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Abstract English 

Vacancy defects in diamond, such as the nitrogen-vacancy (NV) centers, play an important role 

for quantum applications, and a deeper understanding of their dynamics is necessary to improve 

quality and understanding. The controlled creation of vacancy defects in diamond 

experimentally is time-consuming and expensive. Alternately, these structures can be created 

computationally, with density functional theory (DFT), which requires a lot of time and 

computational power. The next solution is sought in machine learning (ML). Specifically, in 

the creation and implementation of an ML model, based on interatomic potentials, to predict 

behavior and molecular dynamics (MD). This study establishes a proof of principle for a 

working ML model trained on ab initio DFT calculations. Specifically for hydrogen-vacancy 

(HV) defects, as a stepping stone towards understanding other defects. Through exploration of 

ML Interatomic Potentials (MLIP)s, an initial model is made for predicting forces and energy 

of HV defects in diamond, resulting in the final model having an accuracy of 8.8 meV atom-1 

(MAE) for the energies. With these final models, MD simulations are run, proving that the 

MLIPs can be applied to MD, thereby adding a stepping stone for further research into MLIPs 

for diamond defects for quantum applications. 
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Abstract Dutch 

Vacancy defecten in diamant, zoals nitrogen-vacancy (NV) centers, spelen een belangrijke rol 

voor kwantum applicaties. Dieper inzicht in hun dynamica is essentieel om kwaliteit en begrip 

te verbeteren. De experimenteel gecontroleerde creatie van vacancy defecten in diamant is 

tijdrovend en duur. Alternatief kunnen deze structuren computationeel gecreëerd worden, met 

density functional theory (DFT), wat ook veel tijd en computationele kosten vergt. De volgende 

oplossing wordt gezocht in machine learning (ML). Specifiek, in het creëren en implementeren 

van een ML model, gebaseerd op interatomaire potentialen, om het gedrag en de moleculaire 

dynamica (MD) te voorspellen. Deze studie bewijst dat het mogelijk is om een werkend ML 

model te creëren, getraind op ab initio DFT calculaties. Specifiek voor de waterstof-vacancy 

(HV) defecten, als eerste stap richting comprehensie van andere defecten. Door exploratie van 

ML Interatomaire Potentialen (MLIP)s, is een initieel model gecreëerd voor het voorspellen 

van de krachten en energieën van HV defecten in diamant, resulterend in een accuraatheid van 

8.8 meV atom-1 (MAE) voor de energieën. Met deze finale modellen worden MD simulaties 

gerund, die bewijzen dat de MLIPs toegepast kunnen worden voor MD, en hiermee een 

startpunt bieden voor verder onderzoek in MLIPs voor diamant defecten voor kwantum 

applicaties. 

 

1. Introduction 

Defects in diamond are known as promising candidates for a variety of applications, such as 

quantum sensing, magnetometry, and quantum computing.1,2 Diamond in itself has unique 

mechanical, physical, chemical, and engineering properties.3 The introduction of defects into 

diamond, however, drastically changes these properties, and leaves us with new research 

opportunities. 

 

A defect is an imperfection in the crystal structure. In the case of diamond, this can be, for 

example, a missing carbon atom, other elements that have intruded in the structure, or a 

dislocation in the diamond structure. These defects can arise in several ways, such as during the 

process of growing diamond. All defects lead to a change in the electronic structure of the 

system. One type of defect is a color center, which is a point defect where an impurity in the 

diamond lattice impacts the way light is absorbed by diamond, resulting in a change of color, 

different from the colorless pristine diamond.4 Current diamond research focusses mainly on 

the nitrogen-vacancy (NV) center, which is a color center. Here a carbon atom is replaced by a 

nitrogen atom, and an additional neighboring carbon atom is removed. These NV centers have 
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many interesting applications due to their optical and spin properties.5 The hydrogen-vacancy 

(HV) center, is another type of defect where a carbon atom is replaced by a hydrogen atom, and 

an additional neighboring carbon atom is removed.6 HV centers in itself are not commonly used 

for quantum applications, since the NV center is a more popular defect with a great variety of 

applications. But for the creation of diamond containing NV centers, hydrogen (H) is often 

introduced during the diamond growth. The plasma in which diamond is grown consists of 

>95% H, a few percentages methane (CH4, the carbon source) and other gasses (to introduce 

defects). This means that a lot of H is present on the diamond surface, and since H is an atom 

that easily diffuses though diamond, it is thus still present in the final diamond samples for 

quantum applications.7,8 Another type of defect involving hydrogen, is an interstitial hydrogen 

defect, where hydrogen atoms occupy non-lattice places in the crystal structure, the ‘interstitial 

sites’.9,10 An X-vacancy diamond defect, with X representing another atom, is visualized in 

Figure 1. 

 

Figure 1. (left) Bulk diamond system without a defect, (right) an X-vacancy in the diamond 

system. The gray atoms represent the carbon atoms, the black atom represents the X-atom, and 

the white circle represents the vacancy. Figure from J. P. Goss, et al.11 

 

When considering actual applications for diamond defect structures, one has to consider the 

quality of these structures. Experimental uses of NV centers for quantum applications are still 

dependent on the quality of both the created diamond and the created defects. Unwanted defects, 

such as oxygen that can contaminate the diamond structure, nitrogen that, while being in the 

structure, does not become part of an NV center, and hydrogen, a very common element during 

diamond growth, can lead to a lower (or higher) quality. Each element that gets introduced into 

the diamond structure, can lead to an impact on the properties. Other color centers, such as 

silicon (Si)-, germanium (Ge)-, tin (Sn)- and lead (Pb)-vacancies have also been explored with 

both similar and different (optical) properties to NV centers, and with varying differences in 

stability and excitation and emission bands.2,12 
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Synthetic diamond can be grown with a variety of techniques, such as High-Pressure and High-

Temperature (HPHT), or Chemical Vapor Deposition (CVD). During the growth of synthetic 

diamond for quantum applications, hydrogen (H) is one of the most common impurities, besides 

nitrogen (N), during either HPHT or CVD.7,13 H contributes to the properties of the grown 

diamond, affecting color, luminescence, growth, stability, etc. A detailed understanding of the 

exact behavior of H in diamond, however, is still needed.9,14,15 

 

It is time-consuming and expensive to control the specific insertion of defects into diamond, 

especially considering the possible contamination with other elements into the structure. The 

solution, therefore, would be to create these structures computationally and to study the 

properties theoretically. In order to gain a deeper understanding of the processes present during 

experimental creation of color centers, it is crucial to study the behavior and dynamics of these 

defects in diamond. 

 

This defect-behavior can be described by the Schrödinger equation. As this equation cannot be 

solved exactly, approximations are needed to calculate the desired values. One of such 

approximations being density functional theory (DFT), a computational quantum mechanical 

modelling method that is exact for the ground state, but reformulated in terms of the density 

instead of the wavefunction. DFT uses functionals of the electron density, to formulate the 

interatomic potentials between the atoms in a system.16 In contrast, in the case of a (classical) 

force fields approach, the interatomic potentials are formulated as a simple analytical 

mathematical equation describing the interaction between atoms. This latter approach is 

computationally cheaper and can more easily be used to describe the defect in molecular 

dynamics (MD) simulations, although it has a lower accuracy than DFT. 

 

While DFT can be used to calculate one specific defect in detail, using it for large systems or 

for many different defects requires a lot of time and computational power. The related energy 

costs can be directly linked to an increase in CO2 emissions, and thus a negative impact on the 

environment. This is why a more efficient method is desirable. The recent popularity of AI and 

machine learning (ML), and the Nobel Prizes of Physics and Chemistry being awarded to ML,17 

highlights the potential of ML to be used in material science. A machine learning model is 

trained on an existing dataset, in order to be able to predict a certain output based on the given 

input. Instead of using extensive DFT calculations for every defect, smaller DFT calculations 

can be used to create an initial dataset. These can then be used to train an ML model. This ML 
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model could look at existing DFT calculations, and form patterns between the input (in this 

case the diamond structure with a specific defect), and the output (the interatomic potentials).18 

When new diamond structures with specific defects are presented to this created ML model, the 

model, using patterns derived from similar inputs, predicts the interatomic potentials. This uses 

only a fraction of the computational cost that would be needed to perform the DFT calculations 

for the new system, while still being able to reach DFT-level accuracies. The potential decrease 

in computational power shows promising potential for ML to be used as this more efficient 

method.  

 

Current research already implements ML for predicting and modelling material properties.19–21 

However lack of accuracy and high computational costs,22 combined with a lack of a 

generalized model for multiple defects, leads to an opportunity to fill in some knowledge gaps 

with this work. 

 

As current ML interatomic potential (MLIP) models focus more on small systems and 

molecules, the next step is to adapt these models for solids, such as a diamond system. The goal 

in this thesis is to develop the following proof of concept: the possibility to create an MLIP 

model for a diamond system with defects. Before a general MLIP model can be created for 

diamond containing various defects, it has to be created for only a few defects: the HV center, 

and the two H interstitial defect. In order to evaluate the types of MLIP and prove that such a 

model is possible, the focus in this thesis is only on these two H-related defects in diamond. 

 

2. Theoretical Background 

2.1. The hydrogen-vacancy (HV) diamond systems 

The systems we will analyze are two diamond cells of 2 × 2 × 2 atoms, with one system 

containing a HV defect (referred to as HV-diamond), and the other system containing two H 

interstitial defect (referred to as H2I-diamond). These systems are visualized in Figure 2. 
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Figure 2. 2 × 2 × 2 diamond systems, (left) HV-diamond (63 atoms), and (right) H2I-diamond 

(66 atoms). Visualized with VESTA.23 The brown atoms represent the carbon atoms, while the 

white atoms represent the hydrogen atoms. 

 

The reason for the limited size of the diamond system, is that larger systems are more 

computationally expensive, while this thesis is a proof of concept. And secondly, that due to 

the hardware limitations, models for more than 70 atoms cannot be trained. An actual diamond 

system used for quantum applications, on the other hand, is much larger. The goal is thus to add 

periodic boundary conditions (PBCs) to the ‘unit cell’ from Figure 2, in so far as the MLIPs 

can deal with PBCs. 

 

The initial systems are defined in POSCARs, a Vienna Ab initio Simulation Package (VASP) 

input file containing the type of system, the lattice geometry, and the starting positions of the 

atoms.24,25 The DFT-output is similarly in VASP files, with the most relevant file for the data, 

being the VASPRUN.xml file, which contains all the output together. Separate parts of the 

output, for fast evaluations, in our case, can be found in the OSZICAR, OUTCAR, and 

XDATCAR files.26 

 

A more detailed analysis of the DFT outcomes can be found in the supporting information S2. 

For the following sections, the following details of the four DFT-systems are sufficient: total 

energies in the range [-580;-545] eV, energies per atom in the range [-9.0;-8.3] eV atom-1, and 

normalized forces in the range [3;51] eV Å-1. The complete dataset (after filtering), consisted 

of 47192 data samples, which were divided into training, validation, and testing datasets, with 

approximately an 80/10/10 (%) split. 
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2.2. Machine Learning Interatomic Potential overview 

For an ML model to go from the input features to the targets, MLIPs need to be constructed. 

MLIPs are a way to describe the energy and forces of a system as a function dependent on the 

atomic positions. In other words, an MLIP could be described as a mathematical representation 

of the Potential Energy Surface (PES). The main difference between ML potentials and DFT 

calculated potentials, is that ML potentials do not have a description of the electronic structure, 

(as they do not perform the quantum mechanical electronic structure calculations), and thus 

works by finding patterns derived from the training data. 

 

Before building an MLIP, certain technical considerations have to be made: The available 

computational resources, the type of data the model is going to be trained on, the properties it 

is going to predict, and what physical constraints will be taken into account. 

ML models generally work through pattern-finding, instead of a formula-based approach. If a 

model needs to follow the laws of thermodynamics, or energy conservation, or any of the other 

physical laws of the universe that describe the systems, these physical constraints need to be 

added. This is done by the user/developer to ultimately create MLIPs that can accurately predict 

properties based on scientific principles. This general shape of the to-be-created MLIP, is 

important to think about before building the actual model.19,20,27–30 

 

In general, the steps to create an MLIP are: (1) Creating a reference database containing 

structural information (input), and compute energies and forces using DFT (ideal output), (2) 

Create descriptors for the atomic structures from the database, (3) “Learning” the PES using an 

ML model. These steps are visualized in Figure 3. 

 

Figure 3. Schematic representation of the steps needed to create an MLIP model. Figure from 

V. L. Deringer, et al.19 
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The reference database (1) needs to contain many geometries. The easiest way to create those 

consistently is by running an MD (Molecular Dynamics) or MC (Monte Carlo) simulation using 

the DFT code (more details in section 3.1). The descriptors (2) are a way to translate the atomic 

positions of the system into something the model can understand. These descriptors are often 

linked to (and included by) the type of ML model.28 One such example of a descriptor is SOAP, 

which stands for Smooth Overlap of Atomic Positions.31 The learning step (3) can be divided in 

different types of ML models: linear regression, kernel-based methods, and artificial neural 

networks (NNs).  

 

Linear regression is the simplest of these, makes use of polynomials to fit the interatomic 

potential, and is in general the fastest type of model, while needing the most guidance during 

model creation. Examples of this type include SNAP (Spectral Neighbor Analysis Potential)32 

and MTP (Moment Tensor Potentials).33 Kernel-based models (such as KRR (Kernel ridge 

regression)34 and GPR (Gaussian Process Regression)35 types) work by finding similarities 

between datapoints. Less training data is needed, as long as the atomic structures trained on are 

similar enough to the to-be-predicted structures. Examples of this type include GAP (Gaussian 

Approximation Potential),36 and (s)GDML.37 NNs are the most complex type of model, 

working similar to neurons. These models have the highest accuracy overall, and are more 

flexible to differences in input. The downsize is that there are extremely many parameters that 

need to be adjusted during training, resulting in a higher computational cost than the simpler 

models. Due to its accuracy, NNs are more studied for MLIPs applications. Examples of this 

type include SchNet,38 NequIP,39 and ANI.40 Kernel methods are theoretically a nice way to 

predict properties, as the reference data is incorporated inside the model itself, and is easier to 

visualize and understand. While NNs are more of a “black-box” method.41 

 

The advantage for kernel-based methods is that they need less training data, which leads to less 

computationally expensive calculations being needed. But where kernel methods can fail due 

to scaling issues of the sheer size of diamond clusters, NN’s prevail, by taking a more 

generalized approach to linking input properties to the output properties. Another difference is 

that kernel-based methods use nonparametric ML algorithms, while NN’s use parametric ML 

algorithms. This means that the descriptor for kernel-based methods varies depending on the 

input data, while the descriptor for NN’s stays the same regardless of data, and is thus more 

scalable.30 More details about two specific MLIPs, and a general summary of other MLIPs are 

given in the following subsections. 
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2.2.1. sGDML 

sGDML is a kernel-based model,37 and stands for symmetric gradient domain machine learning. 

It is based on the gradient domain ML (GDML) model,42 but with added physical symmetries 

(the ‘s’). These symmetries refer to the dynamical (and static) symmetries of the specific system 

it is trained on, while GDML only looked at spatial and temporal symmetries.43 sGDML has its 

basis in the law of energy conservation, and this is, similar to GDML, implemented by taking 

the atomic gradients of the energies instead of the atomic energies themselves, and only 

calculating the energies later based on (integration of) the created force field. The reason for 

this, is that S. Chmiela, et al.42 argue that adding all the atom energies together is an 

approximation that does not necessarily comply to energy conservation of the system (due to 

(1) slight inconsistencies between created models and the original calculations, and (2) the fact 

that quantum systems also have non-local interactions and entanglement), while taking the 

forces as the main property for the model does lead to energy conservation. The fact that 

sGDML learns based on the atomic forces, which are the gradients of the PES, is the reason for 

the “gradient domain” in the name. 

 

The (very) simplified mechanism behind the actual sGDML creation is to (a) take the positions 

of the system (geometry) and transform these positions into a descriptor, (b) use a kernel 

function to go from the descriptor to a force field kernel matrix, and (c) transform this matrix 

into a PES. 

a) The descriptor creation uses invariant properties (meaning they do not change even if the 

system is for example rotated). 

b) The creation of the kernel is the part where the similarity between datapoints happens. The 

kernel can be explained (simplified) by a linear function (Equation 1): 

𝐾 ∙ 𝐴 = 𝑓            (1) 

Where K is a kernel, A is the to be predicted solution, and f is the atomic force label. 

Equation 1 is then solved by using a gradient descent method. 

c) The PES is ultimately reconstructed by integration of the force field kernel matrix.41,42 

 

The goal is to first recreate an existing MLIP model, using an easier dataset, to get the necessary 

software working, and test my hardware limitations. For this, the workings of sGDML are tested 

with paracetamol DFT data. Here I follow in the steps of S. Chmiela, et al.37, who created this 

dataset and trained their model on an Intel Xeon E5-2640 CPU at 2.40 GHz, which is similar 

to my own laptop (13th Gen Intel(R) Core(TM) i7-13620H at 2.40 GHz). Once this model works, 
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the next step is to build an MLIP model for our diamond systems. In theory, sGDML models 

should be possible for systems containing hundreds of atoms,44 and sGDML in particular is 

more scalable compared to other kernel-based methods. But in practice, this is still very much 

limited by the device specifications on which the model is trained. 

 

2.2.2. SchNet 

SchNet stands for Schrödinger Network, a NN based model that uses continuous-filter 

convolutional layers in a neural network, and takes quantum-chemical restraints into account.38 

The mechanism behind SchNet is visualized in Figure 4 and can be simplified into four parts: 

1) Molecular representation: The atomic positions and nuclear charges of the initial systems 

are converted into the features (descriptors). This is done by the neural network layers (with 

‘learned embeddings’) which create feature maps. 

2) Atom-wise layers: These are specifically applied to the separate atoms in the system, and 

are responsible for recombining the feature maps. 

3) Interaction: Update the representation of the system based on the positions of all atoms in 

the system. It is responsible for the interaction between the atoms and the feature maps. 

This part contains filter-generating networks.  

4) Filter-generating networks: Continuous-filter convolutions are used to model the 

interactions between the atoms in the system and to ultimately link the representation of the 

system (feature map) to the interatomic forces and energy. Here the physical constraints 

(and chemical knowledge) can be added, such as rotational invariance for the systems.38,45 

 

Figure 4. (left) Overview of the SchNet mechanism, (middle) zoomed in ‘interaction’ block, 

(right) zoomed in ‘continuous-filter convolutions block’. Schematic from K. Schütt, et al.38 
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SchNet is focused on predicting the energy of the system, and if the atomic forces need to be 

predicted, it differentiates the energy (Equation 2). 

𝐹𝑖(𝑍1, … , 𝑍𝑛, 𝑟1, … , 𝑟𝑛) = −
𝜕𝐸

𝜕𝑟𝑖
(𝑍1, … , 𝑍𝑛, 𝑟1, … , 𝑟𝑛)     (2) 

With 𝐹𝑖  being the atomic forces, 𝑍𝑗  and 𝑟𝑗  being respectively the nuclear charges and the 

positions of atom j, and 𝐸  being the energy. This equation also results in the energy 

conservation of the systems modeled with SchNet. A practical difference between sGDML and 

SchNet is that the former uses the total energy of the system, while the latter uses the energy 

per atom. 

 

2.2.3. Other MLIPs 

There are many other MLIPs, and research in this field is rapidly expanding, with many groups 

making their own classifications of MLIPs. A few note-worthy MLIPs are listed up below.46 

a) KLIFF, stands for Knowledgebase of Interatomic Models-based Learning-Integrated 

Fitting Framework,47 and is a more general framework for fitting MLIPs. KLIFF combines 

all the necessary steps to create a MLIP model, and integrates it with KIM (Knowledgebase 

of Interatomic Models).48 KIM is a project which contains a repository of IPs that can be 

used to train models. This collaboration with KIM enables exact reproductions, easy testing, 

easy deployment, and ensures the quality control of KLIFF MLIP models. 

b) GAP, stands for Gaussian Approximation Potential,36 and works similar to sGDML by 

using kernel regression. GAP uses SOAP (Smooth Overlap of Atomic Positions), which is 

a local descriptor, while sGDML has a global descriptor. With its use of SOAP, GAP does 

focus less on the reference data, which means that it works even if the input data is more 

disconnected. But in contrast to sGDML, GAP is not good in learning long-range 

interactions.49 

c) NequIP, stands for Neural Equivariant Interatomic Potential,39 which works very similar 

to SchNet, with the same convolution layers approach and embedding, but has an additional 

equivariance aspect (extra internal features that are equivariant to rotation and reflection), 

which changes its learning behavior, and makes it different from SchNet.39 

d) GNoME, stands for Graph Networks for Materials Exploration,50 which looks similar to 

SchNet with its use of Graph NNs, as it is an expansion of NequIP. GNoME starts with 

NequIP models and improves them based on their own (larger) dataset. GNoME is an 

extremely scaled-up version of previous MLIPs, where the focus lies on the prediction of 

material stability.50 
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e) GemNet, stands for Geometric message passing neural network,51,52 which also uses Graph 

NNs, similar to SchNet. A difference between SchNet and GemNet is that where the former 

has one type of interaction (Figure 4), the latter has three types of interaction, from which 

it derives the geometric message passing in its name.51 

 

2.3. Molecular Dynamics 

Richard Feynman claimed the most important statement of scientific knowledge with the 

highest information-to-words ratio to be: “All things are made of atoms—little particles that 

move around in perpetual motion, attracting each other when they are a little distance apart, 

but repelling upon being squeezed into one another.”53 This ‘atomic hypothesis’ brings us to 

the perpetual motion of atoms. Even in diamond bulk systems, the atoms are always moving. 

Molecular dynamics (MD), is a way to describe this motion by calculating the trajectories 

(solving equations of motion) of all parts of the system, per timestep.  

 

There are multiple ways to perform MD, but they are all based on the same principle. From (1) 

the initial system configuration, to (2) calculating the forces acting on each atom (remember 

equation 2), to (3) finding the new positions based on the integration of Newton’s equations of 

motion, to (4) repeating step 2 and 3 for each timestep.54 Step (3) can be performed with 

multiple algorithms, one example being the Verlet algorithm.55 

 

The way that the MDs work in simulations, is by moving each atom based on their forces. The 

interaction between the system and its environment is specified according to its ensemble. MD 

simulations can be run in different ensembles (different conditions), that are based on 

thermodynamics. 

a) A microcanonical ensemble, NVE, is completely isolated from its environment, with the 

number of particles (N), the volume (V), and the energy (E) constant. This ensemble is not 

often used for MDs, because real systems are not completely isolated. 

b) In a canonical ensemble, NVT, there is a transfer of energy between the system and its 

environment, but the particles of the system itself stay. The number of particles (N), the 

volume (V), and the temperature (T) are constant. For NVT, it can be visualized as a system 

in a heat bath or ‘thermostat’. 

c) In the isothermal-isobaric ensemble, NPT, there is a transfer of heat between the system 

and its environment, and the volume of the system itself is also variable. The number of 

particles (N), the pressure (P), and the temperature (T) are constant. This MD is more 
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computationally costly than NVT, partially due to stress tensors that also need to be 

calculated. 

Lastly, MD simulations can also be used to develop thermodynamic equations, such as the 

Equation of State (EOS), which shows the relationship between the pressure, the temperature, 

and the volume of a system. 

 

MDs for all these ensembles can be performed with different methods. The first one being ab 

initio molecular dynamics (AIMD), makes use of DFT. This method has a high accuracy, but 

is limited to a few atoms over small timescales, and has a high computational cost. This method, 

with the NPT ensemble, is used to create the reference dataset for this thesis. The second MD 

method is classical molecular dynamics (CMD), based on empirical force field models, using 

physics-based potentials (such as the Lennard-Jones potential). When talking about MD, CMD 

is usually the type that this refers to. This method links atomic interactions to properties on a 

larger scale, with millions of atoms and longer timescales, but is also less accurate than AIMD. 

The third MD method is the one based on MLIP. MLIP based MDs try to find a balance between 

AIMD and CMD, by combining the larger scale and speed of classical MD with the AIMD 

accuracy. Depending on the specific MLIP, the principle behind their MDs tend to shift closer 

to either AIMD or CMD.46,56 

 

From a more practical point of view, the steps to perform an MD can be visualized, in the case 

of SchNet-based MLIPs, using schematics from SchNetPack 2.0,57 as seen in Figure 5. 

         

Figure 5. (left) The overview of the workflow of an MD simulator, (right) the overview of a 

single MD-step. Schematic from SchnetPack 2.0.57 
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The simulator (left) in Figure 5, is the part that performs the MD simulation. The ‘calculator’ 

connects to the trained SchNet-based MLIP, as the object that takes the initial structure 

(positions (R) and type of system), and calculates the energies and forces (F). The ‘integrator’ 

is the part that calculates the new positions (R) and momenta (P). The ‘system’ is the object 

that keeps track of the R and P of the system (molecule). The MD-step (right) in Figure 5, is a 

closer view of what happens in one single MD step. Each white square is called a ‘simulation 

hook’, because those are the places where customized actions can be ‘hooked’ to the MD 

calculation. The thermostats and barostats are to define the temperature and pressure in the MD 

run (for NVT and NPT, respectively), and the logging is to keep track of the outcomes. For the 

created MLIP models, the EOS and the NVT MDs will be performed as they are the simplest 

MDs to calculate for this proof-of-concept MLIP. 

 

3. Results & Discussion  

3.1. Database creation 

Before an ML model can be made, the data needs to be preprocessed. The input data needs to 

be of a high enough quality, and large enough to be able to train accurately, validate the training, 

and test all resulting models. To ensure the quality of the H-defect-diamond calculations, a level 

of theory with consistent and accurate calculations needs to be used. DFT is a computational 

quantum mechanical modelling method that uses functionals of the electron density, and is 

accurate enough to use as a reference for these calculations. 

 

Four NPT calculations (HV-diamond and H2I-diamond, at 500 K and 800 K), were performed 

using the VASP package on the VSC, by Prof. dr. dr. Vanpoucke. The resulting files, with the 

calculation details, were delivered as the pre-datasets. From these pre-datasets, the most 

important value-types to be extracted are the system itself (i.e. types of atoms in the system), 

and per timestep properties (i.e. the positions of all the atoms in the system, the total energy, 

and the forces per atom). Other values of importance are the temperature at which the NPT run 

is performed, the type of NPT run, the volumes of the system per timestep, etc. 

 

For each type of MLIP, different formats of databases are used, due to the differences in the 

MLIP model infrastructures. This is mostly due to the differences in the creation of the 

descriptors between models. sGDML uses its own proprietary format, with the database file 

ending in ‘.npz’. They do offer conversion scripts, but as those are liable to make errors, it is 

best to transfer the data directly to their format. A common type of database for MLIPs is the 



  

15 

 

Atomic Simulation Environment (ASE) database,58,59 because it is a convenient and compact 

way to store atoms. SchNet, and the ePotentia model use an ASE database. Additional 

information for the database creation, such as DFT calculations and database conversion details, 

are explained in the Experimental/Methods Section of this thesis. 

 

3.2. Model creation 

Each model that is created is evaluated using three error-metrics. The Root Mean Square Error 

(RMSE) (Equation 3), the Mean Absolute Error (MAE) (Equation 4), and the coefficient of 

determination (R2) (Equation 5). 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑝𝑟𝑒𝑑,𝑖−𝑦𝑡𝑟𝑢𝑒,𝑖)

2

𝑛
𝑛
𝑖          (3) 

𝑀𝐴𝐸 =
∑ |𝑦𝑝𝑟𝑒𝑑,𝑖−𝑦𝑡𝑟𝑢𝑒,𝑖|𝑛

𝑖

𝑛
          (4) 

𝑅2 = 1 −
∑ ((𝑦𝑡𝑟𝑢𝑒,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)

2
)𝑖

∑ (𝑦𝑡𝑟𝑢𝑒,𝑖−(𝑦𝑡𝑟𝑢𝑒,𝑚𝑒𝑎𝑛)2)𝑖
        (5) 

 

RMSE calculates the standard deviation of the residuals, MAE calculates the average of the 

residuals, and R2 calculates the proportion of the variance. This means that RMSE and MAE 

are dependent on the value ranges of the predicted energy and forces, and have the same units 

as these energies and forces. The R2 is independent of those value ranges (without units), and 

can be used to directly compare all models to each other. 

 

3.2.1. sGDML model 

MLIP frameworks do not work immediately after downloading, but instead require a lot of 

tweaking and setting up a virtual environment near identical to the one the creators of the 

framework used. This means that it took a while to figure out all the documented and 

undocumented variables that had an impact on the framework. After extensive trial and error, 

the sGDML framework was able to be used to recreate an existing paracetamol MLIP model. 

The next step was to build an MLIP model for the HV-diamond systems. 

 

The training of an sGDML model for larger systems turned out to be limited by the available 

working memory (RAM) of the used hardware (my laptop only has 16 GB RAM, with even 

less actually available for the model training). Testing diamond systems of increasing sizes 

using the sGDML framework on this device, showed a limit of 70 atoms per system. The 

amount of samples that can be used for training at once was also limited, with the python kernels 
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crashing when the input was more than 100 samples. To work around this, the model was 

trained using “data packets”. Instead of loading the entire dataset into the working memory of 

the model, only 100 samples (1% of this particular training dataset) were loaded at once, trained 

for a small part, and saved to a temporary model file. Then, when there was enough memory 

free again, the next data packet was opened, and transfer learned on the previous model to create 

a new “temporary model”, until the whole training dataset was processed. This iterative process 

lowers the quality of the model, as all datapoints cannot be processed at once, but seems to be 

the only way to train within the current limitations. A graphical representation of this process 

is shown in Figure 6. 

 

Figure 6. A graphical representation of the “data packets” process. In blue is the part where the 

data samples are converted to the descriptors and cut into the data packets. In purple is the 

creation of the kernel. And red (the looping part) shows how each kernel, after being saved, is 

‘updated’ with a new data packet. 

 

To test the quality of this type of model, and lower the overall computational costs, this model 

was at first only trained and tested on one of the four DFT datasets, namely the HV-diamond at 

500 K (which contains a total of 15000 samples). Once the logistics of this training process 

were streamlined, a small part of the dataset was used as training to test for various 

hyperparameters. The sGDML model with hyperparameters sigma = 10, lambda = 10−10, 

showed the best performance from this small hyperparameter-test. This model was then trained 

on 10 000 datapoints (of the 15 000) of the complete HV-diamond at 500 K dataset. Instead of 

only predicting on the test set, this model predicted for the entire dataset, to see if it would also 

‘remember’ the correct values for the training data. The results for both the predicted energy 

and the predicted normalized forces, are shown in Figure 7.  
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Figure 7. Correlation plots of the predicted energy per atom (left) and normalized forces (right) 

using the sGDML model with 𝐬𝐢𝐠𝐦𝐚 = 𝟏𝟎, 𝐥𝐚𝐦𝐛𝐝𝐚 = 𝟏𝟎−𝟏𝟎. The red line is what an ideal 

model would predict. 

 

As can be seen in Figure 7, the sGDML model does not seem to work for the diamond systems 

within the hardware limitations. The error-metrics for this model are shown in Table 1, with 

negative R2 values showing a predictive quality even below taking the average value. 

 

Table 1. The RMSE, MAE, and R2 values of the final sGDML model, for the predicted energies 

and normalized forces. 

Target RMSE MAE R2 

eatom [eV atom-1] 0.021 0.016 -1.946 

(normalized) forces [eV Å-1] 18.917 18.741 -143.027 

 

Ultimately the predictions are bad for the sGDML models, and considering that the model 

cannot even predict correctly for the datapoints it is trained on, a different approach needed to 

be used. With a clearer understanding of the workings of one type of MLIP model, a different 

MLIP model was sought. 

 

3.2.2. SchNet model 

Similar to sGDML, the SchNet MLIP framework required a lot of tweaking and required setting 

up a virtual environment. The necessary software was installed and an adapted ASE database 

was built according to the SchNet specifications. Although SchNet appeared to be the most 

promising of the NN models, errors outside of my reach (due to device limitations for the 

software that go back to the python code itself), and the limited hardware (laptop) itself, 

prevented the creation of a working SchNet model. 
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A potential solution was found within SchNetPack 2.0, but due to time constraints, this is an 

exploration for a future project. The basics of SchNet itself did give insight into the workings 

of an NN MLIP, and NNs (in theory) showed to be the best type of MLIPs for the diamond 

systems. So an alternative SchNet-based MLIP is sought. 

 

3.2.3. ePotentia model 

Due to the confidentiality of most similar existing MLIP models, the limitations of the free-

access models, and the time-constraints within a MSc thesis, training an accurate MLIP NN 

model for a solid system from scratch proved to be a too challenging goal with the available 

time and resources. 

 

Reaching out to the AI consulting company, ePotentia,60 where I did my internship during the 

first year of Materiomics, I was allowed access to their confidential MLIP model infrastructure. 

They started from the gemnet_oc model (open source),61 and adapted it within the context of 

industrial projects, using their own calculator. Similarly, I used their infrastructure and 

calculator, and started from the gemnet_oc model (so as not to accidentally include confidential 

data). As this model was already trained on systems containing carbon (C) and hydrogen (H), 

the MLIP infrastructure existed for further training for a new model (although not trained on 

systems similar to bulk diamond). Additionally, ePotentia’s hardware is dedicated for AI model 

training, and did not have the same limitations my laptop has. 

 

The input data for this ePotentia model needed to be in ASE format, similar to SchNet, but with 

different descriptors for the variables. For example ‘eatom’, for the energy per atom, with the 

positions, energies, and forces defined slightly different in the database. So an important step 

here was to convert the DFT diamond data into the correct format (database creation in part 3.1). 

In order to use the MLIP model to get the predicted values, ePotentia’s own calculator was used. 

The training process consisted of a preprocessing step, and the transfer learning step. The 

learning happened in epochs, and the specific parameters had to be defined before preprocessing 

(see Methods section for more details).  

 

Initial predictions for the test data, showed that the predicted energy ranges for a diamond 

system with this initial ePotentia model were (of course) very different than the actual energy 

values for a diamond system should be (Figure 8). To specialize this model for diamond defect 

systems, transfer learning on the training data was done. Transfer learning is a method in which 
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an existing ML model is taken, and used as a basis for training a new model. Instead of having 

to derive all the features and patterns from scratch, the new model has some pre-existing layers 

to follow in further training. This reduces the computational training cost, and improves the 

previous model.62 The initial created models were to gain familiarity with ePotentia’s system. 

Multiple models were made to finetune the necessary parameters, and gain insight into how the 

model works. 

 

The predictions of the initial model from ePotentia for the test data (consisting of H-defect-

diamond bulk systems), are shown in Figure 8. Note that the predicted energy values (y-axis) 

are in the 105 eV/atom range and positive, while the actual DFT energy values (x-axis) have 

smaller and negative values (Figure 8, left). This is also true for the normalized forces (Figure 8, 

right). 

 

Figure 8. Correlation plots of the predicted energy per atom (left) and normalized forces (right) 

using the initial 00 model that is not trained on diamond data. Note that for both graphs the x-

axis is five orders of magnitude larger than the y-axis. The red line is what an ideal model would 

predict, but due to the disparity between the axes, it disappears from the range, and appears to 

fall together with the x-axis). 

 

The next step was then to transfer learn this model, training on DFT data for H-defect-diamond 

bulk systems, to create new models. Multiple ePotentia-based models were created, with 

varying parameters, target-importances, and computing times. An overview of the quality of 

some of these created models can be found in Table 2. Model 00 refers to the initial ePotentia 

model, and thus has wildly varying values from the models that were trained on diamond data. 
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Table 2. The RMSE, MAE, and R2 values of the ePotentia-based models, for the predicted 

energies and normalized forces. Model 00, as the native model, is the only model not trained 

on the diamond data. The details of the parameters for the other models can be found in the 

Methods section. 

Target eatom [eV atom-1] (normalized) forces [eV Å-1] 

Model RMSE MAE R2 RMSE MAE R2 

00 2.667e5 2.654e5 -1.755e13 2.422e5 2.413e5 -6.384e9 

02 0.098 0.079 -1.363 3.576 3.015 -0.391 

04 0.097 0.078 -1.314 3.391 2.396 -0.251 

05 0.041 0.029 0.593 0.897 0.674 0.912 

06 0.090 0.073 -1.010 1.082 0.791 0.873 

07 0.100 0.080 -1.445 1.185 0.914 0.847 

08 0.088 0.072 -0.898 1.517 1.206 0.750 

10 0.031 0.023 0.756 0.812 0.604 0.928 

12 0.014 0.009 0.953 0.676 0.509 0.950 

 

The performance of the model training for ePotentia was tracked using logs. These can be 

plotted to see how the model improves itself over each epoch. The RMSE for the predicted 

values from model 12 are plotted in Figure 9. 

 

Figure 9. The RMSE of the energy per atom (left axis, black) and the normalized forces (right 

axis, gray) over the training epochs of the ePotentia-based model 12. 

 

The ePotentia model itself does not look at these literal RMSE values (as those are two values), 

but instead has one loss function it tries to minimize. This loss function contains the RMSE’s 

values of the two to-be-predicted targets, but attributes weights to them, which is a parameter 
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that can be changed for every model. For example in models 02, the energy was put as ten times 

more important than the forces, but the forces were still predicted far better than the energy. 

This is why for example in model 12, the energy was assigned a higher weight, resulting in a 

better energy prediction. The predictions of the best and final model 12, for the test data 

(consisting of H-defect-diamond bulk systems), are shown in Figure 10. 

 

 

Figure 10. Correlation plots of the predicted energy per atom (left) and normalized forces 

(right) using model 12, which is the final model trained on diamond data. The red line is what 

an ideal model would predict. 

 

Model 12 predicts quite accurately for the forces, with an R2 value of 0.950, and an MAE of 

0.51 eV Å-1. Similarly for the energies, the predictions have an R2 value of 0.953, and an MAE 

of 8.8 meV atom-1. For systems with higher energies (DFT run for H2I-diamond, with 800 K), 

the predictions vary more in quality, as seen by the outlier points that scatter to the right in the 

left graph of Figure 10. Comparing the energy predictions to GNoME50, whose model has an 

initial MAE of 21 meV atom-1, model 12 has the more accurate values. Although A. Merchant, 

et al.50 claim that their final GNoME model predicts energies to an MAE of 11 meV atom-1, the 

MAE of the energy graphed in their paper, lists MAE’s of 25 to 50 meV atom-1. Still, taking 

GNoME’s best MAE value, 11 meV atom-1, and comparing it to model 12, shows that model 12 

still surpasses the quality. Model 12 is trained on a less advanced computer than GNoME, with 

less time (training took less than 18h), fewer data points, and on a different system (bulk 

diamond). So this type of MLIP still has a lot of opportunities for improvement. 

 

3.3. MD runs 

With finally an accurate working model, MD trajectories were calculated, analyzed, and 

compared to DFT data. Some models refused to work with MD calculations, so a bit of trial 
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and error was done to find what is and what is not responsible for a successful MD run with 

these models. One of the problems was that the created pre-processing files for each model 

should be removed before training a new model. For model 12, some MD runs still did not 

extrapolate well. This is why the EOS MDs were run with model 10. Due to the computational 

cost in the prediction of stresses for NPT runs, only EOS and NVT MDs were calculated using 

the final MLIP models. 

 

3.3.1. EOS 

For the EOS MDs, there is a comparison of the energies for varying volumes. The initial 

systems (and volumes) are the ones defined in the POSCARs for the DFT runs. The volumes 

were taken between -10% and +10% of the original cell volume. The ASE EOS function was 

used to plot the EOS graph (Figure 11) from the calculated volumes and energies, and to 

calculate the optimal volume, the minimum energy, and the bulk modulus (Table 3).59 

 

Figure 11. EOS plots for the HV-diamond (left), and the H2I-diamond (right). The ML model 

used to calculate these graphs is model 10. 

 

In Figure 11, the EOS calculations for both diamond systems can be seen. These graphs show 

a U-curve, from which the calculated values are shown in Table 3. 

 

Table 3. The optimal volume (v0), the minimum energy (e0), and the bulk modulus (B), with 

B in two different units, of model 10, from the EOS MD. 

System v0 [Å3] e0 [eV] B [eV Å-3] B [GPa] 

Diamond with HV center 370.83 -555.59 6.65 1065.65 

Diamond with H2I defect 366.24 -577.38 6.72 1077.01 
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The bulk modulus (B) is an indication of how much the system resists being compressed. From 

the EOS, the calculated B for the HV-diamond, and the H2I-diamond is respectively 1066 GPa 

and 1077 GPa. Referring to literature, the B of diamond (at 4 K) is approximately 443 GPa,63 

and calculated with DFT by M. Hebbache, this value is approximately 463 GPa.64 These actual 

values differ from the EOS calculated ones, which may be due to a mistake in the MLIP 

calculations in regards to EOS, because HV-defects should make the diamond softer, with a 

lower B. This relatively softer diamond can be seen in that the HV-diamond has a lower B than 

the H2I-diamond, which has the full crystal structure of diamond without any vacancies. 

 

3.3.2. NVT 

For NVT, the Langevin thermostat (from ASE) was used, as this adds a friction and fluctuating 

force term. The temperature (T) chosen for the NVT runs were 0, 100, 300, 500, 800, and 

1000 K. (One T per MD run per system). The calculated total energies for every timestep with 

NVT are plotted in Figure 12. 

  

Figure 12. NVT MD plots for the HV-diamond (left) and the H2I-diamond (right). The ML 

model used to calculate these graphs is model 12. For each system, six NVT MDs are simulated, 

with temperatures ranging from 0 K (blue) till 1000 K (red). 

 

The NVT MD simulations were run following Langevin dynamics, with a timestep of 1 fs. It 

can be seen that the higher energies are linked to the higher heat baths (Figure 12). For HV-

diamond, the NVT MD stayed relatively constant in total energy, while for the H2I-diamond, 

the energy increased over time. This can also be seen when visualizing the trajectories in 

OVITO, where the atoms move faster with increasing temperatures. A comparison of the total, 

potential, and kinetic energies for one MD run is shown in Figure 13. 
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Figure 13. NVT MD plots for the HV-diamond (left) and the H2I-diamond (right). The ML 

model used to calculate these graphs is model 12. The NVT MDs are simulated for 𝑇 = 500 K. 

 

For both diamond systems, the kinetic energy is smaller than the potential energy, and 

contributes less to the total energy. This is because diamond is a rigid structure, and has most 

of its energy stored in its C-C bonds. The C atoms can vibrate, but not move freely. For the 

H2I-diamond, where the interstitial H defect can move easier, the kinetic energy near the end 

of the simulation is seen to be higher (almost double) compared to the HV-diamond. More 

details about the NVT simulations can be found in the Methods section, and in supporting 

information S5. 

 

3.4. Sustainability 

With current climate concerns, sustainability is a recurring topic in every type of research.65 

This thesis itself strives for sustainability by exploring alternatives to computationally extensive 

DFT calculations, by using MLIP. B. G. Del Rio, et al.66 compared the cost of DFT versus ML 

in CPU time for organic molecules, polymer chains, and polymer crystals of various sizes, as 

shown in Figure 14. Here the ML based calculations have shown to be a more environmental-

friendly option than DFT calculations, especially when scaling systems up to larger sizes. 



  

25 

 

 

Figure 14. Computational cost (in CPU time), for DFT (gray) and ML-DFT (red), for different 

system sizes. The systems are organic molecules, polymer chains, and polymer crystals, 

consisting of predominantly C and H atoms. Graph from B. G. Del Rio, et al.66 

 

Since ML, and especially training the models, is also computationally costly, methods to try to 

minimize this resource-use are applied, such as frugal computing.67 Frugal computing is a way 

to minimize the computational resources (both hardware and energy) while still keeping the 

same quality. Frugal modeling is a variation of this, where the focus lies on developing models 

with minimal computational costs (being resource-conscious), while keeping a similar value. 

This is finding a balance between the minimum quality needed, and the maximum quality that 

is possible to achieve. The way that frugal computing is applied in this thesis, is by (1) limiting 

the amount of times that the DFT values are read (avoiding unnecessary loops), and saving the 

necessary data to temporary files. (2) working towards training MLIPs on smaller devices, 

instead of a supercomputer. This is seen by trying sGDML first, especially because this model 

was supposed to be possible on a resource-limited device. And (3) using transfer learning on 

existing models, to avoid the initial (larger) training cost. 

 

4. Conclusion 

The goal of this thesis was to develop a proof of concept that it is possible to create an MLIP 

model for a diamond system with defects. Specifically for bulk diamonds with an HV center or 

an H2I defect. An exploration of the types of MLIP led from kernel-based methods such as 

sGDML, to NN-based methods such as SchNet, and showed that although MLIPs are possible 

in theory, and for simple systems, that adapting them for diamond systems requires sufficiently 

advanced hardware. This is why a final MLIP is created using the infrastructure and an existing 

model from ePotentia. 
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The final MLIP (model 12) showed an accuracy of R2=0.950, and MAE=0.509 eV Å-1 for the 

normalized forces, and R2=0.953, and MAE=8.8 meV atom-1 for the energies. The MAE of 

8.8 meV atom-1 for the energies competes with the MAE of 11 meV atom-1 for GNoME. Still, 

model 12 has a lot of opportunities for improvement in the future. MD runs using the created 

MLIP models resulted in EOS and NVT simulations. The EOS (using model 10) specifically 

showed a larger calculated bulk modulus than expected (1066-1077 GPa, instead of 443-463 

GPa). In the end, the MD runs were possible with the MLIP models, and with an improved 

MLIP model could show a promising future for MD simulations for diamond. 

 

For new models and MDs, the possibility arises for the simulated movement of H in diamond 

to be compared with experimental values (diffusion), because DFT calculations are also still 

approximations, and an experimental comparison will increase the accuracy-validation. 

 

During this thesis, sustainability was kept in mind by using frugal computing, besides the fact 

that the goal of this thesis is to build an initial MLIP model to in the future replace 

computationally expensive DFT calculations. 

 

For future MLIPs, currently more specialized hardware is needed to train the models accurately 

enough. Through the rise of new MLIPs however, it could be that in the near future, the software 

will hopefully be streamlined enough to be able to train larger models with less resources. It is 

proven that MLIPs are possible for diamond systems with H-related defects. With larger DFT 

reference data sets and more advanced MLIPs, molecular dynamics for these (and more 

complicated) systems have the potential to reach far. 

 

5. Experimental/Methods Section 

Database creation 

The DFT calculated data was provided by Prof. dr. dr. Danny E.P. Vanpoucke, who calculated 

these systems using VASP,25 on the VSC (Flemish Supercomputer Center). The MD runs were 

calculated for the NPT ensemble, with the following parameters defined in the INCAR for the 

HV-diamond for 500K: 

• IBRION = 0, for defining the MD 

• ISIF = 3, for specifying the NPT ensemble 

• MDALGO = 3, for using the Langevin thermostat 

• LANGEVIN_GAMMA = 2.0 2.0, for defining the friction coefficients of Langevin atoms 
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• TEBEG = 500, for defining the starting temperature in Kelvin 

• TEEND = 500, for defining the ending temperature in Kelvin 

• POTIM = 2, for a timestep of 2fs 

• NSW = 15000, for the number of electronic steps 

The two diamond systems themselves are defined in the POSCARs, which can be found in the 

supporting information S1. 

 

The four DFT created datasets were for: 

1) HV-diamond NPT for 500K (15000 steps) 

2) HV-diamond NPT for 800K (15000 steps) 

3) H2I-diamond NPT for 500K (13922 steps) 

4) H2I-diamond NPT for 800K (7431 steps) 

This last dataset (4), showed abnormal behavior after step 3275, with a sudden jump to high 

positive energies. Because of this, only the first 3270 samples from this dataset were taken. 

More details about these datasets can be found in the supporting information S2. 

 

Database Conversion 

To get the needed information from the VASP output to the npz and ASE databases, scripts 

were written. An overview of the steps is that the atom types (z), their cell parameters, positions 

(R), forces (F), and energy (E), were extracted from the vasprun.xml file, and saved to a 

temporary file using python in Jupyter Notebooks. For each sample, there was one E, but 

multiple R and F, since those are defined in three dimensions for every atom. For the MLIP 

models themselves, this does not matter, but for evaluating the output, similar to E, the F needed 

to be normalized. The normalization of F was done by taking the square of each force vector of 

each atom in a molecule, summing them up, and taking the root of this whole summation 

(Equation 6). The resulting value is the normalized force for that specific sample (molecule). 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹 = √∑ 𝐹𝑖,𝑥
2 + 𝐹𝑖,𝑦

2+𝐹𝑖,𝑧
2# 𝑎𝑡𝑜𝑚𝑠

𝑖        (6) 

 

A script was written to extract the needed values from the vasprun.xml file, and the accuracy 

of this script was doublechecked for each dataset. Once all the R, F, E, z, cell, etc. were extracted 

from the vasprun.xml file, the new databases were created. (Note: the F from here on is an array 

of all atomic forces. The normalized forces are only used after prediction, to evaluate the 
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results.) All computational processes regarding database conversion were performed on my 

own laptop. 

 

First is the creation of the sGDML npz database. The conversion of the data was straightforward, 

once the structure of the npz file was figured out, and happened in the following steps: 

• Choose a dataset 

• Load the R, F, E, z, and cell of all molecules of the dataset 

• Define the ‘theory’ of the structure (necessary for sGDML) 

• Create the npz structure 

np. savez(f′{name}. npz′, name = name, z = z, E = E, F = F, R = R, theory = theory)  

• For creating the training/validation/test databases, the npz file could not be split easily. 

So the molecules were first given a number, this number list was split into the 

train/val/test categories, and each train/val/test npz was created anew by only writing 

the molecules with the number belonging to their list in the corresponding database. 

 

For creating ASE databases, the Atomic Simulation Environment (ASE) database was used.58,59 

A simplified overview of this process is listed below. 

• Choose a dataset and load the R, F, E, z, and cell of all molecules of the dataset 

• Create the (empty) ASE database 

• Open this database with “ase. db. core. connect” 

• For every molecule in the dataset: 

o Define an ASE atoms object:  

atoms =  Atoms(type, pbc = True, positions = R[molecule], cell = cell_molecule)  

▪ Type is either 'C62H1’ or 'C64H2', depending on the system 

▪ pbc refers to the periodic boundary conditions 

o Calculate the energy per atom 

eatom =  E[molecule] / nr_of_atoms  

o Assign a calculator to the atoms object, in this case a SinglePointCalculator 

atoms. calc = SinglePointCalculator(atoms, forces = F[molecule], energy = E[molecule])  

o Write the atoms object, along with additional necessary data, in the database 

db. write(atoms, data = {′energy′: E[molecule], ′forces′: F[molecule], ′eatom′: eatom})  

• Repeat this with all datasets 

• Split the final database into training/validation/test databases 
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Computational details of the MLIPs 

The MLIP models trained on the infrastructure and framework of ePotentia, had varying 

parameters and approaches. The basis (initial) model was the gemnet_oc model 

“gnoc_oc22_oc20_all_s2ef.pt”. Some models were directly transfer learned on this model, 

while others were transfer learned on those new models. Additionally, the training ASE 

database was adapted along the model trainings, as small mistakes kept cropping up. This is 

why later models, even if trained similarly as previous models, showed improved accuracies. 

For training, predictions and MD simulations, the fastatom calculator from ePotentia was used. 

The training process parameters were defined in four different categories: data, architecture, 

optimizer, and augmentation. 

 

In ‘data’, the ASE database was defined (all train/val/test databases), along with the relevant 

property the model was trained on: eatom. The batch size (number of training samples in one 

training iteration), was put at 8, since higher batch sizes were too large to be trained. Lastly the 

mean and standard deviation (stdev) of the database were defined. For all trained models, these 

values were: mean = −8.769570882993687  and stdev = 0.06436164061396021  (for 

eatom), as the database consisted of the same training data for all models. 

 

In ‘architecture’, the MLIP structure was defined. For these MLIP models it was based on the 

gemnetoc architecture, which is similar to the SchNet MLIP. Here a number of model-specific 

parameters were defined, such as 2048 features, 256 filters, and 16 interactions. 

 

In ‘optimizer’, the learning rate was chosen to be 0.001, based on a small learning rate 

optimization test. The force and stress types were chosen, for which the force type is ‘direct’, 

and the stress type is ‘none’, because the stresses were not trained, due to their higher 

computational cost. Then the weights for training the forces, energies and stresses were chosen. 

Since stresses were not trained, the stress weight, 𝑘𝑠, was zero. The force weight, 𝑘𝑓, and the 

energy weight, 𝑘𝑝, were varied for the different models, with models 01, 02, 04, 05, and 08 

choosing 𝑘𝑝/𝑘𝑓 = 10, models 06 and 07 choosing 𝑘𝑝/𝑘𝑓 = 15, and models 10, 11, and 12 

choosing 𝑘𝑝/𝑘𝑓 = 20. This increase in energy weight was chosen to prioritize the energy, as 

the accuracy for the forces was better for initial models. 

 

Next in the ‘optimizer’ was the number of epochs, training samples, and validation samples. 

An epoch generally refers to how often the model goes through the entire training database. In 
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the case of this model, instead of the entire database, the epoch referred to the number of training 

samples defined in the ‘optimizer’ part. If no number of samples were defined, the entire 

training database was taken. For model 05, 06, 08, 10 and 12, the epochs referred to are indeed 

over the whole training database, but for the other models the number of training samples were 

either 4096 or 8192, with the corresponding number of validation samples always one fourth 

of this value. The number of epochs themselves, were chosen between 5 and 50, with the models 

with higher epochs and samples taking significantly longer to train (around 17h) than the other 

models (around 3h). 

 

In ‘augmentation’, one relevant parameter was the number of freezing epochs. A freezing epoch 

refers to the layers from the pre-trained model, so that an epoch will be trained, without the 

model forgetting the previous patterns from the first model. Another relevant parameter from 

‘augmentation’ was the initial model the transfer learning was applied to. Models 01, 04, 05, 

08, 10, and 12 were trained starting from the gemnet_oc model, while the other models were 

trained starting from models 01 through 10.  

 

Throughout the training of the models, logs were kept to see how the loss functions (and RMSE) 

of the models evolve over the epochs. A short overview of these logs, along with some 

previously listed model parameters, can be found in the supporting information S3. 

 

Computational details of the MDs 

Simply predicting the forces and energies with as input a given system, is similar to a static 

DFT calculation. MD simulations are a bit more complicated, needing additional information 

regarding the circumstances (e.g. the ensemble) of the simulation. The MD trajectories, as they 

make use of the fastatom calculator and the MLIP model, were performed on ePotentia’s 

infrastructure, but the analysis of these trajectories was done on my own laptop. 

 

The EOS (for each system) was calculated, starting from the system POSCAR, by rescaling the 

volume within -10% and +10% of the original cell volume, with steps per 1%. From these new 

resulting R, the energies were predicted. The ASE EOS function was then used to plot these 

volumes and energies as the EOS graph (Figure 11). This same ASE function was then used to 

calculate the v0, the e0, and the B. The ASE units for the bulk modulus are eV Å-3. To get the 

value in GPa, Equation 7 was used. 

𝐵 [𝐺𝑃𝑎] = 𝐵 [eV Å−3] ∙ 160.21766208 [𝐺𝑃𝑎 eV−1 Å3]       (7) 
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The NVT MD was calculated with the Langevin thermostat, as this adds a friction and 

fluctuating force term. The chosen timestep was 1 fs, and the chosen friction coefficient was 

0.001. Twelve NVT simulations were run in total, six per system, with temperature (T) chosen 

as 0, 100, 300, 500, 800, and 1000 K. (One T per MD run per system). For each simulation, the 

total, potential, and kinetic energy are given (total energies visualized in Figure 12). To check 

if the NVT run behaves as expected, OVITO was used to visualize the moving system. Further 

analysis to quantify the movement of the atoms in these NVT simulations, in order to plot this 

in a graph, was done in supporting information S5. 
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Supporting Information  

S1 POSCARs for the diamond systems 

     

POSCAR for HV-diamond   POSCAR for H2I-diamond 

 

C_diamond_PBE_lattice_is_cube_root_of_EO 

   3.58854144700000      

     2.0000000000000000    0.0000000000000000    0.0000000000000000 

     0.0000000000000000    2.0000000000000000    0.0000000000000000 

     0.0000000000000000    0.0000000000000000    2.0000000000000000 

   H   C  

     1    62 

Direct 

  0.3125000000000000  0.3125000000000000  0.3125000000000000 

  0.3918346300979607  0.1196207963298477  0.1196207963298477 

  0.1196207963298477  0.3918346300979607  0.1196207963298477 

  0.1196207963298477  0.1196207963298477  0.3918346300979607 

  0.5053792036701523  0.2331653699020393  0.5053792036701523 

  0.2331653699020393  0.5053792036701523  0.5053792036701523 

  0.5053792036701523  0.5053792036701523  0.2331653699020393 

  0.2530482512562529  0.0032868013424974  0.0032868013424974 

  0.7526630980128033  0.0007044196000763  0.0007044196000763 

  0.0032868013424974  0.2530482512562529  0.0032868013424974 

  0.5052784288900583  0.2490691902858657  0.9962515591634116 

  0.2490691902858657  0.5052784288900583  0.9962515591634116 

  0.7517254741201427  0.5008578708471561  0.9970936075729284 

  0.0007044196000763  0.7526630980128033  0.0007044196000763 

  0.5008578708471561  0.7517254741201427  0.9970936075729284 

  0.8780714465568096  0.1270097694021928  0.1270097694021928 

  0.6287484408365884  0.3759308097141343  0.1197215711099417 

  0.3759308097141343  0.6287484408365884  0.1197215711099417 

  0.8732745258798573  0.6279063924270716  0.1241421291528439 

  0.1270097694021928  0.8780714465568096  0.1270097694021928 

  0.6279063924270716  0.8732745258798573  0.1241421291528439 

  0.0032868013424974  0.0032868013424974  0.2530482512562529 

  0.5052784288900583  0.9962515591634116  0.2490691902858657 

  0.7511258841353765  0.2501382210586058  0.2501382210586058 

  0.9962515591634116  0.5052784288900583  0.2490691902858657 

  0.2501382210586058  0.7511258841353765  0.2501382210586058 

  0.7501427660060713  0.7501427660060713  0.2491529460899997 

  0.6287484408365884  0.1197215711099417  0.3759308097141343 

  0.8738741158646235  0.3748617789413942  0.3748617789413942 

  0.1197215711099417  0.6287484408365884  0.3759308097141343 

  0.6217131986575026  0.6217131986575026  0.3719517487437471 

  0.3748617789413942  0.8738741158646235  0.3748617789413942 

  0.8748572339939287  0.8748572339939287  0.3758470539100003 

  0.2490691902858657  0.9962515591634116  0.5052784288900583 

  0.7517254741201427  0.9970936075729284  0.5008578708471561 

  0.9962515591634116  0.2490691902858657  0.5052784288900583 

  0.7469285534431904  0.4979902305978072  0.4979902305978072 

  0.9970936075729284  0.7517254741201427  0.5008578708471561 

  0.4979902305978072  0.7469285534431904  0.4979902305978072 

  0.3759308097141343  0.1197215711099417  0.6287484408365884 

  0.8732745258798573  0.1241421291528439  0.6279063924270716 

  0.1197215711099417  0.3759308097141343  0.6287484408365884 

  0.6217131986575026  0.3719517487437471  0.6217131986575026 

  0.3719517487437471  0.6217131986575026  0.6217131986575026 

  0.8723369019871967  0.6242955803999237  0.6242955803999237 

  0.1241421291528439  0.8732745258798573  0.6279063924270716 

  0.6242955803999237  0.8723369019871967  0.6242955803999237 

  0.0007044196000763  0.0007044196000763  0.7526630980128033 

  0.5008578708471561  0.9970936075729284  0.7517254741201427 

  0.2501382210586058  0.2501382210586058  0.7511258841353765 

  0.7501427660060713  0.2491529460899997  0.7501427660060713 

  0.9970936075729284  0.5008578708471561  0.7517254741201427 

  0.4979902305978072  0.4979902305978072  0.7469285534431904 

  0.2491529460899997  0.7501427660060713  0.7501427660060713 

  0.7493508173585397  0.7493508173585397  0.7493508173585397 

  0.1270097694021928  0.1270097694021928  0.8780714465568096 

  0.6279063924270716  0.1241421291528439  0.8732745258798573 

  0.3748617789413942  0.3748617789413942  0.8738741158646235 

  0.8748572339939287  0.3758470539100003  0.8748572339939287 

  0.1241421291528439  0.6279063924270716  0.8732745258798573 

  0.6242955803999237  0.6242955803999237  0.8723369019871967 

  0.3758470539100003  0.8748572339939287  0.8748572339939287 

  0.8756491826414603  0.8756491826414603  0.8756491826414603 

 

 

 

C_diamond_PBE 

   3.5704 

   2.000000000000    0.000000000000    0.000000000000 

   0.000000000000    2.000000000000    0.000000000000 

   0.000000000000    0.000000000000    2.000000000000 

   H   C  

   2   64 

Direct 

    0.3100   0.3100 0.3100 

    0.250000000000    0.250000000000    0.250000000000 

    0.000000000000    0.000000000000    0.000000000000    

    0.500000000000    0.000000000000    0.000000000000    

    0.250000000000    0.250000000000    0.000000000000    

    0.750000000000    0.250000000000    0.000000000000    

    0.000000000000    0.500000000000    0.000000000000    

    0.500000000000    0.500000000000    0.000000000000    

    0.250000000000    0.750000000000    0.000000000000    

    0.750000000000    0.750000000000    0.000000000000    

    0.125000000000    0.125000000000    0.125000000000    

    0.625000000000    0.125000000000    0.125000000000    

    0.375000000000    0.375000000000    0.125000000000    

    0.875000000000    0.375000000000    0.125000000000    

    0.125000000000    0.625000000000    0.125000000000    

    0.625000000000    0.625000000000    0.125000000000    

    0.375000000000    0.875000000000    0.125000000000    

    0.875000000000    0.875000000000    0.125000000000    

    0.250000000000    0.000000000000    0.250000000000    

    0.750000000000    0.000000000000    0.250000000000    

    0.000000000000    0.250000000000    0.250000000000    

    0.500000000000    0.250000000000    0.250000000000    

    0.250000000000    0.500000000000    0.250000000000    

    0.750000000000    0.500000000000    0.250000000000    

    0.000000000000    0.750000000000    0.250000000000    

    0.500000000000    0.750000000000    0.250000000000    

    0.375000000000    0.125000000000    0.375000000000    

    0.875000000000    0.125000000000    0.375000000000    

    0.125000000000    0.375000000000    0.375000000000    

    0.625000000000    0.375000000000    0.375000000000    

    0.375000000000    0.625000000000    0.375000000000    

    0.875000000000    0.625000000000    0.375000000000    

    0.125000000000    0.875000000000    0.375000000000    

    0.625000000000    0.875000000000    0.375000000000    

    0.000000000000    0.000000000000    0.500000000000    

    0.500000000000    0.000000000000    0.500000000000    

    0.250000000000    0.250000000000    0.500000000000    

    0.750000000000    0.250000000000    0.500000000000    

    0.000000000000    0.500000000000    0.500000000000    

    0.500000000000    0.500000000000    0.500000000000    

    0.250000000000    0.750000000000    0.500000000000    

    0.750000000000    0.750000000000    0.500000000000    

    0.125000000000    0.125000000000    0.625000000000    

    0.625000000000    0.125000000000    0.625000000000    

    0.375000000000    0.375000000000    0.625000000000    

    0.875000000000    0.375000000000    0.625000000000    

    0.125000000000    0.625000000000    0.625000000000    

    0.625000000000    0.625000000000    0.625000000000    

    0.375000000000    0.875000000000    0.625000000000    

    0.875000000000    0.875000000000    0.625000000000    

    0.250000000000    0.000000000000    0.750000000000    

    0.750000000000    0.000000000000    0.750000000000    

    0.000000000000    0.250000000000    0.750000000000    

    0.500000000000    0.250000000000    0.750000000000    

    0.250000000000    0.500000000000    0.750000000000    

    0.750000000000    0.500000000000    0.750000000000    

    0.000000000000    0.750000000000    0.750000000000    

    0.500000000000    0.750000000000    0.750000000000    

    0.375000000000    0.125000000000    0.875000000000    

    0.875000000000    0.125000000000    0.875000000000    

    0.125000000000    0.375000000000    0.875000000000    

    0.625000000000    0.375000000000    0.875000000000    

    0.375000000000    0.625000000000    0.875000000000    

    0.875000000000    0.625000000000    0.875000000000    

    0.125000000000    0.875000000000    0.875000000000    

    0.625000000000    0.875000000000    0.875000000000    
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S2 Analyzing the DFT data 

There are two diamond systems of 2 × 2 × 2 atoms, the HV-diamond and the H2I-diamond 

(Figure 2), over four DFT datasets. Histograms (Figure S2.1) and the minimum (min), 

maximum (max), mean, and standard deviation (stdev) (Table S2.1), of the total energies, 

energies per atom (eatom), and normalized forces are shown below per dataset. 

 

Figure S2.1. Histograms of the total energy (left), eatom (middle), and normalized forces 

(right) for the four datasets.  

 

Table S2.1. The min, max, mean, and stdev values for the total energy, eatom, and normalized 

forces for the four datasets. 

Dataset HV – 500 K HV – 800 K H2I – 500 K H2I – 800 K 

Total Energy [eV] 

Min -562.880 -562.542 -578.607 -575.943 

Max -555.303 -547.709 -573.823 -549.431 

Mean -557.484 -551.927 -575.819 -570.086 

Stdev 0.768 1.375 0.608 2.333 

eatom [eV atom-1] 

Min -8.935 -8.929 -8.767 -8.726 

Max -8.814 -8.694 -8.694 -8.325 

Mean -8.849 -8.761 -8.725 -8.638 

Stdev 0.012 0.022 0.009 0.035 

(normalized) forces [eV Å-1] 

Min 3.198 3.832 8.622 8.622 

Max 26.208 32.532 23.426 50.497 

Mean 19.440 24.569 19.321 24.802 

Stdev 1.576 2.052 1.138 2.079 
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For all the data together, the total energies are in the approximate range [-580;-545] eV, the 

energies per atom in the approximate range [-9.0;-8.3] eV atom-1, and the normalized forces in 

the approximate range [3;51] eV Å-1. The complete dataset (after filtering), consisted of 47192 

data samples. 

 

Further analysis shows that the volumes of the four systems are in the approximate range 

[340;375] Å3. In the histogram (left, Figure S2.2), it can be seen that there are two peaks for 

each system. This can be clarified by looking at a zoomed in part of the volumes over time 

(right, Figure S2.2), where volume oscillations are visible. As there is a periodicity of the 

volume over time, one has to be careful if points are extracted with the same number of ionic 

steps separated from each other. In future MLIP models, when more data is available, this type 

of selection is needed to break correlation between images. 

 

Figure S2.2. (left) Histogram of the volume, (right) zoomed-in plot of the volume over time, 

for the four datasets. 
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S3 Extra MLIP details 

A short overview of model parameters (Table S3.1) and logs of the training progress over 

epochs (Figure S3.1), are shown below. Some evaluations of these models can be found in 

supporting information S4. 

 

Table S3.1. Some parameters for the ePotentia trained models. 

Model kp kf freezing 

epochs 

epochs # train 

samples 

# val 

samples 

Transfer 

learned on: 

01 10 1 4 6 4096 1024 Oc 

02 10 1 4 16 4096 1024 01 

04 10 1 4 32 8192 2048 Oc 

05 10 1 10 50 / / Oc 

06 20 1 2 10 / / 05 

07 20 1 4 16 4096 1024 05 

08 10 1 1 5 / / Oc 

10 15 1 10 50 / / Oc 

11 15 1 10 32 8192 2048 10 

12 15 1 10 50 / / Oc 

 

 

 

Figure S3.1. The RMSE of the energy per atom (left axis, black) and the normalized forces 

(right axis, gray) over the training epochs. Logs for models (upper left) 01, (upper middle) 02, 

(upper right) 04, (lower left) 05, (lower middle) 10, (lower right) 11.  
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S4 Model evaluations 

Some extra model evaluations are shown in Figure S4.1 and Figure S4.2. The datapoints in 

the test database in those following figures are colored based on their original dataset.  

 

 

Figure S4.1. Correlation plots of the predicted energy per atom for (left) model 05, (left-center) 

model 10, (right-center) model 11, (right) model 12. The colors indicate the data source: 

(dark blue) HV-diamond 500 K, (light blue) HV-diamond 800 K, (dark green) H2I-diamond 

500 K, (light green) H2I-diamond 800 K. 

 

 

Figure S4.2. Correlation plots of the normalized forces for (left) model 05, (left-center) model 

10, (right-center) model 11, (right) model 12. The colors indicate the data source: (dark blue) 

HV-diamond 500 K, (light blue) HV-diamond 800 K, (dark green) H2I-diamond 500 K, 

(light green) H2I-diamond 800 K. 
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S5 NVT MD further analysis 

Quantifying the movement of the atoms in the NVT simulations, is done in the following steps: 

• Open the trajectories for the chosen NVT simulation 

• Write POSCARs for every step of this trajectory 

• Convert the coordinates from these POSCARS from direct to cartesian coordinates 

• For each timestep: 

o Calculate the center of mass (COM) 

o For each atom: 

o Subtract the COM distance from the atom coordinates 

o Normalize the coordinates into one distance value (using Pythagorean theorem) 

• Choose a few atoms to plot their distance from the COM over the time of the simulation 

The resulting plots are shown in Figure S5.1. 

 

Figure S5.1. The distance from each atom to the COM over time for (left) HV, and (right) H2I. 

Values from the NVT MD run for 𝑇 = 500 K. Only a few atoms from each system are plotted, 

so as not to crowd the figures. 

 


