
Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science
Master's thesis

Sampling Plan for Microbial Testing of Natural Origin Products

Maria Merezhko
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Biostatistics

2023
2024

SUPERVISOR :

dr. Stijn JASPERS

SUPERVISOR :

Dr. Chella ENSOY-MUSORO

Transnational University Limburg is a unique collaboration of two universities in two
countries: the University of Hasselt and Maastricht University.



Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science
Master's thesis

Sampling Plan for Microbial Testing of Natural Origin Products

Maria Merezhko
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Biostatistics

SUPERVISOR :

dr. Stijn JASPERS

SUPERVISOR :

Dr. Chella ENSOY-MUSORO





 2 

Abstract 
Pre-gela+nized starch, a natural origin product used in pharmaceu+cal manufacturing, 

undergoes microbiological tes+ng to ensure its quality and safety. This tes+ng not only 
safeguards public health but also the reputa+on and credibility of the pharmaceu+cal 
industry. Acceptance sampling is a sta+s+cal quality control procedure used to determine 
whether a specific quan+ty of goods or materials should be accepted or rejected. The current 
sampling plan under considera+on is based on the WHO's n-plan, which employs a composite 
sampling approach that uses the √" + 1 equa+on to calculate the sample size, which is a non-
risk-based "rule of thumb" approach. Consequently, the efficacy of this sampling approach 
varies depending on the range of condi+ons. Addi+onally, when a large number of primary 
samples are combined into a composite sample, it is possible to dilute highly contaminated 
samples, resul+ng in failure to detect microbial contamina+on. To evaluate the effec+veness 
of the sampling plans, the current study used a simula+on approach to draw Opera+ng 
Characteris+c (OC) curves, which provide the probability of acceptance for different mean 
bacterial counts. The n-sampling has been found to be sa+sfactory for the majority of 
condi+ons characterized by low variability. For condi+ons that provide unsa+sfactory results 
with n-plan, two alterna+ves are suggested: WHO’s r-plan and alterna+ve composite plan with 
more than one composite sample. 

 

Introduc.on 
Pre-gela+nized starch is a natural origin product that serves as a binder in 

pharmaceu+cal manufacturing to improve the cohesion of the powder mixture. Tes+ng for 
bacterial contamina+on in products of natural origin used in the pharmaceu+cal industry is 
essen+al to ensure the quality and safety of these products. Microbiological contamina+on 
tes+ng not only safeguards public health but also the reputa+on and credibility of the 
pharmaceu+cal industry. 

 
Therefore, upon arrival of a shipment of pregela+nized starch at a produc+on site, the 

product undergoes microbiological tes+ng before it is formally accepted or used to ensure the 
safety of the product. Microbiological tes+ng aims to determine whether a shipment meets 
the recommended specifica+ons for microbiological quality. Various strategies can be used to 
test whether shipments are of sufficient quality. To unambiguously check the quality of 
interest, one may inspect every item in the lot if tes+ng is not destruc+ve. However, such an 
effec+ve approach is costly and oUen unnecessary for ensuring product quality. A useful 
approach that can be used instead is the acceptance sampling (Montgomery, 2009). 

 
Acceptance sampling is a sta+s+cal quality control procedure used to determine 

whether a specific quan+ty of goods or materials should be accepted or rejected. The basic 
procedure involves tes+ng a random sample from a large quan+ty of items rela+ve to the 
quality characteris+c of interest, such as the microorganism concentra+on. If a sample passed 
the test, the en+re lot was considered acceptable. Alterna+vely, if the sample failed to pass 
the test, the en+re lot was returned to the supplier. Such inspec+on should be controlled by 
a sampling plan that specifies the number of units to be inspected, depending on the lot size 
and the criteria for accep+ng or rejec+ng the lot. Different types of acceptance sampling 
approaches, such as single, double, and sequen+al sampling, are used to determine the best 
plan for both the producer and customer. A good plan would minimize the risk of rejec+ng a 
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high-quality lot (producer risk) and/or the risk of accep+ng a low-quality lot (consumer risk), 
while keeping inspec+on costs low.  

 
The performance of a sampling plan is influenced by the parameters of microorganism 

distribu+on, such as within- and between-lot variability, and the parameters of the sampling 
plan itself, including the number of samples collected, specifica+on limit (the microbial 
concentra+ons that dis+nguish acceptable samples from unacceptable ones), and acceptance 
number (the maximum number of contamina+on-posi+ve samples allowed for a lot to be 
accepted). Modifying any of these characteris+cs necessitates altera+on of the sample plan. 

 
There are two broad groups of microorganisms whose presence or count has been 

tested in the natural origin products used in pharmaceu+cal produc+on. The first group 
comprises microorganisms that cause disease, which are commonly referred to as pathogens, 
and includes microorganisms such as Salmonella, Listeria monocytogenes, Cronobacter spp., 
and Escherichia coli. When these substances are iden+fied in samples, they typically result in 
complete rejec+on of the product. Microbiological tests for pathogens aim to iden+fy their 
presence or absence rather than count their number. These tests typically involve enrichment 
to allow pathogen mul+plica+on and require a long +me to complete. The second group of 
microorganisms is the hygiene indicator, which is a non-pathogenic microorganism that is not 
harmful in low quan++es but, when present in large amounts, may suggest considerable 
contamina+on by pathogens. Therefore, microbiological tests for hygiene indicators usually 
focus on a specific group of microorganisms, such as the Total Aerobic Microbial Count 
(TAMC), and rely on quan+fying the number of colony forming units per gram (CFU/g) and 
comparing it with a predefined limit.  

 

Figure 1. Real (A) and idealized (B) OC curves. The Producer’s and Consumer’s risk points are 

shown in blue and orange on the real OC curve, respecCvely. 
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The effec+veness of the sample strategy was evaluated by analyzing its Opera+ng 
Characteris+c (OC) curve. The OC curve provides the probability of acceptance for different 
levels of lot quality, which is commonly represented either as the propor+on of non-
conforming units in the popula+on (represen+ng the frac+on in the lot that does not meet 
the microbiological limit) or as the mean concentra+on of microorganisms in the lot. The OC 
curve graphically illustrates how the chance of accep+ng a lot decreases as the quality 
decreases. Figure 1A shows an example of the OC curve. 

 
As shown in the graph, any specific level of microbial contamina+on corresponds to a 

certain probability of accep+ng a lot, and a sampling plan can be designed to control this 
probability. Normally, there are two points on the lot quality axis whose probabili+es we want 
to control, resul+ng in two fixed points on the OC curve: the producer’s and the consumer's 
risk points. The producer’s risk point defines the probability of rejec+ng a lot of acceptable 
quality and is characterized by the Acceptance Quality Limit (AQL) and producer’s risk (ɑ). AQL 
is the worst lot quality that is s+ll considered acceptable, and the producer’s risk is the 
probability of rejec+ng a lot of this quality. Similarly, the consumer’s risk point defines the 
probability of accep+ng a lot of poor quality and is characterized by the Limi+ng Quality Level 
(LQL) and the consumer's risk (β). LQL is a lot quality that is expected to be rejected with a 
high probability by consumers (see Figure 1A). A sampling plan can be designed by defining 
two risk points on the OC curve.  

 
An ideal sampling plan should clearly dis+nguish between acceptable and unacceptable 

lots. Acceptable lots should always be accepted, whereas unacceptable lots should not. An 
example of this ideal plan is shown in Figure 1B. However, in prac+ce, no sampling plan can 
achieve a perfect OC curve. The transi+on between the 100% and 0% acceptance probabili+es 
is gradual. The steeper the OC curve, the more discrimina+ng the sampling plan, allowing us 
to differen+ate between acceptable and unacceptable lots more effec+vely. The chance of 
incorrectly accep+ng or rejec+ng a lot decreases as the sample size increases; however, the 
expenses also increase. Therefore, the risks and costs should be balanced when designing the 
sampling plan. 

 
Acceptance sampling techniques can be classified in diverse ways. One way to classify 

sampling plans is based on the measured quality characteris+cs. There are two main types of 
sample plans in this regard: airibute sampling plans and variable sampling plans. In airibute 
sampling plans, the measured characteris+cs are classified on a pass or fail basis using a 
specifica+on limit. For example, a sample containing less than 100 CFU/g of microorganisms 
is considered acceptable. A concentra+on of 100 CFU/g or higher is considered unacceptable. 
Variable sampling plans, on the other hand, evaluate non-categorized quan+ta+ve 
characteris+cs. 

 

Descrip.on of the problem(s) or research ques.ons 
The World Health Organiza+on (WHO) outlines three schemes for sampling 

pharmaceu+cal goods and associated materials (World Health Organiza+on, 2005): 
1. n-plan: This sampling plan is recommended when the material is consistent and the 

source is reputable and dependable. The n-plan is a composite sampling plan; thus, prior to 
tes+ng, the samples are first combined to form a single composite sample (Figure 2B). The 
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number of primary samples taken can be determined using the formula n=√" + 1, where n 
represents the number of samples and N represents the lot size or total number of sampling 
units.  

2. p-plan: This sampling plan can be used when the material is uniform and received 
from a recognized source, and the main purpose is to test for iden+ty. The formula n=0.4*√" 
was used to determine the sample size. The p-plan is not of interest in this study. 

3. r-plan: This plan is suitable for sampling non-uniform materials or materials supplied 
by an unknown source. The r-plan is an individual tes+ng plan (Figure 2A). The sample size 
was determined using the formula n=1.5*√". 

 
The current sampling plan under considera+on is based on the WHO ’s n-plan. This plan 

employs a composite sampling approach with only one composite sample (Figure 2B), in 
which the quan+ty of bags sampled is based on a formula √" + 1. Subsequently, individual 
samples were combined into a single composite sample for microbiological analysis, which 
was performed in duplicates. There are two main issues with the WHO n-plan: (1) the use of 
composite sampling, and (2) the validity of √" + 1 the rule to establish the sample size. 

 
The composite sampling procedure is oUen considered controversial. The advantage of 

composite sampling is the reduced inspec+on cost. Instead of conduc+ng mul+ple individual 
tests, composi+ng allows the material to be combined from these bags into a single or several 
composite samples, and therefore, conduct fewer tests. Tes+ng a composite sample is 
advantageous for tes+ng a sample prepared from a single bag, as composi+ng is a physical 
averaging process, and therefore, more accurately represents the lot mean value of interest. 
However, informa+on regarding this variability has been par+ally or fully lost. When the 
sampling plan involves tes+ng several composite samples, it is possible to es+mate the 
variability of the lot at the individual sample level by weighing the measured variance of the 
composite samples. However, the WHO n-plan requires the tes+ng of a single composite 
sample; therefore, within-lot variability must be known to es+mate the risks imposed by the 
plan. 

 

Figure 2. Individual (A) and composite (B, C) sample tesCng. In individual sampling plans, such as 

the WHO’s r-plan, each sample is tested individually; therefore, the number of analyCcal samples 

is equal to the number of items in a sample. In composite sampling plans, such as the WHO’s n-

plan, several primary samples are combined into one composite sample (B). AlternaCvely, 

composite sampling may include several composite samples each consisCng of several primary 

samples (C). 
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Another concern with composite sampling is the risk of dilu+ng an individual 
contaminated sample with “clean” samples, and therefore failing to detect any contamina+on. 
However, a single uncontaminated sample has the poten+al to lower the average 
concentra+on of other moderately contaminated samples, leading to the approval of a 
substandard lot. Therefore, the only reason for choosing composite sampling instead of 
tes+ng all the samples individually is that it is economical, and this methodology has many 
limita+ons. 

 
The use of an √" + 1 equa+on to calculate the sample size poses another problem 

because it is not risk-based, which leads to varying levels of effec+veness across different 
shipment sizes and numerous other associated parameters (Izenman, 2001; Saranadasa, 
2003). The probability-based sampling plan es+mates the sample size to control for the risk of 
rejec+ng a high-quality lot (producer risk) and/or accep+ng a low-quality lot (consumer risk). 
The sample size needed to maintain these risks at the desired level depends on mul+ple 
parameters, including the underlying distribu+on of the quality of interest, specifica+on limit, 
and capability to properly mix the composite sample. The ability of an √" + 1	equa+on-based 
plan to control desired producer’s and/or consumer’s risks also depends on these parameters. 
The aims of this study were as follows: 

1. To evaluate the efficacy of the exis+ng sampling plan for a range of shipment sizes, 
within- and between-lot variabili+es, and sample mixing quality. 

2. Evaluate whether alterna+ve sampling plans are advantageous to the n-plan: (1) 
WHO’s r-plan and alterna+ve risk-based composite sampling plan with more than one 
sample (Figure 2C) 

 

Descrip.on of the methodology 

Simula'on approach 
If individual samples are tested and the distribu+on is known, the acceptance 

probabili+es for the OC curve can be derived analy+cally. One can use, for instance, the World 
Health Organiza+on’s risk managers’ guide for sta+s+cal aspects of microbiological criteria 
related to foods and their accompanying spreadsheets (Na+ons & Organiza+on, 2019). 
However, when composite sampling and several sources of variability are involved, the 
analy+cal solu+on becomes intractable. Therefore, this study used a simula+on approach to 
evaluate the sampling plans over a range of condi+ons (the detailed simula+on algorithm is 
described below). The methodology here is similar to one used by Edgar Santos-Fernández for 
variable sampling plans with several composite samples (Santos-Fernández et al., 2015). In 
contrast to the Santos-Fernández approach, the current project (1) is mainly focused on 
composite sampling plans with only one composite sample, which was not considered by 
Edgar Santos-Fernández, (2) uses larger range of primary samples in one composite sample, 
(3) uses concentra+on-based airibute sampling, and (4) instead of simula+ng sample directly, 
first simulates a lot and then takes a sample from the lot. The later approach is taken as lot 
sizes typical for pregela+nized starch shipments in J&J are rather small. 

 

The sampling distribu'on 
Microorganisms mul+ply rapidly, doubling in number with each replica+on cycle, 

resul+ng in a right-skewed distribu+on, which can be modelled using different distribu+ons. 
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This requires the es+ma+on of distribu+on parameters such as prevalence, mean microbial 
count, standard devia+on, and shape parameters. Determining the most suitable distribu+on 
for a given situa+on is oUen a complex task that requires data collec+on and the es+ma+on 
of distribu+on parameters. In the absence of data, the default approach considers a log10-
normal distribu+on because microbiological popula+ons in foods are oUen described using a 
log10-normal distribu+on. The log10-normal distribu+on being right-skewed is par+cularly 
suitable when the contamina+on is high and therefore the microorganisms may form clusters. 
If there is evidence against the log10-normal distribu+on, one can use alterna+ve distribu+ons, 
such as Gamma, Poisson-lognormal, or nega+ve-binomial distribu+ons (Jongenburger et al., 
2012). The current projects assume that the mean count of microorganisms in pregela+nized 
starch follows a log10-normal distribu+on. 

 
When using a lognormal distribu+on, one should be careful when conver+ng the 

calculated sta+s+cs on a logarithmic scale back to an arithme+c scale. Therefore, it is 
important to differen+ate between arithme+c and geometric means in the original scale. 
When the average log count is transformed to the original scale via direct exponen+a+on, it 
provides a geometric mean, resul+ng in underes+ma+on of the microorganism count and 
risks. Therefore, in the current study, the arithme+c mean, calculated as the average 
microorganism count in the incoming lot, was used to evaluate the risks, as recommended by 
the World Health Organiza+on’s risk managers’ guide for sta+s+cal aspects of microbiological 
criteria related to foods (Na+ons & Organiza+on, 2019). All plots use arithme+c mean counts 
if not men+oned otherwise. 

 

Sources of variability 
In addi+on to (1) within-lot variability, the current study also analyzed how (2) lot-to-lot 

variability and (3) addi+onal variability due to imperfect mixing impacts the performance of 
sampling plans. 

 
Modeling lot-lot variability 

Lot-to-lot variability was added to the model via hierarchical modeling. Thus, each lot’s 
mean was first computed at the log10-scale as a sample of size one from the normal 
distribu+on centered around the theore+cal mean value on the log10-scale with a standard 
devia+on equal to 0.2, 0.4, or 0.8, corresponding to low, medium, and high lot-to-lot 
variability.  If no lot variability is assumed, the lot values are exactly equal to the theore+cal 
mean value. 

 
Modeling variability due to imperfect mixing 

The process of mixing/blending is another source of variability in sampling plans, as 
imperfect physical averaging in composite sample prepara+on can lead to less representa+ve 
final products. The quality of mixing during composite sample prepara+on varies depending 
on both the type of material and sample prepara+on method. For instance, liquids are 
generally mixed beier than solid materials such as starch powder. When homogeniza+on is 
performed manually, the mixing quality is worse than that of automa+c sample prepara+on. 
Therefore, mixing depends not only on the material, but also on the equipment used to 
prepare a composite sample. 
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The mean count of microorganisms in the composite sample can be seen as a weighted 
average of the primary samples (Elder et al., 1980). When the contribu+ons of primary 
samples are well controlled and, therefore, equal, the weights become fixed and can be 
described by a discrete uniform probability distribu+on (Pa+l et al., 2011). Otherwise, when 
the contribu+ons of primary samples are unequal (imperfect mixing), the weights become 
random and can be described by non-uniform probability distribu+ons, such as the Dirichlet 
distribu+on, mul+variate hypergeometric distribu+on, and nega+ve binomial (Brown & Fisher, 
1972; Rohde, 1976; Santos-Fernández et al., 2015). The current project models mixing quality 
with the Dirichlet distribu+on with the shape parameter equal to 0.1, 1, or 5 to model the 
poor, moderate, or good mixing quality, respec+vely (Santos-Fernández et al., 2015). 

 

Summary of the range of parameters modelled: 
The performance of the acceptance sampling plans using composite sampling and √" +

1 equa+on to determine the sample size was compared across a range of four parameters: 
§ Three lot [sample] sizes (10 [4], 50 [8], and 100 [11]) were chosen to represent three 

categories of lot sizes common for pre-gela+nized starch inspec+on at J&J: small (10 
items), medium (50 items), and large (100 items). 

§ Three within-lot variability levels (low: sdlog = 0.2; medium: sdlog = 0.4; high: sdlog = 
0.8). 

§ Four between-lot variability levels (no variability: sdlog=0; low: sdlog=0.2; medium: 
sdlog = 0.4; and high: sdlog = 0.8); 

§ Four mixing quali+es (perfect, good, medium, and poor). 
 
Importantly, high between-lot variability was included for comparison purposes, as with 

high lot-to-lot variability, it is recommended to improve the manufacturing process rather 
than increase the stringency of the sampling plan. Even with a discrimina+ng sampling plan, 
the sampling costs will be high owing to the constant addi+onal sampling of replacement lots. 

	
Accuracy 

 Although originally acceptance sampling was not viewed via a hypothesis tes+ng 
framework, such an approach can provide a beier understanding of the sampling plans 
(Hund, 2014; Samohyl, 2018). Hence, sampling plans can be considered hypothesis tests 
regarding the quality of the lot. As the consumer faces more severe consequences for 
incorrectly accep+ng the lot of poor quality than for incorrectly rejec+ng the lot of good 
quality, the null hypothesis in this project is that the lot is of unacceptable quality, and the 
alterna+ve hypothesis is that the lot is of acceptable quality (Samohyl, 2018). 

 
A true posi+ve result (TP) is one in which the test correctly iden+fies that the lot is not 

of acceptable quality. Similarly, a true nega+ve (TN) result is one in which the test correctly 
iden+fies that the lot is of acceptable quality. A false nega+ve (FN) result is one where the test  

Table 1. Acceptance sampling decision classificaCon 

 Lot 

acceptable unacceptable 

Sample acceptable TN FN 

unacceptable FP TP 
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incorrectly concludes that the lot is of acceptable quality, while in reality the lot is of 
unacceptable quality. Finally, a false posi+ve result (FP) is one where the test incorrectly 
concludes that the lot is of unacceptable quality, whereas in reality, the lot is of acceptable 
quality. Consumers are most interested in maintaining a low false nega+ve rate. The false 
nega+ve rate depends on the prior probability of the lot being acceptable, and therefore on 
the true mean count of the lot. See Table 1 for the acceptance sampling decision 
classifica+ons. In this study, H0 stated that the lot mean count is 100 CFU/g or above, but the  
same approach can be used for tes+ng H0 with different mean count values or hypotheses 
involving prevalence (propor+on of items of unacceptable quality in a lot) instead of lot mean 
count. 

 
The proportion of false negative decisions was evaluated graphically and as a 

percentage of the area under the OC curve that resulted from false negative decisions 
(relative FN AUC). To calculate relative FN AUC, first area under OC curve was estimated with 
numerical integration using the trapezoidal rule (only the curve before LQL was analyzed). 
Then the area under curve of absolute probability of false nega+ve decisions was calculated 
in the same way. Relative FN AUC was derived by dividing the FN AUC are by the OC AUC (AUC 
of acceptance probability): 

%	#$	%&'	 = 	 %&'	)*	#$	+,)-.-/0/12	+,/),	1)	343
%&'	)*	.556+1.756	+,)-.-/0/12	+,/),	343 

The % FN AUC is a false negative rate measure (1 – Sensitivity) for cases when no prior 
information on the distribution of mean microorganism count is available. % FN AUC presents 
an assessment of averaged false negative rate. When data on the average quality of lots is 
accessible, Figures 8-19 can be utilized to see the potential risk of making a false negative 
decision in proximity to the average quality value. For cases when the distribution of mean 
count in shipment is known, Bayesian approach to calculate false negative rate can be used 
to receive false negative rate tuned by prior distribution. Graphical evaluation of the 

Table 2. Simulated parameters and their descripCon 

Parameter Descrip6on Range 
means  True geometric means of the lot-generaCng process     0.1 - 1500 

p.accept  Probability of acceptance for each value of means; used to 

construct OS curve  

 0 - 1 

concentraCon.incoming  Bacterial (TAMS) concentraCon in the lots prior to tesCng 

(actual arithmeCc mean bacterial count)  

 0 - +inf 

concentraCon.accepted  Bacterial (TAMS) concentraCon in the accepted lots 

(arithmeCc) 

 0 - +inf 

 outliers.undetected Probability of accepCng the composite sample with at least 

one individual item outside the specificaCon limit 

0 - 

p.accept  

 TP Sample is correctly rejected, where correctly means that the 

mean lot concentraCon of the accepted lot is above the 

specificaCon limit  

0 - 1 

 FP  Sample is falsely rejected, where correctly means that the 

mean lot concentraCon of the accepted lot is above the 

specificaCon limit  

0 - 1 

 TN  Sample is correctly accepted, where correctly means that 

the mean lot concentraCon of the accepted lot is not above 

the specificaCon limit  

0 - 1 

 FN Sample is falsely accepted, where correctly means that the 

mean lot concentraCon of the accepted lot is not above the 

specificaCon limit  

0 - 1 
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probabilities of false negative and false positive decisions helps to further evaluate the 
effectiveness of sampling plans. 
 

Addi+onally, the difference between the incoming lot quality and outgoing lot quality 
(quality of accepted lots) was evaluated graphically to es+mate the effec+veness of sampling 
plans. The mean microbial of incoming and accepted lots was ploied against mean microbial 
count of incoming lots, therefore the first represent a reference line for the second. 

 

Simula'on algorithm 
Because the analy+cal solu+on is intractable when composite sampling and lot-to-lot 

variability are involved, a simula+on approach was used to evaluate the sampling plans. Table 
2 lists the parameters computed using the proposed algorithm. 

 
Step 0: Ini+alize Parameters 

The simulated parameters were set as follows: number of bags in the lot (N), primary 
sample size (n), number of composite samples (k, used only in custom plans), and standard 
devia+on on the log scale for within-lot variability (sdlog), lot-to-lot variability (sdlog.batch), 
and mixing quality (mixing) as perfect, good, moderate, or poor. In addi+on, we set the out-
of-specifica+on limit (limit), number of simulated lots (n.sim), and seed for reproducible 
results (seed). For each mean count value (ranges from 0.1 to 1500 on the geometric mean 
scale, but the increase steps are not equal (0.1, below 1; 1 below 500, and 10 for the rest), 
repeat the following steps specified number of simula+on +mes (n.sim). The recommended 
number of simula+on cycles is 50 000. 

  
Step 1: Generate lot contamina+on levels 

For each mean concentra+on value, the log lot bacterial concentra+on is generated 
using a normal distribu+on centered at the mean concentra+on value, with a standard 
devia+on equal to the specified lot-to-lot variability (sdlog.batch). If there is no lot-to-lot 
variability, the log bacterial concentra+on is exactly equal to the mean concentra+on value. 

 
Step 2: Generate the lot and the sample 

Simulate many size NN using a log-normal distribu+on with base 10 (mean on log scale 
is equal to lot contamina+on level generated in step 2, and standard devia+on on the log scale 
is equal to the specified within-lot variability (sdlog). For each lot, draw a sample or samples 
of size n from the generated lot without replacement. 

 
Step 3. Calculate the sample mean and incoming concentra+on 

The sample mean is calculated using either the arithme+c mean (perfect mixing) or a 
weighted mean based on Dirichlet weights, depending on the mixing parameter. The shape 
parameter used to calculate the Dirichlet weights is equal to 0.1, 1, or 5 if the mixing is poor, 
moderate, or good, respec+vely. The incoming bacterial concentra+on is calculated as the 
mean bacterial concentra+on of all items in the lot. 

 
Step 4: Determine acceptance or rejec+on of the lot 

If the sampling plan implies only one composite sample, the mean of this sample is 
compared to a predefined limit (100 CFO/g). If the sample mean count is below the limit, the 
lot is accepted; otherwise, it is rejected. If the sampling plan implies several composite 
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samples, the mean count of each sample is compared to the limit. The lot is accepted only if 
all samples are below the limit. If individual tes+ng plan is used, when value of each item in a 
sample has to be below the limit for the posi+ve acceptance decision. Track the number of 
accepted and rejected lots. 

 
Step 5: Calculate mean bacterial count and presence of outliers in the accepted lots  

For the accepted lotes, the mean bacterial count has to be calculated. Addi+onally, track 
the number of accepted lots whose sample contains outliers (outlier here is the item with 
bacterial concentra+on above the specifica+on limit). 

 
Step 6: Compute True and False Posi+ves/Nega+ves  

Calculate the true posi+ves (TP), false posi+ves (FP), true nega+ves (TN), and false 
nega+ves (FN) based on the lot acceptance decisions for H0: lot mean count of >= 100 CFU/g. 
See Table 1 for decision classifica+on. 
 
Step 7: Aggregate results  

For each mean concentra+on value, aggregate the results across all simula+ons. The 
acceptance probability is calculated as the number of accepted lots divided by the number of 
simula+on cycles. Calculate the probability of accep+ng a sample with an outlier as the 
number of accepted lots containing an outlier divided by the number of simula+on cycles. 
Calculate the concentra+on in incoming and accepted lots as means of the corresponding 
values across all cycles of simula+ons. Calculate the propor+on of TP, FP, TN, and FN for each 
mean lot concentra+on and prevalence as the propor+on of the corresponding decisions 
across all simula+on cycles. Calculate the probability of outlier detec+on as the number of 
accepted samples containing outliers divided by the number of samples containing outliers. 
Find AQL and LQL values (values of mean count corresponding to producer’s and consumer’s 
probabili+es. 
 

Discussion and interpreta.on of results 

AQL and LQL values 
The performance of acceptance sampling plans was compared across a range of four 

parameters. Figures 3-5 show OC curves of n-sampling plans, while Figure 6 show OC curves 
of r-plans. Prior to visual assessment of the curves, the AQL and LQL values are presented for 
producer’s risk ɑ=0.05 and consumer’s risk β=0.1 at Tables 3.1-4 for the n-plan with perfect, 
good, moderate, and poor mixing. Table 3.5 shows the AQL and LQL values for the r-plan. As 
the LQL point is more important for the consumer, it will be pivotal for the choice of the 
sampling plan. A consumer may pursue various target LQL values, but here 1000 CFU/g will be 
used as an example threshold, as it is the accepted microbiological limit for non-sterile 
substances used in pharmaceu+cals according to both the United States Pharmacopeia (USP) 
and the European pharmacopoeia (European Directorate for the Quality of Medicines & 
HealthCare, 2023; United States Pharmacopeial Conven+on, 2009). Hence, plans with LQL > 
1000 CFU/g are considered unsa+sfactory. However, the OC curves and all values in the AQL-  
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Table 3.1. AQL and LQL values for sampling plans with perfect mixing.  AQL and LQL values 

of various sampling plans are CFU/g. LQL values > 1000 CFU/g are shown in red. 
Variability (sdlog) Lot (sample) size 

Within- 
lot 

Between-
lot 

10 (4) 50 (8) 100 (11) 
AQL LQL AQL LQL AQL LQL 

0.2 

0 69 140 77 126 79 122 
0.2 49 222 50 210 51 208 
0.4 33 535 33 516 33 509 
0.8 24 5991 25 5791 25 5679 

0.4 

0 33 219 57 172 61 159 
0.2 24 307 45 257 46 241 
0.4 49 679 32 586 32 567 
0.8 40 7091 26 6489 28 6161 

0.8 

0 31 869 33 487 35 399 
0.2 27 1082 32 629 33 523 
0.4 30 2045 29 1279 28 1087 
0.8 29 18736 30 12131 29 10714 

Table 3.2. AQL and LQL values for sampling plans with good mixing.  AQL and LQL values 

of various sampling plans are CFU/g. LQL values > 1000 CFU/g are shown in red. 
Variability (sdlog) Lot (sample) size 

Within- 
lot 

Between- 
lot 

10 (4) 50 (8) 100 (11) 
AQL LQL AQL LQL AQL LQL 

0.2 

0 68 143 76 128 78 123 
0.2 48 227 50 213 51 211 
0.4 32 537 34 519 34 512 
0.8 23 6205 24 5975 24 5768 

0.4 

0 32 227 55 179 60 164 
0.2 23 314 44 261 46 248 
0.4 47 699 33 601 33 577 
0.8 39 7152 25 6695 25 6406 

0.8 

0 30 918 33 513 33 415 
0.2 28 1133 30 663 30 544 
0.4 27 2157 25 1339 25 1125 
0.8 31 19350 31 12446 29 10841 

Table 3.3. AQL and LQL values for sampling plans with moderate mixing.  AQL and LQL 

values of various sampling plans are CFU/g. LQL values > 1000 CFU/g are shown in red. 
Variability (sdlog) Lot (sample) size 

Within- 
lot 

Between- 
lot 

10 (4) 50 (8) 100 (11) 
AQL LQL AQL LQL AQL LQL 

0.2 

0 64 151 71 135 73 130 
0.2 47 230 50 220 50 217 
0.4 33 545 33 529 33 509 
0.8 27 5996 26 5995 27 5893 

0.4 

0 33 254 51 199 54 181 
0.2 27 346 42 285 44 265 
0.4 44 750 31 627 32 600 
0.8 38 7605 30 7202 24 6720 

0.8 

0 30 1128 33 619 33 499 
0.2 29 1385 30 800 33 646 
0.4 30 2594 29 1558 30 1307 
0.8 27 21576 30 14431 29 12239 
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LQL tables can be used to es+mate the performance of these plans against other desirable 
LQL targets. 

 
As can be seen from the tables, efficiency of the sampling plan using the √" + 1 

equa+on for the sample size calcula+on varies across the lot sizes. The extent of this effect, 
however, depends on within- and between-lot variability. If there is high variability between 
lots (sdlog[between] = 0.8), none of discussed plans should be used, even if mixing is perfect 
and within-lot variability is low. The high between-lot variability (sdlog[between] = 0.8) is used 
in this project as a "limi+ng" case and is implemented to see the trends clearly. It requires 
tuning of the manufacturing process since acceptance sampling here would be very costly. 
  

If within-lot variability is low, n-plan can be used with all lot sizes, regardless of mixing 
quality, as long as between-lot variability is moderate at most. When within-lot variability is 
moderate, n-plan can s+ll be used unless the mixing quality is poor and the lot size is small. If 
there is high variability within a lot and the quality of mixing is poor, the n-plan cannot be 

Table 3.4. AQL and LQL values for sampling plans with poor mixing.  AQL and LQL values 

of various sampling plans are CFU/g. LQL values > 1000 CFU/g are shown in red. 
Variability (sdlog) Lot (sample) size 

Within- 
lot 

Between- 
lot 

10 (4) 50 (8) 100 (11) 
AQL LQL AQL LQL AQL LQL 

0.2 0 56 182 59 167 61 159 
0.2 44 265 46 251 46 244 
0.4 32 601 32 576 32 570 
0.8 24 6760 23 6233 23 6403 

0.4 0 32 392 40 318 41 286 
0.2 24 514 36 429 37 383 
0.4 37 1025 30 880 31 808 
0.8 34 9847 26 9127 25 8356 

0.8 0 28 2961 27 1705 27 1343 
0.2 25 3524 30 2111 30 1653 
0.4 27 6321 25 3844 25 2990 
0.8 24 44449 29 31980 37 24313 

Table 3.5. AQL and LQL values for r sampling plans (noncomposite plans).  AQL and LQL 

values of various sampling plans are CFU/g. LQL values > 1000 CFU/g are shown in red. 
Variability (sdlog) Lot (sample) size 

Within- 
lot 

Between- 
lot 

10 (5) 50 (11) 100 (15) 
AQL LQL AQL LQL AQL LQL 

0.2 0 38 96 33 74 32 68 
0.2 28 146 25 117 23 109 
0.4 20 344 17 278 15 261 
0.8 18 3857 12 3154 12 2891 

0.4 0 20 112 14 69 12 57 
0.2 18 153 12 96 10 80 
0.4 18 334 9 212 9 180 
0.8 15 3451 8 2197 8 1849 

0.8 0 12 297 4 109 4 76 
0.2 8 374 4 140 4 97 
0.4 5 685 4 258 3 190 
0.8 6 5829 6 2465 3 1802 
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implemented. When the mixing quality is moderate at most and within-lot variability is low or 
absent, the n-plan can be used with medium and large lots. In these cases, n-plan can also be 
applied to small lots only when mixing is perfect. Instead of n-plan, r-plan was sufficient to 
maintain LQL below 1000 CFU/g in all condi+ons, except when lot-to-lot variability was high. 
 

OC curves 
OC curves provide a more complete picture of the sampling plan performance. Thus, 

Figures 3-6 show that as within- or between-lot variability increases, AQL and LQL tend to 
decrease and increase, respec+vely. The OC curves of plans with good mixing are not shown 

Figure 3. OC curves of n-plans with perfect mixing. The do\ed lines correspond to the AQL and LQL 

values. Within-lot variability is shown at the top; therefore, three columns correspond to three 

levels of within-lot variability. The between-lot variability increases along verCcal lines. 
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because they closely resemble the OC curves of plans with perfect mixing. Hence, the distance 
between these points on the x-axis increases; thus, the discrimina+ng ability of the sampling 
plan decreases. Similarly, when lot, and therefore, sample size decreases, the discrimina+ng 
ability of the sampling plan also decreases. Consequently, the sampling plan for large lots with 
low within-lot and no between-lot variability showed the steepest OC curve among all n-plans. 
Importantly, plans with good discrimina+ng ability show different performances across the 
three lot sizes, while plans with poor discrimina+ng ability are equally bad across the three lot 
sizes. The figures also show that between-lot variability seems to have a higher effect on the 
performance of the sampling plan than within-lot variability. Furthermore, when between-lot 
variability is high (sdlog=0.8), neither n- nor r-plans provide sa+sfactory performance. 
Unfortunately, even if the sampling plan is stringent enough to provide sa+sfactory 

Figure 4. OC curves of n-plans with moderate mixing. The do\ed lines correspond to the AQL and 

LQL values. Within-lot variability is shown at the top; therefore, three columns correspond to three 

levels of within-lot variability. The between-lot variability increases along verCcal lines. 
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performance, the sampling process will be very costly as a large number of lots will be 
returned to the producer and addi+onal sampling will be required. Therefore, it is 
recommended to adjust the manufacturing process in such a scenario rather than improve 
sampling.  

 

Accuracy 
The more primary samples included in a composite sample, the closer the mean count 

of the composite sample will be to the mean count of the lot. However, when the number of 
primary samples is too high, the risk of dilu+on arises. The risk of dilu+on is a known constraint 

Figure 5. OC curves of n-plans with poor mixing. The do\ed lines correspond to the AQL and LQL 

values. Within-lot variability is shown at the top; therefore, three columns correspond to three 

levels of within-lot variability. The between-lot variability increases along verCcal lines. 
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of composite sampling, which arises when a single sample with a high bacterial concentra+on 
level is mixed with low contamina+on samples, leading to a composite sample that 
inaccurately tests nega+ve. If the primary samples were tested individually, the lot would be  
rejected. To decrease the probability of such a scenario, the maximum limit on the primary 
sample number is oUen imposed. Alterna+vely, the specifica+on limit may be reduced to 
decrease the probability of FN results. For instance, one recommenda+on is to divide the 
specifica+on limit by the number of primary samples in one composite sample. For example, 
if one aims to reject lots with mean bacterial counts below 1000 CFU/g and use 100 CFU/g as 
a specifica+on limit for acceptance sampling, the maximum number of primary increments 
would be 10 (EPA, 1995).  

Figure 6. OC curves of r-plans. The do\ed lines correspond to the AQL and LQL values. Within-lot 

variability is shown at the top; therefore, three columns correspond to three levels of within-lot 

variability. The between-lot variability increases along verCcal lines. 
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Therefore, the accuracy of the n-sampling plan was studied. First, the probability of accep+ng 
a sample containing an “outlier” was studied. Note that here, the term “outlier” is used to 
describe the primary sample above the specifica+on limit, which would be rejected if tested 
individually. Figures 7 show several examples of real OC curves of sampling plans with perfect 
mixing and lot size=50 (in teal), the probability of accep+ng the sample containing at least one 
outlier (in red), and the ideal OC curve (as the OC curve would look if all samples with outliers 
were rejected (in orange). The probability of acceptance due to dilu+ons for the rest of the 
sampling plans can be seen in Figures 8-19. Plans with a high risk of accep+ng samples due to 

Figure 7. OC curves of n-plan with perfect mixing, Lot size = 50. The do\ed lines correspond to the 

AQL and LQL values. Within-lot variability is shown at the top; therefore, three columns correspond 

to three levels of within-lot variability. The between-lot variability increases along verCcal lines. Teal 

lines are real OC curves, orange lines show as OC curves would look if samples with outliers were 

rejected. Red line is the probability of accepCng a sample containing an outlier. 
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dilu+on would have a large distance between real and ideal OC curves as well as a high 
probability of accep+ng a sample with outliers below LQL.  

 

Table 4. Relative % FN AUC. The percentage of area under the OC curve resulting from false 

negative decision. Green: relative % FN AUC < 10%; yellow: relative % FN AUC < 30%; orange: 

relative % FN AUC is 30% and above. 

Within-lot Between-lot 
Perfect mixing Good 

10 (4) 50 (8) 100 (11) 10 (4) 50 (8) 100 (11) 

0.2 

0 8 % 6 % 6 % 9 % 7 % 6 % 

0.2 7 % 6 % 5 % 8 % 6 % 6 % 

0.4 6 % 5 % 5 % 7 % 6 % 5 % 

0.8 5 % 4 % 4 % 6 % 5 % 4 % 

0.4 

0 19 % 17 % 15 % 20 % 18 % 16 % 

0.2 17 % 15 % 13 % 19 % 17 % 14 % 

0.4 16 % 14 % 12 % 17 % 15 % 13 % 

0.8 12 % 11 % 9 % 13 % 12 % 10 % 

0.8 

0 44 % 47 % 45 % 46 % 50 % 48 % 

0.2 42 % 45 % 43 % 44 % 48 % 45 % 

0.4 39 % 41 % 38 % 41 % 44 % 41 % 

0.8 32 % 33 % 31 % 34 % 34 % 32 % 

Within-lot Between-lot 
Moderate mixing Poor mixing 

10 (4) 50 (8) 100 (11) 10 (4) 50 (8) 100 (11) 

0.2 

0 11 % 9 % 8 % 19 % 17 % 16 % 

0.2 10 % 8 % 7 % 17 % 16 % 14 % 

0.4 9 % 7 % 6 % 15 % 14 % 13 % 

0.8 7 % 6 % 5 % 12 % 11 % 10 % 

0.4 

0 26 % 23 % 20 % 43 % 41 % 38 % 

0.2 24 % 21 % 18 % 41 % 39 % 36 % 

0.4 22 % 18 % 16 % 37 % 34 % 31 % 

0.8 17 % 15 % 13 % 29 % 27 % 25 % 

0.8 

0 54 % 56 % 53 % 79 % 80 % 78 % 

0.2 52 % 54 % 51 % 77 % 79 % 77 % 

0.4 48 % 49 % 47 % 74 % 76 % 73 % 

0.8 39 % 40 % 37 % 63 % 64 % 61 % 

Within-lot Between-lot 
r-plan    

10 (5) 50 (11) 100 (15)    

0.2 

0 0 % 0 % 0 %    

0.2 0 % 0 % 0 %    

0.4 0 % 0 % 0 %    

0.8 0 % 0 % 0 %    

0.4 

0 1 % 0 % 0 %    

0.2 2 % 0 % 0 %    

0.4 2 % 0 % 0 %    

0.8 1 % 0 % 0 %    

0.8 

0 12 % 3 % 1 %    

0.2 12 % 4 % 1 %    

0.4 11 % 4 % 2 %    

0.8 9 % 3 % 1 %    
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It seems that the probability of accep+ng a sample with an outlier peak soon aUer the 
AQL, as before the AQL, only a few samples would contain outliers, especially in low variability 
condi+ons. The probability of accep+ng a sample with outliers is already quite low around LQL 
as outliers there are probably quite extreme and have higher prevalence to measurably affect 
the mean of a composite sample, resul+ng in rejec+on. Within-lot variability seems to 
increase the rela+ve propor+on of acceptance decisions owing to dilu+on. However, between-
lot variability seems to have an opposite effect. For some plots, the majority of accepted 
samples seem to contain at least one outlier.  

 

Figure 8. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. n-plan: perfect mixing, lot size = 10 items. 
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Acceptance of the sample containing an outlier, however, does not mean that all these 
decisions are false nega+ves concerning the lot mean count. Therefore, all accepted decisions 
were classified in the context of hypothesis tes+ng. Special emphasis was placed on the % of 
FN decisions (lot mean count > 100 CFU/g, but lot is accepted) as they are the costliest for the 
consumer. The next series of plots (Figures 8-19) show all decisions classified in the hypothesis 
tes+ng paradigm. The plots for good mixing quality are not shown as they are almost iden+cal 
to the perfect quality plots. The decisions are categorized as follows (see also Table 1):  (1) 
True Nega+ve (TN): correctly accep+ng a lot (lot mean count < 100 CFU/g); (2) False Nega+ve 
(FN): incorrectly accep+ng a lot (lot mean count ≥ 100 CFU/g); (3) True Posi+ve (TP): correctly 

Figure 9. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. n-plan: perfect mixing, lot size = 50 items. 
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rejec+ng a lot (lot mean count ≥ 100 CFU/g); (4) False Posi+ve (FP): incorrectly rejec+ng a lot 
(lot mean count < 100 CFU/g). 

 
A successful plan is expected to exhibit a low occurrence of both false nega+ve and false 

posi+ve determina+ons. However, given that consumer interest primarily lies in minimizing 
the false nega+ve rate, this aspect is the primary focus of the current study. Hence, the greater 
presence of green hues and fewer instances of red hues in Figures 8-19 indicate a higher level 
of success in terms of sensi+vity and specificity. When the red color occupies a larger 
propor+on of the area under the acceptance curve, the false nega+ve rate is increased. The 

Figure 10. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: perfect mixing, lot size = 100 

items. 
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difference in rates is especially clear when one compares n- and r-plans. For example, Figures 
8A and 17A depict n- and r-plans designed for scenarios involving small lot sizes, low within-
lot variability, and no between-lot variability. Figure 8A displays a significant red area under 
the acceptance curve, while the acceptance curve at Figure 17A is predominantly green. 
Consequently, for those seeking to minimize the false nega+ve rate, the r-plan demonstrates 
notable superiority. Nonetheless, the r-plan exhibits a considerable red area above the curve 
(FP decisions), contras+ng with the smaller area in Figure 8A. Although this study focuses on 
consumer interests, a very high FP rate is detrimental to consumers as it would lead to the 
false rejec+on of mul+ple lots of acceptable quality, necessita+ng resampling of replacement 

Figure 11. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: moderate mixing, lot size = 10 

items. 
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lots, thereby increasing sampling costs and disrup+ng logis+cs. It is worth no+ng that false 
posi+ve decisions tend to occur at lower mean count values, while false posi+ves are more 
frequent prior to the LQL. Therefore, prior knowledge of the mean count distribu+on may also 
influence the choice of a sampling plan.  

 
The grey line at Figures 8-19 shows the probability of false nega+ve decision as in the 

Figure 7. Therefore, Figures 8-19 show that, although in low variability condi+ons and small 
lot sizes, many accepted samples contained outliers, only a small por+on of accepted lots had 
concentra+ons below 100 CFU/g (FN decisions). Within-lot variability and poor mixing quality 

Figure 12. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: moderate mixing, lot size = 50 

items. 
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increase the propor+on of accepted lots with a mean count below 100 CFU/g (FN decisions). 
High between-lot variability seems to decrease the propor+on of accepted lots with a mean 
count below 100 CFU/g (FN decisions), and a larger por+on of these decisions seems to result 
from accep+ng a sample with outliers. These results can be explained by the fact that high lot-
to-lot variability results in a high difference between the outgoing and accepted quality.  

 
The Figures 18-19 show that although r-plan considerably decreases the propor+on of 

false nega+ve decisions, it drama+cally increases the propor+on of false posi+ve decisions. 
This difference is especially high in low-variability condi+ons, where the n-plan seems to 
perform well enough. Although false posi+ve decisions are of less concern for consumers, 

Figure 13. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: moderate mixing, lot size = 100 

items. 
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their amount s+ll has to be kept below a certain limit; otherwise, too many lots of sufficient 
quality would be returned to the producers, and addi+onal sampling of replacement lots will 
increase the sampling costs.  

 
Table 4 shows the percentage of area under the OC curve consis+ng of false nega+ve 

decisions (FN AUC). Plans were color-coded depending on the FN AUC: low FN AUC (< 10%, 
green), medium FN AUC (< 30%, yellow), and high FN AUC (≥ 30 %, orange). As all plans with 
high (sdlog-0.8) within-lot variability had a rela+ve % FN AUC of more than 30%, these plans 
are not recommended. One may choose to use r-plans or alterna+ve to composite plans 
instead, which will be further elaborated upon in subsequent discussions.  

Figure 14. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: poor mixing, lot size = 10 items. 
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Outgoing quality 
In addi+on to ensuring the rejec+on of unsafe or poor-quality batches, it is also 

important to monitor the concentra+on levels in accepted (outgoing) lots. Figures 20-21 show 
the examples of difference between incoming lots and accepted lots for n- and r-plans for low 
and high within-lot variability condi+ons. As expected, the mean count was lower in the 
accepted lots than in the lots prior to inspec+on in all sampling plans. This effect, however, is 
less pronounced when within-lot variability is low (Figure 20), as incoming lots are more 
consistent, and therefore the expected reduc+on in the variability between incoming and 
outgoing lots is low. On the other hand, when the variability of the incoming lots is high (Figure 

Figure 15. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: poor mixing, lot size = 50 items. 
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21), the reduc+on in variability and increase in quality are also high because the defec+ve lots 
are filtered out.  

 
A higher lot-to-lot variability leads to more significant differences in the quality levels of 

the accepted lots. Therefore, when the lot-to-lot variability is low, the accepted lots are closer 
in quality to the mean count of the incoming lots (the first column in Figures 20 and 21). In 
contrast, when the quality of the outgoing lots is inconsistent, the difference in the mean 
count between incoming and outgoing lots is higher (the third column in Figures 20 and 21). 
The laier case highlights underlying issues in the produc+on process, resul+ng in high lot-to-
lot varia+on. Ideally, one should first aiempt to improve the produc+on process rather than 

Figure 16. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: poor mixing, lot size = 100 items. 
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make the sampling plan more stringent. Otherwise, even if outgoing lots would have sufficient 
quality, the rejec+on rate would be too high, making the sampling costs very high due to 
frequent re-inspec+ons. However, if the produc+on process cannot be improved, a very 
stringent sampling plan can serve as a temporary solu+on. In this case, the high difference 
between incoming and outgoing lots shows an effec+ve filtering process, giving higher 
protec+on to consumers. Furthermore, the plots suggest that for both n- and r-sampling 
plans, not only high lot-to-lot variability but also medium variability will result in an expensive 
sampling process, as a large por+on of lots has to be returned to the supplier.  
 

Figure 17. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: r-plan, lot size = 10 items. 
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Alterna've plans and future research  
With the excep+on of situa+ons characterized by significant lot-to-lot variability 

(sdlog=0.8), in which modifica+on of the manufacturing process is recommended over the 
adop+on of a more rigorous sampling plan, the r-plan may be applied across all condi+ons 
where the n-plan does not achieve the desired LQL target or false nega+ve rate. However, as 
r-plan is not a composite plan, it is quite costly owing to mul+ple tes+ng especially when lot 
size is medium or high. Therefore, using the same simula+on approach as before, the 
alterna+ve composite plans were developed for medium and large lots to maintain the target 
LQL value and/or false nega+ve rate. The sample size was op+mized by itera+vely cycling 
through the following steps with a limited number of simula+ons. 

Figure 18. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: r-plan, lot size = 50 items. 
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(1) If desired LQL (LQL < 1000 CFU/g) and false nega+ve rate (% FN AUC < 30%) are not 
reached, increase the number of primary samples by one; 

(2) If desired LQL and false nega+ve rate cannot be reached with 8 primary samples, 
increase the number of composite samples by one and start with 2 primary samples 
in each composite sample;  

When the desired LQL and false nega+ve rates were reached, the resul+ng plans were 
simulated with a higher number of simula+ons (due to +me constrains the number of 
simula+ons was lower than 50 000 as used for the n- and r-plan simula+ons, therefore it is 
advisable to run the chosen alterna+ve sampling plan with 50 000 simula+ons prior use). If 
the LQL was below the target of 1000 CFU/g and the false posi+ve rate point es+mate (% FN 
AUC) was below 30%, the plan was accepted, otherwise itera+ve cycling con+nued. For all 

Figure 19. ClassificaCon of the sampling decision in the framework of hypothesis tesCng, where H0 

is that the lot bacteria mean count is < 100 CFU/g. Sampling plan: r-plan, lot size = 100 items. 
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scenarios requiring an alterna+ve composite sampling plan, single composite sample was not 
sufficient to produce LQL below 1000 CFU/g, while two or at most three composite samples 
resulted in sufficient improvement in all of the cases. Such small number of composite 
samples, however, resulted in high false nega+ve rate, which required further increase in the 
number of composite samples. See Table 5 for the number of composite and primary samples 
in the alterna+ve composite plans. 
 

The current project has iden+fied several plans that can be used instead of r-plan for 
medium and large lots to have LQL < 1000 CFU/g and false nega+ve rate below 30%. The same 
approach can be used to balance the costs of sampling and decrease the false nega+ve rates 
for all other desired values of LQL, AQL, and false posi+ve rate. Addi+onally, instead of having 
LQL target as a mean lot concentra+on, the target prevalence can be used. The simula+on 

Figure 20. Incoming and outgoing quality for sampling plans with low within-lot variability. 
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approach allows to tailor the sampling plan to specific condi+ons and target requirements. As 
simula+ons are +me-consuming, it was impossible to incorporate all these op+ons in the 
current project. Addi+onally, future research should extend the modeling to cover the 
situa+on with heterogeneous contamina+on and conduct a sensi+vity analysis for a range of 
distribu+ons (discussed in the next sec+on).  

Possible drawbacks of the used methods  
There are two main limita+ons to the current work. First, the current thesis is applicable 

only to situa+ons where bacterial contamina+on is rela+vely homogeneous. A homogeneous 
sample is characterized by the uniform distribu+on of bacterial contamina+on over the whole 
item in the lot, such as drums. Conversely, a heterogeneous sample may have significantly 

Figure 21. Incoming and outgoing quality for sampling plans with moderate within-lot variability. 
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different counts of bacteria in different por+ons of an item. Heterogeneity is not a concern 
when the en+re item is inves+gated, but this is not the case in this project. More complex 
modeling is required to model heterogeneous bacterial contamina+on.  

Second, the effec+veness of the sampling plans was verified for lognormal distribu+on 
only. Although this distribu+on is an appropriate model, the sensi+vity analysis has to be 
conducted for at least the gamma distribu+on and Weibull distribu+on. Owing to +me 
constraints, a sensi+vity analysis was not conducted. 
 

Ethical thinking, societal relevance, and stakeholder awareness 
Evalua+ng the effec+veness of the WHO's n-sampling plan requires considera+on of 

ethics, societal impact, and stakeholder awareness. Detec+ng microbial contamina+on in 
pregela+nized starch, which is used as a binder in the pharmaceu+cal industry, is vital for 
pa+ent safety. High microbial counts may indicate pathogens, posing a risk to pa+ents if they 
are not detected. Adhering to ethical principles should guarantee that the sampling plan 
applied would not only be the most cost-efficient but also have enough discrimina+ng power 
to guarantee the acceptance of uncontaminated products. Although the sampling plans in this 
project aim to sample hygiene indicator microorganisms, their high counts suggest the 
presence of pathogens. Any failure in the detec+on mechanism could lead to the distribu+on 
of contaminated pharmaceu+cals, poten+ally harming pa+ents. Any failure in the detec+on 
mechanism could lead to the distribu+on of contaminated pharmaceu+cals, poten+ally 
harming pa+ents. Effec+ve microbial sampling fosters trust in pharmaceu+cal products. When 
pa+ents and healthcare providers are confident in the safety of medica+ons, they support 
beier health outcomes and adherence to treatment regimens. This study had three main 
stakeholders:  

 
1. Pa+ents benefit from effec+ve microbial sampling of pharmaceu+cal products. This study 

aimed to ensure pa+ent safety and well-being. Cost-efficient sampling processes can also 
reduce the pharmaceu+cal costs. If the sampling process is not sufficiently stringent and 
pa+ents receive contaminated pharmaceu+cals, this becomes a public concern. 

 
2. Companies such as J&J and other pharmaceu+cal companies want inexpensive and 

effec+ve sampling plans to iden+fy safe products that meet interna+onal standards. Good 
sampling plans help prevent expensive recalls, damage to reputa+on, and legal issues. 
These consumers are more aware of projects like this compared to other stakeholders. 

 
3. Regulatory bodies may use the results of this study and other similar studies to improve 

future guidelines and policies for pharmaceu+cal safety. While regulatory bodies monitor 
new studies for improvements, they oUen react slowly to ensure the validity of scien+fic 
results owing to poten+ally costly consequences. 

 
This study suggests sampling improvements to poten+ally benefit all stakeholders by 

balancing sampling efficiency and costs. By addressing ethical, societal, and stakeholder 
considera+ons, this study seeks to enhance pa+ent safety, support pharmaceu+cal 
companies, and inform regulatory prac+ces for the beierment of public health. 
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Conclusion  
This study evaluated the performance of n- and r-plans for microbial acceptance 

sampling plans with a specifica+on limit of 100 CFU/g for small (N=10), medium (N=50), and 
large (N=100) lots in the presence of several variability sources: within-lot variability, 
between-lot variability, and variability due to imperfect mixing). The performance of the 
sampling plans was evaluated as follows: 

1. Visual inspec+on of OC curves showed that steepness, and therefore discrimina+ng 
power, of n-sampling plans varies across lot sizes and variability levels. The low 
variability condi+ons and large number of samples resulted in steeper OC curves and, 
therefore, more efficient sampling. 

2. Assessment of AQL and LQL values for producer’s risk ɑ=0.05 and consumer’s risk 
β=0.1, which showed a substan+al difference for the sampling plans. The table with 
AQL and LQL can be used to separate the lots based on the desired LQL target. This 
project has used 1000 CFU/g as a cut-off, as regulatory guidelines suggest that the 
mean microbial count of non-sterile products used in pharmaceu+cals should be 
below this value. Thus, projects with LQL below 1000 CFU/g would reject the lot of 
such quality with a probability of 90%. The code in the supplementary informa+on can 
be used to study the AQL and LQL values for different consumer and producer risks. 

3. Assessment of the risk of dilu+on and incorrect acceptance of an unsa+sfactory lot. 
The probability of accep+ng a sample containing at least one item above the 
specifica+on limit was studied graphically. In all cases, n-plans pose a considerable risk 
of accep+ng such a sample, and r-plan, being a noncomposite plan, does not pose such 
a risk by defini+on. However, accep+ng a sample containing an outlier does not 
automa+cally mean that the accepted lot is of unsa+sfactory quality. In fact, this 
depends on how unsa+sfactory the lot quality is defined. Therefore, all acceptance 
decisions were classified in a hypothesis tes+ng paradigm as FN, FP, TN, and TP (H0: 
the lot mean count is above 100 CFU/g). This is a stringent classifica+on; therefore, 
depending on the purpose, H0 can use a more relaxed cut-off. The propor+on of FN 
acceptance decisions was evaluated, and sampling plans genera+ng many FN decisions 
were iden+fied. 

4. The difference between the incoming and outgoing quality was evaluated graphically. 
The plots suggest that all sampling plans with medium between-lot variability, 
including r-plan, will be poten+ally costly due to frequent tes+ng of replacement lots; 
therefore, op+mizing the manufacturing process is important. 

 
To summarize, when the variability is rela+vely low (low within-lot variability, low 

between-lot variability, perfect or good mixing), the performance of n-plan is oUen 
sa+sfactory in its ability to result in LQL below 1000 CFU/g (consumer’s risk β=0.1) and to have 
a low level of false nega+ve decisions (where false nega+ve is described as acceptance of the 
lot with mean count above 100 CFU/g). When the n-plan is unsa+sfactory, the r-plan can be 
used instead. However, as the r-plan requires mul+ple individual tests, it is costly for medium 
and large lots. Therefore, alterna+ve composite sampling plans can be used instead. 
 

Table 5 provides recommenda+ons on how many primary and composite samples have 
to be taken if the main goal is LQL below 1000 CFU/g. The green cells indicate that n-plan is 
sa+sfactory in both resul+ng LQL < 1000 CFU/g and having a rela+vely low rate of false posi+ve 
decisions. Yellow cells indicate that n-plan does not provide neither LQL < 1000 CFU/g, neither 
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low rate of false-posi+ve decisions. The blue cells indicate that although LQL < 1000 CFU/g is 
achieved, the rate of false posi+ve decisions is high. Therefore, the recommended sampling 
plan for green cells is WHO’s n-plan; for empty yellow and blue cells, WHO’s r-sampling plan 
is recommended; if yellow or blue cells are not empty, this indicates that either the r-plan has 
to be applied, or an alterna+ve composite sampling plan with an indicated number of 
composite and primary samples (to reach both LQL < 100CFU/g and false nega+ve rate < 30%). 

The future research should extend the modeling to cover heterogeneous contamina+on 
and validate the sensi+vity of the sampling plans against the broader range of distribu+ons. 
 

           
Table 5. Recommendation for the choice of sampling plan. The green cells indicate that n-plan is 

saCsfactory in both resulCng LQL < 1000 CFU/g and having a relaCvely low rate of false posiCve 

decisions. Numbers in brackets show the required numbers to have LQL < 1000 CFU/g, but provided 

for the reference purpose only as they results into high false negaCve rate. Yellow cells indicate that 

n-plan does not provide neither LQL < 1000 CFU/g, neither low rate of false-posiCve decisions. The 

blue cells indicate that although LQL < 1000 CFU/g is achieved, the rate of false posiCve decisions is 

high. RecommendaCons: 

Green cells - is WHO’s n-plan                              Yellow or blue – WHO’s r-plan 

Yellow and blue cells with text – alternaCve sampling plan specified in these cells will allow to reach 

LQL < 1000 CFU/g and/or false negaCve rate < 30%. 

Variability (sdlog)     
   

Withi
n-lot 

Between-
lot 

Perfect or good mixing Moderate mixing Poor mixing 

N=
10 N=50 N=100 N=

10 N=50 N=100 N=
10 N=50 N=100 

0.2 

0          

0.2          

0.4          

0.4 

0          

0.2        2 x n=2 2 x n=2 

0.4        2 x n=2 2 x n=2 

0.8 

0  2 x n=7 2 x n=8  3 x n=4 3 x n=4  4 x n=5 
(2 x n=3) 

4 x n=5 
(2 x n=3) 

0.2  2 x n=7 2 x n=8  3 x n=4 3 x n=4  4 x n=5 
(2 x n=5) 

4 x n=5 
(2 x n=5) 

0.4  2 x n=7 
(2 x n=4) 

2 x n=8 
(2 x n=4) 

 3 x n=4 
(2 x n=5) 

3 x n=4 
(2 x n=6) 

 4 x n=5 
(3 x n=6) 

4 x n=5 
(3 x n=6) 
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Supplementary r-code 
# Required packages: 
library(ggplot2)   library(ggpubr)   library(reshape2)   library(gtools) 
library(dplyr)     library(tidyr)    library(pracma) 
 
# Function creates a composite sampling plan and the metrics of its performance 
attribute_plan.composite <- function(N, n, sdlog=0.8, sdlog.batch=0, limit=100, 
        mixing = c("perfect", "good", "moderate", "poor"), 
        n.sim=5000, seed=123) { 
  set.seed(seed) 
  df <- data.frame(means = c(seq(0.1, 1, by=0.1), seq(2, 500, by=1), 
  seq(510, 1500, by=10)), p.accept = NA, concentration.incoming = NA, 
  concentration.accepted = NA, outliers.undetected = NA, 
  TP.conc = NA, FP.conc = NA, TN.conc = NA, FN.conc = NA) 
  for (i in 1:length(df$means)) { 
    p.nonconform.accepted <- conc.accepted <- outliers <- rep(NA, n.sim) 
    accepted <- conc.incoming <- accurate.conc  <- rep(NA, n.sim) 
    for (sim in 1:n.sim) { 
      batch_mean <-  rnorm(1, mean=log(df$means[i], base=10), sd=sdlog.batch) 
      batch <- 10^(rnorm(n=N, mean=batch_mean, sd=sdlog)) 
      sample <- sample(x=batch, size=n, replace = FALSE) 
      if (mixing == "perfect") {sample_mean = mean(sample)} 
      else { 
        if (mixing == "good") {mixing = 5} 
        if (mixing == "moderate") {mixing = 1} 
        if (mixing == "poor") {mixing = 0.1} 
        Dirichlet.weights <- rdirichlet(1, rep(mixing, n)) 
        sample_mean <- sum(sample*Dirichlet.weights) 
      }   
      conc.incoming[sim] <- mean(batch) 
       
      if (sample_mean < limit) {  
        conc.accepted[sim] <- mean(batch) 
        accepted[sim] <- 1 
        outliers[sim] <- any(sample >= limit) 
        if (mean(batch) < limit) {accurate.conc[sim] <- "TN"} 
        else {accurate.conc[sim] <- "FN"} 
         } 
      else { 
        accepted[sim] <- 0 
        if (mean(batch) < limit) {accurate.conc[sim] <- "FP"} 
        else {accurate.conc[sim] <- "TP"} 
      } 
    } 
    df$concentration.incoming[i] <- mean(conc.incoming) 
    df$p.accept[i] <- mean(accepted) 
     
    df$TP.conc[i] <- sum(accurate.conc=="TP")/n.sim 
    df$FP.conc[i] <- sum(accurate.conc=="FP")/n.sim 
    df$TN.conc[i] <- sum(accurate.conc=="TN")/n.sim 
    df$FN.conc[i] <- sum(accurate.conc=="FN")/n.sim 
 
    if (any(!is.na(conc.accepted))) { 
      df$concentration.accepted[i] <- mean(conc.accepted, na.rm = TRUE) 
      df$outliers.undetected[i] <- sum(outliers, na.rm = TRUE) / n.sim 
    } 
    else { df$outliers.undetected[i] <- 0 } 
  } 
  return(df) 
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} 
 
# Function creates a noncomposite sampling plan and the metrics of its performance 
attribute_plan.noncomposite <- function(N, n, sdlog=0.8, sdlog.batch=0, 
         limit=100, n.sim=5000, seed=123) { 
  set.seed(seed) 
  df <- data.frame(means = c(seq(0.1, 1, by=0.1), seq(2, 500, by=1), 
         seq(510, 1500, by=10)), p.accept = NA, concentration.incoming = NA, 
         concentration.accepted = NA, TP.conc = NA, FP.conc = NA, 
         TN.conc = NA, FN.conc = NA) 
  for (i in 1:length(df$means)) { 
    p.nonconform.accepted <- conc.accepted <- accepted <- rep(NA, n.sim) 
    conc.incoming <- accurate.conc  <- rep(NA, n.sim) 
    for (sim in 1:n.sim) { 
      batch_mean <-  rnorm(1, mean=log(df$means[i], base=10), sd=sdlog.batch) 
      batch <- 10^(rnorm(n=N, mean=batch_mean, sd=sdlog)) 
      sample <- sample(x=batch, size=n, replace = FALSE) 
 
      conc.incoming[sim] <- mean(batch) 
       
      if (all(sample < limit)) {  
        conc.accepted[sim] <- mean(batch) 
        accepted[sim] <- 1 
        if (mean(batch) < limit) {accurate.conc[sim] <- "TN"} 
        else {accurate.conc[sim] <- "FN"} 
         } 
      else { 
        accepted[sim] <- 0 
        if (mean(batch) < limit) {accurate.conc[sim] <- "FP"} 
        else {accurate.conc[sim] <- "TP"} 
      } 
    } 
    df$concentration.incoming[i] <- mean(conc.incoming) 
    df$p.accept[i] <- mean(accepted) 
     
    df$TP.conc[i] <- sum(accurate.conc=="TP")/n.sim 
    df$FP.conc[i] <- sum(accurate.conc=="FP")/n.sim 
    df$TN.conc[i] <- sum(accurate.conc=="TN")/n.sim 
    df$FN.conc[i] <- sum(accurate.conc=="FN")/n.sim 
 
    if (any(!is.na(conc.accepted))) { 
      df$concentration.accepted[i] <- mean(conc.accepted, na.rm = TRUE) 
    } 
  } 
  return(df) 
} 
 
# Function that creates a composite sampling plan with k composite 
 and n primary samples 
attribute_plan.k_composites <- function(N, n, k, sdlog=0.8, sdlog.batch=0, 
         limit=100, mixing = c("perfect", "good", "moderate", "poor"), 
         n.sim=5000, seed=123) { 
  set.seed(seed) 
  df <- data.frame(means = c(seq(0.1, 1, by=0.1), seq(2, 500, by=1), 
          seq(510, 1500, by=10)), p.accept = NA, concentration.incoming = NA) 
  for (i in 1:length(df$means)) { 
    accepted <- conc.incoming <- rep(NA, n.sim) 
    for (sim in 1:n.sim) { 
      batch_mean <-  rnorm(1, mean=log(df$means[i], base=10), sd=sdlog.batch) 
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      batch <- 10^(rnorm(n=N, mean=batch_mean, sd=sdlog)) 
      samples <- sample(x = batch, size = n*k, replace = FALSE) 
      comp.samples <- as.data.frame(split(samples, cut(seq_along(samples), k, 
                                                       labels = FALSE))) 
 
      if (mixing == "perfect") { 
        samples_mean = colMeans(comp.samples) 
        } 
      else { 
        if (mixing == "good") {mixing = 5} 
        if (mixing == "moderate") {mixing = 1} 
        if (mixing == "poor") {mixing = 0.1} 
        Dirichlet_weights <- function(column) { 
          Dirichlet.weights <- rdirichlet(1, rep(mixing, n)) 
          return(sum(column * Dirichlet.weights)) 
        } 
        samples_mean <- apply(comp.samples, 2, Dirichlet_weights) 
      }   
      conc.incoming[sim] <- mean(batch) 
       
      if (sample_mean < limit) {  
        conc.accepted[sim] <- mean(batch) 
        accepted[sim] <- 1 
        outliers[sim] <- any(sample >= limit) 
        if (mean(batch) < limit) {accurate.conc[sim] <- "TN"} 
        else {accurate.conc[sim] <- "FN"} 
         } 
      else { 
        accepted[sim] <- 0 
        if (mean(batch) < limit) {accurate.conc[sim] <- "FP"} 
        else {accurate.conc[sim] <- "TP"} 
      } 
    } 
 
    df$concentration.incoming[i] <- mean(conc.incoming) 
    df$p.accept[i] <- mean(accepted) 
     
    df$TP.conc[i] <- sum(accurate.conc=="TP")/n.sim 
    df$FP.conc[i] <- sum(accurate.conc=="FP")/n.sim 
    df$TN.conc[i] <- sum(accurate.conc=="TN")/n.sim 
    df$FN.conc[i] <- sum(accurate.conc=="FN")/n.sim 
  } 
  return(df) 
} 
 
# Function that find mean count corresponding to LQL and AQL 
find.AQL_LQL <- function(plan, beta = 0.1, alpha = 0.05) { 
  df <- data.frame(means = plan$concentration.incoming, 
         accept_probs = plan$p.accept) 
  AQL <- LQL <- NA 
  if (min(df$accept_probs) <= beta) { 
    df$differences <- abs(df$accept_probs - beta) 
    LQL <- df$means[which(df$differences == min(df$differences))] 
    if (length(LQL) != 1) {   LQL <- mean(LQL) } 
    LQL <- round(LQL) 
  } 
  if (max(df$accept_probs) >= (1 - alpha)) { 
    df$differences <- abs(df$accept_probs - (1 - alpha)) 
    AQL <- df$means[which(df$differences == min(df$differences))] 
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    if (length(AQL) != 1) {   AQL <- mean(AQL)   } 
    AQL <- round(AQL) 
  } 
  return(c(AQL, LQL)) 
} 
 
# Function that find mean count corresponding to LQL and AQL 
on the geometric scale (helper function used in graphs) 
find.AQL_LQL_geo <- function(plan, beta=0.1, alpha=0.05) { 
  df <-data.frame(means = plan$means, accept_probs = plan$p.accept) 
  AQL <- LQL <- NA 
  if (min(df$accept_probs) <= beta) { 
    df$differences <- abs(df$accept_probs - beta) 
    LQL <- df$means[which(df$differences == min(df$differences))] 
    if (length(LQL) != 1) {   LQL <- mean(LQL) } 
    LQL <- round(LQL) 
  } 
  if (max(df$accept_probs) >= (1 - alpha)) { 
    df$differences <- abs(df$accept_probs - (1 - alpha)) 
    AQL <- df$means[which(df$differences == min(df$differences))] 
    if (length(AQL) != 1) {   AQL <- mean(AQL)   } 
    AQL <- round(AQL) 
  } 
  return(c(AQL, LQL)) 
} 
 
# Function that find mean count corresponding to LQL only 
 (helper function used in graphs) 
find.LQL <- function(plan, beta = 0.1) { 
  df <- data.frame(means = plan$concentration.incoming, 
         accept_probs = plan$p.accept) 
  LQL <- NA 
  if (min(df$accept_probs) <= beta) { 
    df$differences <- abs(df$accept_probs - beta) 
    LQL <- df$means[which(df$differences == min(df$differences))] 
    if (length(LQL) != 1) {   LQL <- mean(LQL) } 
    LQL <- round(LQL) 
  } 
  return(LQL) 
} 
 
# Function that plots 3 OC curves corresponding to 3 lot sizes on the same plot 
 and draw dashed lines corresponding to AQL and LQL 
OC_3sizes <- function(plan1, plan2, plan3, graph_label="", 
                      beta=0.1, alpha=0.05, upper_limit = NULL) { 
  LQL_AQL1 <- find.AQL_LQL(plan=plan1, beta=beta, alpha=alpha) 
  LQL_AQL2 <- find.AQL_LQL(plan=plan2, beta=beta, alpha=alpha) 
  LQL_AQL3 <- find.AQL_LQL(plan=plan3, beta=beta, alpha=alpha) 
  if (is.null(upper_limit)) { 
    upper_limit <- max(c(LQL_AQL1[2], LQL_AQL2[2], LQL_AQL3[2]), 
           na.rm = TRUE)*1.2 
  } 
  plot <- ggplot() + 
    geom_line(data=plan1, aes(x = concentration.incoming, y = p.accept, 
         color = "N=10"))+ 
    geom_line(data=plan2, aes(x = concentration.incoming, y = p.accept, 
         color = "N=50"))+ 
    geom_line(data=plan3, aes(x = concentration.incoming, y = p.accept, 
         color = "N=100"))+ 
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    geom_vline(xintercept = LQL_AQL1,  linetype = "dashed", 
         color = "#E1AF00", size=0.5) + 
    geom_vline(xintercept = LQL_AQL2,  linetype = "dashed", 
         color = "#F98400", size=0.5) + 
    geom_vline(xintercept = LQL_AQL3,  linetype = "dashed", 
         color = "#5BBCD6", size=0.5) + 
    theme_bw() + 
    theme(legend.position="bottom", legend.box = "vertical", 
          plot.margin = margin(15,15,15,15, "pt"), 
          legend.text = element_text(size = 12), 
          legend.title = element_text(size = 13, face = "bold"), 
          legend.key.size = unit(50, 'pt'), 
          panel.border = element_rect(colour = "black", fill=NA),) + 
    scale_color_manual(name = "Lot size:", 
                       breaks = c("N=10", "N=50", "N=100"), 
                       values = c("N=10" = "#E1AF00", "N=50" = "#F98400", 
                                  "N=100" = "#5BBCD6")) + 
    labs(title = graph_label, 
       x = "Mean count (cfu/g)", 
       y = "Probability of acceptance")+ 
    coord_cartesian(xlim = c(0, upper_limit)) 
  return(plot) 
} 
 
# Function that plot real OC curve, how would OC curve look, if samples with 
 outliers unaccepted, and absolute probability to accept a sample due to dilution 
dilution.plot <- function(plan, graph_label="") { 
  AQL_LQL <- find.AQL_LQL(plan) 
  plan.ideal <- plan 
  plan.ideal$p.accept <- plan$p.accept -plan$outliers.undetected 
  AQL_LQL.ideal <- find.AQL_LQL(plan.ideal) 
  upper_limit <- AQL_LQL[2]*1.2 
  concentration_accuracy <- ggplot() + 
    geom_line(data=plan, aes(x = concentration.incoming, y = p.accept, 
                             color = "P(Acceptance)"))+ 
    geom_line(data=plan, aes(x = concentration.incoming, y = outliers.undetected, 
                             color = "P(Acceptance due to dilution)"))+ 
    geom_line(data=plan, aes(x = concentration.incoming, 
                              y = p.accept - outliers.undetected, 
                             color = "Ideal P(Acceptance)"))+ 
    geom_vline(xintercept = AQL_LQL, color = "#5BBCD6", linetype = "dashed", 
          size = 0.5) + 
    geom_vline(xintercept = AQL_LQL.ideal, 
               color = "#F98400", linetype = "dashed", size = 0.5) + 
    theme_bw() + 
    theme(legend.position="bottom", legend.box = "vertical", 
          plot.margin = margin(15,15,15,15, "pt"), 
          legend.text = element_text(size = 12), 
          panel.border = element_rect(colour = "black", fill=NA)) + 
    scale_color_manual(name = "", 
                       values = c("P(Acceptance)" = "#5BBCD6", 
                                  "P(Acceptance due to dilution)" = "tomato3", 
                                  "Ideal P(Acceptance)" = "#F98400")) + 
    labs(title = graph_label, 
       x = "True mean count (cfu/g)", 
       y = "Probability")+ 
    coord_cartesian(xlim = c(0, upper_limit)) 
 
  return(concentration_accuracy) 
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} 
 
# Function that plots all acceptance/rejection decisions as FN, FP, TN, TP 
accuracy_concentration.plot <- function(plan, graph_label="") { 
  AQL_LQL <- find.AQL_LQL(plan) 
  conc.df <- plan[, c("concentration.incoming", "TP.conc", "FP.conc", 
         "TN.conc", "FN.conc")] 
  colnames(conc.df) <- c("concentration.incoming", "TP", "FP", "TN", "FN") 
  accuracy_conc <- melt(conc.df, id.vars = "concentration.incoming", 
                        variable.name = "Accuracy", value.name = "Percentage") 
  upper_limit <- AQL_LQL[2]*1.2 
  concentration_accuracy <- ggplot() + 
    geom_area(data=accuracy_conc, aes(x = concentration.incoming, y = Percentage, 
                                      fill = Accuracy), 
              position = "stack") + 
    geom_line(data=plan, aes(x = concentration.incoming, y = p.accept), 
              color = "white")+ 
    geom_line(data=plan, aes(x = concentration.incoming, y = outliers.undetected, 
              color = "Acceptance due to dilution"))+ 
    geom_vline(xintercept = AQL_LQL,  linetype = "dashed", color = "white") + 
    theme_classic() + 
    theme(legend.position="bottom", legend.box = "vertical", 
          plot.margin = margin(15,15,15,15, "pt"), 
          legend.text = element_text(size = 12), 
          legend.title = element_text(size = 13, face = "bold"), 
          panel.border = element_rect(colour = "black", fill=NA),) + 
    scale_color_manual(name = " ", 
                       values = c("Acceptance due to dilution" = "lightgrey")) + 
    scale_fill_manual(name = "Accuracy:", breaks = c("TN", "FN", "TP", "FP"),  
           values = c("darkseagreen3", "lightsalmon", 
           "darkseagreen4", "sandybrown")) + 
    guides(color = guide_legend(order=1), 
         fill = guide_legend(order=2)) + 
    labs(title = graph_label, 
       x = "True mean count (cfu/g)", 
       y = "Probability")+ 
    coord_cartesian(xlim = c(0, upper_limit)) 
 
  return(concentration_accuracy) 
} 
 
# Function that plots quality of incoming and accepted lot vs quality of incoming 
lots 
 AOQ_3sizes <- function(plan1, plan2, plan3, graph_label="", beta=0.1, alpha=0.05) 
{ 
  AQL_LQL1 <- find.AQL_LQL(plan=plan1, beta=beta, alpha=alpha) 
  AQL_LQL2 <- find.AQL_LQL(plan=plan2, beta=beta, alpha=alpha) 
  AQL_LQL3 <- find.AQL_LQL(plan=plan3, beta=beta, alpha=alpha) 
  AQL_LQL_geo1 <- find.AQL_LQL_geo(plan=plan1, beta=beta, alpha=alpha) 
  AQL_LQL_geo2 <- find.AQL_LQL_geo(plan=plan2, beta=beta, alpha=alpha) 
  AQL_LQL_geo3 <- find.AQL_LQL_geo(plan=plan3, beta=beta, alpha=alpha) 
  upper_limit <- max(c(AQL_LQL1[2], AQL_LQL2[2], AQL_LQL3[2]), na.rm = TRUE)*1.2 
  plot <- ggplot() + 
  geom_line(data=plan1, aes(x = concentration.incoming, 
           y = concentration.incoming, 
                            color = "Incoming")) + 
  geom_line(data=plan2, aes(x = concentration.incoming, 
            y = concentration.incoming, 
                            color = "Incoming")) + 
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  geom_line(data=plan3, aes(x = concentration.incoming, 
            y = concentration.incoming, 
                            color = "Incoming")) + 
  geom_line(data=plan1, aes(x = concentration.incoming, 
            y = concentration.accepted, 
                            color = "N=10")) + 
  geom_line(data=plan2, aes(x = concentration.incoming, 
           y = concentration.accepted, 
                            color = "N=50")) + 
  geom_line(data=plan3, aes(x = concentration.incoming, 
           y = concentration.accepted, 
                            color = "N=100")) + 
  geom_vline(xintercept = AQL_LQL1[1],  linetype = "twodash", 
             color = "#E1AF00", size=0.5) + 
  geom_vline(xintercept = AQL_LQL2[1],  linetype = "twodash", 
             color = "#F98400", size=0.5) + 
  geom_vline(xintercept = AQL_LQL3[1],  linetype = "twodash", 
             color = "#5BBCD6", size=0.5) + 
  geom_vline(xintercept = AQL_LQL1[2],  linetype = "dashed", 
             color = "#E1AF00", size=0.75) + 
  geom_vline(xintercept = AQL_LQL2[2],  linetype = "dashed", 
             color = "#F98400", size=0.75) + 
  geom_vline(xintercept = AQL_LQL3[2],  linetype = "dashed", 
             color = "#5BBCD6", size=0.75) + 
  geom_hline(yintercept = AQL_LQL1[2],  linetype = "dashed", 
             color = "#E1AF00", size=0.5) + 
  geom_hline(yintercept = AQL_LQL2[2],  linetype = "dashed", 
             color = "#F98400", size=0.5) + 
  geom_hline(yintercept = AQL_LQL3[2],  linetype = "dashed", 
             color = "#5BBCD6", size=0.5) + 
  theme_bw() + 
  theme(legend.position = "bottom",  
        legend.box = "vertical",  
        plot.margin = margin(15, 15, 15, 15, "pt"),  
        legend.text = element_text(size = 12),  
        legend.title = element_text(size = 13, face = "bold"),  
        legend.key.size = unit(50, 'pt'),  
        panel.border = element_rect(colour = "black", fill = NA)) + 
  scale_color_manual(name = "Lot size:", 
                       breaks = c("Incoming", "N=10", "N=50", "N=100"), 
                     values = c("Incoming" = "black", "N=10" = "#E1AF00", 
                                "N=50" = "#F98400", "N=100" = "#5BBCD6")) + 
  labs(title = graph_label, 
       x = "Incoming mean count (cfu/g)", 
       y = "Mean count (cfu/g)") + 
  coord_cartesian(xlim = c(0, upper_limit), ylim = c(0, upper_limit))  
  return(plot) 
} 
 
 # Function that finds relative % FN AUC 
 find.AUC <- function(plan) { 
  AQL_LQL <- find.AQL_LQL_geo(plan) 
  filtered_plan <- subset(plan, means <= AQL_LQL[2]) 
  df <- filtered_plan[order(filtered_plan$concentration.incoming), ] 
  AUC.FN <- trapz(df$concentration.incoming, df$FN.conc) 
  AUC.OC <- trapz(df$concentration.incoming, df$p.accept) 
  AUC.relative <- AUC.FN/AUC.OC 
  return(AUC.relative) 
} 


