 5.06 
Rectum V26Gy (%) 26.70±8.55 25.06±7.54 1.01E-26 6.55 
Rectum V20Gy (%) 33.04±10.28 30.65±8.63 1.09E-25 7.81 
Rectum Dmean (Gy) 19.02±4.00 18.21±3.53 9.82E-24 4.44 
Left Femoral V41Gy (%) 0.00±0.00 0.00±0.02 1.00E+00 -83.33 
Right Femoral V41Gy 
(%) 0.01±0.05 0.02±0.15 6.88E-01 -67.80 
Bladder V63,3 Gy (cc) 0.01±0.03 0.04±0.06 8.62E-06 -60.54 
Bladder V60Gy (%) 2.81±1.07 3.11±1.58 3.15E-01 -9.59 
Bladder V49Gy (%) 9.33±4.47 9.11±4.34 9.38E-06 2.41 
Bladder V41Gy (%) 13.65±5.99 13.28±5.71 2.05E-09 2.75 
Bladder V31Gy (%) 19.48±8.19 18.79±7.64 1.34E-17 3.66 
Bowels V58,5Gy (cc) 0.01±0.09 0.01±0.11 1.00E+00 -5.30 
Bowels V41Gy (cc) 1.06±2.34 1.08±2.38 3.15E-01 -1.36 
Bowels V36 Gy (cc) 1.69±3.49 1.71±3.54 3.75E-01 -0.91 

 
The Body V107% (cc) was significantly lower in the FT plans compared to the RP plans, corresponding 
to a relative reduction of 88.02%. This indicates a significant decrease in the volume of the body 
receiving more than 107% of the prescribed dose.  
 
In the subset of successfully fine-tuned plans, all DVH parameters for the rectum showed statistically 
significant differences between the FT and the RP plans. Specifically, the V60Gy (cc) was reduced by 
34.90% in FT plans compared to the RP plans, indicating improved sparing of the rectum at high dose 
levels. In contrast, lower dose parameters including V50Gy (%), V40Gy (%), V30Gy (%), V26Gy (%), 
V20 Gy (%), and the mean dose were higher in the FT plans. Although the differences were statistically 
significant, the relative increases for these parameters are small and acceptable.  
 
No statistically significant differences were observed for either femoral head. The results showed 
relative differences of -83.33% for the left and -67.80% for the right femoral head, however, the absolute 
differences were negligible.  
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For the bladder, the V63.3 Gy (cc) was significantly reduced in the FT plans compared to the RP plans, 
with a relative decrease of 60.54%, indicating improved high-dose sparing. No statistically significant 
difference was observed for the V60Gy (%), despite a relative reduction of 9.59%. The lower dose 
parameters V49Gy (%), V41Gy (%), and V31Gy (%) were higher in the FT plans. Although these 
differences were statistically significant, the relative increases were small and acceptable. 
 
For the bowels, no statistically significant differences were observed between the FT and RP plans for 
any of the evaluated dose parameters. The relative differences for V58.5Gy (cc), V41Gy (cc), and 
V36Gy (cc) were minimal, and the absolute values were low, indicating comparable dose exposure to 
the bowels in FT and RP plans. 

4.4.4. Complexity 

To evaluate deliverability of the plans that met all constraints after fine-tuning, the number of units per 
gray and a complexity metric are used. The boxplot comparisons of the number of MU/Gy and the 
average CM are illustrated in Figure 9 and Figure 10, respectively.  
 

  
Figure 9: Boxplot comparison of the number of 

MU/Gy for the successful subset 
Figure 10: Boxplot comparison of the CM for the successful 

subset 

 
Figure 9 shows that the median number of MU/Gy was lower in the FT plans compared to the RP plans. 
Both groups showed similar variability, but the FT plans had a slightly lower average. The boxplot 
comparison of the average CM, which is illustrated in Figure 10, showed a slightly lower mean and 
average in the FT plans compared to the RP plans. The reduction in both MU/Gy and average CM in the 
FT plans was confirmed by the results of the Wilcoxon signed-rank test, shown in Table 13. 
 

Table 13: Complexity results for the successful subset 

 FT RP p-value 
Relative 
difference 
(%) 

Average CM 0.154±0.03 0.159±0.03 6.52E-03 -3.3 
MU/Gy 338.6±48.0 353.8±39.1 1.80E-09 -4.3 

 
The p-value for both parameters was lower than 0.05, confirming a statistically significant difference 
between the FT and RP plans. The relative reductions for the average CM and the number of MU/Gy 
were 3.3% and 4.3%, respectively. These results indicate a small reduction in plan complexity after fine-
tuning. 
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5 Discussion  

The goal of this study was to evaluate a fully automated fine-tuning algorithm designed to improve 
prostate VMAT treatment plans initially generated using a KBP model. A retrospective analysis was 
performed using treatment data from 200 previously treated prostate cancer patients, randomly selected 
from the clinical database. For each patient, a new course was created in which the contoured simulation 
CT was uploaded. New treatment plans were generated by entering the patient ID into the script interface 
and running the script. The script first invoked the KBP model and then applied the automated fine-
tuning process. Only those plans that failed to meet all constraints using only the KBP model, were 
included for evaluation.  
 
For each DVH and complexity parameter, two datasets were generated. The RP dataset contained the 
values from the initial treatment plans produced by the knowledge-based planning (KBP) model. The 
FT dataset included the corresponding values from the final plans generated through the automated fine-
tuning script. The effect of the fine-tuning process was assessed by comparing the RP and FT values for 
each parameter.  
 
The fine-tuning algorithm was evaluated in two parts. First, the overall impact of the fine-tuning process 
was analyzed by including all treatment plans that required fine-tuning. For the plans that failed to meet 
all constraints, the FT values of the last generated plan were used for the evaluation. Secondly, a subset 
that only contained the cases where the fine-tuning process resolved all unmet constraints was evaluated. 
This successful subset was evaluated to specifically assess the effect of the fine-tuning process on 
successful cases. 
 
During the initial evaluation of the generated plans, an unexpected issue with the script was discovered. 
The fully automated planning script was designed to result in one of three expected outcomes. A 
treatment plan either met all constraints using only the KBP model, the fine-tuning process resolved all 
unmet constraints, or the fine-tuning process failed to resolve all unmet constraints after completing 10 
loops. The initial evaluation of the generated plans showed that in some cases, a fourth and unexpected 
outcome occurred. In these cases, the fine-tuning process was terminated prematurely, even though the 
treatment plan still failed to meet all constraints. Further investigation of these cases showed that all of 
them failed to meet the boost D99% constraint. This problem was revealed to be a result of an 
assumption that was made during scripting: that if a plan met the boost D95% constraint it would also 
meet the boost D99% constraint. To address this problem, an additional constraint for the boost D99% 
was implemented in the script, which successfully prevented this issue.  
 
The discovery of this problem highlights the importance of performing a validation study on a large 
dataset of patients when developing automated planning techniques. Rare but clinically significant 
problems can go undetected when small datasets are used for testing. It also emphasizes the need for 
manual verification and evaluation by physicists, even in automated workflows.  
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Out of the 165 cases that required fine-tuning, the process resolved all unmet constraints in 104 of them. 
These cases were used to create the successful subset for the data analysis. The normality tests indicated 
that the null hypothesis of normality for the differences in the data pairs should be rejected for all DVH 
and complexity parameters. As a result, all statistical comparisons of the parameters in this subset were 
performed using the Wilcoxon signed-rank test. 
 
In the successful subset, most of the DVH parameters that were analyzed showed a statistically 
significant difference between the RP and FT plans, although not all differences were meaningful. The 
most notable improvements were the reduction of the boost V107% (cc) and the body V107% (cc) 
constraints. These improvements indicate a reduction of hotspots in the PTV and a reduction in the 
volume of the body that receives more than 107% of the prescribed dose. For both the bladder and the 
rectum, the results showed improved sparing at high-dose levels and a slight increase at low-dose levels. 
Although these increases were statistically significant, the relative differences were small and acceptable 
and are likely a result of the trade-offs made during optimization to achieve an acceptable plan.  
 
These results showed that the fine-tuning process was able to resolve all unmet constraints in most of 
the cases. Additionally, the fine-tuning also slightly decreased the complexity of the plans, as indicated 
by the reduced number of MU/Gy and average CM values. These results show that the fine-tuning 
process can improve plan quality without compromising dose accuracy for prostate cases.  
 
The normality tests indicated that the null hypothesis of normality for the differences in the data pairs 
should also be rejected for all DVH and complexity parameters in the full dataset. As a result, all 
statistical comparisons of the parameters were performed using the Wilcoxon signed-rank test. 
 
The analyses of the full dataset, consisting of all 165 cases that required fine-tuning, showed similar 
trends in trade-offs between the RP and FT plans. The most notable improvements were observed in the 
Boost V107% (cc) and the Body V107% (cc). The results of this dataset also showed improved sparing 
at high-dose levels and a slight increase at low-dose levels for the rectum and bladder. The comparison 
of the number of MU/Gy and the average CM showed a slight, but statistically significant reduction in 
plan complexity.  
 
The results of the full dataset show that even if the fine-tuning process fails to solve all unmet constraints, 
it could still serve as an effective starting point for manual refinement. The 10 generated plans can be 
used by the physicists to get an idea of the possible trade-offs.  
 
When interpreting the results, it is important to consider that unmet constraints in the delivered treatment 
plans were not used as exclusion criteria during patient selection. As a result, some of the selected cases 
included treatment plans that did not fully meet all predefined clinical constraints used to evaluate the 
fine-tuning process. It is possible that if only patients whose delivered plan met all constraints were 
used, the observed success rate of the fine-tuning process would have been higher. 
 
A limitation of the fine-tuning process, and automated planning methods in general, is the inability to 
account for patient-specific clinical considerations that may influence planning decisions. The fine-
tuning algorithm uses predefined constraints and objectives to optimize the treatment plan, but some 
patient-specific factors like age, limited lifetime expectancy, or secondary diseases are not taken into 
account. These case-by-case decisions are difficult to implement into planning tools and should be 
assessed by experienced clinicians. 
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The script is currently also limited to treatment planning for prostate cases following the planning 
protocol described in section 3.1. In future work, this approach of automated fine-tuning could be used 
for other planning protocols or other tumor sites. The fine-tuning algorithm could also be used to 
enhance other automated planning models like deep learning-based models. 
 
Another promising area for further research is adaptive radiotherapy, where frequent anatomical changes 
due to organ motion or tumor regression are used to regularly update the treatment plan. The fine-tuning 
process could be applied in day-to-day planning to re-optimize a treatment plan based on updated 
images, addressing anatomical changes over the course of the treatment.  
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6 Conclusion 

This study demonstrated the importance of performing a validation study and the continued need for 
manual verification and evaluation in automated workflows. The validation study showed that, after the 
implementation of the additional constraint, the fully automated fine-tuning algorithm can effectively 
improve prostate VMAT plans initially generated by a knowledge-based model. The algorithm 
successfully resolved unmet clinical constraints in most cases and led to small but consistent reductions 
in plan complexity and monitor units per Gray. These results highlight the potential of automated fine-
tuning to enhance plan quality, increase efficiency, and reduce manual workload in clinical radiotherapy 
planning. 
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