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Abstract

IMO-IMOMEC conducts research on battery storage systems, including analyses of pouch cell

batteries. During the cycling process, undesired gases are generated that can compromise battery

performance and safety. The existing gas analysis setup is only suitable for small coin-cell

size batteries, while pouch cells require manual gas extraction, i.e. with a syringe, leading to

inconsistent measurements, leakages and the inability to perform operando measurements. This

master thesis aims to develop an automated setup that enables precise and reliable real-time gas

analysis of pouch cell batteries.

Firstly, a coupling mechanism is designed and fabricated to encapsulate the pouch cell. The mech-

anism allows fast battery exchange and ensures sealed gas and electric connections. Furthermore,

the system incorporates solenoid valves for automated measurements and tubing lengths, reduced

by 65% compared to previous setups to reduce the dead volume.

The completed setup functions autonomously and is configurable via the custom software appli-

cation. Hence, the system not only allows for operando gas analysis but also eliminates the need

of an operator during the cycling process if measurement at specific intervals are required.

Mass spectrometry leak tests confirm excellent integrity with air infiltration below 800 counts/s.

Measurements further deliver reliable and reproducible data. In conclusion, this setup marks a

major improvement over manual methods, providing a reliable tool for analysing gas production

in pouch cell batteries.





Abstract in Dutch

IMO-IMOMEC voert onderzoek uit naar energieopslagsystemen, waaronder pouchcelbatterijen.

Tijdens het laden en ontladen ontstaan ongewenste gassen die de prestaties en veiligheid van

batterijen kunnen aantasten. De bestaande gasanalyse-opstelling is enkel geschikt voor kleine

coincelbatterijen. Voor pouchcellen is handmatige gasextractie vereist, bijvoorbeeld met een

spuit, wat leidt tot inconsistente metingen, lekkages en maakt operando-metingen onmogelijk.

Deze masterproef ontwikkelt een geautomatiseerde opstelling die nauwkeurige en betrouwbare

realtime gasanalyse van pouchcellen mogelijk maakt.

Eerst werd een koppelsysteem ontworpen om de pouchcel luchtdicht te omsluiten. Dit maakt

snelle batterijwissels mogelijk en garandeert afgesloten gas- en elektrische aansluitingen. Daar-

naast bevat het systeem solenöıdekleppen voor automatische metingen en werd de buislengte met

65% gereduceerd om het dood volume te minimaliseren.

De opstelling werkt autonoom en is instelbaar via een eigen softwaretoepassing. Hierdoor zijn

operando-metingen mogelijk zonder tussenkomst van een operator, zelfs bij metingen op vaste

tijdstippen.

Lektests met massaspectrometrie tonen een uitstekende integriteit aan, met luchtinfiltratie onder

800 counts/s. Metingen leveren bovendien betrouwbare en reproduceerbare gegevens op. Deze

opstelling vormt een duidelijke verbetering ten opzichte van manuele methoden en biedt een

betrouwbaar instrument voor de analyse van gasvorming in pouchcelbatterijen.





Chapter 1

Introduction

The accelerated shift toward renewable energy has significantly intensified the demand for efficient

and sustainable energy storage solutions. Lithium-ion batteries, as a cornerstone of modern

electrochemical storage technologies, have emerged as a critical component in facilitating this

global energy transition.

However, their widespread adoption also brings forth complex scientific and engineering chal-

lenges. Among these, the formation of gases during battery operation presents a crucial safety

and performance issue, particularly in pouch cell configurations.

This chapter introduces the broader context in which this research is situated, emphasizing the

relevance of gas analysis in lithium-ion batteries and the limitations of current experimental

setups. The underlying problem and motivation for the development of a novel measurements

setup are subsequently presented. Thereafter, the specific research objectives and methodological

approach adopted throughout this project are outlined. The chapter concludes with a structured

overview of the thesis, providing a roadmap of the subsequent chapters and their respective

contributions to the research.

1.1 Context

The global energy transition is becoming increasingly important to slow down global warming.

Currently, electrification is becoming the most widely used way to reduce CO2 formation. In this

regard, the research institute EnergyVille in Genk (Belgium) is conducting research into innova-

tive technologies and materials for green energy production. A dedicated team here specifically

focuses on researching energy storage systems. In the energy transition, energy storage systems

such as batteries play a crucial role. The increasing understanding of lithium-ion battery per-

formance, safety, and longevity has played a key role in enabling their rapid development and

widespread adoption in portable electronics and electric vehicles.

Due to the wide range of applications for batteries, they come in various forms and topologies.

One important type is pouch cell batteries. Pouch cell batteries are lightweight, flexible, and

have a high energy density, making them suitable for applications where space and weight are

critical factors. They are commonly used in electric vehicles, consumer electronics, and renewable

energy storage systems.



During the charging and discharging process of pouch cell batteries undesired gases are gener-

ated [1]. These gases can accumulate within the cell, causing it to swell and potentially leading to

a decrease in battery performance or a safety hazard. Incidents involving thermal runaway, lead-

ing to explosions in consumer electronics and electric vehicles, have garnered significant attention

in recent years [1].

This paper focuses on designing and implementing a real-time measurement setup for those

gases using a mass spectrometer. A mass spectrometer is an advanced analytical instrument

that detects and identifies gas emissions with high sensitivity and precision, capable of analysing

a wide range of gaseous species. Using this tool, the released gas composition can be accurately

identified and quantified [2].

Previous studies have been conducted on gas formation in batteries, using various measurement

setups. For pouch cell batteries, relatively simple setups are currently used. Figure 1.1 illustrates

a method used for pouch cell batteries. In this setup, the gases from the pouch cell are manually

extracted using a syringe through a tube and a coupling connection [3].

Figure 1.1: Schematic illustration of the manual gas sampling system for pouch cells [3]

1.2 Problem Statement

This project is particularly important for the battery research group of EnergyVille, which focuses

on testing and optimizing the performance of energy storage systems. Due to the relative novelty

of gas analysis techniques for batteries, research in this area has been limited.

To perform gas analysis on batteries, a mass spectrometer is used. However, connecting a mass

spectrometer to pouch cell batteries, which come in a variety of shapes and sizes, presents a

significant challenge. Creating a general and reliable connection for these different forms is

crucial to accurately measure gas production during the charging and discharging processes.

Previous research has explored methods to connect a mass spectrometer to pouch cell batteries,

but these studies used a rather simplistic coupling design [2]. This design comes with several

limitations. For example, the produced gases have to be extracted manually from the pouch

cells, which causes a less consistent measurement and more room for human mistakes. There is

also an extraction method developed for coin cells. However, even this technique has challenges,

such as frequent gas leaks caused by insufficient sealing of the tubes and the use of excessively
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long tubes. In fact, during preliminary tests, the presence of air leakage within the current

setup was observed. Mass spectrometry measurements have revealed a significant concentration

of atmospheric gases, particularly nitrogen and oxygen, inside the sampling line—indicating

that ambient air is infiltrating the system. This compromises the integrity of the gas analysis by

diluting or masking the signals of the gases evolved from the pouch cell itself. Such contamination

not only reduces the accuracy of the quantitative analysis but also poses a risk of misinterpreting

reaction pathways due to secondary gas formations.

Additionally, the current coupling device designed for coin cells is too small and incompatible in

shape with pouch cells.

Another significant limitation is that, currently, the gases are released using a manual switch.

This approach requires an operator to be physically present throughout the cycling process, that

can take from one to 14 days of time based on the desired number of cycles and the C-rate.

1.3 Objectives

The primary objective of this master’s thesis is to develop a coupling mechanism that enables ac-

curate and reliable gas analysis of pouch cell batteries, that performs measurements autonomously

without the presence an operator after starting. The ultimate goal is to create a system that

allows for detailed real-time measurements of the gases released during charging and discharging,

ensuring that these measurements are both precise and repeatable.

In order to achieve the research objectives, several specific goals must be met. First, a robust

and airtight coupling mechanism must be designed to allow accurate and repeatable gas analysis

of pouch cell batteries. The mechanism must be capable of capturing the gases generated within

the pouch cell and directing them efficiently to the mass spectrometer for the analysis.

In addition, a method must be implemented to enable electrochemical cycling of the pouch cell

while it is enclosed within the gas-tight containment mechanism. This requires the integration

of reliable electrical feedthroughs that maintain the system’s airtightness while allowing safe

and uninterrupted connection to a battery cycler. The design must ensure minimal electrical

resistance and avoid interference with the gas flow or mechanical sealing.

Furthermore, the coupling system must be constructed using chemically inert and non-reactive

materials, such as stainless steel or perfluoroalkoxy alkane (PFA), to prevent interactions with

the evolved gases. This material choice is essential to avoid contamination or the formation of

secondary gas species, which could compromise the accuracy of the mass spectrometry analysis.

Airtight sealing is not only essential to avoid leakage and to ensure that all generated gases are

directed through the intended detection path but also to avoid the ingress of ambient air, which

could contaminate the gas stream and interfere with accurate mass spectrometry measurements.

Secondly, the setup will be upgraded by integrating electronically actuated valves to remotely

start gas measurements. To ensure both functional reliability and user safety, the electronic

control system for the valve actuation must be designed according to best practices in embedded

hardware engineering, with particular attention to fail-safe operation and electrical isolation

where needed.

Moreover, a custom software interface will be developed, enabling the user to control valve
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operation remotely and define measurement conditions through various trigger options. These

include time-based triggers, voltage thresholds, full-cycle, half-cycle and rest-period triggers. The

software should support the simultaneous use of multiple trigger types and the software will log

precise time and trigger-type data to allow post-synchronization with the data stream from the

mass spectrometer.

By achieving these objectives, the goal is to design a coupling mechanism that is reliable and fully

automated, ultimately allowing for accurate and repeatable gas analysis of pouch cell batteries.

1.4 Method

The first phase of this research involves the construction of a single layer anode and cathode

pouch cell battery specially made for gas analysis using mass spectrometry using the materials

and instruments provided by EnergyVille.

The first phase of this research involves designing the coupling using the Creo CAD Software.

This mechanism will be built to meet the requirements outlined in the objectives.

Secondly, the electronics will be built to be able to control the solenoid valves. Additionally, the

software to be able to control the valves remotely will be developed in Python. After this, a bill of

materials will be made which will contain the costs of the materials that has been manufactured

or ordered.

Progressively, a measurements setup will be built to connect the battery to the mass spectrometer

integrating the coupling mechanism, the solenoid valves and the electronics to control them.

Subsequently, the mass spectrometer analyses will be conducted using the constructed setup.

To this end, The results will be critically evaluated, and the mechanism will undergo further

refinement based on the findings. The main objective of doing so is to ensure that the final

coupling system gives reliable and consistent results.

In the final stage, analyses will be performed using the fully optimised setup on multiple pouch

cells. The data obtained from these final tests will be examined in-depth.

1.5 Future Outlook

The subsequent chapters of this thesis will systematically present the design, implementation,

and analysis of the test setup:

• Chapter 2: Provides an extensive literature review on the history and evolution of Li-ion

battery technology, with a focus on current challenges and gas formation phenomena in

battery cells.

• Chapter 3: Describes the mechanical design of the test cell, including material selection,

fabrication procedures, and the integration of measurement instrumentation.

• Chapter 4: Discusses the electronics and automation system used in the test setup, in-

cluding valve control and software implementation.

• Chapter 5: Details the fabrication procedure of the custom-made pouch cells, including

materials, assembly steps, and quality control measures.
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• Chapter 6: Presents the results obtained from the gas analysis experiments and provides

an in-depth discussion of the findings in relation to the initial objectives and literature.

• Chapter 7: Concludes the thesis by summarizing the key findings, identifying limitations,

and providing recommendations for future research.
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Chapter 2

Literature Review

2.1 Introduction

2.1.1 Brief history of battery technology

Brief History of Battery Technology

The earliest known precursor of modern batteries is the Baghdad Battery. This artifact consists

of a copper cylinder enclosing an iron rod within clay. It likely served for basic electroplating

or chemical experiments in the Parthian era. Systematic investigation of electrochemical cells

began in the late eighteenth century. In 1780 Luigi Galvani reported the phenomenon of animal

electricity. In 1800 Alessandro Volta devised the voltaic pile. Volta’s pile used alternating zinc

and copper discs separated by pads soaked in electrolyte. This arrangement delivered the first

stable and controllable source of electric current [4].

In 1836 John Frederic Daniell modified Volta’s design by placing copper and zinc electrodes in

separate compartments each with its own electrolyte. That innovation reduced the polarization

that limited earlier cells. In 1859 Gaston Planté introduced the first lead acid accumulator. This

invention inaugurated truly rechargeable cells. In the 1870s Georges Leclanché developed the

dry cell and in 1899 Waldmar Jungner created the nickel cadmium battery. These advances

powered telegraph networks and early portable lighting. Despite their impact these chemistries

suffered from low energy density and significant weight. The search for higher specific energy

culminated in 1991 when Sony commercialized the first lithium ion batteries. These devices

combined rechargeability with greatly improved energy density and cycle life [4].

Historical Evolution of Lithium-Ion Battery Technologies

Since the first experimental lithium-ion cell appeared in the early 1970s the field has reached

several key milestones. Figure 2.1 shows the main concepts and commercialization events through

the decades. In the 1980s researchers introduced the rock-salt structure of LiCoO2. In 1991

Sony launched the first commercial lithium-ion battery. Around the year 2000 LiFePO4 and

NMC cathode materials entered the market. After 2010 development shifted toward lithium-rich

cathodes. During the latter half of that decade solid-state electrolytes and Li–S systems became

the focus of intense research. More recent work addresses Li–air and Li–CO2 cells aiming for

maturation around 2030 [5].



Figure 2.1: Historical evolution and key milestones of lithium-ion battery technology. [5].

2.1.2 The significance of Li-ion batteries in modern applications

Applications of Lithium-Ion Batteries Lithium-ion batteries have become the primary energy

source for portable electronics such as smartphones and laptops due to their high gravimetric and

volumetric energy densities [6]. By employing non-aqueous, water-free electrolytes and lithium

salts, cell voltages near 4 V are achieved—far exceeding the ¡ 2 V limit of aqueous systems, and

this enables significantly higher energy storage per unit mass and volume.

Beyond consumer devices, LIBs are critical for grid-scale energy storage applications, where they

support renewable integration, peak-shaving and frequency regulation. In the transportation sec-

tor, electric vehicles (EVs) and hybrid electric vehicles (HEVs) rely on LIBs for their combination

of power density, cycle life and efficiency. Emerging fields include aerospace power systems and

self-powered autonomous sensors, each demanding careful optimization of energy density, safety,

cost, cycle life, charge–discharge rates and environmental impact to meet specific operational

requirements [6].

2.2 Basics of Li-ion Batteries

2.2.1 Components of Lithium Ion Batteries

Lithium ion cells consist of several key parts. Figure 2.2 shows a pouch type cell. This cell uses

a flexible polymer bag as casing. The bag contains the electrode stack and the electrolyte. Two

metal tabs connect each electrode to the external circuit. One tab is attached to the cathode foil
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and the other to the anode foil.

The cathode is an aluminum foil coated with a lithium containing active material that releases

lithium ions during discharge. The anode is a copper foil coated with graphite layers that host

lithium ions during charge. A porous separator lies between the two electrodes. It prevents

electronic contact while allowing lithium ions to move. The electrolyte is a solution of lithium

salt in organic solvents. It provides the medium for ionic transport throughout the cell [7].

Figure 2.2: Structure of a pouch type lithium ion cell showing the cathode foil, separator, anode
foil, cell casing and current collector tabs. Source: Zubi et al. [7]

2.2.2 Working Principle of Lithium Ion Batteries

The operation of a lithium ion battery is based on reversible movement of lithium ions between

two electrodes. The anode serves as the negative electrode and the cathode acts as the positive

electrode. During discharge lithium ions migrate from the anode through the electrolyte and

separator to the cathode. Electrons travel via the external circuit to supply power to an electrical

load. Charging reverses these processes by driving lithium ions back to the anode and returning

electrons through the negative terminal [8].

The chemical changes in each electrode can be expressed by half reactions. At the cathode

lithium is removed from its host lattice during charge and reinserted during discharge. At the

anode lithium is inserted into graphite layers during charge and extracted during discharge. For

a lithium cobalt oxide cathode and a graphite anode the reactions read

Energy storage in these cells relies on repeated intercalation and deintercalation of lithium ions

into layered host structures. The nearly constant potential during these processes yields a flat

discharge profile. Losses arise from ionic resistance in the electrolyte and electronic resistance

in the electrodes and current collectors. Careful selection of electrode materials and electrolyte

composition can reduce these losses and enhance efficiency and cycle life [8].
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Figure 2.3: Diagram of lithium ion transport and electron flow during discharge and charge.
Source: [8]

Figure 2.4: Charge and discharge reactions at cathode and anode. Source: [8]

2.3 Advantages of Li-ion Batteries

Advantages of Lithium-Ion Batteries

Outstanding specific energy and power. Lithium-ion batteries store more energy per unit

mass than most other rechargeable systems. They also sustain significant current output without

large voltage drop. This combination makes them ideal for both portable electronics and electric

vehicles [7].

Long calendar and cycle lives. These cells retain capacity over hundreds to thousands of

charge cycles. The stable electrode materials and optimized electrolytes limit degradation. As a

result they offer durable performance over many years [7].

High round trip efficiency. Energy losses during charge and discharge remain low in lithium-

ion cells. Typical one-way efficiency exceeds ninety percent. This efficiency reduces wasted

energy and lowers operating costs [7].

Low operation and maintenance requirements. After installation these systems require

little intervention. They do not need regular fluid topping or complex balancing. This simplicity

lowers lifecycle cost and eases system management [7].
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Table 2.1: Key advantages of lithium-ion batteries [7]

Outstanding specific energy and power
Long calendar and cycle lives
High round trip efficiency
Low operation and maintenance requirements
Satisfactory operating temperature ranges
High reliability
Technological diversity with multiple chemistries
Intensive global research and development efforts
Availability of eco friendly materials
Reasonable self discharge rate
Relatively fast recharge

Satisfactory operating temperature ranges. Most chemistries operate effectively from mi-

nus twenty to plus sixty degrees Celsius. Performance losses outside this band remain moderate.

This robustness suits diverse climates and applications [7].

High reliability. Properly managed cells rarely fail unexpectedly. Built-in safety features

prevent damage from overcharge or temperature extremes. These safeguards ensure dependable

operation in critical systems [7].

Technological diversity with multiple chemistries. A wide range of cathode and anode

materials exists to tune energy, power and cost. This diversity allows designers to select the best

chemistry for each use case. It supports tailored solutions across industries [7].

Intensive global research and development efforts. Both academic and industry teams

continually explore new materials and architectures. Innovations aim to boost energy, lifetime

and safety. Ongoing work promises further gains and cost reductions [7].

Availability of eco friendly materials. Some modern chemistries replace scarce or toxic

metals with abundant elements. For example LiFePO4 uses iron and phosphate. These choices

reduce environmental impact and improve sustainability [7].

Reasonable self discharge rate. Lithium-ion cells lose only a small fraction of charge when

idle. Typical self discharge is under five percent per month. This makes them suitable for standby

and backup applications [7].

Relatively fast recharge. Many cells reach eighty percent state of charge within thirty minutes.

High ion conductivity and electrode design support rapid charging. Fast recharge enhances

system availability and user convenience [7].

2.4 Challenges in Li-ion Battery Technology

Despite their widespread success and high energy density, lithium-ion batteries face significant

challenges that limit their performance, safety, and sustainability. One of the biggest challenges

lies in capacity degradation over time, which reduces the effective lifespan of the battery and

complicates state-of-health predictions. High charging rates, low temperatures, and elevated

voltages can accelerate this degradation, posing a trade-off between performance and durability

[9]. Another major issue concerns safety, especially related to thermal runaway (TR) events trig-
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gered by internal short circuits or uncontrolled side reactions. The use of flammable electrolytes

and the potential for lithium plating and dendrite formation further amplify safety concerns.

This section focuses on the degradation mechanisms and safety issues that most critically affect

lithium-ion battery performance over time.

2.4.1 Degradation Mechanisms

Lithium-ion battery degradation can be conceptualized on three analytical levels: mechanisms,

modes, and observable effects. Mechanisms represent the physical and chemical changes occurring

at the microstructural level, such as the formation of passivation layers or structural breakdown

of active materials. Modes group these mechanisms based on their functional consequences—for

instance, loss of active material (LAM), loss of lithium inventory (LLI), impedance increase, and

stoichiometric drift [10]. Finally, these modes manifest as the observable effects of degradation,

notably capacity and power fade.

This multilevel framework helps in deciphering how local material changes evolve into perfor-

mance losses, and why certain conditions exacerbate degradation disproportionately. The degra-

dation modes themselves are tightly linked; for instance, LLI and LAM may occur simultaneously

and lead to stoichiometric drift, thereby accelerating further degradation. Figure 2.5 shows the

location and consequences of the de degradation mechanisms in Li-ion baterry cells, with primary

mechanisms labelled in green and secondary mechanisms labelled in dark red.

Figure 2.5: Schematic showing the location and consequences of the degradation mechanisms in
Li-ion battery cells [11].

SEI Layer Formation and Growth

One of the earliest and most significant degradation mechanisms in LIBs is the growth of the

solid electrolyte interphase (SEI) on the negative electrode [11].
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Figure 2.6: Schematic showing the various consequences and causes of transition metal dissolu-
tion, including the link with both SEI and pSEI formation and growth [11].

This layer, formed primarily during the initial charging cycles, results from the reduction of

electrolyte solvents at the low potentials typical of graphite-based electrodes. While the SEI

serves a protective function by preventing further electrolyte decomposition, its growth over

time continues due to several reinforcing factors. These include solvent diffusion through the

SEI, exposure of new electrode surfaces via particle cracking, and catalytic reactions involving

dissolved transition metals.

The SEI is composed of a heterogeneous mixture of organic and inorganic compounds, including

lithium carbonate, lithium ethylene dicarbonate, and lithium fluoride. Its growth consumes

cyclable lithium, resulting in LLI, and increases ionic resistance, which contributes to power

fade. Although it is a passive layer by design, the SEI can itself crack due to the mechanical

stress of cycling, exposing fresh graphite surfaces and initiating further SEI growth—a feedback

loop that significantly impacts cell longevity

Lithium Plating and Dendrite Growth

Another highly impactful degradation mechanism is lithium plating, where lithium deposits as a

metal on the surface of the anode rather than intercalating into the graphite [12]. This typically

occurs during fast charging, particularly at low temperatures, or when the anode becomes fully

lithiated and cannot accommodate additional lithium. The phenomenon is both thermodynami-
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cally and kinetically driven, with high overpotentials and low lithium diffusivity in graphite being

the main triggers.

Once plated, lithium metal is highly reactive with the electrolyte and rapidly forms additional

SEI layers. If the deposited lithium becomes electrically isolated, either by being covered in

SEI or detaching, it transforms into so-called ”dead lithium,” which no longer participates in

the charge-discharge cycles. Lithium plating can also induce dendritic growth, where metallic

filaments protrude into the separator, potentially causing internal short circuits and TR [11].

This mechanism is thus not only a contributor to LLI and impedance increase, but also a key

safety concern in high-performance battery systems.

Positive Electrode Decomposition and Phase Transitions

While degradation at the negative electrode has been extensively studied, structural and chemical

transformations at the positive electrode (typically layered transition metal oxides like NMC)

are equally critical. These materials undergo complex degradation processes during high-voltage

operation and repeated cycling, especially at high states of charge.

One of the central phenomena is phase transformation, where the layered structure of NMC

transforms into spinel or rock salt phases [12, 13]. These new phases are less capable of lithium

intercalation and present higher resistance to lithium-ion transport. This transformation is often

accompanied by the release of lattice oxygen, which reacts with electrolyte components to form

gaseous by-products such as CO2 and O2, further destabilizing the cell.

Concurrently, transition metal dissolution, particularly of Ni, Mn, and Co, occurs at the cathode

surface and leads to their migration through the electrolyte to the anode. Once deposited on the

graphite electrode, these metal ions catalyse further SEI formation and exacerbate impedance

rise. Additionally, the similarity in ionic radii between Ni2+ and Li+ promotes cation mixing

within the lattice, hindering lithium transport and raising cell impedance.

To some extent, the positive electrode develops a passivation layer analogous to the SEI, termed

the cathode electrolyte interphase (CEI or pSEI). This layer forms from reactions between dis-

solved transition metals and fluoride ions in the electrolyte. Like its counterpart on the anode,

the pSEI contributes to impedance rise and electrolyte consumption, adding to the overall degra-

dation burden.

Mechanical Degradation: Particle Fracture

Mechanical degradation manifests most prominently as particle fracture, affecting both electrodes

but especially significant in systems incorporating silicon-based anodes[14]. Silicon, while offering

a much higher theoretical capacity than graphite, undergoes extreme volume expansion (up

to 300%) during lithiation. This causes severe mechanical stress within particles, leading to

fragmentation, loss of electrical contact, and irreversible capacity loss[15].

Even in graphite and NMC-based systems, repeated cycling causes expansion and contraction,

which over time generates microcracks in active material particles. These cracks not only lead to

the mechanical isolation of material fragments but also expose fresh surfaces to the electrolyte.

This initiates further SEI or pSEI growth and accelerates degradation via the mechanisms de-

scribed above.
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Advanced imaging studies have confirmed the correlation between particle fracture and capacity

fade. Mechanical modelling also shows that as stress accumulates, isolated regions form with

higher current density, further increasing localized heating and fracture—a clear example of a

positive feedback loop at the micro-scale.

2.4.2 Safety Issues

Thermal Runaway

TR represents the most severe safety concern in lithium-ion battery technology, characterized by

an irreversible failure process that leads to the production of flammable gases and potential fire or

explosion [16]. The TR process occurs when heat generated by exothermic reactions exceeds the

heat dissipated to the environment, creating a self-sustaining reaction cascade (see Figure 2.7).

Figure 2.7: Depiction of TR process initiation. [17]

The initiation of TR typically begins with the breakdown of the SEI layer, which serves as a pas-

sive stabilizing layer over the anode surface. Once compromised, continued electrolyte degrada-

tion occurs, leading to progressive heat generation and eventual TR. Various abuse conditions can

trigger this process, including short circuits, mechanical damage, overcharging, over-discharging,

and overheating [18, 16].

More key findings on gas generation during TR in aged lithium-ion batteries are discussed in

2.5.3.

Short Circuits

Short circuit conditions represent another critical safety concern, with lithium-ion batteries typ-

ically exhibiting much higher short circuit currents compared to traditional lead-acid batteries

due to their lower internal resistance [19]. Experimental measurements have shown that lithium-
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ion batteries can produce short circuit currents exceeding 3.3 kA, significantly higher than the

approximately 1.5 kA observed in comparable lead-acid systems.

The internal resistance of lithium-ion batteries can be as low as 5-10 mΩ for complete battery

packs, with individual cells potentially reaching 0.3 mΩ each. This low resistance, while benefi-

cial for efficiency and performance, creates substantial safety challenges during fault conditions.

The high current capability necessitates robust protection systems and careful circuit design to

manage fault currents safely.

2.5 Understanding Battery Degradation and Failure

2.5.1 Aging Processes in Li-ion Batteries

Battery aging represents a complex interplay of multiple degradation mechanisms that occur si-

multaneously during operation. The aging process involves both calendric aging (time-dependent

degradation during storage) and cyclic aging (degradation due to charge-discharge cycling). Un-

derstanding these processes requires detailed analysis of the electrochemical, mechanical, and

thermal factors that contribute to performance decline over time.

The SEI layer plays a central role in aging processes, as it continues to evolve throughout the

battery’s operational life. Computational studies have shown that SEI formation is not a one-

time event but rather an ongoing process involving continuous electrolyte decomposition and

film growth [20]. The composition and thickness of the SEI layer directly impact lithium-ion

transport kinetics, with thicker or more resistive SEI layers leading to increased impedance and

reduced capacity [21].

Aging also involves structural changes in electrode materials, including particle cracking, volume

expansion and contraction during cycling, and gradual loss of active material. These mechanical

degradation modes are often coupled with electrochemical processes, creating complex feedback

mechanisms that accelerate overall degradation [21].

2.5.2 Chemical and Electrochemical Reactions During Cycling

The cycling process in lithium-ion batteries involves numerous parallel chemical and electro-

chemical reactions beyond the primary lithium intercalation/deintercalation reactions. Side

reactions play a crucial role in determining battery lifetime and performance characteristics.

These reactions include continued electrolyte decomposition, transition metal dissolution, and

gas-generating reactions.

During normal cycling, the potential window and current density significantly influence the types

and rates of side reactions. At high potentials, electrolyte oxidation becomes more favourable,

while at low potentials, reduction reactions dominate. The dynamic nature of these reactions

means that the battery’s internal chemistry continuously evolves throughout its operational life

[20].

Computational reaction networks have identified over 900 possible elementary reactions that can

occur within lithium-ion battery systems [20]. These reactions compete with each other and with

the primary electrochemical reactions, with their relative rates determining the overall battery

behaviour and degradation patterns.
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2.5.3 Gas Generation in Cells During Aging and Abuse Conditions

Gas generation represents a critical aspect of battery degradation and failure, occurring through

multiple pathways during both normal operation and abuse conditions. During normal aging,

gas generation primarily results from electrolyte decomposition reactions and continued SEI

formation [18]. Experimental studies reveal that gas evolution in LFP batteries during aging

primarily consists of:

• Hydrogen (H2) - 40-60% of total gas volume [22]

• Carbon monoxide (CO) - 15-25%

• Carbon dioxide (CO2) - 10-20%

• Hydrocarbons (CH4, C2H4) - 5-15%

• Trace oxygen (O2) - S <1%

Hydrogen Formation

The dominant H2 generation originates from two primary pathways:

2H2O+ 2e− → H2 + 2OH− (Water reduction)[23] (2.1)

EC/LiPF6 +H2O → HF + POF3 +H2 (Electrolyte hydrolysis)[24] (2.2)

Aging accelerates H2 production due to:

• SEI layer degradation exposing fresh anode surfaces

• Moisture ingress through pouch cell seams

• Lithium plating side reactions [22]

Carbon Oxide Formation

CO and CO2 generation occurs through electrolyte decomposition:

EC → CO+ C2H4 + Li2CO3 (∆T > 60◦C)[25] (2.3)

LiPF6 +H2O → POF3 + 2HF + CO2 (Salt hydrolysis)[23] (2.4)

Hydrocarbon Generation

Ethylene (C2H4) forms through electrolyte decomposition (see Equation 2.3).

Methane (CH4) production correlates with:

DMC + e− → CH4 + Li2CO3 (Solvent decomposition)[23] (2.5)
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Ethylene carbonate (EC) and dimethyl carbonate (DMC) are organic solvents widely used in

lithium-ion battery electrolytes. EC (C3H4O3) is a cyclic carbonate with high dielectric constant,

enabling effective lithium salt dissociation, while DMC (C3H6O3) is a linear carbonate that

reduces electrolyte viscosity and enhances ionic conductivity. Both solvents participate in solid-

electrolyte interphase (SEI) formation and electrolyte decomposition reactions during battery

operation.

However the gas composition changes substantially during aging. Table 2.2 shows long-term

cycling induced changes.

Table 2.2: Gas composition evolution during aging (Data adapted from [22, 25])

Gas Fresh Cell (vol%) Aged Cell (500 cycles)

H2 52.4 38.2
CO 18.7 27.4
CO2 15.1 21.8
C2H4 9.3 8.1
CH4 4.5 4.5

Key aging-related changes are:

• 40-60% H2 reduction due to lithium inventory loss

• 50-70% CO/CO2 increase from cumulative electrolyte decomposition and cathode surface

oxidation [24]

• Hydrocarbon stabilization after initial SEI formation [24]

Under abuse conditions, particularly during TR, gas generation increases dramatically. Exper-

imental measurements during TR events have quantified the concentrations of evolved gases,

showing significant production of hydrogen (highly flammable), carbon monoxide (toxic), car-

bon dioxide, and hydrocarbon species [18]. The total volume and composition of these gases

determine the flammability characteristics and potential explosion hazards.

The rate and extent of gas generation depend strongly on temperature, state of charge, and the

specific abuse condition. Higher temperatures and states of charge generally lead to increased gas

production rates and more diverse gas compositions. Understanding these relationships is crucial

for developing safety systems and designing containment strategies for battery installations [18].
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Figure 2.8: TR gas generation component and volume statistics with different SOHs. (a) Pro-
portion of gas generation components of 100 % SOH; (b) Of 90 % SOH; (c) Of 80 % SOH; (d)
Of 70 % SOH; (e) Of 60 % SOH; (d) Actual volume of gas generation components [22].

Overall, the key findings on gas generation during TR in aged lithium-ion batteries reveal a shift in

gas composition as the state of health (SOH) declines [22]. Hydrogen (H2) volume decreases with

aging due to reduced lithium availability for reactions with binders, while carbon monoxide (CO)

and carbon dioxide (CO2) increase significantly, driven by enhanced reactions involving plated

lithium and degraded cathode materials. Hydrocarbon gases like methane (CH4) and ethylene

(C2H4) also rise, contributing to flammability risks. Notably, aged cells (e.g., 60% SOH) exhibit

a 40–60% drop in H2 but a 2–3× increase in CO/CO2 compared to fresh batteries, linked to

electrolyte decomposition and cathode-derived oxygen reactions. This non-linear evolution in gas

profiles underscores the need for tailored safety protocols, as reduced hydrogen lowers explosion

risks but heightened CO/CO2 and hydrocarbons amplify toxicity and combustion hazards.

The heating rate during TR initiation significantly affects the severity and characteristics of the

event. Studies using various heating rates (5°C/min to 40°C/min) have shown that heating rates

between 12.8 to 16.4°C/min can result in a mixture of standard and violent TR reactions [18].

Lower heating rates (less than 12°C/min) tend to produce less violent reactions, while higher

rates increase the risk of explosive behaviour.

Furthermore, overcharging conditions significantly increase gas generation rates by driving elec-

trolyte decomposition reactions beyond their normal operating ranges. At high potentials, water

contamination in the electrolyte can lead to oxygen evolution, while continued charging beyond

the normal voltage limits causes accelerated electrolyte breakdown and increased gas production.

2.6 Methods of Analysing Li-ion Batteries

2.6.1 Structural Analysis

Structural analysis techniques provide essential insights into the physical and chemical changes

occurring within lithium-ion batteries during operation and degradation. X-ray diffraction

(XRD) and scanning electron microscopy (SEM) represent two of the most important structural

characterization methods for battery research.
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In situ and operando XRD techniques allow real-time monitoring of structural changes in elec-

trode materials during cycling. These methods can track phase transitions, lattice parameter

changes, and the formation of new crystalline phases. The ability to observe these changes in

real-time provides crucial information about degradation mechanisms and their kinetics.

SEM provides high-resolution imaging (see Figure 2.9) of electrode morphology, SEI formation,

and dendrite growth. Recent advances in environmental SEM and in situ SEM techniques have

enabled direct observation of dynamic processes, including real-time dendrite formation and SEI

evolution. These techniques are particularly valuable for understanding the three-dimensional

nature of degradation processes [25].

Figure 2.9: Imaging example with SEM [26].

Advanced synchrotron-based techniques, such as Dark-Field X-ray Microscopy (DFXM), provide

unprecedented insights into the mechanical aspects of battery degradation. These methods can

map strain fields and dislocation networks around defects such as dendrites, revealing the coupling

between electrochemical and mechanical processes [27].

2.6.2 Electrochemical Analysis

Electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique

(GITT) represent fundamental electrochemical analysis methods for battery characterization.

EIS provides information about the various resistance and capacitance components within the

battery, including SEI resistance, charge transfer resistance, and diffusion limitations.

GITT enables measurement of lithium-ion diffusion coefficients within electrode materials, pro-

viding insights into the kinetic limitations of the battery system. These measurements are crucial

for understanding rate capability and how diffusion properties change during aging and degra-

dation.

The combination of multiple electrochemical techniques allows comprehensive characterization

of battery behaviour under various conditions. These methods can track changes in performance

parameters over time, providing quantitative measures of degradation rates and mechanisms.
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2.7 Role of Gas Evolution in Li-ion Battery Behaviour

2.7.1 Sources of Gas Generation

Gas generation in lithium-ion batteries occurs through multiple pathways, with electrolyte de-

composition representing the primary source under most conditions. During normal operation,

the continuous growth of the SEI layer involves electrochemical reduction of electrolyte compo-

nents, producing gases such as ethylene (C2H4), carbon monoxide (CO), and hydrogen (H2) as

byproducts as discussed in 2.5.3.

2.7.2 Impact of Gas Generation on Cell Performance and Safety

Gas generation has multiple impacts on battery performance and safety. From a performance

perspective, gas generation represents a loss of active electrolyte, which can lead to increased

impedance and reduced capacity over time. The gases produced can also accumulate within the

cell, potentially causing mechanical stress and deformation of cell components.

Safety implications of gas generation are particularly significant during abuse conditions. The

accumulation of flammable gases, particularly hydrogen and hydrocarbons, creates explosion

hazards if the gases are released into confined spaces. The lower flammability limit (LFL) of the

gas mixture determines the minimum concentration required for ignition [18].

Experimental measurements have quantified the flammability characteristics of TR gases, show-

ing that the gas composition varies significantly with temperature and abuse conditions. The

total volume of flammable gas produced during TR can create substantial safety hazards, par-

ticularly in enclosed battery installations [18].

2.7.3 Need for Precise Gas Analysis

The complex nature of gas generation in lithium-ion batteries necessitates precise analytical

techniques capable of identifying and quantifying multiple gas species simultaneously. Real-

time monitoring of gas evolution provides crucial information for understanding degradation

mechanisms, predicting failure modes, and developing safety systems.

Mass Spectroscopy(MS), Fourier-transform infrared spectroscopy (FTIR), and non-dispersive in-

frared (NDIR) sensors are commonly used for gas analysis. FTIR enables simultaneous detection

of various gases with good temporal resolution, but it cannot detect IR-inactive species such

as H2 and requires careful calibration [28]. NDIR sensors are compact and ideal for continuous

monitoring of target gases like CO2, but they lack versatility and selectivity [29]. Other tools

like electrochemical sensors or colorimetric tubes are useful for specific applications, yet they

often suffer from cross-sensitivity, limited accuracy, or one-time use [30]. MS offers detailed gas

identification and is suitable for real-time analysis [31].
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2.8 Introduction to Mass Spectroscopy

2.8.1 Basics of MS and How It Works

MS represents a powerful analytical technique for identifying and quantifying gas species based on

their mass-to-charge ratios. The basic principle involves ionization of gas molecules, acceleration

of the resulting ions in an electric field, and separation based on their mass-to-charge ratios using

magnetic or electric fields [28].

For battery applications, MS typically employs electron impact ionization, where high-energy

electrons collide with gas molecules to produce characteristic fragmentation patterns. These

fragmentation patterns can serve as ”fingerprints” for identifying specific gas species. However,

in the absence of prior chromatographic separation, complex mixtures may require deconvolution

or prior knowledge to resolve overlapping signals. [31].

The mass spectrometer consists of several key components: an ion source for ionization, a mass

analyser for separation, and a detector for quantification. Different types of mass analysers,

including quadrupole, time-of-flight, and magnetic sector instruments, offer various advantages

depending on the specific analytical requirements [32].

2.8.2 Key Features: Sensitivity, Specificity, and Real-time Analysis

Capability

MS offers several key advantages for battery gas analysis. High sensitivity allows detection of

trace gas species at very low concentrations, which is crucial for early detection of degradation

processes or safety hazards. Modern MS can detect gas concentrations in the parts-per-billion

range or lower.

Specificity is achieved through the characteristic fragmentation patterns produced by different gas

species. Even structurally similar compounds typically produce distinct mass spectra, allowing

unambiguous identification of individual components in complex gas mixtures [33].

Real-time analysis capability is perhaps the most significant advantage for battery applications.

MS can provide continuous monitoring of gas composition with response times on the order of

seconds, enabling dynamic studies of gas evolution during battery operation or abuse conditions.

2.9 Application of MS in Li-ion Battery Analysis

2.9.1 Detection of Evolved Gases During Battery Operation and Fail-

ure

MS has emerged as a valuable tool for monitoring gas evolution during various battery operating

conditions. During normal cycling, mass spectrometry can detect the gradual evolution of gases

from SEI formation and continued electrolyte decomposition, providing insights into the aging

process and degradation mechanisms.

The technique has proven particularly valuable for studying gas evolution during battery failure

modes. Real-time monitoring during TR events can track the dynamic evolution of gas compo-
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sition as the failure progresses, providing crucial data for understanding failure mechanisms and

developing safety systems.

2.9.2 Insights into Electrolyte Decomposition Products

MS provides detailed information about electrolyte decomposition pathways by identifying spe-

cific decomposition products. The technique can distinguish between different reaction pathways

and track how decomposition patterns change with temperature, state of charge, and other op-

erating conditions.

Studies using MS have confirmed theoretical predictions about SEI formation mechanisms and

have identified previously unknown decomposition pathways [33]. This information is crucial

for developing improved electrolyte formulations and additives that minimize unwanted side

reactions.

2.9.3 Tracking Thermal Runaway and Abusive Conditions

Real-time MS monitoring during thermal runaway provides unprecedented insights into the pro-

gression of failure events. The technique can track the evolution of different gas species as the

TR progresses, providing information about the sequence of reactions and the conditions that

lead to the most hazardous gas compositions.

This capability is particularly valuable for developing TR detection systems and for optimizing

battery design to minimize gas generation during abuse conditions. Early detection of charac-

teristic gas species can provide warning of impending TR before the most dangerous phases of

the event occur.

2.9.4 Examples of Research Findings Using MS

Recent research using MS has provided new insights into battery degradation and failure mech-

anisms. Studies have quantified the rates of gas generation during different operating conditions

and have identified correlations between gas evolution patterns and battery performance metrics

[33, 34].

The technique has also been used to evaluate the effectiveness of various safety measures and

design modifications. For example, MS can assess how different electrolyte additives affect gas

generation patterns or how cell design modifications influence the composition of gases evolved

during TR [35].

2.10 Conclusion with Respect to This Research

2.10.1 Relevance of Real-time Gas Analysis

Real-time gas analysis plays a crucial role in advancing the understanding of degradation and

safety mechanisms in lithium-ion pouch cells over time. The ability to monitor gas evolution

dynamically, rather than relying on static measurements, enables the detection of transient phe-

nomena that are often missed in traditional test methods. This is particularly important in
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early-stage detection of hazardous conditions such as electrolyte decomposition, gas accumula-

tion, or the onset of thermal runaway.

In this research, MS is employed as the analytical method due to its high sensitivity, broad

chemical coverage, and time-resolved measurement capability. The integration of a gas-tight

containment mechanism and an automated valve system allows for synchronized, trigger-based

sampling, which makes the analysis both flexible and precise.

2.10.2 Justification for Focusing on MS

MS was selected over other gas analysis techniques for several reasons directly aligned with the

goals of this project. MS allows for continuous or semi-continuous monitoring without delays. Its

ability to detect a wide range of gas species, including those that are electrochemically reactive,

short-lived, or present in low concentrations, makes it well-suited for detecting early-stage battery

degradation.

Furthermore, the integration of MS with a custom-built hardware and software framework enables

flexible control over when and how measurements are taken. Trigger-based sampling, based on

parameters such as voltage, time, and cycle state, ensures that gas data can be accurately

correlated with specific electrochemical events. This opens the door to deeper diagnostic insight

into how and when critical reactions occur within the cell.

Overall, this research demonstrates that with proper integration of airtight design, inert mate-

rials, automation, and synchronized control logic, MS can be effectively applied to monitor and

understand gas evolution in real-time. The developed methodology has the potential to serve as

a foundation for future battery safety diagnostics and operando characterization platforms.
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Chapter 3

Design and Production of the Test

Setup

3.1 Introduction

This chapter presents the design and fabrication of a custom operando gas analysis setup intended

for the characterization of gas evolution in lithium-ion pouch cells. The system enables real-time

monitoring of gases released during electrochemical cycling and is tailored for integration with a

mass spectrometer.

The development process involved the design of a modular, sealable test cell capable of housing

standard-format pouch cells under controlled conditions. Mechanical, fluidic, and electrical sub-

systems were integrated to ensure compatibility with both laboratory infrastructure and safety

protocols.

The following sections detail the functional requirements and design constraints, followed by an

in-depth discussion of each subsystem and the associated manufacturing processes.

3.2 Design Requirements

The design of the test setup was subject to several essential functional and experimental require-

ments.

First, the system was required to be completely airtight once closed. Given that the setup is

opened and closed in a dry room, but operated externally, the exclusion of ambient air during

operation was critical. This requirement was imposed both for safety—due to the reactivity of

lithium-containing materials with atmospheric moisture, and for the reliability of gas analysis,

where even minor air ingress could compromise measurement accuracy.

Second, the system had to allow for the electrochemical cycling of the pouch cell from outside

the sealed volume. This required uninterrupted electrical connectivity between the potentiostat

and the cell terminals while maintaining a sealed internal environment.

Third, the internal arrangement of the pouch cell had to prevent the possibility of electrical

short circuits. Proper electrical isolation and mechanical support were necessary to ensure safe



operation under varying test conditions.

A further requirement was the minimization of dead volume throughout the gas path. Excessive

internal volume would lead to dilution of the evolved gases by the carrier gas, reducing the

sensitivity and resolution of the measurements. This concern was particularly relevant in light

of previous setups where large dead volumes were shown to negatively impact the detection of

gas species.

In addition to these primary requirements, the design was also expected to accommodate:

• Controlled flow of inert carrier gas through multiple selectable paths.

• Compatibility with real-time gas analysis instrumentation.

• Repeated mechanical assembly and disassembly without loss of sealing performance.

• Operability within the spatial and procedural constraints of a dry room environment.

3.2.1 Constraints

The design should be made within the given constrains.

3.3 Overview of the Setup

Figure 3.1 shows the complete operando gas analysis setup as assembled during the experimental

phase. The system integrates all necessary components to enable airtight, safe, and controllable

cycling of lithium-ion pouch cells under operando conditions. It also allows evolved gases to be

analyzed in real time. The key elements are briefly introduced below.

• Cell: The central component of the setup, located in the middle of the gas circuit. It

contains a lithium-ion pouch cell enclosed in a stainless steel housing that maintains airtight

sealing during operation.

• Circuit board: Positioned at the top left of the image, the control board is responsible

for sending digital signals to activate the solenoid valves. It also handles logic and timing,

and provides power distribution to connected components.

• Solenoid valves: Distributed throughout the gas circuit, the solenoid valves manage the

flow routing of the argon carrier gas. They allow switching between measurement lines and

flushing paths. These are controlled programmatically via the circuit board.

• Tubing: The gas path is constructed using a combination of stainless steel and PTFE

tubing. The layout is optimized to minimize dead volume and reduce contamination risk.

It is also designed to ensure compatibility with pressurized argon operation.

• Filter: Placed downstream of the cell outlet, the filter prevents solid or liquid particles such

as condensed electrolyte from reaching the mass spectrometer. This protects the detector

from damage or contamination.

• Argon inlet: Located upstream in the flow circuit, the argon inlet provides a continuous

supply of inert carrier gas to the system. The pressure and flow are regulated externally.
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• Fitok connection pieces: Stainless steel Fitok connectors are used throughout the setup

to ensure leak-free and high-pressure-compatible fittings between valves, tubing, and com-

ponents. Their modularity allows quick disconnection and reconfiguration. This does not

compromise system integrity.

Further sections elaborate on each subsystem and describe their roles in ensuring airtight oper-

ation, measurement accuracy, and experimental repeatability.

Figure 3.1: Top-view image of the complete test setup with labeled components.

3.4 Design of the Cell

The cell assembly forms the central component of the test setup. It is responsible for housing the

pouch cell in a manner that guarantees gas-tight sealing, electrical accessibility, and mechanical

stability throughout the test cycle. The design allows the operator to insert and remove the

pouch cell in a controlled dry room environment, after which the system is closed and transferred

to the measurement environment for operando gas analysis.

Figures 3.2 and 3.3 provide an overview of the mechanical structure of the cell. In the open

configuration (Figure 3.2), the internal cavity and sealing groove are visible, along with the

electrical contact components. In the closed configuration (Figure 3.3), the enclosure is fully

sealed, with all valves and feedthroughs connected.

The remainder of this section discusses the structural elements, gas flow interfaces, sealing meth-

ods, and electrical integration that collectively define the functionality of the cell housing.
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Figure 3.2: Top-view of the cell in opened configuration.

Figure 3.3: Top-view of the cell in closed configuration.
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3.4.1 Cell Housing

The housing defines the core structure in which the pouch cell is placed during operando gas

analysis. It is designed to enclose the cell tightly in order to contain all gases released during

electrochemical cycling. A reliable and hermetic seal is essential to maintain the system’s integrity

and prevent contamination or leakage.

Material and Dimensions

The housing is machined from stainless steel (316L), selected for its high chemical resistance to

both the electrolyte and the gases potentially released during operation. The material also pro-

vides mechanical stability and corrosion resistance, while being suitable for precision machining

processes.

The dimensions of the enclosure were chosen to closely match the dimensions of the pouch cell,

while minimizing internal volume to reduce dead space in the system. The external dimensions

of the housing are 125 × 100 mm, and the internal chamber measures 84 × 69 mm.

Bottom Plate

The pouch cell is placed into a machined cavity in the bottom plate. This cavity will later be

filled with an insulating insert to prevent short-circuiting between the electrodes and the housing.

In the initial design stage, a gas distribution grid was integrated into the bottom plate to guide

argon and evolved gases through the cell. However, this feature was relocated to the insulating

insert to improve modularity and simplify manufacturing.

Additionally, a groove is machined into the bottom plate to accommodate an O-ring. This ensures

proper sealing when the top plate is mounted. Mounting is achieved via M6 bolts, placed at the

corners of the housing.

Channels are also integrated into the bottom plate to allow connection of the gas inlet and outlet

tubing. These are positioned to align with the gas channels in the insulating insert. Holes for

electrical feedthroughs are incorporated as well. Figure 3.4 shows the CAD model of the bottom

plate including the machined features.

Figure 3.4: CAD model of the bottom plate.
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Upper Plate

The upper plate shares the same external dimensions as the bottom plate. Internally, a shallow

cavity is machined to define the upper boundary of the cell chamber. This cavity serves as a

locating guide for the rubber sealing element, ensuring centered placement and uniform com-

pression during assembly. Figure 3.5 shows the CAD model of the upper plate with relevant

features.

Figure 3.5: CAD model of the upper plate.

Production of the Cell Housing

The two housing components were produced using high-precision CNC milling. Figure 3.6 shows

the machined components after initial manufacturing. Notably, the cavity in the bottom plate

is slightly smaller than in the upper plate. This design choice was made to account for post-

weld distortion. At the time of rough machining, the welding components such as the electrical

feedthrough and gas connectors had not yet been delivered. Because welding introduces local

shrinkage, leaving extra material in the cavity allowed for final finishing after welding, thereby

avoiding misalignment that could compromise sealing.
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Figure 3.6: Milled top and bottom plates of the cell housing.

3.4.2 Gas Flow Management

Efficient gas flow control is essential for reliable operando measurements. The system must

ensure that the carrier gas (argon) is routed correctly and that cross-contamination between

measurement channels is avoided. This section describes the components and flow configuration

used in the system, supported by the schematic in Figure 3.7.

Argon Gas Supply

Argon is used as an inert carrier gas. The laboratory argon supply was pre-installed and connected

to a digital flowmeter and controller. This unit regulates the gas flow toward the solenoid valves.

Gas Flow Configuration

Figure 3.7 illustrates the gas flow path for a single line. In total, the system comprises three

distinct lines:

• Bypass line: Provides a continuous reference flow of pure argon to the mass spectrome-

ter. This ensures a stable baseline and compensates for any delays in valve switching or

fluctuations during sampling.

• Pouch cell line: Connects to the custom-built cell. This path is activated during operando

analysis of pouch cells.

• Coin cell line: Routes gas through the legacy setup for coin cell testing. Integrating this

setup into the new system improves usability and reduces dead volume by using shorter
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tubing.

Solenoid valves are used to switch between these lines automatically. The logic controlling these

valves is discussed in a separate chapter on automation.

Figure 3.7: Schematic of the gas flow configuration for a single line.

Quick Connectors

Quick connectors sourced from Fitok are used to decouple the cell from the gas system. These

connectors are normally closed, which ensures that no gas escapes when the cell is disconnected.

This design facilitates rapid and safe exchange of the cell without depressurizing or venting the

rest of the system.

Figure 3.8: Female quick connector.
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Figure 3.9: Male quick connector.

3D Printed Bottom Layer

Gas is introduced into the cell cavity through a channel embedded in the insulating bottom

plate (Figure 3.10). When the system is closed, the pouch is pressed onto this plate by a sealing

element, effectively isolating the internal volume. This ensures that gas can only travel from the

inlet to the outlet via the intended lateral path. An outlet hole collects both carrier and evolved

gases and directs them to the filter and mass spectrometer.

Figure 3.10: Insulating bottom plate with integrated gas flow channel.

3.4.3 Electrical Feedthrough

To enable electrochemical cycling of the pouch cell while preserving the gas-tightness of the sealed

enclosure, dedicated electrical feedthroughs are integrated into the housing. These feedthroughs

allow electrical signals to pass from the external environment into the internal cell chamber

without permitting gas exchange. This is essential for maintaining measurement integrity during

operando gas analysis.

The feedthroughs are welded into the stainless steel housing. This method ensures a perma-

nent hermetic seal around the conductors, preventing leaks that could occur with threaded or

compression-based fittings. The mechanical integration was designed to remain robust under

differential pressure and repeated handling.
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Externally, the feedthroughs are connected to a potentiostat, which controls the charge and

discharge cycles of the pouch cell. The potentiostat also records voltage and current responses

during the measurement. A figure of the potentiostat and its control interface will be added later

in this document.

Short-Circuit Protection

Short-circuit prevention was a primary concern in the design of the internal electrical contacts.

The pouch cell’s positive and negative terminals, typically in the form of aluminum and copper

tabs, must be isolated from each other and from the stainless steel housing. Improper alignment

or insufficient insulation would present a risk of electrical shorting and cell failure. A custom

insulating insert was developed to position and support the tabs securely within the housing.

Coaxial Connectors

The external electrical interface uses coaxial connectors to ensure robust signal transmission

and electromagnetic shielding. These connectors maintain low resistance and physical integrity

over repeated connection cycles. The coaxial geometry also contributes to the system’s overall

gas-tightness.

Tab Interface and Internal Connection Mechanism

Internally, a custom solution was developed to interface the cell tabs with the feedthroughs.

Each welded feedthrough terminates inside the chamber with a copper rod. These rods feature

a longitudinal slit at the rear side, into which the aluminum or copper tab of the pouch cell is

inserted. Once inserted, the tab is mechanically folded and pressed against the copper rod to

ensure consistent electrical contact during cycling. This connection method eliminates the need

for soldering or thermal joining near the active cell.

This configuration allows for fast, tool-free installation while preserving full gas sealing, as the

feedthroughs are fixed and hermetically welded into place. The physical layout of this connection

is shown in Figures 3.11 and 3.12, which illustrate the internal arrangement both with and without

the pouch cell inserted.

Figure 3.11: Internal view of the copper feedthrough connection system.
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Figure 3.12: Pouch cell inserted and connected to the internal feedthrough rods.

3.4.4 Sealing Mechanism

To maintain airtight conditions during operando testing, a two-stage sealing concept was imple-

mented. This design relies on both a primary O-ring and a secondary EPDM cellular rubber

layer to ensure gas isolation between the upper and lower plates of the cell housing.

O-Ring Selection

The primary seal is provided by a circular O-ring placed in a machined groove along the inner

perimeter of the bottom plate. The groove dimensions are 75 mm × 90 mm in width, with a

depth of 2.5 mm and a channel width of 5.0 mm. The selected O-ring has an inner diameter of

107.5 mm and a cross-section (snoerdikte) of 3.53 mm. This O-ring geometry results in a radial

compression of approximately 29%, which is within the recommended range for static sealing

applications.

Based on the O-ring material properties (Viton, modulus ≈ 7.5 MPa) and a compression factor of

1.2 for the selected groove geometry, the resulting sealing pressure is estimated at approximately

2.6 MPa. This value is sufficient to ensure gas-tight operation under low-pressure conditions and

prevents ingress or egress of argon or any evolved gases. The O-ring is compressed vertically

between the top and bottom plates.

EPDM Cellular Rubber

A secondary sealing interface is achieved using a layer of EPDM (ethylene propylene diene

monomer) cellular rubber placed on the underside of the top plate. This material was selected
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due to its relatively low Shore hardness, which makes it more easily deformable than the primary

O-ring. This hierarchy of compressibility ensures that the O-ring absorbs the majority of the

clamping force and forms the main seal, while the EPDM layer provides supplementary sealing

around the pouch and electrical contacts.

The EPDM used features a closed-cell structure. This design prevents gas diffusion into the

material, which would otherwise trap reaction products and hinder accurate detection by the

mass spectrometer. If an open-cell foam were used, evolved gases could be absorbed into the

microstructure, effectively acting as a gas-phase capacitor and introducing long-term release

effects that degrade measurement accuracy.

Clamping Mechanism Selection

To compress the sealing elements, the upper and lower plates are fastened using four M6 bolts.

Initial concepts considered using an external mechanical clamp, similar to the one employed in

the coin cell configuration. While such a clamp is suitable for compact, lightweight setups, it was

deemed impractical for the current design due to its larger dimensions and the need for repeated

manipulation within a dry room environment.

Figure 3.13: Detail view of the O-ring and EPDM rubber interface in the assembled cell.

The use of bolts offers several advantages. The fasteners are embedded directly in the housing,
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simplifying alignment during closure. They also provide reproducible and symmetric compres-

sion, which is critical for maintaining sealing pressure. In addition, the absence of an external

frame improves the setup’s portability and reduces its footprint during manipulation in the dry

room.
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Chapter 4

Automation

4.1 Introduction

To enable operando, precise and repeatable gas analysis of pouch cell batteries, the test setup

must operate autonomously after starting. Manual operation is not only time-consuming, but

it does not allow operando measurements as well. In addition, it introduces inconsistencies due

to human error and exposes the operator to the electrolyte, which poses a chemical safety risk.

Therefore, automation was integrated as a core part of the system design, ensuring that measure-

ments can be performed autonomously, reliably, and with minimal supervision or intervention.

This chapter presents the full automation strategy developed for the gas analysis setup. Sec-

tion 4.2 focuses on the electronics, including the circuit design, the microcontroller platform, and

how key components such as solenoid valves, the flow meter, and the potentiostat are connected

and controlled. Section 4.3 describes the software implementation, including the control logic,

real-time data acquisition, user interface design, and communication with external devices. Fi-

nally, data logging and software testing procedures are also discussed, demonstrating the system’s

capability for robust long-term operation.

4.2 Electronics

This section outlines the electronic subsystem that enables automated control of the gas analysis

setup. It describes the central role of the microcontroller in managing signal flow between sensors

and actuators, including the solenoid valves, flow meter, and potentiostat. Additionally, the

integration of protection components such as flyback diodes and the overall circuit design are

discussed to ensure reliable and safe operation during long-term measurements.

4.2.1 Circuit Overview

To enable automated switching of the solenoid valves, each valve is controlled via an external

power circuit based on logic-level N-channel MOSFETs. This approach ensures safe and efficient

control of 24 V components using the 5 V logic signals of the Arduino Nano. Figure 4.1 shows

the complete circuit used to control five solenoid valves.

Each control channel consists of a digital output pin from the Arduino Nano (D2, D3, D4, D5,



Figure 4.1: Circuit overview for controlling five 24 V solenoid valves using an Arduino Nano and
logic-level N-MOSFETs

and D10), connected to the gate of a MOSFET through a 220 Ω resistor. This resistor limits

gate charging current and protects the microcontroller pin. A 4.7 kΩ pull-down resistor is used

on each gate to ensure the MOSFET remains off when the pin is not driven.

The solenoid valve is connected between the 24 V supply and the drain of the MOSFET. When

the Arduino outputs a HIGH signal, the MOSFET turns on and allows current to flow through

the valve, activating it. To protect the MOSFET against inductive voltage spikes generated by

the solenoid, a flyback diode is placed in parallel with each valve coil, oriented to block current

during normal operation and conduct during switch-off events.

All MOSFET sources are tied to ground, which is shared with the Arduino and the power supply

to ensure proper signal reference and switching operation. This modular configuration ensures

that each valve can be individually controlled while maintaining electrical isolation between

control and load sections.

4.2.2 Microcontroller

The microcontroller used for this application is an Arduino Nano based on the ATmega328P (see

Figure 4.2). This compact and cost-effective development board was selected due to its small
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footprint, sufficient number of digital I/O pins, and compatibility with the Arduino development

environment. The Nano serves as the central control unit, generating logic signals to switch the

solenoid valves and handling communication with external devices. It operates at 5 V and is

powered via USB to the pc that contains the software application as well for interfacing, better

explained later. Its ease of programming, wide community support, and integration with readily

available libraries made it a robust choice for the automation system. More technical details can

be found on the supplier’s website [36].

Figure 4.2: Arduino Nano microcontroller based on the ATmega328P

4.2.3 Solenoid Valves

The gas sampling system uses normally closed (NC) solenoid valves to selectively open or isolate

flow paths during automated measurement sequences. An image of the solenoid valve is shown

in Figure 4.3. Each valve operates at 24 V DC and is actuated electrically via the control

circuit described in Section 4.2.1. When activated, the valve opens to allow gas flow and requires

0.125mA or 3W. When de-energized, it returns to the closed state thanks to a spring, ensuring

safe default isolation of the gas lines.

The selected model is a miniature solenoid valve from RS PRO (product no. 873-2639), chosen for

its compact form factor, fast switching speed, and compatibility with inert and corrosive gases.

The valve is rated for 0–8 bar pressure and includes a 3/2 configuration, allowing it to function

in either open/close or directional switching modes depending on the application. Further, the

material of this valve is SS, which makes it well suited for use in automated gas handling in

electrochemical experiments.

Full technical specifications are available on the supplier’s website [37].
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Figure 4.3: 24 V normally closed miniature solenoid valve (RS PRO 873-2639).

24 V Power Supply

The solenoid valves in the automation system are powered by an external 24 V DC power supply

(see Figure 4.4) rated at up to 2 A. This provides sufficient current to activate multiple valves

simultaneously, while maintaining voltage stability and ensuring reliable operation under varying

load conditions.

Using a dedicated power supply separates the power domain of the actuators from the Arduino

Nano’s logic circuitry. This isolation helps reduce electrical noise, prevents voltage sag, and

protects the microcontroller from potential current surges.

Figure 4.4: 24 V DC power supply with a maximum output current of 2 A.

MOSFET Selection

For switching the solenoid valves, the IRFZ44N N-channel MOSFET was selected (see Figure 4.5).

This transistor is widely used in low- to medium-power switching applications due to its high

current handling capability (up to 49A) and low drain-source on-resistance (RDS(on) ≈ 0.032 Ω

at VGS = 10V). Although it is not a logic-level MOSFET, the IRFZ44N can be sufficiently
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driven by the 5V gate signals of the Arduino Nano in this application, due to the relatively

low switching frequency and moderate current demand of the solenoid valves. More technical

specifications are available on the shop’s website [38].

Figure 4.5: 24 V DC power supply with a maximum output current of 2 A.

The MOSFETs are configured as low-side switches, with their sources connected to ground and

the drains connected to the negative terminal of the solenoid valves. This configuration allows

each valve to be activated by applying a HIGH signal from the Arduino to the corresponding gate.

A gate resistor (220Ω) is added to limit inrush current, and a pull-down resistor (4.7 kΩ) ensures

the MOSFET remains off when the gate is floating. The robustness and wide availability of the

IRFZ44N made it a suitable and cost-effective choice for this system.

Flyback Diode Selection

To protect the MOSFETs from high-voltage transients generated when switching off inductive

loads, a flyback diode is placed in parallel with each solenoid valve. For this purpose, the 1N4007

general-purpose rectifier diode was selected. It is capable of withstanding reverse voltages up to

1000V and conducting continuous currents up to 1A, which is well within the requirements of

the solenoids used in this setup.

When the solenoid is de-energized, the sudden collapse of the magnetic field induces a high

reverse voltage across the coil. The flyback diode provides a safe discharge path for this current

by conducting it back through the coil, thereby clamping the voltage spike and preventing damage

to the MOSFET. The 1N4007’s ruggedness and wide availability make it a reliable and economical

choice for this type of inductive load protection.

4.2.4 Flow Meter Connection

The system uses a Brooks Instruments mass flow controller (MFC) in combination with a

microprocessor-based read-out unit (model 0152), shown in Figure 4.6 to control and monitor

gas flow rates during measurement sequences.
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Figure 4.6: Brooks 0152 mass flow controller

An example schematic of the connection is shown in Figure 4.7. The Brooks 0152 unit also

supports multiple I/O ranges (0–10V, 0–20mA, 4–20mA), but in this case, only the default

0–5V mode was used. The user’s manual on the official website of Brooks Instruments explains

all the possible working modes of the tool and how to communicate with it [39].

Figure 4.7: Wiring configuration for connecting the Arduino Nano to channel 3 of the Brooks
0154 read-out unit.

Each channel of the read-out unit supports analog setpoint input and flow feedback output, with

voltage ranges typically scaled between 0–5V to represent 0–100% of full-scale flow.
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In this setup, channel 3 of the Brooks unit is used to interface with the Arduino Nano for both

control and monitoring. Three connections were made:

• The ground reference of the Brooks unit (pin 23: Setpoint ground channel 3) was con-

nected to the Arduino’s GND pin.

• The analog setpoint input (pin 11: Input Remote setpoint Volt channel 3) was con-

nected to an Arduino PWM-capable digital pin through a low-pass RC filter to provide a

stable voltage control signal.

• The analog flow signal output (pin 5: Output Flow Volt channel 3) was connected to

an analog input pin on the Arduino for real-time monitoring.

This configuration allows the Arduino to set a flow rate via analog voltage and simultaneously

read back the actual flow as an analog voltage signal, scaled proportionally to the maximum

calibrated range of the instrument. Since both the input and output operate in the 0–5V domain,

direct voltage compatibility with the 5V Arduino system is ensured, without the need for level

shifting.

4.3 Software

The automation system is controlled by a custom-developed Python application. This software

manages all key functionalities, including valve switching, real-time data acquisition, user inter-

action, and experiment logging. It is designed to run on the same laptop used to operate the

potentiostat, enabling seamless integration without additional hardware requirements.

The Python code is modularly structured into independent components, each responsible for

specific aspects of system control. The communication with the Arduino is handled via a serial

USB connection, while the flow meter data is read and controlled through analog voltage signals

managed by the Arduino firmware. Trigger-based measurement logic is implemented to enable

sampling actions based on voltage thresholds, time intervals, or cycling and rest states.

The software architecture was developed with flexibility and robustness in mind, allowing mul-

tiple measurement lines to operate under different modes—manual or automatic—each with a

configurable set of parameters. A graphical user interface (GUI) built with the customtkinter

library provides intuitive control and live visual feedback during operation.

In the following subsections the control logic, communication protocols, data acquisition ap-

proach, user interface, and data storage strategy are explained in detail.

4.3.1 Overview of the Control Logic

The core control logic of the automation system is implemented in Python and structured around

two operational modes: automatic and manual. Each mode is managed in a dedicated module,

with all underlying logic isolated from the graphical interface to ensure modularity and main-

tainability.

In automaticLOGIC.py (see Appendix A), the automatic mode is defined by a sequential flow

of actions that mimic a full experimental cycle. The flow chart in Figure 4.8 shows the events

order.
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Figure 4.8: Flowchart of the automatic measurement logic implemented in automaticLOGIC.py.

Upon activating a sample line, an initial purge is executed by opening the two valves for the

selected line for a given duration. After purging, the line valves shut down and the dedicated

bypass valve (V0) opens to direct the argon gas flow directly towards the measurement device.

This argon level will be used as reference level during the whole measurement.

The measurement process is event-driven and based on a flexible triggering system. Currently,

five types of triggers are supported:

• Time trigger: activates a measurement periodically after a set interval.

• Voltage trigger: activates a measurement when a defined voltage threshold is reached.

It contains a min. and max. limit as well to avoid detecting harsh peaks given by noise in
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the potentiostat data.

• Half cycle trigger: activates when a half-cycle in the battery cycling is detected. This

means that a measurement will happen each time the battery is fully charged or discharged.

• Cycle trigger: activates when a full cycle in the battery cycling is detected. The operator

can choose to do a first measurements after X number of cycles and then a measurement

after Y number of cycles. This is important because the most gases are produced during

the first cycles. After the first cycles, the gas development drops significantly.

• Rest trigger: activates when a rest period in the battery cycling is detected.

Triggers can be combined, allowing for multi-condition events to initiate data logging. Once a

trigger is active, the system opens the appropriate valves, logs the timestamp and contextual

data, and then closes the valves after a user-defined sampling time.

Safety checks ensure that only one line is active at any given moment, preventing pressure drops

or flow conflicts. All actions are logged and visualised in real-time within the user interface.

The logic also includes safeguards to abort sampling if required parameters are missing or if

conflicting operations are attempted.

Manual mode, implemented in manualLOGIC.py (see Appendix A), allows the user to directly

toggle valve states and control flow without automated sequences. This is useful for calibration,

maintenance, or exploratory measurements.

The modular structure allows future expansion of trigger types or integration of external control

signals without major restructuring of the core logic. Furthermore the software is already imple-

mented to control up to four lines. At the moment, only two lines are built as discussed before,

one for the pouch cell measurements and one for the coin cell measurements.

4.3.2 Communication with External Devices

The automation software interfaces with two external devices to enable synchronized and au-

tonomous sampling: the potentiostat and the mass spectrometer. These devices are essential

for, respectively, detecting electrochemical state changes that trigger sampling events, and for

analyzing the gaseous species released from the pouch cell.

Potentiostat – Real-Time Trigger Input The potentiostat, operated via EC-Lab software,

performs the electrochemical cycling of the battery. To align gas sampling with specific states

of charge or transitions, the automation system relies on real-time cycling data. This data is

streamed continuously from EC-Lab using the “Online Text Export” function, which writes

voltage, current, time, and state parameters to a text file in real time.

A dedicated Python module monitors this file and parses it to extract the relevant parameters.

Trigger logic modules evaluate the live data to determine whether sampling conditions are met.

This allows the system to react dynamically to voltage thresholds, cycle completions, or rest

periods without requiring direct communication with the potentiostat hardware.

Mass Spectrometer – Passive Data Acquisition The mass spectrometer is responsible for

identifying and quantifying gaseous species in the sample. It is not directly controlled by the
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automation software. Instead, it passively collects and analyzes gas whenever a sampling valve

is opened and flow is directed to its inlet. The timing and duration of these sampling events

are logged by the automation software and synchronized post hoc with the spectrometer data to

correlate observed gas peaks with electrochemical events.

This indirect coordination ensures that the mass spectrometer operates independently of the con-

trol system, while still providing time-aligned analytical data. All valve actions and trigger events

are timestamped, making retrospective alignment with the spectrometer output straightforward.

4.3.3 User Interface Design

The graphical user interface (GUI) was developed using the customtkinter library, a mod-

ern extension of Python’s tkinter package that enables the creation of visually consistent and

themable interfaces. The GUI is designed to support three primary operational views: Auto-

matic, Manual, and Visualisation. Each mode is accessible via a tab navigation bar at the top

of the window.

Automatic Tab The Automatic tab (Figure 4.9) allows users to configure sampling parameters

per measurement line. Each line can be activated via a toggle switch, after which the user is

required to input purge timing, sample duration, flow duration, and select one or more trigger

conditions (e.g., time-based, voltage-based, half-cycle, etc.). If required parameters are missing

or logically inconsistent, a red error message is shown and the process is blocked to ensure system

safety. Once active, the system performs purging, monitors trigger conditions, and logs sampling

actions automatically.

Figure 4.9: Automatic logic interface tab

Manual Tab The Manual tab (Figure 4.10) provides direct control over all solenoid valves in

the system. Each valve is represented by a color-coded button—red indicating a closed state,

green indicating an open state. This mode is primarily intended for maintenance, calibration,
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or manual intervention during debugging. It bypasses all automation logic, giving the user full

control over valve states in real time.

Figure 4.10: Manual interface tab

Visualisation Tab The Visualisation tab (Figure 4.11) offers a simplified overview of current

valve states during system operation. It is optimized for real-time observation during automatic

sampling procedures. Only the valve state for the active lines is visualized; no interaction is

possible in this tab to prevent accidental interference. This view is especially useful during

long-duration experiments where monitoring flow routing is important but direct control is not

needed.

Figure 4.11: Visualisation interface tab
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Design Considerations The interface was developed with usability, clarity, and modularity

in mind. The structured layout and the strict parameter validation ensure intuitive use for the

operators. All GUI events are linked to background processes via callbacks, ensuring real-time

responsiveness while separating interface logic from control logic.

4.3.4 Data Logging and Storage

Data logging in the automation software is handled through a dedicated logging function, which

is called each time a measurement is triggered. The logging system creates or updates a CSV or

Excel file containing structured information about each sampling event. This file is saved locally

on the PC running the control software and is uniquely associated with each experiment session.

When a trigger condition is met, the software collects the following data points:

• Timestamp (date and time)

• Elapsed time since experiment start

• Active line number

• Trigger type(s) that activated the measurement

• Sampling duration

• Instantaneous voltage read from the potentiostat

These values are passed to the logging function and written as a new row in the log file. A global

timer, initialized at the start of the first active line, provides a consistent time reference across

all measurements. The log is updated in real time to ensure no data is lost in case of interruption

or system failure.

Each line is appended to the file using standard Python file I/O functions or a high-level data

export library ‘pandas‘. The resulting log file allows the operator to perform post-experiment

analysis, like aligning the data with MS results.

4.3.5 Software Testing and Validation

To ensure reliability and correct system behavior during operation, the developed software was

extensively tested under both simulated and experimental conditions. The validation process

focused on four key aspects: trigger response accuracy, valve actuation timing, data logging

integrity, and interface stability.

Trigger Evaluation Each of the implemented triggers (time-based, voltage-based, half-cycle,

full-cycle, and rest) was independently tested using previous potentiostat data. Boundary con-

ditions were applied to confirm that triggers only activate within their configured thresholds

and debounce logic (e.g., minimum/maximum voltage limits) correctly filters out noise-induced

events.

Valve Control Verification All valve combinations were systematically activated through

both manual and automatic modes to ensure safe switching logic. Special attention was given to
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exclusive line activation, purge sequence correctness, and transition timing between purge and

sampling states. Physical observation and serial feedback confirmed proper execution.

Logging Consistency Each triggered measurement was checked for correct logging of times-

tamp, trigger type, sampling duration, and line ID. Edge cases such as simultaneous triggers and

rapid reactivation were also tested to verify that duplicate or missed log entries do not occur.

Log files were opened in spreadsheet software to confirm formatting, completeness, and time

alignment.

Interface Robustness The GUI was tested with partial inputs, invalid settings, and user

interruptions to ensure errors are caught and clearly reported. Blocking behavior (e.g., start

button disabled until all fields are filled) was verified. The application was also tested over

extended durations to confirm memory and performance stability.

Final Integration The complete system was finally validated using real cycling experiments

with active gas sampling. Triggered measurements were compared against the real-time voltage

profile, and corresponding valve actuation was verified via live visual feedback and the generated

log file. These tests confirmed that the system performs reliably in real experimental conditions.
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Chapter 5

Pouch Cell Fabrication Process

5.1 Introduction

This chapter outlines the procedure used to fabricate the pouch cells employed throughout this

work. It describes the preparation of the individual components, the step-by-step assembly pro-

cess, and the sealing method used to ensure reliable operation during electrochemical cycling and

gas analysis. Photographic documentation is provided to illustrate each stage of the process and

support reproducibility. The chapter concludes with a summary of common issues encountered

during fabrication, highlighting critical points of attention for ensuring functional and consistent

cells.

5.2 Fabrication Process

The fabrication of the pouch cells was performed step by step in the dry room. A dry room

is a climate controlled environment designed to maintain extremely low humidity levels. This

step is essential as residual water can react with the electrolyte, particularly LiFePO4, forming

hydrofluoric acid (HF), which degrades both the electrolyte and electrode surfaces. The pouch

cells fabricated for this study follow a single-stack configuration, consisting of a double-sided

LFP cathode placed between two graphite anode layers. The procedure includes preparation

of materials, electrode punching, stacking, electrolyte filling, and vacuum sealing of the pouch.

Each step is documented with corresponding images taken during production.

5.2.1 Materials Overview

The key materials used for pouch cell assembly include cathode and anode electrode foils, a

porous separator, and aluminum-laminated pouch foil for the pouch. Additionally, pre-welded

current collector tabs were prepared for integration during sealing. These base materials are

shown in Figure 5.1 and Figure 5.2.
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Figure 5.1: Overview of the primary cell
components: anode foil, separator, cathode
foil, and pouch foil.

Figure 5.2: Current collector tabs for anode
and cathode connection.

5.2.2 Electrode Punching

To prepare the electrodes for stacking, rectangular electrodes were punched from both the anode

and cathode foil using a mechanical punching tool. The punched electrodes feature a dedicated

tab area designed to facilitate secure welding of the current collector tabs during assembly (as

shown in later steps). Care was taken to avoid contamination between active materials by

cleaning the tools between operations. The punching process is illustrated in Figure 5.3, and the

resulting electrodes are shown in Figure 5.4.

Figure 5.3: Punching of electrode sheets to uniform size.
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Figure 5.4: Finished punched electrodes: cathode (left) and anodes (right).

5.2.3 Tab Placement and Welding

Following the punching of the electrode sheets, current collector tabs were attached to both

the anode and cathode electrodes. The purpose of these tabs is to enable electrical connection

between the electrode stack and the external circuitry once the pouch is sealed. Two tabs were

welded to the electrodes using a mechanical tab-pressing tool inside the dry room.

For the cathode, aluminum tabs were used, while nickel tabs were chosen for the anodes. This

selection is based on the electrochemical compatibility of each material:

• Aluminum is commonly used for cathode current collectors due to its excellent conduc-

tivity and electrochemical stability at high positive potentials.

• Nickel is preferred for anode connections because it resists corrosion and provides stable

contact at the lower (negative) potential range.

The two anode sheets were connected to a single nickel tab by overlapping the edges and apply-

ing pressure using the automated tool. This ensured reliable electrical contact and mechanical

fixation. The same procedure was followed for the cathode electrode and its aluminum tab. The

result is shown in Figure 5.5.
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Figure 5.5: Placement of nickel tab on the anode electrodes.

5.2.4 Separator Placement and Stack Assembly

After welding the tabs to the electrodes, the separator was introduced to electrically isolate the

anode and cathode layers. A single porous separator sheet was used per pouch cell. Instead of

individually punching or cutting two separate pieces, the separator was simply folded around

the cathode layer, creating a sandwich structure where the cathode is encapsulated between

two separator surfaces, as shown is Figure 5.6. This method simplifies handling and ensures

consistent overlap, reducing the risk of edge short circuits during cycling.
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Figure 5.6: Close-up of the electrode stack showing the folded separator wrapping around the
cathode and positioned between two anode layers.

The anode layers were then aligned on either side of the folded separator-cathode assembly. To

maintain precise alignment and mechanical stability during sealing, the full stack was temporarily

fixed using high-temperature resistant green polyimide tape. This tape holds the multilayer

assembly together without interfering with the sealing process or chemically reacting with the

electrolyte.

An illustration of the aligned stack just before pouch insertion is shown in Figure 5.7.

Figure 5.7: Completed electrode stack with polyimide tape holding the layers in position.
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5.2.5 Pouch Preparation and Stack Insertion

To create the pouch housing, a rectangular sheet of aluminum-laminated pouch foil was folded

in half. The bottom edge of this fold was immediately sealed using the heat sealer tool as shown

in Figure 5.8.

Figure 5.8: Sealing the bottom edge of the folded pouch foil to form the base of the cell.

The assembled electrode stack was then placed into the pouch (see Figure 5.9). It was positioned

carefully in the corner formed by the fold and the sealed bottom edge.

Figure 5.9: Electrode stack inserted into the corner of the folded pouch.

Afterwards, the top side was cut so that the tabs extend outwards for later connection. Finally,
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the top side of the pouch was sealed. This step required careful alignment of the tabs with the

adhesive glue strips inside the pouch. These strips help fix the tabs in place and ensure a reliable

seal around them. Figure 5.10 shows the result after sealing both the top and bottom edges.

Figure 5.10: Top sealing of the pouch with the tabs aligned on the glue strips to ensure proper
sealing.

5.2.6 Electrolyte Filling and Final Sealing

After partial sealing, the cell was prepared for electrolyte injection. A commercially available

lithium-ion electrolyte solution, shown in Figure 5.11, was used. This electrolyte is a mixture of

ethylene carbonate (EC) and ethyl methyl carbonate (EMC), with a total lithium salt concen-

tration of 2.0mol/L. This solvent combination is widely used in lithium-ion batteries due to its

balance between ionic conductivity, film-forming properties, and thermal stability [40]. Using a

calibrated volumetric pipette, a controlled amount of electrolyte was dropped directly onto the

exposed electrode stack (see Figure 5.12). This ensures uniform wetting of both the separator

and active materials, while avoiding overfilling that could interfere with the sealing process.
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Figure 5.11: Electrolyte consisting of a
binary solvent mixture of EC and EMC
with a total lithium salt concentration of
2.0mol/L.

Figure 5.12: Dropping of electrolyte onto
the electrode stack using a volumetric
pipette.

Immediately after electrolyte addition, the cell was transferred to a vacuum chamber equipped

with a heat-sealing tool. This step allows remaining air to be extracted before the pouch is fully

sealed, thereby minimizing trapped gases and ensuring long-term stability (Figure 5.13).

Figure 5.13: Pouch cell placed into a vacuum heat-sealer to evacuate air and close the final edge.
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Once the chamber reached the target vacuum level, the final open side of the pouch was sealed.

The resulting pouch cell, now fully enclosed, is shown in Figure 5.14. The cell was then inspected

visually and gently pressed to verify mechanical sealing and to detect any potential leakage of

the electrolyte.

Figure 5.14: Fully sealed pouch cell after vacuuming.

As seen in Figure 5.14, the initial pouch foil was deliberately cut oversized relative to the electrode

stack. This design choice simplifies vacuum sealing, as the extra material allows easier positioning

in the vacuum chamber and ensures full edge contact with the heating elements.

After the initial vacuum seal, a second heat seal was applied on the same open side, this time

positioned closer to the electrode stack (see Figure 5.15). This created a tighter enclosure that

matches the footprint of the internal components, ensuring compactness as the pouch cell has to

fit in the designed enclosure.

77



Figure 5.15: Second heat seal applied closer to the electrodes, reducing excess internal volume.

Finally, the excess pouch foil beyond the second seal was trimmed off using scissors, resulting in

a finished pouch with dimensions closely matching the electrode geometry (Figure 5.16). This

final shape improves cell handling, facilitates fixture mounting, and reduces gas volume inside

the pouch that could otherwise dilute evolved species.

Figure 5.16: Excess pouch foil trimmed after final sealing.
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5.3 Common Issues and Failure Modes During Fabrica-

tion

Despite careful handling, several failure modes can occur during pouch cell fabrication, partic-

ularly due to the manual nature of lab-scale assembly. Figure 5.17 shows three representative

examples of such issues.

Figure 5.17: Examples of typical fabrication errors. From left to right: (1) separator too short,
causing electrode contact; (2) broken tab due to improper welding or mechanical stress; (3)
improperly vacuum-sealed pouch resulting in failed cycling.

On the left, the separator sheet was cut too short, which led to direct contact between the anode

and cathode layers—causing internal short circuits and immediate cell failure. In the middle, a

current collector tab has broken off, likely due to incorrect welding tool parameters or mechanical

damage during handling. Such failures are common when dealing with thin electrode foils and

require careful adjustment of welding force and duration. On the right, the pouch cell was not

vacuum-sealed properly. Residual air inside the pouch interfered with electrolyte wetting and

internal pressure regulation, ultimately preventing the cell from functioning correctly during

cycling.

These examples highlight the importance of precision, consistency, and environmental control in

pouch cell fabrication. Even small errors in dimensions, alignment, or sealing can significantly

affect the electrochemical performance and safety of the final device.
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Chapter 6

Experimental Validation and

Measurements

6.1 Experimental Goals and Scope

The first objective of this chapter is to assess how different sampling strategies influence the ob-

served gas-evolution signatures during cycling. In particular, we aim to determine the correlation

between the timing of charge/discharge events and the sensitivity, resolution, and quantitative

reliability of gas detection under three distinct measurement protocols:

(i) Fixed-interval accumulation. Gases are sampled for a defined period (two hours) at

regular intervals, after which the sampling line is switched to the mass spectrometer for

analysis. By integrating the gas produced over a long collection window, this protocol

increases the total analyte amount and thus the analytical sensitivity, at the expense of

temporal specificity.

(ii) Continuous operando monitoring. A constant flow of argon carries evolved gases di-

rectly into the mass spectrometer throughout the entire charge–discharge sequence. This

method maximizes temporal resolution but risks low species concentration in the gas

stream, potentially reducing signal-to-noise ratio when the instantaneous gas-generation

rate is small.

(iii) End-of-experiment bulk measurement. After many complete cycles, the gas lines

are opened and all accumulated gas is analyzed in one batch. This approach provides

an integrated measure of total gas production over an extended period, allowing direct

comparison of cumulative gas yields, but sacrifices any information on the cycle-to-cycle

dynamics.

Throughout all experiments, the pouch cell was cycled between 2.5 V and 3.65 V with a 12 h

rest period prior to the first cycle to ensure homogeneous electrolyte wetting. By systematically

comparing these three sampling strategies under identical cycling conditions, we will elucidate the

trade-offs between time resolution, sensitivity, and cumulative accuracy, and thereby recommend

the optimal protocol for future operando gas-analysis studies.



6.2 System Functionality and Baseline Testing

6.2.1 Validation of Electrical Connection

Figure 6.1 displays the applied potential (Ewe) versus time over approximately 75 hours, during

which ten complete charge–discharge cycles were executed between 2.5 V and 3.65 V. The smooth,

repeatable plateaus at 3.65 V and valleys at 2.5 V in each cycle confirm that the potentiostat

maintained stable control over the cell voltage.

Figure 6.1: Cell voltage (Ewe) versus time, showing ten consecutive charge–discharge cycles over
75 h.

The absence of irregular voltage drops or noise spikes indicates that the internal electrical

feedthroughs and tab-connector interface provided reliable, low-resistance contact throughout

prolonged cycling. Consequently, we conclude that the electrical connection scheme is robust

and suitable for extended operando gas-analysis experiments.

6.2.2 Fabrication Troubleshooting and Successful Cycling

Prior to obtaining a stable ten-cycle voltage profile (Figure 6.4) we encountered multiple fab-

rication issues, which we systematically diagnosed by testing both assembled cells and loose

pouches.

Failed in-cell cycling attempts Three pouch cells fabricated in our custom housing were

cycled under varying conditions of electrolyte loading and constant current rate, yet none com-

pleted a full charge–discharge cycle, despite verified electrical contact. Figure 6.2 shows the
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first cell, which stalled during initial charging, Figure 6.1 depicts the second cell, which reached

the upper voltage limit but failed to discharge, and Figure 6.3 illustrates the third cell, which

exhibited erratic voltage behavior before cutoff.

Loose-pouch verification To determine whether the failures originated in our housing or in

the pouch fabrication, two pouches were cycled outside of the custom cell body under identical

electrochemical parameters. As shown in Figure 6.3 and Figure 6.4, both loose pouches were

unable to undergo full cycling, confirming that the root cause lay in the pouch assembly rather

than the operando setup.

Identification of sealing and electrolyte distribution issue Examination of the pouch

fabrication process revealed that omission of a proper vacuum-sealing step led to inadequate

electrolyte wetting, since we had introduced a gas-release port but had not ensured uniform

electrolyte dispersion under vacuum. Once vacuum sealing was applied correctly, thereby forcing

electrolyte into all electrode areas, subsequent cell assemblies reliably cycled.

Successful cycling A representative successful cycle is presented in Figure 6.4. The cell

charges smoothly to 3.65V and discharges to 2.50V, with reproducible plateaus and no anomalous

voltage dips or noise spikes. This result validates that proper vacuum sealing and electrolyte

distribution are critical to achieving stable electrochemical performance in our operando gas-

analysis configuration.
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Figure 6.2: Voltage profiles of the first two failed in-cell cycling attempts, showing inability to
complete charge–discharge loops.

Figure 6.3: Top: third failed in-cell cycling trial with erratic voltage response. Bottom: first
failed loose pouch test outside of the cell housing.
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Figure 6.4: Top: second failed loose pouch trial confirming fabrication issue. Bottom: successful
ten-cycle voltage profile after implementing proper vacuum sealing and electrolyte distribution.

6.2.3 Leak Testing and Purge Dynamics

After sealing the cell, when residual ambient air remains trapped inside a controlled argon purge

at 80 mL/min was initiated to displace nearly all of the remaining air. Figure 6.5 presents the

full time series: the pink trace shows the air count-rate, and the black trace shows the argon

count-rate. Every “shark-tooth” spike corresponds to a valve transition when the flow path

switches from bypass to the cell line. Although the cell remains effectively sealed, very brief air-

leakage peaks appear at each switch, likely due to minute amounts of ambient air momentarily

entering during valve actuation. These spikes are extremely small and decay immediately under

the continuous argon flow.
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Figure 6.5: Air (pink) and argon (black) count-rates during valve switching. The initial high air
count shows trapped ambient air, subsequent spikes correspond to valve operations.

After switching to argon purge, the air signal decays rapidly toward a low steady level. Figure 6.6

provides a zoomed view of this stabilization: following the abrupt drop, the pink trace settles at

roughly 800 counts/s.

Figure 6.6: Zoom on the air signal during argon purge, showing stabilization at approximately
800 counts/s.

86



This residual 800 counts/s represents only

800

1.11× 106
× 100% ≈ 0.072%

of the initial trapped-air signal. The rapid decay and low steady-state baseline demonstrate that

the argon purge effectively removes nearly all ambient air, verifying the cell’s gas-tight integrity

under test conditions.

6.3 Exploratory Measurements and Data Presentation

6.3.1 Fixed-Interval Accumulation

Figures 6.7 and 6.8 present the hydrogen, methane, ethylene, and carbon dioxide signals recorded

during each 20-minute sampling window taken every two hours. The underlying charge–discharge

protocol cycled the pouch cell between 2.5 V and 3.65 V; each gas measurement spans a complete

window that may overlap both charge and discharge steps.

Figure 6.7: Raw counts-per-second traces for H2, CH4, C2H4, and CO2 during ten 20-minute
sampling intervals spaced every two hours. Each blue, orange, magenta, and green spike corre-
sponds to hydrogen, methane, ethylene, and carbon dioxide, respectively.
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Figure 6.8: Five-point moving average of the data in Figure 6.7, reducing high-frequency noise
to clarify overall emission profiles for each 20-minute window.

Observations:

• In both figures, hydrogen (blue) exhibits the largest peak amplitude in each sampling

window, followed by ethylene (magenta), methane (green), and carbon dioxide (orange).

• The timing of the peaks is consistent: each 20-minute window begins with a sharp rise

in all four gas signals, reaching maxima within the first few minutes, then decaying more

gradually over the remainder of the sampling period.

• Peak heights decrease modestly from the first to the third sampling window, then stabilize

for subsequent windows.

• No secondary peaks or shoulders appear within any single 20-minute window, suggesting

each sampling interval captures a single dominant gas-evolution event.

6.3.2 Bulk Gas Collection After Ten Cycles

In this protocol the pouch cell was subjected to 20 complete charge–discharge cycles between

2.5V and 3.65V, after which all accumulated gases were collected in a single 20-minute sampling

window under an 80 mL/min argon purge, Figure 6.9 shows the full time series of counts per

second for hydrogen, methane, ethylene and carbon dioxide during this bulk measurement
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Figure 6.9: Raw emission profiles for H2 (blue), CH4 (orange), C2H4 (green) and CO2 (cyan)
during the 20-minute bulk sampling following ten cycles

Initial Observations Hydrogen exhibits by far the largest peak reaching approximately 148 000

counts/s, methane and ethylene reach peaks of around 2 200 counts/s and 3 500 counts/s respec-

tively, carbon dioxide peaks at roughly 4 500 counts/s, each species rises sharply within minutes

of opening the sampling line then decays over the remainder of the 1.7 h window, no secondary

emission events are visible indicating a single dominant release

Zoomed Decay Comparison Figure 6.10 presents a close-up of the decay tails for methane,

ethylene and carbon dioxide from 0.15 h onward, methane (orange) falls below 1 000 counts/s

by 0.35 h, carbon dioxide (blue) and ethylene (green) decay more slowly reaching approximately

1000 counts/s and 1 800 counts/s respectively by 1.7 h
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Figure 6.10: Zoomed decay profiles of CH4, C2H4 and CO2 following the initial peak

Decay Observations Carbon dioxide’s rapid decline suggests efficient purging under continu-

ous argon flow, methane and ethylene’s more gradual decay indicates stronger interactions with

cell components or slower diffusion, the persistent hydrogen tail implies ongoing low-rate evo-

lution or desorption, signal noise remains minimal throughout confirming stable measurement

conditions

6.3.3 Full Operando Monitoring

In the full operando experiment the pouch cell was cycled from 2.50 V up to 3.65 V and back

while the mass spectrometer sampled continuously at one-second intervals. Figure 6.11 shows

the complete gas count-rate traces for hydrogen (blue), methane (green), ethylene (magenta) and

carbon dioxide (orange), together with the cell voltage (black).
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Figure 6.11: Continuous operando gas monitoring during one complete charge–discharge cycle.
Black trace: cell voltage (right axis, V); colored traces: 5-point moving average of gas count–rates
(left axis, counts s−1).

Observations Two distinct hydrogen peaks emerge during the charging ramp, the first coin-

ciding with the initial activation of the electrode around 12.5 h with a peak of 8900 c/s and

the second appearing during the steep voltage rise near 14.7 h with a peak of 11250 , indicating

that hydrogen evolution is most intense at these load-driven stages. Ethylene shows a similar

but smaller double-peak pattern at the same time points, confirming concurrent electrolyte de-

composition. Methane and carbon dioxide signals remain near their low baselines throughout

charging, with only slight elevations during the hydrogen peaks. This muted response reflects

their lower overall yield and the continuous argon purge that attenuates transient concentrations.

Hydrogen as primary indicator Earlier fixed-interval and bulk measurements demonstrated

that hydrogen is the predominant evolved gas, therefore its count–rate peaks here serve as the

clearest markers of gas generation events. The double-peak structure aligns directly with the

two voltage inflection points, underscoring the strong coupling between cell overpotential and

hydrogen evolution.

Secondary gases under continuous purge Continuous sampling through line 1 maintains

a steady argon flow, which improves temporal resolution yet dilutes minor gas species. Conse-

quently methane, ethylene and carbon dioxide traces appear nearly flat save for small bumps

synchronous with the hydrogen peaks. This behavior confirms that while these decomposition

products are generated, their concentrations are comparatively low and their detection is more

sensitive to sampling mode.

These observations validate the operando setup’s ability to resolve gas evolution in direct corre-

lation with electrochemical driving forces, highlighting hydrogen as a robust indicator of degra-

dation onset and progression during charging. Further quantitative conversion of count–rate to
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volumetric gas yield will be presented in Section 6.4.

6.4 Data Discussion

In this section we interpret and compare the three measurement protocols in terms of time

resolution, sensitivity and cycle-to-cycle behavior.

6.4.1 Cycle-to-Cycle Trends

Figure 6.8 shows a gradual decline of the H2 peak height from 9 730 counts/s in the first window

to 6 000 counts/s in the third window, thereafter stabilizing around 4 500 counts/s in later

windows. Quantitatively, this corresponds to a decrease of approximately 38 percent from the

first to the third window, and by the fifth window the H2 peak has fallen by over 50 percent

relative to the initial value. Beyond the seventh window the gas evolution rate remains near 4500

counts/s, less than half of the first-cycle peak.

These data demonstrate that the first cycle produces the greatest amount of hydrogen, and that

each subsequent cycle yields progressively less gas. This progressive attenuation is consistent

with the rapid formation of a passivating interphase on the anode surface during initial cycling,

which suppresses further electrolyte decomposition and side-reaction pathways in later cycles.

Although the fixed-interval showed that the first cycle produces the most total gas, the full

operando data (Figure 6.11) reveal exactly when within that cycle the gas appears. Two clear

hydrogen peaks align with the voltage rise during charge. As soon as the cell switches to discharge

and the voltage falls, the hydrogen signal drops back toward baseline. Ethylene follows the same

pattern but with smaller peaks, while methane and carbon dioxide stay close to their baselines

during discharge.

These results show that gas production is not uniform throughout the cycle but is concentrated

in the charging step, especially during the initial activation and the steep voltage increase near

the charge limit. Once discharge begins, gas evolution quickly subsides. This confirms that the

main gas-forming reactions occur under anodic overpotential rather than during discharge.

In conclusion, the most gas is released during the charging portion of the first cycle, with very

little generated during discharge or in later cycles. This highlights the importance of the initial

charge step for electrolyte breakdown and gas evolution in lithium-ion pouch cells.

6.4.2 Temporal Resolution versus Sensitivity

Fixed-interval sampling yields the largest absolute gas volumes per window, but by integrating

over 20 min every 2 h it blurs the fine structure of individual charge/discharge events. In contrast,

continuous operando monitoring detects sharp, voltage-synchronous spikes of gas evolution (see

Fig. 6.11), but the constant argon purge dilutes the transient species concentration and thus

reduces the instantaneous signal-to-noise ratio for minor gases.

6.4.3 Voltage Correlation

All major hydrogen emission spikes align precisely with the onset of the charge plateau at 3.65

V (see Fig. 6.11). This temporal correlation strongly implicates over-potential–driven electrolyte
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decomposition as the dominant gas-generation mechanism rather than discharge-driven side re-

actions.

6.4.4 Method Recommendation

For mechanistic investigations that require pinpointing the exact timing of gas- formation events,

continuous operando monitoring is clearly superior. For absolute quantification of total gas yields

and cross-protocol comparison, bulk (end-of-experiment) sampling provides the highest sensitiv-

ity and simplest mass balance. The fixed-interval approach represents an intermediate compro-

mise, offering both temporal context and enhanced signal by integrating over longer windows.
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Chapter 7

Conclusion

This thesis presents the development, implementation, and validation of the fully automated

operando gas-analysis system explicitly designed for lithium-ion pouch cells, that represents a

significant advancement beyond the existing coin-cell–based setup. The system was designed to

overcome limitations in existing experimental approaches, such as manual valve operation, poor

temporal control of gas sampling, and insufficient sealing that can compromise the quality of gas

analysis.

7.1 Major Technical Achievements and Findings

The platform’s technical innovations are best illustrated by four core achievements.

First, a hermetic enclosure was engineered and produced out of stainless-steel with precision O-

ring seals, yielding leak rates below 800 counts·s−1 in continuous mass-spectrometry tests. More-

over, seamless electrochemical integration was realized through custom copper-rod feedthroughs,

which preserved potentiostat connectivity without compromising enclosure integrity; stable cy-

cling over ten charge–discharge sequences (75 h) confirmed both electrical and mechanical ro-

bustness.

Third, a microcontroller-driven solenoid valve network was implemented and controlled via a

custom made Python-based GUI, enabling automated sampling triggers based on time intervals,

voltage thresholds and cycle or rest triggers.

Finally, a systematic comparison of sampling methods, (fixed-interval draws, end-of-test bulk

collection, and continuous operando monitoring) demonstrated that hydrogen evolution events

reliably precede capacity fade, while detection of minor species (e.g., C2H4, CO2) is strongly

influenced by the chosen sampling strategy and its timing.

7.2 System Limitations and Integration Challenges

Despite its strengths, the current setup exhibits several constraints.

Throughput is limited by its single-cell configuration; although the control software is already

designed to manage up to four parallel lines, additional solenoid valves are required to scale.



Residual dead volume, reduced by 65 % through shorter tubing, still attenuates rapid gas tran-

sients, indicating the need for internal enclosure volume miniaturization to improve temporal

resolution.

Moreover, the lack of pressure measurement and control over pouch-cell compression precludes

systematic studies of pressure-dependent behaviour; integrating force sensors and adjustable

actuators would address this gap.

Finally, a systematic evaluation of the three sampling modalities—fixed-interval accumulation,

end-of-test bulk collection, and continuous operando monitoring—yielded two principal conclu-

sions. Notably, the initial fixed-interval window (every 2 hours) consistently produced the largest

cumulative gas volume, indicating that gas evolution is most pronounced during the first cycle.

Furthermore, continuous operando measurements unequivocally demonstrate that gas-evolution

events are concentrated during the charging segments of each cycle.

7.3 Research Applications Enabled by Automated Sam-

pling Strategies

The automation framework underpinning this platform unlocks a spectrum of experimental de-

signs.

Fully operando analysis captures transient gas events in real time, offering uninterrupted insight

into dynamic degradation processes.

Stepwise triggered sampling, based on user-defined time, voltage, or cycle-state criteria, permits

targeted investigations of specific phases, for example, during the plateau phase of the cycling.

Furthermore, hybrid protocols that run multiple trigger types concurrently deliver both cumu-

lative gas-yield data and high-resolution snapshots of fast events within a single experiment,

eliminating the need for manual intervention.

7.4 Planned System Enhancements

To extend the platform’s utility, three key enhancements are proposed.

First, a multiplexed sampling infrastructure will be realized by expanding the solenoid-valve

network and retrofitting the existing coin-cell setup with the same automated valves, thereby

enabling parallel analysis of multiple cell formats and boosting time efficiency.

Second, an oven-compatible redesign of the containment and sampling assemblies will facilitate

controlled thermal ramp and hold experiments within a standard laboratory oven.

Third, integration of a pressure sensor or a regulated pressure apply system will permit active

monitoring and control of applied compression, opening systematic studies into the interplay

between mechanical stress and electrochemical performance or gas evolution.
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7.5 Future Research Directions

Building on these enhancements, future studies can explore temperature-dependent kinetics by

quantifying how varying oven conditions affect SEI growth rates and gas-generation pathways,

thus informing thermal-management strategies.

Pressure-effect mapping will leverage the new compression control to correlate applied stress with

interfacial impedance changes and gas-emission profiles, guiding mechanical design optimization.

Cross-format comparative analysis, running automated coin-cell and multiple pouch cell experi-

ments in parallel, will directly compare degradation kinetics and gas-evolution signatures across

cell geometries, maximizing throughput and time efficiency.

7.6 Final Reflections

This operando gas-analysis platform for pouch cells offers a combination of airtight integrity,

automation, and flexible sampling control. By delivering synchronized gas and electrochemi-

cal measurements under controlled thermal and mechanical conditions, it establishes a compre-

hensive framework for advancing battery-degradation studies, safety assessments, and material

innovation.

In conclusion, these capabilities set the stage for real-time diagnostic tools and data-driven

strategies that will significantly enhance the research, development, and management of next-

generation lithium-ion batteries.
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Appendix A

Appendix - Software Code in Python



Software Code in Python

main.py

1 # main.py

2

3 import automaticLOGIC

4 import manualLOGIC

5 from InterfaceMAIN import InterfaceApp

6

7 if __name__ == "__main__":

8 app = InterfaceApp()

9 app.mainloop()

10

ECdata.py

1 import pandas as pd

2 import os

3 def load_ec_data(filepath):

4

5 if not os.path.isfile(filepath):

6 print(f"[ERROR] Bestand niet gevonden: {filepath}")

7 return None

8

9 column_names = [

10 "mode", "ox", "time/s", "Ewe/V", "I/mA", "cycle number"

11 ]

12

13 # Lees het bestand vanaf regel 95 met vaste kolomnamen

14 df = pd.read_csv(filepath, sep=';', decimal=',', usecols=column_names)

15

16 # Vervang decimale komma’s → punten en zet types om

17 df = df.map(lambda x: str(x).replace(',', '.'))

18

19 # Conversie naar numerieke types

20

21 df["Ewe/V"] = pd.to_numeric(df["Ewe/V"], errors='coerce')

22 df["ox"] = pd.to_numeric(df["ox"], downcast="integer", errors='coerce')

23

24 return df

25

inputs.py

1 # input.py

2 # inputs.py

3 import serial

4 import json

5 import time

6

7 CONFIG_PATH = "config.json"

8

9 try:

10 with open(CONFIG_PATH, "r") as f:

11 CONFIG = json.load(f)

12 except FileNotFoundError:

13 CONFIG = {"COM_PORT": "", "file_paths": {}}
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Software Code in Python

14

15 USER_PARAMETERS = {1: {}, 2: {}, 3: {}, 4: {}}

16 FILE_PATHS = CONFIG.get("file_paths", {})

17

18 arduino = None

19

20 def reconnect_arduino():

21 global arduino

22 try:

23 if arduino and arduino.is_open:

24 arduino.close()

25 print(" Bestaande verbinding gesloten.")

26

27 port = CONFIG["com_port"]

28 arduino = serial.Serial(port, 9600, timeout=2)

29 time.sleep(2) # Arduino heeft opstarttijd nodig

30

31 # Wacht op eerste bericht (zoals 'READY')

32 if arduino.in_waiting:

33 startup_msg = arduino.readline().decode("utf-8").strip()

34 print(f" Arduino startup bericht: '{startup_msg}'")

35

36 # Stuur PING

37 arduino.write(b"PING\n")

38 response = arduino.readline().decode("utf-8").strip()

39 print(f" Arduino antwoord: '{response}'")

40

41 if any(x in response.lower() for x in ["ack", "ready", "pong"]):

42 print(f" Arduino verbonden op {port}")

43 return True

44 else:

45 print(f" Geen geldig antwoord van Arduino op {port}")

46 arduino.close()

47 arduino = None

48 return False

49

50 except Exception as e:

51 print(f" Fout bij verbinden met Arduino: {e}")

52 arduino = None

53 return False

54

55 def close_serial():

56 global arduino

57 if arduino and arduino.is_open:

58 try:

59 arduino.close()

60 print(" Arduino verbinding succesvol gesloten.")

61 except Exception as e:

62 print(f" Fout bij sluiten van Arduino verbinding: {e}")

63

64 # Arduino pinout mapping (logische naam → pin)

65 VALVE_PINS = {

66 "V0": 10, # Purgeklep (L0)

67 "V1-A": 2, # Lijn 1 - A

68 "V1-B": 3,

69 "V2-A": 4,

70 "V2-B": 5,

71 "V3-A": 6,
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Software Code in Python

72 "V3-B": 7,

73 "V4-A": 8,

74 "V4-B": 9,

75 }

76

77 # Flowmeter pinnen

78 FLOWMETER_ANALOG_PIN = "A0"

79 FLOWMETER_PWM_PIN = 11 # optioneel

80

81 def set_flow_rate(line: int):

82 rate = CONFIG["flow_rates"].get(str(line), 0)

83 voltage = (rate / 30.0) * 5.0

84 cmd = f"FLOW {line} {voltage:.2f}\\n"

85 serial.write(cmd.encode())

86

87 # Arduino COM-poort (voor klepaansturing)

88 COM_PORT = "COM7"

89

90 # Datapad voor logging

91 DATA_FOLDER = "./data_logs/"

92

93 # Modus: 'automatisch' of 'manueel'

94 MODUS = "automatisch"

95

96 # Gebruikersparameters per lijn

97 USER_PARAMETERS = {

98 1: {

99 "sample": "",

100 "purge_after": 0,

101 "purge_for": 0,

102 "flow_duration": 0,

103

104 # Triggers

105 "use_voltage_trigger": True,

106 "trigger_voltage_step": 0.1, # V

107

108 "use_time_trigger": True,

109 "trigger_time_interval": 30, # s

110

111 "use_halfcycle_trigger": True, # op einde van laad/ontlaad

112

113 "line_active": False

114

115 },

116 2: {

117 "sample": "",

118 "purge_after": 0,

119 "purge_for": 0,

120 "flow_duration": 0,

121

122 # Triggers

123 "use_voltage_trigger": True,

124 "trigger_voltage_step": 0.1, # V

125

126 "use_time_trigger": True,

127 "trigger_time_interval": 30, # s

128

129 "use_halfcycle_trigger": True, # op einde van laad/ontlaad
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130

131 "line_active": False

132 },

133 3: {

134 "sample": "",

135 "purge_after": 0,

136 "purge_for": 0,

137 "flow_duration": 0,

138

139 # Triggers

140 "use_voltage_trigger": True,

141 "trigger_voltage_step": 0.1, # V

142

143 "use_time_trigger": True,

144 "trigger_time_interval": 30, # s

145

146 "use_halfcycle_trigger": True, # op einde van laad/ontlaad

147

148 "line_active": False

149 },

150 4: {

151 "sample": "",

152 "purge_after": 0,

153 "purge_for": 0,

154 "flow_duration": 0,

155

156 # Triggers

157 "use_voltage_trigger": True,

158 "trigger_voltage_step": 0.1, # V

159

160 "use_time_trigger": True,

161 "trigger_time_interval": 30, # s

162

163 "use_halfcycle_trigger": True, # op einde van laad/ontlaad

164

165 "line_active": False

166 },

167

168 }

outputs.py

1 # outputs.py

2 import serial

3 import inputs

4

5

6 # Klepstatussen

7 VALVE_STATUS = {

8 "V0": "open",

9 "V1-A": "closed",

10 "V1-B": "closed",

11 "V2-A": "closed",

12 "V2-B": "closed",

13 "V3-A": "closed",

14 "V3-B": "closed",

15 "V4-A": "closed",

5
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16 "V4-B": "closed"

17 }

18

19 def set_valve_state(valve_id, state: str):

20 if valve_id not in VALVE_STATUS:

21 print(f" Ongeldige klep-ID: '{valve_id}' (line_number klopt wel, maar klep-ID

bestaat niet!)")↪→

22 return

23

24 assert state in ["open", "closed", "inactive"]

25 VALVE_STATUS[valve_id] = state

26

27 if not inputs.arduino:

28 print(f" Arduino niet beschikbaar, commando niet verzonden:

{valve_id}:{state}")↪→

29 return

30

31 if state in ["open", "closed"]:

32 try:

33 cmd = f"{valve_id}:{state}\n"

34 inputs.arduino.write(cmd.encode('utf-8'))

35 print(f" Commando verzonden: {valve_id}:{state}")

36 except Exception as e:

37 print(f" Fout bij schrijven naar Arduino: {e}")

38

39 if valve_id is None:

40 print(" Waarschuwing: valve_id is None (mogelijk fout in line_number)")

41

42

43 def get_valve_state(valve_id: str) -> str:

44 return VALVE_STATUS.get(valve_id, "inactive")

45

46 def valve_is_open(valve_id: str) -> bool:

47 return VALVE_STATUS.get(valve_id, "closed") == "open"

48

49 # Live meetdata per lijn

50 LIVE_DATA = {

51 1: {"voltage": 0.0, "time": 0.0, "halfcycle": False, "flow": 0.0},

52 2: {"voltage": 0.0, "time": 0.0, "halfcycle": False, "flow": 0.0},

53 3: {"voltage": 0.0, "time": 0.0, "halfcycle": False, "flow": 0.0},

54 4: {"voltage": 0.0, "time": 0.0, "halfcycle": False, "flow": 0.0},

55 }

56

57 def update_live_data(line: int, voltage=None, time=None, halfcycle=None, flow=None):

58 if voltage is not None:

59 LIVE_DATA[line]["voltage"] = voltage

60 if time is not None:

61 LIVE_DATA[line]["time"] = time

62 if halfcycle is not None:

63 LIVE_DATA[line]["halfcycle"] = halfcycle

64 if flow is not None:

65 LIVE_DATA[line]["flow"] = flow

66

67 # Laatste meetmoment per lijn (voor triggers)

68 LOG_STATE = {

69 1: {"last_voltage": 0.0, "last_time": 0.0},

70 2: {"last_voltage": 0.0, "last_time": 0.0},

71 3: {"last_voltage": 0.0, "last_time": 0.0},
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72 4: {"last_voltage": 0.0, "last_time": 0.0},

73 }

74

75 # Excel logging bestanden per lijn (optioneel)

76 EXCEL_FILES = {

77 1: None,

78 2: None,

79 3: None,

80 4: None

81 }

manualLOGIC.py

1 from outputs import VALVE_STATUS, set_valve_state

2

3 def toggle_valve_state(valve_id):

4 current = VALVE_STATUS[valve_id]

5 new_state = "closed" if current == "open" else "open"

6 set_valve_state(valve_id, new_state)

automaticLOGIC.py

1 import threading

2 from inputs import USER_PARAMETERS, FILE_PATHS, CONFIG

3 from outputs import set_valve_state

4 import pandas as pd

5 from ECdata import load_ec_data

6 import queue

7 import time

8 import os

9 import csv

10 from datetime import datetime, timedelta

11

12 measurement_lock = threading.Lock()

13 operation_queue = queue.Queue()

14 MONITOR_INTERVAL = 1 #sec

15 LOG_START_TIME = None

16

17 # Status per lijn

18 line_states = {

19 1: {"active": False, "purged": False},

20 2: {"active": False, "purged": False},

21 3: {"active": False, "purged": False},

22 4: {"active": False, "purged": False},

23 }

24

25 def start_automatic_process(line_number):

26 """

27 Wordt getriggerd vanuit de interface bij het drukken op 'Start' voor een lijn.

28 """

29 global LOG_START_TIME

30 if LOG_START_TIME is None:

31 LOG_START_TIME = datetime.now()

32 print(f" Logging-timer gestart vanaf: {LOG_START_TIME.strftime('%H:%M:%S')}")

33

34 if line_states[line_number]["active"]:
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35 print(f"Lijn {line_number} is al actief.")

36 return

37

38 print(f" Starten van automatische cyclus voor lijn {line_number}...")

39 line_states[line_number]["active"] = True

40

41 line_states[line_number]["purged"] = False

42

43 try:

44 purge_after = float(USER_PARAMETERS[line_number]["purge_after"])

45 except ValueError:

46 print(f" Ongeldige waarde voor purge_after bij lijn {line_number}")

47 return

48

49 threading.Timer(purge_after * 60, lambda: _do_purge(line_number)).start()

50

51 def _do_purge(line_number):

52 def task():

53 if not line_states[line_number]["active"]:

54 print(f" Purgen geannuleerd: lijn {line_number} is gestopt.")

55 return

56 with measurement_lock:

57 if not line_states[line_number]["active"]:

58 return

59

60 print(f" Purge gestart voor lijn {line_number}")

61 _close_valve("V0")

62 _open_valves(line_number)

63

64 try:

65 purge_for = float(USER_PARAMETERS[line_number]["purge_for"])

66 except ValueError:

67 print(f" Ongeldige waarde voor purge_for bij lijn {line_number}")

68 return

69

70 time.sleep(purge_for * 60)

71

72 print(f" Purge afgerond voor lijn {line_number}")

73 _close_valves(line_number)

74 _open_valve("V0")

75 line_states[line_number]["purged"] = True

76

77 # triggers starten

78 params = USER_PARAMETERS[line_number]

79 if params.get("use_time_trigger", False):

80 _schedule_next_measurement(line_number)

81 if params.get("use_voltage_trigger", False):

82 start_voltage_monitoring(line_number)

83 if params.get("use_halfcycle_trigger", False):

84 start_halfcycle_monitoring(line_number)

85 if params.get("use_cycle_trigger", False):

86 start_cycle_monitoring(line_number)

87 if params.get("use_rest_trigger", False):

88 start_rest_monitoring(line_number)

89

90 # Na purge: verwerk eerstvolgende wachtrijtaak

91 threading.Timer(10, _process_next_queue_item).start()

92
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93 # Prioriteit 0 = hoogste prioriteit

94 _queue_or_execute(priority=0, task=task)

95

96 def _end_purge(line_number):

97 if not line_states[line_number]["active"]:

98 return

99

100 print(f" Purge afgerond voor lijn {line_number}")

101 _close_valves(line_number)

102 _open_valve("V0")

103 line_states[line_number]["purged"] = True

104

105 params = USER_PARAMETERS[line_number]

106

107 if params.get("use_time_trigger", False):

108 _schedule_next_measurement(line_number)

109

110 if params.get("use_voltage_trigger", False):

111 start_voltage_monitoring(line_number)

112

113 if params.get("use_halfcycle_trigger", False):

114 start_halfcycle_monitoring(line_number)

115

116 if params.get("use_cycle_trigger", False):

117 start_cycle_monitoring(line_number)

118

119 if params.get("use_rest_trigger", False):

120 start_rest_monitoring(line_number)

121

122

123 def _schedule_next_measurement(line_number):

124 if not line_states[line_number]["active"]:

125 return

126

127 try:

128 interval = float(USER_PARAMETERS[line_number]["trigger_time_interval"])

129 except ValueError:

130 print(f" Ongeldige waarde voor trigger_time_interval bij lijn {line_number}")

131 return

132

133 def delayed_measurement():

134 try:

135 df = load_ec_data(FILE_PATHS[str(line_number)])

136 last_row = df.iloc[-1]

137 except Exception as e:

138 print(f" Fout bij inlezen EC-data voor tijdtrigger: {e}")

139 last_row = None

140

141 _perform_measurement(line_number, trigger_source="time", last_row=last_row)

142

143 # Herplan opnieuw!

144 _schedule_next_measurement(line_number)

145

146 threading.Timer(interval, delayed_measurement).start()

147

148 def _perform_measurement(line_number, trigger_source="unknown", last_row=None):

149 def task(trigger_source=trigger_source, last_row=last_row):

150 if not line_states[line_number]["active"]:
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151 print(f" Meting geannuleerd: lijn {line_number} is gestopt.")

152 return

153

154 with measurement_lock:

155 print(f" Meting gestart voor lijn {line_number}")

156 #set_flow_rate(line_number, arduino)

157 _close_valve("V0")

158 _open_valves(line_number)

159 log_measurement(line_number, trigger_source, last_row)

160

161 try:

162 duration = float(USER_PARAMETERS[line_number]["flow_duration"]) * 60

163 except ValueError:

164 print(f" Ongeldige waarde voor flow_duration bij lijn {line_number}")

165 return

166

167 time.sleep(duration)

168

169 print(f" Meting afgerond voor lijn {line_number}")

170 _close_valves(line_number)

171 _open_valve("V0")

172

173

174 # Na afronding → verwerk volgende taak

175 threading.Timer(10, _process_next_queue_item).start()

176

177 # Prioriteit 10 = laag, want meting

178 _queue_or_execute(priority=10, task=task)

179

180

181 def _end_measurement(line_number):

182 if not line_states[line_number]["active"]:

183 return

184

185 print(f" Meting afgerond voor lijn {line_number}")

186 _close_valves(line_number)

187 _open_valve("V0")

188

189 # Herplan enkel bij tijdtrigger

190 if USER_PARAMETERS[line_number].get("use_time_trigger", False):

191 _schedule_next_measurement(line_number)

192

193 def _open_valves(line_number):

194 if not line_states[line_number]["active"]:

195 print(f" Poging tot openen van kleppen voor gestopte lijn {line_number}

genegeerd.")↪→

196 return

197 set_valve_state(f"V{line_number}-A", "open")

198 set_valve_state(f"V{line_number}-B", "open")

199

200 def _close_valves(line_number):

201 set_valve_state(f"V{line_number}-A", "closed")

202 set_valve_state(f"V{line_number}-B", "closed")

203

204 def _open_valve(valve_id):

205 set_valve_state(valve_id, "open")

206

207 def _close_valve(valve_id):
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208 set_valve_state(valve_id, "closed")

209

210 def stop_line(line_number):

211 print(f" Lijn {line_number} gestopt.")

212 line_states[line_number]["active"] = False

213 _close_valves(line_number)

214 _open_valve("V0")

215 def stop_automatic_process(line_number):

216 last_voltage_trigger.pop(line_number, None)

217 last_halfcycle.pop(line_number, None)

218 last_cycle.pop(line_number, None)

219

220 if not line_states[line_number]["active"]:

221 print(f"Lijn {line_number} is al gestopt.")

222 return

223

224 print(f" Stoppen van lijn {line_number}...")

225 line_states[line_number]["active"] = False

226

227 # Sluit kleppen

228 _close_valves(line_number)

229 _close_valve("V0")

230

231 print(f" Lijn {line_number} volledig gestopt.")

232

233 # Voor voltage-trigger

234 last_voltage_trigger = {}

235

236 def start_voltage_monitoring(line_number, trigger_source="voltage", last_row=None):

237 filepath = FILE_PATHS[str(line_number)]

238 voltage_step = float(USER_PARAMETERS[line_number]["trigger_voltage_step"])

239 min_v = float(USER_PARAMETERS[line_number].get("trigger_voltage_min", 0.0))

240 max_v = float(USER_PARAMETERS[line_number].get("trigger_voltage_max", 10.0))

241 print(f" Voltage-trigger monitoring gestart voor lijn {line_number}...")

242

243 # Initieer met de eerste beschikbare spanning als startreferentie

244 try:

245 df_init = load_ec_data(filepath)

246 first_voltage = float(df_init.iloc[0]["Ewe/V"])

247 last_voltage_trigger[line_number] = first_voltage

248 print(f"[Lijn {line_number}] Initiele spanning ingesteld op

{first_voltage:.3f} V")↪→

249 except Exception as e:

250 print(f" Fout bij initialiseren van startspanning: {e}")

251 return # Stop als we geen initwaarde kunnen zetten

252

253 def monitor():

254 if not line_states[line_number]["active"]:

255 return

256

257 try:

258 df = load_ec_data(filepath)

259 last_row = df.iloc[-1]

260 voltage = float(last_row["Ewe/V"])

261 print(f"[Lijn {line_number}] Laatste rij: {last_row.to_dict()}")

262 except Exception as e:

263 print(f" Fout bij lezen voltage-trigger bestand: {e}")

264 threading.Timer(MONITOR_INTERVAL, monitor).start()

11



Software Code in Python

265 return

266

267 prev = last_voltage_trigger.get(line_number)

268 delta = abs(voltage - prev)

269

270 if delta >= voltage_step:

271

272 if min_v <= voltage <= max_v:

273 print(

274 f" Voltage-trigger geactiveerd bij V={delta:.3f} V binnen limiet

({min_v}{{max_v}) (lijn {line_number})")↪→

275 _perform_measurement(line_number, trigger_source="voltage",

last_row=last_row)↪→

276 last_voltage_trigger[line_number] = voltage # Enkel updaten na

meting↪→

277 else:

278 print(

279 f" V voldoende ({delta:.3f} V), maar voltage buiten limieten:

{voltage:.2f} V (lijn {line_number})")↪→

280

281 threading.Timer(MONITOR_INTERVAL, monitor).start()

282

283 monitor()

284

285 # Voor half-cycle-trigger

286 last_halfcycle = {}

287 def start_halfcycle_monitoring(line_number):

288 filepath = FILE_PATHS[str(line_number)]

289 print(f" Half-cycle monitoring gestart voor lijn {line_number}...")

290

291 def monitor():

292 if not line_states[line_number]["active"]:

293 return

294

295 try:

296 df = load_ec_data(filepath)

297 hc = int(df["ox"].iloc[-1])

298 last_row = df.iloc[-1]

299 print(f"[Lijn {line_number}] ox = {hc}")

300 except:

301 threading.Timer(MONITOR_INTERVAL, monitor).start()

302 return

303

304 prev = last_halfcycle.get(line_number)

305 if prev is None:

306 last_halfcycle[line_number] = hc

307 print(f"[Lijn {line_number}] Initiele ox opgeslagen: {hc}")

308 threading.Timer(MONITOR_INTERVAL, monitor).start()

309 return

310

311 if hc != prev:

312 last_halfcycle[line_number] = hc

313 print(f" Half-cycle trigger geactiveerd bij ox-overgang {prev} → {hc}

(lijn {line_number})")↪→

314 _perform_measurement(line_number, trigger_source="half cycle",

last_row=last_row)↪→

315

316 threading.Timer(MONITOR_INTERVAL, monitor).start()
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317

318 monitor()

319

320 # Voor cycle-trigger

321 last_cycle = {}

322

323 def start_cycle_monitoring(line_number, trigger_source="voltage", last_row=None):

324 filepath = FILE_PATHS[str(line_number)]

325 print(f" Cycle-trigger monitoring gestart voor lijn {line_number}...")

326

327 first_after = int(USER_PARAMETERS[line_number].get("trigger_cycle_first_after",

0))↪→

328 then_every = int(USER_PARAMETERS[line_number].get("trigger_cycle_then_every", 1))

329

330 def monitor():

331 if not line_states[line_number]["active"]:

332 return

333

334 try:

335 df = load_ec_data(filepath)

336 current_cycle = int(float(df["cycle number"].iloc[-1]))

337 print(f"[Lijn {line_number}] Cycle: {current_cycle}")

338 except:

339 threading.Timer(MONITOR_INTERVAL, monitor).start()

340 return

341

342 prev_cycle = last_cycle.get(line_number, -1)

343 if current_cycle != prev_cycle:

344 last_cycle[line_number] = current_cycle

345

346 if current_cycle >= first_after and (current_cycle - first_after) %

then_every == 0:↪→

347 print(f" Cycle-trigger geactiveerd bij cycle {current_cycle} (lijn

{line_number})")↪→

348 try:

349 last_row = df.iloc[-1]

350 except:

351 last_row = None

352

353 _perform_measurement(line_number, trigger_source="full cycle",

last_row=last_row)↪→

354

355 threading.Timer(MONITOR_INTERVAL, monitor).start()

356

357 monitor()

358 #rest trigger

359 last_mode = {}

360

361 def start_rest_monitoring(line_number):

362 filepath = FILE_PATHS[str(line_number)]

363 print(f" Rest-trigger monitoring gestart voor lijn {line_number}...")

364

365 def monitor():

366 if not line_states[line_number]["active"]:

367 return

368

369 try:

370 df = load_ec_data(filepath)
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371 mode = int(df["mode"].iloc[-1])

372 last_row = df.iloc[-1]

373 print(f"[Lijn {line_number}] mode = {mode}")

374 except:

375 threading.Timer(MONITOR_INTERVAL, monitor).start()

376 return

377

378 prev_mode = last_mode.get(line_number)

379 if prev_mode is None:

380 last_mode[line_number] = mode

381 threading.Timer(MONITOR_INTERVAL, monitor).start()

382 return

383

384 if mode == 3 and prev_mode != 3:

385 print(f" Rest-trigger geactiveerd: mode 3 (lijn {line_number})")

386 _perform_measurement(line_number, trigger_source="rest",

last_row=last_row)↪→

387

388 last_mode[line_number] = mode

389 threading.Timer(MONITOR_INTERVAL, monitor).start()

390

391 monitor()

392

393

394 def _process_next_queue_item():

395 if not operation_queue.empty() and not measurement_lock.locked():

396 item = operation_queue.get()

397 if isinstance(item, tuple) and callable(item[1]):

398 _, task = item

399 threading.Thread(target=task).start()

400 else:

401 print(" Fout: ongeldige taak in wachtrij:", item)

402

403 def _queue_or_execute(priority, task):

404 if measurement_lock.locked():

405 operation_queue.put((priority, task))

406 print(f" Taak met prioriteit {priority} toegevoegd aan wachtrij.")

407 else:

408 threading.Thread(target=task).start()

409

410 def log_measurement(line_number, trigger=None, last_row=None):

411 if last_row is None:

412 print(f" Meting niet gelogd: geen last_row beschikbaar (lijn {line_number},

trigger: {trigger})")↪→

413 return

414

415 # Als het een pandas.Series is, omzetten

416 if hasattr(last_row, "to_dict"):

417 last_row = last_row.to_dict()

418

419 # Als het nog steeds geen geldig dict is: skippen

420 if not isinstance(last_row, dict) or not last_row.get("Ewe/V"):

421 print(f" Meting niet gelogd: last_row onvolledig of ongeldig (lijn

{line_number})")↪→

422 return

423

424 # Logbestand genereren per dag

425 date_str = datetime.now().strftime("%Y-%m-%d")
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426 logfile = os.path.join(os.path.dirname(__file__), f"log_automatic_{date_str}.csv")

427

428 now = datetime.now()

429 if LOG_START_TIME is not None:

430 elapsed = now - LOG_START_TIME

431 elapsed_str = str(timedelta(seconds=int(elapsed.total_seconds())))

432 else:

433 elapsed_str = ""

434

435 base = {

436 "timestamp": now.strftime("%Y-%m-%d %H:%M:%S"),

437 "elapsed": elapsed_str,

438 "line": line_number,

439 "trigger": trigger if trigger else "",

440 }

441

442 row = {**base, **last_row}

443

444 file_exists = os.path.isfile(logfile)

445 with open(logfile, "a", newline="") as f:

446 writer = csv.DictWriter(f, fieldnames=row.keys())

447 if not file_exists or os.path.getsize(logfile) == 0:

448 writer.writeheader()

449 writer.writerow(row)

450

451 def set_flow_rate(line_number, serial_port):

452 try:

453 rate = float(CONFIG.get("flow_rates", {}).get(str(line_number), 0.0))

454 voltage = (rate / 30.0) * 5.0

455 serial_port.write(f"FLOW {line_number} {voltage:.2f}\\n".encode())

456 print(f" Flow rate voor lijn {line_number}: {rate} ml/min → {voltage:.2f}V")

457 except Exception as e:

458 print(f" Flow rate instellen mislukt voor lijn {line_number}: {e}")

459

InterfaceMAIN.py

1 import customtkinter as ctk

2 from automaticUI import LineFrame

3 from manualUI import build_manual_tab

4 from visualUI import VisualUI

5 from tkinter import messagebox

6 from settings_popup import SettingsWindow

7

8

9 ctk.set_appearance_mode("dark")

10 ctk.set_default_color_theme("blue")

11

12

13 class InterfaceApp(ctk.CTk):

14

15

16 def __init__(self):

17 super().__init__()

18 self.geometry("1300x600")

19 self.title("Mass Spec Controller")

20 self._build_tabs()
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21 self._last_tab = self.tab_view.get()

22 self._poll_tab_change() # start check op tab-wissels

23

24 settings_btn = ctk.CTkButton(self, text=" Settings",

command=self._open_settings_window, width=80)↪→

25 settings_btn.place(relx=1.0, rely=0.0, anchor="ne", x=-20, y=20) #

rechtsboven↪→

26

27 def _build_tabs(self):

28 self.tab_view = ctk.CTkTabview(self, width=950, height=750)

29 self.tab_view.pack(padx=10, pady=10)

30

31 self.auto_tab = self.tab_view.add("Automatic")

32 self.manual_tab = self.tab_view.add("Manual")

33 self.visual_tab = self.tab_view.add("Visualisation")

34

35 self._build_auto_tab()

36 build_manual_tab(self.manual_tab)

37 self._build_visual_tab()

38

39 def _build_auto_tab(self):

40 scroll_frame = ctk.CTkScrollableFrame(self.auto_tab, width=1200, height=700)

41 scroll_frame.grid(row=0, column=0, padx=10, pady=10, sticky="nsew")

42

43 for i in range(1, 5):

44 lf = LineFrame(scroll_frame, line_number=i)

45 row = (i - 1) // 2

46 col = (i - 1) % 2

47 lf.grid(row=row, column=col, padx=10, pady=10, sticky="nsew")

48

49 scroll_frame.grid_columnconfigure((0, 1), weight=1)

50 scroll_frame.grid_rowconfigure((0, 1), weight=1)

51

52 def _build_visual_tab(self):

53 visual_ui = VisualUI(self.visual_tab)

54 visual_ui.pack(fill="both", expand=True, padx=20, pady=20)

55

56 def _open_settings_window(self):

57 SettingsWindow(self)

58

59 def _poll_tab_change(self):

60 current_tab = self.tab_view.get()

61 if current_tab != self._last_tab:

62

63 # Als we naar Manual gaan: waarschuwing

64 if current_tab == "Manual":

65 response = messagebox.askyesno(

66 title=" Manual Control",

67 message="Manual control can override automated operations.\nAre

you sure you want to continue?"↪→

68 )

69 if not response:

70 self.tab_view.set("Automatic")

71

72

73 elif current_tab == "Visualisation":

74 self._refresh_visual_tab()

75
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76 self._last_tab = self.tab_view.get()

77

78 self.after(200, self._poll_tab_change)

79

80 def _refresh_visual_tab(self):

81 for widget in self.visual_tab.winfo_children():

82 widget.destroy()

83 self._build_visual_tab()

84

85

86 if __name__ == "__main__":

87 app = InterfaceApp()

88 app.mainloop()

manualUI.py

1 import customtkinter as ctk

2 from manualLOGIC import toggle_valve_state

3 from outputs import VALVE_STATUS

4

5 # Voeg alle lijnen toe

6 VALVES = [

7 "V0",

8 "V1-A", "V1-B",

9 "V2-A", "V2-B",

10 "V3-A", "V3-B",

11 "V4-A", "V4-B"

12 ]

13

14 def build_manual_tab(tab):

15 positions = {

16 "V0": (0, 0),

17 "V1-A": (0, 1), "V1-B": (1, 1),

18 "V2-A": (0, 2), "V2-B": (1, 2),

19 "V3-A": (0, 3), "V3-B": (1, 3),

20 "V4-A": (0, 4), "V4-B": (1, 4),

21 }

22

23 widgets = {}

24

25 for valve in VALVES:

26 row, col = positions[valve]

27 color = "green" if VALVE_STATUS[valve] == "open" else "red"

28

29 btn = ctk.CTkButton(tab,

30 text=valve,

31 fg_color=color,

32 width=80,

33 height=50,

34 corner_radius=5,

35 command=lambda v=valve: update_valve(v, widgets))

36 btn.grid(row=row, column=col, padx=20, pady=20)

37 widgets[valve] = btn

38

39 def update_valve(valve_id, widgets):

40 toggle_valve_state(valve_id)

41 new_color = "green" if VALVE_STATUS[valve_id] == "open" else "red"
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42 widgets[valve_id].configure(fg_color=new_color)

automaticUI.py

1 import customtkinter as ctk

2 from tkinter import BooleanVar

3 from outputs import valve_is_open

4 from inputs import USER_PARAMETERS

5 from automaticLOGIC import start_automatic_process, stop_automatic_process # <- hier

toegevoegd↪→

6

7 class LineFrame(ctk.CTkFrame):

8 def __init__(self, master, line_number):

9 super().__init__(master)

10 self.line_number = line_number

11 self.active_var = BooleanVar(value=False) # standaard uit

12 self.configure(fg_color="#2b2b2b", corner_radius=10)

13 self._build_widgets()

14 self._start_valve_polling()

15 self._toggle() # <- voeg dit toe

16

17 def _start_valve_polling(self):

18 self._update_valve_visuals()

19 self.after(1000, self._start_valve_polling)

20

21 def _update_valve_visuals(self):

22 va = valve_is_open(f"V{self.line_number}-A")

23 vb = valve_is_open(f"V{self.line_number}-B")

24 self.valve_a.configure(fg_color="green" if va else "red")

25 self.valve_b.configure(fg_color="green" if vb else "red")

26

27 def _toggle_entry(self, bool_var, entry_widget, label_widget):

28 if bool_var.get():

29 label_widget.grid()

30 entry_widget.grid()

31 else:

32 label_widget.grid_remove()

33 entry_widget.grid_remove()

34

35 def _build_widgets(self):

36 self.columnconfigure((0, 1, 2, 3), weight=1)

37

38 toggle_frame = ctk.CTkFrame(self)

39 toggle_frame.grid(row=0, column=0, columnspan=4, sticky="w", padx=10, pady=5)

40 self.toggle = ctk.CTkSwitch(toggle_frame, text=f"Activate Line

{self.line_number}",↪→

41 variable=self.active_var, command=self._toggle)

42 self.toggle.pack(anchor="w")

43

44 ctk.CTkLabel(self, text=f"Line {self.line_number}", font=("Arial",

18)).grid(row=1, column=0, columnspan=4, pady=5)↪→

45

46 self.entries = {}

47 fields = ["Sample", "Purge after (min)", "For (min)", "Flow duration (min)"]

48 for i, field in enumerate(fields):

49 ctk.CTkLabel(self, text=field + ":").grid(row=2+i, column=0, sticky="w",

padx=10, pady=5)↪→
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50 self.entries[field] = ctk.CTkEntry(self, width=120)

51 self.entries[field].grid(row=2+i, column=1, sticky="w", pady=5)

52

53 self.time_trigger = BooleanVar()

54 self.voltage_trigger = BooleanVar()

55 self.halfcycle_trigger = BooleanVar()

56 self.cycle_trigger = BooleanVar()

57 self.rest_trigger = BooleanVar()

58

59 trigger_frame = ctk.CTkFrame(self)

60 trigger_frame.grid(row=8, column=0, columnspan=6, padx=10, pady=10,

sticky="ew")↪→

61 trigger_frame.grid_columnconfigure((0, 1, 2), weight=1)

62

63 ctk.CTkLabel(trigger_frame, text="Trigger Options", font=("Arial",

14)).grid(row=0, column=0, columnspan=3,↪→

64

sticky="w",

padx=10,

pady=(5,

10))

↪→

↪→

↪→

↪→

65

66 # Time trigger

67 self.trigger_time_entry = ctk.CTkEntry(trigger_frame, width=100)

68 self.trigger_time_entry.insert(0, "30")

69 self.time_label = ctk.CTkLabel(trigger_frame, text="Interval (s):")

70

71 time_cb = ctk.CTkCheckBox(trigger_frame, text="Enable time trigger",

variable=self.time_trigger,↪→

72 command=lambda:

self._toggle_entry(self.time_trigger,↪→

73

self.trigger_time_entry,↪→

74 self.time_label))

75 time_cb.grid(row=1, column=0, sticky="w", padx=10, pady=5)

76 self.time_label.grid(row=1, column=1, padx=10, pady=5)

77 self.trigger_time_entry.grid(row=1, column=2, pady=5)

78 self.time_label.grid_remove()

79 self.trigger_time_entry.grid_remove()

80

81 # Voltage trigger

82 self.trigger_voltage_entry = ctk.CTkEntry(trigger_frame, width=100)

83 self.trigger_voltage_entry.insert(0, "0.2")

84 self.voltage_label = ctk.CTkLabel(trigger_frame, text="Voltage (V):")

85 self.min_voltage_entry = ctk.CTkEntry(trigger_frame, width=100)

86 self.min_voltage_entry.insert(0, "2.0")

87 self.min_voltage_label = ctk.CTkLabel(trigger_frame, text="Min. voltage (V):")

88

89 self.max_voltage_entry = ctk.CTkEntry(trigger_frame, width=100)

90 self.max_voltage_entry.insert(0, "4.0")

91 self.max_voltage_label = ctk.CTkLabel(trigger_frame, text="Max. voltage (V):")

92 volt_cb = ctk.CTkCheckBox(trigger_frame, text="Enable voltage trigger",

variable=self.voltage_trigger,↪→

93 command=lambda: [

94 self._toggle_entry(self.voltage_trigger,

95

self.trigger_voltage_entry,↪→
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96

self.voltage_label),↪→

97

self._toggle_entry(self.voltage_trigger,self.min_voltage_entry,↪→

98

self.min_voltage_label),↪→

99

self._toggle_entry(self.voltage_trigger,self.max_voltage_entry,↪→

100

self.max_voltage_label)])↪→

101 volt_cb.grid(row=2, column=0, sticky="w", padx=10, pady=5)

102 self.voltage_label.grid(row=2, column=1, padx=10, pady=5)

103 self.trigger_voltage_entry.grid(row=2, column=2, pady=5)

104 self.min_voltage_label.grid(row=3, column=1, padx=10, pady=5)

105 self.min_voltage_entry.grid(row=3, column=2, pady=5)

106 self.max_voltage_label.grid(row=4, column=1, padx=10, pady=5)

107 self.max_voltage_entry.grid(row=4, column=2, pady=5)

108 self.voltage_label.grid_remove()

109 self.trigger_voltage_entry.grid_remove()

110 self.min_voltage_label.grid_remove()

111 self.min_voltage_entry.grid_remove()

112 self.max_voltage_label.grid_remove()

113 self.max_voltage_entry.grid_remove()

114

115 # Half-cycle (geen inputveld)

116 ctk.CTkCheckBox(trigger_frame, text="Enable half-cycle trigger",

variable=self.halfcycle_trigger).grid(row=3,↪→

117

column=0,↪→

118

sticky="w",↪→

119

padx=10,

pady=5)

↪→

↪→

120

121 # Cycle trigger

122 self.trigger_first_cycle_entry = ctk.CTkEntry(trigger_frame, width=100)

123 self.trigger_first_cycle_entry.insert(0, "2")

124 self.cycle_first_label = ctk.CTkLabel(trigger_frame, text="First after:")

125

126 self.trigger_every_cycle_entry = ctk.CTkEntry(trigger_frame, width=100)

127 self.trigger_every_cycle_entry.insert(0, "10")

128 self.cycle_every_label = ctk.CTkLabel(trigger_frame, text="Then every:")

129

130 cycle_cb = ctk.CTkCheckBox(trigger_frame, text="Enable cycle trigger",

variable=self.cycle_trigger,↪→

131 command=lambda: [

132 self._toggle_entry(self.cycle_trigger,

self.trigger_first_cycle_entry,↪→

133 self.cycle_first_label),

134 self._toggle_entry(self.cycle_trigger,

self.trigger_every_cycle_entry,↪→

135 self.cycle_every_label)])

136 cycle_cb.grid(row=4, column=0, sticky="w", padx=10, pady=5)

137

138 self.cycle_first_label.grid(row=5, column=1, padx=10, pady=5)

139 self.trigger_first_cycle_entry.grid(row=5, column=2, pady=5)

140
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141 self.cycle_every_label.grid(row=6, column=1, padx=10, pady=5)

142 self.trigger_every_cycle_entry.grid(row=6, column=2, pady=5)

143

144 self.cycle_first_label.grid_remove()

145 self.trigger_first_cycle_entry.grid_remove()

146 self.cycle_every_label.grid_remove()

147 self.trigger_every_cycle_entry.grid_remove()

148

149 rest_cb = ctk.CTkCheckBox(trigger_frame, text="Enable rest trigger",

variable=self.rest_trigger)↪→

150 rest_cb.grid(row=5, column=0, sticky="w", padx=10, pady=5)

151

152 status_frame = ctk.CTkFrame(self)

153 status_frame.grid(row=2, column=2, rowspan=3, padx=10, pady=5)

154

155 self.led = ctk.CTkLabel(status_frame, text="", font=("Arial", 32),

text_color="red")↪→

156 self.led.pack(pady=5)

157

158 self.valve_a = ctk.CTkLabel(status_frame, text=f"V{self.line_number}-A",

width=60, height=30, fg_color="red", corner_radius=6)↪→

159 self.valve_b = ctk.CTkLabel(status_frame, text=f"V{self.line_number}-B",

width=60, height=30, fg_color="red", corner_radius=6)↪→

160 self.valve_a.pack(pady=2)

161 self.valve_b.pack(pady=2)

162

163 self.warning = ctk.CTkLabel(self, text=" Please fill in all required fields.",

text_color="red")↪→

164 self.warning.grid(row=11, column=0, columnspan=2, pady=5)

165 self.warning.grid_remove()

166

167 # Start en Stop knoppen

168 ctk.CTkButton(self, text="Start Line", command=self._start).grid(row=12,

column=0, columnspan=4, pady=10,↪→

169 sticky="ew",

padx=150)↪→

170 ctk.CTkButton(self, text="End Line", command=self._stop,

fg_color="red").grid(row=13, column=0, columnspan=4,↪→

171

pady=5,

sticky="ew",

padx=150)

↪→

↪→

↪→

172

173 def _toggle(self):

174 state = "normal" if self.active_var.get() else "disabled"

175 color = "#2b2b2b" if self.active_var.get() else "#3a3a3a"

176 self.configure(fg_color=color)

177 for widget in self.winfo_children():

178 if widget not in [self.toggle.master, self.toggle]:

179 try:

180 widget.configure(state=state)

181 except:

182 pass

183

184 USER_PARAMETERS[self.line_number]["line_active"] = self.active_var.get()

185

186 def _start(self):

187 # Eerst triggers ophalen
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188 use_time = self.time_trigger.get()

189 use_voltage = self.voltage_trigger.get()

190 use_halfcycle = self.halfcycle_trigger.get()

191 use_cycle = self.cycle_trigger.get()

192 use_rest = self.rest_trigger.get()

193

194 # Controleer of minstens één trigger aangevinkt is

195 if not (use_time or use_voltage or use_halfcycle or use_cycle or use_rest):

196 self.warning.configure(text=" Please select at least one trigger.")

197 self.warning.grid()

198 self.led.configure(text_color="red")

199 return

200

201 # Bepaal dynamisch welke velden verplicht zijn

202 required_fields = ["Sample", "Purge after (min)", "For (min)", "Flow duration

(min)"]↪→

203

204 # Controleer of al die velden effectief ingevuld zijn

205 all_filled = all(self.entries[field].get() for field in required_fields)

206 if not all_filled:

207 self.warning.configure(text=" Please fill in all required fields.")

208 self.warning.grid()

209 self.led.configure(text_color="red")

210 return

211

212 # Alles is OK → parameters opslaan en lijn starten

213 self.warning.grid_remove()

214 self.led.configure(text_color="green")

215

216 params = USER_PARAMETERS[self.line_number]

217 params["sample"] = self.entries["Sample"].get()

218 params["purge_after"] = float(self.entries["Purge after (min)"].get())

219 params["purge_for"] = float(self.entries["For (min)"].get())

220 params["flow_duration"] = float(self.entries["Flow duration (min)"].get())

221 params["use_rest_trigger"] = use_rest

222

223 # Enkel als gebruikt → ophalen

224 if use_time:

225 params["trigger_time_interval"] = float(self.trigger_time_entry.get())

226 if use_voltage:

227 params["trigger_voltage_step"] = float(self.trigger_voltage_entry.get())

228 params["trigger_voltage_min"] = float(self.min_voltage_entry.get())

229 params["trigger_voltage_max"] = float(self.max_voltage_entry.get())

230

231 params["use_time_trigger"] = use_time

232 params["use_voltage_trigger"] = use_voltage

233 params["use_halfcycle_trigger"] = use_halfcycle

234 params["use_cycle_trigger"] = use_cycle

235 if use_cycle:

236 params["trigger_cycle_first_after"] =

int(self.trigger_first_cycle_entry.get())↪→

237 params["trigger_cycle_then_every"] =

int(self.trigger_every_cycle_entry.get())↪→

238

239 start_automatic_process(self.line_number)

240

241 def _stop(self):

242 # Stop de automatische logica
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243 stop_automatic_process(self.line_number)

244

245 # Zet LED terug op rood

246 self.led.configure(text_color="red")

247

248 # Reset alle parameters voor deze lijn

249 USER_PARAMETERS[self.line_number] = {}

250

251 # Wis alle invoervelden

252 for entry in self.entries.values():

253 entry.delete(0, "end")

254

255 # Zet alle checkboxes uit

256 self.time_trigger.set(False)

257 self.voltage_trigger.set(False)

258 self.halfcycle_trigger.set(False)

259 self.cycle_trigger.set(False)

260

261 # Eventuele waarschuwingen verbergen

262 self.warning.grid_remove()

263

visualUI.py

1 import customtkinter as ctk

2 from outputs import VALVE_STATUS

3 from inputs import USER_PARAMETERS

4

5 class VisualUI(ctk.CTkFrame):

6 def __init__(self, master):

7 super().__init__(master)

8 self.configure(fg_color="transparent")

9 self._build_layout()

10 self._update_colors()

11

12 def _build_layout(self):

13 self.grid_columnconfigure((0, 1, 2, 3, 4), weight=1)

14 self.grid_rowconfigure((0, 1), weight=1)

15

16 self.valves = {}

17

18 # Bypass altijd tonen

19 self.valves["V0"] = self._make_valve(0, 0, "V0")

20

21 # Dynamisch toevoegen per actieve lijn

22 col_offset = 1

23 for line in range(1, 5):

24 if USER_PARAMETERS[line].get("line_active", False):

25 self.valves[f"V{line}-A"] = self._make_valve(0, col_offset,

f"V{line}-A")↪→

26 self.valves[f"V{line}-B"] = self._make_valve(1, col_offset,

f"V{line}-B")↪→

27 col_offset += 1

28

29 def _make_valve(self, row, column, name):

30 valve = ctk.CTkLabel(

31 self,
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32 text=name,

33 width=80,

34 height=40,

35 corner_radius=6,

36 fg_color="grey",

37 text_color="white"

38 )

39 valve.grid(row=row, column=column, padx=30, pady=30)

40 return valve

41

42 def _update_colors(self):

43 for valve, widget in self.valves.items():

44 state = VALVE_STATUS.get(valve, "inactive")

45 if state == "open":

46 widget.configure(fg_color="green")

47 elif state == "closed":

48 widget.configure(fg_color="red")

49 else:

50 widget.configure(fg_color="grey")

51

52 # Herhaal elke seconde

53 self.after(1000, self._update_colors)

settingspopup.py

1 import customtkinter as ctk

2 import serial.tools.list_ports

3 import json

4 from inputs import CONFIG, reconnect_arduino, close_serial

5

6 class SettingsWindow(ctk.CTkToplevel):

7 def __init__(self, master=None):

8 super().__init__(master)

9 self.lift()

10 self.focus_force()

11 self.grab_set()

12 self.title("Instellingen")

13 self.geometry("500x900")

14 self.resizable(False, False)

15

16 ctk.CTkLabel(self, text="Arduino COM-port:", font=("Arial", 14)).pack(pady=10)

17 self.com_var = ctk.StringVar()

18 ports = [p.device for p in serial.tools.list_ports.comports()]

19 self.com_box = ctk.CTkComboBox(self, values=ports, variable=self.com_var,

width=300)↪→

20 self.com_box.pack()

21

22 ctk.CTkButton(self, text=" Reconnect Arduino",

command=self._reconnect_arduino).pack(pady=10)↪→

23 self.status_label = ctk.CTkLabel(self, text="", font=("Arial", 12))

24 self.status_label.pack(pady=2)

25

26 self.file_vars = {}

27 self.flow_vars = {}

28

29 for i in range(1, 5):
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30 ctk.CTkLabel(self, text=f"File path Line {i}:", font=("Arial",

12)).pack(pady=(15 if i==1 else 8, 2))↪→

31 file_var = ctk.StringVar()

32 ctk.CTkEntry(self, textvariable=file_var, width=400).pack()

33 self.file_vars[i] = file_var

34

35 ctk.CTkLabel(self, text=f"Flow Meter Rate Line {i} (ml/min):",

font=("Arial", 12)).pack(pady=(8, 2))↪→

36 flow_var = ctk.StringVar()

37 ctk.CTkEntry(self, textvariable=flow_var, width=100).pack()

38 self.flow_vars[i] = flow_var

39

40 ctk.CTkButton(self, text="Save Settings", command=self._save).pack(pady=20)

41 self._load_defaults()

42

43 def _load_defaults(self):

44 try:

45 with open("config.json", "r") as f:

46 config = json.load(f)

47 self.com_var.set(config.get("com_port", ""))

48

49 for i in range(1, 5):

50 self.file_vars[i].set(config.get("file_paths", {}).get(str(i), ""))

51 self.flow_vars[i].set(str(config.get("flow_rates", {}).get(str(i),

"")))↪→

52 except FileNotFoundError:

53 pass

54

55 def _save(self):

56 config = {

57 "com_port": self.com_var.get(),

58 "file_paths": {

59 str(i): self.file_vars[i].get().strip().strip('"').strip("'")

60 for i in range(1, 5)

61 },

62 "flow_rates": {

63 str(i): float(self.flow_vars[i].get()) if

self.flow_vars[i].get().strip() else 0.0↪→

64 for i in range(1, 5)

65 }

66 }

67

68 with open("config.json", "w") as f:

69 json.dump(config, f, indent=2)

70

71 CONFIG.update(config)

72 self.destroy()

73

74 def _reconnect_arduino(self):

75 close_serial()

76 CONFIG["com_port"] = self.com_var.get()

77 result = reconnect_arduino()

78 if result:

79 self.status_label.configure(text=" Verbinding geslaagd!",

text_color="green")↪→

80 else:

81 self.status_label.configure(text=" Geen verbinding mogelijk.",

text_color="red")↪→
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