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“Try again, fail again, fail better.”

Samuel B. Beckett
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HASSELT UNIVERSITY

Abstract
Faculty of Sciences

Master of Statistics and Data Science

Development of pre-processing and analytical procedures to assess the proteomic impact of
structural genomic variation across the S. cerevisiae species

by Álvaro Gómez Pérez

Numerous fields have been dependent on the use of reference genomes: this is, the genome
of an idealized individual of a species, which has been assembled from - potentially multiple -
high-quality sequencing runs, and which is used as a reference for the whole species. Nonethe-
less, reference genomes fail to capture the genetic diversity of a species. Recently, the concept
of pangenomes has emerged. Pangenomes unify sequenced genomes corresponding to differ-
ent strains, isolates, or individuals within a species, and thus better cover the genomic space
of a species. Pangenomes can provide an insight into a species’ genetic diversity, enabling, for
example, evolutionary tracing, or improving genotype-to-phenotype mapping. Pangenomes
have been assembled for multiple organisms, such as Escherichia coli, Drosophila melanogaster,
or Saccharomyces cerevisiae. In addition to the use of pangenomes, long-read sequencing tech-
niques have become available over the last few years which allow for gapless telomere-to-
telomere assemblies of chromosomes. Recently, a species-representative panel of S. cerevisiae
isolates has been selected to undergo such long-read sequencing in order to assess the effect of
genomic structural variants within the species. This panel is known as the Saccharomyces cere-
visiae Reference Assembly Panel (ScRAP). Strains in the ScRAP represent the genetic diversity
of the S. cerevisiae species; this is, strains of different ploidies, zygosities, and strains contain-
ing complex aneuploidies are included. In this work, proteomics measurements were obtained
for 134 of the ScRAP strains, with a median of roughly 2300 protein identifications per sam-
ple. In many cases, analysis of proteomics data based on a reference genome is sufficient to
quantify and compare protein abundances across samples. However, in order to target ques-
tions such as allele-specific expression in diploid and polyploid strains, or the expression of
proteins affected by structural variants, it is necessary to take each strain’s actual genome into
account. In this thesis, reference genome-based and strain-specific processing approaches for
the ScRAP proteomic dataset are developed and compared. The strain-specific approach signif-
icantly increased the number of protein identifications per strain by an average of around 35%.
Furthermore, the strain-specific processed data allowed for promising findings at the biological
level: 51 proteins were found to be significantly differentially expressed between haplotypes
in heterozygous diploid strains, and 16 proteins containing deletions or non-coding insertions
were found to be significantly affected with regard to their expression. Thus, the conjunction
of deep sequencing and high-throughput proteomics, followed by strain-specific processing of
data, promises to be a powerful tool for unconvering the effect of genomic structural variants
on protein expression, and strain-specific expression patterns.

Keywords: Data independent acquisition, haplotype, mass spectrometry, natural isolate
collection, proteomics, structural variant.
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Chapter 1

Introduction

1.1 Saccharomyces cerevisiae and genetic diversity

Saccharomyces cerevisiae is a well-known model organism that has been extensively studied due
to its numerous advantages: it is a non-pathogenic unicellular organism which easily grows un-
der laboratory conditions, and which can be grown in media with very diverse compositions,
allowing researchers to explore its response to different chemical and physical environments [1,
2]. Furthermore, it is a eukaryotic organism, which makes findings more easily generalizable
to humans and other eukaryotic species.

Another interesting characteristic of S. cerevisiae is that it occurs with different ploidy states
in nature; that is, how many full sets of chromosomes are present in each cell. As an example, it
is known that a full set of chromosomes in humans contains 23 chromosomes, and all humans
have two of such full sets in all of their cells (except for gametes or reproductive cells). The case
of S. cerevisiae is quite different: a full set of chromosomes contains 16 of them, and different
strains will contain different numbers of chromosome sets, as also happens in other eukaryotic
species [3, 4]. Organisms containing a single set of chromosomes are known as haploid, those
with two sets are diploids, and so forth; starting from three sets of chromosomes, organisms can
be generally referred to as "polyploid". In the case of S. cerevisiae, strains have been observed
ranging from haploid to tetraploid, although haploids and diploids are the most common [5].

In the case of organisms with more than a single set of chromosomes, the concept of zy-
gosity appears: zygosity refers to the degree to which the information contained in one set of
chromosomes is, evaluated gene by gene, the same as that in the other set(s) of chromosomes
of an organism. Organisms with the same information across chromosome sets are known
as homozygous, and those with differing information across them as heterozygous. In this
way, an organism with three sets of chromosomes, all of them containing the same informa-
tion for all genes, would be referred to as a homozygous triploid, while an organism with two
sets of chromosomes with differing information would be a heterozygous diploid. It must be
noted that in the case of humans, due to the mode of reproduction being exclusively sexual, all
individuals are heterozygous; however, in other organisms with different means of reproduc-
tion, functional homozygous individuals do occur. Importantly, homo- and heterozygosity are
terms that can also be used at the level of single genes: this is, even though an individual can be
overall heterozygous, this does not preclude that it can have the exact same information across
chromosome sets for some of its genes; in fact, this will almost always be the case. Hence, it
can be said that an organism is homo- or heterozygous for a certain gene, meaning respectively
that it carries the same or a different allele (this is, the same or a different version of the gene) in
its different chromosome sets. The information contained in a single set of chromosomes (this
is, the set of alleles present in it) is referred to as "haplotype".

Aneuploidy is also a common event in S. cerevisiae [6]. Aneuploidy refers to the presence of
an aberrant number of chromosomes in the cell, which in the case of S. cerevisiae means more
or less than a multiple of 16: this is, there is either at least 1 chromosome missing, or at least
1 extra chromosome present. In their large collection of S. cerevisiae species, containing 1,011
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different natural isolates, Peter et al., 2018 [5] found 19.1% of them to contain some kind of
aneuploidy.

S. cerevisiae is not only an extremely popular and useful model organism, it is also widely
distributed across the world. A large number of different strains with their own phenotypic
characteristics adapted to their particular biological niches [5] have been isolated and de-
scribed. One way that strains are classified refers to their isolation source: domesticated strains
are those used for the production of wine, sake, bioethanol..., while wild strains are isolated
from the natural medium: trees, insects... Apart from these, there are human strains, which are
isolated from the body of humans in a clinical setting and laboratory ones, strains adapted to
growth in laboratory conditions toward research purposes. This large variety of strains within
the species makes it a prime subject for the study of population genomics and within-species
genetic diversity in general.

The study of genetic diversity within species has gained popularity in the last decades,
due to its numerous benefits: firstly, it allows for the discovery of new phenotypic and genetic
traits and the relationship between them, as well as for the better understanding of previously
known ones. It also enables a deeper understanding of the species as a whole and even of its
evolution and origin, as is precisely the case of S. cerevisiae, which was recently postulated to
have a "single out-of-China origin" [5]. Furthermore, the study of the genetic diversity of a
species, including as many and as varied of its strains as possible, permits for research conclu-
sions to become increasingly generalizable. This is, conclusions based on a single laboratory
strain could be extremely biased and might not apply to the whole of the species nor to other or-
ganisms, while conclusions drawn from research performed on a large set of strains of diverse
origins might become much more generizable [6, 7, 5, 8].

Peter et al. [5] produced a collection of 1,011 S. cerevisiae strains from diverse ecological
origins and performed whole-genome sequencing of them, with the intention of sampling as
much of the species’ genomic space as possible. This allowed to obtain a comprehensive view
of S. cerevisiae’s genome evolution, taking into account differences in ploidy, aneuploidies and
genetic variants, which had not been done before for such a wide panel in this species. This,
together with their efforts to study the phenotypic characteristics of these strains as well, pro-
duced an extremely insightful study into the evolution of the species and the relationship be-
tween its genotype and phenotype. Based on this seminal study, the Saccharomyces cerevisiae
Reference Assembly Panel (ScRAP) was developed, around which the present thesis project
revolves.

1.2 The Saccharomyces cerevisiae Reference Assembly Panel

The ScRAP [9] was developed with the goal of deepening the discoveries made in the above
presented study [5], by characterizing the structural variants (SVs) in the different strains, as
well as their effects. It was based on a subset of the strains included in [5], selected specifi-
cally to maintain as much diversity as possible, both with respect to ecological niche of origin
and ploidy. Concretely, 142 strains were selected, whose classification according to origin and
ploidy is presented in Figure 1.1. These strains were newly sequenced making use of single-
molecule long-read sequencing technologies, which enable the construction of deep, gapless,
reference-quality genomes (so called "telomere-to-telomere assemblies"). This allowed for the
identification of numerous SVs to an extent never achieved before in S. cerevisiae. Structural
variants are genomic changes affecting more than one nucleotide in the DNA sequence, such as
insertions, deletions, contractions or inversions, as opposed to SNPs (Single Nucleotide Poly-
morphisms), which affect solely one nucleotide in the sequence. A total of 36,459 SVs were
found across the 141 non-reference strains as compared to the reference S. cerevisiae strain,
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Figure 1.1: Classification of the strains in the ScRAP, according to both their niche of ori-
gin and their ploidy. "Monosporic" refers to the procedure through which the strain was
isolated. Illustration obtained from Telomere-to-telomere assemblies of 142 strains characterize
the genome structural landscape in Saccharomyces cerevisiae, by O’Donnell et al., 2023, Fig.

1a [9].

S288C. These were caused by 4,809 unique SVs, which were differently present across the
strains.

An extremely interesting feature of this study is that the authors succeeded in performing
haplotype phasing for heterozygous diploid strains. Haplotype phasing is a method which al-
lows to resolve, after sequencing a diploid or polyploid organism, which sequenced fragments
came from each of its sets of chromosomes, hence understanding what information was con-
tained in each of the haplotypes. Haplotype phasing can be based on either experimental or
computational methods, with the second being the most cost-effective, and the one that was
used in this study [10]. This method is an extremely useful tool in order to understand an
organism, its origins and evolution, as well as the relationship between its genotype and its
phenotype: this is, it may allow to evaluate which of the observable characteristics of a strain
reflect the information in each haplotype, as well as whether there is a dominance of one hap-
lotype over the other when it comes to the expression of certain genes. O’Donnell et al. [9]
also note in their study how the successful haplotype phasing of heterozygous diploid strains
increased the number of SVs that were detected, and which would have remained hidden had
this technique not been used. The practical consequence of the successful haplotype phasing
for these 21 strains was that two separate genomic sequence FASTA files were produced for
each of them, one with the information from each haplotype. It must also be noted that hap-
lotype phasing was applied to heterozygous polyploid (triploid and tetraploid) strains in the
ScRAP as well, although with limited success, meaning that a single genomic sequence FASTA
file was produced for each of them, containing all sequenced alleles in the strain but with no
identification of which haplotype each allele came from.

Aside from haplotype phasing, a number of interesting findings were presented in this arti-
cle. One example is how SVs impact gene expression at the locations where they appear, which
can occur due to them affecting the sequence of the open reading frame (ORF), modifying the
regulatory elements or the number of copies of the gene. They also stated that these SVs af-
fecting previously existing genes help create new ones, hence growing the gene repertoire of
the species. Another of their findings was that SVs produce complex aneuploid chromosomes,
with a large proportion of aneuploid chromosomes being associated to large SVs. However, the
authors studied these strains solely at the genomic level. Even though the genome is the basis
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for everything that happens inside an organism, it is known that there is a distance between
the information contained in it and the actual phenotype of the organism: DNA expression is
strongly and precisely regulated depending on numerous factors, which affects which genes
get to be expressed (and in which quantities), and even after transcription and translation take
place and the corresponding protein is produced from a gene, post-transcriptional modifica-
tions can change the structure and activity of the protein [11]. This is the reason why it is
important to not only study organisms at the genomic level, but also at the level of their pro-
teome; because the proteome is much closer to the actual phenotype of the organism.

Some questions that could be targeted based on the proteome of the ScRAP strains would
be to evaluate the actual effect of different types of mutations on the expression of the genes
they affect: is the protein encoded by a mutated gene produced at all? Does it have the expected
sequence or is a new, chimeric protein produced by the fusion of two previously existing genes?
Furthermore, the above presented phased haplotypes for heterozygous diploid strains are also
a particularly interesting topic of study through proteomics, since they could allow to evaluate
if the same amount of a certain protein is produced from both haplotypes, or if one is dominant
over the other. These are just some examples which serve to illustrate the vast number of
biological questions that could be targeted by a proteomic analysis of the ScRAP strains.

1.3 Proteomics and mass spectrometry

Proteomics is the discipline that focuses on the identification and quantification of proteins, but
which can also be extended to study their structure, function, modifications and interactions
[12]. Since proteins are some of the most versatile molecules and are present across all living be-
ings, there is a long list of fields in which proteomics can be of use, including but not limited to
clinical applications (identifying proteins that can serve as biomarkers for diseases), pathogen-
esis mechanisms research (identifying the means of infection of pathogens, which are usually
protein-based) or, as in the present study, the analysis of metabolism and genetic diversity [13].

Originally, before the advent of -omics sciences, protein analysis was an extremely costly
and labor-intensive procedure: a single type of protein that was the subject of the analysis had
first of all to be isolated and purified from a sample, and then complex biochemical techniques,
such as Edman degradation, had to be used in order to identify the amino acids making up
the protein, one by one. Over the last few decades, a number of techniques have been devel-
oped that slowly eased the analysis of the proteins in a sample. Firstly, so-called chromatog-
raphy techniques were developed to separate a complex mixture of proteins based on their
physico-chemical characteristics, which then allowed to either directly quantify the amount
of proteins with common characteristics, or to forward these fractionated samples to a fur-
ther analysis. The basic principle of chromatography is that a sample containing proteins or
peptides, is added to a certain surface to which these molecules can adsorb or bind according
to their structure, charge, etc., known as the "stationary phase". Next, a solvent (the "mobile
phase") with certain chemical characteristics is allowed to pass through the surface, which will
progressively elute different peptides or proteins, based on their physico-chemical properties
[14]. Some well-known chromatography techniques are ion-exchange chromatography, size
exclusion chromatography, or affinity chromatography. Electrophoresis gel-based techniques
were also frequently used (and still are) to fractionate complex protein samples, typically based
on the isoelectric point and molecular mass of proteins [15]. However, the downside of all of
these methods is that they do not allow to target specific proteins accurately, this is, they sep-
arate proteins based on their physico-chemical characteristics but do not allow to study the
actual amino acid sequence of proteins.

On the other hand, antibody-based methods such as ELISA (Enzyme-Linked Immunosor-
bent Assay) were later developed, which use antibodies specific to a certain protein sequence or
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epitope to detect whether a protein is present in a sample, and to quantify it. This fixed the lack
of specificity of chromatography or gel-based techniques. Such methods are still heavily used
today [16, 17]. Nevertheless, it has the obvious downside that a specific antibody is needed
for each protein that should be detected. Nonetheless, antibody-based methods gave rise to
the first true high-throughput technique for protein analysis (high-throughput meaning that it
allows for the analysis of multiple samples at once with minimal effort): microarrays. Microar-
rays can be used for the analysis of DNA or RNA as well, but in all cases the principle is the
same: they consist of a small surface where certain molecules are fixed, which will react with
the molecules to be detected. In the case of protein microarrays, the first type developed where
analytical microarrays, which were based on ELISA, but to a much larger scale on a smaller
device: a large number of different antibodies specific to different protein sequences were fixed
to the surface of the microarray, and emitted a signal when the corresponding protein was
contained in the sample and bound to them. Later, other types of protein microarrays such
as functional microarrays where developed [18]. However, despite their usefulness and the
increased throughput, these techniques still require prior knowledge of the protein sequences
for them to be detected at all.

The most important, and by far the most popular technique for high-throughput analysis of
complex protein mixtures nowadays is mass spectrometry (MS), usually employed in tandem
(this is, two MS steps right after each other) and preceded by some type of chromatography in
order to fractionate the sample beforehand. The advantage of this technique is that the lack of
prior information about a certain protein does not necessarily prevent its identification. This is
the technique that is employed in the present study.

There are multiple types of mass spectrometry-based proteomics, such as bottom-up, top-
down or cross-linking. The one employed in this project is bottom-up proteomics, where pro-
teins are fragmented prior to the analysis and information at the protein level is afterwards
reconstructed through the use of different algorithms [19].

The procedure generally starts with the digestion of proteins into peptides, normally per-
formed with trypsin, an effective enzyme with a well-known restriction pattern (it will always
cleave protein sequences at the C-terminal side of the amino acids lysine (K) and arginine (R),
unless they are followed by a proline (P)). Subsequently, a chromatography step takes place,
which allows to start from a complex peptide mixture and fractionate it based on specific char-
acteristics of the peptide molecules. As an example, in liquid chromatography, the sample is
added to a porous column, to which the peptides adsorb. Then, a liquid solvent is run through
the column in a gradient; this is, the solvent might be 100% water at the beginning (which
will hence elute polar peptide molecules, which are soluble in water), and will then progres-
sively over the course of a defined time, reduce its content in water and increase its content in a
non-polar solvent, for example acetonitrile, until it consist of 100% acetonitrile. The time over
which this full gradient is run through the column varies widely, anywhere from a couple of
minutes to several hours, and is an important characteristic of the proteomics procedure. This
is due to the fact that the longer the gradient is run, the more separated the peptides will be
from each other in this first dimension, and the more distanced in time they will go into the
mass spectrometer, which will generally increase the resolution; this is, the ability to identify
more peptides. The time at which each peptide leaves the chromatography column is known
as its retention time (RT), and as mentioned above, is the first dimension of separation in the
procedure.

After leaving the chromatography column, peptides are introduced into the mass spec-
trometer. There are numerous kinds of mass spectrometers that are used in proteomics, and
although their description is beyond the scope of this thesis, their general working principle
will be briefly described. All mass spectrometers are composed of three main sections: an ion
source, a mass analyzer and a detector [20].
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As they enter the mass spectrometer, peptides are directed to the ion source, where they
are ionized. This is, they undergo a process through which they acquire an electric charge
(which usually goes from +1 to +4, although this may vary). At this point, these molecules stop
being referred to as peptides and start being referred to as precursors, which are nothing but
peptides with a certain charge state. It is important to realize that a single peptide (a certain
sequence of amino acids) can give rise to different precursors, depending on the charge state it
acquires. There are several ionization methods used in MS, with electrospray ionization (ESI)
and matrix-assisted laser desorption ionization (MALDI) being the most popular ones [21]. It
must be noted that the success of the ionization process depends on the chemical characteristics
of each peptide, and in fact some peptides do not ionize well and consequently cannot be
detected [22]. This is due to the fact that after ionization, precursors will be sorted in the
mass analyzer based on their behavior when subjected to an electric field, and if their charge
state is 0, the electric field will have no effect on them. This step, the main one in the mass
spectrometer (where precursors are separated based on their physico-chemical properties as
well as their mass and structure), can take place in numerous different ways: time-of-flight
(TOF), quadrupole, or trapped ion mobility spectrometry (TIMS) are just some of the examples.
In this study, a tandem TIMS-TOF instrument was used and therefore, the two underlying
techniques will be briefly covered.

The principle behind TIMS consists of keeping precursors in place within a chamber in the
spectrometer by applying a certain electric field to them. At the same time, a current of inert
gas moves through the chamber, and by finely regulating both the electric field and the flow of
the inert gas, precursors with certain characteristics are slowly allowed to be carried by the gas
current, and moved outside of the spectrometer [23]. Concretely, it is the most mobile ionized
peptides that are more rapidly carried by the inert gas current, with a higher mobility being a
consequence of, mainly, a larger charge, smaller size and compact structure. Between the two
tandem MS steps, the precursors coming out of the first MS (MS1) are fragmented again. This,
once again, can happen in different ways, with collision-induced dissociation (CID) being the
most popular one: this is, introducing the precursors out of the MS1 in a collision chamber,
where they are hit with molecules of an inert gas, causing them to fragment [24]. Precursor
fragments enter then the second and final MS (MS2), which in the case of this study was a time-
of-flight (TOF) mass spectrometer: this machine consists of a long chamber where a vacuum
is induced, and through which the charged precursor fragments are accelerated by subjecting
them to an electric field. This acceleration is proportional to both their mass and their charge,
which is why, depending on the time they take to reach the detector at the end of the chamber,
their mass-to-charge ratio (m/z) can be inferred.

Concluding the LC-MS/MS experiment, information will have been obtained at three levels
for each precursor, represented in the scheme in Figure 1.2: first, the retention time at which
it left the chromatography column (labelled (a) in the figure); second, the m/z at which it was
detected in MS1 ((b) in the figure); and lastly, the spectrum of peaks detected in the MS2 for its
fragments ((c) in the figure). Incidentally, the way in which precursors are selected at the end
of MS1 to be introduced to MS2 is not trivial, and it will affect the interpretation of the final
data: the two options are data-dependent acquisition (DDA) and data-independent acquisition
(DIA), and they will be covered in the following section. All the above mentioned information
obtained for each precursor is contained in the files produced by the mass spectrometer, which
are to be provided to a proteomics software (in this case, DIA-NN [25]) that will return the
information summarized at the precursor and protein level.

The way in which such proteomics software works will be detailed in Chapter 2, but an
important point in this respect is that it requires the use of a spectral library, or a list of pep-
tides or proteins from which one can be generated. It was mentioned before that an important
advantage of mass spectrometry-based proteomics is that it can detect proteins even if no prior
knowledge of them is available. This can be easily understood now that the procedure of such
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Figure 1.2: Simplified scheme of a LC-MS/MS procedure. Briefly, a complex protein mixture is digested with
trypsin or another protease; the resulting peptides are separated by the chromatography step, and introduced into
the first mass spectrometry step (MS1). As they come out of the MS1, precursors are further fragmented and intro-

duced in the second mass spectrometer (MS2). Created with BioRender.

https://www.biorender.com/
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an experiment has been explained: no prior information is required by any of the steps, and all
precursors derived from the proteins in the samples can be detected regardless of prior infor-
mation being available on them. Nonetheless, the critical step for identification of precursors
comes during the processing of MS files in the proteomics software. At this point, there are
different approaches that can be followed in order to come up with the sequences of the de-
tected peptides: database searching, spectral library searching and de novo methods. While
the last focuses on the identification of previously unknown peptide sequences [26], the first
two are both dedicated to identifying peptides based on previously available information, with
spectral library searching being generally accepted as having a higher accuracy and sensitivity
[27]. In the case of spectral library searching, spectra for the peptides that are expected to be
found in the sample are usually directly provided to the software, however, current software
also allows for the input of a set of proteins or peptides, that it then turns into a spectral library
itself. This is the method that was followed in this project, providing DIA-NN with FASTA files
containing the sequences of the peptides that were expected to be found in the samples.

1.4 Data Dependent Acquisition vs. Data Independent Acquisition

As indicated in the previous section, DIA and DDA are two different mass spectrometry tech-
niques, and their difference lays in how the precursors that come out of MS1 are selected to be
provided to MS2 [28].

As shown in Figure 1.3, in the case of DDA, only the most abundant precursors are selected
and then individually introduced in the MS2. This provides high sensitivity and specificity for
these highly abundant precursors, while also allowing for the MS2 spectra to be more easily
interpretable, since they will contain fragments originating from a single precursor. However,
DDA has the downside that many precursors from MS1 are ignored in this way, and hence
much information is lost.

The basis of DIA is that all precursors in the MS1 spectra should go into the MS2. This is
achieved by separating them in windows, and allowing all precursors contained in a certain
window to go into the MS2 at once. It must be noted that while in Figure 1.3 it seems that
these windows are defined based on m/z (the mass to charge ratio of the precursors) this is
only one of many DIA techniques, known as SWATH (Sequential Window Acquisition of All
Theoretical Mass Spectra) [30]. In fact, the technique that was used in this project in particular
is known as PASEF (Parallel Accumulation–Serial Fragmentation) [31], and is characterized
by its MS1 consisting of a trapped ion mobility spectrometry (TIMS) step. As described in
the previous section, this means that precursors are separated based on their size, shape and
charge in the gas phase, and accumulated, to then be sequentially let into the MS2. This parallel
accumulation and serial fragmentation are part of what make of this technique such a useful
tool, since they strongly increase the throughput of the method without missing almost any
precursors along the way [31].

Therefore, the advantage of DIA over DDA consists in a significant reduction of information
loss durint the analysis (in the form of MS1 precursors). However, as can also be observed from
Figure 1.3 (b), this also causes MS2 spectra to consist of fragments of several different MS1
precursors, which left the MS1 at the same time and were thus fragmented and introduced in
the MS2 togehter. This makes MS2 interpretation much more complex, since these spectra need
to be deconvoluted first. In fact, there is also the possibility that co-eluting MS1 precursors (this
is, precursors that leave MS1 at the same time) produce the exact same fragment in the MS2,
which is known as interference and produces multiplexed spectra, which become even harder
to deconvolute. Precisely the deconvolution of such MS2 spectra is
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Figure 1.3: (A) shows the principle for DDA-MS, illustrating how individual precursors at the MS1
level are selected based on their abundance to be individually introduced in the MS2, producing
simple MS2 spectra where all fragments are known to belong to the same precursor. (B) on the
other hand illustrates the DIA-MS case, where precursors at the MS1 level are grouped based
on a certain metric, and then introduced together into the MS2, producing more complex MS2
spectra. Figure obtained from Data-independent acquisition mass spectrometry (DIA-MS) for proteomic

applications in oncology, by Lukas Krasny and Paul H. Huang, Fig. 1 [29].

This brings us to DIA-NN, Data Independent Acquisition Neural Networks [25], a software
suite that uses neural networks to deconvolute DIA MS2 spectra, and which will be used in
this project. It will be further introduced in Chapter 2.

To summarize, what limits protein identification in the case of DDA is precursor selection
in MS1, while on the other hand, the limiting factor in DIA is the sensitivity of the mass spec-
trometer and the ability of the analysis software to deconvolute the signal in the MS2 spectra.

1.5 Strain-specific approach to the proteomic analysis

It was previously indicated that one of the main characteristics of proteomics software is that
their performance is improved by providing them with a spectral library containing the se-
quences of the peptides that are expected to be present in the samples. Traditionally, such li-
braries would precisely be generated from the corresponding reference genome of the species,
but as discussed in section 1.1, a reference genome cannot truly represent a full species, and is
even less appropriate for this use as a spectral library in the particular case of the ScRAP [9],
since there is such a wide variety of strains contained in it with such different backgrounds.
Because of this, and especially in order to target some of the biological questions mentioned
above, it was deemed appropriate that this proteomic analysis should be ran with strain-
specific libraries. This will hopefully allow for much more accurate detection of strain-specific
proteins that would go undetected were the analysis to be run with a single spectral library
derived from the S. cerevisiae isolate S288c reference genome. Besides this, with an appropriate
preparation of the libraries for the heterozygous diploid strains, it should be possible to make
use of the phased haplotypes and recover information regarding allele-specific expression. In
order to be able to compare the strain-specific proteomic analysis to the more commonly used
reference proteome-based one, all samples were also run together in DIA-NN against a library
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built from the reference genome of the reference S. cerevisiae strain, S288C. This approach is
referred to in this thesis as "common approach".

Given the fact that this strain-specific approach is relatively new, there are also, apart from
the necessary data processing and library creation, other questions that arise from it: the first
and most obvious one is if this approach truly results in a significantly increased number of
protein identifications as compared to the common approach mentioned above. However, an-
other important question is regarding the processing of the proteomics software’s output at the
precursor level: this output contains information from all precursors identified in the samples
(the structure of this output will also be covered in depth in Chapter 2), and needs to be filtered
before a peptide-to-protein quantification is performed to obtain the final version of the data, so
that protein identifications are reliable. This processing has been extensively performed before
for typical "common approaches" where all samples in an experiment are ran through DIA-NN
together with a library generated from a reference genome, however the same cannot be said
for this strain-specific approach. Hence, it will have to be evaluated how to adapt the steps of
this processing to the strain-specific approach. At the same time, since the steps of this process-
ing are dependent on the origin and quality of the data, as well as on the objective of the study,
the processing of the common approach data is also presented in this report, and will serve as
a basis that will then be modified as necessary towards the strain-specific approach.

1.6 Research questions

Multiple questions, both at the methodological and biological levels, are addressed in this the-
sis. First, the strain-specific approach is set up, which includes the creation of the strain-specific
files that are to be used as spectral libraries for each strain. This procedure is described in Chap-
ter 2.

Subsequently, the first methodological questions are addressed: firstly, what is the appro-
priate way of processing the data at the precursor level in the common approach, and how
should this processing be adapted to the case of the strain-specific approach? Secondly, does
the strain-specific approach truly result in an increased number of protein identifications as
compared to the common approach?

Finally, two of the biological questions that arised from the ScRAP [9] and that were men-
tioned in section 1.2 are targeted as well. The first of these is related to allele-specific expression:
libraries for heterozygous diploid strains were built with this in mind, labelling proteins with
different alleles between the two haplotypes of a strain so they could be differentiated. The
process for creation of these libraries is detailed in Chapter 2. This should allow to detect the
amount of a certain protein that is produced based on each of the two sets of chromosomes,
and hence evaluate whether one of the haplotypes is dominant over the other, or if any other
patterns can be observed at this level. A schematic representation of this biological question is
presented in Figure 1.4. Finally, I also evaluate in this thesis the effect of insertions and dele-
tions on protein expression. This is, based on information obtained by our collaborators at
the genomic level, we knew which strains contained exactly which deletions and non-coding
insertions in which of their genes. Consequently, for each protein that contained one of these
mutations in at least one strain, the quantification values for the protein were grouped on the
one hand for the strains carrying the mutation, on the other hand for the strains not carrying
the mutation. Finally, these values were turned into binary data, representing whether the pro-
tein was detected or not in each sample, and a proportion test was performed between the two
groups described above. The objective behind this was to evaluate whether deletions and non-
coding insertions affect the expression of the protein encoded by the section of the DNA where
they appear
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Figure 1.4: Scheme representing the principle behind the allele-specific expression question. Inside
the S. cerevisiae cell of a heterozygous diploid strain, two different versions of the same proteins
are produced, each from one of the haplotypes. The differences between these two versions of the
protein are evidenced when performing an in-silico digestion of their sequences with trypsin: we
observe that the first peptide obtained from this fragmentation is exactly the same between the two
versions, while the second one is only present in one of them, and the third one is present in both of
them but contains a mutation (represented as a small green dot) in the case of haplotype 2. These
peptides are assigned the names observed next to them by following the principle presented in
Figure 2.2. It must be noted that some peptides receive the exact same name because as described
in the aforementioned section, peptides are labelled with the name of the protein from which they
come, all of them with exactly the same name, as DIA-NN [25] is able to interpret them in this way.

Created with BioRender.

https://www.biorender.com/
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Chapter 2

Materials and methods

2.1 Data

2.1.1 Proteomics raw files acquisition

We received 134 of the 142 strains belonging to the ScRAP from our collaborator, then ran-
domized them to six 96-well plates, with four replicates of each strain. Randomization of the
samples to the wells was performed in R [32], and made effective through the use of the Singer
PIXL. These plates also contained 30 replicates (five per plate) of a laboratory strain (BY4741-
ki), extremely similar to the reference S. cerevisiae strain S288C, as well as ten empty wells across
the six plates. Hence, all 576 wells across the six plates were occupied. The final distribution of
the samples across the plates can be seen in Figure 2.1.

These strain isolates, once randomized to the different wells throughout the plates, were
grown on synthetic minimal medium (SM medium, as described in [6]) on agar for 48 hours,
followed by a liquid overnight culture also in SM medium. Optical density (OD, at 600 nm)
measurements of the cultures were then performed, known from this point on as the pre-
culture OD. Afterwards, these pre-cultures were back-diluted 10x in SM medium (140 µL
overnight culture + 1400 µL SM), and the resulting samples were cultivated at 30ºC with shak-
ing. After 9 hours it was deemed that cells had reached the exponential growth phase, their
OD was then measured again (referred to as harvest OD) and 1.2 mL were harvested from
each well. The cells were centrifuged, the supernatant discarded, and the pellets were frozen
at -80ºC.

In order to prepare the samples for mass spectrometry, cells were resuspended and their
lysis was performed with a 200 µL 7M urea lysis buffer, followed by 2 cycles of genogrinder:
samples were placed in new plates, with each well in the plates containing a borosilicate glass
bead. Plates were then covered and centrifuged for 5 minutes at 1500 rpm, followed by 5 min-
utes of rest on ice, and this process was repeated twice. Pellets were subsequently resuspended,
and protein digestion was performed in a solution of 2M urea, using 2 µg trypsin/LysC per
sample. The following day, trypsin was inactivated by adding formic acid, and samples were
run through solid phase extraction (SPE) columns in order to isolate the peptides and remove
all other substances. After this, peptides were dried as all solvent was evaporated and re-
suspended. A pool of all samples was created to be used as a technical control. The peptide
concentration of this pool was determined via a fluorimetric assay, and its OD measured. Based
on this and on the OD measurements of the samples, the peptide concentration of the samples
was interpolated.

Finally, based on the estimated concentration of each well after resuspension of peptides,
samples were taken from each of them containing 2 µg of peptides, and these were analyzed on
a TimsTOF HT Pro3 mass spectrometer, with a 5 minute active gradient and a technical control
(a small aliquot of the sample pool) being ran every 30 samples.
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Figure 2.1: Scheme representing the distribution of the 576 samples to the wells across six
96-well plates.
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2.1.2 Telomere-to-telomere proteomic assemblies

Single-molecule long-read sequencing technologies allow to obtain gapless genome assemblies,
which over the last few years has contributed to a great increase in quality and contiguity in
the reference genomes of multiple model organisms, as well as humans [9]. This technology
was used by our collaborators to perform the sequencing of the 142 strains in the ScRAP, hence
expecting to cover the entire genomic space of the species [9]. In the case of heterozygous
diploid strains, these genomes were also subjected to haplotype phasing. Briefly, haplotype
phasing is an algorithmic procedure that allows to resolve to which of the two haplotypes
of a certain strain each genomic sequence belongs, and hence seamlessly reconstruct the two
haplotypes separately. Haplotype phasing was also performed for the triploid and tetraploid
strains, but without the same level of success. As a result, the sequences coming from the
different haplotypes during the sequencing process were collected together into a single file,
referred to as a "collapsed" genome.

Hence, we received from our collaborator a set of FASTA files containing haplotype-
resolved and/or collapsed telomere-to-telomere genome assemblies for the 142 strains in the
ScRAP, both for the nuclear and mitochondrial genomes. Apart from these, we received an-
other version of these files, where the genomic sequences were translated to protein sequences,
and each protein annotated with its systematic name, although annotation procedure was not
perfect. One of these genome-derived protein sequence files (GDPFs) was received for each
strain, except for heterozygous diploid strains, for which a file was received for each haplotype.
I processed these files and generated a new set of FASTA files that were to be used as reference
libraries to run the DIA-NN software in a strain-specific manner; this is, processing the mass
spectrometry files corresponding to the replicates of each of the strains separately with their in-
dividual strain library. The processing consisted mainly of bringing together haplotypes in the
case of heterozygous diploid strains, and dealing with the collapsed assemblies for polyploid
strains, and will be covered in the next section. Details regarding the methodology used are
available in section 2.2.1.

2.1.3 Structural variants and heterozygosity information

With the goal of targeting some biological questions based on the processed proteomics data,
some extra files were provided by our collaborator. These included files with information on
which structural variants (SVs) were found to be present in each strain, at which location in its
genome and affecting which genes, as well as more information regarding these SVs. A total of
4809 SVs were found, each affecting usually more than one of the strains.

2.1.4 Databases

As mentioned above, most of the reference spectral libraries used during this project were
generated from the GDPFs obtained by our collaborator [9] (as obtained from https://www.
evomicslab.org/db/ScRAPdb/, accessed on 05.05.2024). However, in some instances, the S288C
reference genome as obtained from UniProt [33] (accessed on 18.06.2024) was used, and protein
annotations were obtained, when necessary, from the Saccharomyces Genome Database [34]
(accessed on 10.06.2024).

2.2 Methodology

2.2.1 FASTA files preparation

As already covered in the previous section, there were three different types of strains among
the ScRAP strains:

https://www.evomicslab.org/db/ScRAPdb/
https://www.evomicslab.org/db/ScRAPdb/
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Figure 2.2: Two schemes representing the decision tree used to generate strain-specific FASTA files from the GDPFs,
to be used as spectral libraries. It is noteworthy that the starting files contain a full protein sequence in each of its
entries, while the final files contain a single peptide sequence in each of its entries, where peptides originating from
the same protein have the same header (except in the special case of some proteins in the heterozygous diploid
strains). (a) shows the full processing steps for haploid and homozygous strains, as well as for heterozygous triploid
and tetraploid strains, in addition to the processing of heterozygous diploid strains that is common to the previous
two. (b) is a continuation of (a), which shows the further processing that is specific to heterozygous diploid strains.

• Haploids and homozygous: a single GDPF was received for each strain.

• Heterozygous diploids: genomes from each haplotype were succesfully phased, resulting
in a separate GDPF available for each of them.

• Polyploids: haplotype phasing was not successful, a single GDPF with all proteins iden-
tified in the strain was provided, without them being linked to a particular haplotype.

The processing undergone by these files was minimal in the case of haploid/homozygous
and polyploid strains, while more complex in the case of the heterozygous diploid strains. The
steps common to all strains are described below, and are also shown in Figure 2.2:

• Perform in silico tryptic digestion of each protein sequence.

• Remove any generated peptides not between 7 and 30 amino acids in length (due to the
settings used during mass spectrometry we know they could not be detected).

• If 2 protein sequences are present in the file that were annotated with the same protein
name, only the first appearance is kept, while the second one is saved in a separate file
for later reference. It must be noted that in most cases the differences between sequences
were minimal.
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• Each obtained peptide sequence was written to the new version of the file with its header
being the name of the protein that it originated from. This is, so that all peptides coming
from the same protein had exactly the same header. This was necessary towards the use
of these files in DIA-NN.

While the following steps were unique to the corresponding strains:

• Heterozygous diploid strains: after the steps presented above, the two haplotypes had to
be brought together into a single file (described in Figure 2.2 (b)):

– For proteins present in both haplotypes and with the exact same sequence across
them, their peptides were annotated with just the protein name, as explained above.

– For proteins present in both haplotypes but with different sequences across them,
their peptides were respectively tagged as: ProteinName_common (if the pep-
tide was present in both haplotypes), or ProteinName_common_HP1 or Protein-
Name_common_HP2, if the peptide was present only in haplotype 1 or haplotype
2, respectively.

– For proteins present in only one haplotype, their peptides were tagged as Pro-
tein1_unique_HP1 or Protein1_unique_HP2 respectively.

• In the case of triploid and tetraploid strains, the only difference with the general proce-
dure described above was that when a protein was repeated within the GDPF, we got its
peptides that were not already present in the first appearance of that protein in the new
file, and added them to it. The goal of this is to be able to detect any of the copies of the
protein, despite not knowing which haplotype it came from.

At this point, the files are ready to be used by DIA-NN.

During this processing, information regarding the theoretical number of proteins present
in each strain was collected. In addition, the proteins were compared to those of the refer-
ence strain S288C to identify proteins unique to each strains or potential difference in their
sequences. This information is reflected in Figure 2.3.

2.2.2 DIA-NN software

DIA-NN (Data Independent Acquisition Neural Networks) [25] is a software suite for the anal-
ysis of DIA data which, through the usage of neural network ensembles, is able to deconvolute
multiplexed DIA MS2 spectra, hence providing reliable, robust and quantitatively accurate in-
terpretations of these data.

2.2.2.1 Algorithm

DIA-NN was originally published in 2020, and has since then underwent several improve-
ments and updates as part of new version releases. However, the basic features which make
it such a useful tool in the analysis of DIA data remain the same. Before briefly going into
the algorithm itself, it is important to note that this software frequently works at the level of
MS1 precursors, meaning that these should be defined: a precursor is a peptide with a certain
charge, as it goes into the MS2. Hence, for a certain peptide (this is, simply a certain sequence
of amino acids) multiple precursors can exist, since each peptide can usually acquire different
charge states.

The DIA-NN algorithm is based on a target-decoy approach: apart from the proteomics
raw files it must be provided with either a spectral library or a set of proteins or peptides
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Figure 2.3: Barplots showing the abundance of different types of proteins in each strain in the
ScRAP based on the GDPFs, as per their presence in the reference strain S288C: for each non-
reference strain, proteins were counted that were present in S288C with the exact same sequence
as in that strain, those that were present in S288C but with some difference in their sequence, those
that were not present in S288C at all, and those proteins in the strain that were simply not identi-
fied. (a), (b) and (c) contain this information respectively for haploid, heterozygous diploid, and
polyploid strains. Of particular interest are the proteins common with S288C but with a differ-
ent sequence, which are present in large quantities in most strains, and whose identification and

quantification might be improved by the strain-specific approach.
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from which one can be generated, which was the case here. For each peptide in the library, a
decoy peptide is generated, following a certain mutation pattern and keeping similar physico-
chemical properties. For each of these theoretical peptides, regardless of them being target or
decoy, a theoretical fragmentation is performed, simulating that which would take place in
the experimental setting. Then, out of the resulting theoretical fragments, one is selected to
be representative of this peptide, based on various metrics. For each theoretical peptide, the
fragment selected as representative is then compared to the real, observed fragments in the
experimental MS2 spectrum at the corresponding RT and m/z, and the match between the
theoretical fragment and each of the observed peaks is characterized by 73 scores (described in
detail in the Supplementary Materials of [25]).

These 73 scores are then provided as input for an ensemble of 12 deep, feed-forward, fully
connected neural networks. These consist of 5 tanh hidden layers, with the ith hidden layer
containing 5·(6 - i) neurons, with i = 1, ..., 5, and a final softmax output layer. Cross-entropy is
used as the loss function. These neural networks are trained for a single epoch to produce an
outcome in the 0-1 range for each set of 73 scores provided, which represents the likelihood of
the corresponding theoretical peptide being a target peptide. The 12 values coming from the
different neural networks for the same theoretical peptide are averaged, and this final value for
each peptide is what is used in order to calculate the Q-values. FDR is conservatively estimated
as presented in Equation 2.1.

FDR =
Decoy peptides
Target peptides

(2.1)

For inference at the protein level, only target precursors which are proteotypic (this is, that
are specific to that concrete protein) are considered, so proteins without any proteotypic pre-
cursors identified automatically receive a Q-value of 1.

It must be noted that no batch normalization or dropout were used in the neural networks,
at least in the original version of the software, since they did not seem to improve its perfor-
mance [25]. It is also noteworthy that the values specified in the previous paragraph (number
of DNNs in the ensemble, number of layers and of training epochs) are the default parameters,
which can be modified, although for this project they were kept at these defaults.

In the original publication it was stated that regarding quantification of each precursor,
DIA-NN estimated the intensities of all fragment ions associated to it by using an interference-
removal algorithm. An advantage of this algorithm was that it did not depend on the spectral
library in order to come up with a reference intensity value for each fragment, so its perfor-
mance was independent of the quality of the spectral library provided. However, the method
used to quantifiy each precursor involved, to explain it very briefly, bringing together the in-
formation from several of its fragment ions, which were selected in a cross-run manner, and
summing their respective signals in each run. As stated above, this approach allowed to get
rid of signals that were strongly affected by interference, however it was still subject to errors
in individual acquisitions, and most importantly, it was realized that it discarded potentially
useful information, mainly that obtained at the level of the MS1 for the full precursor. This is
why QuantUMS [35] was developed: an improved version of this algorithm, which now brings
together the information for a precursor at MS1 level and for its fragment ions at MS2 level in
order to produce more accurate precursor quantifications.

Finally, another interesting feature of DIA-NN is the match-between-runs (MBR) mode.
This consists in, for each sample that is processed by the software, creating a corresponding
empirical spectral library with all the peptides found in the sample. This is done for all samples
within an experiment, and this empirical spectral libraries are brought together into a single
experiment-wide spectral library, which can then be used to run all samples against it again.
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This allows for high sensitivity and the ability to detect any peptide that is abundant in at least
one of the samples, in any other sample even at low amounts.

2.2.2.2 Running DIA-NN

DIA-NN can be ran both from its own GUI or from the command line, which was the case for
this project. Mass spectrometry files were provided as .d directories, each directory contain-
ing multiple files in different formats, containing the information for one sample. With respect
to the spectral libraries, these were provided as FASTA files, as covered in section 2.2.1.1. As
already explained, two different approaches were taken when running DIA-NN: first was the
so-called common peptide approach (CA), where all samples from all strains were ran with
the same spectral library, coming from the reference genome of the reference S. cerevisiae strain.
Secondly, for the strain-specific approach (SSA), the samples from each strain were ran sepa-
rately, against a library built specifically for that strain, based on its sequenced genome.

Many different parameters and options are available when it comes to performing an anal-
ysis using DIA-NN, but here I will summarize the values that were used for this project: mini-
mum and maximum peptide lengths were set to 7 and 30 amino acids respectively, since it was
known from mass spectrometer technicians that this is the range of peptides that are detectable
for such an experiment as was performed here. Missed cleavages were set to 0. Minimum and
maximum precursor charges were set to 1 and 4 respectively.

Out of a single DIA-NN run, multiple output files are generated: the structure of the main
report consist of one entry per row, corresponding to a specific precursor in a given sam-
ple, with columns specifying the sample and precursor IDs, as well as other characteristics
such as charge state, stripped peptide sequence, different types of Q-values (at the precur-
sor level, protein level, etc.), and of course columns with the quantification values for each
precursor, both raw and normalized. This is just a brief overview of the main columns of
the report that are used as part of the present analysis, but the full description of the re-
port columns can be found at https://github.com/vdemichev/DiaNN?tab=readme-ov-file#
main-output-reference. Alongside the main DIA-NN report, other output files are produced.
Among them, the "unique_genes" file is based on the general report presented above, but in-
formation is collapsed at the protein level, so that this file contains a protein in each row and a
sample in each column, ready for further analysis. This file is produced from the main report
by simply removing all non-proteotypic precursors and using the maxLFQ [36] algorithm for
peptide-to-protein quantification. This is important since it is one of the goals of this project to
show how this process is improved by further filtering at the precursor level, prior to peptide-
to-protein quantification, and how this allows for more confident and robust protein identi-
fications. The last of the output files produced by DIA-NN that will be covered here is the
"stats_file". This file contains each of the samples in the DIA-NN run as a row, with the columns
containing different statistics for them, such as the total amount of precursors detected in that
sample, the total MS1 signal as well as the total MS2 signal, the total count of ions detected in
the sample, and so forth.

Regarding the maxLFQ algorithm, it must be noted that apart from being automatically
used by the most recent versions of DIA-NN to create the "unique_genes" file, it is also the algo-
rithm of choice for peptide-to-protein quantification throughout this project, thus it is deemed
necessary to briefly introduce it. MaxLFQ is a popular generic algorithm for label-free pro-
tein quantification which is generally applicable to proteomics data, and which solved prior
issues of this type of quantification. Before its publication, stable isotope-based labeling meth-
ods were the reference when it came to protein quantification, and the available software for
label-free quantification was either created to function only in very specific experiments un-
der concrete experimental conditions, or simply didn’t provide such accurate quantification.
MaxLFQ solved these issues by, briefly, performing quantification based on bringing together

https://github.com/vdemichev/DiaNN?tab=readme-ov-file#main-output-reference
https://github.com/vdemichev/DiaNN?tab=readme-ov-file#main-output-reference
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peptide signals available in a number of different samples, as well as by introducing a "de-
layed normalization", which makes it compatible with any experimental separation technique
employed [36]. MaxLFQ is available as part of the MaxQuant software, but also as a function
within the DIA-NN R package, which was the one used in this project.

2.2.2.3 Processing DIA-NN output

As mentioned above, one of the goals of the present project was to compare the results from
running DIA-NN in a common vs. a strain-specific manner. However, in order to do this,
it was first necessary to perform a proper pre-processing of DIA-NN output at the precursor
level prior to peptide-to-protein quantification, with the goal of posterior protein identifications
being more reliable. This pre-processing of DIA-NN output a the precursor level has been
extensively performed before, consequently it was only adapted to the present study in the
case of the common approach. However, due to the strain-specific approach being more of a
novelty, more importance fell on the task of adapting this pre-processing to the strain-specific
setting. The final pipelines for both approaches will be covered in Chapter 3.

2.2.3 Software versions

This project was performed using DIA-NN version 1.8.1 [25], R version 4.3.2 (2023-10-31) [32]
and Python version 3.12.2. [37].
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Chapter 3

Results

3.1 Processing of DIA-NN common approach output

The steps of this processing are summarized in the scheme in Figure 3.1. In the following
sub-sections the reasoning behind each step, as well as how they were performed, will be cov-
ered. The following section will deal with the adaptation of these processing steps towards the
strain-specific approach. However it is important to first stress how this processing pipeline
was developed for this particular dataset, with a certain reasoning in mind at each step, and
that it is important to make such considerations again when adapting it to a new dataset or
project, since parameters might need to be changed, some steps dropped altogether and others
included, all depending on the origin of the data and the goals of the analysis, as mentioned in
the introduction.

3.1.1 Remove empty or low OD samples

As covered in the materials and methods, the OD600 was measured for each sample both after
the pre-culture and at harvest time. This measure is considered as a good proxy of cell growth
in a culture, so it provides important information on the amount of proteins that could po-
tentially be found. Hence, it was deemed appropriate to, first of all, remove from the dataset
the samples with extremely low OD values at harvest time, since this indicates a lack of cell
growth. Figure 3.2 (a) shows boxplots for the OD of each strain, and based on this observation
and on prior knowledge from the team, the decision was made to set the minimal threshold for
the OD at 0.12. This led to the removal of 15 strains from the data, with a total of 72 samples.

Figure 3.1: Scheme showing the steps of the processing underwent by the raw DIA-NN report from the common
approach, up to the point of peptide-to-protein quantification, which will later be adapted to the strain-specific

approach.



Chapter 3. Results 22

Figure 3.2: Figure containing plots corresponding to different steps of the processing of the DIA-NN report from
the common approach: (a) contains boxplots for the OD measured at harvest for each strain, with a horizontal red
line at OD = 0.12, where the cutoff was set for discarding samples below this value. (b) and (c) show, respectively,
the distribution of the robust Z-scores for total ion count (TIC) and number of identified precursors for all samples
remaining after the previous steps. Vertical dashed red lines represent the cutoffs, at -3 and 3 in both plots. (d)
contains the density plots for the coefficient of variation (CV) calculated for each precursor left in the report in 3
manners: across all samples (green curve), across biological replicates (in blue) and across quality control samples
(QCs, in red). The dashed orange vertical line represents the top 10th percentile of the red curve, which serves as a
threshold for removal of all peptides above it from all samples in the dataset. (e) and (f) show boxplots per plate for
the log2Precursor.Normalised before and after batch correction respectively, showing the quality of the dataset and

the lack of batch effects.
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It must be noted that following this step, all non-proteotypic precursors were also filtered
out. This is a step that is common to many such processing pipelines, since later protein quan-
tification based solely on proteotypic peptides will provide more reliable quantifications.

3.1.2 Remove precursors with non-significant Q-values

Out of the multiple Q-values present in the DIA-NN report, this filtering step focused on four
of them:

• Q.Value: Calculated separately for the precursors in each sample, one Q-value being as-
signed to each precursor. These Q-values are assigned after ranking all precursors in the
sample based on the score produced for them by the ensemble of neural networks, which
represents their likelihood of being a target precursor, as opposed to a decoy.

• PG.Q.Value: Calculated at the Protein Group level, also separately for each sample. This
means that the precursors corresponding to a certain set of proteins that are considered
to have closely related sequences are grouped together, and the same Q-value is assigned
to all of them. Non-proteotypic precursors are included in this case as well.

• Global.Q.Value: Calculated over all precursors across all samples in the DIA-NN run,
again at the precursor level.

• Global.PG.Q.Value: Again at the Protein Group level, but in this case over all the samples
in the DIA-NN run.

Filtering was performed for these four types of Q-values at α = 0.01, so as to maximize the
robustness of the protein quantifications.

3.1.3 Filter based on TIC and number of identified peptides

This step was performed based on the stats_file, where each row is a brief summary of each
sample in the experiment. One of the columns in this file is the total ion count (TIC) that was
detected in each sample, and which represents the total amount of peptides present in the
sample, both identified and unidentified. It is a measure of the total protein or peptide amount
in each sample. The second parameter used here is the number of identified peptides, which
doesn’t depend only on the sample and the instrument used anymore, but also on the spectral
library used.

In order to remove outlying samples, with extremely high or extremely low protein concen-
tration, a robust Z-score was calculated for each sample for each of these 2 variables, according
to Equation 3.1:

Robust Z − scorei =
Xi − median(X)

MAD
(3.1)

Where:

MAD = median(X) · |X − median(X)| (3.2)

The robust Z-score was used instead of the traditional Z-score due to the fact that the TIC
and the total number of identified peptides can take quite extreme values in outliers samples.
Thus, it was deemed appropriate to use a more robust version of the score, which uses the
median instead of the mean and is hence not so affected by these outliers.
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Samples were removed that had robust Z-scores over 3 or below -3. This step allows for
the removal of samples with extremely large or small amounts of protein detected. It must
be noted that only samples with extremely low TIC and number of peptides identified were
filtered out at this step.

3.1.4 Filter based on detection threshold and sample fraction

As was covered in Chapter 2, there were initially four replicates for each of the strains in the
experiment. However, the filtering performed in the previous steps of the processing might
have caused this number to drop in the case of some strains. Hence, in this step, any strain
with less than three replicates left was dropped, as a lower number of replicates would not
provide enough information nor statistical power, or be properly representative of the strain.

Subsequently, for each strain, precursors which were not present in at least 65% of the sam-
ples (this is, in 3/4 or 2/3 samples) were also dropped, in order to make the quantification of
each protein within each strain even more robust.

3.1.5 Filter based on coefficient of variation

The coefficient of variation (CV), as defined in Equation 3.3, was calculated for the normalized
quantity of each precursor in the report in three different ways: across all samples, across bi-
ological replicates (samples belonging to the same strain) and across quality control samples
(QCs).

CV =
σ

µ
(3.3)

The distribution of the CVs of these 3 different types can be seen in Figure 3.2 (d). The
first noticeable characteristic of this plot is that the curve for the CV across biological replicates
is quite close to that for the QCs, suggesting that the samples belonging to the same strain
are indeed similar to each other, which indicates that the preparation and processing of the
samples were correctly performed, introducing only a minimal amount of technical variability
between them. The curve for the CV across all samples is, as expected, shifted to the right,
since it contains as well the biological variability across the different strains.

The goal of this step is to remove precursors with a high technical variability associated to
them, which would make them highly variable across samples without any association to the
biological signal, and which might hence confound the final results at protein level and com-
plicate their interpretation. The assumption made is that, since the different QC samples are
different aliquots of the same mixture ran on the mass spectrometer at different times, the vari-
ability across them should be minimal. Hence, the precursors in the higher 10th percentile of
the CV across QC samples were identified, and eliminated from all samples in the experiment,
with the intention of reducing this technical variability.

3.1.6 Batch correction

Samples in this experiment were contained in six different 96-well plates, which were ran in
the mass spectrometer in two batches. Consequently, it was decided to evaluate batch effects
at the plate level. As can be seen in Figure 3.2 (e), no significant differences are observed at the
level of the normalized quantity of precursor detected coming from each plate. Still, median
normalization was performed, where the normalized precursor quantities coming from each
plate were multiplied by the ratio between that plate’s median quantity and the quality controls
median quantity. As can be seen in Figure 3.2 (f), this did not cause any noticeable difference
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Figure 3.3: Assessment of protein abundance and variability across all samples after processing and peptide-to-
protein quantification of the common approach dataset.(a) shows all proteins across the X axis, ordered alphabeti-
cally, and their coefficient of variation across all samples in the Y axis. The vast majority of proteins have a relatively
low CV, only those above 100 are labelled with their name. (b) shows the mean log2(abundance) for each protein
across all samples in the X axis, against the standard deviation of this log2(abundance) on the Y axis. A light trend

can be identified of more abundant proteins having a lower standard deviation.

with respect to the distribution observed before batch correction. We also did not notice any
additional batch effect associated with the mass spectrometer batches.

3.1.7 Peptide to protein quantification - maxLFQ

Finally, after extensive filtering at the precursor level, these were used for protein quantifica-
tion, which was done with the maxLFQ algorithm [36] directly in R using the diann R package
[38].

3.1.8 Resulting dataset

After these steps, the resulting dataset at the protein level contained 2329 proteins and 432
samples, corresponding to 104 strains. Some exploration into the features of this dataset was
performed, and although it cannot be fully included here due to it not being the main topic
of this thesis, some observations are highlighted in Figure 3.3. Figure 3.3 (a) shows the CV
across all samples for each protein, where it can be observed that the majority of proteins have
a relatively stable presence across the different strains, while some others such as PDC5, an
isoform of the pyruvate decarboxylase, a key enzyme in alcoholic fermentation, show clear
variation in their abundance. Such variations suggest that these proteins´ abundances might
be tied to differences in the strains metabolism or their natural ecological niches. 3.3 (b) shows
a light tendency of less abundant proteins to being more variable in their abundance, which is
suspected to be due to the mass spectrometer being able to perform more accurate quantifica-
tion at higher abundances and is consistent with prior observations. However, proteins with
high abundances and high variability such as HSP12, HSP26, YHB1 or ADH4 are likely to have
biological significance in the strains in which their abundance varied.

3.2 Processing of DIA-NN strain-specific approach output

The processing steps presented in Figure 3.1 were evaluated regarding their relevance to the
strain-specific DIA-NN reports, as compared to the common approach one, and it was deemed
that the majority of them were still relevant and applicable. Only the following ones presented
difficulties that required their adaptation to the strain-specific approach:
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3.2.1 Filter based on TIC and number of identified peptides

This step was now performed separately for each strain, which means that it will likely not
be as stringent as when performed together for all of them. In this case, it will only allow to
remove one of the replicates of a certain strain when it is extremely different in its total ion
count or number of identified peptides with respect to the rest of them.

3.2.2 Filter based on coefficient of variation

This step is the most affected by the change to the strain-specific approach: this is due to the
fact that in the common approach, precursors are filtered out from all samples based on them
having a large CV across the quality control samples. Yet, in the case of the strain-specific
approach, the precursors identified in the QCs and in each of the strains will not be exactly the
same, which makes this approach not appropriate anymore. This could potentially be fixed by
including the QC samples in each of the strain-specific runs, so that they are run in DIA-NN
with each of the strain-specific libraries and hence the precursors detected in them would be
much closer to those in the samples of each strain. However this would cause other issues,
such as the number of QCs being much larger than the number of actual samples from that
strain in each strain-specific DIA-NN run. Therefore, we resorted to the characteristic of this
dataset that was mentioned when describing Figure 3.2 (d): that the CV for the precursors
across biological replicates is quite close to that across QCs, meaning that it can be assumed
that the variability captured by the CV across biological replicates is, in its majority, technical
variability. This justifies the filtering of precursors with a high technical variability associated
to them based on the CV across biological replicates. Hence, in the case of the strain-specific
approach, precursors were filtered out in each strain that were among the higher 10th percentile
of the CV distribution, with the CV being calculated solely across the samples belonging to that
particular strain.

3.2.3 Batch correction

The previous approach to this step was rendered inapplicable for the strain-specific approach
since each strain is now processed separately in DIA-NN. This is due to the fact that DIA-NN
automatically performs a normalization of the detected quantity of precursors, and this nor-
malization happens across all samples that are run together in DIA-NN. Hence, in this case,
this happens separately for each strain, meaning that their precursor quantities are not compa-
rable across strains anymore.

In this particular project, the solution to this was to simply not perform a batch correction,
due to the lack of batch effects as shown in Figure 3.2 (e). Nonetheless, we are aware that this
is a very specific case in which the dataset is of a great quality, and a strain-specific-applicable
batch normalization approach is required. More about this will be discussed in Chapter 4.

3.3 Assessment of the strain-specific approach

As mentioned in Chapter 1, one of the goals of this study was for the strain-specific approach
to allow to delve deeper into the proteome of each of the S. cerevisiae strains, identifying strain-
specific proteins that could hardly be identified otherwise. In this section we evaluate how
successful this was.

Figure 3.4 (a) illustrates the comparison of the number of proteins identified in each of the
two approaches: each dot represents a strain, while the X axis shows the difference between
number of proteins identified in the strain-specific approach and in the common approach, and
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Figure 3.4: Two plots containing information about the difference in the number of proteins found for each strain
in the strain-specific approach as compared to the common approach. This information is reflected on the X axis,
in plot (a) as the raw difference, and in plot (b) as a percentage of the number of proteins found in the common
approach. In both plots, each dot represents a strain, and they have been colored based on their ploidy. The Y
axis shows the -log10(p-value) for the t-test between the number of proteins detected in each approach, and the

horizontal red line is located at the equivalent to α = 0.01.

the Y axis contains the -log10(p-value) for this comparison. Figure 3.4 (b) contains the same in-
formation, with the difference that the X axis has been changed to represent the difference in
the number of proteins found as a percentage of the number of proteins identified in the com-
mon approach. Both these figures show that a significant increase in the number of identified
proteins is achieved by the strain-specific approach.

It must be noted that both figures show two important outliers: the BY4741-ki and BAD
strains. The case of BY4741-ki is easily explainable: since it is the laboratory strain, which was
present in 30 replicates (as opposed to the 3-4 replicates for all other strains), it is expected to
have such a large -log10(p-value) compared to the rest of the strains. On the other hand, the case
of BAD is not so straightforward: it was later noticed that the GDPF for this strain contained
around 3000 proteins, while most strains contain around 6000; this can be observed in Figure
2.3 (c), where BAD is represented by the first bar on the left. This justifies the lower number of
identifications, however, it remains to be discussed with our collaborator if this was due to an
error in the sequencing, or to an event of biological relevance occurring in this strain.

3.4 Biological questions

3.4.1 Allele-specific expression

As mentioned in Chapter 1, one of the main interest of this project on the biological side was
to take advantage of the successful haplotype phasing in the heterozygous diploid strains in-
cluded in the ScRAP in order to target haplotype-specific biological questions. One of such
questions is allele-specific expression: this is, for proteins whose sequence is present in both
haplotypes, is the same amount of this protein produced from each haplotype? Or is there a
dominance of one of the haplotypes? Nevertheless, there is the limitation that this difference is
only possible to evaluate for proteins which exhibit sequence differences between the two hap-
lotypes (otherwise it is impossible to recognize from which haplotype each copy of the protein
was produced). This is the reason why, as described in section 2.2.1, peptides from such pro-
teins were specifically labelled to represent whether they are present in the version of the pro-
tein coming from one haplotype, the other, or both of them, as represented in Figure 1.4. This
means that both DIA-NN and maxLFQ will interpret these three versions as three independent
proteins, and quantify them separately: if we were dealing with a protein named Protein_1
(which, again, was present in both haplotypes but with a different sequence between them) we
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would obtain quantification results for three different versions of it: Protein_1_common, Pro-
tein_1_common_HP1 and Protein_1_common_HP2. This then allows to test the abundances
of the last two against each other to resolve whether more copies of the protein are produced
from one of the two haplotypes. More about the accuracy of the quantification of proteins in
this way will be covered in the corresponding section of Chapter 4.

The results of this testing are presented in Figure 3.5: (a) shows, in blue, the number of total
proteins whose sequence should be present in both haplotypes with some difference between
them, based on the original GDPF for that strain. The red bars represent the number of these
proteins in each strain that were actually detected in the final reports as coming from both
haplotypes, and the green bars shows the number of them where a significant difference was
found in the abundance of the protein coming from one haplotype vs. the other one. (b) shows
the same information but without the total number of proteins based on the GDPF, for a better
view of the other quantities.

Figure 3.5: Three barplots containing information on the number of proteins found to be significantly differen-
tially abundant between haplotypes, in each of the heterozygous diploid strains in the ScRAP. Plot (a) contains, for
each strain, the total number of proteins whose sequence is expected to be present in both haplotypes with some
difference between them, based on the GDPFs (in blue). Then in red, the number of proteins out of these which
are actually experimentally detected, based on the dataset, and in green the number of those proteins for which a
significant differential abundance across haplotypes is found. Plot (b) contains the exact same information, only
the bars for the total theoretical number of proteins have been deleted so as to better appreciate the other two. (c)
contains the same information as (b), but adds for each strain a column representing the number of proteins that

were detected across only one of the haplotypes for each strain.

These results show that an extremely small amount of these proteins is actually detected
with respect to those that were expected based on the GDPFs. Nevertheless, Figure 3.5 (b)
shows that for those strains in which such proteins are detected in both haplotypes, the propor-
tion of them that is found to be significantly differentially expressed between the haplotypes is
not negligible, pointing to the existence of an actual difference in the amount of protein copies
(of a certain protein) that are produced from each haplotype, at least for some proteins. Still,
low detection prevents further conclusions at this point.
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In summary, a total of 51 proteins were found to be significantly differentially abundant
between haplotypes across a total of 12 strains (out of the total of 21 heterozygous diploid
strains), with most of these proteins showing significance in a single strain. The list of these
proteins is presented in Table A.1, in Appendix A. A gene ontology enrichment analysis was
performed on these 51 proteins, using as background the total set of proteins detected for each
strain in the analysis, but showed no significant enrichment. This is, proteins were shown to be
mostly related to general metabolism and amino acid metabolism, but due to the tendency of
the employed experimental setting to detect mostly such proteins (due to their large abundance
in the cells), these results were not significant.

3.4.2 Effect of insertions and deletions on protein expression

As covered in section 2.1.3, a set of files were provided by our collaborators, based on the
telomere-to-telomere sequencing of the strains, and containing information about different SVs
in the ScRAP strains. In this case, we looked at insertions and deletions: the corresponding files
contained information about 279 insertions and 525 deletions, each of them affecting a concrete
gene (or genes), and found in usually a few of the strains. Consequently, it was decided to,
for each insertion or deletion, test for the presence of the protein affected by it between strains
containing and not containing the mutation. This is, for each sample from each of the strains, a
value was produced for the protein, 1 or 0 respectively if the protein was or was not identified
in that sample. Then, a proportion test was performed on these values between the strains that
contained the mutation and those that didn’t.

Figure 3.6: Barplot containing information about the number of proteins containing insertions
or deletions in some strains, that were found to be significantly differentially present between the
strains containing the corresponding mutation and those that didn’t. This information is presented
over all strains in the ScRAP together. Red bar represents the total number of proteins supposed to
have each type of mutation in at least some of the strains, based on the sequencing performed by
our collaborators [9]. The khaki bar represents the number of these proteins that were detected in
the experimental data, while the following 2 bars (green and blue) represent the number of these
proteins for which there were at least 2 and 4 samples (respectively) in both groups to be compared
(this is, strains with and without the mutation). Finally, the purple bar represents the amount of
these proteins that were found to be significantly differentially present between mutated and non-

mutated strains.
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The results from this testing are presented in Figure 3.6. The first column represents the
number of theoretical proteins containing each type of mutation based on the SV files gener-
ated based on the sequencing information. The second bar represents the number of proteins
which are actually detected. Again the same issue as in the previous section arises: most of
the theoretical proteins are not actually detected in practice, likely due to the fact that their
abundance is low and the experimental method employed here tends to favor highly abundant
proteins. This complicates the drawing of conclusions, and even more so what is represented in
the bright green and blue bars in the figure: the number of proteins for which there are at least
two or four (respectively) samples in both groups prior to the testing. This is, the groups being
the two types of strains which are being tested against each other, those carrying the mutation
and those which don’t. Two and four were chosen as the numbers of samples to be shown here
because two is the minimum sample size necessary to be able to perform the testing, while
four was chosen to illustrate the large amount of proteins for which testing is possible, but is
occurring based on extremely small sample sizes. This reflects the biggest issue in this section:
most mutations are only present in a couple of strains, and not present in all other strains. This
means that the sample sizes for the testing are going to be extremely different, with the one for
the group containing the mutation being much smaller. If on top of this, some of the strains
containing the mutation have been dropped from the data during filtering (or at least some
of their samples), sample sizes for this group end up being dramatically low, which not only
directly prevents the possibility of testing in some cases (when less than 2 samples are present
in this group) but also strongly decreases the power when testing is possible. This explains the
extremely small amount of significantly differentially detected proteins between mutated and
non-mutated strains for both insertions and deletions.

The list of proteins differentially expressed when affected by a certain deletion or insertion
in certain strains is given in Table A.2, in Appendix A. Looking into the biological relevance
or potentially affected pathways was out of the scope of this thesis, but will be followed up in
further work.
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Chapter 4

Discussion

4.1 Processing of DIA-NN output

The herein developed processing pipeline is deemed to have successfully removed low-quality
and outlying samples from the dataset, as well as unreliable precursors, which should result in
confident and robust protein quantifications that are representative of the true protein content
of each of the species. The pipeline is also considered to have been properly adapted from
the common to the strain-specific approach, in order to deal with the particular idiosyncrasies
of the latter. Nonetheless, some further considerations are required pertaining some of the
sections of the processing.

Regarding the filtering of all non-proteotypic precursors, it is important to realize that even
though it allows for more reliable protein identifications, their removal causes a loss of infor-
mation. Hence, this trade-off needs to be taken into account. Possibly in further approaches,
retaining of non proteotypic peptides until later stages of the processing could be considered.
Furthermore, the development of an algorithm that could include them during protein quan-
tification would prove extremely useful as well.

As mentioned in Chapter 2, the DIA-NN output contains several types of Q-values, not
only the ones that are used to filter in this particular case. Even though the filtering performed
here is quite stringent and should allow for reliable quantification, it might be interesting to
take other Q-values into account. Particularly for the strain-specific approach, the Library Q-
values might be useful. According to the DIA-NN Github note, these are Q-values calculated
for each library entry. Therefore, filtering for the library-specific Q-values might be appropriate
in the strain-specific processing since libraries of different sizes are being used for each strain,
and precisely these different library sizes might affect the number of precursors that receive a
significant Q-value.

The objective of filtering based on the robust Z-score for TIC and number of identified pep-
tides is to remove outlying samples based on these two variables. Thus, it was considered as
an option to still perform this filtering for all samples from all strains together, instead of doing
it separately for the three or four replicates of each strain, which might result in a more bi-
ased selection of samples based on the TIC and number of peptides patterns in each particular
strain. This was considered as an option because it was thought that these two variables would
be absolute, in the sense that they are not normalized across each DIA-NN run but that they
are strictly dependent only on the actual number of ions and identified peptides in a sample,
respectively. However, after further discussion, it was not clear that this is the case, so it was
decided to keep this step separate for each strain for now. It must be noted though, as men-
tioned already in Chapter 3, that this filtering will be less stringent than its equivalent in the
common approach.

Finally, concerning batch correction, the reasons why the method employed in the common
approach was rendered inapplicable to the strain-specific approach were already discussed
in Chapter 3 and are due to the separate normalization of precursor quantities by DIA-NN
for each DIA-NN run. As options for a strain-specific-proof batch correction method, it was



Chapter 4. Discussion 32

proposed to use the batch correction ratios calculated for each plate in the common approach,
and while this would be appropriate, it would require the extra work of running a common
approach apart from the strain-specific approach in all future studies. Consequently, it was
instead thought to calculate batch correction ratios based on the values for the laboratory strain
BY4741-ki, for which, as mentioned in Chapter 2, five replicates were present in each plate. All
30 replicates of this strain are run together in DIA-NN, so they should provide an accurate way
of estimating batch effects, and ratios to correct for them. Quality control samples could also
be useful to this end, however these are only divided into Batches 1 and 2 (since they were
not included in the plates but ran separately in between samples), while BY4741-ki was indeed
present in all six plates.

In spite of this, further considerations arise regarding batch correction in this setting: ongo-
ing work in our group is being carried out to asses the importance of batch effects introduced
by separate DIA-NN runs, since some colleagues have reported strong such effects in some
particular contexts. Hence, the pipeline presented here will be reviewed and adapted based on
further findings on this topic.

4.2 Assessment of the strain-specific approach

As reported in Chapter 3, the strain-specific approach resulted in an average increase in the
number of proteins identified per strain of around 35% with respect to the common approach,
which is quite encouraging and supports prior assumptions. Previous findings in similar ex-
periments in the literature support this, such as the study by Sun et al. [39], where the use of
a larger spectral library built from healthy and cancerous prostate tissue outperformed a pre-
vious, smaller and less specific prostate library, with almost a 20% increase in protein identifi-
cations. Similar findings were reached in [40], although in this case, the procedure was slightly
different: the new, more specific spectral library was in this case generated by performing a
database search of the mass spectrometry files first. Then the protein identifications from the
database search alone and from the spectral library search with this new library were put to-
gether, achieving an increase in protein identifications with respect to the database search alone
that ranged from 20 to 156%. Another study reached congruent results after building a detailed
spectral library of the guinea pig proteome by bringing together spectra generated from pro-
teomic analysis of samples of different body parts, which also resulted in an increase in protein
identifications [41]. It must be noted that no references to such a strain-specific approach in
yeast were found.

Thus, even though no prior studies have been performed evaluating exactly the same as
is presented here, namely the use of strain-specific spectral libraries, it does seem from both
this study and previous literature that the more information that is contained in a spectral
library and the more specific that this information is to the analyzed species, the more protein
identifications that will be obtained. This, together with sequencing technologies becoming
progressively cheaper every year, opens up the field for the creation of more strain-specific
libraries for the analysis of new samples, and even for the re-analysis of older samples, with
the prospect of new findings from them.

With respect to the results in this particular project, it would also be of interest, based on
the plots in Figure 3.4, to study the relationship between the increase in the number of protein
identifications and the ploidy of the strains, although this might also be affected by the poor
haplotype phasing in the case of polyploid strains. Moreover, results presented in the same
Figure are only based on the comparison between the number of proteins identified for each
strain in each approach, but the newly identified proteins have not been further studied yet.
They are of course expected to be proteins that are present in that concrete strain but not in the
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reference strain S288C, but a further analysis of them might be interesting, to see if there is any
pattern to be seen regarding their function or other characteristics.

4.3 Biological questions

Despite the complications presented by a relatively low identification of allele-specific pseudo-
proteins and by the small amount of samples containing mutations within different proteins
respectively, insightful results were obtained regarding both alelle-specific expression and the
effect of deletions and non-coding insertions in protein sequences. In the case of allele-specific
expression, a total of 51 proteins were identified as differentially abundantly produced from the
two haplotypes of heterozygous diploid strains, across the 21 strains in this category. Regard-
ing deletions and non-coding insertions, 16 proteins were found to be differentially detected in
those strains where they carried such mutations as compared to those where they did not. The
shortcomings of these approaches and the obtained results, as well as ideas for their improve-
ment, will be addressed in the following paragraphs.

There are several considerations to be taken into account with respect to the question of
allele-specific expression. Firstly, it was already covered how proteins which are present in both
haplotypes but with different sequences between them are being identified and quantified as
three different proteins, as covered in section 2.2.1 and Figures 1.4 and 2.2: Protein_1_common
(from the peptides which are present in both versions of the protein), Protein_1_common_HP1
(from the peptides which are unique to haplotype 1) and Protein_1_common_HP2 (from the
peptides unique to haplotype 2). This raises the question of how precise the identification,
but particularly the quantification, can be in this setting given that it is based, for each of
these "pseudo-proteins", on fewer precursors than it should typically be for the whole, orig-
inal protein. This could potentially be evaluated by, apart from comparing the quantification
of Protein_1_common_HP1 and Protein_1_common_HP2 to each other, comparing also both
of them to Protein_1_common. Since the later should presumably be quantified based on more
precursors than the previous two and hence more reliably. it could be used as a reference
in order to check whether their detected quantities are in the correct range. If this showed
that indeed the quantities detected for Protein_1_common_HP1 and Protein_1_common_HP2
were in a different order of magnitude compared to Protein_1_common for the same pro-
tein, this would confirme that there are too few precursors specific to Protein_1_common_HP1
and Protein_1_common_HP2 for their quantification to be accurate. If this were the case,
an intuitive solution would be to include Protein_1_common precursors (this is, precursors
that are common to both versions of the protein) into both Protein_1_common_HP1 and Pro-
tein_1_common_HP2, so as to improve the accuracy of their quantification. However, further
consideration is necessary regarding how this would affect proteotypicity.

Another consideration about the question of allele-specific expression is that, as mentioned
in Chapter 3, testing for significantly differentially abundant proteins across haplotypes be-
came difficult due to the extremely low amount of proteins that were detected coming from
both haplotypes. Nevertheless, the number of proteins that were detected coming from a sin-
gle one of the haplotypes is considerably higher, as can be seen in Figure 3.5 (c). This leads us
to suspect that these proteins, which are being ignored as there is no possibility to test for them
across haplotypes, might be biologically meaningful, representing full dominance of one of the
haplotypes, with this concrete protein being generated exclusively from said haplotype. This
will be the subject of further investigation.

A further, important consideration on this question is that, at the step of strain-specific
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library creation for these heterozygous diploid strains, when a peptide is classified as Pro-
tein_1_common_HP1 or Protein_1_common_HP2, it is done on a direct comparison of the se-
quences, simply checking if they are exactly identical to each or not. Therefore, it is not taken
into account whether the difference between them might be a single amino acid change or sev-
eral of them. Moveover, here come into play also the degree to which the physico-chemical
properties of some amino acids are much more similar than others, hence the mutation of some
amino acids to others being more or less impactful. This might strongly influence the results
and their interpretation, so there is an interest in looking into this effect and taking it into ac-
count further down the line.

Finally, with respect to allele-specific expression, it would be a possibility in order to ob-
tain more significant results to re-run the mass spectrometry experiment for the samples of the
21 heterozygous diploid strains with a longer gradient in the chromatography step. As cov-
ered in Chapter 1, this increases the proteomic depth of the analysis, and should allow for the
identification of more proteins, which could potentially help detect these haplotype-specific
precursors better. Furthermore, the samples could also be re-run on an even more sensitive
mass spectrometer, again increasing the depth of the acquisition.

Regarding the results for the biological question on the effect of insertions and deletions
on protein expression, again one of the main issue is the lack of statistical power. The most
straightforward way to improve this would be to obtain more replicates for the strains carrying
mutations, or at least for those accumulating the most mutations. However, it does not seem
like this will be an option, at least not in the near future.

Another improvement that could be added to this section is to, instead of the proportion
test with the binary version of the data, try to use a mixed model to model the missing data.
This might be a topic of further investigation not before long.

4.4 Ethical thinking, societal relevance, and stakeholder awareness

The organism used in this study, S. cerevisiae, is unicellular and non-pathogenic. In addition,
none of the used strains was genetically modified; instead, this study employed a collection of
naturally occurring yeast isolates to answer basic questions regarding the effect of structural
variants on gene expression. Therefore, there are no ethical concerns regarding the experimen-
tal part of this project.

In fact, there are some ethical advantages to the approach taken in this project: firstly, the
raw proteomic files obtained for the samples will be kept and in due time made publicly avail-
able, since DIA provides very deep, rich datasets which are by no means exhausted by the
analysis performed here. Hence, it will be possible to come back to them and re-analyze them
at no extra experimental cost, for example in the case that more advanced software is devel-
oped.

Secondly, the very promising results found with the strain-specific approach might encour-
age the re-analysis of previously acquired samples or raw proteomic files in virtually any field.
Just through the preparation of a new spectral library that is more specific to the sample, a
number of new protein identifications could potentially be made, without the need for any fur-
ther harvesting of samples from animals nor humans. Looking further ahead, the success of
the strain-specific approach could be helpful in the development of personalized medicine ap-
proaches, since it shows how more accurate prior knowledge on the studied individual allows
for better and more accurate findings.
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Lastly, in a more general way, the present analysis targets basic biological questions (e.g.
the occurrence and consequences of structural variants across the genome) using a non-
mammalian, non-higher organism, which might nonetheless be extrapolated to higher order
organisms. This is an ethical advantage in itself, which observes the "3 Rs rule in animal re-
search" [42], concretely towards the replacement of animals by other organisms or cell cultures.
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Chapter 5

Conclusion

Pangenomes and reference panels such as the ScRAP are extremely useful tools when it comes
to the study of any species since they allow to take into account its genetic diversity, thus paving
the way for more generalizable results. Together with multi-omics approaches, starting from
genomic information and using it to direct further proteomic (or even potentially metabolomic)
analysis will help considerably to increase our understanding of a species and the concept of
species itself.

Here, in the shape of the strain-specific approach, a method was presented to take advan-
tage of such pangenomes at the level of proteomic research; this is, it was proven that the
creation of spectral libraries which are as specific as possible to the analyzed organisms result
in a significant increase in the number of protein identifications. Importantly, as part of this
master thesis, a pipeline for the strain-specific processing of DIA proteomics data was devel-
oped. Given the obtained success, evidenced by an average increase in the number of protein
identifications of around 35%, this might be a useful tool for future similar analyses based on
pangenomes, specially those of microorganisms where many strains can be collected. Further-
more, given its relative ease of implementation, it might encourage researchers in other fields
to also perform their proteomic analyses with new libraries that are more specific to the studied
organism or tissue, since this would increase the number of protein identifications they would
obtain.

This approach does come with some downsides with respect to a common approach, such
as the need for further preparation as well as posterior processing, for example regarding the
open question of batch correction in the strain-specific approach, or the difficulty in performing
direct comparisons between the obtained protein quantities for each strain. Nonetheless, and
despite some further development being necessary, the strain-specific approach is considered
a useful and promising tool.

The herein developed approach allowed us to start to address interesting biological ques-
tions regarding protein expression that could not be studied with prior strategies. Despite low
detection of allele-specific proteins, the first analysis attempt of allele-specific expression in het-
erozygous diploid strains found 51 proteins to be produced in significantly different amounts
from the two haplotypes in such strains, and this number could possibly be increased when
implementing some of the improvements suggested in Chapter 4, such as including proteins
detected to be expressed exclusively from one of the alleles. Regarding the question on the
effect of deletions and non-coding insertions on protein expression, a modest 16 significantly
differentially present proteins were found between strains where they carried the mutation and
those where they did not. However, further research and discussion with our collaborators is
necessary regarding the interpretation and meaningfulness of this result. It is however neces-
sary to remember that particularly the targeting of the allele-specific question would have been
impossible without the strain-specific approach.

In summary, strain-specific processing approaches are a promising tool in the field of pro-
teomics, particularly as we are heading into an era where pangenomes will slowly replace
reference genomes, making it easier to obtain the necessary strain-specific spectral libraries.
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Appendix A

General appendix

A.1 Table for allele-specific expression proteins

Table A.1: Table containing the information on the proteins that were found to be signif-
icantly differentially produced by the 2 haplotypes in heterozygous diploid strains. The
first column contains the name of the strain where the significant difference for this pro-
tein was found, the following columns consist of the names of the protein, systematic and
standard one (when available). Finally, the raw and FDR-corrected p-values are presented

in the last two columns.

Strain Protein systematic name Protein standard name p-value FDR
AEL YGR187C HGH1 0.010 0.029
AEL YGL039W 0.006 0.029
AEL YIR003W AIM21 0.011 0.029
AIF YOR042W CUE5 0.009 0.013
AIF YER063W THO1 0.003 0.009
AIS YHR020W 0.006 0.047
AIS YFR052W RPN12 0.006 0.047
AIS YGL043W DST1 0.004 0.042
AIS YGR253C PUP2 0.000 0.002
AIS YGL049C TIF4632 0.001 0.014
AIS YGR207C CIR1 0.000 0.002
AIS YGR048W UFD1 0.004 0.047
AIS YGL062W PYC1 0.002 0.027
AIS YGR012W MCY1 0.005 0.047
AIS YFL014W HSP12 0.003 0.040
AIS YGL012W ERG4 0.000 0.003
AIS YFR016C AIP5 0.007 0.049
AIS YFL022C FRS2 0.006 0.047
AIS YGR264C MES1 0.001 0.014
AIS YGL037C PNC1 0.003 0.042
ASN YHR020W 0.000 0.000
ASN YGR005C TFG2 0.002 0.017
ASN YLL026W HSP104 0.000 0.001
ASN YLR058C SHM2 0.006 0.038
BAF YDR212W TCP1 0.000 0.003
BBF YEL020W-A TIM9 0.021 0.035
BBF YLR044C PDC1 0.006 0.015
BBF YMR186W/YPL240C HSC82 0.000 0.000
BPK YAL005C/YLL024C SSA1 0.007 0.020
CFF YGL147C/YNL067W RPL9A 0.002 0.006
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CFF YER091C MET6 0.000 0.005
CFF YER143W DDI1 0.020 0.045
CFF YHL033C/YLL045C RPL8A 0.002 0.006
CFF YER006W NUG1 0.002 0.006
CIC YBL017C PEP1 0.022 0.039
CIC YOR251C TUM1 0.033 0.046
CIC YCR005C CIT2 0.022 0.039
CIC YBR031W/YDR012W RPL4A 0.012 0.039
CIC YBR011C IPP1 0.000 0.000
CKB YJL172W CPS1 0.000 0.001
CLL YHR146W CRP1 0.001 0.001
CLL YNL138W SRV2 0.000 0.001
CMF YMR194W/YPL249C-A RPL36A 0.020 0.030
CMF YLR441C/YML063W RPS1A 0.030 0.030
CNT YMR039C SUB1 0.000 0.000
CNT YMR092C AIP1 0.001 0.003
CNT YMR038C CCS1 0.001 0.006
CNT YOL097C WRS1 0.007 0.018
CNT YDL075W/YLR406C RPL31A 0.005 0.016
CNT YEL020W-A TIM9 0.000 0.000
CNT YML057W CMP2 0.006 0.017
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A.2 Table for mutation-containing proteins

Table A.2: Table with all proteins that were found to be significantly differentially detected between the strains
where they carried a mutation and those where they did not. Proteins are named both with their systematic name
and their standard name (when available). The mutation type is indicated in the next column, and then the raw and

FDR-corrected p-values.

Protein systematic name Protein standard name Mutation type p-value FDR
YHR188C GPI16 Deletion 0.00762 0.04087
YMR099C Deletion 0.00380 0.02242
YMR105C PGM2 Deletion 0.00001 0.00009
YMR108W ILV2 Deletion 0.00000 0.00000
YMR116C ASC1 Deletion 0.00000 0.00000
YCR053W THR4 Deletion 0.00000 0.00000
YCR083W TRX3 Deletion 0.00833 0.04094
YCR084C TUP1 Deletion 0.00000 0.00000
YCR088W ABP1 Deletion 0.00000 0.00000
YHR013C ARD1 Deletion 0.00000 0.00000
YIR035C NRE1 Deletion 0.01003 0.04551
YPL152W RRD2 Deletion 0.00000 0.00000
YCL018W LEU2 Deletion 0.00000 0.00000
YIL169C CSS1 Insertion 0.00266 0.01598
YJL020C BBC1 Insertion 0.00000 0.00000
YCL026C-B HBN1 Insertion 0.00000 0.00000
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Appendix B

Appendix for R code

B.1 Creating functions to be used later

1 #' Create the correspondence dataframe for the full DIA-NN report
2 #'
3 #' This function takes as input the unique_genes matrix from DIA-NN, and a file with the

structure of the samples on the plates. This is, in this second file, each↪→

4 #' row corresponds to a sample, and there are columns describing: the plate, the well, the batch
and the strain that was in that sample. What this function does↪→

5 #' is to match the information from these 2 dataset based on the positions on the plates, and to
create a new dataframe, based on this second one, but with↪→

6 #' columns containing: the file names, Well ID, Sample, Strain, Batch ID and Plate ID. This
allows to then name the columns in the unique_genes file and in the↪→

7 #' DIA-NN report based on the "Sample" column, which specifies which replicate of each strain
each sample is (for example, "AAB_3").↪→

8 #'
9 #' @param df The unique_genes matrix from DIA-NN (as a dataframe)

10 #' @param structure A dataframe containing a sample in each row, and columns with information
about their position in the plate, the strain that was in it...↪→

11 #' @return A nicer structure dataframe, containing the following columns: file names, Well ID,
Sample, Strain, Batch ID and Plate ID.↪→

12 #'
13 create_sample_correspondence_dataset <- function(df, structure) {
14 # Reconstruct ID for each plate in the same way as in the column names
15 out = c()
16 for (i in 1:nrow(structure)) {
17 if (structure$strain[i] != "QC") {
18 # Plate number
19 plate = paste("P0", substr(structure$plate[i], 12, 12), sep = "")
20

21 # Well ID
22 if (nchar(structure$column96[i]) == 1) {
23 num = paste("0", structure$column96[i], sep="")
24 }
25 else {num = structure$column96[i]}
26 well = paste(structure$row96[i], num, sep = "")
27

28 # Put it all together
29 ID = paste(plate, well, sep = "_")
30 out = c(out, ID)
31 }
32 else {out <- c(out, NA)}
33 }
34 structure$ID = out
35

36 df_unique <- data.frame(File.Name = colnames(df))
37

38 # Create the strain replicate names
39 strain_replicates = c()
40 well_IDs = c()
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41 strains = c()
42 for (i in 1:length(colnames(df))) {
43 og_colname = colnames(df)[i]
44

45 # For QCs
46 if (grepl("QC", og_colname) & grepl("Batch2", og_colname)) {
47 start <- str_locate(og_colname, '_P00_')[2]
48 end <- str_locate(og_colname, '.d')[1]
49 new <- substr(og_colname, start + 1, end - 1)
50 new <- gsub("\\.", "-", new)
51 new <- paste(new, "2", sep = "_")
52 old = new
53 strain = "QC"
54 }
55 else if (grepl("QC", og_colname)) {
56 start <- str_locate(og_colname, '_P00_')[2]
57 end <- str_locate(og_colname, '.d')[1]
58 new <- substr(og_colname, start + 1, end - 1)
59 new <- gsub("\\.", "-", new)
60 old = new
61 strain = "QC"
62 }
63

64 # For the rest of wells
65 else {
66 for (j in 1:length(structure$ID)) {
67 ID = structure$ID[j]
68 if (grepl(ID, og_colname)) {
69 strain = structure$strain[j]
70 if (sum(grepl(strain, strain_replicates)) >= 1) {
71 num = sum(grepl(strain, strain_replicates)) + 1
72 new = paste(strain, as.character(num), sep = "_")
73 old = ID
74 }
75 else {
76 new = paste(strain, 1, sep = "_")
77 old = ID
78 }
79 }
80 }
81 }
82 strain_replicates = c(strain_replicates, new)
83 well_IDs = c(well_IDs, old)
84 strains = c(strains, strain)
85 }
86

87 # Create the batch indicator
88 batch_ID = c()
89 for (i in 1:length(colnames(df))) {
90 og_colname = colnames(df)[i]
91

92 # For QCs
93 if (grepl("QC", og_colname) & grepl("Batch2", og_colname)) {
94 batch_ID = c(batch_ID, 2)
95 }
96 else if (grepl("QC", og_colname)) {
97 batch_ID = c(batch_ID, 1)
98 }
99

100 # For the rest of wells
101 else {
102 for (j in 1:length(rownames(structure))) {
103 if (grepl(structure$ID[j], og_colname)) {
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104 plate = structure$plate[j]
105 plate_num = as.numeric(substr(plate, nchar(plate), nchar(plate)))
106 if (plate_num <= 3) {batch_ID = c(batch_ID, 1)}
107 else if (plate_num > 3) {batch_ID = c(batch_ID, 2)}
108 }
109 }
110 }
111 }
112

113 # Create the plate indicator
114 plate_ID = c()
115 for (i in 1:length(colnames(df))) {
116 og_colname = colnames(df)[i]
117

118 # For QCs
119 if (grepl("QC", og_colname)) {
120 plate_ID = c(plate_ID, "QC")
121 }
122

123 # For the rest of wells
124 else {
125 for (j in 1:length(rownames(structure))) {
126 if (grepl(structure$ID[j], og_colname)) {
127 plate = structure$plate[j]
128 plate_num = as.numeric(substr(plate, nchar(plate), nchar(plate)))
129 plate_ID = c(plate_ID, plate_num)
130 }
131 }
132 }
133 }
134

135 # Bring together the dataframe
136 sample_correspondence = data.frame(df_unique$File.Name, well_IDs, strain_replicates, strains,

batch_ID, plate_ID)↪→

137 colnames(sample_correspondence) = c("File_Name", "Well_ID", "Sample", "Strain", "Batch_ID",
"Plate_ID")↪→

138

139 # Add names in ms03 computer - in order to be able to run DIA-NN
140 ms03_names = c()
141 for (i in 1:nrow(sample_correspondence)) {
142 name = sample_correspondence$File_Name[i]
143 loc_1 = str_locate(name, "Projects.")[2]
144 loc_2 = str_locate(name, ".d")[1]
145 name_ms03 = substr(name, loc_1+1, loc_2-1)
146 name_ms03 = gsub(".", "-", name_ms03, fixed = T)
147 name_ms03 = paste(name_ms03, ".d", sep = "")
148 ms03_names = c(ms03_names, name_ms03)
149 }
150 sample_correspondence$names_in_ms03 <- ms03_names
151

152 return(sample_correspondence)
153 }
154

155

156 #' Match between correspondence dataset and OD report
157 #'
158 #' Add a column with the Plate ID to the OD dataset so that its rows can be matched to the ones

in the large dataset. Also add a column indicating whether each↪→

159 #' well generated or not measurements, and hence is or not included in the DIA-NN report.
160 #'
161 #' @param OD A dataframe containing a sample in each row, columns with the OD of each sample,

but also a column indicating the plate in which the sample was, and↪→

162 #' another one indicating the position of the sample within the plate
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163 #' @param sample_correspondence The dataframe created by
"create_sample_correspondence_dataset_from_full_report()", so with the following columns:
file names,

↪→

↪→

164 #' Well ID, Sample, Strain, Batch ID and Plate ID.
165 #' @param missing A vector with the names of the wells containing samples that didn't produce a

single measurement (since they are included in the OD dataframe,↪→

166 #' but not in the sample_correspondence one, because this one is built based on the DIA-NN
report and this one doesn't contain samples with 0 measurements).↪→

167 #' @return The OD dataframe with an extra column containing the Plate ID, and another extra
column containing whether each well is or not included in the DIA-NN↪→

168 #' report (wells with extremely low ODs sometimes don't generate any measurements in the MS and
hence are not included in the DIA-NN report I think, something↪→

169 #' like that).
170 #'
171 match_OD_info_to_sample = function(OD, sample_correspondence, missing = c(NA)) {
172 # Create well ID for the OD table
173 out = c()
174 for (i in 1:length(OD$plate)) {
175 # Plate number
176 plate = paste("P0", OD$plate[i], sep = "")
177

178 # Well ID
179 if (nchar(OD$position[i]) == 2) {
180 num = paste(substr(OD$position[i], 1, 1), "0", substr(OD$position[i], 2, 2), sep="")
181 }
182 else {num = OD$position[i]}
183

184 # Put it together
185 well = paste(plate, num, sep = "_")
186 out = c(out, well)
187 }
188 OD$ID = out
189

190 # Instead of removing the rows with wells where the samples didn´t produce any measurement,
add an extra column containing this information (they are not↪→

191 # included in the main DIA-NN report so we need to be aware of them when trying to match them
later).↪→

192 if (sum(is.na(missing)) == 0) {
193 present_or_missing <- c()
194 for (i in 1:nrow(OD)) {
195 if (OD$ID[i] %in% missing) {
196 present_or_missing <- c(present_or_missing, "Missing")
197 }
198 else {
199 present_or_missing <- c(present_or_missing, "Present")
200 }
201 }
202 OD$Presence <- present_or_missing
203 }
204 return(OD)
205 }
206

207

208 #' Add columns with sample information to report dataset
209 #'
210 #' Add columns to the DIA-NN report based on the sample_correspondence dataset: Well_ID, Sample,

Strain, Batch_ID, Plate_ID. Had to add the if right at the↪→

211 #' beginning because otherwise when using this function on the strain-specific reports, I get an
error for strain CPS, which has an empty report.↪→

212 #'
213 #' @param data The DIA-NN report as a dataframe
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214 #' @param sample_correspondence The dataframe created by
"create_sample_correspondence_dataset_from_full_report()", so with the following columns:
file names,

↪→

↪→

215 #' Well ID, Sample, Strain, Batch ID and Plate ID.
216 #' @param OD A dataframe containing a sample in each row, columns with the OD of each sample,

but also a column indicating the plate in which the sample was, and↪→

217 #' another one indicating the position of the sample within the plate
218 #' @param column_to_use Do we want to do this based on the name_in_ms03 column (used for SS

report) or on File.Name (used for CA report)↪→

219 #' @return The DIA-NN report as a dataframe, with the mentioned extra columns
220 #'
221 add_correspondence_columns_to_report = function(data, sample_correspondence, OD, column_to_use)

{↪→

222 if (nrow(data) > 0 & column_to_use == "names_in_ms03") {
223 # Create empty columns to fill in
224 data$Well_ID = data$Sample = data$Strain = data$Batch_ID = data$Plate_ID =

data$OD_at_harvest = data$OD_preculture = NA↪→

225

226 # Fill in these empty columns based on the created sample_correspondence
227 for (i in 1:nrow(sample_correspondence)) {
228 bool = data$names_in_ms03 == sample_correspondence$names_in_ms03[i]
229

230 data$Well_ID[bool] = sample_correspondence$Well_ID[i]
231 data$Sample[bool] = sample_correspondence$Sample[i]
232 data$Strain[bool] = sample_correspondence$Strain[i]
233 data$Batch_ID[bool] = sample_correspondence$Batch_ID[i]
234 data$Plate_ID[bool] = sample_correspondence$Plate_ID[i]
235 }
236

237 # Fill in the emtpy OD columns based on the OD data
238 for (i in 1:nrow(OD)) {
239 bool = data$Well_ID == OD$ID[i]
240 data$OD_at_harvest[bool] = OD$OD_at_harvest[i]
241 data$OD_preculture[bool] = OD$OD_preculture[i]
242 }
243 return(data)
244 }
245

246 else if (nrow(data) > 0 & column_to_use == "File.Name") {
247 # Create empty columns to fill in
248 data$Well_ID = data$Sample = data$Strain = data$Batch_ID = data$Plate_ID =

data$OD_at_harvest = data$OD_preculture = NA↪→

249

250 # Fill in these empty columns based on the created sample_correspondence
251 for (i in 1:nrow(sample_correspondence)) {
252 bool = data$File.Name == sample_correspondence$File_Name[i]
253

254 data$Well_ID[bool] = sample_correspondence$Well_ID[i]
255 data$Sample[bool] = sample_correspondence$Sample[i]
256 data$Strain[bool] = sample_correspondence$Strain[i]
257 data$Batch_ID[bool] = sample_correspondence$Batch_ID[i]
258 data$Plate_ID[bool] = sample_correspondence$Plate_ID[i]
259 }
260

261 # Fill in the emtpy OD columns based on the OD data
262 for (i in 1:nrow(OD)) {
263 bool = data$Well_ID == OD$ID[i]
264 data$OD_at_harvest[bool] = OD$OD_at_harvest[i]
265 data$OD_preculture[bool] = OD$OD_preculture[i]
266 }
267 return(data)
268 }
269
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270 else {
271 return(data)
272 }
273

274 }
275

276

277 #' Add OD information to sample_correspondence
278 #'
279 #' Add a column with the OD to the sample_correspondence dataset
280 #'
281 #' @param sample_correspondence The dataframe created by

"create_sample_correspondence_dataset_from_full_report()", so with the following columns:
file names,

↪→

↪→

282 #' Well ID, Sample, Strain, Batch ID and Plate ID.
283 #' @param OD A dataframe containing a sample in each row, columns with the OD of each sample,

but also a column indicating the plate in which the sample was, and↪→

284 #' another one indicating the position of the sample within the plate
285 #' @return The sample_correspondence dataset with an extra column containing the OD values
286 #'
287 add_OD_to_sample_correspondence = function(sample_correspondence, OD) {
288 OD_at_harvest = c()
289 OD_preculture = c()
290 for (i in 1:nrow(sample_correspondence)) {
291 if (sample_correspondence$Strain[i] == "QC") {
292 OD_at_harvest = c(OD_at_harvest, NA)
293 OD_preculture = c(OD_preculture, NA)
294 }
295 else {
296 OD_at_harvest = c(OD_at_harvest, OD$OD_at_harvest[OD$ID ==

sample_correspondence$Well_ID[i]])↪→

297 OD_preculture = c(OD_preculture, OD$OD_preculture[OD$ID ==
sample_correspondence$Well_ID[i]])↪→

298 }
299 }
300 sample_correspondence$OD_at_harvest = OD_at_harvest
301 sample_correspondence$OD_preculture = OD_preculture
302

303 return(sample_correspondence)
304 }
305

306

307 #' Match systematic to standard protein names
308 #'
309 #' We provide a dataframe or a vector with systematic protein names, and the output is either a

vector of (or a dataframe where one of the columns is) the corresponding↪→

310 #' standard protein names. It is important to notice that when there is no standard name in the
database for a certain protein, the systematic name is returned instead.↪→

311 #'
312 #' @param data This can be a vector with the systematic protein names, or a dataframe where one

column has the systematic protein names. If it is a dataframe, the name↪→

313 #' of this column must be "Gene.secondaryIdentifier"
314 #' @param yeastmine A dataframe with the databse information for protein names in S. cerevisiae,

as downloaded from _________.↪→

315 #' @param simplify A boolean value indicating if we want the output to be simply a vector with
the standard protein names (TRUE), or the input dataframe where the standard↪→

316 #' protein names are added as a new column (FALSE).
317 #' @param add_extra_columns A boolean value indicating, if simplify == FALSE, whether we only

want to add to the dataframe the column with the standard protein names↪→

318 #' (FALSE) or also all other columns in the provided yeastmine dataframe.
319 #'
320

321 match_systematic_to_standard_protein_names <- function(data,
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322 yeastmine,
323 simplify = FALSE,
324 add_extra_columns = FALSE) {
325

326 # First of all, if we have received a vector as input, turn it into a dataframe and work from
there↪→

327 if (class(data) == "character") {
328 data <- data.frame(data)
329 colnames(data) <- c("Gene.secondaryIdentifier")
330 }
331

332 # Match the names to the YeastMine ones
333 df <- left_join(data, yeastmine, by = join_by(Gene.secondaryIdentifier))
334

335 # Create the new column we'll keep as output, where we take standard gene names, but if this
is not present, we fill it in with the systematic one↪→

336 df <- df %>%
337 mutate(Final.Ids = case_when(Gene.symbol == "" ~ Gene.secondaryIdentifier,
338 is.na(Gene.symbol) ~ Gene.secondaryIdentifier,
339 TRUE ~ Gene.symbol))
340

341 # Prepare the output according to the specifications provided when calling the function
342 if (simplify == TRUE) {
343 out <- as.character(df$Final.Ids)
344 }
345 else {
346 if (add_extra_columns == TRUE) {
347 out <- df
348 }
349 else if (class(data) == "data.frame") {
350 colnames_to_remove <- colnames(yeastmine)
351 colnames_to_remove <- colnames_to_remove[!colnames_to_remove %in%

c("Gene.secondaryIdentifier")]↪→

352 out <- df %>%
353 select(-c(colnames_to_remove))}
354 else {
355 out <- df %>%
356 select(Gene.secondaryIdentifier, Final.Ids)
357 }
358 }
359

360 # Return output
361 return(out)
362 }

B.2 Data preparation

1 # Packages
2 library(data.table)
3 library(dplyr)
4 library(readODS)
5 source("/~/0. prepare_data_functions.R")
6

7

8 # 1. Load data
9 ## 1.1. Original DIA-NN dataframe

10 data <- fread("/~/30-0107_SamplesBatch0102.tsv")
11 data <- as.data.frame(data)
12

13 ## 1.2. Unique dataframe
14 unique <- fread("/~/30-0107_SamplesBatch0102.unique_genes_matrix.tsv")
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15 unique <- as.data.frame(unique)
16 row.names(unique) <- unique$Genes
17 unique <- unique[, -1]
18

19 ## 1.3. OD data
20 OD <- read.csv("/~/231130_scrap_ODs_multi_read.txt", sep = "\t")
21

22 ## 1.4. Structure
23 structure <- read_ods("/~/new_library_reformatting_alvaro.ods", 1)
24 structure$column96 <- as.character(structure$column96)
25

26

27 # 2. Data preparation for the main DIA-NN report
28 ## 2.1. Create the sample_correspondence dataframe
29 sample_correspondence <- create_sample_correspondence_dataset(unique, structure)
30

31

32 ## 2.2. Match between correspondence dataset and OD report
33 ### Add a column with the Plate ID to the OD dataset so that its rows can be matched to the ones

in the large dataset↪→

34 missing <- c("P01_A01", "P01_C04", "P01_E06", "P01_H04", "P05_A01", "P06_C03", "P06_D04",
"P06_E09") # Not using this anymore↪→

35 OD <- match_OD_info_to_sample(OD, sample_correspondence)
36

37 ### Add OD information to sample_correspondence dataset
38 sample_correspondence <- add_OD_to_sample_correspondence(sample_correspondence, OD)
39

40

41 ## 2.3. Add all previously created columns to the large dataset, as well as another column with
the OD↪→

42 data <- add_correspondence_columns_to_report(data, sample_correspondence, OD)
43

44

45 ## 2.4. Save the new (matched) version of the DIA-NN report and its sample_correspondence
dataframe↪→

46 ### Save the modified report file
47 fwrite(data, file <- "/~/30-0107_SamplesBatch0102_matched.tsv", quote=FALSE, sep='\t')
48

49 ### Save the sample correspondence file
50 fwrite(sample_correspondence, file = "/~/sample_correspondence.tsv", quote=FALSE, sep='\t')
51

52

53 # 3. Data preparation for the unique_genes matrix
54 ## 3.1. Apply new column names to the unique matrix
55 colnames(unique) <- sample_correspondence_unique$Sample
56

57 ## 3.3. Save the modified unique file
58 fwrite(unique, file <- "/~/unique_matched.tsv", quote=FALSE, sep='\t', row.names = T)
59

B.3 Processing DIA-NN report for common approach

1 Packages
2 ```{r}
3 library(data.table)
4 library(dplyr)
5 library(readODS)
6 library(kableExtra)
7 library(gridExtra)
8 library(ggplot2)
9 library(glue)
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10 library(gt)
11 library(ggvenn)
12 library(ggrepel)
13 library(diann)
14 library(ggpubr)
15 library(forcats)
16 ```
17

18

19 Load data
20 ```{r}
21 data = fread('/~/30-0107_SamplesBatch0102_matched.tsv')
22 data = as.data.frame(data)
23

24 unique_genes = fread("/~/unique_matched.tsv")
25 unique_genes = as.data.frame(unique_genes)
26

27 sample_correspondence = fread("/~/sample_correspondence.tsv")
28 sample_correspondence = as.data.frame(sample_correspondence)
29

30 stats_file = fread("/~/30-0107_SamplesBatch0102.stats.tsv")
31 stats_file = as.data.frame(stats_file)
32 ```
33

34

35 # 0. Set up parameters
36 ```{r}
37 OD_threshold = 0.12
38 Q_values_threshold = 0.01
39 min_samples_per_strain = 3
40 percentage_of_samples_per_precursor = 0.65
41 SD_limit_for_TIC_filtering = 2.5
42 quantile_limit_QC_CV = 0.9
43 ```
44

45

46 # 1. Remove samples with low OD
47 ```{r}
48 # Create function
49 filter_based_on_OD = function(data, OD_threshold) {
50 data = data %>% filter(OD_at_harvest > OD_threshold | Strain == "QC")
51 return(data)
52 }
53

54 # Run filtering
55 data_filtered_OD = filter_based_on_OD(data, OD_threshold)
56 ```
57

58

59 # 2. Remove non-proteotypic peptides
60 ```{r}
61 # Create function
62 filter_proteotypic = function(data) {
63 data = data %>% filter(Proteotypic == 1)
64 return(data)
65 }
66

67 # Run filtering
68 data_filtered_proteotypic = filter_proteotypic(data_filtered_OD)
69 ```
70

71

72 # 3. Filter based on Q-values
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73 ```{r}
74 # Create function
75 filter_Q_values = function(data, Q_values_threshold) {
76 data = data %>% filter(Q.Value < Q_values_threshold,
77 PG.Q.Value < Q_values_threshold,
78 Global.Q.Value < Q_values_threshold,
79 Global.PG.Q.Value < Q_values_threshold)
80 return(data)
81 }
82

83 # Run filtering
84 data_filtered_Q = filter_Q_values(data_filtered_proteotypic, Q_values_threshold)
85 ```
86

87

88 # 4. Filter based on z-score of TIC and number of precursors identified
89 ## 4.0. Remove first all samples that were already removed by this point?
90 ```{r}
91 stats_file = stats_file[stats_file$File.Name %in% data_filtered_Q$File.Name,]
92 ```
93

94 ## 4.1. Exploration regarding TIC and number of identified precursors
95 Calculate z-score and robust z-score for TIC as new columns in the stats file
96 ```{r}
97 stats_file = stats_file %>% mutate(z_score_tic = (MS1.Signal - mean(MS1.Signal))/sd(MS1.Signal))
98 stats_file = stats_file %>% mutate(robust_z_score_tic = (MS1.Signal -

median(MS1.Signal))/mad(MS1.Signal))↪→

99 stats_file = stats_file %>% mutate(QC = as.factor(case_when(data$Strain[match(File.Name,
data$File.Name)] == "QC" ~ 1,↪→

100 TRUE ~ 0)))
101

102 # Establish a coloring by which samples have been removed already - not used in the end
103 stats_file = stats_file %>% mutate(Previously.Removed = case_when(File.Name %in%

data_filtered_Q$File.Name ~ FALSE,↪→

104 TRUE ~ TRUE))
105

106 ggplot(data = stats_file, aes(x = robust_z_score_tic)) +
107 geom_histogram(color = "black", fill = "grey", bins = 100) +
108 theme_light() +
109 theme(legend.position = "none") +
110 xlab("Robust Z-score for TIC") +
111 ylab("Count") +
112 #geom_vline(aes(xintercept=mean(robust_z_score_tic)),
113 #color="blue", linetype="dashed", linewidth=1) +
114 geom_vline(aes(xintercept=mean(robust_z_score_tic)-2.5*sd(robust_z_score_tic)),
115 color="red", linetype="dashed", linewidth=1) +
116 geom_vline(aes(xintercept=mean(robust_z_score_tic)+2.5*sd(robust_z_score_tic)),
117 color="red", linetype="dashed", linewidth=1) #+
118 #annotate("text", x = -6, y = 18, label = "Mean - 2.5*SD", angle = 90, color = "red") +
119 #annotate("text", x = -1.1, y = 18, label = "Mean", angle = 90, color = "blue") #+
120 #annotate("text", x = 3.80, y = 18, label = "Mean + 2.5*SD", angle = 90, color = "red")
121 ```
122

123 Calculate z-score and robust z-score for number of precursors identified
124 ```{r}
125 stats_file = stats_file %>% mutate(z_score_pept_num = (Precursors.Identified -

mean(Precursors.Identified))/sd(Precursors.Identified))↪→

126 stats_file = stats_file %>% mutate(robust_z_score_pept_num = (Precursors.Identified -
median(Precursors.Identified))/sd(Precursors.Identified))↪→

127

128 ggplot(data = stats_file, aes(x = robust_z_score_pept_num)) +
129 geom_histogram(color = "black", fill = "grey", bins = 100) +
130 theme_light() +
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131 theme(legend.position = "none") +
132 xlab("Robust Z-score for number of precursors identified") +
133 ylab("Count") +
134 geom_vline(aes(xintercept=mean(robust_z_score_pept_num)),
135 color="blue", linetype="dashed", lwd=1) +
136 geom_vline(aes(xintercept=-3),
137 color="red", linetype="dashed", lwd=1) +
138 geom_vline(aes(xintercept=3),
139 color="red", linetype="dashed", lwd=1) +
140 #annotate("text", x = -2.5, y = 25, label = "Mean - 2.5*SD", angle = 90, color = "red") +
141 annotate("text", x = -0.5, y = 25, label = "Mean", angle = 90, color = "blue") #+
142 #annotate("text", x = 1.5, y = 25, label = "Mean + 2.5*SD", angle = 90, color = "red")
143 ```
144

145 ## 4.2. Perform the filtering
146 ```{r}
147 # Create function
148 filter_TIC_and_peptide_number = function(data, stats_file, SD_limit_for_TIC_filtering) {
149 # Filter on the stats file
150 stats_file_filtered = stats_file %>% filter(robust_z_score_tic > -3 & robust_z_score_tic < 3,
151 robust_z_score_pept_num > -3 &

robust_z_score_pept_num < 3)↪→

152

153 # Filter on the actual dataset based on the stats file
154 data = data[data$File.Name %in% stats_file_filtered$File.Name,]
155

156 return(data)
157 }
158

159 # Run filtering
160 data_filtered_TIC = filter_TIC_and_peptide_number(data_filtered_Q, stats_file,

SD_limit_for_TIC_filtering)↪→

161 ```
162

163

164 # 5. Filter based on detection threshold/sample fraction
165 ## 5.1. Perform filtering based on number of samples present per strain
166 ```{r}
167 data_filtered_replicate_num = data_filtered_TIC %>%
168 group_by(Strain) %>%
169 mutate(sample_count = length(unique(Sample))) %>%
170 filter(sample_count >= 3)
171 ```
172

173 ## 5.2. Remove, for each strain, those precursors which are not present in at least 3/4 or 2/3
replicates↪→

174 ```{r}
175 # Create function
176 remove_uncommon_precursors_per_strain = function(data, percentage_of_samples_per_precursor) {
177

178 # Set up the filter
179 filterSF <- data %>%
180 group_by(Precursor.Id, Strain) %>%
181 summarise(count = n()) %>%
182 ungroup() %>%
183 group_by(Strain) %>%
184 mutate(maxCount=max(count))
185

186 # Apply filter
187 out = data %>% left_join(filterSF) %>% filter(count >=

percentage_of_samples_per_precursor*maxCount)↪→

188

189 return(out)
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190 }
191

192 # Filter
193 data_filtered_prec_per_strain =

remove_uncommon_precursors_per_strain(data_filtered_replicate_num,
percentage_of_samples_per_precursor)

↪→

↪→

194 ```
195

196

197 # 6. Filter based on precursor CV
198 ## 6.1. First of all I need to calculate the CV for each precursor across: QCs, biological

replicates, and all samples, and plot their densities.↪→

199 ```{r}
200 create_CV_data = function(data) {
201 CV_data = data %>%
202 group_by(Strain, Precursor.Id) %>%
203 mutate("SD_strain" = sd(Precursor.Normalised, na.rm = T), "CV_strain" =

sd(Precursor.Normalised, na.rm = T)/mean(Precursor.Normalised, na.rm = T))↪→

204 CV_data = CV_data %>% ungroup() %>%
205 group_by(Precursor.Id) %>%
206 mutate("SD_all_samples" = sd(Precursor.Normalised, na.rm = T), "CV_all_samples" =

sd(Precursor.Normalised, na.rm = T)/mean(Precursor.Normalised, na.rm = T))↪→

207

208 return(CV_data)
209 }
210

211 CV_data = create_CV_data(data_filtered_prec_per_strain)
212 ```
213

214 Density plot
215 ```{r}
216 QC_CV_dist = CV_data$CV_strain[CV_data$Strain == "QC"]
217

218 ggplot() +
219 geom_density(aes(x = CV_data$CV_strain[CV_data$Strain != "QC"], color = "Biological

replicates"), linewidth = 0.8) +↪→

220 geom_density(aes(x = CV_data$CV_strain[CV_data$Strain == "QC"], color = "QCs"), linewidth =
0.8) +↪→

221 geom_density(aes(x = CV_data$CV_all_samples, color = "All samples"), linewidth = 0.8) +
222 scale_color_manual("CV across", values = c("Biological replicates" = "blue", "QCs" = "red",

"All samples" = "darkgreen")) +↪→

223 xlab("Coefficient of variation (CV)") +
224 ylab("Density") +
225 theme_light() +
226 coord_cartesian(xlim = c(0, 1)) +
227 geom_vline(xintercept = quantile(QC_CV_dist, probs = c(0.9)), linetype = "dashed", col =

"orange")↪→

228 #annotate("text", x = 0.7, y = 3.3, label = "90% quantile of CV across QCs", col = "orange")
#+↪→

229 #geom_vline(xintercept = quantile(QC_CV_dist, probs = c(0.95)), linetype = "dashed", col =
"lightblue") +↪→

230 #annotate("text", x = 0.7, y = 2.7, label = "95% quantile of CV across QCs", col =
"lightblue")↪→

231 #ggsave("/data/gpfs-1/users/algo12_c/work/Images_for_thesis/CVs.png", plot = plot)
232 #quantile(QC_CV_dist, probs = c(0.9))
233 #quantile(QC_CV_dist, probs = c(0.95))
234 ```
235

236

237 ## 6.2. Filtering
238 Remove from all samples the precursors which have a large CV in the QCs
239 ```{r}
240 filter_CV = function(CV_data, quantile_limit_QC_CV) {



Appendix B. Appendix for R code 55

241 QC_CV_dist = CV_data$CV_strain[CV_data$Strain == "QC"]
242 keep_precursors = CV_data$Precursor.Id[CV_data$Strain == "QC" & CV_data$CV_strain <=

quantile(QC_CV_dist, probs = c(quantile_limit_QC_CV))]↪→

243 data_filtered_by_QC_CV = CV_data[CV_data$Precursor.Id %in% keep_precursors,]
244 return(data_filtered_by_QC_CV)
245 }
246

247 data_filtered_by_QC_CV = filter_CV(CV_data, quantile_limit_QC_CV)
248 ```
249

250

251 # 7. Batch correction
252 ## Check differences between plates
253 ```{r}
254 # By plate
255 batch_correction_1 <- ggplot(data = data_filtered_by_QC_CV, aes(x = Plate_ID, y =

log2(Precursor.Normalised), group = Plate_ID)) +↪→

256 geom_boxplot(outlier.size = 0.5) +
257 xlab("Plate") +
258 theme_light()
259

260 # By well
261 #ggplot(data = data_filtered_by_QC_CV, aes(x = Well_ID, y = log2(Precursor.Normalised), color =

Plate_ID)) +↪→

262 # geom_boxplot(outlier.shape = NA) +
263 # theme(axis.text.x=element_blank(),
264 # axis.ticks.x=element_blank())
265 ```
266

267 Correct for batch effect
268 ```{r}
269 batch_correct = function(data) {
270 # Find the median of the QCs across plates
271 target_median = median(data$Precursor.Normalised[data$Strain == "QC"])
272

273 # Next we iterate over the plates and for each we get a normalization factor that we apply to
its measurements afterwards↪→

274 data$Precursor.Batch.Corrected = NA
275 for (i in 1:6) {
276 tmp = data %>% filter(Plate_ID == i)
277 plate_median = median(tmp$Precursor.Normalised)
278 norm_factor = plate_median/target_median
279 data$Precursor.Batch.Corrected[data$Plate_ID == i] = data$Precursor.Normalised[data$Plate_ID

== i]/norm_factor↪→

280 }
281 data$Precursor.Batch.Corrected[data$Plate_ID == "QC"] =

data$Precursor.Normalised[data$Plate_ID == "QC"]↪→

282 return(data)
283 }
284

285 data_batch_corrected = batch_correct(data_filtered_by_QC_CV)
286

287 # Get new boxplots by plate and see if batch correction changed anything
288 ggplot(data = data_batch_corrected, aes(x = Plate_ID, y = log2(Precursor.Batch.Corrected), group

= Plate_ID)) +↪→

289 geom_boxplot(outlier.size = 0.5) +
290 labs(title = "After batch correction") +
291 xlab("Plate") +
292 theme_light()
293 ```
294

295

296
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297 # 8. Number of precursors per protein
298 Do not filter based on this, but have a look at the distribution of the number of precursors per

protein↪→

299

300 ## Calculate the amount of precursor per protein
301 ```{r}
302 check_number_of_precursors_per_protein = function(data) {
303 data$Precursor.Id = as.factor(data$Precursor.Id)
304 data = data %>%
305 group_by(Protein.Ids) %>%
306 mutate(Precursor.Per.Protein = length(unique(Precursor.Id))) %>%
307 ungroup()
308 return(data)
309 }
310

311 precursors_per_protein = check_number_of_precursors_per_protein(data_batch_corrected)
312 ```
313

314 ## Obtain a version of this data to create plots from, and generate the plots
315 ```{r}
316 # Get plotting dataset
317 temp = precursors_per_protein %>%
318 distinct(Protein.Ids, .keep_all = T) %>%
319 select(Protein.Ids, Precursor.Per.Protein, Genes)
320

321 # Precursor for each protein
322 ggplot(data = temp, aes(x = Protein.Ids, y = Precursor.Per.Protein)) +
323 geom_point(size = 0.5) +
324 theme_light() +
325 theme(axis.text.x=element_blank(),
326 axis.ticks.x=element_blank()) +
327 geom_text_repel(data = subset(temp, Precursor.Per.Protein >= 40),
328 aes(x = Protein.Ids, y = Precursor.Per.Protein, label = Genes)) +
329 xlab("Proteins") +
330 ylab("Precursors per protein")
331

332 # Histogram of precursor per protein
333 ggplot(data = temp, aes(x = Precursor.Per.Protein)) +
334 geom_histogram(bins = 92, col = "black", fill = "grey") +
335 theme_light() +
336 xlab("Precursors per protein") +
337 ylab("Count") +
338 geom_vline(xintercept = mean(precursors_per_protein$Precursor.Per.Protein), col = "blue") +
339 geom_vline(xintercept = median(precursors_per_protein$Precursor.Per.Protein), col = "red") +
340 annotate("text", x = 20, y = 450, label = "Mean", col = "blue") +
341 annotate("text", x = 6, y = 450, label = "Median", col = "red")
342

343 table(temp$Precursor.Per.Protein)
344 ```
345

346

347

348 # 9. Peptide-to-protein quantification using maxLFQ
349 ```{r}
350 protein_quantified = diann_maxlfq(data_batch_corrected,
351 sample.header = "File.Name",
352 group.header = "Genes",
353 id.header = "Precursor.Id",
354 quantity.header = "Precursor.Batch.Corrected")
355 protein_quantified_df = data.frame(protein_quantified)
356 protein_quantified_df$Genes = rownames(protein_quantified_df)
357 ```
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B.4 Processing DIA-NN reports for strain-specific approach

1 Packages
2 ```{r}
3 library(data.table)
4 library(dplyr)
5 library(readODS)
6 library(kableExtra)
7 library(gridExtra)
8 library(Cairo)
9 library(ggplot2)

10 library(glue)
11 library(gt)
12 library(ggvenn)
13 library(ggrepel)
14 library(diann)
15 ```
16

17

18

19 Load data
20 ```{r}
21 # Reports
22 files_path = '/~/matched_precursor_reports/'
23 files = list.files(files_path, full.names = T)
24

25 ## Grab the names of the dataframes (the strain names)
26 names <- c()
27 full_new_names <- c()
28 for (file in files) {
29 start = str_locate(file, "06062024_")[2] + 1
30 end = str_locate(file, "_matched.tsv")[1] - 1
31 strain = substr(file, start, end)
32 names <- c(names, strain)
33 }
34

35 datas <- lapply(files, fread)
36 datas <- lapply(datas, as.data.frame)
37 names(datas) <- names
38

39 # Sample correspondences
40 sample_correspondence <- fread("/~/sample_correspondence.tsv")
41 sample_correspondence <- as.data.frame(sample_correspondence)
42 sample_correspondences <- rep(list(sample_correspondence), length(datas))
43 names(sample_correspondences) <- names
44

45 # Stats files
46 files_path = '/~/stats_files/'
47 files = list.files(files_path, full.names = T)
48

49 stats_files <- lapply(files, fread)
50 stats_files <- lapply(stats_files, as.data.frame)
51 names(stats_files) <- names
52 ```
53

54

55

56 # 0. Set up
57 ## 0.1. Parameters
58 ```{r}
59 OD_threshold = 0.12
60 Q_values_threshold = 0.01



Appendix B. Appendix for R code 58

61 min_samples_per_strain = 3
62 percentage_of_samples_per_precursor = 0.65
63 z_score_limit = 3
64 quantile_limit_QC_CV = 0.9
65 ```
66

67

68 # 1. Remove samples with low OD
69 ```{r}
70 # Create function
71 filter_based_on_OD = function(data, OD_threshold) {
72 data = data %>% filter(OD_at_harvest > OD_threshold | Strain == "QC")
73 return(data)
74 }
75

76 # Run filtering
77 datas_filtered_OD = lapply(datas, filter_based_on_OD, OD_threshold)
78 ```
79

80

81 # 2. Remove non-proteotypic peptides
82 ```{r}
83 # Create function
84 filter_proteotypic = function(data) {
85 data = data %>% filter(Proteotypic == 1)
86 return(data)
87 }
88

89 # Run filtering
90 datas_filtered_proteotypic = lapply(datas_filtered_OD, filter_proteotypic)
91 ```
92

93

94 # 3. Filter based on Q-values
95 ```{r}
96 # Create function
97 filter_Q_values = function(data, Q_values_threshold) {
98 data = data %>% filter(Q.Value < Q_values_threshold,
99 PG.Q.Value < Q_values_threshold,

100 Global.Q.Value < Q_values_threshold,
101 Global.PG.Q.Value < Q_values_threshold)
102 return(data)
103 }
104

105 # Run filtering
106 datas_filtered_Q = lapply(datas_filtered_proteotypic, filter_Q_values, Q_values_threshold)
107 ```
108

109

110 # 4. Filter based on z-score of TIC and number of precursors identified
111 ## 4.0. Remove all samples that were already removed by this point
112 ```{r}
113 remove_filtered_samples_from_stats_file = function(stats_file, data_filtered_Q) {
114 stats_file = stats_file[stats_file$File.Name %in% data_filtered_Q$File.Name,]
115 return(stats_file)
116 }
117

118 modified_stats_files <- mapply(FUN = remove_filtered_samples_from_stats_file, stats_file =
stats_files, data_filtered_Q = datas_filtered_Q, SIMPLIFY = F)↪→

119 ```
120

121 ## 4.1. Exploration regarding TIC and number of identified precursors
122 Calculate z-score and robust z-score for TIC as new columns in the stats file
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123 ```{r}
124 modify_stats_file_add_z_scores = function(stats_file, data) {
125 # Z-scores for TIC
126 stats_file = stats_file %>%
127 mutate(MS1.Signal = as.numeric(MS1.Signal)) %>%
128 mutate(z_score_tic = (MS1.Signal - mean(MS1.Signal))/sd(MS1.Signal)) %>%
129 mutate(robust_z_score_tic = (MS1.Signal - median(MS1.Signal))/mad(MS1.Signal)) %>%
130 mutate(QC = as.factor(case_when(data$Strain[match(File.Name, data$File.Name)] == "QC" ~ 1,
131 TRUE ~ 0)))
132

133 # Z-scores for number of precursors identified
134 stats_file = stats_file %>%
135 mutate(Precursors.Identified = as.numeric(Precursors.Identified)) %>%
136 mutate(z_score_pept_num = (Precursors.Identified -

mean(Precursors.Identified))/sd(Precursors.Identified)) %>%↪→

137 mutate(robust_z_score_pept_num = (Precursors.Identified -
median(Precursors.Identified))/sd(Precursors.Identified))↪→

138 }
139

140 modified_stats_files <- mapply(FUN = modify_stats_file_add_z_scores, stats_file =
modified_stats_files, data = datas_filtered_Q, SIMPLIFY = F)↪→

141 ```
142

143 ## 4.2. Perform the filtering
144 ```{r}
145 # Create function
146 filter_TIC_and_peptide_number = function(data, stats_file, SD_limit_for_TIC_filtering) {
147 # Filter on the stats file
148 stats_file_filtered = stats_file %>% filter(robust_z_score_tic < z_score_limit &

robust_z_score_tic > -z_score_limit,↪→

149 robust_z_score_pept_num < z_score_limit &
robust_z_score_pept_num > -z_score_limit)↪→

150

151 # Filter on the actual dataset based on the stats file
152 data = data[data$File.Name %in% stats_file_filtered$File.Name,]
153

154 return(data)
155 }
156

157 # Run filtering
158 datas_filtered_TIC = mapply(FUN = filter_TIC_and_peptide_number, data = datas_filtered_Q,

stats_file = modified_stats_files, SIMPLIFY = F)↪→

159 ```
160

161

162 # 5. Filter based on detection threshold/sample fraction
163 ## 5.1. Perform filtering based on number of samples present per strain
164 ```{r}
165 filter_detection_threshold <- function(data_filtered_TIC, min_samples_per_strain) {
166 test_replicate_num = data_filtered_TIC %>%
167 group_by(Strain) %>%
168 mutate(sample_count = length(unique(Sample))) %>%
169 filter(sample_count >= min_samples_per_strain)
170 return(test_replicate_num)
171 }
172

173 datas_filtered_replicate_num <- mapply(filter_detection_threshold, data_filtered_TIC =
datas_filtered_TIC, min_samples_per_strain = min_samples_per_strain, SIMPLIFY = F)↪→

174 ```
175

176 ## 5.4. Remove, for each strain, those precursors which are not present in at least 3/4 or 2/3
replicates↪→

177 ```{r}
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178 # Create function
179 remove_uncommon_precursors_per_strain = function(data, percentage_of_samples_per_precursor) {
180

181 # Set up the filter
182 filterSF <- data %>%
183 group_by(Precursor.Id, Strain) %>%
184 summarise(count = n()) %>%
185 ungroup() %>%
186 group_by(Strain) %>%
187 mutate(maxCount=max(count))
188

189 # Apply filter
190 out = data %>% left_join(filterSF) %>% filter(count >=

percentage_of_samples_per_precursor*maxCount)↪→

191

192 return(out)
193 }
194

195 # Filter
196 datas_filtered_prec_per_strain <- mapply(remove_uncommon_precursors_per_strain, data =

datas_filtered_replicate_num, percentage_of_samples_per_precursor =
percentage_of_samples_per_precursor, SIMPLIFY = F)

↪→

↪→

197 ```
198

199

200 # 6. Filter based on precursor CV
201 ## 6.1. First of all I need to calculate the CV for each precursor in each strain
202 ```{r}
203 create_CV_data = function(data) {
204 CV_data = data %>%
205 group_by(Precursor.Id) %>%
206 mutate("SD" = sd(Precursor.Normalised, na.rm = T), "CV" = sd(Precursor.Normalised, na.rm =

T)/mean(Precursor.Normalised, na.rm = T))↪→

207 return(CV_data)
208 }
209

210 CV_datas = mapply(create_CV_data, data = datas_filtered_prec_per_strain, SIMPLIFY = F)
211 ```
212

213 Density plot
214 ```{r}
215 # First of all create a dataframe from which I can plot this
216 CV_data <- data.frame(matrix(nrow = max(as.numeric(lapply(CV_datas, nrow))), ncol =

length(CV_datas)))↪→

217 colnames(CV_data) <- names(datas)
218 for (i in 1:length(CV_datas)) {
219 strain <- names(CV_datas)[i]
220 CV_data[,i] <- c(CV_datas[[strain]]$CV, rep(NA, nrow(CV_data) - nrow(CV_datas[[strain]])))
221 }
222

223 CV_data_long <- CV_data %>% pivot_longer(cols = everything(), names_to = "Strain", values_to =
"Counts")↪→

224 CV_data_long <- na.omit(CV_data_long)
225

226 # Plot
227 ggplot(data = CV_data_long) +
228 geom_density(aes(x = Counts, color = Strain)) +
229 xlab("CV") +
230 ylab("Density") +
231 theme_light() +
232 theme(legend.position = "none")
233

234 # Do the same but actually color QC, BY4741-ki, and then all other strains
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235 CV_data_long <- CV_data_long %>%
236 mutate(Strain_original = Strain) %>%
237 mutate(Strain = case_when(Strain_original == "QC" ~ "QC",
238 Strain_original == "BY4741_ki" ~ "BY4741_ki",
239 TRUE ~ "Other"))
240 ggplot(data = CV_data_long) +
241 geom_density(aes(x = Counts, color = Strain)) +
242 xlab("CV") +
243 ylab("Density") +
244 theme_light()
245 ```
246

247

248 ## 6.2. Filtering
249 Remove from all samples the precursors which have a large CV in the QCs
250 ```{r}
251 # I have to do this separately so as to be able to save these values
252 produce_limit_CV_values_per_strain <- function(data) {
253 limit_value <- quantile(data$CV, probs = c(quantile_limit_QC_CV))
254 return(limit_value)
255 }
256 CV_cutoffs <- mapply(produce_limit_CV_values_per_strain, data = CV_datas, SIMPLIFY = F)
257

258

259 # Now actually perform the filtering
260 filter_CV <- function(data) {
261 limit_value <- quantile(data$CV, probs = c(quantile_limit_QC_CV))
262 data <- data %>% filter(CV <= limit_value)
263 return(data)
264 }
265 datas_CV_filtered <- mapply(filter_CV, data = CV_datas, SIMPLIFY = F)
266

267 # Make a plot of the CV cutoffs
268 CV_cutoffs_df <- as.data.frame(t(as.data.frame(CV_cutoffs)))
269 CV_cutoffs_df$Strain <- rownames(CV_cutoffs_df)
270 colnames(CV_cutoffs_df) <- c("cutoffs", "Strain")
271 CV_cutoffs_df <- CV_cutoffs_df %>%
272 mutate(QC = case_when(Strain == "BY4741_ki" ~ "QC",
273 TRUE ~ "Other"))
274 ggplot(data = CV_cutoffs_df, aes(x = Strain, y = cutoffs)) +
275 geom_point() +
276 theme_light() +
277 theme(axis.text.x=element_blank(),
278 axis.ticks.x=element_blank()) +
279 geom_text_repel(data = subset(CV_cutoffs_df, cutoffs > 0.6),
280 aes(x = Strain, y = cutoffs, label = Strain)) +
281 ylab("CV cutoff")
282 ```
283

284

285 ## 7. Run maxlfq and save the resulting dataframes
286 ```{r}
287 ## Create the function which will run maxlfq and write the corresponding output to the

corresponding directory↪→

288 run_maxlfq_strain_specific <- function(data, strain_name, output_dir_path) {
289 if (nrow(data) > 0) {
290 protein_quantified <- diann_maxlfq(data,
291 sample.header = "Sample",
292 group.header = "Protein.Names",
293 id.header = "Precursor.Id",
294 quantity.header = "Precursor.Normalised")
295 protein_quantified_df = data.frame(protein_quantified)
296 protein_quantified_df$Genes = rownames(protein_quantified_df)
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297

298 # Come up with the path and name of where I will save this file
299 output_file <- paste0(output_dir_path, strain_name, "_protein_level", ".tsv")
300

301 # Save new protein-level data
302 fwrite(protein_quantified_df, output_file)
303 }
304 else {print(glue('Strain {strain_name} could not be processed since its report file is empty.

A unique_genes dataset for this strain was not generated.'))}↪→

305 }
306

307 ## Run the function, doesn't show any output but it runs maxlfq and writes the files to the
specified directory↪→

308 output_dir_path <- "/~/protein_level_reports/"
309 mapply(run_maxlfq_strain_specific, data = datas, strain_name = names(datas), output_dir_path =

output_dir_path)↪→

310 ```

B.5 Compare number of identified proteins between approaches

1 Packages
2 ```{r}
3 library(dplyr)
4 source("/~/0. prepare_data_functions.R")
5 ```
6

7 # 0. Load data
8 ```{r}
9 # Independently pre-processed strain-specific reports

10 ## Get file names
11 files_path = '/~/protein_level_reports'
12 files = list.files(files_path, full.names = T)
13

14 ## Load them and grab the strain names
15 names <- c()
16 for (file in files) {
17 start = str_locate(file, "protein_level_reports/")[2] + 1
18 end = str_locate(file, "_protein_level.tsv")[1] - 1
19 strain = substr(file, start, end)
20 names <- c(names, strain)
21 }
22 ss_datas <- lapply(files, fread)
23 ss_datas <- lapply(ss_datas, as.data.frame)
24 names(ss_datas) <- names
25

26

27 # Independently pre-processed common approach reports
28 ## Get file names
29 files_path = '/~/individual_reports_per_strain_CA_after_maxlfq'
30 files = list.files(files_path, full.names = T)
31

32 ## Load them and grab the strain names
33 names <- c()
34 for (file in files) {
35 start = str_locate(file, "individual_reports_per_strain_CA_after_maxlfq/")[2] + 1
36 end = str_locate(file, "_per_strain_CA_after_maxlfq.tsv")[1] - 1
37 strain = substr(file, start, end)
38 names <- c(names, strain)
39 }
40 ca_datas <- lapply(files, fread)
41 ca_datas <- lapply(ca_datas, as.data.frame)
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42 names(ca_datas) <- names
43

44 ## I need to turn the Gene column into rownames
45 genes_to_rownames <- function(data) {
46 rownames(data) <- data$Genes
47 data <- data %>% dplyr::select(-Genes)
48 return(data)
49 }
50 ca_datas <- lapply(ca_datas, genes_to_rownames)
51

52

53 # Sample correspondence
54 sample_correspondence <- fread("/~/sample_correspondence.tsv")
55 sample_correspondence <- as.data.frame(sample_correspondence)
56

57

58 # Load the data about ploidy and process it a bit
59 load('/~/strains_in_each_type_vectors.Rdata')
60 diploid_strains <- unique(diploid_strains)
61 haploid_strains <- c(haploid_strains, "BY4741_ki", "QC")
62

63 ploidy_info <- data.frame(c(haploid_strains, diploid_strains, polyploid_strains),
c(rep("Haploid", length(haploid_strains)), rep("Diploid", length(diploid_strains)),
rep("Polyploid", length(polyploid_strains))))

↪→

↪→

64 colnames(ploidy_info) <- c("Strain", "Ploidy")
65 ```
66

67 ## 1. Come up with the results table
68 ```{r}
69 p.vals <- c()
70 direction <- c()
71 CA_mean <- c()
72 SS_mean <- c()
73

74 for (i in 1:length(ca_datas)) {
75 strain <- names(ca_datas)[i]
76

77 temp_ca <- ca_datas[[strain]]
78 temp_ss <- ss_datas[[strain]]
79

80 counts_ca <- apply(temp_ca, 2, function(x) sum(!(is.na(x))))
81 counts_ss <- apply(temp_ss, 2, function(x) sum(!is.na(x)))
82

83 # t-test and save p-value, also direction of difference
84 if (length(counts_ca) > 1 & length(counts_ss) > 1) {
85

86 p.vals <- c(p.vals, t.test(counts_ca, counts_ss)$p.value)
87 CA_mean <- c(CA_mean, mean(counts_ca))
88 SS_mean <- c(SS_mean, mean(counts_ss))
89

90 if (mean(counts_ca) > mean(counts_ss)) {
91 direction <- c(direction, "CA")
92 }
93 else {
94 direction <- c(direction, "SS")
95 }
96 }
97 else {
98 p.vals <- c(p.vals, NA)
99 direction <- c(direction, NA)

100 CA_mean <- c(CA_mean, NA)
101 SS_mean <- c(SS_mean, NA)
102 }
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103 }
104

105 results_processed_separately <- data.frame(names(ca_datas), p.vals, direction, CA_mean, SS_mean)
106 colnames(results_processed_separately) <- c("Strain", "p.val",

"Approach_with_more_identified_proteins", "Mean_proteins_in_CA", "Mean_proteins_in_SS")↪→

107 results_processed_separately$p.vals.corrected <- p.adjust(results_processed_separately$p.val,
method = "BH")↪→

108 results_processed_separately$Effect_size <- results_processed_separately$Mean_proteins_in_CA -
results_processed_separately$Mean_proteins_in_SS↪→

109 results_processed_separately$log10pval <- -log10(results_processed_separately$p.vals.corrected)
110 ```
111

112 ## 2. Add information about the ploidy of each strain
113 ```{r}
114 results_processed_separately <- left_join(results_processed_separately, ploidy_info, by =

join_by(Strain))↪→

115 results_processed_separately$Ploidy[results_processed_separately$Strain == "QC"] <- "QC"
116 results_processed_separately$Ploidy[results_processed_separately$Strain == "BY4741_ki"] <-

"Haploid"↪→

117 ```
118

119 ## 3. Plot
120 Plot of the p-values for each strain, colored per which approach discovers more proteins
121 ```{r}
122 ggplot(data = results_processed_separately, aes(x = Strain, y = p.vals.corrected, col =

Approach_with_more_identified_proteins)) +↪→

123 geom_point() +
124 geom_hline(yintercept = 0.05) +
125 theme_light() +
126 theme(axis.text.x=element_blank(),
127 axis.ticks.x=element_blank(),
128 legend.position = "none")
129 ```
130

131 ## 4. Create volcano plots
132 ```{r}
133 results_processed_separately <- results_processed_separately %>%
134 mutate(Effect_size_SS_positive = -Effect_size) %>%
135 mutate(Effect_size_SS_positive_perc = Effect_size_SS_positive/Mean_proteins_in_CA)
136

137 results_processed_separately_final <- results_processed_separately %>%
138 filter(Strain != "QC")
139

140 ggplot(data = results_processed_separately_final, aes(x = Effect_size_SS_positive, y =
log10pval, col = Ploidy)) +↪→

141 geom_point() +
142 geom_hline(yintercept = -log10(0.01), col = "red") +
143 ylab("-log10(p.value)") +
144 xlab("Amount of new proteins found in SSA compared to CA") +
145 #labs(title = "Absolute value") +
146 geom_text_repel(data = subset(results_processed_separately_final, Effect_size_SS_positive < 0

| log10pval > 10),↪→

147 aes(x = Effect_size_SS_positive, y = log10pval, col = Ploidy, label = Strain))
148

149 ggplot(data = results_processed_separately_final, aes(x = Effect_size_SS_positive_perc, y =
log10pval, col = Ploidy)) +↪→

150 geom_point() +
151 geom_hline(yintercept = -log10(0.01), col = "red") +
152 ylab("-log10(p.value)") +
153 xlab("Amount of new proteins found in SSA as a % of proteins found in CA") +
154 #labs(title = "Percentage of total proteins found in CA") +
155 geom_text_repel(data = subset(results_processed_separately_final, Effect_size_SS_positive_perc

< 0 | log10pval > 10),↪→
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156 aes(x = Effect_size_SS_positive_perc, y = log10pval, col = Ploidy, label =
Strain))↪→

157 ```

B.6 Allele-specific expression

1 # 0. Load data and get it ready
2 ## 0.1. Load all the dataframes as a list
3 ```{r}
4 # Reports
5 files_path = '/~/matched_precursor_reports'
6 files = list.files(files_path, full.names = T)
7

8 ## Grab the names of the dataframes (the strain names)
9 names <- c()

10 for (file in files) {
11 start = str_locate(file, "matched_precursor_reports/Run_1_test_06062024_")[2] + 1
12 end = str_locate(file, "_matched.tsv")[1] - 1
13 strain = substr(file, start, end)
14 names <- c(names, strain)
15 }
16

17 ## Actually load the dataframes
18 setwd(files_path)
19 datas <- lapply(files, fread)
20 datas <- lapply(datas, as.data.frame)
21 names(datas) <- names
22

23 # Repeat this for this information already turned to protein level
24 files_path = "/~/protein_level_reports"
25 files = list.files(files_path, full.names = T)
26

27 ## Grab the names of the dataframes (the strain names)
28 names <- c()
29 for (file in files) {
30 start = str_locate(file, "protein_level_reports/")[2] + 1
31 end = str_locate(file, "_protein_level.tsv")[1] - 1
32 strain = substr(file, start, end)
33 names <- c(names, strain)
34 }
35

36 ## Actually load the dataframes
37 setwd(files_path)
38 datas_protein_level <- lapply(files, fread)
39 datas_protein_level <- lapply(datas_protein_level, as.data.frame)
40 names(datas_protein_level) <- names
41

42 ## Set protein names as rownames
43 for (i in 1:length(datas_protein_level)) {
44 rownames(datas_protein_level[[i]]) <- datas_protein_level[[i]]$Genes
45 datas_protein_level[[i]] <- datas_protein_level[[i]] %>% select(-Genes)
46 }
47

48

49 # Sample correspondence
50 sample_correspondence <- fread("/~/sample_correspondence.tsv")
51 sample_correspondence <- as.data.frame(sample_correspondence)
52

53

54 # Stats files
55 files_path = '/~/stats_files/'
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56 files = list.files(files_path, full.names = T)
57

58 setwd(files_path)
59 stats_files <- lapply(files, fread)
60 stats_files <- lapply(stats_files, as.data.frame)
61 names(stats_files) <- names
62

63 # Remove unnecessary variables
64 rm(list = c("end", "file", "files", "files_path", "start", "strain"))
65 ```
66

67 ## 0.2. Load information on which strains are haploid, diploid or polyploid
68 ```{r}
69 load('/~/strains_in_each_type_vectors.Rdata')
70 ```
71

72 ## 0.3. Create separate lists for haploid, diploid and polyploid strains
73 ```{r}
74 # Remember that QCs and BY4741-ki are not included in any of these!!
75 datas_haploid <- datas[names(datas) %in% haploid_strains]
76 datas_diploid <- datas[names(datas) %in% diploid_strains]
77 datas_polyploid <- datas[names(datas) %in% polyploid_strains]
78 ```
79

80

81 # 1. Allele-specific expression - Proteins different across haplotypes in heterozygous diploid
strains↪→

82

83 # 1.1. Load and prepare data
84 Load the reference JSON file
85 ```{r}
86 diploids_dict <- fromJSON(file = "/~/final_diploids_dict.json", simplify = FALSE)
87 ```
88

89

90

91 # 1.2. Look at the unique peptides to each HP and those common to both, for each protein in each
strain↪→

92 ## 1.2.1. Collect the information from the strain-specific reports and put it into nested lists
93 ```{r}
94 # Define the list where I´ll collect my output
95 results_diploids_list <- list()
96

97 # Iterate over strains
98 strains = intersect(names(diploids_dict), names)
99 for (i in 1:length(strains)) {

100 strain <- strains[i]
101 strain_list <- list()
102

103 # Get the common proteins for this strain
104 common_proteins <- names(diploids_dict[[strain]][["common_prots_diff"]])
105

106 # For each of these proteins, get 3 vectors, containing the respective peptides of this
protein, classified in the 3 types↪→

107 for (j in 1:length(common_proteins)) {
108 protein <- common_proteins[j]
109 peptides_common <-

unlist(diploids_dict[[strain]][["common_prots_diff"]][[protein]][["common_peptides"]])↪→

110 peptides_hp1 <-
unlist(diploids_dict[[strain]][["common_prots_diff"]][[protein]][["common_HP1_peptides"]])↪→

111 peptides_hp2 <-
unlist(diploids_dict[[strain]][["common_prots_diff"]][[protein]][["common_HP2_peptides"]])↪→

112
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113 # Create 2 datasets by filtering the report of this strain based on Stripped.Sequence: one
with sequences from the peptides unique to HP1 and the other for HP2↪→

114 temp_hp1 <- datas[[strain]] %>%
115 filter(Stripped.Sequence %in% peptides_hp1) %>%
116 filter(Proteotypic == 1)
117 temp_hp2 <- datas[[strain]] %>%
118 filter(Stripped.Sequence %in% peptides_hp2) %>%
119 filter(Proteotypic == 1)
120 temp_common <- datas[[strain]] %>%
121 filter(Stripped.Sequence %in% peptides_common) %>%
122 filter(Proteotypic == 1)
123

124 # For HP1 report, if it is not empty, get the values of Precursor.Quantity across these
peptides↪→

125 if (nrow(temp_hp1) > 0) {
126 hp1_Precursor.Quantity <- as.numeric(temp_hp1$Precursor.Quantity)
127 hp1_Precursor.Quantity <- data.frame(hp1_Precursor.Quantity, temp_hp1$Stripped.Sequence,

temp_hp1$Precursor.Id, temp_hp1$Modified.Sequence, temp_hp1$File.Name)↪→

128 colnames(hp1_Precursor.Quantity) <- c("Precursor.Quantity", "Stripped.Sequence",
"Precursor.Id", "Modified.Sequence", "File.Name")↪→

129 }
130 else {
131 hp1_Precursor.Quantity <- c(0)
132 }
133

134 # Same for HP2
135 if (nrow(temp_hp2) > 0) {
136 hp2_Precursor.Quantity <- as.numeric(temp_hp2$Precursor.Quantity)
137 hp2_Precursor.Quantity <- data.frame(hp2_Precursor.Quantity, temp_hp2$Stripped.Sequence,

temp_hp2$Precursor.Id, temp_hp2$Modified.Sequence, temp_hp2$File.Name)↪→

138 colnames(hp2_Precursor.Quantity) <- c("Precursor.Quantity", "Stripped.Sequence",
"Precursor.Id", "Modified.Sequence", "File.Name")↪→

139 }
140 else {
141 hp2_Precursor.Quantity <- c(0)
142 }
143

144 # Same for common peptides
145 if (nrow(temp_common) > 0) {
146 common_Precursor.Quantity <- as.numeric(temp_common$Precursor.Quantity)
147 common_Precursor.Quantity <- data.frame(common_Precursor.Quantity,

temp_common$Stripped.Sequence, temp_common$Precursor.Id,
temp_common$Modified.Sequence, temp_common$File.Name)

↪→

↪→

148 colnames(common_Precursor.Quantity) <- c("Precursor.Quantity", "Stripped.Sequence",
"Precursor.Id", "Modified.Sequence", "File.Name")↪→

149 }
150 else {
151 common_Precursor.Quantity <- c(0)
152 }
153

154 # Save these values to the strain list
155 strain_list[[protein]] <- list(HP1 = hp1_Precursor.Quantity, HP2 = hp2_Precursor.Quantity,

common = common_Precursor.Quantity)↪→

156 }
157

158 # Save the list created for this strain to the full list
159 results_diploids_list[[strain]] <- strain_list
160 }
161 ```
162

163 - Keep only proteins for which we detect common peptides, peptides from HP1 and peptides from
HP2↪→

164 ```{r}
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165 results_diploids_list_filtered <- list()
166

167 for (i in 1:length(results_diploids_list)) {
168 strain <- names(results_diploids_list[i])
169 strain_list <- list()
170 for (j in 1:length(results_diploids_list[[strain]])) {
171 protein <- names(results_diploids_list[[strain]])[j]
172 hp1_peptides <- results_diploids_list[[strain]][[protein]][["HP1"]]
173 hp2_peptides <- results_diploids_list[[strain]][[protein]][["HP2"]]
174 common_peptides <- results_diploids_list[[strain]][[protein]][["common"]]
175 if (class(hp1_peptides) == "data.frame" & class(hp2_peptides) == "data.frame" &

class(common_peptides) == "data.frame") {↪→

176 strain_list[[protein]] <- results_diploids_list[[strain]][[protein]]
177 }
178 }
179 results_diploids_list_filtered[[strain]] <- strain_list
180 }
181 ```
182

183 - Keep only proteins for which we detect peptides from HP1 and peptides from HP2 (do not care
about common ones anymore)↪→

184 ```{r}
185 results_diploids_list_only_hps <- list()
186 precursors_found_for_each_protein_in_each_hp <- c()
187

188 for (i in 1:length(results_diploids_list)) {
189 strain <- names(results_diploids_list[i])
190 strain_list <- list()
191 for (j in 1:length(results_diploids_list[[strain]])) {
192 protein <- names(results_diploids_list[[strain]])[j]
193 hp1_peptides <- results_diploids_list[[strain]][[protein]][["HP1"]]
194 hp2_peptides <- results_diploids_list[[strain]][[protein]][["HP2"]]
195 if (class(hp1_peptides) == "data.frame" & class(hp2_peptides) == "data.frame") {
196 strain_list[[protein]] <-

results_diploids_list[[strain]][[protein]][names(results_diploids_list[[strain]][[protein]])
!= "common"]

↪→

↪→

197 precursors_found_for_each_protein_in_each_hp <-
c(precursors_found_for_each_protein_in_each_hp,↪→

198 length(unique(results_diploids_list[[strain]][[protein]][["HP1"]]$Precursor.Id)),
199 length(unique(results_diploids_list[[strain]][[protein]][["HP2"]]$Precursor.Id)))
200 }
201 }
202 if (length(strain_list) > 0) {
203 results_diploids_list_only_hps[[strain]] <- strain_list
204 }
205 }
206 ```
207

208 - Keep proteins where any peptide is detected at all
209 ```{r}
210 results_diploids_detected <- list()
211

212 for (i in 1:length(results_diploids_list)) {
213 strain <- names(results_diploids_list[i])
214 strain_list <- list()
215 for (j in 1:length(results_diploids_list[[strain]])) {
216 protein <- names(results_diploids_list[[strain]])[j]
217 hp1_peptides <- results_diploids_list[[strain]][[protein]][["HP1"]]
218 hp2_peptides <- results_diploids_list[[strain]][[protein]][["HP2"]]
219 if (class(hp1_peptides) == "data.frame" | class(hp2_peptides) == "data.frame" |

class(common_peptides) == "data.frame") {↪→

220 strain_list[[protein]] <- results_diploids_list[[strain]][[protein]]
221 }
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222 }
223 results_diploids_detected[[strain]] <- strain_list
224 }
225 ```
226

227 Create some barplots which show how many proteins we are keeping and how many we are removing
because there are no peptides recognised for them from both HPs↪→

228 ```{r}
229 # Create empty dataframe
230 kept_proteins_og <- data.frame(matrix(nrow = 0, ncol = 5))
231 colnames(kept_proteins_og) <- c("Strain", "Total proteins based on FASTAs",

"Total_proteins_detected", "Proteins_with_observed_peptides_from_both_HPs",
"Proteins_with_observed_peptides_from_both_HPs_and_common")

↪→

↪→

232

233 # Iterate over strains
234 for (i in 1:length(diploids_dict)) {
235 strain <- names(diploids_dict)[i]
236

237 if (strain %in% names(results_diploids_detected)) {
238 # Figure out the number of proteins at different points for this strain
239 total_prots <- length(diploids_dict[[strain]][["common_prots_diff"]])
240 kept_prots_detected <- length(results_diploids_detected[[strain]])
241 kept_prots_HPs <- length(results_diploids_list_only_hps[[strain]])
242 kept_prots_HPs_and_common <- length(results_diploids_list_filtered[[strain]])
243

244 # Bring these together and add them as a new row to the output dataframe
245 kept_proteins_og[nrow(kept_proteins_og)+1,] <- c(strain, total_prots, kept_prots_detected,

kept_prots_HPs, kept_prots_HPs_and_common)↪→

246 }
247 }
248

249 # Change colnames for legend
250 colnames(kept_proteins_og) <- c("Strain", "Total proteins based on FASTAs", "Total proteins with

at least 1 precursor detected", "Proteins for which peptides are observed coming from both
HPs", "Proteins for which peptides are observed coming from both HPs, and also common")

↪→

↪→

251

252 # Get dataframe into longer format
253 kept_proteins_og <- kept_proteins_og %>% pivot_longer(!Strain, names_to = "Type", values_to =

"Count")↪→

254 kept_proteins_og$Count <- as.numeric(kept_proteins_og$Count)
255

256 # Plot this
257 ggplot(data = kept_proteins_og, aes(x = reorder(Strain, Count), y = Count, fill = Type)) +
258 geom_bar(stat = "identity", position = position_dodge()) +
259 theme_light() +
260 theme(legend.position = "none") +
261 labs(title = "Number of proteins present in both HPs") +
262 xlab("Strains") +
263 ylab("Number of proteins")
264 ```
265

266

267 # 1.2.2. Compare the actual amounts of Precursor.Quantity that I find for the precursors coming
from each HP for each protein (within each strain of course)↪→

268 Come up with a list where each entry is a strain, and for it we have a dataframe with, in each
row a protein, and the p-values and corrected p-values from testing the Precursor.Quantitys
we have for that protein between HPs

↪→

↪→

269 ```{r}
270 numerical_comparison_list <- list()
271

272 # Iterate over strains
273 for (i in 1:length(results_diploids_list_only_hps)) {
274 strain <- names(results_diploids_list_only_hps)[i]
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275 pvals_strain <- c()
276 protein_names <- c()
277 most_abundant_hp <- c()
278

279 # Iterate over proteins
280 for (j in 1:length(results_diploids_list_only_hps[[strain]])) {
281 protein <- names(results_diploids_list_only_hps[[strain]])[j]
282

283 # Get vectors with the Precursor.Quantity values found for this protein in each HP
284 hp1 <-

as.numeric(results_diploids_list_only_hps[[strain]][[protein]][["HP1"]]$Precursor.Quantity)↪→

285 hp2 <-
as.numeric(results_diploids_list_only_hps[[strain]][[protein]][["HP2"]]$Precursor.Quantity)↪→

286

287 # If both have more than 1 value then we can do a t-test, otherwise not :(
288 if (length(hp1) > 1 & length(hp2) > 1) {
289 p <- t.test(hp1, hp2)$p.value # Need to store these somewhere and correct

them together for multiple testing↪→

290 pvals_strain <- c(pvals_strain, p)
291 protein_names <- c(protein_names, protein)
292

293 # Check which HP has the highest abundance for this protein so as to record it for later
294 if (mean(hp1) > mean(hp2)) {most_abundant_hp <- c(most_abundant_hp, "HP1")}
295 else if (mean(hp2) > mean(hp1)) {most_abundant_hp <- c(most_abundant_hp, "HP2")}
296 }
297 }
298 # Apply multiple testing correction for this strain
299 if (length(pvals_strain) > 0) {
300 corrected_pvals <- p.adjust(pvals_strain, method = "BH")
301 }
302 strain_df <- data.frame(pvals_strain, corrected_pvals, protein_names, most_abundant_hp)
303 colnames(strain_df) <- c("pvals", "pvals_corrected", "proteins", "hp_with_higher_abundance")
304 numerical_comparison_list[[strain]] <- strain_df
305 }
306 ```
307

308 Now check the p-values and save the proteins and strains for which we have obtained significant
p-values↪→

309 ```{r}
310 # Create empty dataframe for output
311 significant_proteins_df <- data.frame(matrix(ncol = 5, nrow = 0))
312 colnames(significant_proteins_df) <- c(colnames(numerical_comparison_list[[1]]), "Strain")
313

314 # Iterate over strains and check which proteins had significant p-values, then add these to the
dataframe created above↪→

315 for (i in 1:length(numerical_comparison_list)) {
316 strain <- names(numerical_comparison_list)[i]
317 temp <- numerical_comparison_list[[i]]
318 for (j in 1:nrow(temp)) {
319 if (temp$pvals_corrected[j] < 0.05) {
320 significant_proteins_df[nrow(significant_proteins_df)+1,] <- c(temp[j,], strain)
321 }
322 }
323 }
324 ```
325

326 Get the gene names of these proteins
327 ```{r}
328 ## Load the reference table from SGD
329 yeastmine_tab <- fread(file = "/~/yeastmine_results.tsv",
330 sep="\t",
331 fill=T,
332 header=T)
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333

334 # Turn protein_1/protein_2 protein names into only protein_1, just so that they are taken into
account for the GO analysis - also add a column which serves as indicator for which proteins
we did this to, since otherwise we would lose this information

↪→

↪→

335 significant_proteins_df <- significant_proteins_df %>%
336 mutate(Gene.secondaryIdentifier = case_when(grepl("/", proteins) ~ substr(proteins, 0,

str_locate(proteins, "/")-1),↪→

337 TRUE ~ proteins)) %>%
338 mutate(was_more_than_1_isoform = case_when(grepl("/", proteins) ~ "Yes",
339 TRUE ~ "No"))
340

341 # Use the function I created in a different file to get the gene names
342 significant_proteins_df <- match_systematic_to_standard_protein_names(significant_proteins_df,

yeastmine_tab, simplify = F, add_extra_columns = T)↪→

343 ```
344

345 Test and get p-values
346 ```{r}
347 # Create another version of this list, where for each strain we only keep the proteins which are

differentiated between HPs - this filters out all strains which are not heterozygous
diploids

↪→

↪→

348 datas_protein_unnormalized_HPs <- list()
349 for (i in 1:length(datas_protein_level)) {
350 strain <- names(datas_protein_level)[i]
351 df <- datas_protein_level[[i]]
352 df <- df[grepl("_common_", rownames(df)),]
353 if (nrow(df) > 0) {
354 datas_protein_unnormalized_HPs[[strain]] <- df
355 }
356 }
357

358 # For each strain, go through the rownames (protein names) and remove the _common_HP part, leave
only the protein name. Then iterate through them and for those for which we have both
versions, perform a t-test on the amounts found

↪→

↪→

359 diploids_results_final <- list()
360 for (i in 1:length(datas_protein_unnormalized_HPs)) {
361 strain <- names(datas_protein_unnormalized_HPs)[i]
362 df <- datas_protein_unnormalized_HPs[[i]]
363

364 # Get unique protein names
365 full_protein_names <- rownames(df)
366 protein_names <- c()
367 for (i in 1:length(full_protein_names)) {
368 protein_name <- str_match(full_protein_names[i], "(.*)_common")
369 protein_names <- c(protein_names, protein_name)
370 }
371 protein_names <- unique(protein_names)
372

373 # Iterate over the unique protein names
374 strain_df <- data.frame(matrix(ncol = 3, nrow = 0))
375 colnames(strain_df) <- c("protein", "p", "higher_hp")
376 for (i in 1:length(protein_names)) {
377 protein_name_1 <- paste(protein_names[i], "_common_HP1", sep = "")
378 protein_name_2 <- paste(protein_names[i], "_common_HP2", sep = "")
379

380 # If the version of the protein for both haplotypes is present, perform a t-test and add a
row to the df for this strain↪→

381 if (protein_name_1 %in% full_protein_names & protein_name_2 %in% full_protein_names) {
382 hp1_values <- na.omit(as.numeric(df[rownames(df) == protein_name_1,]))
383 hp2_values <- na.omit(as.numeric(df[rownames(df) == protein_name_2,]))
384 if (length(hp1_values) > 1 & length(hp2_values) > 1) {
385 p <- t.test(hp1_values, hp2_values)$p.value
386 if (mean(hp1_values) > mean(hp2_values)) {higher_hp <- "HP1"}
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387 else if (mean(hp2_values) > mean(hp1_values)) {higher_hp <- "HP2"}
388 strain_df[nrow(strain_df)+1,] <- c(protein_names[i], p, higher_hp)
389 }
390 }
391 }
392 strain_df$p.corrected <- p.adjust(strain_df$p, method = "BH")
393 diploids_results_final[[strain]] <- strain_df
394 }
395

396 # Create a subset of this list with only the significant p-values
397 diploids_results_final_significant <- list()
398 for (i in 1:length(diploids_results_final)) {
399 strain <- names(diploids_results_final)[i]
400 df <- diploids_results_final[[i]]
401

402 if (sum(df$p.corrected < 0.05) > 0) {
403 df_new <- df %>% filter(p.corrected < 0.05)
404 diploids_results_final_significant[[strain]] <- df_new
405 }
406 }
407 ```
408

409 Plot this
410 ```{r}
411 # Add the number of significant proteins to the first barplot from before, so we see how few of

them we have↪→

412 kept_proteins_final <- kept_proteins_og
413 for (i in 1:length(diploids_results_final_significant)) {
414 strain <- names(diploids_results_final_significant)[i]
415 row_number <- nrow(kept_proteins_final)+1
416 kept_proteins_final[row_number, 1] <- strain
417 kept_proteins_final[row_number, 2] <- "Significantly diff. found between HPs"
418 kept_proteins_final[row_number, 3] <-

length(diploids_results_final_significant[[strain]][["protein"]])↪→

419 }
420

421 temp <- kept_proteins_final %>% filter(Type != "Proteins detected in at least 1 HP")
422

423 # Plot
424 ggplot(data = temp, aes(x = reorder(Strain, Count), y = Count, fill = Type)) +
425 geom_bar(stat = "identity", position = position_dodge()) +
426 theme_light() +
427 theme(legend.position = "bottom",
428 legend.text.position = "bottom") +
429 xlab("Strains") +
430 ylab("Number of proteins")
431

432

433 # Repeat the same but without the number of theoretical proteins based on the FASTAs
434 kept_proteins_final_no_FASTAs <- kept_proteins_final %>% filter(Type != "Total proteins based on

FASTAs",↪→

435 Type != "Proteins detected in at
least 1 HP")↪→

436

437 ggplot(data = kept_proteins_final_no_FASTAs, aes(x = reorder(Strain, Count), y = Count, fill =
Type)) +↪→

438 geom_bar(stat = "identity", position = position_dodge()) +
439 theme_light() +
440 theme(legend.position = "bottom",
441 legend.text.position = "bottom") +
442 xlab("Strains") +
443 ylab("Number of proteins")
444
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445

446 # Last plot I need for the discussion I thin
447 temp <- kept_proteins_final %>% filter(Type != "Total proteins based on FASTAs")
448

449 ggplot(data = temp, aes(x = reorder(Strain, Count), y = Count, fill = Type)) +
450 geom_bar(stat = "identity", position = position_dodge()) +
451 theme_light() +
452 theme(legend.position = "bottom",
453 legend.text.position = "bottom") +
454 xlab("Strains") +
455 ylab("Number of proteins")
456 ```
457

458

459

460 # 1.3. Gene ontology enrichment analysis
461 Using all S288C genes as background
462 ```{r}
463 # Load data
464 entrez_db <- fread("C:/~/entrez_reference.txt")
465 go_df <- fread("C:/~/genes_to_be_GO_analyzed.tsv")
466

467 # Run GO analysis
468 my_universe <- as.character(entrez_db$`NCBI gene (formerly Entrezgene) ID`)
469 go_results <- enrichGO(gene = go_df$`NCBI gene (formerly Entrezgene) ID`, OrgDb =

"org.Sc.sgd.db", keyType = "ENTREZID", ont = "BP", universe = my_universe)↪→

470 go_results <- as.data.frame(go_results)
471 ```
472

473 Using as reference unique() of all the proteins detected over all strain-specific runs
separately↪→

474 ```{r}
475 # Load data
476 entrez_db <- fread("C:/~/entrez_reference.txt")
477 go_df <- fread("C:/~/genes_to_be_GO_analyzed.tsv")
478

479 # Process data
480 background_genes <- data.frame(total_proteins_observed_over_all_strains_ss_new)
481 colnames(background_genes) <- c("Genes")
482 background_genes <- left_join(background_genes, entrez_db, by = c("Genes" = "Protein stable

ID"))↪→

483

484 # Run GO analysis
485 my_universe <- as.character(background_genes$`NCBI gene (formerly Entrezgene) ID`)
486 go_results <- enrichGO(gene = go_df$`NCBI gene (formerly Entrezgene) ID`, OrgDb =

"org.Sc.sgd.db", keyType = "ENTREZID", ont = "BP", universe = my_universe)↪→

487 go_results <- as.data.frame(go_results)
488 ```

B.7 Proteins with insertions and deletions

1 # 0. Load data and get it ready
2 ## 0.1. Load all the dataframes as a list
3 ```{r}
4 # Reports
5 files_path = '/~/matched_precursor_reports'
6 files = list.files(files_path, full.names = T)
7

8 ## Grab the names of the dataframes (the strain names)
9 names <- c()

10 for (file in files) {
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11 start = str_locate(file, "matched_precursor_reports/Run_1_test_06062024_")[2] + 1
12 end = str_locate(file, "_matched.tsv")[1] - 1
13 strain = substr(file, start, end)
14 names <- c(names, strain)
15 }
16

17 ## Actually load the dataframes
18 setwd(files_path)
19 datas <- lapply(files, fread)
20 datas <- lapply(datas, as.data.frame)
21 names(datas) <- names
22

23 # Repeat this for this information already turned to protein level
24 files_path = "/~/protein_level_reports"
25 files = list.files(files_path, full.names = T)
26

27 ## Grab the names of the dataframes (the strain names)
28 names <- c()
29 for (file in files) {
30 start = str_locate(file, "protein_level_reports/")[2] + 1
31 end = str_locate(file, "_protein_level.tsv")[1] - 1
32 strain = substr(file, start, end)
33 names <- c(names, strain)
34 }
35

36 ## Actually load the dataframes
37 setwd(files_path)
38 datas_protein_level <- lapply(files, fread)
39 datas_protein_level <- lapply(datas_protein_level, as.data.frame)
40 names(datas_protein_level) <- names
41

42 ## Set protein names as rownames
43 for (i in 1:length(datas_protein_level)) {
44 rownames(datas_protein_level[[i]]) <- datas_protein_level[[i]]$Genes
45 datas_protein_level[[i]] <- datas_protein_level[[i]] %>% select(-Genes)
46 }
47

48

49 # Sample correspondence
50 sample_correspondence <- fread("/~/sample_correspondence.tsv")
51 sample_correspondence <- as.data.frame(sample_correspondence)
52

53

54 # Stats files
55 files_path = '/~/stats_files/'
56 files = list.files(files_path, full.names = T)
57

58 setwd(files_path)
59 stats_files <- lapply(files, fread)
60 stats_files <- lapply(stats_files, as.data.frame)
61 names(stats_files) <- names
62

63 # Remove unnecessary variables
64 rm(list = c("end", "file", "files", "files_path", "start", "strain"))
65 ```
66

67 ## 0.2. Load information on which strains are haploid, diploid or polyploid
68 ```{r}
69 load('/~/strains_in_each_type_vectors.Rdata')
70 ```
71

72 ## 0.3. Create separate lists for haploid, diploid and polyploid strains
73 ```{r}
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74 # Remember that QCs and BY4741-ki are not included in any of these!!
75 datas_haploid <- datas[names(datas) %in% haploid_strains]
76 datas_diploid <- datas[names(datas) %in% diploid_strains]
77 datas_polyploid <- datas[names(datas) %in% polyploid_strains]
78 ```
79

80

81 ### 1.1.1. Load data and get it ready
82 Report and file with information about indels
83 ```{r}
84 # Load data
85 indels_per_strain <- read.csv("/~/indels_per_strain.csv")
86 ss_report_normalized <- fread("/~/protein_level_full_report.tsv")
87 ss_report_normalized <- as.data.frame(ss_report_normalized)
88 rownames(ss_report_normalized) <- ss_report_normalized$Genes
89 ss_report_normalized <- ss_report_normalized %>% select(-Genes)
90

91 source("/~/0. prepare_data_functions.R")
92

93 # Fix protein names
94 new_rownames <- c()
95 for (i in 1:nrow(ss_report_normalized)) {
96

97 ## For multiple protein names, grab only the first one
98 rowname <- rownames(ss_report_normalized)[i]
99 if (grepl("/", rowname)) {

100 end <- str_locate(rowname, "/") - 1
101 new_rowname <- substr(rowname, 0, end)
102 new_rownames <- c(new_rownames, new_rowname)
103 }
104 else {
105 new_rownames <- c(new_rownames, rowname)
106 }
107 }
108 ```
109

110 Process the file with the information about indels: create 2 separate files, one for insertions
and one for deletions, and in each of them have one protein per row, and then the strains in
which there is an insertion/deletion in that protein, this will make it much easier
afterwards - actually 4 files, we do this with both systematic and standard protein names

↪→

↪→

↪→

111 ```{r}
112 # Remove S288C because it does not have any proteins with deletions
113 indels_per_strain <- indels_per_strain %>% filter(Strain != "S288C")
114

115 insertions <- list()
116 deletions <- list()
117

118 for (i in 1:nrow(indels_per_strain)) {
119 proteins_with_insertions <- unique(str_split_1(indels_per_strain$Proteins_with_insertion[i],

", "))↪→

120 proteins_with_deletions <- unique(str_split_1(indels_per_strain$Proteins_with_deletion[i], ",
"))↪→

121

122 # Proteins with insertions
123 for (j in 1:length(proteins_with_insertions)) {
124 protein <- proteins_with_insertions[j]
125 if (!(protein %in% names(insertions))) {
126 insertions[[protein]] <- c(indels_per_strain$Strain[i])
127 }
128 else {
129 insertions[[protein]] <- c(insertions[[protein]], indels_per_strain$Strain[i])
130 }
131 }
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132

133 # Proteins with deletions
134 for (j in 1:length(proteins_with_deletions)) {
135 protein <- proteins_with_deletions[j]
136 if (!(protein %in% names(deletions))) {
137 deletions[[protein]] <- c(indels_per_strain$Strain[i])
138 }
139 else {
140 deletions[[protein]] <- c(deletions[[protein]], indels_per_strain$Strain[i])
141 }
142 }
143 }
144 ```
145

146

147 ### 1.1.2. Tests
148 Test for each protein with insertions or deletions (separately) if the abundance of this protein

is significantly different between the strains which have the mutation and those which do
not

↪→

↪→

149 #### Insertions
150 ```{r}
151 # Insertions
152 ## Get a smaller version of the dataset which only contains the proteins with insertions - there

are only 41 of the 279 that are actually detected :(↪→

153 temp_insertions <- ss_report_normalized[rownames(ss_report_normalized) %in% names(insertions),]
154

155 ## Create dataframe for p-values
156 proteins_tested <- c()
157 p.values.bin <- c()
158 p.values.cont <- c()
159 non_na_values_mutated <- c()
160 non_na_values_non_mutated <- c()
161 total_values_mutated <- c()
162 total_values_non_mutated <- c()
163

164 ## Now actually go through the proteins and test for those which are present
165 for (i in 1:length(insertions)) {
166 protein <- names(insertions)[i]
167

168 # If this protein is found in the report
169 if (protein %in% rownames(temp_insertions)) {
170 # Come up with a vector of booleans which indicates in which columns are the samples of the

strains that contain insertions in this protein↪→

171 # We use this to obtain both vectors we will be using for testing
172 columns_condition <- rep(FALSE, ncol(temp_insertions))
173 for (strain in insertions[[protein]]) {
174 columns_condition <- columns_condition | grepl(strain, colnames(temp_insertions))
175 }
176 mutated <- temp_insertions[rownames(temp_insertions) == protein, columns_condition]
177 non_mutated <- temp_insertions[rownames(temp_insertions) == protein, !columns_condition]
178

179 # Perform the testing
180 if (length(mutated) > 1 & length(non_mutated > 1)) {
181 # Turn the data into presence/absence and do a proportion test instead
182 mutated_bin <- as.numeric(!(is.na(mutated)))
183 non_mutated_bin <- as.numeric(!(is.na(non_mutated)))
184 my_mat <- matrix(c(sum(mutated_bin == 1), sum(mutated_bin == 0),
185 sum(non_mutated_bin == 1), sum(non_mutated_bin == 0)),
186 ncol = 2, byrow = T)
187 colnames(my_mat) <- c("Present", "Absent")
188 rownames(my_mat) <- c("Mutated", "Non-mutated")
189

190 # Add the tested protein and its p-value to the output vectors
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191 proteins_tested <- c(proteins_tested, protein)
192 p.values.bin <- c(p.values.bin, prop.test(my_mat)$p.value)
193

194 # Check how many values different from NA we have in each of the vectors, and save that
195 non_na_values_mutated <- c(non_na_values_mutated, sum(!(is.na(mutated))))
196 non_na_values_non_mutated <- c(non_na_values_non_mutated, sum(!(is.na(non_mutated))))
197

198 # Check how many values in total we have in each of the vectors and also save it
199 total_values_mutated <- c(total_values_mutated, length(mutated))
200 total_values_non_mutated <- c(total_values_non_mutated, length(non_mutated))
201

202 # Perform a test keeping the data as continuous and save that p-value as well
203 mutated_cont <- na.omit(as.numeric(mutated))
204 non_mutated_cont <- na.omit(as.numeric(non_mutated))
205 if (length(mutated_cont) > 1 & length(non_mutated_cont) > 1) {
206 p.values.cont <- c(p.values.cont, t.test(mutated_cont, non_mutated_cont)$p.value)
207 }
208 else {
209 p.values.cont <- c(p.values.cont, NA)
210 }
211 }
212 }
213 }
214

215 results_insertions_final <- data.frame(proteins_tested, p.values.bin, p.values.cont,
non_na_values_mutated, non_na_values_non_mutated, total_values_mutated,
total_values_non_mutated)

↪→

↪→

216 colnames(results_insertions_final) <- c("Protein", "p.val.bin", "p.val.cont",
"Non_NA_values_mutated", "Non_NA_values_non_mutated", "total_values_mutated",
"total_values_non_mutated")

↪→

↪→

217 results_insertions_final$p.adj.bin <- p.adjust(results_insertions_final$p.val.bin, method =
"BH")↪→

218 results_insertions_final$p.adj.cont <- p.adjust(results_insertions_final$p.val.cont, method =
"BH")↪→

219 ```
220

221 #### Deletions
222 ```{r}
223 ## Get a smaller version of the dataset which only contains the proteins with deletions - there

are only 41 of the 279 that are actually detected :(↪→

224 temp_deletions <- ss_report_normalized[rownames(ss_report_normalized) %in% names(deletions),]
225

226 ## Create dataframe for p-values
227 proteins_tested <- c()
228 p.values.bin <- c()
229 p.values.cont <- c()
230 non_na_values_mutated <- c()
231 non_na_values_non_mutated <- c()
232 total_values_mutated <- c()
233 total_values_non_mutated <- c()
234

235 ## Now actually go through the proteins and test for those which are present
236 for (i in 1:length(deletions)) {
237 protein <- names(deletions)[i]
238

239 # If this protein is found in the report
240 if (protein %in% rownames(temp_deletions)) {
241 # Come up with a vector of booleans which indicates in which columns are the samples of the

strains that contain deletions in this protein↪→

242 # We use this to obtain both vectors we will be using for testing
243 columns_condition <- rep(FALSE, ncol(temp_deletions))
244 for (strain in deletions[[protein]]) {
245 columns_condition <- columns_condition | grepl(strain, colnames(temp_deletions))
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246 }
247 mutated <- temp_deletions[rownames(temp_deletions) == protein, columns_condition]
248 non_mutated <- temp_deletions[rownames(temp_deletions) == protein, !columns_condition]
249

250 # Perform the testing
251 if (length(mutated) > 1 & length(non_mutated > 1)) {
252 # Turn the data into presence/absence and do a proportion test instead
253 mutated_bin <- as.numeric(!(is.na(mutated)))
254 non_mutated_bin <- as.numeric(!(is.na(non_mutated)))
255 my_mat <- matrix(c(sum(mutated_bin == 1), sum(mutated_bin == 0),
256 sum(non_mutated_bin == 1), sum(non_mutated_bin == 0)),
257 ncol = 2, byrow = T)
258 colnames(my_mat) <- c("Present", "Absent")
259 rownames(my_mat) <- c("Mutated", "Non-mutated")
260

261 # Add the tested protein and its p-value to the output vectors
262 proteins_tested <- c(proteins_tested, protein)
263 p.values.bin <- c(p.values.bin, prop.test(my_mat)$p.value)
264

265 # Check how many values different from NA we have in each of the vectors, and save that
266 non_na_values_mutated <- c(non_na_values_mutated, sum(!(is.na(mutated))))
267 non_na_values_non_mutated <- c(non_na_values_non_mutated, sum(!(is.na(non_mutated))))
268

269 # Check how many values in total we have in each of the vectors and also save it
270 total_values_mutated <- c(total_values_mutated, length(mutated))
271 total_values_non_mutated <- c(total_values_non_mutated, length(non_mutated))
272

273 # Perform a test keeping the data as continuous and save that p-value as well
274 mutated_cont <- na.omit(as.numeric(mutated))
275 non_mutated_cont <- na.omit(as.numeric(non_mutated))
276 if (length(mutated_cont) > 1 & length(non_mutated_cont) > 1) {
277 p.values.cont <- c(p.values.cont, t.test(mutated_cont, non_mutated_cont)$p.value)
278 }
279 else {
280 p.values.cont <- c(p.values.cont, NA)
281 }
282 }
283 }
284 }
285

286 results_deletions_final <- data.frame(proteins_tested, p.values.bin, p.values.cont,
non_na_values_mutated, non_na_values_non_mutated, total_values_mutated,
total_values_non_mutated)

↪→

↪→

287 colnames(results_deletions_final) <- c("Protein", "p.val.bin", "p.val.cont",
"Non_NA_values_mutated", "Non_NA_values_non_mutated", "total_values_mutated",
"total_values_non_mutated")

↪→

↪→

288 results_deletions_final$p.adj.bin <- p.adjust(results_deletions_final$p.val.bin, method = "BH")
289 results_deletions_final$p.adj.cont <- p.adjust(results_deletions_final$p.val.cont, method =

"BH")↪→

290 ```
291

292

293 ### 1.1.3. Come up with some barplots which show how the number of proteins of each type
decreases along the steps we take here↪→

294 ```{r}
295 # Create dataset
296 protein_numbers <- data.frame(matrix(ncol = 3, nrow = 0))
297 colnames(protein_numbers) <- c("Mutation", "Step", "Protein_number")
298

299 ## Total proteins with each type of mutation
300 protein_numbers[nrow(protein_numbers)+1,] <- c("Insertion", "1. Theoretical - from Gilles SV

files", as.character(length(insertions)))↪→
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301 protein_numbers[nrow(protein_numbers)+1,] <- c("Deletion", "1. Theoretical - from Gilles SV
files", as.character(length(deletions)))↪→

302

303 ## Proteins that show up in the report (that is already pre-processed)
304 protein_numbers[nrow(protein_numbers)+1,] <- c("Insertion", "2. Present in the report",

as.character(sum(names(insertions) %in% rownames(ss_report_normalized))))↪→

305 protein_numbers[nrow(protein_numbers)+1,] <- c("Deletion", "2. Present in the report",
as.character(sum(names(deletions) %in% rownames(ss_report_normalized))))↪→

306

307 ## Proteins that could be tested
308 protein_numbers[nrow(protein_numbers)+1,] <- c("Insertion", "3. Could be tested - at least 2

samples in each group", as.character(nrow(results_insertions_final)))↪→

309 protein_numbers[nrow(protein_numbers)+1,] <- c("Deletion", "3. Could be tested - at least 2
samples in each group", as.character(nrow(results_deletions_final)))↪→

310

311 ## Proteins for which we had more than 4 observations in both vectors compared
312 temp <- results_insertions_final %>% filter(total_values_mutated > 4 & total_values_non_mutated

> 4)↪→

313 protein_numbers[nrow(protein_numbers)+1,] <- c("Insertion", "4. More than 4 replicates per
group", as.character(nrow(temp)))↪→

314 temp <- results_deletions_final %>% filter(total_values_mutated > 4 & total_values_non_mutated >
4)↪→

315 protein_numbers[nrow(protein_numbers)+1,] <- c("Deletion", "4. More than 4 replicates per
group", as.character(nrow(temp)))↪→

316

317 ## Proteins that are found to be significantly differentially present/absent between mutated and
non-mutated strains↪→

318 protein_numbers[nrow(protein_numbers)+1,] <- c("Insertion", "5. Significant",
as.character(sum(results_insertions_final$p.adj.bin < 0.05)))↪→

319 protein_numbers[nrow(protein_numbers)+1,] <- c("Deletion", "5. Significant",
as.character(sum(results_deletions_final$p.adj.bin < 0.05, na.rm = T)))↪→

320

321 ## Turn last column to numeric - if you try to add rows with different data types you get an
error↪→

322 protein_numbers$Protein_number <- as.numeric(protein_numbers$Protein_number)
323

324

325 # Plot
326 ggplot(data = protein_numbers, aes(x = Mutation, y = Protein_number, fill = Step)) +
327 geom_bar(stat = "identity", position = position_dodge()) +
328 theme_light() +
329 ylab("Number of proteins across all strains") +
330 theme(legend.position = "bottom",
331 legend.title = element_blank()) +
332 guides(fill=guide_legend(nrow=2,byrow=TRUE))
333 ```
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Appendix C

Appendix for Python code

C.1 Create dictionaries from original FASTA files

1 # Diploid strains
2 ## Define directory which contains the files
3 directory = "C:\~\Diploids"
4

5 # 1. Iterate over files in directory, create fragmentation_dict and a few others
6 # Define dictionaries we want to end up with
7 full_id_dict = {}
8 fragmentation_dict = {}
9 repeated_across_strains = {}

10

11

12 # Iterate over files in the directory
13 for filename in os.listdir(directory):
14 path = os.path.join(directory, filename)
15 strain = filename[0:filename.find(".")]
16 HP = filename[filename.find(".nuclear")-3:filename.find(".nuclear")]
17 tag = strain + "_" + HP
18

19

20 # Open file
21 with open(path) as handle:
22 peptides_per_protein_dict = {}
23 all_prot_ids = []
24 full_ids = {}
25 repeated = {}
26 full_protein_seqs_strain = {}
27

28 # In each file, iterate over the proteins
29 for seq_id, seq in SimpleFastaParser(handle):
30 # Get what is going to be the protein ID. Also append it to the "repeated" list if

we´ve seen that ID before in this file↪→

31 limit = seq_id.rfind("|")
32 last_chunk = seq_id[limit + 1:len(seq_id)]
33 first_chunk = seq_id[0:seq_id.find("|")]
34

35 if last_chunk == first_chunk:
36 prot_id = last_chunk[last_chunk.rfind("_") + 1:len(last_chunk)] + "_" + tag
37

38 else:
39 prot_id = last_chunk
40 if prot_id in all_prot_ids:
41 if prot_id not in list(repeated.keys()):
42 repeated[prot_id] = [full_protein_seqs_strain[prot_id], seq]
43 else:
44 repeated[prot_id].append(seq)
45 else:
46 full_protein_seqs_strain[prot_id] = seq
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47

48 # Perform fragmentation
49 peptides_pre = re.sub(r'(?<=[RK])(?=[^P])', '\n', seq)
50 peptides_pre = list(peptides_pre.split("\n"))
51 peptides = []
52 for peptide in peptides_pre:
53 if 7 <= len(peptide) <= 30:
54 peptides.append(peptide)
55

56 if prot_id not in list(repeated.keys()):
57 # Add to dictionary
58 peptides_per_protein_dict[prot_id] = peptides
59

60 # All prot_ids
61 all_prot_ids.append(prot_id)
62

63 # Full IDs
64 full_ids[prot_id] = seq_id
65

66 # Add to final dictionaries
67 full_id_dict[tag] = full_ids
68 fragmentation_dict[tag] = peptides_per_protein_dict
69 repeated_across_strains[tag] = repeated
70

71

72 # 2. Save dictionaries
73 ## 2.1. Save the dictionary of dictionaries for the repeated proteins in each haplotype to a

JSON file for later reference↪→

74 json_file = os.path.join('C:\~\Dictionaries\\', 'repeated_proteins_diploids.json')
75 with open(json_file, 'w') as fp:
76 json.dump(repeated_across_strains, fp)
77

78 ## 2.2. Save the fragmentation dictionary
79 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Diploids_original.json')
80 with open(json_file, 'w') as fp:
81 json.dump(fragmentation_dict, fp)
82

83 ## 2.3. Save the full ID dictionary
84 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_diploids.json')
85 with open(json_file, 'w') as fp:
86 json.dump(full_id_dict, fp)
87

88

89

90 ### Haploid strains
91 # 1. Create fragmentation dictionary
92 ## Define directory which contains the files
93 directory = "C:\~\Haploids"
94

95 ## Define dictionary we want to end up with
96 fragmentation_dict_haploids = {}
97 repeated_across_strains_haploids = {}
98 full_id_dict = {}
99 empty_peptides = {}

100

101 ## Iterate over files in the directory
102 for filename in os.listdir(directory):
103 path = os.path.join(directory, filename)
104 strain = filename[0:filename.find(".")]
105

106 # Open file
107 with open(path) as handle:
108 peptides_per_protein_dict = {}
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109 all_prot_ids = []
110 repeated = {}
111 full_ids = {}
112 empty_peptides_strain = {}
113 full_protein_seqs_strain = {}
114

115 # In each file, iterate over the proteins
116 for seq_id, seq in SimpleFastaParser(handle):
117 # Get what is going to be the protein ID. Also append it to the "repeated" list if

we´ve seen that ID before in this file↪→

118 limit = seq_id.rfind("|")
119 last_chunk = seq_id[limit + 1:len(seq_id)]
120 first_chunk = seq_id[0:(len(seq_id) - limit - 1)]
121

122 if last_chunk == first_chunk:
123 prot_id = last_chunk[last_chunk.rfind("_") + 1:len(last_chunk)] + "_" + strain
124

125 else:
126 prot_id = last_chunk
127 if prot_id in all_prot_ids:
128 if prot_id not in list(repeated.keys()):
129 repeated[prot_id] = [full_protein_seqs_strain[prot_id], seq]
130 else:
131 repeated[prot_id].append(seq)
132 else:
133 full_protein_seqs_strain[prot_id] = seq
134

135 # Perform fragmentation
136 peptides_pre = re.sub(r'(?<=[RK])(?=[^P])', '\n', seq)
137 peptides_pre = list(peptides_pre.split("\n"))
138 peptides = []
139 empty_peptides_protein_list = []
140 for peptide in peptides_pre:
141 if 7 <= len(peptide) <= 30:
142 peptides.append(peptide)
143 else:
144 empty_peptides_protein_list.append(len(peptide))
145 if peptides == []:
146 empty_peptides_strain[prot_id] = empty_peptides_protein_list
147

148 if prot_id not in list(repeated.keys()):
149 # Add to dictionary
150 peptides_per_protein_dict[prot_id] = peptides
151

152 # All prot_ids
153 all_prot_ids.append(prot_id)
154

155 # Full IDs
156 full_ids[prot_id] = seq_id
157

158 # Add to final dictionary
159 fragmentation_dict_haploids[strain] = peptides_per_protein_dict
160 repeated_across_strains_haploids[strain] = repeated
161 full_id_dict[strain] = full_ids
162 empty_peptides[strain] = empty_peptides_strain
163

164 # 2. Save created dictionaries
165 ## 2.1. Save the fragmentation dictionary
166 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Haploids_original.json')
167 with open(json_file, 'w') as fp:
168 json.dump(fragmentation_dict_haploids, fp)
169
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170 ## 2.2. Save the dictionary of dictionaries for the repeated proteins in each haplotype to a
JSON file for later reference↪→

171 json_file = os.path.join('C:\~\Dictionaries\\', 'repeated_proteins_haploids.json')
172 with open(json_file, 'w') as fp:
173 json.dump(repeated_across_strains_haploids, fp)
174

175 ## 2.3. Save the dictionary of full IDs, I use this to create the new FASTA files
176 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_haploids.json')
177 with open(json_file, 'w') as fp:
178 json.dump(full_id_dict, fp)
179

180

181

182 ### Polyploid strains
183 # 1. Create fragmentation dictionary
184 ## Define directory which contains the files
185 directory = "C:\~\Polyploids_HP"
186

187 ## Define dictionary we want to end up with
188 fragmentation_dict_polyploids = {}
189 repeated_across_strains_polyploids = {}
190 full_id_dict = {}
191 empty_peptides = {}
192

193 ## Iterate over files in the directory
194 for filename in os.listdir(directory):
195 path = os.path.join(directory, filename)
196 strain = filename[0:filename.find(".")]
197

198 # Open file
199 with open(path) as handle:
200 peptides_per_protein_dict = {}
201 all_prot_ids = []
202 repeated = {}
203 full_ids = {}
204 empty_peptides_strain = {}
205 full_protein_seqs_strain = {}
206

207 # In each file, iterate over the proteins
208 for seq_id, seq in SimpleFastaParser(handle):
209 # Get what is going to be the protein ID. Also append it to the "repeated" list if

we´ve seen that ID before in this file↪→

210 limit = seq_id.rfind("|")
211 last_chunk = seq_id[limit + 1:len(seq_id)]
212 first_chunk = seq_id[0:(len(seq_id) - limit - 1)]
213

214 if last_chunk == first_chunk:
215 prot_id = last_chunk[last_chunk.rfind("_") + 1:len(last_chunk)] + "_" + strain
216

217 else:
218 prot_id = last_chunk
219

220 # This is new here: we put this outside the above "else" because in this case
proteins tagged as "G00000010" can also be repeated↪→

221 if prot_id in all_prot_ids:
222 if prot_id not in list(repeated.keys()):
223 repeated[prot_id] = [full_protein_seqs_strain[prot_id], seq]
224

225 else:
226 repeated[prot_id].append(seq)
227

228 else:
229 full_protein_seqs_strain[prot_id] = seq
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230

231 # Perform fragmentation
232 peptides_pre = re.sub(r'(?<=[RK])(?=[^P])', '\n', seq)
233 peptides_pre = list(peptides_pre.split("\n"))
234 peptides = []
235 empty_peptides_protein_list = []
236 for peptide in peptides_pre:
237 if 7 <= len(peptide) <= 30:
238 peptides.append(peptide)
239 else:
240 empty_peptides_protein_list.append(len(peptide))
241 if peptides == []:
242 empty_peptides_strain[prot_id] = empty_peptides_protein_list
243

244 if prot_id not in list(repeated.keys()):
245 # Add to dictionary
246 peptides_per_protein_dict[prot_id] = peptides
247

248 # All prot_ids
249 all_prot_ids.append(prot_id)
250

251 # Full IDs
252 full_ids[prot_id] = seq_id
253

254 else:
255 # Add to dictionary any new peptides we´ve found for this protein
256 for peptide in peptides:
257 if peptide not in peptides_per_protein_dict[prot_id]:
258 peptides_per_protein_dict[prot_id].append(peptide)
259

260 # Add to final dictionary
261 fragmentation_dict_polyploids[strain] = peptides_per_protein_dict
262 repeated_across_strains_polyploids[strain] = repeated
263 full_id_dict[strain] = full_ids
264 empty_peptides[strain] = empty_peptides_strain
265

266 # 2. Save created dictionaries
267 ## 2.1. Save the fragmentation dictionary
268 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Polyploids_original.json')
269 with open(json_file, 'w') as fp:
270 json.dump(fragmentation_dict_polyploids, fp)
271

272 ## 2.2. Save the dictionary of dictionaries for the repeated proteins in each haplotype to a
JSON file for later reference↪→

273 json_file = os.path.join('C:\~\Dictionaries\\', 'repeated_proteins_polyploids.json')
274 with open(json_file, 'w') as fp:
275 json.dump(repeated_across_strains_polyploids, fp)
276

277 ## 2.3. Save the dictionary of full IDs, I use this to create the new FASTA files
278 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_polyploids.json')
279 with open(json_file, 'w') as fp:
280 json.dump(full_id_dict, fp)
281

282

283

284 ### Add information from mitochondrial assemblies
285 # 1. Define directory where our files are
286 dir = "C:\~\mitochondrial"
287

288

289 # 2. Go through the files creating a fragmentation dictionary for each
290 full_id_dict_mito = {}
291 fragmentation_dict_mito = {}
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292 repeated_across_strains_mito = {}
293

294 # Iterate over files in the directory
295 for filename in os.listdir(dir):
296 path = os.path.join(dir, filename)
297 strain = filename[0:filename.find(".")]
298 tag = strain
299

300 # Open file
301 with open(path) as handle:
302 peptides_per_protein_dict = {}
303 all_prot_ids = []
304 full_ids = {}
305 repeated = {}
306 full_protein_seqs_strain = {}
307

308 # In each file, iterate over the proteins
309 for seq_id, seq in SimpleFastaParser(handle):
310 # Get what is going to be the protein ID. Also append it to the "repeated" list if

we´ve seen that ID before in this file↪→

311 limit = seq_id.rfind("|")
312 last_chunk = seq_id[limit + 1:len(seq_id)]
313 first_chunk = seq_id[0:seq_id.find("|")]
314

315 if last_chunk == first_chunk:
316 prot_id = last_chunk[last_chunk.rfind("_") + 1:len(last_chunk)] + "_" + tag
317

318 else:
319 prot_id = last_chunk
320

321 # This is new here: we put this outside the above "else" because in this case
proteins tagged as "G00000010" can also be repeated - as in polyploids↪→

322 if prot_id in all_prot_ids:
323 if prot_id not in list(repeated.keys()):
324 repeated[prot_id] = [full_protein_seqs_strain[prot_id], seq]
325 else:
326 repeated[prot_id].append(seq)
327 else:
328 full_protein_seqs_strain[prot_id] = seq
329

330 # Perform fragmentation
331 peptides_pre = re.sub(r'(?<=[RK])(?=[^P])', '\n', seq)
332 peptides_pre = list(peptides_pre.split("\n"))
333 peptides = []
334 for peptide in peptides_pre:
335 if 7 <= len(peptide) <= 30:
336 peptides.append(peptide)
337

338 if prot_id not in list(repeated.keys()):
339 # Add to dictionary
340 peptides_per_protein_dict[prot_id] = peptides
341

342 # All prot_ids
343 all_prot_ids.append(prot_id)
344

345 # Full IDs
346 full_ids[prot_id] = seq_id
347

348 else:
349 # Add to dictionary any new peptides we´ve found for this protein - from

polyploids, allows us to have all fragments from all versions of a protein
in the entry for that protein

↪→

↪→
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350 # (in this case it only applies to one of the polyploids, CDN_1a, and this
doesn´t even affect it, but okay)↪→

351 for peptide in peptides:
352 if peptide not in peptides_per_protein_dict[prot_id]:
353 peptides_per_protein_dict[prot_id].append(peptide)
354

355 # Add to final dictionaries
356 full_id_dict_mito[tag] = full_ids
357 fragmentation_dict_mito[tag] = peptides_per_protein_dict
358 repeated_across_strains_mito[tag] = repeated
359

360 # 2. Save created dictionaries
361 ## 2.1. Save the fragmentation dictionary
362 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Mitochondrial.json')
363 with open(json_file, 'w') as fp:
364 json.dump(fragmentation_dict_mito, fp)
365

366 ## 2.2. Save the dictionary of dictionaries for the repeated proteins in each haplotype to a
JSON file for later reference↪→

367 json_file = os.path.join('C:\~\Dictionaries\\', 'repeated_proteins_mitochondrial.json')
368 with open(json_file, 'w') as fp:
369 json.dump(repeated_across_strains_mito, fp)
370

371 ## 2.3. Save the dictionary of full IDs, I use this to create the new FASTA files
372 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_mitochondrial.json')
373 with open(json_file, 'w') as fp:
374 json.dump(full_id_dict_mito, fp)

C.2 Create new FASTA files

1 ### Haploid strains
2 # 1. Load necessary dictionaries
3 ## 1.1. Haploid fragmentation dictionary
4 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Haploids_original.json')
5 with open(json_file) as f_in:
6 fragmentation_dict = json.load(f_in)
7

8 ## 1.2 Full ID dictionary
9 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_haploids.json')

10 with open(json_file) as f_in:
11 full_id_dict = json.load(f_in)
12

13 # 2. Write new FASTAs
14 ## 2.1. Define directory which contains the files
15 directory = "C:\~\Data\\DIA-NN"
16 new_dir = os.path.join(directory, "New haploid files")
17 os.makedirs(new_dir)
18

19 ## 2.2. First of all iterate over strains
20 strains = list(fragmentation_dict.keys())
21 for strain in strains:
22 # Create FASTA file and start writing into it
23 new_filename = strain + '_HP0_nuclear' + ".fasta"
24 file_out = os.path.join(new_dir, new_filename)
25 with open(file_out, "w") as f_out:
26 for protein in list(fragmentation_dict[strain].keys()):
27 full_id = full_id_dict[strain][protein]
28 for peptide_seq in fragmentation_dict[strain][protein]:
29 entry = ">" + full_id + "\n" + peptide_seq + "\n"
30 f_out.write(entry)
31
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32

33

34 ### Diploid strains
35 # 1. Load necessary dictionaries
36 ## 1.1. Diploid fragmentation dictionary
37 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Diploids_original.json')
38 with open(json_file) as f_in:
39 fragmentation_dict = json.load(f_in)
40 del (f_in, json_file)
41

42 ## 1.2. Full ID dictionary
43 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_diploids.json')
44 with open(json_file) as f_in:
45 full_id_dict = json.load(f_in)
46

47

48 # 2. Get a list of the haplotypes and create a dictionary that maps each strain to its 2
haplotypes↪→

49 haplotypes = list(fragmentation_dict.keys())
50

51 strain_to_HP_dict = {}
52 for haplotype in haplotypes:
53 strain = haplotype[0:3]
54 strain_to_HP_dict[strain] = [haplotype for haplotype in haplotypes if haplotype[0:3] ==

strain]↪→

55

56

57 # 3.
58 ## 3.1. Get a list of the strains and iterate over them. For each, we get the two haplotypes and

get the intersection of their proteins,↪→

59 ## those which are present in both of them. Then we iterate over these proteins and compare
their fragments, to see if they are↪→

60 ## exactly the same protein or not.
61

62 ## 3.2 I´ve decided to use this loop to also create a dict with an entrance for each strain,
which is also a dict,↪→

63 ## with an entrance for each protein, which is also a dict, where then I have the following
entrances:↪→

64 ## common peptides between HPs, peptides only in HP1, peptides only in HP2
65 ## This I should probably be able to use also to construct the final FASTA files
66 strains = list(strain_to_HP_dict.keys())
67

68 strain_summary_dict = {}
69 dict_common_prots_per_strain = {}
70

71 for strain in strains:
72 strain_dict_goal_1 = {}
73 prot_dict_goal_2 = {}
74 haplotype_1, haplotype_2 = strain_to_HP_dict[strain]
75 proteins_hp_1 = list(fragmentation_dict[haplotype_1].keys())
76 proteins_hp_2 = list(fragmentation_dict[haplotype_2].keys())
77 strain_dict_goal_1["unique_HP1"] = list(set(proteins_hp_1) - set(proteins_hp_2))
78 strain_dict_goal_1["unique_HP2"] = list(set(proteins_hp_2) - set(proteins_hp_1))
79

80 common_proteins = list(set(proteins_hp_1).intersection(proteins_hp_2))
81 common_equal = []
82 common_diff = []
83

84 for prot in common_proteins:
85 peptides_hp_1 = fragmentation_dict[haplotype_1][prot]
86 peptides_hp_2 = fragmentation_dict[haplotype_2][prot]
87 if peptides_hp_1 == peptides_hp_2:
88 common_equal.append(prot)
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89 else:
90 common_diff.append(prot)
91 peptides_dict_goal_2 = {"common":

list(set(peptides_hp_1).intersection(set(peptides_hp_2))),↪→

92 "unique_hp_1": list(set(peptides_hp_1) -
set(peptides_hp_2)),↪→

93 "unique_hp_2": list(set(peptides_hp_2) -
set(peptides_hp_1))}↪→

94

95 prot_dict_goal_2[prot] = peptides_dict_goal_2
96

97 # Add lists to the strain dictionary
98 strain_dict_goal_1["common_equal"] = common_equal
99 strain_dict_goal_1["common_diff"] = common_diff

100

101 # Add strain dict to the general dict with all strains
102 strain_summary_dict[strain] = strain_dict_goal_1
103 dict_common_prots_per_strain[strain] = prot_dict_goal_2
104

105

106 # 4. Write new FASTAs
107 ## 4.1. Define directory which contains the files
108 directory = "C:\~\Data\\DIA-NN"
109 new_dir = os.path.join(directory, "New diploid files")
110 os.makedirs(new_dir)
111

112 ## 4.2. First of all iterate over strains
113 strains = list(strain_to_HP_dict.keys())
114 for strain in strains:
115 # Create FASTA file and start writing into it
116 new_filename = strain + "_HP1_HP2_nuclear" + ".fasta"
117 file_out = os.path.join(new_dir, new_filename)
118 with open(file_out, "w") as f_out:
119 # For proteins unique to HP1
120 for protein in list(strain_summary_dict[strain]["unique_HP1"]):
121 full_id = full_id_dict[strain+"_HP1"][protein] + "_unique_HP1"
122 for peptide_seq in fragmentation_dict[strain+"_HP1"][protein]:
123 entry = ">" + full_id + "\n" + peptide_seq + "\n"
124 f_out.write(entry)
125

126 # For proteins unique to HP2
127 for protein in list(strain_summary_dict[strain]["unique_HP2"]):
128 full_id = full_id_dict[strain + "_HP2"][protein] + "_unique_HP2"
129 for peptide_seq in fragmentation_dict[strain + "_HP2"][protein]:
130 entry = ">" + full_id + "\n" + peptide_seq + "\n"
131 f_out.write(entry)
132

133 # For proteins common to both HPs and with the same sequence
134 for protein in list(strain_summary_dict[strain]["common_equal"]):
135 full_id = full_id_dict[strain + "_HP1"][protein] # Just the

original full ID, I could grab it from either HP1 or HP2 dictionary since they
are the same

↪→

↪→

136 for peptide_seq in fragmentation_dict[strain + "_HP1"][protein]:
137 entry = ">" + full_id + "\n" + peptide_seq + "\n"
138 f_out.write(entry)
139

140 # For proteins common to both HPs but with different sequences
141 for protein in list(strain_summary_dict[strain]["common_diff"]):
142 id = full_id_dict[strain + "_HP1"][protein] # Same
143 # Common peptides
144 for peptide_seq in list(set(fragmentation_dict[strain +

"_HP1"][protein]).intersection(set(fragmentation_dict[strain +
"_HP2"][protein]))):

↪→

↪→
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145 full_id = id + "_common"
146 entry = ">" + full_id + "\n" + peptide_seq + "\n"
147 f_out.write(entry)
148

149 # Peptides only in HP1
150 for peptide_seq in list(set(fragmentation_dict[strain + "_HP1"][protein]) -

set(fragmentation_dict[strain + "_HP2"][protein])):↪→

151 full_id = id + "_common_HP1"
152 entry = ">" + full_id + "\n" + peptide_seq + "\n"
153 f_out.write(entry)
154

155 # Peptides only in HP2
156 for peptide_seq in list(set(fragmentation_dict[strain + "_HP2"][protein]) -

set(fragmentation_dict[strain + "_HP1"][protein])):↪→

157 full_id = id + "_common_HP2"
158 entry = ">" + full_id + "\n" + peptide_seq + "\n"
159 f_out.write(entry)
160

161

162

163 ### Polyploid strains
164 # 1. Load necessary dictionaries
165 ## 1.1. Polyploid fragmentation dictionary
166 json_file = os.path.join('C:\~\Fragmentation dictionaries\\', 'Polyploids_original.json')
167 with open(json_file) as f_in:
168 fragmentation_dict = json.load(f_in)
169

170 ## 1.2 Full ID dictionary
171 json_file = os.path.join('C:\~\Dictionaries\\', 'full_IDs_polyploids.json')
172 with open(json_file) as f_in:
173 full_id_dict = json.load(f_in)
174

175

176 # 2. Write new FASTAs
177 ## 2.1. Define directory which contains the files
178 directory = "C:\~\Data\\DIA-NN"
179 new_dir = os.path.join(directory, "New polyploid files")
180 os.makedirs(new_dir)
181

182 ## 2.2. First of all iterate over strains
183 strains = list(fragmentation_dict.keys())
184 for strain in strains:
185 # Create FASTA file and start writing into it
186 new_filename = strain + '_HP_nuclear' + ".fasta"
187 file_out = os.path.join(new_dir, new_filename)
188 with open(file_out, "w") as f_out:
189 for protein in list(fragmentation_dict[strain].keys()):
190 full_id = full_id_dict[strain][protein]
191 for peptide_seq in fragmentation_dict[strain][protein]:
192 entry = ">" + full_id + "\n" + peptide_seq + "\n"
193 f_out.write(entry)

C.3 Create stacked barplots - diploid strains as example

1 ## 1. Start from here, load the fragmentation dictionary from a JSON file
2 json_file = os.path.join("C:\~\Fragmentation dictionaries\\", 'Diploids_original.json')
3 with open(json_file) as f_in:
4 fragmentation_dict_diploids = json.load(f_in)
5 del(f_in, json_file)
6

7
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8 # 2. Get the data from S288C, load it from the corresponding dictionary
9 json_file = os.path.join('C:\~\Dictionaries\\', 'S288C_fragmentation_dict.json')

10 with open(json_file) as fp:
11 S288C_dict = json.load(fp)
12 S288C_prots = list(S288C_dict.keys())
13

14

15 # 2.1. Create 3 dictionaries, all of them with strains as keys, and as values more dictionaries
with:↪→

16 # - Proteins that are in that strain and not in S288C (keys), and lists with the fragments
from each (values)↪→

17 # - Proteins common to that strain and S288C, then the fragments that are unique to this
strain w.r.t. S288C↪→

18 # - Proteins common to that strain and S288C, then the fragments that are common to both
19 strains = list(fragmentation_dict_diploids.keys())
20

21 proteins_unidentified = {}
22 proteins_non_common_dict_diploids = {}
23 proteins_common_dict_diploids = {}
24 proteins_common_equal_dict_diploids = {}
25

26 for strain in strains:
27 strain_unidentified = {}
28 strain_common_to_288 = {}
29 strain_common_to_288_equal = {}
30 strain_diff_from_288 = {}
31 strain_prots = list(fragmentation_dict_diploids[strain].keys())
32

33 for prot in strain_prots:
34 if "G0" in prot:
35 strain_unidentified[prot] = fragmentation_dict_diploids[strain][prot]
36 elif prot in S288C_prots:
37 peptides_this_strain = fragmentation_dict_diploids[strain][prot]
38 peptides_288 = S288C_dict[prot]
39 temp_list = list(set(peptides_this_strain) - set(peptides_288))
40 if peptides_this_strain != peptides_288:
41 strain_common_to_288[prot] = []
42 else:
43 strain_common_to_288_equal[prot] = fragmentation_dict_diploids[strain][prot]
44 else:
45 strain_diff_from_288[prot] = fragmentation_dict_diploids[strain][prot]
46

47 proteins_unidentified[strain] = strain_unidentified
48 proteins_non_common_dict_diploids[strain] = strain_diff_from_288
49 proteins_common_dict_diploids[strain] = strain_common_to_288
50 proteins_common_equal_dict_diploids[strain] = strain_common_to_288_equal
51 del(peptides_288, peptides_this_strain, prot, strain, strain_prots, temp_list)
52

53

54 # Create a stacked barplot summarizing all of this
55 ## Create a Pandas dataframe from which to plot
56 df_data = [list(proteins_common_dict_diploids.keys()), [len(x) for x in

proteins_common_equal_dict_diploids.values()], [len(x) for x in
proteins_common_dict_diploids.values()], [len(x) for x in
proteins_non_common_dict_diploids.values()], [len(x) for x in
proteins_unidentified.values()]]

↪→

↪→

↪→

↪→

57 df_for_stacked_barplot_diploids = pd.DataFrame(df_data, index=['Strains', 'Common proteins
between this strain and S288C - same sequence', 'Common proteins between this strain and
S288C - different sequence', "Proteins in this strain not present in S288C", 'Unidentified
proteins in this strain']).T

↪→

↪→

↪→

58

59 ## Re-order so the barplot looks better
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60 df_for_stacked_barplot_diploids = df_for_stacked_barplot_diploids.sort_values(by = ["Common
proteins between this strain and S288C - same sequence"])↪→

61

62 ## Come up with the tags for the columns
63 x_tags = []
64 for index, row in df_for_stacked_barplot_diploids.iterrows():
65 x_tags.append(row['Strains'])
66

67 ## Plot
68 ax = df_for_stacked_barplot_diploids.plot(kind = 'bar', stacked=True, title='Comparison of

proteins present in each strain with respect to S288C')↪→

69 ax.set_xticklabels(x_tags, fontsize=8)
70
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