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Abstract

This thesis explores the relevance and performance of various language processing models in sen-

timent analysis, with a focus on their application to IMDB movie reviews. It evaluates a range of

models, including advanced large language models (LLMs) such as BERT, LLAMA2, and GPT-4,

as well as traditional machine learning techniques like XGBoost. The study assesses these models

using key performance metrics: accuracy, precision, recall, and F1-score. The results reveal that

XGBoost achieves the highest accuracy and F1-score, outperforming other models in these metrics.

GPT-4 also demonstrates superior performance with high accuracy and precision, while LLAMA2

and GPT-3.5-turbo show strong results but fall slightly behind XGBoost and GPT-4. BERT, while

effective, does not surpass these models in any of the evaluated metrics. These findings underscore

the continued relevance of both advanced and traditional models in sentiment analysis, suggesting

that model selection should be guided by specific performance requirements and resource consid-

erations.

Keywords: Large Language Model (LLM), Sentiment Analysis, Embedding, Language Processing,

BERT, LLAMA2, GPT-4, XGBoost, Performance Metrics
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1 Introduction

In recent years, the field of Natural Language Processing (NLP) has undergone transformative

advancements driven by increases in computational power, data availability, and algorithmic inno-

vations. At the forefront of this evolution are Large Language Models (LLMs) such as BERT [1]

and GPT-4 [2], which have set new benchmarks in understanding and generating human language.

These models leverage vast amounts of textual data and sophisticated neural network architectures

to perform a variety of language-related tasks with unprecedented accuracy.

Sentiment analysis, a pivotal application of NLP, involves categorizing text into classes that reflect

emotional tone, such as positive or negative [3]. This task is crucial across diverse domains, from

business and social media to academic research. For instance, businesses use sentiment analysis to

gauge customer feedback and refine their strategies, while researchers analyze social media data to

understand public opinion on various issues [4].

A popular and influential dataset for sentiment analysis is the IMDB movie review dataset. This

dataset consists of thousands of movie reviews labeled with sentiments, making it a valuable resource

for evaluating and developing sentiment analysis models. The IMDB dataset is particularly useful

due to its large size and diversity of opinions, which provide a robust testbed for assessing the

performance of NLP techniques in real-world scenarios.

BERT, introduced by Google in 2018, represents a significant leap in NLP by employing a bidirec-

tional approach to text processing. Unlike traditional models that process text in a unidirectional

manner, BERT considers both preceding and following words, allowing for a more nuanced un-

derstanding of context [1]. This bidirectional context helps BERT achieve state-of-the-art results

across various NLP tasks by capturing complex language nuances.

Similarly, GPT-4, developed by OpenAI, enhances generative modeling with its advanced architec-

ture, offering improved capabilities for understanding and generating human-like text [2]. These

advancements have catalyzed new approaches to fine-tuning and optimizing models for specific

tasks, including sentiment analysis.

Fine-tuning, a technique that adapts pre-trained models to specific datasets or tasks, plays a crucial

role in enhancing model performance [5]. In addition, prompt engineering—a method for crafting

specific inputs to guide model responses—has emerged as an important tool for maximizing the

effectiveness of LLMs [6].

This research focuses on evaluating and comparing various NLP techniques for binary sentiment

analysis of IMDB movie reviews. The primary research question is: How do different NLP tech-

niques, including prompt engineering on state-of-the-art Large Language Models (LLMs) and fine-

tuning decoder-only and encoder-only models, compare in terms of accuracy and efficiency for

binary sentiment analysis (negative and positive) of IMDB movie reviews? This question seeks to

explore the relative performance of advanced NLP methods in accurately classifying the sentiment

of text data.
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By investigating these techniques, this study aims to provide valuable insights into the optimization

of NLP models for sentiment analysis. These insights have implications for both academic research

and practical applications, as understanding the strengths and limitations of different methods is

essential for addressing real-world text classification challenges.

The structure of the study is as follows: Section 2 describes the datasets used, providing details

on their characteristics and preprocessing. Section 3 outlines the methodology, including specific

models such as BERT and LLAMA2, techniques like prompt engineering and traditional machine

learning, and the evaluation metrics employed. In Section 4, the results of the experiments are

presented and analyzed, with separate discussions for each model and technique. Section 5 delves

into the discussion, interpreting the findings and their implications. Section 6 addresses the ethical

considerations, societal relevance, and stakeholder awareness related to the use of NLP technologies.

Finally, Section 7 concludes the thesis with a summary of key findings and Section 8 proposes

directions for future research.
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2 Description of the Datasets

The IMDB movie review dataset used in this thesis is publicly available and consists of CSV files

and parquet files. The dataset contains thousands of reviews. Each review is labeled with sentiment

information.

As an example of how the data is structured, Table 1 shows a snapshot of the dataset including

sample reviews and their associated sentiments:

review sentiment

I saw this film (it’s English title is ”Who’s Singing Over There?”) at

the 1980 Montreal International Film Festival. It won raves then... and

disappeared. A terrible shame. It is brilliant. Sublime, ridiculous, sad,

and extremely funny. The script is a work of art. It’s been 19 years

and I’ve seen only a handful of comedies (or any other genre, for that

matter) that can match its originality.

positive

This film could cure sleep disorders, thats how bad it is. The story

dragged, and the bad guy is not that scary. You will not even see this

one on TBS reruns. This film made me wonder about Chuck film choices.

He work on a real dog with this one.

negative

I didn’t know what to expect from the film. Well, now I know. This was

a truly awful film. The screenplay, directing and acting were equally

bad. The story was silly and stupid. The director could have made a

smart and thought provoking film, but he didn’t. I squirmed in my seat

for the last half of the movie because it was so bad. Where was the

focus to the film? Where was anything in this film? Christians should

boycott this film instead of promoting it. It was shabbily done and a

waste of my money. Do not see this film.

negative

Table 1: Sample movie reviews and their associated sentiments

The parquet files are similar to the CSV files but have an extra column that contains embeddings.

These embeddings are fixed-size numerical vectors with 3,072 dimensions, capturing the semantic

meaning of reviews rather than individual words.

These embeddings were created using a model from OpenAI, which processes the text to generate

a summary-like numerical representation. This representation helps the model understand the

context and emotion behind the words in the review. Unlike older methods that might have

treated each word separately, these embeddings allow the model to grasp the deeper meaning of

the entire review, leading to better performance in tasks like sentiment analysis.

Including these embeddings in the dataset makes it more useful for NLP tasks. They transform

text into a format that reflects their context and meaning, which leads to more accurate sentiment
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analysis. This is important for training models to detect subtle differences in sentiment and improve

their performance on tasks like binary sentiment classification.

The dataset had some duplicate entries, meaning some reviews appeared more than once. To clean

the data, duplicates were removed. First, reviews that were present in both the test and training

sets were eliminated to ensure each dataset was unique. Then, duplicate reviews within the training

set were also removed. After this cleanup, the Training Dataset contained 48,597 reviews, and the

Test Dataset had 985 reviews. This process ensured the dataset was accurate and ready for analysis.

After cleaning the dataset, the sentiment labels in both the training and test datasets are nearly

equal, with a balanced distribution between negative and positive categories. This balance ensures

that the model is exposed to an equal representation of both sentiment classes during training

and testing, which is essential for accurately assessing the model’s performance across different

sentiment categories. It helps prevent biases and ensures that the model learns to distinguish

between negative and positive sentiments effectively. Figure 1 provides a visual representation of

the balanced distribution of sentiment labels in both datasets, highlighting the representation of

negative and positive sentiments.

(a) Distribution of sentiment labels in the training

dataset

(b) Distribution of sentiment labels in the test

dataset

Figure 1: Analysis of balanced sentiment labels in the training and test datasets
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3 Methodology

This section outlines the methodologies employed to analyze sentiment in movie reviews, focusing on

both encoder-only and decoder-only models. For encoder-based models, BERT was chosen due to

its bidirectional context processing, which improves text understanding by considering surrounding

words. BERT was trained and fine-tuned specifically for sentiment analysis tasks. For decoder-

only models, LLAMA 2 was selected, leveraging its open-source nature and large-scale language

capabilities. LLAMA 2 was adapted for sentiment classification by adding an additional layer that

directly predicts sentiment outputs, rather than generating text. Prompt engineering techniques

were also utilized with GPT models, such as GPT-4o and GPT-3.5-turbo, where specific prompts

were crafted to guide the models in performing sentiment analysis tasks. Traditional machine

learning techniques, like XGBoost, were used as a baseline for comparison. Evaluation metrics,

including accuracy, precision, recall, and F1-score, were employed to assess model performance.

Additionally, this section details the software tools used throughout the study. out the study are

detailed in this section.

3.1 BERT

BERT stands for Bidirectional Encoder Representations from Transformers, a transformer-based

pre-trained model developed by Google in 2018 that has revolutionized the field of natural language

processing [1]. Unlike traditional models that process text data in a unidirectional manner (either

left-to-right or right-to-left), BERT employs a bidirectional approach, considering both preceding

and following words to understand the context of each word more accurately. Therefore, BERT

can correctly understand the meaning of a word based on the words surrounding it in context.

Moreover, BERT can learn new meanings of the same word that has a new quantitative meaning.

This leads to it giving state-of-the-art results in every NLP task, including question answering,

sentiment analysis, etc.

The BERT architecture is based on the Transformer model introduced by Vaswani et al. in 2017 [7].

The Transformer model includes mechanisms to evaluate the importance of each word in a sentence,

which helps BERT generate better contextual word embeddings. BERT itself is pre-trained on a

corpus of text, specifically from English Wikipedia and BookCorpus. This pre-training involves

two main objectives: Masked Language Modeling (MLM), where some words in a sentence are

masked and predicted based on the surrounding context, and Next Sentence Prediction (NSP),

which involves predicting whether one sentence logically follows another [1].

In MLM (Masked Language Model), some of the words in a particular sentence are masked ran-

domly, and the model is then trained to predict the masked words based on the context of the

surrounding words. MLM helps BERT obtain a better understanding of language semantics and

syntax. On the other hand, NSP (Next Sentence Prediction) is the task of predicting whether

one sentence follows another in a given text pair. NSP helps BERT understand the relationship

between different sentences and their context relevance [1].

In addition to its groundbreaking capabilities, BERT has inspired the development of more efficient
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variants such as DistilBERT. DistilBERT, introduced by Sanh et al., is a more streamlined version

of BERT [8]. This smaller, and faster variant “retains 97% of BERT’s language understanding

capabilities while being 60% faster and 40% smaller”. This implies that this variant would be ideal

for real-time processing and deployment on platforms with fewer computational resources. The

efficiency is realized using a knowledge distillation process, where a smaller variant, DistilBERT, is

trained to replicate the larger BERT. This way, BERT’s high-performance language representations

are retained and further made more scalable and accessible, thus able to be used in a wide array

of NLP applications [8].

3.2 LLAMA 2: Open-Source Language Models

Llama 2, introduced by Meta in July 2023, is a series of advanced open-source language models

designed to improve natural language understanding and generation. With sizes ranging from 7

billion to 70 billion parameters, Llama 2 is versatile enough for various applications, including

conversational AI and content generation [9].

In this study, Llama 2 was not merely utilized as a generative model but was specifically adapted

for sentiment analysis tasks by modifying its architecture. Typically, models like Llama 2 generate

text sequences in an auto-regressive manner, predicting one word at a time based on the previous

words. However, for the purpose of sentiment classification, an additional layer was introduced

to the model. This layer is designed to predict the sentiment of a movie review directly, thereby

converting Llama 2 from a generative model into a more efficient classifier that outputs sentiment

predictions without generating full text sequences.

This modification allows Llama 2 to bypass the typical text generation process and focus on the

sentiment prediction task, making it more suitable for the specific needs of this study. The adap-

tation leverages Parameter-Efficient Fine-Tuning (PEFT) techniques, which adjust only a subset

of the model’s parameters or add lightweight layers, thereby ensuring that the model remains

computationally efficient while being tailored for sentiment analysis [10].

By combining the strengths of Llama 2’s large-scale language capabilities with a tailored archi-

tecture for classification, this approach enhances the model’s performance in sentiment analysis

tasks while reducing computational overhead. This makes Llama 2 a powerful and flexible tool for

both research and practical applications, providing targeted enhancements without the need for

extensive retraining.

3.3 Prompt Engineering in GPT Models

Prompt engineering plays a critical role in natural language processing (NLP) and machine learning,

focusing on the design of effective prompts to guide language models in generating accurate and

contextually appropriate responses. This section evaluates the use of prompt engineering with two

GPT models, GPT-4o and GPT-3.5-turbo, specifically for sentiment analysis tasks.

The key difference between this approach and the Llama 2 adaptation lies in the methodology:
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While Llama 2 was modified to predict sentiment directly through an added classification layer,

GPT models are leveraged in their generative form. Here, the focus is on designing effective

prompts that instruct the model to perform sentiment analysis by interpreting the sentiment behind

the provided text. The process involves carefully constructing and refining prompts to elicit the

desired outcomes from the model, making it responsive to specific sentiment-related queries.

Prompt engineering involves crafting prompts that clearly direct the language model to perform

specific tasks or generate particular types of responses. For instance, prompts need to be well-

defined to elicit the desired outputs from models like GPT-3 and GPT-4, which rely on such

prompts to function effectively [6, 11]. In our study, we designed prompts to assess whether movie

reviews from IMDb are positive or negative, focusing on how variations in prompt wording influence

model accuracy.

The process of designing these prompts includes providing precise instructions and relevant context

to ensure that the model understands the task at hand. This requires a deep understanding of the

model’s capabilities and the specifics of the task. Effective prompts are often the result of iterative

refinement, where initial prompts are tested and adjusted based on the model’s performance [12].

For example, we refined our prompts by evaluating different phrasings and contexts to optimize

the sentiment analysis performance of GPT-4o and GPT-3.5-turbo.

A key challenge in prompt engineering is achieving the right balance between specificity and flex-

ibility. Prompts must be specific enough to guide the model toward accurate outputs, yet flexible

enough to handle a variety of inputs and different types of movie reviews. This balance is cru-

cial for optimizing the model’s performance across different scenarios [13]. Our study focuses on

how different prompt configurations affect the accuracy of sentiment classification, ensuring that

prompts are adaptable to various review styles and contents.

Additionally, prompt engineering is essential for addressing issues of bias and fairness in language

model outputs. By carefully crafting prompts and using diverse training data, developers can

mitigate potential biases and ensure that the model provides equitable responses across differ-

ent contexts [14, 15]. In our experiments, we considered how prompt design might influence the

model’s handling of nuanced sentiments and varied linguistic expressions, aiming to produce fair

and balanced sentiment analysis results.

3.4 Traditional Machine Learning

For this study, Extreme Gradient Boosting (XGBoost) was selected as the baseline. XGBoost, in-

troduced by Tianqi Chen and Carlos Guestrin in 2016, has become a highly effective tool for various

prediction tasks, including classification and regression. Its exceptional performance, robustness,

scalability, and efficiency have led to widespread adoption across both academic and industrial

settings [16].

XGBoost operates by sequentially training a series of weak classifiers on subsets of the training data,

and then combining them to form a strong predictive model. This process involves minimizing a loss
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function, which reduces the discrepancy between the predicted and actual values, using a gradient

descent approach to optimize the model parameters. This iterative approach enhances the model’s

ability to make accurate predictions [16].

A key advantage of XGBoost is its scalability. The algorithm efficiently processes large datasets

through parallel processing, utilizing multiple threads or machines to handle big data problems

that require rapid and efficient computation [16]. This scalability makes XGBoost particularly

well-suited for complex datasets and large-scale machine learning tasks.

In addition to its predictive capabilities, XGBoost provides interpretability through feature impor-

tance scores. These scores offer insights into the significance of each feature in the model, helping

users understand how predictions are made and the relative importance of different features in the

decision-making process [17].

3.5 Evaluation Metrics

The performance of the various NLP techniques for binary sentiment analysis will be assessed using

a comprehensive set of evaluation metrics. These metrics will provide insights into the accuracy,

efficiency, and overall effectiveness of each method. The following evaluation metrics will be used

in this study:

3.5.1 Accuracy

Accuracy measures the proportion of correctly classified reviews out of the total number of reviews.

It is a straightforward metric that provides a general sense of how well the model is performing.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(1)

High accuracy indicates that the model is reliably distinguishing between positive and negative

sentiments.

3.5.2 Precision, Recall, and F1-Score

Precision: Precision measures the proportion of true positive predictions out of all positive pre-

dictions made by the model. It indicates how many of the reviews labeled as positive are actually

positive.

Precision =
True Positives

True Positives + False Positives
(2)

Recall: Recall, also known as sensitivity, measures the proportion of true positive predictions out

of all actual positive reviews. It shows how well the model captures all positive instances.

Recall =
True Positives

True Positives + False Negatives
(3)

8



F1-Score: The F1-Score is the harmonic mean of precision and recall, providing a balance between

the two metrics. It is especially useful when the class distribution is imbalanced.

F1-Score = 2× Precision× Recall

Precision + Recall
(4)

• True Positives (TP): The number of positive reviews correctly classified as positive.

• False Positives (FP): The number of negative reviews incorrectly classified as positive.

• True Negatives (TN): The number of negative reviews correctly classified as negative.

• False Negatives (FN): The number of positive reviews incorrectly classified as negative.

These metrics are crucial for understanding the trade-offs between precision and recall, particularly

in contexts where false positives or false negatives carry different costs.

3.5.3 Confusion Matrix

A confusion matrix is a table used to evaluate the performance of a classification algorithm. It

displays the true positives, true negatives, false positives, and false negatives.

Predicted Positive Predicted Negative

Actual Positive True Positives (TP) False Negatives (FN)

Actual Negative False Positives (FP) True Negatives (TN)

Table 2: Confusion Matrix

The confusion matrix provides a detailed breakdown of model performance, allowing for the iden-

tification of specific areas where the model may be underperforming.

3.6 Software

The research utilized several key software tools and platforms, each serving a specific role in the

development and evaluation of the models. Python was the primary programming language used

for developing and running the models. For deep learning tasks, PyTorch was employed, providing

robust support for model training and evaluation. The Transformers Library by Hugging Face

was essential for accessing pre-trained models and performing various natural language processing

(NLP) tasks. Scikit-Learn was used for implementing traditional machine learning algorithms,

complementing the modern NLP approaches.

Data manipulation and numerical computations were handled using Pandas and NumPy. To access

advanced models like GPT-4, the Azure OpenAI Service was utilized. High-performance computing

resources were initially provided by the Flemish Supercomputer Center (VSC), but using VSC
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presented several challenges. Training models on VSC proved to be time-consuming and complex,

particularly with the integration and management of computational resources. It took almost a

month to become proficient with VSC, and despite the effort, only BERT and XGBoost were

successfully run there. Attempts to run LLAMA2 on VSC faced significant issues with GPU

memory limitations, leading to frequent out-of-memory errors.

Due to these challenges, the decision was made to switch to Google Colab. Google Colab pro-

vided a more user-friendly environment and better handled the computational requirements of the

models. It offered ease of use and efficient execution of the models, allowing for more effective

experimentation and analysis.

Overall, while VSC provided necessary high-performance computing resources, the ease of use and

operational efficiency of Google Colab significantly streamlined the research process, allowing for

more productive and timely results.
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4 Results

This section presents the results of the sentiment analysis using different models. It starts with

the DistilBERT model, which was fine-tuned to evaluate its performance. Next, the results for the

LLAMA2 model, which used Parameter-Efficient Fine-Tuning (PEFT) and LoRA, are discussed.

It is crucial to highlight that LLAMA2 was modified from its original generative model design.

Specifically, an additional layer was incorporated into LLAMA2 to enable direct sentiment classifi-

cation, transforming it from a text-generating model to one that outputs binary sentiment labels.

The effectiveness of this modification is a key focus. The effectiveness of prompt engineering is

then explored by looking at the GPT-4o and GPT-3.5-turbo models. Finally, the XGBoost model

is reviewed as a baseline for comparison. Performance is measured using accuracy, precision, recall,

and F1-score to understand how well each model performed.

4.1 BERT

The DistilBERT model was trained and fine-tuned for 20 epochs, with early stopping triggered

after 5 epochs due to no improvement in validation loss. The best model was saved and used for

evaluation on the test set.

The training process resulted in a decrease in both training and validation loss over the epochs,

indicating that the model was learning and improving its performance. However, after the second

epoch, the validation loss started to increase, suggesting that the model was beginning to overfit

the training data. This behavior is illustrated in Figure 2, which plots the training and validation

losses over the epochs.

Figure 2: Training and Validation Loss Over Epochs

At the end of the second epoch, the model achieved a validation accuracy of 94.62%. On the test

set, it obtained an accuracy of 94.62%, precision of 92.19%, recall of 97.32%, and an F1-score
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of 94.68%. These metrics are summarized in Table 3.

Table 3: Performance Metrics on Test Set

Metric Value

Accuracy 94.62%

Precision 92.19%

Recall 97.32%

F1-Score 94.68%

The confusion matrix in Figure 3 provides a detailed view of the model’s performance. Out of

500 negative reviews, 460 were correctly classified, while 40 were misclassified as positive. Among

485 positive reviews, 472 were correctly identified, with 13 misclassified as negative. This indicates

a slightly better performance in identifying positive reviews compared to negative ones.

Figure 3: Confusion Matrix on Test Set for BERT

The model was trained with a learning rate of 2e-5, which is commonly used for fine-tuning BERT

models as it provides a balance between stability and convergence speed [1]. A batch size of 16

was selected based on typical memory constraints and training stability considerations. Training

was set for 20 epochs, but early stopping after 5 epochs without validation loss improvement was

employed to prevent overfitting, a common practice in training deep learning models. Details of
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the training parameters and their justifications are summarized in Table 4.

Table 4: Training Parameters and Their Justification

Parameter Explanation

Learning Rate 2e-5, effective for fine-tuning BERT models

Batch Size 16, chosen for GPU memory constraints

Number of Epochs 20, with early stopping after 5 epochs

Early Stopping Patience 5 epochs, to prevent overfitting

4.2 LLAMA2

The LLAMA2 model, specifically the 7B variant, was fine-tuned using the Parameter-Efficient

Fine-Tuning (PEFT) approach with Low-Rank Adaptation (LoRA). This approach was selected to

efficiently adapt a large pre-trained model to the sentiment analysis task while managing compu-

tational resources effectively. Given the constraints of typical research environments, PEFT with

LoRA is particularly useful for reducing the number of parameters that need to be updated during

training.

The model used for this analysis was created using the AutoModelForSequenceClassification

class from the transformers library by Hugging Face. This class helps to load pre-trained models

that are ready for sequence classification tasks. For this analysis, the LLAMA2 7B variant was

chosen, taking advantage of its extensive pre-training on various types of text. The num labels=2

parameter was set to adapt the model for binary classification, which is necessary for distinguishing

between positive and negative sentiments. The AutoModelForSequenceClassification class adds

a classification layer on top of the pre-trained model, enabling it to make predictions for each

sentiment label.

The PEFT approach employed LoRA, configured with the following parameters:

• Rank (r): The rank parameter of 8 was chosen to balance model capacity and computational

efficiency. It allows the model to adapt effectively without significantly increasing the number

of trainable parameters.

• LoRA Alpha (α): Set to 16, this parameter scales the contribution of the low-rank matrices

to the model’s predictions. A value of 16 was selected to provide a strong adaptation effect

without overwhelming the pre-trained model weights.

• LoRA Dropout: Set to 0.1, dropout is used to regularize the training process and reduce

the risk of overfitting. This level of dropout provides a balance between preventing overfitting

and maintaining model performance.

The LLAMA2 model was fine-tuned with an NVIDIA A100 GPU, provided by Google Colab. The

training process took approximately 5-6 hours for 1 epoch, with a batch size of 4 chosen to fit

within GPU memory constraints. A learning rate of 2e-5 was used, which is a common choice for
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fine-tuning large pre-trained models, balancing convergence and stability. The maximum sequence

length was set to 512 tokens to effectively handle the length of most input reviews. Padding was

applied to all sequences to ensure consistent input sizes, which is crucial for model performance.

The performance of LLAMA2 on the test set is summarized in Table 5.

Table 5: Performance Metrics on Test Set for LLAMA2

Metric Value

Accuracy 95.84%

Precision 93.70%

Recall 98.14%

F1-Score 95.87%

The confusion matrix for the test set is illustrated in Figure 4. This matrix provides a detailed

view of the model’s classification performance, highlighting the true and false classifications.

Figure 4: Confusion Matrix on Test Set for LLAMA2

Figure 4 and Table 5 demonstrates high performance on the test set, with an accuracy of 95.84%

and a balanced precision, recall, and F1-score. The confusion matrix indicates that the model effec-

tively distinguishes between positive and negative sentiments, with relatively few misclassifications.
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Specifically, the confusion matrix shows 471 true negatives, 473 true positives, 29 false positives,

and 12 false negatives.

These results suggest that LLAMA2, when fine-tuned with PEFT and LoRA, is well-suited for

sentiment classification tasks. The high recall of 98.14% indicates that the model is particularly

good at identifying positive reviews, while the precision of 93.70% shows that it maintains a good

balance between positive identifications and avoiding false positives.

Despite these strong results, there are always opportunities for improvement. Future work could

focus on enhancing the model’s ability to handle more nuanced sentiments and improving perfor-

mance on edge cases or less common sentiment expressions. This could involve exploring advanced

techniques or integrating additional contextual information to further refine the model’s accuracy

and robustness.

4.3 Prompt Engineering

In this section, the performance of two different GPT models used for sentiment analysis is eval-

uated: GPT-4o and GPT-3.5-turbo. Predictions were made using the Azure OpenAI service with

specific prompt settings. The GPT predictions were conducted by Algorythym Group, Belgium.

To ensure consistent and deterministic responses from the models, specific settings were applied

during the sentiment analysis task:

• Temperature: 0.0 - The temperature setting controls the randomness of the model’s pre-

dictions. By setting the temperature to 0.0, the model is forced to always choose the most

probable answer, eliminating any variability in the responses. This ensures that the model

provides the same output every time it encounters the same prompt and input, which is

crucial for obtaining reliable and repeatable results in sentiment classification.

• Max Tokens: 1 - The max tokens parameter limits the number of tokens (words or symbols)

that the model can generate in response to the prompt. Setting this to 1 ensures that

the model’s response is confined to a single word—either ”positive” or ”negative”—which

is exactly what’s required for binary sentiment classification. This prevents the model from

producing unnecessary or off-topic content.

During the analysis, it was observed that some reviews were missing sentiment predictions due to

a content filter being triggered. Specifically, 56 reviews were filtered out because of inappropriate

text or words in them. The remaining 929 reviews were used for the final analysis, and the reported

accuracy is based on this adjusted dataset.

The performance metrics for GPT-4o and GPT-3.5-turbo are summarized in Table 6.
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Table 6: Performance Metrics for GPT-4o and GPT-3.5-turbo

Metric GPT-4o GPT-3.5-turbo

Accuracy 97% 95%

Precision 97% 93%

Recall 96% 96%

F1-Score 97% 95%

The confusion matrices for both models are illustrated side by side in Figure 5.

(a) Confusion Matrix for GPT-4o (b) Confusion Matrix for GPT-3.5-turbo

Figure 5: Confusion Matrices for GPT-4o (a) and GPT-3.5-turbo (b)

The performance metrics and confusion matrices for GPT-4o and GPT-3.5-turbo reveal the follow-

ing:

• Accuracy: GPT-4o achieved a higher accuracy of 97% compared to GPT-3.5-turbo’s 95%.

This indicates that GPT-4o was slightly more accurate in its overall sentiment classification.

• Precision: GPT-4o outperformed GPT-3.5-turbo in terms of precision, with a precision

score of 97% compared to 93%. This suggests that GPT-4o was more accurate in its positive

sentiment predictions, resulting in fewer false positives.

• Recall: Both models had similar recall, with GPT-4o achieving 96% and GPT-3.5-turbo

also scoring 96%. This indicates that both models were equally effective at identifying all

instances of positive sentiments.

• F1-Score: GPT-4o also had a higher F1-score of 97% compared to GPT-3.5-turbo’s 95%.

The F1-score, which balances precision and recall, further confirms GPT-4o’s stronger overall
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performance.

The confusion matrices, shown in Figure 5, provide additional insight into the models’ perfor-

mance. GPT-4o had fewer misclassifications overall. Specifically, GPT-4o misclassified 13 negative

reviews as positive and 18 positive reviews as negative. On the other hand, GPT-3.5-turbo mis-

classified 32 negative reviews as positive and 17 positive reviews as negative.

In summary, both GPT models performed well in sentiment classification, with GPT-4o demon-

strating superior precision and overall accuracy. GPT-3.5-turbo showed strong recall, particularly

in identifying positive sentiments, but had a lower precision, indicating a trade-off between these

performance metrics.

4.4 XGBoost (Baseline Model)

The XGBoost model was selected as a baseline for benchmarking the performance of more advanced

models in the sentiment analysis of IMDb movie reviews. XGBoost, a robust and efficient gradient

boosting algorithm, is well-suited for handling large datasets and served as a reliable starting point

for this analysis.

For the baseline model, the XGBoost classifier was used with its default hyperparameters. The

decision to avoid hyperparameter tuning at this stage was intentional, as the primary goal was

to establish a straightforward benchmark against which more complex models could be compared.

This approach allowed for a fair evaluation of the model’s out-of-the-box performance.

The model was trained on a set of movie review embeddings, each represented as a 3072-dimensional

vector, as discussed in the 2.Dataset Description section. The training process was straightfor-

ward, focusing on minimizing the loss function through gradient boosting without any specific

tuning. Early stopping or cross-validation was not applied in this baseline setup to maintain sim-

plicity.

The performance of the XGBoost model was evaluated on the test set, with results summarized in

Table 7. Despite the lack of hyperparameter tuning, the model demonstrated strong performance,

achieving an accuracy of 96.24% on the test set. These metrics indicate that even with default

settings, XGBoost is a powerful tool for sentiment classification tasks.

Table 7: Performance Metrics on Test Set

Metric Test Set

Accuracy 96.24%

Precision 94.80%

Recall 97.73%

F1-Score 96.24%

The confusion matrix in Figure 6 provides further insights into the model’s performance on the test

set. The model correctly classified 474 out of 500 negative reviews, with 26 misclassified as positive.
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Conversely, it accurately identified 474 out of 485 positive reviews, with only 11 being misclassified

as negative. This slight imbalance shows that while the model was effective at recognizing positive

reviews, it also maintained strong performance with negative reviews.

Figure 6: Confusion Matrix on Test Set for XGBoost
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5 Discussion

This section provides a comparative analysis of the sentiment analysis models evaluated: Distil-

BERT, LLAMA2, GPT-4o, GPT-3.5-turbo, and XGBoost. The following table summarizes the

performance metrics of each model:

Table 8: Comparison of Performance Metrics Across Models

Model Accuracy Precision Recall F1-Score

DistilBERT 94.62% 92.19% 97.32% 94.68%

LLAMA2 95.84% 93.70% 98.14% 95.87%

GPT-4o 97.00% 97.00% 96.00% 97.00%

GPT-3.5-turbo 95.00% 93.00% 96.00% 95.00%

XGBoost 96.24% 94.80% 97.73% 96.24%

The comparative analysis reveals several key insights and trade-offs among the models:

• Accuracy and Performance: GPT-4o achieved the highest accuracy and F1-score among

the models evaluated, showcasing its superior overall performance in sentiment analysis. XG-

Boost also demonstrated strong performance, particularly with its high F1-score, indicat-

ing robustness across various metrics. LLAMA2 and GPT-3.5-turbo performed well, with

LLAMA2 excelling in recall, which is crucial for tasks that prioritize capturing all instances

of positive sentiment.

• Precision and Recall Trade-off : GPT-4o excelled in precision, making it particularly

effective for applications where minimizing false positives is critical. Although GPT-3.5-

turbo had slightly lower precision compared to GPT-4o, it maintained a strong recall rate,

making it suitable for scenarios where capturing as many positive sentiments as possible is

essential.

• Model Complexity: Advanced models like GPT-4o and LLAMA2 offer superior perfor-

mance but require significant computational resources. In contrast, XGBoost, with its simpler

architecture, provides competitive performance while being more computationally efficient.

The choice of model should consider the specific requirements of the task, including the

availability of computational resources.

• Application Suitability: For scenarios requiring high precision, GPT-4o is preferable due

to its strong precision metrics. LLAMA2 and GPT-3.5-turbo, with their higher recall rates,

are better suited for applications where identifying as many positive sentiments as possible

is crucial. XGBoost remains a solid choice for general-purpose sentiment analysis, offering a

good balance of performance across all metrics.

• Generalization: DistilBERT showed signs of overfitting, as evidenced by the increasing

validation loss after the second epoch. GPT-4o and GPT-3.5-turbo, due to their strong per-
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formance across metrics, indicate good generalization capabilities, though their performance

comes with higher computational costs.
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6 Ethical Thinking, Societal Relevance, and Stakeholder Aware-

ness

Ethical considerations, societal impact, and stakeholder awareness are crucial aspects of this thesis,

especially in the context of Natural Language Processing (NLP) and sentiment analysis.

Ethical issues are significant when developing NLP systems. These models can unintentionally

reflect and reinforce biases present in their training data, potentially leading to unfair or discrimi-

natory outcomes [18]. To address these challenges, it is essential to implement strategies that detect

and mitigate biases [19] and ensure compliance with data protection regulations to safeguard user

privacy.

The societal relevance of sentiment analysis of IMDB reviews is substantial. By providing in-

sights into public opinion and preferences regarding movies, sentiment analysis enhances audience

engagement and contributes to the quality of online discourse and user experiences on review plat-

forms. This understanding aids filmmakers, producers, distributors, and online review platforms

like IMDb and Rotten Tomatoes in making informed decisions, influencing viewing choices, and

improving content offerings.

Stakeholders including filmmakers, producers, distributors, moviegoers, and review platforms are

interested in maximizing audience engagement, influencing viewing choices, and providing valu-

able content to attract traffic to their websites. Analyzing sentiment in movie reviews enables

these stakeholders to better tailor their strategies to meet audience expectations and improve user

interactions.

Additionally, measures have been taken to ensure that the data used in the analysis does not contain

any personal information, which is crucial for maintaining privacy. Proper citation of all sources

and acknowledgment of contributions from other researchers and datasets are also maintained. This

practice upholds intellectual property rights and ensures transparency in the research methodology.
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7 Conclusion

This thesis explored the relevance of purpose-made models in language processing, specifically

in the context of binary sentiment analysis of IMDB movie reviews. By comparing advanced

large language models (LLMs) such as BERT, LLAMA2, and GPT-4 with traditional machine

learning techniques like XGBoost, this study aimed to assess whether these specialized models offer

significant advantages over more conventional methods.

The findings demonstrate that purpose-made models like LLAMA2 and GPT-4o exhibit excep-

tional performance in sentiment analysis. LLAMA2 achieved the highest accuracy and F1-score,

showcasing its advanced capabilities in understanding and classifying sentiment, especially with

its high recall of 98.14%. GPT-4o also delivered superior results with the highest accuracy and

F1-score, reflecting its effectiveness in precise sentiment classification. BERT, while still robust and

performing well, showed slightly lower metrics compared to LLAMA2 and GPT-4o.

Traditional models, particularly XGBoost, were also found to be highly effective, with performance

metrics that are competitive with those of the advanced LLMs. XGBoost demonstrated strong

performance, with notable accuracy and F1-score, proving its value in sentiment analysis. This

suggests that while purpose-made models offer enhanced capabilities, traditional methods remain

valuable, especially in terms of computational efficiency and simplicity.

The results affirm that purpose-made models continue to be highly relevant in language processing,

particularly when high accuracy and nuanced understanding are required. However, traditional

methods like XGBoost provide strong alternatives and should not be overlooked, particularly in

scenarios where computational resources or model complexity are constraints.

In summary, both purpose-made and traditional models have their unique strengths and appli-

cations. The choice between them should be guided by the specific needs of the task at hand,

balancing accuracy, efficiency, and computational resources.
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8 Future Research

Future research can build upon this study in several key areas:

Firstly, optimizing the XGBoost model by experimenting with hyperparameters, such as learning

rates and tree depths, could further enhance its performance. While XGBoost demonstrated strong

performance, fine-tuning these parameters may uncover additional improvements and potentially

close the performance gap with advanced LLMs.

Additionally, exploring a broader range of transformer models beyond DistilBERT and LLAMA2

could be valuable. Investigating newer models, such as T5 or advanced GPT variants, could offer

further insights into their effectiveness for sentiment analysis tasks. Given the performance of GPT-

4o in this study, future work could focus on evaluating other state-of-the-art transformer models

to see if they offer similar or improved results.

Combining traditional machine learning techniques with transformer models could also be ben-

eficial. Hybrid approaches that integrate XGBoost with transformer embeddings might leverage

the strengths of both methodologies, potentially resulting in improved performance. Exploring

ensemble methods that combine predictions from both XGBoost and transformer models could be

a promising direction.

Expanding the application of these models to diverse datasets and domains, including different

review platforms, languages, and contexts, could validate their robustness and generalizability.

This would help assess the models’ effectiveness across various scenarios and enhance their practical

applicability.

Overall, these research directions present promising opportunities to advance sentiment analysis

techniques and explore innovative approaches to improve model performance, ensuring that both

purpose-made and traditional models are utilized to their fullest potential.
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Appendix

Codes

Listing 1: Distilbert Model

from google.colab import drive

drive.mount('/content/drive ')

import torch

import pandas as pd

from transformers import DistilBertTokenizer ,

DistilBertForSequenceClassification

from torch.utils.data import DataLoader , TensorDataset

from sklearn.metrics import accuracy_score ,

precision_recall_fscore_support , confusion_matrix ,

classification_report

import matplotlib.pyplot as plt

import seaborn as sns

# Check if GPU is available

print("GPU␣available:", torch.cuda.is_available ())

# Install required libraries

!pip install datasets transformers huggingface_hub

!apt -get install git -lfs

# Load datasets

train_data = pd.read_csv('/content/drive/MyDrive/thesis_data/imdb_train␣-␣
Karel␣Kenens.csv')

test_data = pd.read_csv('/content/drive/MyDrive/thesis_data/imdb_test␣-␣
Karel␣Kenens.csv')

# Preprocess data

tokenizer = DistilBertTokenizer.from_pretrained('distilbert -base -uncased ')
train_encodings = tokenizer(train_data['review ']. tolist (), max_length =512,

padding='max_length ', truncation=True , return_tensors='pt')
test_encodings = tokenizer(test_data['review ']. tolist (), max_length =512,

padding='max_length ', truncation=True , return_tensors='pt')

# Sentiments to labels (0 for negative , 1 for positive)

train_labels = torch.tensor ([1 if sentiment == 'positive ' else 0 for

sentiment in train_data['sentiment ']])
test_labels = torch.tensor ([1 if sentiment == 'positive ' else 0 for

sentiment in test_data['sentiment ']])
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# Create TensorDatasets & DataLoaders

train_dataset = TensorDataset(train_encodings['input_ids '],
train_encodings['attention_mask '], train_labels)

test_dataset = TensorDataset(test_encodings['input_ids '], test_encodings['
attention_mask '], test_labels)

train_dataloader = DataLoader(train_dataset , batch_size =16, shuffle=True)

test_dataloader = DataLoader(test_dataset , batch_size =16)

# Load pre -trained DistilBERT model

model = DistilBertForSequenceClassification.from_pretrained('distilbert -
base -uncased ', num_labels =2)

# Fine -tune DistilBERT

optimizer = torch.optim.AdamW(model.parameters (), lr=2e-5)

criterion = torch.nn.CrossEntropyLoss ()

device = torch.device('cuda' if torch.cuda.is_available () else 'cpu')
model.to(device)

# Early stopping parameters

num_epochs = 20

patience = 3

best_val_loss = float('inf')
epochs_without_improvement = 0

# Initialize lists to store metrics

train_losses = []

val_losses = []

val_accuracies = []

for epoch in range(num_epochs):

model.train()

running_loss = 0.0

for batch in train_dataloader:

input_ids , attention_mask , labels = batch

input_ids , attention_mask , labels = input_ids[:, :512]. to(device),

attention_mask [:, :512]. to(device), labels.to(device)

optimizer.zero_grad ()

outputs = model(input_ids , attention_mask=attention_mask)

loss = criterion(outputs.logits , labels)

loss.backward ()

optimizer.step()

running_loss += loss.item()
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avg_train_loss = running_loss / len(train_dataloader)

train_losses.append(avg_train_loss)

model.eval()

val_predictions = []

val_targets = []

val_loss = 0.0

with torch.no_grad ():

for batch in test_dataloader:

input_ids , attention_mask , labels = batch

input_ids , attention_mask , labels = input_ids[:, :512]. to(

device), attention_mask [:, :512]. to(device), labels.to(

device)

outputs = model(input_ids , attention_mask=attention_mask)

loss = criterion(outputs.logits , labels)

val_loss += loss.item()

_, predicted = torch.max(outputs.logits , 1)

val_predictions.extend(predicted.cpu().tolist ())

val_targets.extend(labels.cpu().tolist ())

avg_val_loss = val_loss / len(test_dataloader)

val_losses.append(avg_val_loss)

accuracy_val = accuracy_score(val_targets , val_predictions)

val_accuracies.append(accuracy_val)

print(f'Epoch␣{epoch +1}/{ num_epochs},␣Training␣Loss:␣{avg_train_loss},
␣Validation␣Loss:␣{avg_val_loss},␣Accuracy␣on␣validation␣set:␣{

accuracy_val}')

if avg_val_loss < best_val_loss:

best_val_loss = avg_val_loss

epochs_without_improvement = 0

torch.save(model.state_dict (), 'best_model.pt')
else:

epochs_without_improvement += 1

if epochs_without_improvement >= patience:

print("Early␣stopping␣triggered")

break

# Load the best model

model.load_state_dict(torch.load('best_model.pt'))

# Predict on test set and calculate evaluation metrics

test_predictions = []

test_targets = []

with torch.no_grad ():

for batch in test_dataloader:
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input_ids , attention_mask , labels = batch

input_ids , attention_mask , labels = input_ids[:, :512]. to(device),

attention_mask [:, :512]. to(device), labels.to(device)

outputs = model(input_ids , attention_mask=attention_mask)

_, predicted = torch.max(outputs.logits , 1)

test_predictions.extend(predicted.cpu().tolist ())

test_targets.extend(labels.cpu().tolist ())

# Calculate evaluation metrics

accuracy_test = accuracy_score(test_targets , test_predictions)

precision , recall , f1 , _ = precision_recall_fscore_support(test_targets ,

test_predictions , average='binary ')
conf_matrix = confusion_matrix(test_targets , test_predictions)

print("Accuracy␣on␣test␣set:", accuracy_test)

print("Precision␣on␣test␣set:", precision)

print("Recall␣on␣test␣set:", recall)

print("F1 -Score␣on␣test␣set:", f1)

print("Confusion␣Matrix␣on␣test␣set:\n", conf_matrix)

print("\nClassification␣Report :\n", classification_report(test_targets ,

test_predictions , target_names =['negative ', 'positive ']))

# Plot the training and validation loss

plt.figure(figsize =(10, 5))

plt.plot(train_losses , label='Training␣Loss')
plt.plot(val_losses , label='Validation␣Loss')
plt.xlabel('Epoch ')
plt.ylabel('Loss')
plt.legend ()

plt.title('Training␣and␣Validation␣Loss␣Over␣Epochs ')
plt.show()

# Plot confusion matrix

plt.figure(figsize =(10, 7))

sns.heatmap(conf_matrix , annot=True , fmt='d', cmap='Blues ', xticklabels =['
Negative ', 'Positive '], yticklabels =['Negative ', 'Positive '])

plt.xlabel('Predicted ')
plt.ylabel('Actual ')
plt.title('Confusion␣Matrix ')
plt.show()

Listing 2: LLAMA Model

# Install necessary libraries

!pip install transformers peft datasets huggingface_hub

!apt -get install git -lfs
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# Import required libraries

import pandas as pd

import numpy as np

import torch

from transformers import AutoTokenizer , AutoModelForSequenceClassification

from datasets import Dataset

from peft import LoraConfig , get_peft_model

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score ,

precision_recall_fscore_support , confusion_matrix

from transformers import Trainer , TrainingArguments

from huggingface_hub import login

# Log in to Hugging Face

login(token='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 ')

# Load your data

train_data = pd.read_csv('/content/drive/MyDrive/thesis_data/
cleaned_imdb_train.csv')

test_data = pd.read_csv('/content/drive/MyDrive/thesis_data/
cleaned_imdb_test.csv')

# Load and configure tokenizer

model_name = "meta -llama/Llama -2-7b-chat -hf"

tokenizer = AutoTokenizer.from_pretrained(model_name)

# Add padding token if it does not exist

if tokenizer.pad_token is None:

tokenizer.add_special_tokens ({'pad_token ': '[PAD]'})

print("Pad␣Token:", tokenizer.pad_token)

print("Pad␣Token␣ID:", tokenizer.pad_token_id)

# Preprocessing function

def preprocess_function(examples):

return tokenizer(

examples['review '],
padding='max_length ',
truncation=True ,

max_length =512

)

# Convert to Hugging Face datasets

train_dataset = Dataset.from_pandas(train_data)

test_dataset = Dataset.from_pandas(test_data)
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# Convert sentiment labels

label_encoder = LabelEncoder ()

label_encoder.fit(train_data['sentiment '])
train_data['sentiment '] = label_encoder.transform(train_data['sentiment '])
test_data['sentiment '] = label_encoder.transform(test_data['sentiment '])

# Update datasets with new labels

train_dataset = Dataset.from_pandas(train_data)

test_dataset = Dataset.from_pandas(test_data)

# Map preprocessing function

train_dataset = train_dataset.map(preprocess_function , batched=True)

test_dataset = test_dataset.map(preprocess_function , batched=True)

# Set format for PyTorch

train_dataset.set_format(type='torch ', columns =['input_ids ', '
attention_mask ', 'sentiment '])

test_dataset.set_format(type='torch ', columns =['input_ids ', '
attention_mask ', 'sentiment '])

# Load and apply PEFT

model = AutoModelForSequenceClassification.from_pretrained(model_name ,

num_labels =2)

lora_config = LoraConfig(

r=8,

lora_alpha =16,

lora_dropout =0.1

)

model = get_peft_model(model , lora_config)

# Move model to GPU

device = torch.device('cuda' if torch.cuda.is_available () else 'cpu')
model.to(device)

# Training setup with specified learning rate

def compute_metrics(pred):

logits = pred.predictions

predictions = np.argmax(logits , axis=-1)

labels = pred.label_ids

accuracy = accuracy_score(labels , predictions)

precision , recall , f1 , _ = precision_recall_fscore_support(labels ,

predictions , average='binary ')
conf_matrix = confusion_matrix(labels , predictions)

return {

'accuracy ': accuracy ,

'precision ': precision ,

'recall ': recall ,
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'f1': f1,

'confusion_matrix ': conf_matrix.tolist ()

}

training_args = TrainingArguments(

output_dir='./ results ',
evaluation_strategy="epoch",

per_device_train_batch_size =4,

per_device_eval_batch_size =4,

num_train_epochs =1, # Set to 1 epoch due to memory constraints

logging_dir='./logs',
learning_rate =2e-5

)

trainer = Trainer(

model=model ,

args=training_args ,

train_dataset=train_dataset ,

eval_dataset=test_dataset ,

compute_metrics=compute_metrics ,

)

# Train and save the model

trainer.train()

model.save_pretrained('./ fine_tuned_model ')

# Evaluate model

eval_results = trainer.evaluate ()

Listing 3: XGBoost Baseline Model

from google.colab import drive

drive.mount('/content/drive ')

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score ,

precision_recall_fscore_support , confusion_matrix ,

classification_report

from xgboost import XGBClassifier

import pandas as pd

import numpy as np

# Load the training and testing dataset

train_data = pd.read_parquet('/content/drive/MyDrive/thesis_data/
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cleaned_imdb_train.parquet ')
test_data = pd.read_parquet('/content/drive/MyDrive/thesis_data/

cleaned_imdb_test.parquet ')

# Separate features and labels for training and test data

X_train = np.array(train_data['embedding ']. tolist ())
y_train = train_data['sentiment '].map({'negative ': 0, 'positive ': 1}).

values

X_test = np.array(test_data['embedding ']. tolist ())
y_test = test_data['sentiment '].map({'negative ': 0, 'positive ': 1}).values

# Split data into training and validation sets

X_train_split , X_val , y_train_split , y_val = train_test_split(X_train ,

y_train , test_size =0.2, random_state =42)

# Initialize XGBoost classifier with binary objective

xgb = XGBClassifier(objective='binary:logistic ', random_state =42)

# Train XGBoost classifier on the training data

xgb.fit(X_train_split , y_train_split)

# Predict on training set

y_train_pred = xgb.predict(X_train_split)

# Predict on validation set

y_val_pred = xgb.predict(X_val)

# Predict on test data

y_test_pred = xgb.predict(X_test)

# Calculate evaluation metrics on training set

accuracy_train = accuracy_score(y_train_split , y_train_pred)

precision_train , recall_train , f1_train , _ =

precision_recall_fscore_support(y_train_split , y_train_pred , average='
binary ')

# Calculate evaluation metrics on validation set

accuracy_val = accuracy_score(y_val , y_val_pred)

precision_val , recall_val , f1_val , _ = precision_recall_fscore_support(

y_val , y_val_pred , average='binary ')

# Calculate evaluation metrics on test set

accuracy_test = accuracy_score(y_test , y_test_pred)

precision , recall , f1 , _ = precision_recall_fscore_support(y_test ,

y_test_pred , average='binary ')
conf_matrix = confusion_matrix(y_test , y_test_pred)
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# Print evaluation metrics

print("Training␣Set␣Metrics:")

print("Accuracy␣on␣training␣set:", accuracy_train)

print("Precision␣on␣training␣set:", precision_train)

print("Recall␣on␣training␣set:", recall_train)

print("F1 -Score␣on␣training␣set:", f1_train)

print("\nTest␣Set␣Metrics:")

print("Accuracy␣on␣test␣set:", accuracy_test)

print("Precision␣on␣test␣set:", precision)

print("Recall␣on␣test␣set:", recall)

print("F1 -Score␣on␣test␣set:", f1)

print("Confusion␣Matrix␣on␣test␣set:\n", conf_matrix)

print("\nClassification␣Report :\n", classification_report(y_test ,

y_test_pred , target_names =['negative ', 'positive ']))

# Plot confusion matrix

plt.figure(figsize =(10, 7))

sns.heatmap(conf_matrix , annot=True , fmt='d', cmap='Blues ', xticklabels =['
Negative ', 'Positive '], yticklabels =['Negative ', 'Positive '])

plt.xlabel('Predicted ')
plt.ylabel('Actual ')
plt.title('Confusion␣Matrix ')
plt.show()
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