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Abstract: Copper nanoparticles (Cu NPs) have a broad applicability, yet their synthesis is 

sensitive to subtle changes in reaction parameters. This sensitivity, combined with the time- 

and resource-intensive nature of experimental optimisation, poses a major challenge in 

achieving reproducible and size-controlled synthesis. Additionally, while Machine Learning 

(ML) shows promise in materials research, its application is often limited by scarcity of high-

quality experimental datasets. This study explores ML to predict the size of Cu NPs from 

microwave-assisted polyol synthesis using small datasets generated from 25 in-house 

syntheses. Latin Hypercube Sampling is applied to efficiently cover the parameter space of 

precursor concentration, temperature, and reaction time. Ensemble regression models, built 

with the AMADEUS framework, successfully predict particle sizes with high accuracy, 

outperforming classical statistical approaches. Feature selection reduces model complexity and 

improves generalisability. Additionally, classification models using both random forests and 

Large Language Models (LLMs) are evaluated to distinguish between large and small particles. 
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While random forests show moderate performance, LLMs offer no significant advantages under 

data-scarce conditions. Overall, this study demonstrates that carefully curated small datasets, 

paired with robust classical ML, can effectively predict the synthesis of Cu NPs and highlights 

that for lab-scale studies, complex models like LLMs offer limited benefit over simpler 

techniques. 

 

Dutch Abstract: Koper-nanodeeltjes (Cu NP's) hebben een brede toepasbaarheid, maar hun 

synthese is gevoelig voor kleine veranderingen in reactieparameters. Deze gevoeligheid, in 

combinatie met het tijdrovende en arbeidsintensieve karakter van experimentele optimalisatie, 

vormt een grote uitdaging voor reproduceerbare synthese met gecontroleerde deeltjesgrootte. 

Bovendien is Machine Learning (ML) weliswaar veelbelovend gebleken voor 

materiaalonderzoek, maar wordt toepassing ervan vaak beperkt door gebrek aan hoogwaardige 

experimentele datasets. Deze studie onderzoekt ML om de grootte van Cu NP’s gevormd met 

microgolf geassisteerde polyolsynthese te voorspellen met kleine datasets, gegenereerd uit 25 

intern uitgevoerde syntheses. Latin Hypercube Sampling wordt gebruikt om de parameterruimte 

van precursorconcentratie, temperatuur en reactietijd efficiënt te samplen. Ensemble-

regressiemodellen, gebouwd met het AMADEUS-framework, voorspellen met hoge 

nauwkeurigheid de deeltjesgrootte en presteren daarmee beter dan klassieke statistische 

benaderingen. Featureselectie vermindert complexiteit van het model en verbetert 

generaliseerbaarheid. Daarnaast worden classificatiemodellen, gebaseerd op zowel traditionele 

random forests als Large Language Modellen (LLM’s), geëvalueerd om onderscheid te maken 

tussen grote en kleine deeltjes. Terwijl random forests matig presteren, bieden LLM’s geen 

duidelijke verbeteringen in omstandigheden met weinig gegevens. Over het algemeen toont dit 

onderzoek dat zorgvuldig samengestelde kleine datasets, in combinatie met robuuste klassieke 

ML, synthese van Cu NP's effectief kan voorspellen en dat voor laboratoriumonderzoek 

complexe LLM's geen voordelen bieden. 
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1. Introduction 

In recent years, metal nanoparticles (NPs) have become key elements in a wide range 

of technological applications due to their size- and shape-dependent properties, which can differ 

significantly from the bulk properties.[1-4] These typical properties, ranging from confinement 

and surface plasmon resonance (SPR) to increased catalytic activity, make metal NPs widely 

applicable in electronics[2], catalysis[3] and medicine[4]. Controlling these properties, however, 

requires very precise control over various characteristics of the NPs, including their 

morphology (i.e., size and shape), composition, and surface chemistry down to the nanometre 

scale. Achieving this level of control remains one of the biggest challenges in the synthesis of 

NPs, as small variations in the synthesis can lead to final particles with entirely different 

properties. In classical approaches, such synthesis procedures are developed based on an 

iterative process and empirically guided decisions, rather than relying on data-driven 

methodologies, resulting in a time-consuming and labour-intensive process. As the complexity 

of nanomaterials continues to increase, there is a need for more systematic and efficient 

methods to optimise and develop synthesis processes.[5] 

To tackle the challenges in NP synthesis and accelerate the development of synthesis 

procedures, Artificial intelligence (AI) and machine learning (ML) are playing an increasingly 

important role (Figure 1a).[6] This increasing trend in the use of AI and ML for scientific 

research was recently confirmed by the 2024 Nobel Prizes in Physics[7] and Chemistry[8] for 

AI-related research. The growing impact of these technologies is mainly driven by advances in 

computing power, which have enabled a rapid expansion of AI and ML applications in various 

disciplines. These technologies are causing significant changes in research methodologies, 

especially in the field of materials science, where they offer tools for accelerating discoveries, 

improving optimisation and guiding experimental design.[9-12] One of their most important 

advantages in materials science is enabling predictive modelling and uncovering structure-

property relationships, which significantly accelerates the discovery, optimisation, and 

development of synthesis procedures from scratch for new materials.[9-12] Furthermore, it opens 

up new possibilities for understanding complex physicochemical phenomena that were 

previously difficult to analyse.[9-12] Scientists are increasingly trying to take advantage of these 

powerful tools and are realising the potential to significantly improve synthesis development 

and the possibilities to adapt material properties faster to specific needs.[13] 
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Figure 1 - a) Evolution of AI related publications in chemistry research[6]; b) Workflow for ML use in chemistry 
research[18]; c) Cu NP applications. 

However, the growing interest in data-driven synthesis development is not just the result 

of increasing technological capabilities. It is also a direct response to a fundamental bottleneck 

in inorganic synthetic development. Inorganic synthesis method development is often done 

empirically and lacks a deep mechanistic insight.[14] Traditional development of synthesis 

methods relies on a one-variable-at-a-time (OVAT) method. This is a slow and inefficient 

approach that often struggles to identify the complex and high-dimensional interactions in the 

parameter space.[14,15]  Thus, in this context, ML can play an important role in better identifying 

the complex interactions between parameters via a data-driven approach to accelerate synthesis 

development.[15] 

In this study, the use of ML techniques for predictive inorganic NP synthesis, using 

small lab-scale datasets, is investigated. This includes a comparison of the performance of 

different ML techniques using small lab-scale datasets. 

1.1. AI and ML for experimental Copper NP synthesis 

AI encompasses all systems that imitate human intelligence for tasks like pattern 

recognition and decision-making, while ML is a specific subset of AI that focuses on algorithms 

that can learn from data and improve their performance over time (Figure 2). Zooming in 

further on ML, a distinction can be made between classic ML algorithms and Deep Learning 

algorithms. Classic ML includes regression-based models and Random Forest algorithms. Deep  

b 

c a 
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Figure 2 – Definitions and relationships of AI, ML and Deep Learning. 

Learning models are based on so-called Neural Networks (NN).[16] Well-known examples of 

deep learning include Large Language Models (LLMs) such as ChatGPT. Besides the recent 

developments in AI, classical Design-of-Experiments (DoE) has evolved as a statistical 

methodology for systematically planning and analysing experiments.[17] 

Among the various areas being transformed by AI and ML, inorganic synthesis is one 

in which ML can offer a great deal of assistance (Figure 1b).[18] Due to the high sensitivity to 

small variations in the reaction conditions and the wide variety of possible outcomes, 

developing these synthesis methods is often complex and time-consuming.[5] By using ML, it 

becomes easier to delve deeper into the complexity of an inorganic synthesis process to find 

out which specific parameters have a significant influence on the synthesis outcome. Guda et 

al. demonstrated the use of ML in gold NP synthesis to classify synthesis outcomes (success, 

shape, and formation kinetics) based on the used concentrations of gold precursor, reducing 

agent, and surfactant.[19] In addition, ML also allows the use of a closed-loop system, where an 

ML model automatically launches new experiments based on the results of previous 

experiments to speed up the development of a synthesis procedure and enable high-throughput 

experimentation. Since different parameters are often connected in a complex way, it can be 

very time and resource-consuming to find the optimal combination of parameters via a OVAT 

method. Here, ML models can be used to make suggestions for the next set of experiments 

based on data from a previous one, and so arrive more quickly at the most optimal parameters 

(i.e., to obtain a desired outcome).[20,21] 
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Specifically, in NP synthesis, precise control over size, shape, and composition is 

essential for tailoring properties to specific applications. Because of their numerous 

applications in catalysts, there is currently a strong focus on investigating the synthesis of 

nanoparticles with specific sizes and shapes.[3] The morphology of the formed nanoparticles is 

often sensitive to small changes in the synthesis parameters. As a result, the synthesis of a 

specific morphology requires time-intensive development of the synthesis process. Currently, 

a OVAT method is often used for this purpose. Using ML for synthesis development can 

provide a more efficient alternative to the OVAT approach.[22] Pellegrino et al. showed how a 

ML model can be used to predict the synthesis of TiO2 NPs. They used NNs to predict the size, 

dispersion, and aspect ratio of the TiO2 NPs based on the used synthesis parameters. Through 

reverse engineering, they obtained the most optimal synthesis parameters. Therefore, the NNs 

were coupled to a genetic algorithm.[23] Another example of ML applied to NP synthesis is the 

work by Williams et al., who used a combination of DoE and ML to predict the yield of Ag 

nanowires in a polyol-based flow reactor. Their models, based on random forests, achieved high 

accuracy in predicting reaction yield based on the used reaction parameters.[24] 

As a practical case study, the prediction of Copper (Cu) NP synthesis is used in this 

study. Cu NPs hold significant promise in catalysis due to their abundance, cost-effectiveness, 

and versatile properties (Figure 1c). An application of Cu NPs as photocatalysts can be found 

in the coupling of nitroaromatics, where it gives an alternative to classical reactions with 

diazonium salts that generate a lot of organic waste.[25] Another example is the use of Cu NPs 

in the catalytic electroreduction of CO2. Reske et al. showed that decreasing the size of Cu NPs 

significantly improves their catalytic activity and shifts the product distribution toward H2 and 

CO, while suppressing hydrocarbon formation.[26] Through various synthesis methods, it is 

possible to make different types of Cu NPs. For instance, the oxidation state of Cu can differ, 

and particles of different shapes and sizes can be synthesised.[3] Therefore, the wide variety of 

possible synthesis outcomes, as well as the large parameter space, complicates developing a 

synthesis procedure to obtain specific properties. Due to their promising functional properties 

and complex synthesis, Cu NPs are used in this study as a model system to investigate the use 

of ML for synthesis prediction. 

1.2. Overcoming critical challenges for ML-enhanced experimentation 

While the potential of ML models to streamline the synthesis of Cu NPs is clear, their 

successful application depends on overcoming a critical challenge: the need for robust and 
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qualitative datasets. For inorganic synthesis, the available data is often limited and frequently 

has a strong bias, as only positive synthesis methods are usually published.[27,28] Therefore, 

collecting a dataset via data and text mining from scientific publications would result in an 

inconsistent dataset that does not properly describe the entire parameter space. Also, there are 

many different synthesis methods for making Cu NPs[3], so data mining would produce a dataset 

that is far too complex. While ideally, the full complexity of the system is represented, this is 

not realistic within the scope of a lab-scale study using small datasets. Including all synthesis 

variations would drastically increase the dimensionality of the parameter space, requiring far 

more data to train robust models. Because the performance and limits of ML models are mainly 

determined by the quality of the dataset used, it is crucial to work with high-quality and reliable 

data.[18] For this reason, the dataset used in this study was created and synthesised entirely in-

house. This allows for maximum control over both the quality and relevance of the data, which 

is essential for robust and reproducible model development. 

1.2.1. Microwave-assisted polyol route for Cu NPs synthesis 

Despite there being many different possible synthesis methods for Cu nanoparticles, 

only Microwave (MW)-assisted polyol synthesis is considered in this study.[29] Using the polyol 

method has several important advantages. It uses a high-boiling solvent, making high-

temperature syntheses relatively easy to perform. In addition, the polyol can also act as a 

reducing agent to convert Cu2+ or Cu+ to metallic Cu without the need for additional reagents.[30] 

This way, the parameter space can be significantly constrained, which also reduces the number 

of data points required to achieve a good ML model. The use of MW heating allows syntheses 

to be carried out in a relatively short period. It also ensures more uniform heating of the reaction 

mixture because the MW radiation is selectively absorbed by the polar polyol molecules.[29] 

This uniform heating results in a more consistent and better control over synthesis parameters 

such as temperature and heating rate.[29,30]  

The first step in the polyol reduction (Scheme 1) is the dissolution of the copper acetate 

(Cu(OAc)2) precursor in the polyol (ethylene glycol). During the dissolution, the Cu2+ ions are 

stabilised due to an initial complexation by ethylene glycol molecules, resulting in a turquoise 

solution. A green precipitate will first form upon heating, followed by conversion to an alkoxide 

intermediate. Finally, the Cu2+ will be reduced to Cu0 NPs upon further heating.[29,31]  

 

 



  

8 

 

 

a) 𝐶𝑢(𝐶𝐻!𝐶𝑂𝑂)"
#$%%&'()
'⎯⎯⎯⎯)	𝐶𝑢"* + 2	𝐶𝐻!𝐶𝑂𝑂+ 

b) 𝐶𝑢"* + 3	𝐶"𝐻,𝑂"
-&./')012$&3
'⎯⎯⎯⎯⎯⎯⎯⎯⎯)	𝐶𝑢[(𝐶"𝐻,𝑂")!]"* 

c) 3	𝐶𝑢[(𝐶!𝐻"𝑂!)#]!$ + 2	𝐶𝐻#𝐶𝑂𝑂% 	
&'()*+,
-⎯⎯⎯⎯/		𝐶𝑢#(𝐶𝑂!𝐶𝐻#)!(𝐶!𝐻-𝑂!)! + 7	𝐶!𝐻"𝑂! + 4	𝐻$ 

d) 𝐶𝑢!(𝐶𝐻!𝐶𝑂𝑂)"(𝐶"𝐻#𝑂")" + 𝐶"𝐻$𝑂"
%&'()*+
(⎯⎯⎯⎯* 	3	𝐶𝑢(𝐶"𝐻#𝑂") + 2	𝐶𝐻!𝐶𝑂𝑂, + 2	𝐻- 

e) 𝐶𝑢(𝐶"𝐻4𝑂")
5)#6-2$&3
'⎯⎯⎯⎯⎯⎯)	𝐶𝑢7 + 𝐶2𝐻6𝑂2	𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Scheme 1 – a) The polyol reduction of Cu starts with dissolving of the Cu(OAc)2 precursor salt in ethylene glycol; 
b) Next, the Cu2+ is complexed by ethylene glycol molecules to stabilise the ions in solution; c) Upon heating, first 
a green precipitate will form; d) Upon further heating, an alkoxide intermediate is formed; e) Finally, the alkoxide 
intermediate is reduced to metal Cu and ethylene glycol is oxidised to e.g., glycolaldehyde, oxalate, glyoxal, and 
CO2. 

However, the above method, which only uses polyol for the reduction, has the 

disadvantage that polyols are only mild reducing agents, which means that the reaction is 

relatively slow and still requires relatively high temperatures (>200 °C), while the Cu NPs 

obtained are relatively large.[29,31] The reduction can be accelerated by adding a base to the 

solution. The added base plays an important role in two steps of the reaction mechanism. First, 

the base helps in dissolving the Cu(OAc)2 precursor by deprotonating the hydroxyl groups of 

the polyol, and therefore facilitating the complexation.[29] Besides, the base also activates the 

polyol molecules by partial deprotonation of the a-CH2, generating a reactive alkoxide electron 

donor.[29,31,32] When adding a base to the reaction mixture, therefore, the reduction will occur 

faster and at lower temperatures (160-180 °C), but also the obtained NPs will be smaller and 

more monodisperse.[31] 

1.2.2. ML using small datasets 

Although constructing an in-house dataset addresses the issues of bias and 

inconsistency, it introduces the challenge of working with a limited number of data points, 

requiring careful design to ensure the dataset's effectiveness. Since ML usually needs large 

datasets to generalise as much as possible, it is necessary to configure the limited dataset as 

optimally as possible. The resulting parameter space for the MW-assisted polyol synthesis (Cu 

precursor concentration, time and temperature) should subsequently be described as best as 

possible by the constructed dataset. This can be obtained by using Latin hypercube sampling 

(LHS).[33] Classic OVAT methods (Figure 3a) keep all variables constant except for one, 

meaning no interactions between variables can be detected. Classic DoE (Figure 3b) varies 

multiple variables simultaneously in a structured manner, allowing interactions between 

variables to be detected.[33,34] LHS works similarly to DoE but provides random sampling 
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(Figure 3c-d). LHS divides the entire parameter space into equal intervals, after which it is 

filled via random sampling. This ensures good coverage of the entire parameter space, even 

with a limited number of samples. As a result, LHS helps to avoid introducing artificial 

correlations between variables, which can occur in structured sampling methods, such as DoE, 

where parameters vary in a fixed pattern. By randomly selecting values from each interval 

independently for each variable, LHS ensures that parameter values are sampled in an 

uncorrelated way, increasing the robustness of the experimental design. [33,34] 

Despite good sampling and consistent dataset construction, the number of data points is 

still very small for training ML models.[35,36] To be able to work with this limited number of 

data points in ML models, it is necessary to use ensemble regression models (Figure 

4).[35,36] This involves training different regression models on a randomly selected subset of the 

dataset, after which the average is taken to arrive at the best possible overall model.[35,36] An 

additional advantage of these regression models is that they allow solving inverse problems. 

Then, the trained model can help to identify the optimal synthesis parameters to achieve a 

desired synthesis outcome.   

 
Figure 3 - Comparison of different sampling methods. a) Classical one-variable-at-a-time experimentation; b) 
Classical Design-of-Experiment approach; c) Latin Hypercube Sampling(LHS); d) Distribution of experiments 
sampled using LHS. 
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Figure 4 – Representation of the use of ML ensembles to handle small datasets. 

1.3. Comparing ML performance in inorganic synthesis prediction 

This study investigates how ML can predict and help develop inorganic synthesis 

procedures. As a model system, the MW-assisted polyol synthesis of Cu NPs is modelled based 

on the in-house constructed dataset. With this dataset, different ML models and statistical 

approaches are used and compared to model the synthesis process. Firstly, ensemble regression 

models are used, as these have been shown to work effectively for small datasets in previous 

research.[35,36] These ensemble regression models are built using repeated fitting of the same 

model architecture (e.g., 3rd degree polynomial regression) on random subsets of the dataset, 

and aim to predict particle size as a numerical value using the synthesis parameters as features. 

Finally, these different regression models are averaged to give the final ensemble model. This 

method is compared with a classic statistical method, such as used in DoE, where one regression 

model is fitted to the entire dataset.  

 
Figure 5 – Illustrative and simplified example of a random forest classification model. Each decision tree has a 
hierarchical structure of layers consisting of decision nodes. In each decision node, the tree splits further, and a 
specific path is followed through the tree based on trained selection criteria. At the end, a leaf node is then reached 
that predicts whether the entered criteria will lead to small or large particles. A random forest consists of several 
independent decision trees, each of which individually predicts whether it will be small or large particles. The 
final prediction of the forest is then the class (small or large) most predicted by the different individual trees. 
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Figure 6 - Visualisation of the workflow followed to create the dataset and model the syntheses.  

In addition, modelling the synthesis is approached as a classification problem. Here, the 

data is divided into a group of large and a group of small particles relative to the median size. 

The models then no longer predict a numerical value for the particle size, but predict which 

group the particles will belong to based on the synthesis parameters used. To this end, the 

performance of a complex LLM[37,38] is compared with that of a classic random forest (Figure 

5). A random forest is an ensemble method that builds multiple decision trees on different data 

subsets and aggregates their predictions through majority voting.[16]  

2. Methods 

The study follows a specific workflow to model the synthesis (Figure 6). In the first 

step, the investigated parameter space is sampled via LHS to achieve optimal space coverage. 

Subsequently, the sampled syntheses are carried out in the lab via MW-assisted polyol 

synthesis. The results are then analysed via dynamic light scattering (DLS) to determine the 

particle size of the Cu NPs. Also, the SPR peak is determined using UV-vis measurements. The 

synthesis parameters and corresponding particle sizes form the dataset used to model the 

synthesis process. Finally, the results of the ML models can be used to assist in further 

experimental syntheses. 

2.1. Experimental synthesis 

2.1.1. Materials 

For all experimental syntheses, absolute ethanol (≥ 99.8%, analytical grade) obtained 

from Fisher Chemical and copper(II) acetate monohydrate (Cu(OAc)2●H2O, ACS reagent), 

tetramethylammonium hydroxide (TMAH, 25 wt. % in H2O) and ethylene glycol (≥ 99%) 

obtained from Sigma Aldrich were used. All reagents were used as received without further 

purification.  
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2.1.2. Sampling synthesis parameters 

LHS is used to obtain an optimised dataset with minimal correlation between the various 

experiments and optimal coverage of the parameter space under investigation.[31] The parameter 

space under investigation comprises three dimensions: 

a) Cu precursor concentration (1 mM to 10 mM) 

b) Reaction time (1 minute to 20 minutes) 

c) Reaction temperature (175 °C to 200 °C) 

Using LHS, 25 experiments are selected that fill this parameter space as optimally as possible. 

The selected experiments are summarised in Table S1. 

2.1.3. Cu NPs synthesis 

The Cu NPs were synthesised via the MW-assisted polyol route[39] in a CEM Discover 

SP MW reactor (Figure 7). The synthesis parameters used can be found in Table S1. First, the 

amount of Cu(OAc)2 is weighed into the reaction vial. It is then dissolved in 5 ml of ethylene 

glycol under sonication. After the Cu precursor has completely dissolved, the 

tetramethylammonium hydroxide (TMAH) is added to the solution and further mixed and 

degassed under sonication. TMAH is consistently used at a molar ratio of 4:1 relative to the Cu 

precursor. The reaction vessel is then placed in the microwave reactor, with the headspace filled 

with inert Argon up to a pressure of 5 bar, and is first stirred for 2 minutes at 80 °C to ensure 

complete dissolution of the precursor. Afterwards, the temperature is raised to the desired 

reaction temperature with continuous stirring and maintained for the desired reaction time 

(Table S1). After the reaction time has passed, the reaction is quenched by actively cooling the 

vessel with compressed air. Now, a brown-red suspension is obtained, which is typical for Cu 

NPs.[30] To collect the Cu NPs, the reaction mixture is diluted with 15 ml of ethanol and 

centrifuged at 10000 rpm for 10 minutes. Subsequently, the supernatant is removed, and the 

resulting NPs are again dispersed in 20 ml of ethanol. 

 
Figure 7 -The synthesis starts with dissolving Cu(OAc)2 in 5 ml of ethylene glycol and sonication. Next, TMAH is 
added and sonicated again, after which the solution is placed in the MW reactor. After the reaction, a brown-red 
dispersion of Cu NPs is obtained, which is sonicated and analysed using UV-vis. Next, the suspension is 
centrifuged, and the obtained particles are redispersed in ethanol, after which the particle size is determined using 
DLS measurements. 
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2.1.4. Characterization 

The SPR of the synthesised Cu NPs in the ethylene glycol dispersion is determined via 

UV-vis measurements with the Agilent Cary 5000 spectrophotometer equipped with a dual-

beam configuration. Measurements were performed in quartz cuvettes (10 mm path length) 

over a wavelength range of 300–800 nm. Baseline correction was applied using the ethylene 

glycol solvent as reference. 

The size of the synthesised Cu NPs is determined via DLS measurements (Figure 7) 

with a Zetasizer Nano ZS, equipped with a 633 nm He–Ne laser. For these measurements, the 

ethanolic Cu dispersions are sonicated for at least 10 minutes. Subsequently, five drops of the 

NP dispersion are diluted with ethanol and measured. 

2.2. Computational modelling 

To model the synthesis, various individual models are constructed based on different 

methods and their performance is compared. In the first part, regression models are used to 

predict the exact particle size based on the synthesis parameters used (temperature, time and 

Cu concentration). An initial method used for this are ensemble regression models. These are 

compared with a model resulting from a classical statistical regression. In a second part, a 

classification problem is examined in which the synthesis parameters are used to predict 

whether the particles obtained will be large or small. For this classification, advanced LLMs 

are compared with the classical random forest.  

2.2.1. Ensemble regression models 

The first generation of ensemble models based on scikit-learn[16,40] builds the ensemble 

through repeated iterations of model training on random subsets of the dataset, using the 

temperature, time, and Cu concentration as features and the particle size as target.[40] For each 

ensemble model, 2,500 random 80/20 train-test splits are made, on which a model is trained 

and evaluated each time. The predictions for the test data of each model are kept track of, and 

the ensemble prediction for a data point is taken as the average of the corresponding predictions 

of the individual models for that data point. Due to instability in the hyperparameter tuning as 

a result of the small dataset, among other things, it was decided to switch to the AMADEUS 

framework.  

The following generation ensemble regression models are built using the scikit-learn-

based AMADEUS framework (Figure 8).[35,40,41] AMADEUS creates pasting-type ensemble 

models consisting of 100 base instances. Each of these instances is trained on a different 80/20  
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Figure 8 – The computational modelling starts with selecting the best performing dataset. Next, the optimal value 
for the regularisation strength a is selected. Then, 100 model instances are trained on random subsets of the 
dataset. Once all model instances are trained, the ensemble model is the average of all instances. Finally, for next 
generation models, feature selection and engineering are performed.  

split of the in-bag and out-of-bag (OOB) parts of the complete dataset. The final ensemble 

model is a single base instance equal to the average of the 100 base model instances. Both linear 

and polynomial models are considered, and LASSO regularisation is used.[42] In a first step, it 

is examined how best to deal with the multimodal data points by comparing three different 

datasets. Next, a hyperparameter selection for the LASSO regularisation is performed. Finally, 

a final model is constructed through feature engineering and reduction.  

Performance metrics: 

Three performance metrics are defined to determine and compare the accuracy and 

generalisability of the various models.  

a) Root-mean-squared error (RMSE) measures the average quadratic deviation between 

the predicted value (𝑦81 ) and the experimental value (𝑦$). Because RMSE penalises large 

errors more heavily than small errors, it is highly sensitive to outliers. 

𝑅𝑀𝑆𝐸 = 	79
3
∑ (𝑦81 − 𝑦$)"9
$:3  (1) 

b) Mean-average error (MAE) calculates the average absolute error in the predictions. 

𝑀𝐴𝐸 =	 9
3
∑ |𝑦81 − 𝑦$|9
$:3    (2) 

c) R2 is a measure of the correlation between the predicted value (𝑦81) and the experimental 

value (𝑦$). An R2=1 means that the predicted values perfectly match the experimental 
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values, while an R2=0 means that the model performs no better than predicting the 

average. 

𝑅2 = 1 − ∑ (405416 )23
045
∑ (40547)23
045

	 (3) 

Within the AMADEUS framework, a further distinction is made between three different types 

of error. The error in the training data (MAE and RMSE) is the error that the model makes on 

the data on which it was effectively trained. This error is an important indicator to check that 

the model is not underfit. However, a low training error is no guarantee of a good model, as it 

can also be the result of overfitting, especially with small datasets. The OOB error (MAE and 

RMSE) is the error the trained model makes on its test data. This is data the model has not yet 

seen during training. This error is a good indicator of the generalisability of the model. A low 

training error and high OOB error are very strong indicators of a model that is overfitting. 

Finally, there is the error of the average model (MAE, RMSE and R2). This is calculated by 

having the final ensemble model make predictions for all data points in the entire dataset.  

Dataset selection: 

In the first series of models generated using AMADEUS, the optimal dataset is 

determined to train the regression models. To this end, the performance of three different 

datasets is compared using the RMSE, MAE and R2 of the best-performing ensemble per 

dataset.  

a) Dataset A: All 25 data points are included in the dataset, and the particle size predicted 

is the smallest particle size present in the DLS spectrum (Table S2).  

b) Dataset B: All 25 data points are included in the dataset, and the particle size predicted 

corresponds to the peak with the highest percentage contribution in the DLS spectrum 

(Table S3).  

c) Dataset C: Only the 18 data points with a monomodal DLS spectrum are included in the 

dataset (Table S4). 

The various performance metrics show that dataset C performs significantly better than the 

other two datasets (Table 1). Therefore, only dataset C will be considered further.  The trained 

models in this study thus focus on predicting the particle size for a monomodal distribution and 

therefore cannot predict situations where a multimodal distribution is obtained. Further research 

can investigate the cause of these multimodal distributions and train models that take them into 

account, but this is beyond the scope of this study. 
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Table 1 – Performance metrics of the best-performing ensemble average for the different datasets. 

 RMSE [nm] MAE [nm] R2 

Dataset A 63.46 50.50 0.42 
Dataset B 59.44 46.06 0.35 
Dataset C 34.09 24.28 0.73 

Hyperparameter tuning: 

Due to the limited size of the dataset, the regularisation strength parameter a cannot be 

determined via automated optimisation. Instead, it is selected based on visual comparison of 

four values (a = 1.0, 0.1, 0.01, and 0.001). For this purpose, polynomial models up to order 

eight are optimised. Analysing the MAE of the average ensemble models shows an overall 

optimal performance for regularisation strength a = 0.1 (Figure 9). Also, the hyperparameter  

tuning shows no further improvements above polynomial degree three. Therefore, no features 

above degree three will be further considered to reduce the risk of overfitting.  

Feature selection: 

When using a small dataset, the growing number of features in polynomial models 

quickly leads to overfitting. Regularisation reduces the number of relevant features, reducing 

the risk of overfitting. The AMADEUS framework tracks how often a polynomial feature is 

retained within the ensemble, providing a measure of importance for the features. A feature 

with an importance of 100% will have a non-zero coefficient in all model instances in the 

ensemble. If a feature has an importance of 75%, this means that in 25% of the model instances 

in the ensemble, the coefficient is zero for this feature. Figure 10 summarises the feature 

importances for all features up to degree three. 

 
Figure 9 - Hyperparameter optimisation for size prediction with dataset C. LASSO regularised polynomials up to 
order eight are compared, and MAE of the average ensemble models is shown for a=1.0 (red), a=0.1 (orange), 
a=0.01 (green), and a=0.001 (blue).  
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Figure 10 - Overview of feature importance, sorted by increasing importance in the third degree polynomial, in 
the polynomial models with degree two (orange) and degree three (blue), and trained on dataset C with a=0.1. 
x_0 = Cu precursor concentration, x_1 = Reaction temperature and x_2 = Reaction time. 

Here, it is clear that the Cu precursor concentration plays an important role, followed by 

the reaction time to a somewhat lower extent. Temperature, on the other hand, mostly plays a 

role in interaction parameters. Based on the trends in feature importance, seven features are 

selected: 

a) [Cu] d) [Cu]2 

b) Temperature e) [Cu]3 

c) Time f) [Cu] x Temperature 

 g) [Cu] x Time 

[Cu], temperature and time are all three retained as features, as these are the base parameters 

used in synthesis. [Cu]2 and [Cu]3 are included as they play relatively important roles in both 

the second and third degree models. The interaction terms [Cu] x Temperature and [Cu] x Time 

are used, given their high importance in the second-degree polynomial; higher-order interaction 

terms are not included to limit the model complexity and hence the probability of overfitting. 

Using these features, a linear regression model is trained using the AMADEUS framework, and 

iteratively, features are further engineered to obtain the optimal combination.  

2.2.2. Classical statistical methods (DoE) 

Using DoE software JMP Pro (SAS Institute Inc.), a linear regression model is 

constructed for dataset C, including terms up to the second degree. Next, insignificant terms are 
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removed until only significant terms remain. The available dataset is not split into training and 

test data; all data points are used to fit the regression model. The performance of the model is 

determined by calculating the expected size for all data points using the equation obtained.  

2.2.3. Classification analysis 

Here, a binary classification is performed on the particle size using dataset A (Table 

S2). The aim is to predict whether the resulting particles will be large or small based on the 

synthesis parameters. Particles are defined as large if they are larger than the median size in the 

dataset; if they are smaller than the median size, they are defined as small. For this classification 

task, the performance of complex LLMs is compared with that of a classic random forest 

classifier. 

Performance metrics: 

Accuracy and kappa (k) are used as performance metrics to assess the classification 

models' performance.  

a) Accuracy is the most commonly used error metric for classification problems and 

indicates the percentage of correct predictions. An accuracy of 0.9, therefore, means that 

90% of the predictions were made correctly.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	;6.<)5	&>	-&55)-2	/5)#$-2$&3%
?&21'	36.<)5	&>	/5)#$-2$&3%

 (4) 

b) k also indicates the agreement between predictions and actual labels, but corrects for 

coincidental agreements. It therefore indicates how well the model performs compared 

to simple random guessing. If k is 1, there is a perfect match between predictions and 

actual labels. If k is 0, the model's performance is the same as if random guesses had 

been made, and if k is negative, the model performs even worse than random guessing.  

k =	 1--651-@+/.
9+/.

   (5) 

Here, 𝑝)  is the outcome expected by chance, calculated from the proportions of the 

real	(𝑃5)1',$) and predicted classes (𝑃/5)#$-2)#,$ ). The proportion 𝑃5)1',$  refers to the 

fraction of samples that truly belong to class i, and 𝑃/5)#$-2)#,$ refers to the fraction of 

samples predicted to be in class i. 

𝑝) =	∑ (𝑃5)1',$ × 𝑃/5)#$-2)#,$)$    (6) 

Large Language Models: 

Two different LLMs were trained and compared with each other for the binary 

classification task: GPT-J and LLAMA 3.1. The training of the LLMs was carried out by dr. 
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Joren Van Herck at prof. dr. Berend Smit's group at the École Polytechnique Fédérale de 

Lausanne (EPFL). The pretrained LLMs are further trained using transfer learning, similar to 

previous work[37,38], to predict the outcome as large particles (1) or small particles (0) based on 

the experimental input parameters. The LLMs are trained to use the following prompt as input: 

‘What is the size of nanoparticles synthesized with a <Cu conc> mol/litre Copper Acetate 

precursor concentration, a <TMAH conc> mol/liter tetramethylammoniumhydroxide 

concentration, heated for <time> minutes at <temperature> degrees celcius?’ 

Here, <parameter> serves as a placeholder for the reaction parameter’s value. The LLM will 

then answer the prompt with either the value 0 for experimental small NPs or 1 for experimental 

big particles.  

The maximum number of training data was set to 15. The number of test data remained 

constant over all runs, e.g., 5. First, the number of epochs was screened: 10, 25, 50, and 100. 

Five unique runs were performed for every pair of training size-epoch experiments to get the 

average metrics. The GPT-J model was used for this screening. Since it is a binary classification 

of a balanced dataset, all accuracies above 50% are an improvement over random guessing. The 

first experiments with 25 epochs were not successful (Figure S4). The models could not capture 

the prompt/completion structure and returned invalid completions for the test data, for example, 

’-9223372036854775808’. For a higher number of epochs, the fine-tuned model returns valid 

completions (’1’ or ’0’). 

Random Forest classifier: 

An ensemble approach of random forest models via scikit-learn is used for binary 

classification. Hyperparameter selection was used to determine the optimal value for 

n_estimators, the number of decision trees within a forest, and max_depth, the maximum depth 

of a tree. The n_estimators was set to 200 and max_depth to 3. With these hyperparameters, 

2,500 random forests are trained on a new random subset of the data. 20% of the total dataset 

serves as OOB data. Each generated model is tested on its OOB data, and these predictions are 

logged. After training and evaluating all 2,500 models, the OOB predictions of all models are 

used to obtain a final classification through hard voting. For the OOB predictions, the number 

of times they were classified as small (0) and the number of times as big (1) are counted for 

each data point. The class with the majority of votes will be the final predicted class for that 

datapoint. 
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3. Results and discussion 

3.1. Cu NPs synthesis 

A crucial step in modelling the MW-assisted polyol synthesis of Cu NPs is the 

construction of a high-quality dataset. This dataset was created by performing 25 experimental 

syntheses according to the protocol described earlier (Section 2.1.3). The experiments were 

selected using LHS and are summarised in Table S1. The DLS measurements show a peak 

above 5000 nm for five samples. However, these peaks are not included in the analysis. Due to 

their very low intensity (<1.5%), it can be assumed that these results are due to contamination, 

such as dust particles, during the measurements. The synthesis yielded Cu NPs with a particle 

size between 40 nm and 350 nm (Table S5). The DLS shows a bimodal spectrum for five 

samples and a trimodal spectrum for two samples. The remaining samples show a monomodal 

spectrum (Figure 11a). Analysis of the peaks in the DLS spectra corresponding to the smallest 

particle size gives a median particle size of 157.9 nm (Figure 11b). 

Figure 11a clearly shows that the samples with a multimodal DLS spectrum are the 

samples with the smallest detected particle size. It is also noticeable that the slope of the 

smallest sizes at these multimodal data points is less steep than that of the monomodal data 

points. More in-depth analysis of the reaction parameters shows that the multimodal results 

mainly occur at a 6 mM or higher Cu concentration. A possible explanation could be that in 

these situations, the NPs were still in their growth phase and the reaction had not yet been 

completed at the time of quenching. However, this would then be expected to occur at lower 

temperatures and/or reaction times, which is not particularly the case. At this point, it is 

 
Figure 11 – a) DLS results showing particle sizes and standard deviations for all detected peaks per sample. Each 
point represents a population of a distinct size (Peak 1 in blue, Peak 2 in green, and Peak 3 in orange), with error 
bars indicating the corresponding standard deviation. Samples are sorted in ascending order based on the size of 
Peak 1. Peaks above 5000 nm were excluded due to their negligible intensity (<1.5%); b) Distribution of the 
smallest detected particle size per sample as measured by DLS. The red line indicates the median particle size. 

a b 
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therefore not yet possible to provide a conclusive explanation for the formation of the 

multimodal particle size distributions, and further research is needed. 

Based on the UV-vis spectra (Figure S5-Figure S6) and the SPR location (Table S5), 

it can be verified for the different samples that Cu metal (Cu0) NPs were effectively formed. 

Cu0 NPs exhibit a sharp SPR peak around 600 nm, which can shift depending on the size of the 

NPs.[30] The different UV-vis spectra show a clear SPR peak between 590 nm and 630 nm for 

most samples, which is a strong indication of the presence of Cu0 NPs. Samples 4, 6, and 19 do 

not show a clear SPR feature, which may be due to low particle concentration, oxidation[43], or 

the presence of ultrasmall particles (<5 nm), which do not exhibit a well-defined SPR; for the 

other samples, at least some Cu0 is present. Given the limited yield of the syntheses, no X-ray 

diffraction measurements can be performed to provide a conclusive answer, but the 

combination of the red-brown colour of the solution and the UV-vis spectra strongly indicates 

that Cu0 NPs have indeed been formed. To further support this conclusion, Selected Area 

Electron Diffraction analysis was conducted on sample 22 using a transmission electron 

microscope operated at an accelerating voltage of 120 kV. The resulting diffraction rings 

(Figure 12) were indexed to the face-centred cubic structure of copper, with prominent rings 

corresponding to the (111), (200), and (220) planes. The primary diffraction rings were assigned 

the following d-spacings: 2.08 Å for the (111) plane, 1.83 Å for the (200) plane, and 1.29 Å for 

the (220) plane. These values agree with the standard values for FCC copper (JCPDS card no. 

04-0836)[44], confirming the formation of Cu0 NPs. 

 
Figure 12 - Selected area electron diffraction pattern of Cu⁰ nanoparticles from sample 22, recorded at an 
acceleration voltage of 120 kV. The presence of concentric diffraction rings indicates a polycrystalline material. 
The rings are indexed to the face-centred cubic (FCC) crystal lattice of metallic copper, with corresponding (111), 
(200) and (220) planes. The measured d-spacings for these planes are 2.08 Å, 1.83 Å, and 1.29 Å, respectively, in 
good agreement with standard reference values.[44] 
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Table 2 - Performance metrics of different regression model generations. 

 Number 
of 

features 

Training OOB Average 

 RMSE 
[nm] 

MAE 
[nm] 

RMSE 
[nm] 

MAE 
[nm] 

RMSE 
[nm] 

MAE 

[nm] R2 

Linear 3     81.10 68.80 -0.55 
Polynomial 19     118.00 79.40 -2.29 

2nd generation 19 22.17 16.05 86.52 68.51 32.64 22.53 0.75 
3rd generation 7 29.40 20.47 51.85 41.36 32.61 22.28 0.75 
4th generation 11 27.78 19.79 63.66 52.18 33.07 23.35 0.74 
5th generation 6 30.57 22.39 49.90 40.92 33.03 23.81 0.74 

DoE 2     40.91 33.54 0.60 

3.2. Ensemble regression models and size prediction 

In the first phase of computational modelling, ensemble regression models and classic 

statistical regression models are developed to predict a numerical value for the obtained Cu NP 

size, based on the synthesis parameters. Different generations of models are trained to 

investigate the influence of different features on model performance. 

3.2.1. First generation 

The first generation models are used as baseline models. These models do not yet have 

any predictive value. The linear ensemble has an R2 of -0.55 (Table 2), which indicates that the 

model's predictions are slightly worse than the average prediction. The graphical 

representations of the predictions (Figure 13) also show that the predictions broadly fluctuate 

around the average. The third-order polynomial ensemble has an even lower R2 of -2.29 (Table 

2) and indicates graphically (Figure 13) that the predictions are virtually random. More 

complex models are therefore needed. Because of the extremely poor performance of the 

polynomial model, the linear model will be used as the baseline model. 

 
Figure 13 - a) Plot of the experimental measured particle size and their standard deviation in ascending order 
(green) with the corresponding predicted particle size of the linear ensemble model (red) and the polynomial 
ensemble model of degree three (blue); b) Parity plot of the actual, experimental size against the corresponding 
predicted size using the linear ensemble model (red) and the polynomial ensemble model of degree 3 (blue). 

a b 
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Figure 14 - a) Plot of the experimentally measured particle size and their standard deviation in ascending order 
(green) with the corresponding predicted particle size of the second generation ensemble model (red); b) Parity 
plot of the actual, experimental size against the corresponding predicted size using the second generation ensemble 
model. 

3.2.2. Second generation 

As second generation (Figure 14), we consider the complete third-degree polynomial 

model with regularisation strength a = 0.1 generated via the AMADEUS framework during 

hyperparameter tuning. Here, there is a significant improvement in performance metrics (Table 

2), with an R2 rising to 0.75 and RMSE and MAE of the ensemble average falling from 81.10 

nm to 32.64 nm and from 68.80 nm to 22.53 nm, respectively. The more complex error handling 

and model building of the AMADEUS framework have a strong positive influence on the 

quality of the model, highly outperforming the baseline model.  

3.2.3. Third generation 

Despite the strong performance of the second generation model, its main disadvantage 

is the use of an extensive set of 19 features. This increases the risk of overfitting, especially 

when working with small datasets. In addition, a larger feature set results in a more complex 

model and, therefore, higher computational costs. The aim of the next generations is thus to 

reduce model complexity drastically, on the one hand, improve generalisability and, on the 

other hand, reduce computational costs. In the third generation the model (Figure 15) 

complexity is strongly reduced by using only the seven features ([Cu], Time, Temperature, 

[Cu]2, [Cu]3, [Cu]xTime, [Cu]xTemperature) selected based on the feature importances (Figure 

10). A linear regression model is built using AMADEUS with regularisation strength a = 0.1 

using these features.  

a b 
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Figure 15 - a) Plot of the experimentally measured particle size and their standard deviation in ascending order 
(green) with the corresponding predicted particle size of the third generation ensemble model (red); b) Parity plot 
of the actual, experimental size against the corresponding predicted size using the third generation ensemble 
model. 

The ensemble average now shows hardly any difference in performance compared to 

the second generation, with almost identical RMSE, MAE and R2 (Table 2), despite the 

significant reduction in the number of features used. In addition, the training and OOB errors 

show that the third generation is more generalisable than the second generation (Table 2). The 

training error of the third generation is only slightly higher (MAE of 20.47 nm compared to 

16.05 nm), but the OOB error is drastically reduced from 68.51 to 41.36 for the MAE. The 

smaller difference between training and OOB error indicates that the model is less overfitted 

and generalises better.  

3.2.4. Fourth generation 

Here, the feature set used in the previous generation is expanded again with four 

additional features. This expansion aims to investigate the influence of non-polynomial features 

(based on domain knowledge) on the performance of the model. To this end, four additional 

features are added to the set. 

a) e[Cu] is added because [Cu] often has a high and consistent importance even in higher 

powers.  

b) [Cu]/Time can be interpreted as a measure of the amount of cations available per unit 

of time during the growth of the particles. 

c) Log([Cu]xTime) provides a measure of the total exposure of the reduction medium to 

Cu ions. 

d) Time/Temp as a measure of the thermal load during the reaction. A higher value 

indicates milder reaction conditions.  

a b 
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Figure 16 - a) Plot of the experimentally measured particle size and their standard deviation in ascending order 
(green) with the corresponding predicted particle size of the fourth generation ensemble model (red); b) Parity 
plot of the actual, experimental size against the corresponding predicted size using the fourth generation ensemble 
model. 

Using this more complex feature set, a linear regression model is built again using 

AMADEUS with regularisation strength a = 0.1 (Figure 16). As expected, there is again a 

slight decline in the performance of the model (Table 2) due to the increased complexity, which 

leads to stronger overfitting and therefore poorer generalisability. However, given the limited 

difference in performance between this and the previous generation, a comprehensive analysis 

of the feature importances in this model will be carried out in the final generation. The aim is 

to arrive at a final reduced model with a good balance between sufficient complexity to maintain 

predictive value and not too much complexity to ensure sufficient generalisability. 

3.2.5. Fifth generation 

Finally, the fourth generation model is again reduced in complexity. Therefore, an 

extensive analysis of feature importance is conducted. Various models were trained based on 

the extensive feature list of the fourth generation. One, two or three of the features were 

systematically disabled in the model to determine the influence of each feature on the model's 

performance. Here, four features used in the fourth generation have a rather low importance of 

less than 85% on average over all models. Therefore, only the six features with an average of 

more than 90% feature importance are kept in the final generation.  

a) Temperature (T) b) e[Cu] 

c) [Cu] x Time (t) d) [Cu] / Time 

e) [Cu]3 f) log([Cu] x Time) 

a b 
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Figure 17 - a) Plot of the experimentally measured particle size and their standard deviation in ascending order 
(green) with the corresponding predicted particle size of the fifth generation ensemble model (red); b) Parity plot 
of the actual, experimental size against the corresponding predicted size using the fourth generation ensemble 
model. 

Using these six features, the final fifth generation model (Figure 17) is obtained via a 

linear regression using AMADEUS with regularisation strength a = 0.1 (equation 7). Now, all 

used features have an average importance of 98% or higher. The ensemble average now has an 

RMSE, MAE and R2 of 33.03 nm, 23.81 nm and 0.74 (Table 2), respectively, which is hardly 

any difference compared to the more extensive fourth generation. Because the complexity of 

the model has been greatly reduced in this generation, the MAE for the OOB predictions 

decreases from 52.18 nm for the fourth generation to 40.92 nm for the fifth generation (Table 

2). Therefore, this fifth generation generalises significantly better compared to the fourth 

generation. 
 

𝐶𝑢	𝑁𝑃	𝑠𝑖𝑧𝑒 = 194.66 − 12.59𝑇 − 36.16[𝐶𝑢]𝑡 − 123.47[𝐶𝑢]! + 108.12𝑒[#$] + 32.30 [#$]
&
+ 63.00log	([𝐶𝑢]𝑡) (7) 

 

Despite the very limited dataset, it is possible to predict the particle size of the Cu NPs 

quantitatively based on the synthesis parameters used, with an R2 of 0.74 and an MAE of 23.81 

nm. For most of the data points, the predicted particle size by the ensemble model is also within 

the experimental STDEV. Throughout the different generations of ensemble regression models, 

reducing the number of features used has little effect on the performance of the ensemble 

predictions, while the OOB error decreases slightly when the number of features is reduced, 

showing that the model is less overfitted and therefore generalises better. Reducing the number 

of features to six in the fifth generation has two important advantages over the full third-degree 

polynomial model from the second generation. On the one hand, it generalises better, and on 

the other hand, the model is much less complex, which also reduces the computational cost. 

a b 
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Figure 18 - a) Plot of the experimental measured particle sizes and their standard deviation (green) and the 
statistical model (red); b) Parity plot of the actual, experimental size against the corresponding predicted size 
using the statistical model. 

3.2.6. Statistical approach (DoE) 

In the classical statistical approach, only the concentration of the Cu precursor appears 

to significantly influence the particle size, resulting in a quadratic model (Figure 18) given by 

equation 8. This model has an R2 of 0.60 and an MAE of 33.54 nm (Table 2), which is 

significantly lower compared to the ML regression models. In addition, it is unclear whether 

the model is sufficiently generalised, as it is based on the entire dataset. An OOB error is 

therefore unavailable, which can provide an indication of the generalisability.  
 

𝐶𝑢	𝑁𝑃	𝑠𝑖𝑧𝑒 = 156.79 + 18	530.65[𝐶𝑢] + ([𝐶𝑢] − 0.005) × J−8	801	229.71([𝐶𝑢] − 0.005)K (8) 

=	−63.24 + 106	542.95[𝐶𝑢] − 8	801	229.71[𝐶𝑢]"  
 

Compared to the fifth generation ensemble regression model, the classical regression 

model shows a significant decrease in performance, with R2 decreasing from 0.74 to 0.60 and 

MAE rising from 23.81 nm to 33.54 nm. Since classic regression is performed on the entire 

dataset, no information is available about the OOB error, making it difficult to conclude how 

the generalisability of both models relates to each other. Since the ensemble regression models 

are built on random subsets of the entire dataset, it can be expected that they will be better able 

to generalise than the classical regression model that was trained on the entire dataset. On the 

other hand, the classical regression model consists of only two terms containing the precursor 

concentration, compared to the six features in the ensemble regression model, which results in 

a simpler model and therefore lower computational costs.  

a b 
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3.3. Classification 

In the second part of the modelling, the synthesis process is treated as a binary 

classification problem in which the synthesis parameters are used to predict whether the Cu 

NPs obtained will be large or small. For this approach as a classification problem, the 

performance of complex LLMs, trained using transfer learning, is compared with a classic 

random forest model, trained from scratch. 

For LLM-based classification, there is a clear difference between the performance of 

GPT-J and LLAMA. Where GPT-J performs slightly worse than random guessing, with an 

accuracy of 0.48 and a k of -0.04 (Table 3), the use of LLAMA 3.1 results in an increase in 

accuracy to 0.64 and an increase in k to 0.28 (Table 3), although this is a significant 

performance improvement, the overall performance is relatively low. One of the possible 

reasons for this limited performance is that the size of the dataset is very limited. Small datasets 

already poses major challenges for classic ML, such as regression and decision trees, but the 

use of such small datasets is particularly challenging for complex models as LLMs. The classic 

random forest classifier has an overall performance between the two LLMs, with an accuracy 

of 0.56 and a k of 0.11 (Table 3). In this case, the performance is therefore slightly better than 

simply guessing at random.  

The relatively limited difference in performance between LLMs and classic random 

forests raises questions about the usefulness of complex neural networks in the context of 

limited lab-scale studies. It is clear that neural networks require a much larger dataset to achieve 

proper performance. When the dataset is limited, as it is here, there is hardly any difference in 

performance between neural networks and simpler classical models such as decision trees. 

Despite the lack of difference in performance, LLMs are much more complex and require much 

higher computing costs compared to classical models, which can make LLMs less efficient if 

the computational costs and energy requirements are considered. 
Table 3 - Performance metrics of binary classification models. 

 Accuracy k 
GPT-J 0.48 -0.04 

LLAMA 3.1 0.64 0.28 
Random forest 0.56 0.11 
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4. Conclusions 

It can be concluded that even with a small lab-scale dataset, classical ensemble 

regression ML can make quantitative predictions about the Cu NP synthesis results. More 

complex models, such as LLMs, on the other hand, clearly have much more difficulty learning 

from these small lab-scale datasets, as even a simple task such as binary classification is difficult 

to accomplish. Further research may reveal whether expanding the experimental dataset can 

lead to further improvements in the performance of the various ML models. However, 

improving performance by further expanding the dataset raises the new question of what the 

added value of using ML for synthesis procedure development is. If the models were trained 

using a nearly exhaustive sampling of the parameter space under consideration, the result would 

be a computationally expensive database, which would also be time-consuming to construct, 

rather than a predictive model that helps to accelerate the development of a synthesis procedure. 

Based on this study, it can be concluded that it makes more sense to invest in creating a high-

quality lab-scale dataset in combination with fine-tuned classical ML models, such as ensemble 

regression, than to invest in complex and expensive LLMs. 
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Supporting Information  
Table S1 - Sampled synthesis parameters used in the first series of 25 experimental syntheses. 

Sample 
Theoretical Cu 
concentrationa 

[mM] 

Effective Cu 
precursorb 

[mM] 

TMAHc 

[µl] 
Timed 

[min] 
Temperaturee 

[°C] 

MOTB241202_1 5.00 5.06 36.0 8 196 
MOTB241202_2 4.00 4.21 29.0 4 188 
MOTB241202_3 3.00 2.91 21.8 6 198 
MOTB241202_4 2.00 2.00 14.6 7 184 
MOTB241202_5 9.00 8.82 65.4 4 180 
MOTB241202_6 3.00 3.11 21.8 1 194 
MOTB241202_7 10.00 10.22 72.8 9 188 
MOTB241206_8 9.00 8.82 65.4 16 182 
MOTB241206_9 3.00 2.80 21.8 17 182 

MOTB241206_10 7.00 6.91 51.0 20 194 
MOTB241206_11 7.00 6.81 51.0 14 186 
MOTB241206_12 6.00 6.01 43.6 10 192 
MOTB241206_13 8.00 8.31 58.2 12 184 
MOTB241206_14 1.00 1.10 7.2 15 198 
MOTB241206_15 2.00 2.10 14.6 10 196 
MOTB241210_16 4.00 3.91 29.0 18 200 
MOTB241210_17 4.00 3.91 29.0 14 192 
MOTB241210_18 8.00 8.31 58.2 5 180 
MOTB241210_19 2.00 2.10 14.6 17 176 
MOTB241212_20 8.00 7.91 58.2 11 190 
MOTB241212_21 6.00 5.91 43.6 7 178 
MOTB241212_22 7.00 6.91 51.0 3 176 
MOTB241212_23 9.00 9.02 65.4 13 178 
MOTB241212_24 6.00 6.11 43.6 19 186 
MOTB241212_25 5.00 5.01 36.0 2 190 

a)Theoretical concentration of Cu(OAc)2 precursor in 5 ml ethylene glycol in mM; b)Effective Cu concentration of 
Cu(OAc)2 used; c)Volume of 2.75 M TMAH in H2O added to 5 ml ethylene glycol in µl; d)Time in minutes reaction 
mixture is kept on defined temperature; e)Temperature in °C of reaction mixture for defined reaction time. 
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Table S2 - Dataset A containing 25 datapoints with particle size, the smallest size detected by DLS. 

Sample 
Effective Cu 

concentrationa 

[mM] 

TMAHb 

[µl] 
Timec 

[min] 
Temperaturd 

[°C] 
Size ± STDEVe 

[nm] 

MOTB241202_1 5.06 36.0 8 196 252.50 ± 59.37 
MOTB241202_2 4.21 29.0 4 188 228.40 ± 41.47 
MOTB241202_3 2.91 21.8 6 198 148.80 ± 25.56 
MOTB241202_4 2.00 14.6 7 184 99.90 ± 14.07 
MOTB241202_5 8.82 65.4 4 180 183.30 ± 25.42 
MOTB241202_6 3.11 21.8 1 194 160.70 ± 27.62 
MOTB241202_7 10.22 72.8 9 188 64.65 ± 8.80 
MOTB241206_8 8.82 65.4 16 182 40.85 ± 5.20 
MOTB241206_9 2.80 21.8 17 182 192.90 ± 28.88 

MOTB241206_10 6.91 51.0 20 194 237.90 ± 30.29 
MOTB241206_11 6.81 51.0 14 186 167.00 ± 31.15 
MOTB241206_12 6.01 43.6 10 192 60.10 ± 6.88 
MOTB241206_13 8.31 58.2 12 184 66.02 ± 11.94 
MOTB241206_14 1.10 7.2 15 198 102.90 ± 13.51 
MOTB241206_15 2.10 14.6 10 196 114.40 ± 17.64 
MOTB241210_16 3.91 29.0 18 200 157.90 ± 22.70 
MOTB241210_17 3.91 29.0 14 192 304.50 ± 52.21 
MOTB241210_18 8.31 58.2 5 180 59.09 ± 6.13 
MOTB241210_19 2.10 14.6 17 176 188.10 ± 26.04 
MOTB241212_20 7.91 58.2 11 190 50.36 ± 8.16 
MOTB241212_21 5.91 43.6 7 178 312.90 ± 55.82 
MOTB241212_22 6.91 51.0 3 176 271.60 ± 45.13 
MOTB241212_23 9.02 65.4 13 178 127.60 ± 18.55 
MOTB241212_24 6.11 43.6 19 186 58.69 ± 10.61 
MOTB241212_25 5.01 36.0 2 190 257.60 ± 48.85 

a)Effective Cu concentration of Cu(OAc)2 used in 5 ml ethylene glycol; b)Volume of 2.75 M TMAH in H2O added to 5 
ml ethylene glycol in µl; c)Time in minutes reaction mixture is kept on defined temperature; d)Temperature in °C of 
reaction mixture for defined reaction time; e) Size of the NPs and the standard deviation (STDEV) in nm as measured 
using DLS. 
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Table S3 - Dataset B containing 25 datapoints with particle size, the size with the highest percentage contribution 
in DLS. 

Sample 
Effective Cu 

concentrationa 

[mM] 

TMAHb 

[µl] 
Timec 

[min] 
Temperaturd 

[°C] 
Size ± STDEVe 

[nm] 

MOTB241202_1 5.06 36.0 8 196 252.50 ± 59.37 
MOTB241202_2 4.21 29.0 4 188 228.40 ± 41.47 
MOTB241202_3 2.91 21.8 6 198 148.80 ± 25.56 
MOTB241202_4 2.00 14.6 7 184 99.90 ± 14.07 
MOTB241202_5 8.82 65.4 4 180 183.30 ± 25.42 
MOTB241202_6 3.11 21.8 1 194 160.70 ± 27.62 
MOTB241202_7 10.22 72.8 9 188 204.00 ± 34.54 
MOTB241206_8 8.82 65.4 16 182 222.30 ± 31.62 
MOTB241206_9 2.80 21.8 17 182 192.90 ± 28.88 

MOTB241206_10 6.91 51.0 20 194 237.90 ± 30.29 
MOTB241206_11 6.81 51.0 14 186 167.00 ± 31.15 
MOTB241206_12 6.01 43.6 10 192 269.50 ± 60.33 
MOTB241206_13 8.31 58.2 12 184 66.02 ± 11.94 
MOTB241206_14 1.10 7.2 15 198 102.90 ± 13.51 
MOTB241206_15 2.10 14.6 10 196 114.40 ± 17.64 
MOTB241210_16 3.91 29.0 18 200 157.90 ± 22.70 
MOTB241210_17 3.91 29.0 14 192 304.50 ± 52.21 
MOTB241210_18 8.31 58.2 5 180 184.90 ± 26.97 
MOTB241210_19 2.10 14.6 17 176 188.10 ± 26.04 
MOTB241212_20 7.91 58.2 11 190 50.36 ± 8.16 
MOTB241212_21 5.91 43.6 7 178 312.90 ± 55.82 
MOTB241212_22 6.91 51.0 3 176 271.60 ± 45.13 
MOTB241212_23 9.02 65.4 13 178 127.60 ± 18.55 
MOTB241212_24 6.11 43.6 19 186 58.69 ± 10.61 
MOTB241212_25 5.01 36.0 2 190 257.60 ± 48.85 

a)Effective Cu concentration of Cu(OAc)2 used in 5 ml ethylene glycol; b)Volume of 2.75 M TMAH in H2O added to 5 
ml ethylene glycol in µl; c)Time in minutes reaction mixture is kept on defined temperature; d)Temperature in °C of 
reaction mixture for defined reaction time; e) Size of the NPs and the standard deviation (STDEV) in nm as measured 
using DLS. 

 
  



  

37 

 

 

Table S4 - Dataset C containing only 18 datapoints with monomodal DLS spectrum. 

Sample 
Effective Cu 

concentrationa 

[mM] 

TMAHb 

[µl] 
Timec 

[min] 
Temperaturd 

[°C] 
Size ± STDEVe 

[nm] 

MOTB241202_1 5.06 36.0 8 196 252.50 ± 59.37 
MOTB241202_2 4.21 29.0 4 188 228.40 ± 41.47 
MOTB241202_3 2.91 21.8 6 198 148.80 ± 25.56 
MOTB241202_4 2.00 14.6 7 184 99.90 ± 14.07 
MOTB241202_5 8.82 65.4 4 180 183.30 ± 25.42 
MOTB241202_6 3.11 21.8 1 194 160.70 ± 27.62 
MOTB241206_9 2.80 21.8 17 182 192.90 ± 28.88 

MOTB241206_10 6.91 51.0 20 194 237.90 ± 30.29 
MOTB241206_11 6.81 51.0 14 186 167.00 ± 31.15 
MOTB241206_14 1.10 7.2 15 198 102.90 ± 13.51 
MOTB241206_15 2.10 14.6 10 196 114.40 ± 17.64 
MOTB241210_16 3.91 29.0 18 200 157.90 ± 22.70 
MOTB241210_17 3.91 29.0 14 192 304.50 ± 52.21 
MOTB241210_19 2.10 14.6 17 176 188.10 ± 26.04 
MOTB241212_21 5.91 43.6 7 178 312.90 ± 55.82 
MOTB241212_22 6.91 51.0 3 176 271.60 ± 45.13 
MOTB241212_23 9.02 65.4 13 178 127.60 ± 18.55 
MOTB241212_25 5.01 36.0 2 190 257.60 ± 48.85 

a)Effective Cu concentration of Cu(OAc)2 used in 5 ml ethylene glycol; b)Volume of 2.75 M TMAH in H2O added to 5 
ml ethylene glycol in µl; c)Time in minutes reaction mixture is kept on defined temperature; d)Temperature in °C of 
reaction mixture for defined reaction time; e) Size of the NPs and the standard deviation (STDEV) in nm as measured 
using DLS. 
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Table S5 - Resulting sizes and SPR peaks of the different synthesis samples. 

Sample Size_1 ± STDEVa 

[nm] 
Percentage_1b 

[%] 
Size_2 ± STDEVa 

[nm] 
Percentage_2b 

[%] 
Size_3 ± STDEVa 

[nm] 
Percentage_3b 

[%] 
SPRd 

[nm] 
MOTB241202_1 252.50 ± 59.37 99.9 5414.00 ± 647.80c 0.1   613 
MOTB241202_2 228.40 ± 41.47 99.9 5135.00 ± 775.60c 0.1   625 
MOTB241202_3 148.80 ± 25.56 100     612 
MOTB241202_4 99.90 ± 14.07 100     699 
MOTB241202_5 183.30 ± 25.42 100     597 
MOTB241202_6 160.70 ± 27.62 100     699 
MOTB241202_7 64.65 ± 8.80 29.1 204.00 ± 34.54 70.9   592 
MOTB241206_8 40.85 ± 5.20 33.1 222.30 ± 31.62 66.9   590 
MOTB241206_9 192.90 ± 28.88 100     609 

MOTB241206_10 237.90 ± 30.29 100     591 
MOTB241206_11 167.00 ± 31.15 98.9 5164.00 ± 744.50c 1.1   636 
MOTB241206_12 60.10 ± 6.88 27.1 123.70 ± 22.78 14.1 269.50 ± 60.33 58.80 622 
MOTB241206_13 66.02 ± 11.94 53 126.20 ± 18.36 4.7 259.90 ± 45.83 42.30 611 
MOTB241206_14 102.90 ± 13.51 100     618 
MOTB241206_15 114.40 ± 17.64 100     619 
MOTB241210_16 157.90 ± 22.70 100     593 
MOTB241210_17 304.50 ± 52.21 100     616 
MOTB241210_18 59.09 ± 6.13 30.4 184.90 ± 26.97 69.6   605 
MOTB241210_19 188.10 ± 26.04 99.7 5532.00 ± 608.70c 0.3   626 
MOTB241212_20 50.36 ± 8.16 63.5 233.10 ± 37.46 36.5   595 
MOTB241212_21 312.90 ± 55.82 100     609 
MOTB241212_22 271.60 ± 45.13 99.9 5380.00 ± 654.70c 0.1   601 
MOTB241212_23 127.60 ± 18.55 100     595 
MOTB241212_24 58.69 ± 10.61 56.4 247.00 ± 39.81 43.6   600 
MOTB241212_25 257.60 ± 48.85 100     597 

a) Hydrodynamic diameter in nm of the Cu NPs and the standard deviation (STDEV) measured using DLS in ethanol; b) Percentage contribution of the respective peak to the DLS spectrum; c) Due 
to their irrelevant size and minimal contribution to the DLS spectrum, these peaks will not be considered during the further study; d) Location of the SPR peak in nm as measured in ethylene glycol 
using UV-vis. 
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Figure S1 – DLS spectra of experimental synthesis samples a)MOTB241202_1; b)MOTB241202_2; 
c)MOTB241202_3; d)MOTB241202_4; e)MOTB241202_5; f)MOTB241202_6; g)MOTB241202_7; 
h)MOTB241206_8; i)MOTB241206_9; j)MOTB241206_10. 
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Figure S2 - DLS spectra of experimental synthesis samples a)MOTB241206_11; b)MOTB241206_12; 
c)MOTB241206_13; d)MOTB241206_14; e)MOTB241206_15; f)MOTB241210_16; g)MOTB241210_17; 
h)MOTB241210_18; i)MOTB241210_19; j)MOTB241212_20. 
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Figure S3 - DLS spectra of experimental synthesis samples a)MOTB241212_21; b)MOTB241212_22; 
c)MOTB241212_23; d)MOTB241212_24; e)MOTB241212_25. 

 

 
Figure S4 - Learning curve analysis of predictions for the binary class of the size of nanoparticles. Models fine-
tuned with 10 (blue), 25 (green), 50 (orange) and 100 (red) epochs were validated. GPT-J was used as the base 
model. 
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Figure S5 - UV-vis spectra of samples a)MOTB241202_1; b)MOTB241202_2; c)MOTB241202_3; 
d)MOTB241202_4; e)MOTB241202_5; f)MOTB241202_6; g)MOTB241202_7; h)MOTB241206_8; 
i)MOTB241206_9; j)MOTB241206_10; k)MOTB241206_11; l)MOTB241206_12; m)MOTB241206_13; 
n)MOTB241206_14; o)MOTB241206_15;  p)MOTB241210_16; q)MOTB241210_17; r)MOTB241210_18. 
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Figure S6 - UV-vis spectra of samples a)MOTB241210_19; b)MOTB241212_20; c)MOTB241212_21; 
d)MOTB241212_22; e)MOTB241212_23; f)MOTB241212_24; g)MOTB241212_25. 
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