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Abstract

Batteries are widely used in applications ranging from portable electronics to electric vehicles,

driving research into performance improvements. In batteries using liquid electrolyte, a critical

design parameter affecting performance is electrolyte distribution, or battery wetting. However,

non-destructive assessment of wetting remains challenging.

This thesis describes the design and construction of a low-cost ( €5,000) ultrasonic scanning tool,

specially suited for pouch-type batteries, for mapping battery wetting using 2 MHz ultrasound.

The prototype utilises two ultrasonic transducers driven by a custom PCB featuring amplifiers

and an Analogue to Digital Converter (ADC) for signal conversion. Digital control and processing

employ a multi-level architecture: A Field Programmable Gate Array (FPGA) handles high-

speed operations and parallel processing, a microcontroller manages low-level device control, and

a Raspberry Pi 5 serves as the central controller and user interface. Transducers are submerged in

a water or silicone oil bath for acoustic coupling and scanned linearly using a gantry repurposed

from a 3D printer.

While the current system performs linear scans and that way differentiates material types, it

does not perform an accurate full-area battery mapping due to unoptimised signal processing.

However, with further optimisation and iterative development, the system offers prospects for

cost-effective analysis of battery wetting.





Chapter 1

Introduction

1.1 Situation

In the past decades, battery technology has advanced substantially. With the commercialisation

of the lithium-ion battery in the early 90s, new applications were made possible. This revolu-

tionised portable electronics as this chemistry is able to store substantially more energy in a

smaller, lighter package than its predecessor, giving rise to laptops and smartphones. A signif-

icant challenge of the 21st century is the energy transition from carbon-based energy sources

towards more sustainable sources such as solar panels and wind turbines. The unreliable nature

of these energy sources invokes the need for energy storage solutions. Lithium ion technology

proves to be an effective way to store these amounts of energy. Another facet of the decarboni-

sation is the electrification of transport. Electric Vehicles (EVs) provide a renewable method of

transportation and also run off lithium ion technology. Future applications could be a revolution

of the aerial transport sector where projected higher capacity batteries could replace existing

fossil ones.

The functional principle of lithium ion batteries is the transfer of lithium ion charge carriers

between electrodes to store charge. Lithium Ion batteries follow the same construction principle of

most batteries, with each cell consisting of two electrodes, an anode, cathode and electrolyte and

a separator preventing electrical connection between electrodes. The electrodes are subsequently

connected to charge collectors which connect the chemistry to an electrical interface. The anode

is usually made of graphite and the cathode of different lithium oxides, defining their chemistry.

These oxides can be Lithium Cobalt Oxide (LiCoO2), Lithium Manganese Oxide (LiMn2O4) or

Lithium Iron Phosphate (LiFePO4). [2] The electrodes are porous so the lithium ion charge

carriers can insert and de-insert themselves. The pores consist of carbon with active material

attached to it. The lithium ions connect to the active material. This is then connected with a

binder polymer to the electrode. The electrolyte is added to fill the pores and have the minimum

required volume to make the battery work. The pores cause the electrolyte to have maximum

surface area with the electrode.

The electrolyte is the medium through which the lithium migrates. Since a battery covers a

surface, the electrolyte spread, or wetting, is different across the battery. These differences can

influence battery performance as they locally change the resistance. This leads to lower capacity

and locally higher temperatures, which lead to higher degradation and lower cyclability. There-



fore, knowledge of this distribution is useful in design as the effect of the amount of electrolyte

can be monitored. Electrolyte spread also is an indicator for battery age as gas forms with

cycling, displacing the electrolyte. [3]

Ultrasonic sound wave transmission responds to electrolyte density since the different materials

have different acoustic impedances. This causes a transmitted wave to attenuate based on the

material it passes. Furthermore, different materials have different transmission speeds. Which

means differentiation can be done based on time of flight.

A comprehensive method of using ultrasonic sounds to scan a battery can offer insight in the

wetting as Deng et al. demonstrated. [3] Therefore there is interest in research group for a device

capable of performing this type of scan. This thesis describes a method of constructing such a

machine.



Chapter 2

Literature study Ultrasonics

2.1 Introduction

Ultrasound technology has many different applications that range from measurement to imaging

and treatment. In order to produce these ultrasounds, a device is needed, called a transducer.

Fundamentally, an ultrasonic transducer is a component that converts one type of energy into

ultrasonic acoustic waves. This initial type of energy can be electric, but also optical and mechan-

ical. Electrical transducers are the most common because of the piezoelectric transducer which

is easy to make and implement. Furthermore, electrical transducers are versatile, as electrical

signals can be relatively easily manipulated, allowing for a wide range of applications. Trans-

ducers come in configurations for different purposes. There are different element configurations

such as single element, dual element, and phased arrays. Furthermore, there are also different

configurations for the ultrasonic carrier such as contact transducers to transfer the ultrasound to

solid materials and immersion transducers to transfer the ultrasound to liquids. [4][1]

2.2 Ultrasound

Ultrasound is acoustic waves with a frequency greater than 20 kHz [1]. This frequency is the

upper limit of human hearing and therefore is not audible. As ultrasound is an acoustic wave, it

needs a medium to propagate through. This is useful compared to electromagnetic waves, while

not needing a medium to propagate through, they are often blocked by certain materials, while

ultrasound can pass through with ease. Ultrasound also experiences reflection when the wave

propagates to another. Based on reflection/transmission behaviour, information can be obtained

about the composition of the material.

2.3 Generator materials

There are different types of ultrasonic transducers. For electric drivers you have piezoelectric,

electromagnetic and capacitative. Predominantly the first two. Furthermore there are optical

and mechanical transducer, however these are not applicable to this project due to the complexity

to make them work in this context.



2.3.1 Piezoelectric

Piezoelectric transducers use the piezoelectric effect to convert the electrical signal into ultra-

sound. The piezoelectric effect is a property that some materials posses that causes them to

generate an electrical signal whenever pressure is applied. It does this by applying pressure to

a polarised material. This causes the internal structure of the material to shift. In piezoelectric

materials this shift causes a dipole to be formed. This dipole is measurable as a voltage linear

to the pressure.

2.3.2 Electromagnetic

Electromagnetic transducers work based on inducing magnetic forces to bring forward a ultrasonic

wave. There are three types of sub-mechanisms that fall under this category. First the Lorentz

forces. These are forces that occur when a current flows under a magnetic field. The forces are

proportional to the current. By driving this current with specific frequencies, the Lorentz force

can generate an ultrasonic vibration bringing forth ultrasound. The second way is by bringing

a ferromagnetic material in an electromagnetic field. Due to different factors such as coil design

and the skin effect. Different levels of flux density exist which generate forces. The final one is

magnetostriction. Ferromagnetic materials can change form under a magnetic field. Change in

volume and length under a changing magnetic field can induce ultrasound proportional to the

changing magnetic field.

2.3.3 Piezoelectric Ceramics

Piezoelectric ceramics are mostly in the form of perovskites. These are materials with a chemical

structure of ABO3 with A and B being cations. The initial material was BaTiO3. This material

demonstrated its capabilities in generating a dipole. After new materials were discovered and

researched, most applications now use lead zirconate titanate (Pb(ZrxTi1–x )O3, 0 ≤ x ≤ 1)

(PZT) as it has the highest performance for practical applications. [4]

2.3.4 Piezoelectric Polymers

Piezoelectric polymers, such as Polyvinylidene fluoride (PVDF), offer a flexible alternative to

rigid ceramic transducers. While they exhibit a lower piezoelectric constant, making them less

suitable for high-power applications, their material properties provide distinct advantages. Key

benefits include mechanical flexibility, which enables conformal geometries; simplified processing

via methods like extrusion and nano-structuring; and low acoustic impedance, which improves

coupling with water or biological tissues. These characteristics also grant them superior biocom-

patibility, reducing the need for additional coatings. Consequently, piezoelectric polymers are

primarily employed in specialized applications including biomedical devices, energy harvesters,

and flexible sensors [5].

2.3.5 Piezoelectric Crystals

Crystals were the first type of piezoelectric material to be used, however it has been mostly

superseded by ceramics. However for specific applications they can be desirable. Such as high

temperature or for situations where chemical inertness is desirable.



2.3.6 Piezocomposites

In some cases there is a large acoustic mismatch between the transducer and the propagation

medium. To solve this a piezocomposite can be used. A piezocomposite is a material made with

ceramics or crystals with polymers sandwiched in a matrix shape. Allowing for customisation of

acoustic impedance. However it also has disadvantages in cost, complexity and certain charac-

teristics such as temperature resilience. Compromising the advantages of some of the constituent

piezoelectric materials.

2.4 Types of transducers

While the fundamental principle of a transducer stays the same, there are different methods on

how to transmit the ultrasound to the desired location. They can mainly be subdivided in two

types: The contact transducer and the immersion transducer.[6]

2.4.1 Contact transducer

Contact transducers make direct contact with the material to transmit the waves. This requires

the material to scan to be solid materials with simple geometries. They are coupled with a small

layer of couplant to ensure the waves permeate. They are often employed for fault inspection for

solid materials. They have different configurations in which they are made. [6]

Single element

A single element transducer is the simplest form of a transducer. It is a single homogeneous

generator material with complementary components to ensure encapsulation, sound transfer etc.

In terms of communication this is a single line. [6]

Dual element

A dual element transducer is essentially two single element transducers in a single housing. This

allows for separation of concerns and is often used in a dual line communication. One element

sending the signal and the other receiving it. [6]

Phased array

A phased array is a topology with a lot of single element transducer in one package. This allows

for electronic control of the beam and focal point. [6]

2.4.2 Immersion transducer

An immersion transducer is submerged in a medium that transfers the acoustic waves to the

desired object. The application is easier to do as once submerged it doesn’t need an additional

couplant for transmission. Furthermore, it can be focused to create a focal area, a focal point

in a spherical focus, and a line in a cylindrical focus. This allows for pinpointing the desired

evaluation area. [6] The focal point in a spherical focus can be defined with the following formula.



r0 =
0.61λ

NA
=

0.1λ

sinθ0

[1]

Where r0 is the focal point size, λ is the wavelength, NA is the numerical aperture and θ The

angle of the cone, See figure 2.1 for dimensions

Figure 2.1: Drawing illustrating the dimensions of a spherical focus beam [1]



Chapter 3

Requirements

3.1 General Idea

This project aims to visibly show the electrolyte wetting in a battery. This can be represented

with a two dimensional map showing the concentration of electrolyte. And do this at in a

cost-effective way.

3.2 Desired result

A digital design is preferred to interface with existing digital technologies and allow for further

processing of the data. This means the map will consist of discrete boxes with a value repre-

senting the concentration, we can define this visibly with a colour mapping the intensity to the

concentration.

Figure 3.1: Example of a battery scan, where the Red part on the left shows a low attenuation,
going from the red part on the left to the blue part on the right where the attenuation is the
greatest



3.3 Component specification

3.3.1 Transducer specification

To measure these spots, an ultrasonic transducer is required. This ultrasonic transducer should

be able to focus its beam to a focal point, with the scan diameter being 0.385 mm. The transducer

also needs to be driven with enough power to stay above the noise floor, even at scanning spots

with high attenuation. They also need to be of the immersion type, to be able to submerge them

in a acoustically conducting liquid.

3.3.2 Analogue electronics specification

The transducers need to be driven with an electronic assembly. This electronic assembly should

be able to drive the transducers within their specification regarding noise, voltage and frequency.

On the other hand, the PCB needs to serve as a bridge between the analogue transducers and the

digital upstream hardware whose final destination is the display. Specifically, it needs to be able

to amplify a 2 MHz signal at a logic voltage such as 3.3 V or 5 V to a desired voltage, ensuring the

signal stays above the noise floor. The receiving system should be able to handle a wide range of

return voltages, ranging from almost no attenuation (good wetting) or a lot of attenuation (bad

wetting). Then it should convert this into a digital signal to be read by upstream hardware.

3.3.3 Digital electronics specification

The upstream digital hardware should consist of components capable of handling the high fre-

quency signals. It should also provide a control loop to drive the PCB components and make

the scans function. It should also provide room for possible additional signal conditioning to

get a clear results. The results should be two fold, the first being an analogue measurement of

the attenuation, the second should be a time of flight measurement which should the time it

takes between sending a signal and receiving it back through the loop. At this stage, the IO

interface of this piece of hardware should be able to input a position to measure and the output

should be a measurement together with a positional argument or a timestamp to aid in position

determination.

3.3.4 Immersion container

The transducers require a liquid medium for the acoustic waves to permeate through. This

container should have enough submerged space to house the transducers, batteries and additional

supporting pieces to ensure movement. It also requires a system to hold the batteries in place

and the optimal position for scanning. It should also have a means of viewing the contents in

order to visibly check the optimal working of the system and aid in potential debugging. Since

this component will be dealing with a volume of liquid, potentially being of greater weight, a

adequate support structure should be provided.

3.3.5 Movement system

A suitable movement system should be used that can move the transducers to different spots

on the battery to perform the scan. Since the image is in two dimensions, The system will



require the same dimensions of movement. The transducers will be submerged in the immersion

container, so the system needs to be able to move within the container.

3.3.6 Controller

The final digital controller stage should be able to drive all the downstream components. This

includes driving the movement system as well as driving the electronics subsystem. This means

it needs the software tools available as well as the correct hardware to interface with the systems.

It should also contain the means to receive inputs and send outputs. This can be in the form of

connections to peripheral devices such as monitors and keyboard/mouse inputs.

The controller also needs to host the software displaying the wetting map. To increase usability

it should also have methods to control the display and manipulate the data to give maximum

insight into the measurements. This can be in the form of defining display ranges in value or in

dimension of the measurement. Beside that, it should have inputs to control the machine. The

inputs should be an abstracted method of the underlying operation of the machine, i.e. a button

to do the full scan. Lastly it should have a method of exporting the data and move it from the

machine to another computer for processing, analysing or using the data.





Chapter 4

Methods

The methods will describe the components used and the motivation for choosing them as well as

comparisons.

This chapter will detail the choice of components and their rationale. This is done by defining

the requirements for the components in both at a micro level, such as specific requirements and

a macro scale, such as total costs and time constraints.

4.1 Transducers

Ultrasonic transducers constitute the core measurement components, requiring careful selection

due to their specialized nature, significant cost (€1200/unit), and extended procurement lead

times.

An online search resulted in two companies. Imasonic and Waygate Technologies. Waygate

Technologies was chosen due to them providing more information regarding the working principle

for the specific transducers. As well as providing detailed information on the practical aspects,

such as the connector type.

Two transducers of the model Waygate Krautkrämer H 2 K were used. One for sending, one

for receiving. They have a nominal centre frequency of 2 MHz, though the specific units used

measured at 2.16 MHz and 2.18 MHz. and a 25 mm focal point distance. They can be driven

with voltages from 0 V to the magnitude of 100 V. They are the most expensive component

(1200€ per piece). With these transducers the distance between them should be 50 mm, because

it needs two times the focal point distance: send → focal point → receive.

Now we calculate the wavelength using the frequency and the speed of sound in water. [7]

λ =
vwater

f
=

1481 m/s

2000000 Hz
= 0.000741 m = 741 um

Then we can calculate the angle θ using the element diameter D with radius relement and focal

distance d.

θ = tan(
relement

dfocus
) = tan(

25 mm

5 mm
) = 1.3734 rad



Finally we can calculate the focal resolution.

r0 =
0.61× 0.000741 m

sin(1.3734 rad)
= 0.000461 m

The pixel size can be defined as this value. Since the maximum battery size is defined at 100

mm by 100 mm, the total size of the image is 100 mm / 0.461 mm = 217 (216.92). resulting in

a final image resolution of 217 x 217 pixels (47,089 pixels total).

Figure 4.1: Image showing the H 2 K probe.

4.2 Mini Computer

4.2.1 Architecture

A mini computer architecture was selected to optimize device compactness, portability, and cost-

efficiency compared to traditional PC solutions. This approach requires essential functionalities

including display output, peripheral interfaces, and versatile data I/O capabilities. Critical

requirements include:

• Support for synchronous communication protocols (SPI, UART) with downstream hard-

ware

• Sufficient processing power for display rendering and real-time data processing

• Compact form factor with standard connectivity options

• Cost-effective single-board computer (SBC) implementation

• Linux OS environment for simplified driver management, native hardware access, and re-

duced software complexity compared to Windows-based solutions



The Raspberry Pi 5 (8GB RAM variant) running Linux fulfils these requirements while providing

enhanced performance over previous generations, with the Linux ecosystem offering superior

support for embedded interfaces and development tools.

Figure 4.2: Image showing Raspberry Pi 5.

Raspberry Pi 5 Specifications [8]

The selected platform features:

• I/O Interfaces:

– Video: 2× micro HDMI (dual 4Kp60 support)

– USB: 2× USB 2.0, 2× USB 3.0

– Expansion: 40-pin GPIO header

– Camera/Display: 2× 22-pin CSI/DSI connectors

– PCIe: ×1 and ×4 interfaces via FFC connector

• Connectivity:

– Gigabit Ethernet with PoE+ support

– Dual-band 802.11ac Wi-Fi (2.4/5 GHz)

– Bluetooth 5.0/BLE

• Power:

– USB-C (5V/5A) with peripheral current limit (600 mA)

– PWM fan connector

• Storage: microSD card slot (for Linux OS boot)

• Miscellaneous:



– Dedicated UART connector

– RTC battery connector

BCM2712 System-on-Chip [9]

The Broadcom BCM2712 (16nm process) delivers 2–3× performance uplift over Raspberry Pi 4:

• CPU:

– Quad-core Arm® Cortex®-A76 @ 2.4 GHz (ARMv8-A ISA)

– Cache: 64 KB I/D per core, 512KB L2/core, 2 MB shared L3

• Memory: 32-bit LPDDR4X interface (17 GB/s bandwidth)

• Graphics:

– VideoCore® VII GPU (1 GHz)

– OpenGL ES 3.1, Vulkan 1.3 support

• Video Processing:

– 4Kp60 HEVC hardware decoder

– Raspberry Pi ISP (1 gigapixel/sec throughput)

– Hardware video scaler

• Display Pipeline: Dual 4Kp60 HDMI controllers

• I/O Management: PCIe interfaces for RP1 south bridge integration

• Linux Compatibility: Full driver support for all hardware features

4.3 System-on-Chip Platform Selection

4.3.1 System-on-Chip Architecture

To process high-frequency signals (2 MHz pulses) from the transducers, a high-speed sampling

system is required. Conventional microcontrollers were initially considered but deemed unsuitable

due to limitations in sampling rates (typically ≤10 MSPS) and software-dependent latency. An

FPGA-based solution with an external analogue-to-digital converter (ADC) was selected for

its advantages in parallel processing, hardware programmability, and deterministic timing. To

maintain cost efficiency and leverage the designer’s expertise, the TUL Pynq-Z2 development

board featuring the Xilinx Zynq XC7Z020-1CLG400C SoC was adopted. This platform

integrates FPGA flexibility with ARM processor versatility, enabling both high-speed signal

processing and streamlined communication with upstream systems. Development tools include

AMD Vivado™ and Vitis™ (no-cost licenses).

Pynq-Z2 Hardware Specifications

The Pynq-Z2 board provides the following resources:



Figure 4.3: The Pynq-Z2 System on Chip development board

• Memory: 512 MB DDR3 RAM (16-bit bus @ 1050 Mbps), 16 MB Quad-SPI flash.

• Storage: MicroSD card interface.

• Power: 7–15 V DC input or USB 5 V.

• Connectivity:

– Micro-USB with JTAG/UART bridge and USB 2.0 OTG PHY.

– Dual HDMI input/output ports.

– Audio: 24-bit I2S DAC (TRRS jack), line-in 3.5 mm jack.

• User I/O: 4 push buttons, 2 slide switches, 4 green LEDs, 2 RGB LEDs.

• Expansion: 2 PMOD ports, Arduino-compatible header, Raspberry Pi connector.

[10]

Zynq XC7Z020-1CLG400C SoC

The Zynq architecture combines programmable logic and processing subsystems:

• Processing System (PS): Dual-core ARM® Cortex®-A9 CPU @ 650 MHz.

• Programmable Logic (PL):

– 13,300 logic slices (each with four 6-input LUTs, eight flip-flops).

– 220 DSP slices for arithmetic acceleration.

– 630 kB block RAM for on-chip data storage.

• Integrated Peripherals: Xilinx analogue-to-Digital Converter (XADC) for auxiliary

measurements.

[10]



4.4 PCB and electronic design

4.4.1 general overview

The PCB serves three functions.

1. Convert the input power (12 V) to a stable voltage for components (5 V)

2. make sure the signal sent from the Pynq-Z2 is amplified and buffered for the sending

transducer

3. Receive the signal from the receiving transducer, amplify it and output it as an 8 bit digital

signal to be read by the Pynq-Z2

Power conversion

The power is converted using a monolithic buck converter IC that steps down to voltage from 12

V to 5V.

Sending circuit

The signal received from the Pynq-Z2 is buffered using an OPAMP, ESD protected and then

high pass filtered using a single capacitor NP0 100F capacitor before being sent to the sending

transducer.

Receiving circuit

The receiving function starts with the signal from the receiving transducer. It firsts gets chopped

at 5V to prevent high voltages from damaging the downstream components. Then it is band pass

filtered to extract the signal. Then it is fed in the VGA to get the signal as best as possible within

1.024 V. This is done by setting the gain using a DAC which is controlled over the SPI protocol

from the Pynq-Z2. The amplified signal is then low pass filtered to filter out the high frequency

switching noise. Then it is level shifted so the differential signal has 900 mV as common mode

voltage which is required by the ADC where the signal is read and converted to an 8 bit parallel

digital output.

4.4.2 Variable Gain Amplifier

Component parameters

The project employs a variable gain amplifier as a means to selectively amplify the signal. It

is created by chaining a low noise amplifier (LNA) with a selective attenuator. It has a gain

resolution of 10 mV. and an amplification ranging from -4.5 dB to +43.5 dB in LO gain mode. It

features active input impedance matching and a 3dB cut-off at 100 MHz. In terms of noise, the

low noise preamplifier has a voltage noise of 0.74 nV/
√
Hz and current noise of 2.5 pA/

√
Hz.

[11]

Implementation

The input signal is first chopped off at 5 V by the bidirectional diode D1 to ensure the voltage

doesn’t exceed the IC maximum input voltage. The signal is subsequently filtered by C1 and



Figure 4.4: Image of the VGA in schematic view

FB1 before entering the VGA. The impedance matching is set to 75 Ω to match the transducer

impedance. It is done by connecting C2 and R1 between the signal input and the low noise

amplifier output and connecting C3 between signal input and ground. C2 is chosen to be as a

decoupling capacitor at 100 nF. R1 and C3 are chosen according to table 7 in the data sheet. [11]

C7 and C8 are 100 nF connect the LNA to the attenuator and implement DC filtering. The gain

voltage comes from the Digital to Analogue Converter (DAC) and is decoupled for stability. LMD

is decoupled to ground per specification, and enable and ground pins are connected to 5 V and

ground respectively. The 5 V input voltage is filtered and decoupled before being fed to the VGA.

The HILO pin is set to low to operate in the LO amplification mode. The RCLMP is connected

to a 2.74 kΩ resistor as shown in Data sheet Table 8 to clamp the voltage at 1.0 V peak-to-peak

to protect the Analogue to Digital Converter (ADC). VCM can provide a common mode input

voltage between 1.5 V and 3.5 V. This is too high for the ADC, therefore the functionality is not

used by bypassing it to ground with a 100 nF capacitor.

4.4.3 Digital to Analogue converter

Component parameters

The LTC2640CTS8-LM8 is an 8 bit Digital to Analogue Converter driven via an SPI interface.

It has a 2.5 V 10 ppm/°C output range. It has an operating voltage range of 2.7 V to 5.5 V.

A maximum integral nonlinearity of 0.5 LSB. By power on, the voltage level at power up is at

mid-scale.

Implementation

The implementation requires little external components. The SPI connection pins are wired to J3

which interface with the Pynq. The output is fed to the VGA. It uses a precise voltage reference

in the form of an ADR510 1.0V. Which requires a single additional current limiting resistance to

enforce the voltage division. [12]

4.4.4 Level shifter

Component parameters

The AD8138 is a differential ADC driver. It is a type of amplifier that can be used in single-ended

or differential mode. it has a -3 dB bandwith of 320 Mhz and a low input noise of 5nV/
√
Hz. It



Figure 4.5: Image of the DAC in schematic view

has the property of shifting the voltage by applying the desired shifting voltage to the component.

Implementation

Figure 4.6: Image of the differential filters, level shifter and 900 mV voltage divider in schematic
view

The differential input from the VGA is first filtered for high frequency switching noise using

ferrite beads, parallel with 100 Ω resistors then it is fed through the level shifter where 2 times

2 resistors with a value if 470±0.1% Ω to give it an amplification value of 1. 900 mV from a

resistive divider is fed to VOCM to set the level shift value. The output is fed to the ADC.

4.4.5 Analogue to digital converter

Component parameters

The project employs the Analog Devices AD9283BRS-100, an 8-bit resolution analogue-to-digital

converter (ADC) operating at 100 MSPS. The monolithic IC integrates an on-chip track-and-hold

amplifier and voltage reference, minimizing external components. It operates from a single 3.0 V

supply (range: 2.7–3.6 V) with 90 mW typical power dissipation at full sampling rate, reducible

to 4.2 mW in power-down mode. The device accepts differential or single-ended analogue inputs

biased at 0.3 × VDVD (900 mV at VD = 3.0 V), with a 1.024 V peak-to-peak input range and

475 MHz bandwidth. Dynamic performance includes a 46.5 dB SNR and 7.3 effective number of

bits at 10.3 MHz. Digital outputs use offset binary coding with a four-cycle pipeline latency and

interface natively with 2.5 V or 3.3 V TTL/CMOS logic. Housed in a 20-lead SSOP package,

the ADC is rated for industrial environments (–40°C to +85°C) [13].



Implementation

Figure 4.7: Image of the ADC in schematic view

Figure 4.7 details the implementation of the AD9283BRS-100 ADC (IC7). The device utilizes

separate analogue (VD, Pins 5/8) and digital (VDD, Pin 15) 3.0 V supplies, each decoupled with

100 nF capacitors to mitigate high-frequency noise and maintain power integrity. Grounding

of the PWRDWN pin (Pin 1) ensures continuous operation as power draw is not an important

parameter. The internal 1.25 V reference is enabled by coupling VREF OUT (Pin 2) to VREF IN

(Pin 3), bypassed with a 100 nF capacitor per design specification. Digital outputs (D0–D7)

interface with the Pynq-Z2 through connector J2, adhering to /CMOS standards. The encode

clock (Pin 10), driven by the Pynq-Z2 via J3.

4.4.6 Power management

Component parameters

The power management is driven by an AP63205 synchronous buck converter that converts the

12 V input voltage to 5 V main power voltage. This IC can handle an input voltage of 3.8 V to

32 V and can provide a 2 A continuous current. It has a 0.8 V internal reference voltage at 1%

accuracy. [14]

The 3 V power for the ADC is provided by a TPS7A2030 linear regulator. It has an input voltage

range of 1.6 V to 6.0 V. This variant has a fixed output voltage of 3.0 V. It has a Low output

voltage noise of 7 µVRMS and requires no noise bypass capacitor. [15]

Step down

Since the power supply from the CNC will be running on 24 V and we need 12 V for the

components. A monolithic stepdown converter is used, converting 24 V into 12 V.

4.4.7 PCB layers and planes

The PCB is made out of four layers: a power layer, a ground layer, a signal layer and another

ground layer. The layers are chosen so that the top two can provide power and ground anywhere

on the board independent from routing. The two final layers are to give a clean signal layer and

encase it around two zero reference ground planes.



Figure 4.8: Image showing the PCB stackup

4.5 3D printer/CNC

To perform a scan, the sensors need to be moved over each virtual point on the 3D printer. The

position also need to be logged to be attached to the measured value. This requires a precision

assembly, in the form of a Computer Numeric Control (CNC). To cut down on development time,

a ready product was chosen, a 3D printer of the type Prusa Mini. By not implementing one axis

we have the required 2 dimensions of movement. This option for an off the shelf component was

chosen to simplify design. This machine is within constraints of movement 100 mm by 100 mm.

The model is open source, this translates to the hardware, control PCB and firmware to be freely

availiable. This allows for easy development and modification of the printer. The Prusa Mini is

partially constructed with 3D printed parts out of PLA.

4.5.1 PRUSA MINI Description

A 3D printer is a device that can print in 3D, it does this by using a gantry to move a printing

head which extrudes molten material and solidifies it in place. This allows it to construct shapes

in three dimensional space. The gantry is build with three axes driven by stepper motors.

The control is precise and electronically driven. The software control for the device is based

around G-code which is a set of command the machine needs to execute. The can range from

configuration commands to movement commands where it needs to move to a specific place in

three-dimensional space.

The PRUSA MINI is a 3D printer model by PRUSA Research. It has a build volume of 180 mm

by 180 mm by 180 mm. As well as a USB port and RJ45 Ethernet port for connectivity. [16]

The printer includes a 24 V 150 W power supply. [17] The heatbed itself is rated at 85 W, as

shown in figure 4.9 It uses a PRUSA BUDDY MINI Board, which comes flashed with the open

source firmware. [18] This firmware allow for G code commands over USB Serial connections.

4.5.2 Modification

Since the printer will be used as a CNC slave, it will not use the normal operating modes of a

3D printer and needs to be modified.



Figure 4.9: Image showing the heatbed power rating

Part removal

The 3D printer has unnecessary parts for our applications. Therefore the following components

will be removed

• The extruder assembly: located on the X-axis is the assembly which extrudes the filament

in 3D printer operation. Since this functionality is not used, all components are removed

except for the connecting piece, which will later complement the transducer holder.

• The Y-axis: The application requires two dimensions of movement, a third one included

in the printer is unnecessary. The Y-axis was removed as the X-axis and Z-axis are on an

arm that can be put in a container for measurement. Which makes them more useful to

remain.

Since the heat bed will not be used, there is 85 Watts of power available for the other components

of the machine.

Part Addition

Parts were added to the 3D printer assembly in place of the extruder assembly to attach the

transducers. Three different parts were added. The connecting piece and the spacers were 3D

printed in PLA and the support arms are laser cut acrylic glass.

• The connecting piece: This piece connects to the original component connecting to the

X-axis and belt. The end result gave an equal distance from the centre X-axis rods

• The spacers: The spacers are put on both sides of the connection assembly to act as physical

and structural extensions for the arms to have proper distances so the transducers can be

put at the correct distance from each other. They are printed from PLA.

• The Arms: These are components that extend the connection to deeper in the basin where

the transducers are submerged. They are made out of acrylic glass to ensure rigidity as

PLA proved to be too pliable. They also have two reinforcements each for both parts of

the shape. One set of reinforcements was left out through unintentional omission.

G code

Since there is a Serial port over which the a master device can communicate with a slave, G code

can be put directly in the printer. The G code commands are transferred as a string in a UART



communication at 115200 BAUD speed. The following commands are used to control the 3D

printer

• G28: this command resets the axis by trying to reach the highest value on the X-axis and

lowest value on the Z-axis. These points are defined as (X,Z) (0,0).

• G0 Xx Zz: this command instructs the machine to move to the desired position of x X and

z Z.

• M220 Sx: this command sets the speed with x being the percentage of the maximum speed

4.6 Basin

Since the transducers need to be submerged in a liquid for their acoustic waves to transmit, a

container capable of holding the liquid, as well as be attached to the rest of the CNC assembly.

Furthermore it houses a battery holder assembly, consisting of two plates with a window. The

battery can be put in the window and the wrapping can be sandwiched between the plates and

screwed tight. The plates have rests attached to them that can rest on top of the basin, leaving

the battery hanging submerged. This assembly allows for easy battery replacement.

4.6.1 Design

The design is a box with an internal dimensions of 300 mm by 300 mm by 120 mm. The material

used is acrylic glass to allow for visual inspection of the measurement. It gives information on

the current position of the transducers as well as the position of the battery in the holder. By

the nature of laser cutting manufacturing, the basin and battery holder were cut in a flat piece

of acrylic. Afterwards the pieces had to be glued together to form the 3D shape. This was

done using hard plastic glue. To aid with structural integrity a teethed construction was used

to maximise connection area on which glue can be applied. Afterwards the basin was sealed

waterproof with silicon sealant.

4.6.2 Liquid

The transmissive liquid was chosen to be water and 10 cSt silicon oil. Firstly the water was used

for testing and early measurements. Since water is easy to procure and dispose of. Afterwards

silicon oil was used because of it inert properties and proven functionality [3], making it safer to

use with lithium based battery chemistries

4.6.3 CNC attachment

To fix the basin to the CNC, and make sure it is aligned, a supporting piece was 3D printed.

This piece can slot directly into the CNC assembly on one side, levelling it with the top of the

CNC basis. On the other side two feet support the basin, bringing it also level with the rest of

the construction. Finally a border around the basin is included in this attachment. This allows

for the attachment to be put in place and the basin simply to be slotted in the attachment to

attach it well to the rest of the machine.



4.7 Software and HDL

The software/HDL is the code used to program the Raspberry Pi and Pynq-Z2. The Pi uses

python as a high level and library rich language to achieve good results with less effort compared

to lower level languages. This comes at a cost of less fast code, but the Pi has enough processing

power to make this point irrelevant. The Pynq uses two languages for programming, C is used

to program the Processor and VHDL is used to program the FPGA. The choice for C over vitis

HLS is mainly due to the designer being more familiar with the language. The same applies for

VHDL on the FPGA where it was chosen over the language Verilog due to the designer being

more familiar with it. Each level of code provides an abstracting of the functionality i.e. each

functionality is intended to be limited to its inputs and outputs.

4.7.1 Raspberry Pi

The raspberry pi uses Raspberry pi OS, which is a fork of the Linux distribution Debian. Debian

is a verson of linux, called a distribution or distro, that is known for its well tested packages

(pieces of software) and stability. The downside for this is that newer features take longer to

be released. Raspberry Pi OS however has custom packages for the Pi ecosystem and has the

necessary features for this application.

The Raspberry Pi was programmed using the language Python. Its design handles three main

topics. User input, user output and back end

User input

The user input handles the controls for the machine. Such as scan start, scan type setting, but

also the interaction with the output map and file exporting.

User output

The user output mainly handles the view of the battery map. This is in both the analogue values

and the time of flight measurement. It also needs to allow for zooming and elaboration on points,

such as its value and position.

Back end

The back end controls the CNC assembly and reads from the Pynq-Z2. It initiates serial connec-

tions with both the devices over USB. Then when a scan is started, it will give the appropriate

G code commands to the CNC. It can scan in continuous mode or intermittent. For speed con-

tinuous mode is preferred, but intermittent is more straightforward to implement. In continuous

a single command is issued to scan a line. During this, the Pynq-Z2 will be sampled at constant

intervals. By knowing the time of movement of the sensor head and the timestamps from the

measurement, it can be linked back to the position of the measurement. This requires careful

tuning. For that reason, intermittent scans were implemented first. Here a single unit of x mm

is moved then it is scanned. This loop is repeated. While it gives a more straightforward result,

the CNC is slower to do this movement as it needs time to process the command each time,

introducing latency. During the scan and after it is completed, a 2D map of the results can be



plotted to the front end. The scan is saved in a data structure which can be easily exported to

a csv file or image file.

4.7.2 SoC FPGA design in VHDL

The FPGA design interacts directly with the PCB, it is completely digital and therefore works

with the digital connections on the PCB. It can be divided in three parts. The ADC driving,

the pulse driving and the VGA gain control driving. The design at the highest level is a block

design connecting all the relevant block abstractions.

Figure 4.10: The high level block design for the FPGA. The left shows the processing system
with its outputs on the right. It also shows the AXI connection to the ADC reader core 0 block
with the helper blocks rst PSY7 0 and axi smc. It also shows xslice blocks which split the GPIO
vector for output and for feeding it into the pulser 0 block.

Processing system (PS)

The processing system (PS) is the implementation of the virtual block that connects the processor

to the programmable logic in the FPGA. It mainly allows for controlling output clocks and

peripheral IO.

For clock outputs it has two.

• FCLK CLK0 at 100 Mhz to generate the clocking signal for the AXI peripherals as well as

the clock signal for the ADC.

• FCLK CLK1 at 2 Mhz to supply the correct frequency to the pulser to generate the 2 Mhz

pulses

It has multiple (used) outputs

• GPIO: these are for controlling the pulser and as a chip select



– GPIO0: Chip select, this replaces the chip select from SPI since the DAC requires an

active low signal, which the Xilinx driver does not supply upstream

– GPIO1: This signal starts a pulse run by activating the pulser block.

• SPI 1: This output connects directly to the DAC and allows the processor to drive it

directly, the Chip select pin is externally controlled by the GPIO

• IIC 0: This is the I2C output, which is intended to be used by the raspberry pi to read the

processed data from the processor.

• M AXI GP0: this connects the PS to the ADC reader block, allowing it to read the values

directly as Memory Mapped IO.

It has more outputs, but these are mostly generated by the design software itself and provide

no functional value to the design. It also generated reset and clocking signals for the AXI

communication.

ADC driving

The ADC driving can be split in input and output. An output for the encode pin, making the

ADC sample. This is internally connected to the system clock, making the device sample con-

stantly. This is because the input is constantly reading. The input is an 8 bit vector representing

the analogue voltage at the ADC input in a range of 0 V to 1.024 V.

The ADC reader consists of a state machine with three states: Idle, Expecting and Reading.

• Idle: This is the neutral state where there is no internal process happening. In this state

the calculated data is already in the output registers. The data is thus deemed good to be

read, and an according flag is set to signal it. This state is entered when the reading state

goes into timeout.

• Expecting: This state is changed to when in idle and a signal that a pulse is sent is received

from the MCU. In this state the timer for the Time of Flight data is started.

• Reading: This state is entered when during the expecting state, a signal is detected by the

ADC. This stops the Time of Flight counter and starts reading the signal on the ADC and

extracting the amplitude of the signal. This data together with the Time of Flight duration

is put in the output registers. When no more signal is received, the state switches after a

timeout back to Idle.

The values read by the ADC are filtered for any noise by using a simple moving average filter

with a window size of 9 point.

The output registers can be read by the processor via a custom AXI block using the AXI lite

interface. This allows the registers to be read as Memory Mapped IO. There are four registers

serving different purposes, including data and debug. There are four registers in total:

1. The measured amplitude of the signal

2. The Time of Flight measurement

3. zeros prefix before current state and read ok signal

4. alternating 0 and 1 for 24 units as a debug state, followed by the current 8 bit ADC value.



Figure 4.11: Flowchart illustrating the state machine of the ADC reader HDL design

Pulser

In order to send the pulses to the transducers in a controlled manner a subcircuit is made. This

subcircuit connects the clock to the output for ten pulses if a signal is applied. It waits until it

is low to reset itself to prevent looping if the signal application is slower than the ten pulses at

a combined duration of 5 µs. The external signal is provided by a GPIO from the processing

system.

4.7.3 SoC processor design

The processor host the C code which mainly abstracts the low level functions of the FPGA to

a value-timestamp format. In its function it drives the FPGA functions. The functions can be

subdivided into three parts:

• Pulse driving: using a GPIO to start a pulse train.

• SPI gain control: Set the DAC using SPI to set the VGA gain

• Read the ADC reader block: read the three registers mentioned above to get the analogue

value and the TOF value. As well as reading the read ok flag. Besides those, it can read

debug data such as current state and raw ADC value.

Reading

A read is typically performed by setting the gain value followed by a pulse, followed by a read.

In the demo code, the read ok flag was not read, since the delay between CPU instructions is

greater than the reading action.

Since the read value is tied to the amplification a formula can be used to calculate the ”absolute”

value.

Uabs = Uadc/GAIN

Since the value read on the ADC is already amplified, the value read does not correspond the the

true value. By in software dividing this value by the gain set, the actual voltage at the transducer

output is calculated.



This mechanism allows the machine to read a large range of voltages using lower range hardware.

Because of this effect, and the fact that the amplification change is subtle between gain steps.

The demo code tries to find the moment the analogue voltage is 200 (combining to about 288

mV) and using the set amplification as a baseline measure value.

Auto search algorithm

To look for the amplification value at 200 ADC out, a searching algorithm had to be used. Binary

search was implemented to look for the optimal value. This binary search featured beside the

algorithm itself, a sample reduction when it was close to its value, as well as a hard stop at 30

searches, to ensure timely handling of the measurement.

Filtering

Also on this level filtering was done at first a filter was employed by taking samples, ordering

them and taking the average of the 33% middle values. This improved measurement consistency

due to the significant signal noise.

The first algorithm used was bubble sort. However since this was an O(n²) sorting algorithm, a

processing overhead became dominant, especially at higher sample sizes. This was subsequently

replaced with an algorithm found on an online repository that fixed the overhead.





Chapter 5

Results

5.1 measurement

The measurement is not at an accuracy level yet where battery scanning can be done. It has a

drift over its range and posses significant noise. It can however differentiate between different

materials. It can differentiate between acrylic glass, water and aluminium.

Figure 5.1: graph returning the measured results. The x axis shows the measurement in an
asynchronous measuring loop. The y axis show the amplification needed for the ADC to read a
value of 200.

Figure 5.1 shows the scan with multiple different artifacts. First the signal varies peak to peak

in a single material at 10 amplification points. It peaks around material transitions. Note near

the end of the scan the value at the acrylic glass is lower. Figure 5.2 Shows the picture of the

setup where a line is scanned from right to left, and the result corresponds with the results on

figure 5.1.



Figure 5.2: Image of the scan setup

5.2 machine

The machine itself has been built and can achieve a linear scan and differentiate between materials

with different attenuation values. The design itself has some shortcomings on the implementation.

This improvements will also be described in this section as well as potential improvements.

Figure 5.3: Full image showing the CNC with the basin and arm structure holding the trans-
ducers. The basin is filled with water. On the right is the 24 V to 12 V step down converter,
followed by the PCB and the Pynq-Z2. The Raspberry Pi is absent from the picture.

5.2.1 Transducers

The transducers work as expected, they can send and receive a 2 MHz signal and can be attached

successfully with LEMO connectors.



5.2.2 Mini Computer

The Raspberry pi 5 works as intended and can drive the devices by accessing the connections on

the Serial Port.

5.2.3 System on Chip

The system on chip works within specification. All connections can be made successfully. The

FPGA uses only a small fraction of its resources, with 95% of its logic slices remaining. Specifi-

cally, it uses 2.02% of slice LUTs, 0.01% of LUT as RAM, 0.90% of slice registers and 16% of IO

paths.

Figure 5.4: Table and graph showing the resource utilisation on the FPGA. It shows the slice
LUTs (LUT), LUT as RAM (LUTRAM), slice registers (FF) and used IO paths (IO). This is
generated in Vivado

The MCU uses a negligible amount of memory.

5.2.4 PCB design

Figure 5.5: The final PCB, with debug wires and fixes

The PCB design works as intended. The power conversion works, outputting a stable 5 V from a

12 V input signal. The sending signal loop was modified by removing the ESD protection diode

D2. Due to the diode not switching fast enough to pass the 2 MHz signal. The receiving signal

worked as well, the signal got amplified and read in the ADC, the DAC signal was controllable

via SPI but it only a written value of 0 to 100 changed the voltage. The DAC did initially not



respond, the cause was that PIN8 was connected to ground. By connecting it to 5V, the DAC

worked as intended.

Figure 5.6: Oscilloscope image showing the DAC voltage (yellow) and pulses after being amplified
by the VGA (blue). It shows the connection between the set GAIN voltage and the output, as
the higher the DAC voltage, the higher the amplification on the output values. The DAC value
was incremented with 10, corresponding to 100 mV steps, between a value of 0 and 100

The PCB was connected to the SoC using two male 12 pin connectors on the PCB, connecting

to the two PMOD ports on the side of the SoC.

Figure 5.7: Image showing the PMOD connection between the PYNQ-Z2 and the PCB

5.2.5 3D printer/CNC

The 3D printer was successfully hacked and could be driven using the G code. There was a

processing delay between commands. Causing the commands to have a minimum spacing of

500 ms. The modification was also successful as the unnecessary parts were removed and the

connecting parts were attached to the extruder assembly. The standard firmware was used.

5.2.6 Basin

The basin was successfully constructed, the initial cutout was 200 µm too large and had to be

filed down to fit. The watertight seal was successfully applied. The CNC attachment was 3D

printed and required some filing to fit in the CNC assembly. It was printed in four parts to fit

on the printer and were screwed together. The basin fits tightly in the attachment. The battery

holder can be inserted under an angle, if the X-axis is moved all the way up. The basin was filled

with water.



Figure 5.8: Image showing the basin

5.2.7 HDL and Software

The software was developed as a minimal viable product for demonstration purposes. It has

more room for improvement in accuracy, robustness and user quality.

Raspberry Pi 5

The Raspberry pi Software consists of a single python file, performing a single fixed scan. It

connects to the Pynq-Z2 and the CNC via serial connection. It then recalibrates the CNC and

puts it in its starting position. It then performs the scan by either moving it in pulsed scanning,

or a single continuous scan. the results then gets plotted.

Pynq-Z2 - FPGA

The software on the Pynq-Z2 FPGA was adequate and read the results at a desired speed. The

accuracy of the scan was unstable however. with deviations on same point between scans ranging

for 5 points.

Pynq-Z2 - MCU

The MCU software worked to drive everything and get the desired results from the FPGA stage.

The timing however, is unstable. The search algorithm isn’t efficient, as accurate measurements

can take multiple cycles of 300 sample size scans. This combined could bring the time per scan

up to 60ms.





Chapter 6

Discussion

While the project achieved a goal, it leaves room for a lot of improvements.

6.1 Mechanical

The mechanical aspect was not satisfactory. It had an amount of wobble which negatively

impacted the scan. Furthermore, it introduced an error near the far end of the scan as seen in

figure 5.1 illustrating the difference between the first part of acrylic glass and the last part.

With these issues and the ones discussed below, the 3D printer and the laser cut part do not

provide the accuracy necessary to do accurate scans. A complete redesign of the mechanical part

would solve these issues. As a structurally more rigid gantry can be provided as well as code

specifically designed for this application.

6.1.1 Transducer fixation

The transducer is fixed in place using an M3 screw which tightens it to the hole in the arm.

This method has large tolerances and this negatively impacts the scans. It is possible to change

the angle at which the transducers are positioned. By changing the alignment, the focal point

changes and the point of measurement is unknown, voiding the data. This can be fixed by adding

a second set of arms to enforce the alignment. Because of the large tolerances the transducers

weren’t exactly parallel, which also causes signal loss. In this case, the read spot should be the

focal point of the sending transducer.

6.1.2 3D printer full range

The full range of the 3D printer was not reached. This was an error caused by the extended

margins of the arms and battery holder, causing the top part of the window in the battery holder

to be unreachable. This is not necessarily a problem for smaller batteries as they can be position

lower, still within the scannable area.

6.2 Electronics

While the electronics performed a full read cycle, there are areas of improvement.
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6.2.1 First PCB design

The PCB design was functional as intended besides two points, the ESD protection diode D2

and the wrongly connected pin 8 of the DAC. It also lacked output pins for 5 V.

6.2.2 Transducer driving voltage

In this implementation, the transducers are driven at 3.3 V. This was chosen mainly due to a

lack of clarity on what voltage should be used, as well as having a preliminary method to get

some result out of the PCB before the deadline. This proved to be insufficient and caused the

received signal to be low and requiring a higher level of amplification to work. This causes two

problems: First, the signal is closer to the noise floor and other environmental noise. This also

gets amplified and causes the need for more aggressive filtering. Secondly The measurement

range is smaller, as a neutral reading at theoretical maximum received signal is read at 60%

amplification. This leaves half of the amplification potential unused. Since 24 V is available this

should boost the voltage by about 7 times or an improvement equivalent to 17 dB.

Another potential improvement would be to lift the voltage beyond 24 V. This can be done using

a boost converter, and can lift the voltage to higher voltages such as in the 100 V range. Which

would generate an even stronger signal. Precaution should be taken, however, that in case of

good transmission that the power should not exceed the protection on D1. Which is defined by

a maximum current of 1.8 A over a period of 8/20µs [19].

6.2.3 filtering

Filtering was introduced on datasheet recommendation. However, they were not tested if they

actually influenced the measurements. Since the signal has quite some noise, this could be a

source, or lack of adequate functioning, of these filters. Therefore, testing the filters at different

frequencies and if they actually filter the items should be done.

6.2.4 Power supply input voltage

The 5 V power supply input voltage is 12 V, while the input voltage from the 3D printer is 24

V. At first this was done to power the Pynq of 12 V, however it can also be powered from 5 V.

Therefore the step-down converter from 24 V to 12 V is unnecessary and could be removed by

feeding the converter directly with 24 V. Since the controller IC is monolithic and has a higher

input voltage, this should work without any adjustments to the design.

6.2.5 PCB general connections

The first PCB revealed shortcomings in operation. It was not clear when the PCB was on due

to the lack of status indicator LEDs. These can easily be added with an LED and resistor on

the 12/24 V trace and on the 5 V trace. There is also no output for the generated 5 V to the

Raspberry Pi and the Pynq. Therefore terminals should be applied. The Raspberry Pi 5 is

recommended to be used with a 27 W power supply over the Power Delivery (PD) protocol. [8]

This implies it could draw this wattage and the buck converter should be able to provide this.

For the final connection to the Pi, a higher power target as well as a PD negotiation IC should



be provided for full power operation. However, since the demands of the control software aren’t

as intense. It should be able to run on a lower power target.

6.3 Software

The software did not meet end product specifications and beside implementing the remainder of

the functionality some optimisations could already be done.

6.3.1 Pynq-Z2 to Raspberry Pi connection

The connection over USB between the Pynq-Z2 and Raspberry Pi is unstable as it disconnects

often. A connection over I2C would be better and more predictable.

6.3.2 Search algorithm optimisation

The search algorithm was implemented in a simple manner to meet a demo stage. It was not

optimal and used too much time to calculate. Multiple optimisations can be implemented to

improve the performance.

Binary search replacement

While binary search is a very simple search, it is rather inefficient. In the implementation it

took samples and checked if they were above or under the 200 ADC value mark. But since the

read value and amplification combination is a representation of the real value, it can be used

as a heuristic to calculate the optimal amplification where the resolution is highest. This would

besides increasing speed, reduce the scans per value read to two.

Amplitude extraction improvement

The method to extract the amplitude is to make a moving average filter and taking the maximum

value. This method however, is prone to noise. While the moving average filter should take out

transients, it also reduces the read amplitude, decreasing the maximum reading accuracy. A point

not addressed by this filter is the fact that noise with a constant frequency can be introduced

and this can be superimposed on the original signal. A way to solve this is using a Fast Fourier

Transform. Xilinx provides an IP called the XFFT to perform this. It was briefly considered to

be implemented but it was not made functional within time. This should fix most issues of noise

on the measured signal as it provides a more robust method of amplitude extraction. Another

method could be to provide a band pass filter before the ADC stage to only let the MHz signal

pass.

Time of Flight debugging

A time of flight measurement was implemented and worked when simulating the ADC reader

block. However, the MCU could not receive a valid reading after each scan despite the ADC

value being read. This was not further explored due to time constraint. In case this is debugged,

it can provide a second source of wetting data.



Sorting in hardware

The sorting algorithm was implemented in software on the MCU, but this takes away processing

time that can be used for further scans to increase accuracy. Since an FPGA is also used, the

sorting algorithm could be moved to hardware and by using parallelism and hardware sorting

algorithms. The sorting speed could be greatly accelerated. To implement this. The same

procedure of the ADC reader block can be used. By making a custom AXI block and putting all

the data in there to get the result. This could be even more optimised by also doing the selection

and averaging in hardware or even modifying the ADC reader block to make a direct pipe into

the filter.



Chapter 7

Conclusion

The machine demonstrated minimum capabilities by scanning a straight line and differentiating

materials. This proves the machine is capable of handling the ultrasonic scanning loop. Consist-

ing of sending a pulse, amplifying it, receiving it, amplifying it again and reading it. Then taking

this data and using it in combination with movement from the gantry to make a plot taking all

the different parameters into account.

Despite these achievements, the device did not meet the expected goal of scanning a battery and

mapping the battery wetting. Besides the minor improvements the main issue is accuracy. The

accuracy can be subdivided in two types: The positional accuracy and the signal accuracy.

The positional accuracy entails the accuracy of the gantry to move correctly to a position as

well as the rigidity of the entire setup to accurately transfer the position intended by the stepper

motors to the transducers.

The signal accuracy is a more complex accuracy issue as it is an accumulation of noise through

different components. First the signal generated from the FPGA gets amplified before being

looped through the transducer setup where it gets attenuated. Then it gets amplified again

and level shifted before being read by the ADC where we receive the noisy digital signal. Then

different stages of hardware filtering and software filtering are applied to get a final value for the

position.

Addressing these issues would improve the performance of the machine and make it more likely

to perform the battery scan. Therefore this platform provides a basis to iterate on to construct

a functional automatic battery electrolyte scanner.
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Appendix A

Attachment - Controller software

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Fri Jul 25 16:37:28 2025

5

6 @author: bram

7 """

8

9 import serial

10 import time

11 import re

12 import matplotlib.pyplot as plt

13

14 def ser3D_write(string):

15 ser3D.write(( string + "\r\n").encode ())

16

17 def get_ADC ():

18 # Define regex pattern to match ’power: <number >’

19 pattern = rb’power:\s*(\d+)’ # r for raw string , b for bytes pattern

20 matches = []

21 # wait until valid string

22 while len(matches) == 0:

23 data = serADC.read_all ()

24 time.sleep (0.01)

25 data = serADC.readline ()

26 print(data)

27 matches = re.findall(pattern , data)

28 return matches [0]

29

30 def pulsed_scan ():

31 values = []

32 # move and scan in loop

33 for x in range (180, 63, -1):

34 ser3D_write("G0 X" + str(x))

35 time.sleep (0.5)

36 values.append(int(get_ADC ()))

37 print(get_ADC ())

38 print(x)

39 return values

40



41 def running_scan ():

42 values = []

43 #start move and scan 200 times during movement

44 ser3D_write("G0 X64")

45 for x in range (0 ,200):

46 ser3D_write("G0 X" + str(x))

47 time.sleep (0.5)

48 values.append(int(get_ADC ()))

49 print(get_ADC ())

50 print(x)

51 return values

52

53

54 ser3D = serial.Serial(’/dev/ttyACM0 ’, 115200);

55 print(ser3D.name)

56

57 serADC = serial.Serial(’/dev/ttyUSB1 ’, 115200);

58 print(serADC.name)

59

60 # reset axes and set into neutral position

61 ser3D_write("G28")

62 time.sleep (10)

63 ser3D_write("G0 X180 Y0 Z20")

64 ser3D_write("M220 S20")

65 time.sleep (4)

66

67 # perform scan

68 values = pulsed_scan ()

69

70 # plot result

71 plt.figure ()

72 plt.plot(values)

73 plt.ylim(min(values), max(values)) # Set y-axis limits to min/max values

74 plt.title("ADC Readings")

75 plt.xlabel("Measurement Index")

76 plt.ylabel("ADC Value")

77 plt.show()

78

79 ser3D.close ()

80 serADC.close()

Listing A.1: Controller code for Raspberry Pi

1

2 /* **************************** Include Files ********************************

*/

3

4 #include "xparameters.h" /* EDK generated parameters */

5 #include "xspips.h" /* SPI device driver */

6 #include "xil_printf.h"

7 #include "sleep.h"

8 #include "xgpiops.h"

9 #include <xil_types.h>

10 #include "xiltimer.h"

11 //#include <cstdint >

12



13 /* ************************* Constant Definitions ****************************

*/

14

15 /*

16 * The following constants map to the XPAR parameters created in the

17 * xparameters.h file. They are defined here such that a user can easily

18 * change all the needed parameters in one place.

19 */

20

21 #define SPI_DEVICE_ID XPAR_XSPIPS_0_DEVICE_ID

22 #define GPIO_DEVICE_ID XPAR_XGPIOPS_0_BASEADDR

23

24

25

26 /*

27 * The following constant defines the chip select value used to select

28 * the device on the SPI bus. This value corresponds to the slave select

29 * signal , which is typically connected to the chip select (CS) pin of the

device.

30 */

31 #define VGA_SPI_SELECT 0x01

32

33 // Define the connection pins for the SPI interface

34 #define CS_PIN 54 // Chip Select pin

35 #define CLK_PIN 55 // Clock pin

36

37 // Delay define

38 #define GENERAL_DELAY 100000 //us

39

40 // Array size for the filter

41 #define ARRAY_SIZE 250

42

43 /* **************** Macros (Inline Functions) Definitions ********************

*/

44

45 /* ************************* Function Prototypes *****************************

*/

46

47

48 void SPIWrite(XSpiPs *SpiPtr , u16 Address , u8 ByteCount ,

49 EepromBuffer Buffer);

50

51

52 int StartSPI(XSpiPs *SpiInstancePtr , UINTPTR BaseAddress);

53

54 void DAC_write(u8 value);

55

56 void launch_pulse ();

57

58 void print_ADC_memory ();

59

60 void bubbleSort(int arr[], int n);

61 void mySort(int arr[], int n);

62

63 int auto_search(int amp , int power , int depth);



64

65 float array_read(int size);

66

67 /* ************************* Variable Definitions ****************************

*/

68

69 /*

70 * The instances to support the device drivers are global such that the

71 * are initialized to zero each time the program runs. They could be local

72 * but should at least be static so they are zeroed.

73 */

74 static XSpiPs SpiInstance;

75 static XGpioPs Gpio; /* The driver instance for GPIO Device. */

76

77

78 /* ***************************************************************************

*/

79 /**

80 *

81 * Main function to call the Spi example.

82 *

83 *

84 * @return XST_SUCCESS if successful , otherwise XST_FAILURE.

85 *

86 * @note None

87 *

88 *****************************************************************************

*/

89 int main(void)

90 {

91 int Status;

92 int DelayCount = 0;

93 XGpioPs_Config *ConfigPtr;

94

95

96 xil_printf("SPI EEPROM Polled Mode Example Test \r\n");

97

98 // init gpio

99 ConfigPtr = XGpioPs_LookupConfig(GPIO_DEVICE_ID);

100

101 Status = XGpioPs_CfgInitialize (&Gpio , ConfigPtr ,

102 ConfigPtr ->BaseAddr);

103 if (Status != XST_SUCCESS) {

104 return XST_FAILURE;

105 }

106 //cs

107 XGpioPs_SetDirectionPin (&Gpio , CS_PIN , 1);

108 XGpioPs_SetOutputEnablePin (&Gpio , CS_PIN , 1);

109 XGpioPs_WritePin (&Gpio , CS_PIN , 1);

110 //clk

111 XGpioPs_SetDirectionPin (&Gpio , CLK_PIN , 1);

112 XGpioPs_SetOutputEnablePin (&Gpio , CLK_PIN , 1);

113

114

115 /*



116 * Run the Spi Interrupt example.

117 */

118

119 Status = StartSPI (& SpiInstance , XPAR_XSPIPS_0_BASEADDR);

120 if (Status != XST_SUCCESS) {

121 xil_printf("SPI EEPROM Polled Mode Example Test Failed\r\n");

122 return XST_FAILURE;

123 }

124 u8 buf = 100;

125 //u32 debug_read = *( volatile u32*)(XPAR_ADC_READER_CORE_0_HIGHADDR - 3);

126 print_ADC_memory ();

127 int loop_nr = 1;

128 u32 time_sum = 0;

129 while (1){

130 auto_search (50, 50, 0);

131 usleep (10);

132 }

133

134 xil_printf("Successfully ran SPI EEPROM Polled Mode Example Test\r\n");

135 return XST_SUCCESS;

136 }

137

138 void DAC_write(u8 value){

139 //data starts at cs low and is executed at cs high

140 // 00110000 xxxxxxxx00000000cc

141 u8 data [3];

142 data [0] = 0 | 0b0011 << 4;

143 data [1] = 0 | value;

144 data [2] = 0;

145 XGpioPs_WritePin (&Gpio , CS_PIN , 0);

146 XSpiPs_PolledTransfer (& SpiInstance , &data , NULL , 3);

147 XGpioPs_WritePin (&Gpio , CS_PIN , 1);

148 }

149

150 void launch_pulse (){

151 XGpioPs_WritePin (&Gpio , CLK_PIN , 1);

152 // usleep(GENERAL_DELAY);

153 XGpioPs_WritePin (&Gpio , CLK_PIN , 0);

154 usleep (5);

155 }

156

157 void print_ADC_memory (){

158 xil_printf("debug0: %d\r\n", *( volatile u32*)(

XPAR_ADC_READER_CORE_0_BASEADDR));

159 xil_printf("debug1: %d\r\n", *( volatile u32*)(

XPAR_ADC_READER_CORE_0_BASEADDR + 4));

160 xil_printf("debug2: %d\r\n", *( volatile u32*)(

XPAR_ADC_READER_CORE_0_BASEADDR + 8));

161 if((*( volatile u32*)(XPAR_ADC_READER_CORE_0_BASEADDR + 8) & 6) == 6){

162 xil_printf("reading\r\n");

163 }

164 else if ((*( volatile u32*)(XPAR_ADC_READER_CORE_0_BASEADDR + 8) & 6) == 4)

{

165 xil_printf("expecting\r\n");

166 }



167 else if ((*( volatile u32*)(XPAR_ADC_READER_CORE_0_BASEADDR + 8) & 6) == 2)

{

168 xil_printf("idle ********\r\n");

169 }

170 xil_printf("debug3: %X\r\n", *( volatile u32*)(

XPAR_ADC_READER_CORE_0_BASEADDR + 12));

171 xil_printf(" ------------------------------\r\n");

172 }

173

174 //https :// www.geeksforgeeks.org/c/c-program -to -sort -an -array -in -ascending -

order/

175 void bubbleSort(int arr[], int n) {

176 for (int i = 0; i < n - 1; i++) {

177 for (int j = 0; j < n - i - 1; j++) {

178 if (arr[j] > arr[j + 1]) {

179 int temp = arr[j];

180 arr[j] = arr[j + 1];

181 arr[j + 1] = temp;

182 }

183 }

184 }

185 }

186

187 void mySort(int arr[], int n) {

188 if (n <= 1) return;

189

190 #define INSERTION_THRESHOLD 20

191 #define MAX_STACK_SIZE 300

192

193 int stack[MAX_STACK_SIZE ];

194 int top = -1;

195

196 stack [++top] = 0;

197 stack [++top] = n - 1;

198

199 while (top >= 0) {

200 int high = stack[top --];

201 int low = stack[top --];

202 int size = high - low + 1;

203

204 // Use Insertion Sort for small subarrays

205 if (size <= INSERTION_THRESHOLD) {

206 for (int i = low + 1; i <= high; i++) {

207 int key = arr[i];

208 int j = i - 1;

209 while (j >= low && arr[j] > key) {

210 arr[j + 1] = arr[j];

211 j--;

212 }

213 arr[j + 1] = key;

214 }

215 continue;

216 }

217

218 // Median -of -Three pivot selection



219 int mid = low + (high - low) / 2;

220 int pivotIndex;

221 if ((arr[low] <= arr[mid] && arr[mid] <= arr[high]) ||

222 (arr[high] <= arr[mid] && arr[mid] <= arr[low])) {

223 pivotIndex = mid;

224 } else if ((arr[mid] <= arr[low] && arr[low] <= arr[high]) ||

225 (arr[high] <= arr[low] && arr[low] <= arr[mid])) {

226 pivotIndex = low;

227 } else {

228 pivotIndex = high;

229 }

230

231 // Swap pivot to end

232 int temp = arr[pivotIndex ];

233 arr[pivotIndex] = arr[high];

234 arr[high] = temp;

235

236 // Lomuto partition

237 int pivot = arr[high];

238 int i = low - 1;

239 for (int j = low; j < high; j++) {

240 if (arr[j] <= pivot) {

241 i++;

242 int temp = arr[i];

243 arr[i] = arr[j];

244 arr[j] = temp;

245 }

246 }

247 // Place pivot in correct position

248 int temp2 = arr[i + 1];

249 arr[i + 1] = arr[high];

250 arr[high] = temp2;

251 int p = i + 1;

252

253 // Push subarrays onto stack

254 if (p - 1 > low) {

255 stack [++top] = low;

256 stack [++top] = p - 1;

257 }

258 if (p + 1 < high) {

259 stack [++top] = p + 1;

260 stack [++top] = high;

261 }

262 }

263

264 #undef INSERTION_THRESHOLD

265 #undef MAX_STACK_SIZE

266 }

267

268 int auto_search(int amp , int power , int depth){

269 if(power <= 1){

270 power = 1;

271 depth ++;

272 }

273 if(depth == 30){



274 // auto_search (50, 50, 0);

275 return 0;

276 }

277 // xil_printf ("%d\r\n", amp);

278 DAC_write(amp);

279 float read;

280 if(power > 1){

281 read = array_read (10);

282 }

283 else {

284 read = array_read(ARRAY_SIZE);

285 }

286 if(read > 190 && read < 210 && power == 1){

287 xil_printf("read: %d, power: %d\r\n", (int) read , amp);

288 }

289 else if(read > 200){

290 auto_search(amp - power , power/2, depth);

291 }

292 else {

293 auto_search(amp + power , power/2, depth);

294 }

295 return 0;

296 }

297

298 float array_read(int size){

299 float read = 0;

300 float array[size];

301 for(int i = 0; i < size; i++){

302 array[i] = 0;

303 }

304 for(int i = 0; i < size; i++){

305 launch_pulse ();

306 array[i] = *( volatile u32*)(XPAR_ADC_READER_CORE_0_BASEADDR);

307 }

308 mySort(array ,size);

309 for(int i = 0; i < size /3; i++){

310 read += array [(size /3) + 1];

311 }

312 return read/(size /3.0);

313 }

314 /* ***************************************************************************

*/

315 /**

316 *

317 * The purpose of this function is to illustrate how to use the XSpiPs

318 * device driver in polled mode. This test writes and reads data from a

319 * serial EEPROM. The serial EEPROM part must be present in the hardware

320 * to use this example.

321 *

322 * @param SpiInstancePtr is a pointer to the Spi Instance.

323 * @param SpiDeviceId is the Device Id of Spi.

324 *

325 * @return XST_SUCCESS if successful else XST_FAILURE.

326 *

327 * @note



328 *

329 * This function calls functions which contain loops that may be infinite

330 * if interrupts are not working such that it may not return. If the device

331 * slave select is not correct and the device is not responding on bus it will

332 * read a status of 0xFF for the status register as the bus is pulled up.

333 *

334 ****************************************************************************

*/

335

336 int StartSPI(XSpiPs *SpiInstancePtr , UINTPTR BaseAddress)

337 {

338 int Status;

339 XSpiPs_Config *SpiConfig;

340

341 /*

342 * Initialize the SPI driver so that it’s ready to use

343 */

344 SpiConfig = XSpiPs_LookupConfig(BaseAddress);

345

346 if (NULL == SpiConfig) {

347 return XST_FAILURE;

348 }

349

350 Status = XSpiPs_CfgInitialize(SpiInstancePtr , SpiConfig ,

351 SpiConfig ->BaseAddress);

352 if (Status != XST_SUCCESS) {

353 return XST_FAILURE;

354 }

355

356 /*

357 * Perform a self -test to check hardware build

358 */

359 Status = XSpiPs_SelfTest(SpiInstancePtr);

360 if (Status != XST_SUCCESS) {

361 return XST_FAILURE;

362 }

363

364 /*

365 * Set the Spi device as a master. External loopback is required.

366 */

367 XSpiPs_SetOptions(SpiInstancePtr , XSPIPS_MASTER_OPTION |

368 XSPIPS_FORCE_SSELECT_OPTION);

369

370 XSpiPs_SetClkPrescaler(SpiInstancePtr , XSPIPS_CLK_PRESCALE_64);

371

372

373 /*

374 * Assert the VGA chip select

375 */

376 XSpiPs_SetSlaveSelect(SpiInstancePtr , VGA_SPI_SELECT);

377

378

379 return XST_SUCCESS;

380 }

Listing A.2: MCU code



1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3

4 -- Uncomment the following library declaration if using

5 -- arithmetic functions with Signed or Unsigned values

6 use IEEE.NUMERIC_STD.ALL;

7

8 -- Uncomment the following library declaration if instantiating

9 -- any Xilinx leaf cells in this code.

10 --library UNISIM;

11 --use UNISIM.VComponents.all;

12

13 entity ADC_reader is

14 Port (

15 adc_in : in std_logic_vector (7 downto 0);

16 clk : in std_logic;

17 pulse : in std_logic;

18 reset : in std_logic;

19

20 encode : out std_logic;

21 amplitude : out std_logic_vector (31 downto 0);

22 TOF : out std_logic_vector (31 downto 0);

23 read_ok : out std_logic

24

25 );

26 end ADC_reader;

27

28 architecture Behavioral of ADC_reader is

29

30

31 -- state machine

32 type state_machine_type is (idle , expecting , reading);

33 signal state_machine : state_machine_type := idle;

34

35 signal value_read : std_logic_vector (7 downto 0) ;

36 signal highest_val : integer;

37

38 signal counter : integer;

39 signal tof_int : integer;

40

41 signal pulse_sent : std_logic;

42 signal ADC_non_zero : std_logic;

43 signal time_out : integer;

44

45 signal reset_done : std_logic;

46

47 --type lag_array_type is array (0 to 2) of std_logic_vector (31 downto 0);

48 --signal lag_array : lag_array_type;

49 --signal lag_array_index : integer;

50 begin

51

52 -- conversions for output

53 TOF <= std_logic_vector(to_unsigned(tof_int - 4, 32));

54 amplitude <= std_logic_vector(to_unsigned(highest_val , 32));

55 encode <= clk;



56

57

58 -- state machine

59 STATE_PROC: process(clk , reset)

60 begin

61 if reset = ’1’ then

62 state_machine <= idle;

63 counter <= 0;

64 read_ok <= ’0’;

65 tof_int <= 4;

66 elsif rising_edge(clk) then

67 -- change states on conditions

68 if ADC_non_zero = ’1’ then

69 state_machine <= reading;

70 elsif pulse_sent = ’1’ then

71 state_machine <= expecting;

72 else

73 state_machine <= idle;

74 end if;

75 -- state specific condition , usually resets for continuity

76 case state_machine is

77 when idle =>

78 counter <= 0;

79 read_ok <= ’1’;

80 when expecting =>

81 tof_int <= 0;

82 counter <= counter + 1;

83 read_ok <= ’0’;

84 when reading =>

85 tof_int <= counter;

86 read_ok <= ’0’;

87 end case;

88 end if;

89 end process;

90

91 -- detect pulse & latch

92 PULSE_LATCH_PROC: process(pulse , reset , clk)

93 begin

94 if reset = ’1’ then

95 pulse_sent <= ’0’;

96 elsif rising_edge(pulse) then

97 pulse_sent <= ’1’;

98 elsif rising_edge(clk) then

99 if state_machine = reading then

100 pulse_sent <= ’0’;

101 end if;

102 end if;

103 end process;

104

105 -- convert to read ADC

106 CONVERT_PROC: process(clk , reset)

107 begin

108 if reset = ’1’ then

109 value_read <= "10000000";

110 highest_val <= 0;



111 ADC_non_zero <= ’0’;

112 time_out <= 0;

113 reset_done <= ’0’;

114 --lag_array_index <= 0;

115 --lag_array (0) <= "00000000000000000000000000000000";

116 --lag_array (1) <= "00000000000000000000000000000000";

117 --lag_array (2) <= "00000000000000000000000000000000";

118 elsif falling_edge(clk) then

119 -- read adc value

120 value_read <= adc_in;

121 -- latch reading if needed

122 if to_integer(unsigned(value_read)) > 130 or to_integer(unsigned(

value_read)) < 126 then

123 ADC_non_zero <= ’1’;

124 time_out <= 0;

125 elsif state_machine = reading then

126 if time_out = 51 then

127 ADC_non_zero <= ’0’;

128 else

129 time_out <= time_out + 1;

130 end if;

131 end if;

132 ------------------------------------

133 -- Reset highest_val only once when entering expecting state

134 if state_machine = expecting then

135 if reset_done = ’0’ then

136 highest_val <= 0;

137 reset_done <= ’1’;

138 end if;

139 else

140 reset_done <= ’0’;

141 end if;

142 -- check if max and renew if needed only in reading state

143 if state_machine = reading then

144 if to_integer(unsigned(value_read)) > highest_val then

145 highest_val <= to_integer(unsigned(value_read));

146 end if;

147 end if;

148 -----------------------------------

149 -- make lag array and increment

150 -- lag_array(lag_array_index) <= adc_in;

151 -- lag_array_index <= lag_array_index + 1;

152 -- if lag_array_index = 3 then

153 -- lag_array_index <= 0;

154 -- end if;

155 end if;

156 end process;

157

158

159 end Behavioral;

Listing A.3: FPGA code that reads from the ADC and outputs it as registers

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3



4 -- Uncomment the following library declaration if using

5 -- arithmetic functions with Signed or Unsigned values

6 --use IEEE.NUMERIC_STD.ALL;

7

8 -- Uncomment the following library declaration if instantiating

9 -- any Xilinx leaf cells in this code.

10 --library UNISIM;

11 --use UNISIM.VComponents.all;

12

13 entity pulser is

14 Port (

15 clk : in std_logic;

16 fire : in std_logic;

17 pulse : out std_logic

18 );

19 end pulser;

20

21 architecture Behavioral of pulser is

22 signal fire_sync : std_logic := ’0’; -- Synchronized fire

23 signal fire_prev : std_logic := ’0’; -- Previous value for edge detection

24 signal count_en : std_logic := ’0’; -- Enable counting

25 signal counter : integer range 0 to 10 := 10; -- 10-cycle counter

26 begin

27

28 -- Generate pulse: clock gated when count_en is active

29 pulse <= clk when count_en = ’1’ else ’0’;

30

31 -- Synchronize fire and control counting

32 SYNC_PROC: process(clk)

33 begin

34 if rising_edge(clk) then

35 -- Synchronize fire to clock domain

36 fire_sync <= fire;

37 fire_prev <= fire_sync;

38

39 -- Detect rising edge of fire (and not already counting)

40 if (fire_prev = ’0’ and fire_sync = ’1’) and count_en = ’0’ then

41 count_en <= ’1’; -- Start counting

42 counter <= 0; -- Reset counter

43 end if;

44

45 -- Handle counting

46 if count_en = ’1’ then

47 if counter < 9 then -- Count 0 to 9 (10 cycles)

48 counter <= counter + 1;

49 else

50 count_en <= ’0’; -- Stop after 10 cycles

51 counter <= 10; -- Reset to idle state

52 end if;

53 end if;

54 end if;

55 end process;

56 end Behavioral;

Listing A.4: FPGA code creates a 10 pulse pulse train





Appendix B

Attachment - Electronic Schematic





Appendix C

Attachment - PCB drawing










