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Abstract: To asses the sensitivity of conclusions to model choices in the context
of selection models for non-random dropout, one can oppose the different missing
mechanisms to each other; e.g. by the likelihood ratio tests. The finite sample
behavior of the null distribution and the power of the likelihood ratio test is
studied under a variety of missingness mechanisms.
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1 Introduction

In a longitudinal setting, units are measured on several occasions. It is not
unusual that a sequence is not fully observed, due to intermediate missing-
ness and dropout. In the context of maximum likelihood inference, Rubin
(1976) classified missing data into three types, namely missing completely
at random, missing at random and missing not at random. Diggle and Ken-
ward (1994) use a selection model to represent such a process. A selection
model consists of two parts: a measurement part and a missingness process
part. Such a model relies on strong and untestable assumptions. Not only
the distributional assumptions can be misspecified but also the presence of
missing data can have a large impact. In classical theory, the asymptotic
distribution of the likelihood ratio test is a chisquare distribution with de-
grees of freedom equal to the difference in number of parameters. Careful
considerations have to be made when using this result to test for missing
not at random as shown by Rotnitzky et al (2000). We will first provide
a motivating example from Rotnitzky et al (2000), then we will introduce
selection models. In a simulation study, we will illustrate the finite sample
behavior of the likelihood ratio test and we will conclude with some current
research topics.
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2 A Motivating Example

The following example is used in Rotnitzky et al (2000). Let Y1, · · · , Yn be
a sample of n observations from a normal distribution with mean β and
variance σ2. Suppose there is missingness in this sample which is possibly
related to the outcome itself. Let us denote this conditional probability by

Pc(y;α0, α1) = eH(α0+α1(y−β)/σ)

where α0 and α1 are unknown parameters and H(.) is a known function
assumed to have its first three derivatives at α0 non-zero. Interest goes
out to test whether α1 = 0 which corresponds to missing completely at
random. We thus consider two random variables (R, Y ) where R is a binary
indicator, which is 1 if Y is observed and 0 otherwise. The contribution of
one individual to the loglikelihood is thus

r[− log σ − (y − β)2/(2σ2) +H{α0 + α1(y − β)/σ}]

+ (1 − r)[logE{1 − Pc(y;α0, α1)}]

For n individuals the loglikelihood Ln(β, σ, α0, α1) is the sum of n such
terms., If we have a look at the score vector at the null point β, σ, α0, α1 = 0
we obtain the following equations.

r(y − β)/σ2

r(−σ2 + (y − β)2)/σ3

rH ′(α0) − (1 − r)
H ′(α0)e

H(α0)

1 − eH(α0)

rH ′(α0)(y − β)/σ

We can see that this score vector is degenerate at this particular param-
eter point. Equivalently, the information matrix calculated from expected
second derivatives is singular at this parameter point.
Rotnitzky et al (2000) show that likelihood-based inference with a singular
information matrix can have some consequences with respect to the distri-
bution of the likelihood ratio test. Depending on the nature of the model
either the asymptotic distribution can be a mixture of χ2-distributions or
the convergence rate is very slowly. Due to these demerits the application
of the asymptotic distribution has to be considered with care. We will il-
lustrate this behavior in the context of selection models by simulations.

3 Selection Models

Let us assume that for subject i, i = 1, · · · , N , a sequence of responses Yij

is measured at several occasions j = 1, 2, . . . , J . Let Rij be a missingness
indicator and assume that yi1 is always observed. Then rij = 0 if yij is
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missing and rij = 1 if yij is observed. The measurement part of the model
of Diggle and Kenward (1994) is given by

Yi = (Yi1, . . . , YiJ ) ∼ N(Xiβ,Σi), i = 1, . . . , N,

where β is a vector of fixed effects, Xi is a matrix containing covariate
values and Σi is a covariance matrix. The missingness process is described
by

logit[Pr(Rij = 1|yi,j−1, yij)] = ψ0 + ψ1yi,j−1 + ψ2yij ,

where Pr(Rij = 1|yi,j−1, yij) is the probability for the ith subject to drop
out at time j. If ψ2 differs from zero, the missingness process is non-random.
Let us denote

g(hid, yid) = Pr(Rid = 1|yi,d−1, yid)

with d the time of dropout and hid = (yi1, . . . , yi,d−1) the history of yid,
which we now restrict to depend on the previous measurement only. The
total loglikelihood has the form

ℓ =

N
∑

i=1

(riℓ
c
i + (1 − ri)ℓ

i
i),

with ℓii the contribution for an incompleter

ℓii = ln f(hid) +

di−1
∑

j=2

ln[1 − g(hij, yij)] + ln

∫

f(yid|hid)g(hid, yid) dyid

and ℓci the contribution for a completer

ℓci = ln f(yi) +

J
∑

j=2

ln[1 − g(hij, yij)].

The likelihood ratio test statistic for testing MNAR versus MAR is then
given by

G = −2[ℓMNAR − ℓMAR].

Due to the difference in only one parameter, the distribution of this statistic
can be misleadingly expected to be χ2(1). Based on this statistic Kenward
(1998) and Molenberghs et al (2001) rejected the null hypothesis of missing
at random on a value of 5.11, which corresponds to a P-value of 0.02 for
their data example (Mastitis in dairy cattle). They compared this result
with the Wald test (P-value of 0.002) and concluded that the asymptotic
approximations are not very accurate. Rotnitzky et al. (2000) state that
the regular assumptions of the likelihood ratio test statistic do not hold in
this case due to the singular information matrix. In the next paragraph,
we will illustrate the behavior of the likelihood ratio test statistic for the
different missingness parameters in a simple setting.
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4 Simulations

For this small simulation study 400 similar datasets were generated in 4
different settings. Each dataset consists of 200 subjects, each with two
measurements generated from a bivariate normal distribution. Consider the
following bivariate normal distribution, based on a compound symmetry
covariance matrix:

(

Yi1

Yi2

)

∼ N

[(

4
2

)

,

(

4 2
2 4

)]

. (1)

The dropout process was generated according to the following model

logit[P (Ri = 1|Yi1, Yi2)] = −2 + ψ1Yi1 + ψ2Yi2 (2)

where ψ1 and ψ2 were chosen according to four different settings. In setting
1, the null hypothesis is ψ1 = 0, given that ψ2 = 0, while in setting 2 the
null hypothesis is ψ1 = 0, given that ψ2 6= 0. Setting 3 considers a test
for ψ2 = 0, given that ψ1 = 0 and finally in setting 4 ψ2 = 0 is tested,
given that ψ1 6= 0. In the next table an overview of the different simulation
settings is given.

Data under H0 with
ψ2 = 0 ψ2 6= 0

H0 : ψ1 = 0 Setting 1 Setting 2
ψ1 = 0 ψ1 6= 0

H0 : ψ2 = 0 Setting 3 Setting 4

Figure 1 shows plots of the simulated null-distributions together with ap-
proximating χ2-distribution.
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Setting 1: Density of the LRT ~ Chisq(1)
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Setting 2: Density of the LRT ~ Chisq(2)
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Setting 3: Density of the LRT ~ Chisq(1)
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Setting 4: Density of the LRT ~ Chisq(2)

FIGURE 1. Density plots (dots) of the different settings with approximating
χ

2-distribution (full line).
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5 Discussion and Further Research

From the literature and the simulation settings, it is clear that the likeli-
hood ratio test for testing missing not at random does not fulfill the regular
assumptions. The use of classical asymptotic results might clearly lead to
false results. A study of the theoretical asymptotical distribution and a
power simulation study are topics of current research.
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