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Abstract

Introduction
This thesis researches the use of Natural Language Processing (NLP) techniques to support
hospital diagnosis reporting and quality of care assessment for patients with Atrial Fibrillation
(AF), following guidelines set by the European Society of Cardiology (ESC). The ESC has
established specific guidelines for AF patient care, including requirements for calculating stroke
risk score, referred to as CHA2DS2–VASc scores, but monitoring adherence to these guidelines
across thousands of patient records presents a substantial logistical challenge. This research
assesses the feasibility of using various modern NLP approaches to automate hospital diagnosis
reporting.

Research Design and Methodology
The study employed a two-phase retrospective design, first developing methodologies using
the English MIMIC-IV dataset containing over 40,000 patient records, then applying these ap-
proaches to Dutch hospital discharge notes from Jessa Hospital comprising 12,516 records.

The initial phase utilized the MIMIC-IV dataset, a comprehensive collection of over 40,000
English patient records from Beth Israel Deaconess Medical Center in Boston. We created two
specialized subsets: MIMIC-IV-Ext-Cardio, containing discharge notes exclusively from car-
diology departments, and MIMIC-IV-Ext-Diagnoses, encompassing records from all available
hospital departments. This approach allowed us to evaluate model performance both within the
target domain (cardiology) and across broader clinical contexts. We extracted the MIMIC-IV-
Ext-Cardio dataset by combining columns from both MIMIV-IV and MIMIC-IV-Note (Johnson
et al., 2023a) (Johnson et al., 2024) (Johnson et al., 2023b) to retrieve useful discharge notes
specific to the cardiology department, similar to our data in the Jessa Hospital which was
specific to the cardiology department as well. This two-phase approach was chosen to accom-
modate the timeline of administrative and ethical approvals required for accessing the Jessa
Hospital dataset.

The second phase involved collaboration with Jessa Hospital in Hasselt, Belgium, providing
access to 12,516 Dutch cardiac discharge notes from patients admitted to the cardiology depart-
ment between 2016 and 2023. This dataset presented unique challenges, including significant
class imbalance (88% AF-negative versus 12% AF-positive cases) and the need to process Dutch
medical terminology.

We explored various NLP techniques for two primary tasks: automated AF classification and
extraction of CHA2DS2–VASc scores.

AF Classification

For AF classification, we implemented an XGBoost classifier combined with Term Frequency-
Inverse Document Frequency (TF-IDF) vectorization. This approach treats each discharge
note as a collection of weighted terms, where TF-IDF scores reflect both the frequency of terms
within individual documents and their discriminative power across the entire corpus. XGBoost,
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Task Dataset Acc. F1 for AF Macro F1 Weighted F1

AF Classification MIMIC-IV-Ext-
Cardio

95% 0.90 0.93 0.95

AF Classification MIMIC- IV-Ext-
No- Cardio

86% 0.74 0.82 0.86

AF Classification Jessa-AF 93% 0.71 0.84 0.93
AF Classification Jessa-AF (larger

n-grams)
94% 0.78 0.87 0.95

CHA2DS2–VASc Ex-
traction

Jessa-
CHADSVASc-10

95% - 0.82 0.95

Table 1: Results of performance for various models across different tasks and datasets

a gradient boosting algorithm, builds an ensemble of decision trees that sequentially correct
errors made by previous models. Our pre-processing pipeline included text cleaning, stop-word
removal, and morphological processing (lemmatization for English, stemming for Dutch). We
employed stratified k-fold cross-validation with hyperparameter optimization using scikit-learn’s
HalvingRandomSearchCV (Pedregosa et al., 2011) to identify optimal model configurations.
The balanced training approach maintained equal proportions of AF-positive and AF-negative
samples during training while preserving realistic class distributions in test sets.

CHA2DS2–VASc Score Extraction

For CHA2DS2–VASc score extraction, we fine-tuned MedRoBERTa.nl, a Dutch medical lan-
guage model pre-trained on approximately 2.4 million hospital notes from Amsterdam Univer-
sity Medical Centers (Verkijk and Vossen, 2021). This model employs the RoBERTa archi-
tecture (Liu et al., 2019) with 12 transformer layers, 768 hidden dimensions, and 12 attention
heads, specifically optimized for Dutch clinical text with a vocabulary of 52,000 subword to-
kens.

Our fine-tuning approach added a linear classification head to map the 768-dimensional token
representations to our target classes (scores 0-7, ’no score’, and ’greater than 2’). We imple-
mented a pre-processing strategy that prioritized clinically relevant sections of discharge notes,
particularly the ’BESLUIT EN BESPREKING’ (Conclusion and Discussion) section, where
approximately 80% of explicit CHA2DS2–VASc score mentions occurred.

Results
As can be seen in table 1, the XGBoost classifier demonstrated strong performance across multi-
ple evaluation contexts. On the MIMIC-IV-Ext-Cardio dataset, the model achieved 95% overall
accuracy with an AF-specific F1-score of 0.90, indicating robust performance within the target
cardiology domain. However, when applied to the broader MIMIC-IV-Ext-No-Cardio dataset
containing records from all hospital departments, performance declined to 86% accuracy with
an AF F1-score of 0.74, highlighting the importance of domain-specific training data.

On the Dutch Jessa-AF dataset, the model achieved 93% overall accuracy but showed reduced
AF-specific performance with an F1-score of 0.71. This performance gap between English and
Dutch datasets can be attributed to several factors, including the smaller size of the Dutch
training corpus, language-specific challenges in clinical terminology, and the presence of class
imbalance that was more pronounced in the Jessa dataset.

The enhanced n-gram approach (incorporating unigrams, bigrams, and trigrams) showed mean-
ingful improvements for Dutch text processing, increasing the AF F1-score from 0.71 to 0.78.
This improvement demonstrates the importance of capturing contextual patterns, particularly
negation phrases common in clinical documentation such as ’geen voorkamerfibrillatie’ (no atrial
fibrillation) and ’uitgesloten’ (excluded).
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The fine-tuned MedRoBERTa.nl model achieved good performance on the score extraction
task, with 95% overall accuracy and 0.82 macro F1-score on the Jessa-CHADSVASc-10 dataset.
The model demonstrated particularly strong performance in identifying cases where no explicit
CHA2DS2–VASc score was mentioned (F1-score: 0.967), which represents a crucial capability
for quality assessment purposes. Exact score classes (0-7) achieved F1-scores consistently above
0.89, with several classes reaching near-perfect performance. The primary challenge emerged
with inequality expressions (e.g. ’CHA2DS2-VASc > 2’), where limited training examples
resulted in reduced performance. This limitation reflects the relatively small dataset size and
the low occurrence of these expressions in Dutch clinical documentation practices.

Our analysis of ESC quality indicators revealed significant gaps in clinical documentation prac-
tices. Among 1,489 AF-positive cases in the Jessa dataset, only 44.5% had explicit CHA2DS2–
VASc scores documented in their discharge notes, while 55.5% lacked any score mention. Among
patients with documented scores, 26.7% had clinically significant scores (>2) requiring antico-
agulation consideration according to ESC guidelines (Hindricks et al., 2020). This finding
underscores the potential value of automated extraction tools for quality assessment, as man-
ual review of nearly 1,500 cases would represent a substantial time investment for clinical staff.
The documented score distribution showed realistic clinical patterns, with scores 2-4 being most
common and representing 62.1% of all documented scores.

Discussion

This thesis demonstrates that both traditional machine learning and modern transformer ap-
proaches can achieve clinically relevant performance for automated clinical text processing.
The XGBoost + TF-IDF combination proved particularly effective for binary classification
tasks, achieving the hypothesized >90% accuracy threshold while maintaining a level over
interpretability through feature importance analysis. The success of this relatively simple ap-
proach aligns with recent findings suggesting that traditional machine learning methods can
remain competitive with more sophisticated deep learning techniques for well-defined classifi-
cation tasks (Falter et al., 2024).

The transformer-based approach showed good performance for the more complex score extrac-
tion task, indicating the importance of domain-specific pre-training. No baseline was estab-
lished using non-domain specific language models, but the feasibility of our approach is proven
and provides useful insight for further research. The 95% accuracy achieved by the fine-tuned
MedRoBERTa.nl model substantially exceeded our 85% accuracy hypothesis, demonstrating
the effectiveness of language-specific and domain-specific model development. However, in clin-
ical context it is more important to evaluate results using F1-score, to minimize both false
postives and false negatives. Given a macro F1-score of 0.82 for the CHA2DS2–VASc extrac-
tion model, we can consider the class imbalance and provide a more weighted metric by looking
at the weighted F1-score (0.95 in this case).

Feasibility of Automated QI Analysis

The quality indicator analysis provides concrete evidence of documentation gaps that could be
addressed by using automated NLP techniques. The finding that fewer than half of AF pa-
tients had documented CHA2DS2-VASc scores suggests opportunities for quality improvement
using models similar to the ones discussed in this thesis. The models’ ability to provide con-
fidence scores for their predictions creates opportunities for human-in-the-loop systems, where
uncertain cases can be flagged for manual review while high-confidence predictions proceed au-
tomatically. This approach could significantly reduce the time required for quality assessment
while maintaining clinical oversight for ambiguous cases.
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Limitations
Several important limitations emerged during the study. The 512-token sequence length limita-
tion inherent to BERT-based architectures presented challenges for longer clinical documents,
though our pre-processing approach of prioritizing relevant sections proved effective for most
cases. A sliding-window approach should be researched and tested to see if improvements can
be made to existing models.

The class imbalance in the Jessa dataset, while clinically realistic, required careful consider-
ation in model training and evaluation. Language-specific challenges proved more significant
than initially anticipated, with many pre-trained clinical embeddings being trained on English
text, requiring a different pre-processing approach. Despite using enhanced n-gram approaches
and domain-specific pre-processing, the performance gap between English and Dutch datasets
suggests there is room for improvement. The scarcity of high-quality Dutch medical language
models limited our options, though MedRoBERTa.nl proved to be an excellent choice for our
extraction task.

The relatively small size of the Jessa dataset, particularly for rare score categories in the
CHA2DS2-VASc extraction task, limited our ability to train robust models for all classes.

Future Research
This work establishes baseline performance metrics that can guide future research in several
directions. Extending the binary AF classification to multi-label classification for specific AF
types (e.g. paroxysmal, persistent, permanent) would provide more clinically relevant infor-
mation and closer alignment with ICD-10 coding and provide a larger scope for automated
reporting.

The development of more sophisticated embedding approaches that better capture medical
semantics while maintaining the benefits of gradient boosting represents an interesting technical
challenge. Our FastText experiments showed limited success, but more advanced approaches
might yield better results. For the score extraction task, developing models capable of inferring
CHA2DS2-VAScscores from risk factor mentions rather than explicit score statements would
provide great insight into domain-specific pre-trained model capabilities for Dutch medical
text.

Finally, extending the quality indicator analysis to include anticoagulant therapy assessment
would complete the picture of ESC guideline adherence and provide a more comprehensive
quality monitoring system than the one tested in this thesis.

Conclusion
The research in this thesis successfully demonstrates the feasibility of using modern NLP tech-
niques to support hospital diagnosis reporting and quality assessment for AF patients. The com-
bination of traditional machine learning for classification tasks and transformer-based models
for extraction tasks achieved good performance (compared to manual labeling) while highlight-
ing important considerations for practical implementation.

The establishment of baseline performance metrics, development of domain-specific pre-processing
pipelines, and demonstration of real-world applicability provide a foundation for future research
and potential implementation in automated reporting tools. While challenges remain, partic-
ularly in cross-language text processing, handling of rare classes and large class imbalances,
the results suggest that automated quality monitoring tools can provide valuable support for
healthcare quality improvement initiatives.



Samenvatting

Inleiding
Dit proefschrift onderzoekt het gebruik van Natural Language Processing (NLP) technieken
ter ondersteuning van ziekenhuisdiagnoserapportage en kwaliteit van zorg voor patiënten met
Voorkamerfibrillatie (VKF), volgens richtlijnen vastgesteld door de European Society of Car-
diology (ESC). De ESC heeft specifieke richtlijnen opgesteld voor AF patiëntenzorg, inclusief
vereisten voor het berekenen van een beroerterisicoscore, aangeduid als CHA2DS2–VASc scores,
maar het monitoren van naleving van deze richtlijnen over duizenden patiëntendossiers vormt
een aanzienlijke logistieke uitdaging. Dit onderzoek beoordeelt de haalbaarheid van het gebruik
van verschillende moderne NLP toepassingen om ziekenhuisdiagnoserapportage te automatis-
eren.

Onderzoeksontwerp en Methodologie
De studie hanteerde een tweefasig retrospectief ontwerp, waarbij eerst methodologieën werden
ontwikkeld met behulp van de Engelse MIMIC-IV dataset die meer dan 40.000 ontslagdoc-
umenten bevat. Vervolgens werden deze bevindingen toegepast op Nederlandstalige zieken-
huisontslagbrieven van het Jessa Ziekenhuis bestaande uit 12.516 ontslagbrieven. De eerste
fase gebruikte de MIMIC-IV dataset, een uitgebreide verzameling van meer dan 40.000 En-
gelse patiëntendossiers van Beth Israel Deaconess Medical Center in Boston (Johnson et al.,
2023a) (Johnson et al., 2024) (Johnson et al., 2023b). We creëerden twee gespecialiseerde
subsets: MIMIC-IV-Ext-Cardio, die ontslagbrieven uitsluitend van de afdeling cardiologie be-
vatte, en MIMIC-IV-Ext-Diagnoses, die onstlagbrieven bevatte van alle andere beschikbare
ziekenhuisafdelingen. Deze benadering stelde ons in staat om modelprestaties te evalueren
zowel binnen het doeldomein (cardiologie) als over bredere klinische contexten. We stelde de
MIMIC-IV-Ext-Cardio dataset samen door kolommen te combineren van zowel MIMIC-IV als
MIMIC-IV-Note (Johnson et al., 2023a) (Johnson et al., 2024) (Johnson et al., 2023b) om nut-
tige ontslagbrieven specifiek voor de cardiologie afdeling op te halen, vergelijkbaar met onze
data in het Jessa Ziekenhuis die ook enkel documenten uit de cardiologie afdeling bevatte. Deze
tweefasige benadering werd gekozen om rekening te houden met de tijdlijn van administratieve
en ethische goedkeuringen vereist voor toegang tot de Jessa Ziekenhuis dataset.

De tweede fase omvatte een samenwerking met Jessa Ziekenhuis in Hasselt, België, dat toegang
verschafte tot 12.516 Nederlandstalige ontslagbrieven van patiënten opgenomen op de afdel-
ing cardiologie tussen 2016 en 2023. Deze dataset presenteerde unieke uitdagingen, inclusief
significante imbalans van klasses (88% AF-negatieve versus 12% AF-positieve gevallen) en de
noodzaak om Nederlandstalige medische terminologie te verwerken. We onderzochten verschil-
lende NLP technieken voor twee primaire taken: geautomatiseerde AF classificatie en extractie
van CHA2DS2–VASc scores.

AF Classificatie

Voor AF classificatie implementeerden we een XGBoost classifier gecombineerd met Term
Frequency-Inverse Document Frequency (TF-IDF) vectorisatie. Deze benadering behandelt
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Taak Dataset Acc. F1 voor AF Macro F1 Gewogen F1

AF Classificatie MIMIC-IV-Ext-
Cardio

95% 0.90 0.93 0.95

AF Classificatie MIMIC- IV-Ext-
No- Cardio

86% 0.74 0.82 0.86

AF Classificatie Jessa-AF 93% 0.71 0.84 0.93
AF Classificatie Jessa-AF (larger

n-grams)
94% 0.78 0.87 0.95

CHA2DS2–VASc Ex-
tractie

Jessa-
CHADSVASc-10

95% - 0.82 0.95

Table 2: Resultaten van de prestatie van de modellen over de verschillende taken en
datasets heen

elke ontslagbrief als een verzameling gewogen termen, waarbij TF-IDF scores zowel de fre-
quentie van termen binnen individuele documenten als hun onderscheidend vermogen over het
gehele corpus weergeven. XGBoost, een gradient boosting algoritme, bouwt een samenvoegsel
van beslissingsbomen die opeenvolgend fouten corrigeren die gemaakt werden door vorige mod-
ellen. Onze pre-processing pipeline omvatte data cleaning, verwijdering van stopwoorden, en
morfologische verwerking (lemmatization voor Engels, stemming voor Nederlands). We ge-
bruikten gestratificeerde k-fold cross-validation met hyperparameter optimalisatie met behulp
van scikit-learn’s HalvingRandomSearchCV (Pedregosa et al., 2011) om optimale modelcon-
figuraties te identificeren. De gebalanceerde trainingsaanpak handhaafde gelijke verhoudingen
van AF-positieve en AF-negatieve samples tijdens training terwijl realistische klasseverdelingen
in testsets behouden bleven.

CHA2DS2–VASc Score Extractie

Voor CHA2DS2–VASc score extractie verfijnden we MedRoBERTa.nl, een Nederlands taalmodel
voorgetraind op ongeveer 2,4 miljoen ziekenhuisbrieven van Amsterdam University Medical Cen-
ters (Verkijk and Vossen, 2021). Dit model gebruikt de RoBERTa architectuur (Liu et al., 2019)
met 12 transformer lagen, 768 verborgen dimensies, en 12 attention heads, specifiek geopti-
maliseerd voor Nederlandstalige klinische tekst met een vocabulaire van 52.000 subword tokens.
Onze fine-tuning benadering voegde een lineaire classificatiekop toe om de 768-dimensionale to-
ken representaties te mappen naar onze doelklassen (scores 0-7, ’geen score’, en ’groter dan
2’). We implementeerden een pre-processing strategie die prioriteit gaf aan klinisch relevante
secties van ontslagbrieven, met name de ’BESLUIT EN BESPREKING’ sectie, waar ongeveer
80% van expliciete CHA2DS2–VASc score vermeldingen voorkwamen.

Resultaten
Zoals te zien is in 2, toonde de XGBoost classifier sterke prestaties over meerdere evaluatiecon-
texten. Op de MIMIC-IV-Ext-Cardio dataset behaalde het model 95% algehele nauwkeurigheid
(accuracy) met een AF-specifieke F1-score van 0.90, wat robuuste prestaties binnen het doel-
domein aangeeft. Echter, wanneer toegepast op de bredere MIMIC-IV-Ext-No-Cardio dataset
die dossiers van alle ziekenhuisafdelingen bevatte, daalde de prestatie naar 86% nauwkeurigheid
(accuracy) met een AF F1-score van 0.74, wat het belang van domein-specifieke trainingsdata
benadrukt. Op de Nederlandse Jessa-AF dataset behaalde het model 93% algehele nauwkeurigheid
(accuracy) maar toonde verminderde AF-specifieke prestatie met een F1-score van 0.71. Deze
afstand tussen prestasties van Engelse en Nederlandse datasets kan worden toegeschreven aan
verschillende factoren, inclusief de kleinere omvang van het Nederlandstalige trainingscorpus,
taalspecifieke uitdagingen in klinische terminologie, en de aanwezigheid van klasse-onbalans die
meer uitgesproken was in de Jessa dataset. De verbeterde n-gram benadering (met inbegrip
van unigrammen, bigrammen, en trigrammen) toonde betekenisvolle verbeteringen voor Ned-
erlandse tekstverwerking, waarbij de AF F1-score steeg van 0.71 naar 0.78 door het toevoegen
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van bi- and trigrams in onze aanpak. Deze verbetering toont het belang aan van het vastleggen
van contextuele patronen, met name ontkenningen en negaties die gebruikelijk zijn in klinische
documentatie zoals ’geen voorkamerfibrillatie’ en ’uitgesloten’.

Het verfijnde MedRoBERTa.nl model behaalde goede prestatie op de score extractietaak, met
95% algehele nauwkeurigheid en 0.82 macro F1-score op de Jessa-CHADSVASc-10 dataset.
Het model toonde bijzonder sterke prestatie in het identificeren van gevallen waar geen ex-
pliciete CHA2DS2–VASc score werd vermeld (F1-score: 0.967), wat een cruciale mogelijkheid
vertegenwoordigt voor kwaliteitsbeoordelingsdoeleinden. Exacte scoreklassen (0-7) behaalden
F1-scores consequent boven 0.89, met verschillende klassen die bijna perfecte prestatie bereik-
ten. De primaire uitdaging ontstond bij ongelijkheidsuitdrukkingen (bijv., ’CHA2DS2-VASc >
2’), waar beperkte trainingsvoorbeelden resulteerden in verminderde prestatie. Deze beperk-
ing weerspiegelt de relatief kleine omvang van de dataset en het lage voorkomen van deze
uitdrukkingen in Nederlandstalige klinische documentatiepraktijken. Onze analyse van ESC
kwaliteitsindicatoren onthulde significante gaten in klinische documentatiepraktijken. Onder de
1.489 AF-positieve gevallen in de Jessa dataset hadden slechts 44,5% expliciete CHA2DS2–VASc
scores gedocumenteerd in hun ontslagbrieven, terwijl 55,5% elke scorevermelding miste. Onder
patiënten met gedocumenteerde scores hadden 26,7% klinisch significante scores (>2) die anti-
coagulatie overweging vereisten volgens ESC richtlijnen (Hindricks et al., 2020). Deze bevinding
onderstreept de potentiële waarde van geautomatiseerde extractietools voor kwaliteitsbeoordel-
ing, aangezien handmatige beoordeling van bijna 1.500 gevallen een aanzienlijke tijdsinvestering
voor klinisch personeel zou vertegenwoordigen. De gedocumenteerde scoreverdeling toonde re-
alistische klinische patronen, met scores 2-4 die het meest gebruikelijk waren en 62,1% van alle
gedocumenteerde scores vertegenwoordigden.

Discussie
Dit proefschrift toont aan dat zowel traditionele machine learning als moderne transformer
benaderingen klinisch relevante prestaties kunnen behalen voor geautomatiseerde klinische tek-
stverwerking. De XGBoost + TF-IDF combinatie bleek bijzonder effectief voor binaire classifi-
catietaken, waarbij de gehypothetiseerde >90% nauwkeurigheidsdrempel werd behaald terwijl
een niveau van interpreteerbaarheid werd gehandhaafd door feature importance analyse. Het
succes van deze relatief eenvoudige benadering sluit aan bij recente bevindingen die suggereren
dat traditionele machine learning methoden competitief kunnen blijven met meer geavanceerde
deep learning technieken voor goed gedefinieerde classificatietaken (Falter et al., 2024).

De transformer-gebaseerde benadering toonde goede prestatie voor de meer complexe score ex-
tractietaak, wat het belang van domein-specifieke pre-training aangeeft. Geen baseline werd
vastgesteld met behulp van niet-domein specifieke taalmodellen, maar de haalbaarheid van onze
benadering is bewezen en biedt nuttig inzicht voor verder onderzoek. De 95% nauwkeurigheid
behaald door het verfijnde MedRoBERTa.nl model overtrof onze 85% nauwkeurigheidshy-
pothese aanzienlijk, wat de effectiviteit van taalspecifieke en domein-specifieke modelontwikke-
ling toont. Echter, in klinische context is het belangrijker om resultaten te evalueren met
behulp van F1-score, om zowel valse positieven als valse negatieven te minimaliseren. Gegeven
een macro F1-score van 0.82 voor het CHA2DS2–VASc extractiemodel, kunnen we de klasse-
onbalans overwegen en een meer gewogen metriek bieden door te kijken naar de gewogen F1-
score (0.95 in dit geval).

Haalbaarheid van Geautomatiseerde QI Analyse
De QI analyse biedt concreet bewijs van gaten in de rapportering die kunnen worden aangepakt
door geautomatiseerde NLP technieken te gebruiken. De bevinding dat minder dan de helft
van AF patiënten gedocumenteerde CHA2DS2–VASc scores hadden, suggereert mogelijkheden
voor kwaliteitsverbetering met behulp van modellen vergelijkbaar met degenen besproken in dit
proefschrift. De mogelijkheid van de modellen om betrouwbaarheidsscores voor hun voorspellin-
gen te bieden creëert mogelijkheden voor human-in-the-loop systemen, waar onzekere gevallen
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kunnen worden gemarkeerd voor handmatige beoordeling terwijl hoge-betrouwbaarheid voor-
spellingen automatisch kunnen doorgaan. Deze benadering zou de tijd vereist voor kwaliteits-
beoordeling aanzienlijk kunnen verminderen, terwijl klinisch toezicht voor ambigue gevallen
wordt gehandhaafd.

Beperkingen
Verschillende belangrijke beperkingen kwamen naar voren tijdens de studie. De 512-token
sequentielengte inherent aan BERT-gebaseerde architecturen presenteerde uitdagingen voor
langere klinische documenten, hoewel onze pre-processing benadering, die prioriteit gaf aan
relevante secties, effectief bleek voor de meeste gevallen. Een sliding-window benadering zou
moeten worden onderzocht en getest om te zien of verbeteringen kunnen worden gemaakt aan
bestaande modellen. De klasse-onbalans in de Jessa dataset, hoewel klinisch realistisch, vereiste
zorgvuldige overweging in modeltraining en evaluatie. Taalspecifieke uitdagingen bleken signif-
icanter dan aanvankelijk geanticipeerd, met veel voorgetrainde klinische embeddings getraind
op Engelse tekst, wat een andere pre-processing benadering vereiste. Ondanks het gebruik van
verbeterde n-gram benaderingen en domein-specifieke pre-processing, suggereert het verschil in
prestatie tussen Engelstalige en Nederlandstalige datasets dat er ruimte voor verbetering is.
De schaarste van hoogkwalitatieve Nederlandse medische taalmodellen beperkte onze opties,
hoewel MedRoBERTa.nl een uitstekende keuze bleek voor onze extractietaak. De relatief kleine
omvang van de Jessa dataset, met name voor zeldzame scorecategorieën in de CHA2DS2–VASc
extractietaak, beperkte ons vermogen om robuuste modellen voor alle klassen te trainen.

Toekomstig Onderzoek
Dit werk stelt baseline prestatiemetrieken vast die toekomstig onderzoek in verschillende richtin-
gen kunnen begeleiden. Uitbreiding van de binaire AF classificatie naar multi-label classificatie
voor specifieke AF types (bv. paroxysmaal, persistent, permanent) zou meer klinisch relevante
informatie bieden en nauwere afstemming met ICD-10 codering en een grotere reikwijdte voor
geautomatiseerde rapportage bieden.

De ontwikkeling van meer geavanceerde embeddingbenaderingen die medische semantiek beter
vastleggen terwijl de voordelen van gradient boosting behouden blijven vertegenwoordigt een
interessante technische uitdaging. Onze FastText-experimenten toonden beperkt succes, maar
meer geavanceerde benaderingen zouden betere resultaten kunnen opleveren. Voor de score
extractietaak zou het ontwikkelen van modellen die in staat zijn CHA2DS2–VASc scores af
te leiden uit vermeldingen van risicofacoren in plaats van expliciete score verklaringen, groot
inzicht bieden in mogelijkheden voor het verwerken van Nederlandse medische tekst met voor-
getrainde modellen. Ten slotte zou uitbreiding van de kwaliteitsindicator (QI) analyse, zoals
het nagaan van toediening van bloedverdunnende medicatie in het geval val een significante
CHA2DS2–VASc een meer uitgebreid kwaliteitsbewakingssysteem bieden dan degene getest in
dit proefschrift.

Conclusie
Het onderzoek in dit proefschrift toont succesvol de haalbaarheid aan van het gebruik van
moderne NLP technieken ter ondersteuning van ziekenhuisdiagnoserapportage en kwaliteits-
beoordeling voor AF patiënten. De combinatie van traditionele machine learning voor classi-
ficatietaken en transformer-gebaseerde modellen voor extractietaken behaalde goede prestaties
(vergeleken met handmatige labeling) terwijl belangrijke overwegingen voor praktische imple-
mentatie werden benadrukt. De vaststelling van baseline prestatiemetrieken, ontwikkeling van
domein-specifieke pre-processing pipelines, en demonstratie van echte-wereld toepasbaarheid
bieden een fundament voor toekomstig onderzoek en potentiële implementatie in geautoma-
tiseerde rapportagetools. Hoewel uitdagingen blijven bestaan, met name in tekstverwerking
met Nederlanse tekst, behandeling van zeldzame klassen en grote klasse-onbalansen, sugger-
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eren de resultaten dat geautomatiseerde kwaliteitsbewakingstools waardevolle ondersteuning
kunnen bieden voor het rapporteren van kwaliteitsindicatoren voor patiënten met AF.
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Chapter 1

Introduction

1.1 Background
1.1.1 Minimum Hospital Data Set (MZG)
Hospitals in Belgium are required to register various types of data, classified under the Minimum
Hospital Data Set (Minimale Ziekenhuisgegevens, MZG). The MZG data often contains reports
and statistics that need to be reported to the government for further analysis, but are also used
to enforce general quality guidelines.

One of those requirements includes correctly coding, i.e. mapping, diagnoses and treatments
to a relevant and universally understandable code. The World Health Organization (WHO)
defines the 10th Revision of the International Statistical Classification of Diseases and Related
Health Problems (ICD-10) to facilitate the communication of health problems in various types
of records, such as hospital records and death records (World Health Organisation, 2019).
Belgium enforces the use of the ICD-10-CM coding system, which is widely used to correctly
communicate and identify medical information. In this thesis, the term ICD-10 will be used to
refer to ICD-10-CM. However, it is important to note that certain countries may have slight
variations in their coding systems.

1.1.2 Hospital Discharge Notes
When patients are admitted to and later discharged from a hospital, a discharge note will
be created. Discharge notes are official medical documents that contain information about a
patient’s hospital stay, diagnoses, treatments, and crucial data on patient quality of care.

These documents often follow a structured format, with different sections for the patient’s
personal information, medical history, diagnoses, treatments, procedures that were performed
during the hospital stay, medication, and additional medical notes.

Hospital extract certain metrics and data from discharge notes, and will further analyze and
structure them for the MZG reporting (FOD Volksgezondheid, Veiligheid van de Voedselketen
en Leefmilieu, 2016).

1.1.3 Atrial Fibrillation
In this thesis, we exclusively focused on patients with the condition known as Atrial Fibrillation
(AF). AF is the most common arrhythmia or heart rhythm disorder, in which the two upper
chambers of the heart, called the atriums, contract too quickly and irregularly.

In this thesis, Atrial Fibrillation (AF) is used as an umbrella term for the different types of
Atrial Fibrillation, as well as Atrial Flutter. Atrial Fibrillation is classified into several types,
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Risk factor Description Score

Congestive heart failure Higher risk of stroke for patients with congestive HF,
including patients with Clinical HF, or those who
have objective evidence of moderate to severe Left
Ventricular dysfunction, or Hypertrophic Cardiomy-
opathy (also affecting the left ventricle of the heart).

1

Hypertension History of hypertension, including patients on an-
tihypertensive therapy, as this may indicate higher
risk for stroke.

1

Age ≥ 75 years Age is a powerful driver of stroke risk. Age-related
risk is a continuum, but for reasons of simplicity and
practicality, 1 point is given for age 65 - 74 years and
2 points for age ≥75 years.

2

Diabetes mellitus Diabetes mellitus is a well-established risk factor for
stroke.

1

Stroke Previous stroke, systemic embolism, or TIA confers
a particularly high risk of ischemic stroke, hence
weighted 2 points.

2

Vascular disease Vascular disease (PAD or myocardial infarction),
Angiographically significant CAD, and complex aor-
tic plaque on the descending aorta as an indicator of
significant vascular disease, are all predictors of or
risk factors for ischemic stroke.

1

Age 65–74 years See above. 1

Sex category (female) Stroke risk is higher in females. 1

Maximum total score 9

Table 1.1: Risk factors for computation of CHA2DS2–VASc (Hindricks et al., 2020)

based on the duration of episodes a patient experiences. These types include paroxysmal,
persistent, long-term, and permanent Atrial Fibrillation. Atrial flutter is also classified as
an arrhythmia, caused by the atriums contracting more quickly than expected. While Atrial
Fibrillation is defined to be more chaotic than Atrial Flutter, both arrhythmias have similar
symptoms, causes, and treatment options.

Discharge notes for patients with AF, whether AF was a pre-existing condition or newly diag-
nosed during hospitalization, typically contain more information about the diagnosis and the
risks involved for the patient, as well as treatment decisions made during the hospital stay. For
example, patients are often given anticoagulation therapy, as untreated, AF can increase the
risk of cerebrovascular accidents (CVA), also known as strokes.

The documentation of patient care during their hospital stay is certainly important, and it
facilitates the assessment of the adherence to specific clinical guidelines and quality of care
standards.

1.1.4 CHA2DS2–VASc Score
To determine the risk of stroke for patients with AF, a CHA2DS2–VASc score is often calculated.
The criteria, or risk factors, used to determine the score are presented in table 1.1.

Many patients who are admitted to a hospital with a history of AF or a new diagnosis of AF
will have a CHA2DS2–VASc score calculated for them, which can be found in their discharge
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Type ICD-10 code
Paroxysmal Atrial Fibrillation I48.0
Persistent Atrial Fibrillation I48.1x
Chronic Atrial Fibrillation I48.2x
Typical Atrial Flutter I48.3
Atypical Atrial Flutter I48.4
Unspecified Atrial Fibrillation I48.91
Unspecified Atrial Flutter I48.92

Table 1.2: The types of AF with their corresponding ICD-10 code

note. The CHA2DS2–VASc score is a good predictive value for the risk of stroke for patients
diagnoses with AF (Gažová et al., 2019). Based on the resulting score of the patient, various
treatment options are considered. For instance, patients with a CHA2DS2–VASc score of two or
more are expected to receive anticoagulant therapy following the quality indicators for patients
with AF as decided by the European Society of Cardiology (ESC).

1.2 Research Objectives

1.2.1 Quality Indicators for Atrial Fibrillation
One of the research objectives of this thesis is to calculate the percentage of adherence to current
quality indicators for patients diagnosed with Atrial Fibrillation (AF), as determined by the
ESC guidelines.

We have chosen the following quality indicators in particular to focus on in this thesis:

• Proportion of AF patients with a reported CHA2DS2–VASc score

• Proportion of AF patients with a significant CHA2DS2–VASc score (two or higher) that
received anticoagulant therapy

Given these research objectives, we need a way to correctly identify patients with AF given a
set of discharge notes.

1.2.2 Automated ICD-10 Coding
One of the components of MZG data is the ICD-coding of patient diagnoses through discharge
letters. For example, when a patient is admitted to a hospital and a diagnosis for ’Atrial
fibrillation (Unspecified)’ is established, the hospital has to attach the ICD-10 code for the
diagnosis to the discharge note, which in this case would be the code I48.91.

However, extracting MZG data is still often done manually, and hospitals hire dedicated coders
whose job is to correctly identify and code records for the hospital. Records often have to be re-
evaluated due to human error. The government will only allow for a certain number of revisions
before a hospital is fined, thus making mistakes costly. This is where automated ICD-10 can
introduce a great improvement in the efficiency and accuracy of ICD-10 coding.

Our second primary research objective focuses on correctly identifying patients with Atrial
Fibrillation (AF). To determine the proportion of patients with AF, we first need to classify the
reports into two classes: those of patients with AF, and those of patients without AF.

Diagnoses for any type of AF in hospital discharge notes will later be linked to one of the
ICD-10 codes, found in table 1.2. It is therefore useful to correctly identify patients with AF
through the correct classification of the ICD-10 codes for Atrial Fibrillation (AF).
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1.3 Research Questions and Hypotheses
1.3.1 Primary Research Questions
We define the following primary research questions:

1. Can modern Natural Language Processing (NLP) techniques help Belgian hospitals to
measure and survey ESC quality indicators through discharge letters, specifically for pa-
tients with Atrial Fibrillation (AF)? (RQ1)

2. Can modern Natural Language Processing (NLP) techniques help in automating the iden-
tification of patients with Atrial Fibrillation (AF) through discharge notes? (RQ2)

3. Can modern Natural Language Processing (NLP) techniques, specifically Large Language
Model (LLM)s, provide help in extracting relevant CHA2DS2–VASc scores from discharge
notes? (RQ3)

1.3.2 Primary Hypotheses
H1: Atrial Fibrillation Classification
Machine learning models using Term Frequency-Inverse Document Frequency (TF-IDF) vec-
torization combined with XGBoost can achieve clinically acceptable accuracy (>90%) for au-
tomated identification of atrial fibrillation cases from hospital discharge notes, both in English
(MIMIC-IV) and Dutch (Jessa Hospital) datasets.

This hypotheses is primarily based off of results from previous studies, indicating a baseline
approach using XGBoost in combination with TF-IDF can achieve great performance out of the
box. The study by Falter et al. (2024) demonstrated that XGBoost applied to TF-IDF matrices
achieved an accuracy of 94% for atrial fibrillation classification on the MIMIC-III dataset.
Importantly, this traditional machine learning approach outperformed more sophisticated deep
learning techniques, including BioBERT (accuracy: 84%), suggesting that for clinical text
classification tasks, the interpretability and robustness of XGBoost may be more valuable than
the theoretical sophistication of transformer-based models (Falter et al., 2024).

The superiority of XGBoost over deep learning approaches in this domain can be attributed
to several factors. Clinical discharge notes often contain domain-specific vocabulary and ab-
breviations that may not be well-represented in the clinical corpora used to train models like
BioBERT or ClinicalBERT. The 90% accuracy threshold specified in this hypothesis is based
off of the previous study by Falter et al. (2024)

However, systematic reviews reveal significant limitations in current evidence for performance
of automated ICD-10 coding or similar applications. The comprehensive systematic review
by Kaur et al. (2023) of 42 studies (2010-2021) following PRISMA guidelines found that top-
performing models achieved only micro-F1 scores of 0.477-0.551 on MIMIC datasets, noting
that ’efforts are still required to improve ICD code prediction accuracy’ and highlighting the
need for large-scale clinical corpora.

H2: CHA2DS2–VASc Score Extraction
Fine-tuned transformer models, specifically MedRoBERTa.nl trained on Dutch medical text,
can accurately extract CHA2DS2–VASc scores from Dutch hospital discharge notes with >85%
accuracy, enabling automated quality indicator assessment.

Given our approach using linear classification on top of a pre-trained model, we hypothesize a
model with similar or higher accuracy (85%) than the binary classification model mentioned in
Falter et al. (2024) could be possible for our task.

H3: Quality Indicator Assessment
Modern NLP techniques can successfully automate the measurement of ESC quality indicators
for atrial fibrillation patients, specifically:
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• The proportion of AF patients with reported CHA2DS2–VASc scores

• The proportion of AF patients with clinically significant scores (≥2)

1.3.3 Secondary Hypotheses
H4: Cross-domain Generalization
Atrial Fibrillation (AF) classification models trained on cardiology department data will show
reduced performance when applied to general hospital discharge notes from other departments,
highlighting the importance of domain-specific training.

H5: Language-specific Models Domain-specific pre-trained models (MedRoBERTa.nl for
Dutch medical text) will outperform general language models for clinical information extraction
tasks in Dutch medical text.
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Chapter 2

Methodology

In this chapter, we discuss the various methodologies we used to explore and create solutions
for our research questions.

2.1 Research Design
The thesis was structured as a retrospective study and was split into two phases to ensure contin-
uous research progress. The first phase focused on exploring and developing the methodologies
using a public dataset of hospital discharge notes. We chose to use the MIMIC-IV dataset for
this, which we will discuss in more detail later. The second phase consisted of applying the
previously researched methods to a dataset of Dutch hospital discharge notes from the Jessa
Hospital. This two-phase approach was mostly chosen to accommodate pending administrative
and ethical approvals required for accessing the Jessa Hospital dataset.

Using the MIMIC-IV-Ext-Cardio dataset, we researched and developed our methodology in
the first phase of this thesis. We implemented and compared multiple approaches for the
automated classification of Atrial Fibrillation (AF), including traditional machine learning with
Term Frequency-Inverse Document Frequency (TF-IDF) features, embedding-based approaches
with FastText, and defined baseline performance benchmarks. This phase allowed us to try out
various ideas and hyperparameter configurations without the constraints of limited availability
of data.

The second phase consisted mostly of the application of the previously researched methods
for AF classification, while diving further into methods for CHA2DS2–VASc score extraction.
We applied our best-performing MIMIC-IV-Ext-Cardio methodologies to the Jessa-AF dataset
of Dutch hospital discharge notes, then researched and implemented a CHA2DS2–VASc score
extraction pipeline using a medical large language model, and evaluated the performance of
our models on the different predefined and excluded subsets of the original Jessa-AF dataset.
Throughout this chapter, we will refer to these experiments according to the dataset that was
used.

2.2 Datasets
2.2.1 MIMIC-IV Dataset
To explore various methodologies for processing and analyzing hospital discharge notes while we
waited on approval to start phase two of the thesis, we utilized the MIMIC-IV dataset (Johnson
et al., 2024), created by Johnson et al. (2023b). The dataset was accessed through PhysioNet
(Goldberger et al., 2002). In accordance with the dataset’s access requirements, the CITI
Program course on Human Research for Data or Specimens Only Research was completed before

21
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retrieving and analyzing the data. In accordance with the dataset’s access requirements, the
CITI Program course on Human Research for Data or Specimens Only Research was completed
before retrieving and analyzing the data. This course provided guidelines and regulations
around working with human and medical data in a research context. It assisted in keeping us
informed about potential breaches of regulations and provided instructions on what to do in
the event that any data was stolen or leaked.

We combined the original MIMIC-IV dataset with the MIMIC-IV-Note dataset (Johnson et al.,
2023a), which was retrieved through PhysioNet (Goldberger et al., 2002) as well.

MIMIC-IV (Medical Information Mart for Intensive Care, version IV) is a large, freely available
database comprising disidentified health data associated with over 40,000 patients admitted to
the Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts between 2008
and 2019 (Johnson et al., 2024). A wide range of clinical data is included in the dataset,
such as laboratory test results, medication information, and, most importantly for our study,
diagnoses in the form of ICD-10 codes (Johnson et al., 2024). The MIMIC-IV-Note dataset
forms an extension to the basic MIMIC-IV dataset, with clinical notes that include discharge
summaries.

Different subsets were extracted from the original MIMIC-IV dataset and combined with the
MIMIC-IV-Note dataset. Throughout this thesis, we refer to two of our extracted subsets
as

• MIMIC-IV-Ext-Diagnoses, and

• MIMIC-IV-Ext-Cardio

following the recommended citation guidelines for derivative works as outlined by Physionet
(Johnson et al., 2024).

MIMIC-IV-Ext-Diagnoses contains discharge notes retrieved from the original MIMIC-IV-Note
dataset hospitalizations. This means we did not make any extra effort to specifically include
ICU stays, which MIMIC-IV also provides data for, as the regular hospitalizations are more
similar to the data we would be receiving in phase two. We then annotated the dataset with a
label for Atrial Fibrillation (AF), indicating which discharge notes were related to patients with
(1) or without (0) AF. Whether a patient was (previously) diagnosed with AF was determined
by the ICD-10 codes that were linked to each hospital discharge note, which could be found in
the original MIMIC-IV dataset. Discharge notes were the only type of note that were included
in the final dataset.

MIMIC-IV-Ext-Cardio contains discharge notes for any patient who was both present in MIMIC-
IV and MIMIC-IV-Note, similar to the previous subset. This dataset of discharge notes was
also annotated with a label for Atrial Fibrillation (AF), indicating which discharge notes were
related to patients with or without AF. However, for this dataset, we only included records that
were related to patients that were admitted to the Cardiology department. This information
was obtained from the specified services that were linked to each hospitalization. More specif-
ically, only records tagged with ’CMED’ (Cardiac Medical - for non-surgical cardiac related
admissions) and ’CSURG’ (Cardiac Surgery - for surgical cardiac admissions) were included
Johnson et al. (2024).

2.2.2 Jessa Hospital Dataset
The dataset we received from the Jessa Hospital in Hasselt, Belgium, contained hospital dis-
charge notes for a pre-determined set of patients. The population of the dataset included all
cardiac patients (patients admitted to the cardiology department) with hospitalization between
01/01/2016 and 31/12/2023, with an available hospitalization report, and over the age of 18.
This original dataset had already been annotated with a binary label indicating the presence
or lack of an Atrial Fibrillation (AF) diagnosis for this patient.
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The Jessa Hospital dataset has also been annotated in multiple ways to accommodate our
research questions, and various subsets of the original Jessa Hospital dataset were created for
different research questions. We categorize the datasets as follows:

• Jessa-AF, the subset of the original Jessa Hospital dataset, without any unusable dis-
charge notes (e.g., empty records, or records only containing a headline). This dataset
contains columns for the discharge note and a binary label in case the note has been coded
with any given ICD code for AF

• Jessa-CHADSVASc, a subset of the Jessa-AF dataset in which only AF-positive cases are
included, containing the actual discharge note and various possible annotated information.
Several purposes for which this dataset was annotated will be covered in more detail later
in this thesis.

• Jessa-CHADSVASc-3, a subset of the Jessa-CHADSVASc dataset, which was restricted
to records that contained a CHA2DS2–VASc score that was present in the dataset at
least three times. This was implemented to eliminate records containing scores that were
extremely rare in the dataset.

• Jessa-CHADSVASc-10, a subset of the Jessa-CHADSVASc dataset, which was restricted
to records that contained a CHA2DS2–VASc score that was present in the dataset at
least ten times. This was implemented to eliminate records containing scores that were
extremely rare in the dataset.

Jessa-CHADSVASc and all of its subsets were created by using various regular expressions
and manual labeling techniques to annotate the available data and retrieve the appropriate
CHA2DS2–VASc scores.

Data Annotation and Labeling
The annotation for the Jessa-CHADSVASc dataset was done using both automated (Python
script with regular expressions) and manual approaches to ensure high-quality labels. The
records were then manually checked multiple times to ensure the correctness of the labels, as
this would have a big influence on the training and performance of the resulting models.

The manual annotation process proposed some challenges that are inherent to text processing
in general. As mentioned previously, medical professionals often document CHA2DS2–VASc
scores using various notations, including abbreviations or with spelling mistakes. Some records
even contained contradictory score information, such as mentioning both ’CHA2DS2-VASc = 3’
and ’CHADS-VASC score 4’ within the same document. These inconsistencies reflect real-world
clinical documentation practices but may propose some challenges for creating a performant
model.

Various other annotated datasets were also created in case more complex models would be
created in this thesis, which included annotations for the start index and end index of a score
within a text, as well as masked text where different parts of the CHA2DS2–VASc score and
text was masked to be able to retrieve it using clinical reasoning, or so it could have been
used to fine-tune the used model on specific, such as Named Entity Recognition (NER) or
Question-Answering. However, these datasets, and these approaches, were not used in the final
experiments of this thesis and will therefore be not discussed in detail.

2.3 Data Characteristics and Limitations
The datasets we are using have various interesting characteristics and propose some challenges
that are essential to understand before discussing our methodologies and interpreting our re-
sults in this thesis. These characteristics and the constraints that impacted our methodological
choices are discussed in this section.
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2.3.1 MIMIC-IV Datasets
The MIMIC-IV-Ext-Cardio dataset consists of more than 40.000 English patient records sourced
from Beth Israel Deaconess Medical Center (Johnson et al., 2023a), while the Jessa-AF dataset
contains 12,516 Dutch cardiac discharge notes from hospital admissions between 2016 and 2023,
after filtering out empty notes.

2.3.2 Jessa Hospital Datasets
The Jessa-AF dataset consisted of 12,516 complete Dutch discharge notes, with a significant
class imbalance of 88% AF-negative cases (11,008 records) versus 12% AF-positive cases (1,508
records). The MIMIC-IV-Ext-Cardio dataset has a smaller class imbalance, with 40.73% of
cases (17,300 records) being AF-positive. The class imbalance in the Jessa-AF dataset, even
though it is rather large, is mostly representative of real-world clinical populations. Studies
of hospitalized cardiac patients often reported AF prevalence rates of around 15% for different
groups of patients, such as the study done by Ergün et al. (2021) and Constante et al. (2024).
Particularly, Constante et al. researched the prevalence of different heart diseases, including
AF, in pediatric patients, in which the study concluded 16.7% of patients presented with AF
(Constante et al., 2024). Working together with the Jessa Hospital, we learned that the class
imbalance of the retrieved dataset was on the bigger side, but nonetheless a good test to see
how well any of our methods would work.

The Jessa-CHADSVASc dataset consisted of 1,496 AF-positive records with 17 unique labels
describing the different scores, while the Jessa-CHADSVASc-3 dataset consisted of 1,489 records
with 12 labels after removing 7 records from untrainable classes (less than 3 cases per class).
Both of these datasets have a significant class imbalance, dominated by cases where no explicit
CHA2DS2–VASc score was mentioned (more than half of all records). Only around 674 records
(around 45%) from Jessa-CHADSVASc contained actual CHA2DS2–VASc scores. A total of 7
additional records were filtered out for the Jessa-CHADSVASc-10 dataset, compared to Jessa-
CHADSVASc-3, as these 7 records were labeled with a very rare class. However, this does not
influence the overall distributions for AF-positive and AF-negative records too much. The
records in Jessa-CHADSVASc-10 only have 10 different classes in their training, validation and
test sets, compared to 12 in Jessa-CHADSVASc-3 and 17 in Jessa-CHADSVASc.

The original possible labels for Jessa-CHADSVASc we established are shown in table 2.1, includ-
ing the occurrence of records with this label within the dataset.

We notice that for scores containing inequality signs, their prevalence in the dataset is a lot
lower or simply nonexistent. The label that stands out from said subset of records is label 13,
indicating a CHA2DS2–VASc score bigger than 2. This makes sense since any CHA2DS2–VASc
score equal to or bigger than 2 indicates clinical significance and therefore might be mentioned
more often.

Looking at table 2.1, we can deduce the labels for both Jessa-CHADSVASc-3 and Jessa-
CHADSVASc-10.

Some example notations of the scores in the discharge notes were

• CHA²Ds²- VASc van 2

• ChasVasc 4/9

• CHA2DS2-VASc (=2)

• CHA²Ds²-VASc score is 7/9

• CHA2DS2-VASc Score - 1

• CHA2DSV2VASc =0
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Numeric label Label description Prevalence
0 Score of 0 58 records (3.9%)
1 Score of 1 74 records (4.9%)
2 Score of 2 133 records (8.9%)
3 Score of 3 149 records (10.0%)
4 Score of 4 129 records (8.6%)
5 Score of 5 71 records (4.7%)
6 Score of 6 21 records (1.4%)
7 Score of 7 10 records (0.7%)
8 Score of 8 3 records (0.2%)
9 Score of 9 3 records (0.2%)
10 No score 827 records (55.3%)
11 Score > 0 0 records
12 Score > 1 2 records (0.1%)
13 Score > 2 11 records (0.7%)
14 Score > 3 0 records
15 Score > 4 1 record (0.1%)
16 Score > 5 2 records (0.1%)
17 Score > 6 0 records
18 Score > 7 0 records
19 Score > 8 0 records
20 Score < 1 0 records
21 Score < 2 1 record (0.1%)
22 Score < 3 1 record (0.1%)
23 Score < 4 0 records
24 Score < 5 0 records
25 Score < 6 0 records
26 Score < 7 0 records
27 Score < 8 0 records
28 Score < 9 0 records

Table 2.1: Labels for the Jessa-CHADSVASc dataset, including their prevalence in the
dataset

• ChadsVasc groter dan 2

• CHADSVasc (4/9)

• CHADS - vasc 3

Since we had fewer records than in our previous experiments with the MIMIC-IV-Ext-Cardio
dataset, we anticipated it would take more work and research to get good results right away. If
any possible notation of a CHA2DS2–VASc score does not have a label and is not mentioned
in table 2.1, you may assume it was not present in our dataset (e.g. a score written as ’hoge
chadsvasc score’ (’high chadsvasc score’) was not found in our dataset).

We anticipated that the biggest data-related limitations in this thesis would be

• Class imbalance

• Absence (or very low prevalence) of certain labels

• Difficulty finding models that properly interpret Dutch medical language

• Preprocessing bias may lead to explicit score extraction over ’clinical reasoning’

This is why we anticipated that choosing certain evaluation metrics would have a bigger impact
on our methodology, and it was definitely encouraged to take a look at existing pre-trained
models that perform better on clinical text. The methods we employed for each implementation
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will be discussed in the respective sections. In this thesis, we did not tackle the problem of
absence or low prevalence of certain labels. In any future research on this topic, it may be
possible to generate synthetic data alongside the existing data to enhance the datasets. However,
various regulations surrounding the use of actual patient data (from existing datasets) make
this process more tedious.

For the Jessa-CHADSVASc datasets specifically related to the clinical significance of the
CHA2DS2–VASc score, patients with a significant CHA2DS2–VASc score (≥ 2) had significantly
longer discharge notes (mean: 1,187 words) compared to those not requiring treatment (mean:
980 words), with a meaningful effect size (p < 0.001). The 207-word difference in average likely
reflects the increased documentation requirements for patients with multiple comorbidities that
contribute to higher CHA2DS2–VASc scores.

2.4 Data Preprocessing
Data pre-processing is an important step to take when working with textual data. The pre-
processing steps that we defined are used to transform the human-readable hospital discharge
notes in our datasets into a format suitable for machine learning models. This may seem rather
simple at first glance, but it is generally known that the performance of machine learning or deep
learning applications heavily depends on the pre-processing that is done on the data, as well as
the approaches to represent the data in a machine-readable format (Kaur et al., 2023).

2.4.1 Text Preprocessing Pipeline
Our pre-processing pipeline consists of several sequential steps designed to clean, normalize,
and structure the medical text data such that it can be properly interpreted by our following
approaches to classify documents or extract information. We will use following generated Dutch
discharge note excerpt to illustrate each pre-processing step:

PATIËNT: [NAAM] [VOORNAAM], geboortedatum: 15/03/1952
OPNAME DATUM: 23/11/2023 - ONTSLAG: 28/11/2023
DIENST: Cardiologie

BESLUIT EN BESPREKING:
De 71-jarige patiënt werd opgenomen wegens voorkamerfibrillatie de

novo.
CHA2DS2 -VASc score van 4 werd berekend (leeftijd 2, hypertensie 1,

diabetes 1).
Anticoagulatie gestart met Rivaroxaban 20mg 1x per dag.

MEDICATIE BIJ ONTSLAG:
- Rivaroxaban 20mg 1x/dag
- Metoprolol 50mg 2x/dag
- Losartan 100mg 1x/dag

Different experiments were done to determine a good pre-processing pipeline for the various
datasets we used to train the models mentioned in this thesis. All datasets went through
various stages of text pre-processing. These steps included:

1. Data cleaning

2. Data normalization

3. Data annotation & Label mapping

4. Stop-word removal

5. Lemmatization or stemming
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6. Tokenization

7. Vector representation conversion

2.4.2 Data Cleaning
The first step involves cleaning the data, and removing any unnecessary information from the
dataset. This can include unused columns, or certain elements from the discharge notes that
are not relevant or would influence our approaches negatively. In our case, this meant removing
patient identification, metadata, and formatting artifacts. Although the data for both use
cases had been anonymized, certain leftovers were still present in the data, such as sentences
containing ’[FIRSTNAME] [LASTNAME] was admitted to Cardiology dept.’ These identifiers,
including other examples like birth or admission dates, were removed from the text. We also
removed characters such as training whitespaces and line breaks. For certain datasets, such as
the Jessa-CHADSVASc sets, we removed starting section headings specifically.

After data cleaning, our text may look as follows:

De 71-jarige patiënt werd opgenomen wegens voorkamerfibrillatie de
novo.

CHA2DS2 -VASc score van 4 werd berekend (leeftijd 2, hypertensie 1,
diabetes 1).

Anticoagulatie gestart met Rivaroxaban 20mg 1x per dag.
MEDICATIE BIJ ONTSLAG:
Rivaroxaban 20mg 1x/dag
Metoprolol 50mg 2x/dag
Losartan 100mg 1x/dag

2.4.3 Data Normalization
When talking about data normalization, we refer to the practice of standardizing text to handle
common variations or elements that are present in the dataset. For example, in the case of our
AF classification models, we made sure to perform case normalization, such that all text is
set to lowercase. ’Diabetes’ and ’DIABETES’ would therefore both me represented in the
same way, and would become ’diabetes’. As mentioned in the data cleaning, processed such as
whitespace normalization can also be considered data cleaning. However, data normalization
often refers to a more aggressive normalization that will have a bigger impact on the approaches
that follow.

An example of a normalization that can be applied to our data is abbreviation expansion, such as
expanding common medical abbreviations to their full forms (such as AF to Atrial Fibrillation).
We can also perform format standardization, such as standardising the way CHA2DS2–VASc
scores are being written in our training set. For example, we can normalize our data by making
sure a CHA2DS2–VASc score written as ’CHA2DS2VASC is 2’ or ’CHADSVASC of 2’ will
be transformed to follow a predefined format, such that both terms would be normalized to
’CHADSVASc = 2’. We decided not to implement this, as this also meant reducing the possible
variations in our dataset. For us, it was important for our model to train on as many variations
as we had available, such that it would also learn to generalize and work well on unseen data.
For other purposes our approaches, heavier forms of normalization may be beneficial. However,
in our case, apart from using whitespace and case normalization after our data cleaning, our
data was left as authentic as possible.

As may be apparent from our implementation, data normalization is a step that is often merged
into other steps of the pre-processing pipeline.
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2.4.4 Stop-word Removal
Stop-word removal is a pre-processing technique that eliminates frequently occurring words that
typically provide little discriminative value for classification tasks, often referred to as noise. In
Dutch, some common stop-words are ’de’ (’the’), ’en’ (’and’), ’te’ (’too’), and ’van’ (’of’). While
these words appear frequently throughout clinical documents, they rarely contribute meaningful
diagnostic information that distinguishes between different medical conditions. The benefits of
stop-word removal are dimensionality reduction, noise reduction computational efficiency, and
focus on discriminative terms. By removing stop-words, we reduce the amount of terms in our
document, which leads to lower-dimensional vector representations of our textual data. This
also leads to computational efficiency, while also reducing the size of the vocabularies that are
built during the fitting-stage of TF-IDF-vectorization. By removing stop-words, we also reduce
noise by removing words that do not directly have any clinical value or diagnostic power.

However, stop-word removal in medical contexts can also impact the training negatively. Some
terms can carry important clinical meaning depending on the context, particularly in the context
of negation (’not diagnosed with’). Alternative approaches, such as skip-gram subsampling
described by Mikolov et al. (2013), preserve stop-words but reduce their influence through
probabilistic downsampling based on frequency. Instead of the complete removal of stop-words,
this technique uses a form of subsampling where words that appear frequently in the text are
kept with some probability attached, which will reduce their influence during training. Terms
are downsampled more aggressively as they appear more frequently in the text (Mikolov et al.,
2013). This may be necessary when completely removing stop-words risks losing contextual
information that may sometimes be necessary to keep information on the relationships between
words.

For AF Classification Models (XGBoost + TF-IDF), we implemented comprehensive stop-word
removal using NLTK’s predefined Dutch stop-word list (Loper and Bird, 2002) and common
administrative phrases such as ’werd opgenomen in de dienst cardiologie’ (’got admitted to
the cardiology department’). This more aggressive approach is justified because our TF-IDF
vectorization focuses on discriminative term frequencies, making stop-words counterproductive.
While XGBoost focuses on individual features and grammatical relationships are not directly
targeted in our approach, the removal of stop-words will have a more positive influence.

For our CHA2DS2–VASc extraction model we chose to preserve stop-words in our fine-tuning
approach. This was mostly chosen as transformer models can rely on grammatical context
to understand relationships between concepts. While we used pre-trained embeddings, they
include representations for stop-words that contribute to overall sentence understanding.

In our example, we will remove common stop-words and perform our data normalization, which
will result in the following text:

71-jarige patiënt opgenomen wegens voorkamerfibrillatie novo.
cha2ds2 -vasc score 4 berekend (leeftijd 2, hypertensie 1, diabetes

1).
anticoagulatie gestart rivaroxaban 20mg dag.
rivaroxaban 20mg dag
metoprolol 50mg 2x dag
losartan 100mg dag

2.4.5 Lemmatization & Stemming
For our Jessa-AF dataset, we applied stemming using NLTK’s SnowballStemmer for Dutch.
Stemming reduces words to their root form by removing suffixes, and is a rather ’harsh’ algo-
rithm compared to lemmatization.

For our MIMIC-IV-Ext-Cardio dataset, we used lemmatization using NLTK’s WordNetLem-
matizer. This reduces words to their base form, also called canonical form, while preserving its
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Original Word Stemmed Form (Porter) Lemmatized Form (WordNet)
diagnosed diagnos diagnose
diagnosing diagnos diagnose
admission admiss admission
admitted admit admit
medications medic medication

Table 2.2: A table showing various common terms used in discharge notes with their
respective lemmatized and stemmed version

meaning. Table 2.2 shows some examples of common terms and how they would be lemmatized
or stemmed.

We can see from the examples shown in the table that lemmatization produces similar words, as
similar terms are often reduced to the same base form. With stemming on the other hand, we
notice that it simply ’cuts off’ the pre- or suffixes of words and reduces words to their root form
(stem). In this sense, stemming is considered more aggressive. Lemmatization therefore requires
language-specific rules that must be followed, and is often a bit slower than stemming.

Adding stemming to our previous example would give following result:

71-jarig patient opgenom weg voorkamerfibrill novo.
cha2ds2 -vasc score 4 bereken (leeftijd 2, hypertens 1, diabet 1).
anticoagulat gestart rivaroxaban 20mg dag.
rivaroxaban 20mg dag
metoprolol 50mg 2x dag
losartan 100mg dag

As mentioned previously, stemming was used on our Dutch datasets, while lemmatization was
used on our English datasets. This will be discussed further for each implementation throughout
the following chapters.

2.4.6 Tokenization
The tokenization step takes the input text and splits it into individual tokens. This is usu-
ally done using a predefined ’tokenizer’, which provides the appropriate functionality to split
text into tokens based on certain rules. A simple way of tokenizing human-readable text is
by splitting the text on whitespaces. Given our example, this would produce the following
tokens:

['71-jarig ', 'patient ', 'opgenom ', 'weg', 'voorkamerfibrill ', 'novo
',

'cha2ds2 -vasc', 'score ', '4', 'bereken ', 'leeftijd ', '2', '
hypertens ',

'1', 'diabet ', '1', 'anticoagulat ', 'gestart ', 'rivaroxaban ', '20mg
',

'dag', 'rivaroxaban ', '20mg', 'dag', 'metoprolol ', '50mg', '2x', '
dag',

'losartan ', '100mg', 'dag']

2.4.7 Vector Representation Conversion
Another important pre-processing step when working with various NLP machine learning meth-
ods for classification or extraction is the conversion of text or tokens into vector representations.
The text has to be represented in some machine-readable format, as most machine learning al-
gorithms can only work with numerical data. To create a mapping from the categorical textual
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Component Specification
Device MacBook Pro (14-inch, 2023)
Operating System macOS Sonoma 14.0
CPU Apple M2 Pro chip, with a 10-core CPU with 6 perfor-

mance cores and 4 efficiency cores
GPU Apple M2 Pro chip with integrated 16-core GPU
Memory Apple M2 Pro chip with 16 GB unified memory
Storage 512 GB SSD with roughly 100 GB of free space

Table 2.3: Specifications for MacBook Pro (14-inch, 2023), personal device used in
phase 1

data to numerical data, the text is represented in some numeric format. In this thesis, we use
various approaches depending on the methods we will be using.

The simplest way to represent text as a numerical vector is to create a matrix and treat each
unique word as a separate dimension in a high-dimensional space. For example, given the
text ’patient has atrial fibrillation’ we would like to encode, we could represent each word as
follows:

'patient ': [1, 0, 0, 0]
'has': [0, 1, 0, 0]
'atrial ': [0, 0, 1, 0]
'fibrillation ': [0, 0, 0, 1]

Encoding large documents like this will logically produce sparse, high-dimensional vectors, as
most elements in the vector will be zero, and they will be quite long. This is why other ap-
proaches exist, such as embeddings, which create dense and lower-dimensional representations.
For example, they can choose to represent similar words in a similar vector, and can there-
fore reduce the amount of dimensions that an embedded vector would need. The distances
between vectors can also be calculated using various methods. More extensive approaches like
pre-trained embeddings exist to better capture contextual meaning by analyzing relationships
within sentences, including the morphological patterns and dependencies within sentences or
documents. These methods, for example, can recognize that identical word combinations can
have different meanings, depending on context, and may assign different numerical representa-
tions that reflect their significance.

The exact methods used in our approaches will be discussed in their corresponding chap-
ters.

2.5 Hardware and Software Environment

2.5.1 Local Devices
The initial development of a classification model for automated AF classification on MIMIC-
IV-Ext-Cardio, was conducted mostly on a personal laptop with fairly limited computational
resources. The specifications of this personal computer can be found in table 2.3.

The original Jessa Hospital dataset was later securely retrieved and stored on another laptop
provided by Hasselt University (UHasselt). In accordance with the pre-defined agreements
between the ethical committees and relevant departments of Jessa Hospital and UHasselt, the
Jessa Hospital dataset and any subsets created from it were only accessed through the UHasselt
laptop. The specifications of this laptop can be found in figure 2.4.
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Component Specification
Device Thinkpad T495
Operating System Windows 11 Home
CPU AMD Ryzen 7 PRO 3700U
GPU Integrated Radeon Vega Mobile Gfx
Memory 16 GB
Storage 1TB SSD

Table 2.4: Specifications for ThinkPad T495, device provided by Hasselt University,
used in phase 2

Component Specification
Device GPU node with NVIDIA P100 on partition gpu_p100
CPU 2 Intel Xeon Gold 6140 CPUs@2.3 GHz (Skylake), 18

cores each, with 1 NUMA domain and 1 L3 cache per
CPU

GPU 4 NVIDIA P100 SXM2 GPUs@1.3 GHz, 16 GiB GDDR
each, connected via NVLink

Memory 192 GiB RAM, default 5000 MiB per core
Storage 200 GB SSD local disk

Table 2.5: Specifications for a GPU node with NVIDIA P100 GPUs on the gpu_p100
partition

2.5.2 High-Performance Computing on VSC
However, for the Jessa Hospital dataset, we were given permission to utilize the Flemish Su-
percomputer Center (Vlaams Supercomputer Centrum) (VSC) to conduct any further research
with this dataset. The use of the high-performance computing infrastructure of the VSC was
mostly chosen to speed up compute times and allowed us to work with large language models
that may have required more memory than was available on our personal devices.

The VSC provides various tiers of parallel processing. In the context of this thesis, we gained
access to the KU Leuven/UHasselt Tier-2 Clusters and made use of the Genius and wICE
clusters.

The Genius cluster has thin nodes, large memory nodes, and GPU nodes. We mostly used
GPU nodes for any model training or fine-tuning of existing language models. These GPU
nodes provided an interface to work with NVIDIA GPUs, which proved to be very useful in
reducing overall compute times compared to running our code on a personal laptop. For the
training of the Jessa-CHADSVASc model, we used the HuggingFace Transformers library (Wolf
et al., 2020), which in its turn also uses the PyTorch library (Paszke et al., 2019), and enables
us to use GPU acceleration with CUDA. Table 2.5 shows the specifications of a standard GPU
node on the gpu_p100 partition. While these nodes offer solid performance, they are typically
shared among multiple users, which can lead to longer queue times. However, GPUs are reserved
per user, so once a job starts, the assigned GPUs are dedicated. In our experience, requesting
2 GPUs provided a good balance between having enough memory available for training while
keeping the waiting time in the queue relatively short.

The wICE cluster also has thin nodes, large memory nodes, interactive nodes and GPU nodes.
The wICE cluster was mostly used for its interactive nodes, as a way to manage and create jobs
that run our Python scripts to create and train our models. The GPU nodes on the wICE cluster,
which cost a few extra credits per usage time, were not used. This was mainly because the
Genius GPU nodes appeared to be sufficiently performant for our use case. To train our binary
classification model for AF detection, we did use the regular IceLake compute nodes on the wICE
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Component Specification
Device wICE interactive node
Operating System Red Hat Enterprise Linux
CPU 2 Intel Xeon Platinum 8360Y CPUs@2.4 GHz (IceLake),

36 cores each, with 1 NUMA domain and 1 L3 cache per
CPU

GPU N/A
Memory 256 GiB RAM, default 3400 MiB per core
Storage 960 GB SSD local disk

Table 2.6: Specifications for an interactive node on the wICE cluster of the VSC

cluster. Each of these compute nodes had significantly more cores, memory, and storage, than
the personal laptop. According to the VSC documentation (VSC (Vlaams Supercomputing
Center), 2025), the clusters run the Linux kernel and a GNU operating system. Specifically,
they state, all HPC clusters currently run some flavor of Red Hat Enterprise Linux. The exact
specifications of an interactive compute node on wICE can be found in figure 2.6.

The VSC uses the Slurm workload manager. Several Slurm-files were created to submit jobs
on the appropriate clusters with a set of pre-defined specifications.
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Atrial Fibrillation
Classification

3.1 XGBoost and TF-IDF Baseline Model
To create a baseline model to compare the rest of our results to, we decided to use XG-
Boost in combination with TF-IDF vectors. This decision was based on previous research
surrounding automated classification of ICD codes from hospital discharge notes by Falter
et al. (2024).

Our AF classification implementation consists of two main components: a custom TF-IDF
preprocessing pipeline and an XGBoost classifier with hyperparameter optimization.

3.1.1 TF-IDF Vectorization
We start out with human-readable discharge notes that we need to be able to feed into our
models. For our AF classification models, we decided to use TF-IDF as our approach to turn
sentences, words, and terms into a machine-readable format, ready for text processing. TF-IDF
is a technique that works by calculating two different values:

• Term frequency (TF), for a term t in document d, calculated as

TF (t, d) =
appearances of t in d

total terms in d

• Inverse Document Frequency (IDF), for a term t and a corpus (vocabulary) D

IDF (t,D) = log
number of documents in D

number of documents in D that contain t

One is often added to the denominator of the IDF-score to prevent division by zero in case no
documents are found, and a logarithm is used such that the scores scale and do not significantly
fluctuate given a small or large number of documents. The final TF-IDF score is then calculated
by

TF − IDF (t, d,D) = TF (t, d) ∗ IDF (t,D)

The IDF values are calculated based on the vocabulary (corpus) that was discovered during
fitting. This means that once set, these values remain fixed for all subsequent transforma-
tions.

33
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The TF-IDF vectorization was configured with unigrams (n-grams with n = 1) to focus on
individual medical terms. While our unigram approach shares similarities with a traditional
Bag-of-Words model in terms of considering individual terms, TF-IDF differs by weighting terms
based on both their frequency within documents (TF) and their rarity across the entire corpus
(IDF). This weighting helps emphasize distinctive medical terminology that is particularly
informative for classification. A custom tokenizer was used to pre-process our text and return
appropriate tokens for the next (training) steps, and calculation of our TF-IDF vectors is done
on the full training set.

At training time, we calculate TF-IDF on our training subset of the data and use these as
features for the classification model. The ’vocabulary’ that is discovered through this initial
fitting of the TF-IDF vectors is based on the training data. Of course, the TF-IDF vector-
ization process influences model performance and its generalization capabilities. Our approach
finds a balance between building a large enough vocabulary without having to compromise on
potentially introducing data leakages.

At training time, the TF-IDF vectorizer will analyze the training subset to construct a vo-
cabulary of unique terms and calculate their inverse document frequency (IDF) values. This
vocabulary will be used for all subsequent text transformations and represents the model’s
’known terms’. We implemented a two-stage approach:

1. Vocabulary fitting

2. Transformation

In the vocabulary fitting stage, the TF-IDF vectorizer is fit on the full training data subset
(incl. validation) to ensure we capture as many terms from all available training data. The
transformation of the data is done separately, where each subset (train, validation, test) will be
transformed using the initial vectorizer, but no additional fitting is done to prevent accidental
data leakages to the test set. We note that the vectorizer does take both the training and
the validation set into account when building the vocabulary, which seems counter-intuitive.
However, doing this only affects the feature weights marginally as we are discovering vocabulary
and not learning predictive patterns from the data yet, and helps in solving a bigger problem:
Out-of-Vocabulary (OOV) words.

OOV problems are introduced when unseen terms are encountered at various steps in the train-
ing and testing process. They may also artificially deflate the performance during validation.
For example, we consider a document from the validation set with following sentence ’Patient
presents with paroxysmal atrial fibrillation and bradyarrhythmia’. If the term ’bradyarrhyth-
mia’ was not present in the training-only vocabulary, the TF-IDF transformation would process
this as: ’Patient presents with paroxysmal atrial fibrillation and [IGNORED]’. This may cause
useful features or variations of spellings for specific terms relating to any diagnostic information
for AF to be ignored.

The custom tokenizer we defined for our TF-IDF approach, helps us handle the specific char-
acteristics of medical text and have more control over what happens while text is split up into
tokens. The preprocessing pipeline includes the following steps:

1. Tokenization
Since we are working with human-written and -readable medical text, whitespace-based
splitting seemed most effective, where terms are typically separated by whitespaces. This
step will return a list of individual tokens from the discharge note.

2. Lemmatization & Stemming
Using the WordNetLemmatizer by NLTK (Loper and Bird, 2002), we performed lemmati-
zation on our tokens (words) for the MIMIC=IV-Ext-Cardio dataset, which reduced each
word into its base form while still preserving the meaning. For example, ’diagnosed’ and
’diagnosing’ will both be lemmatized into ’diagnose’ as their base form. For the Jessa-AF
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dataset, we performed stemming with the SnowBallStemmer for Dutch by NLTK. We did
this since this was the easiest approach without including any additional libraries. How-
ever, we note that spaCy, another interesting library in Python, offers various interesting
features to set up pre-processing pipelines as well.

3. Noise Removal
We removed unnecessary numerical values such as dates and timestamps, as well as non-
alphanumeric tokens (punctuation and special character sequences). We also removed
stopwords retrieved from NLTK’s dataset of common English stopwords (Loper and Bird,
2002). This way we reduce text length and dimensionality of the resulting vectors while
retaining relevant clinical information. The specifics for each dataset are discussed in one
of the earlier sections on the datasets.

3.1.2 XGBoost
XGBoost (eXtreme Gradient Boosting) is a more traditional machine learning method that
implements gradient-boosted decision trees (GBDT). The XGBoost algorithm creates a number
of weak models (usually decision trees) sequentially, where each model corrects errors made by
the previous model. This is often called an ’ensemble method’, indicating that we combine
multiple individual ’weaker’ models to create one more performant model. More specifically, at
each iteration of the algorithm, XGBoost fits a new tree to correct the residual error of the last
iteration. The final prediction is the sum of predictions from all the trees that were generated,
weighted by their learning rates. This makes XGBoost good at classification problems on
structured data like our datasets of discharge notes. Therefore, for the task of AF classification,
we take advantage of a few benefits that come with XGBoost.

One of these benefits is the proper handling of sparse features, which is a term used to describe
features in a dataset with mostly zero or null values. While we use TF-IDF vectors with a
pre-defined vocabulary, as we mentioned before, these vectors may often contain zero values for
OOV terms, and due to the nature of TF-IDF vectors, sparse features will often be generated.
XGBoost is known to handle sparse feature matrices well. XGBoost also includes built-in
regularization methods. More specifically, L1 and L2 regularization is done during training to
prevent overfitting. To understand how these influence the training, we must first look at how
XGBoost works behind the scenes.

XGBoost uses K decision trees to make predictions. For a given input xi, the prediction
is:

ŷi = φ(xi) =
∑

k = 1Kfk(xi)

where fk represents the k-th tree and φ(xi) is the final prediction (Chen and Guestrin, 2016).

The algorithm has the following regularized objective function:

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

that it tries to minimize, where l is a loss function (such as logistic loss for binary classifica-
tion) and Ω is the regularization term that penalizes model complexity (Chen and Guestrin,
2016).

The regularization term Ω(fk) for each tree is defined as:

Ω(f) = γT +
1

2
λ|w|2

where

• T is the number of leaves in the tree

• w represents the leaf weights, which are the raw prediction scores that each leaf outputs.
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# Pseudocode for split evaluation
for each_feature in features:

for each_possible_threshold in feature_values:
# Split samples into left and right based on threshold
left_samples = samples where feature < threshold
right_samples = samples where feature >= threshold

# Calculate gradients sums for each side
G_L = sum(gradients of left_samples)
G_R = sum(gradients of right_samples)
H_L = sum(hessians of left_samples)
H_R = sum(hessians of right_samples)

# Calculate gain from this split
gain = calculate_gain(G_L, G_R, H_L, H_R)

# Keep track of best split so far
if gain > best_gain:

best_gain = gain
best_split = (feature , threshold)

Figure 3.1: Pseudocode for gain calculation in XGBoost, adapted from ’XGBoost: A
Scalable Tree Boosting System’ by Chen and Guestrin (2016)

• γ controls the minimum loss reduction required for splits (L1-like regularization on tree
structure)

• λ controls the L2 regularization on leaf weights

XGBoost begins with all training samples in a single root node. Each sample has a gradient gi
and Hessian hi from the current ensemble model’s predictions. Then, XGBoost considers every
possible split on every feature present in that ensemble model. XGBoost builds trees one split
at a time. When it considers making a split in a tree, it calculates the gain, also defined as loss
reduction, from that split to determine if it wants to create a split or not.

The gain is defined as follows:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ

where

• GL, GR = sum of gradients in left and right child nodes

• HL,HR = sum of second-order gradients (Hessians) in left and right nodes

• λ = L2 regularization parameter

• γ = minimum gain threshold

In figure 3.1, pseudocode is defined on how XGBoost decides to create a split in the tree.
XGBoost will create a split in the decision tree if the best gain found is larger than zero. If no
split achieves a positive gain, the created node will become a leaf, and no further splits will be
created from it (Chen and Guestrin, 2016).

For example, when creating our AF classification model, in a given node, the features of our
TF-IDF vectors will be analyzed and used to determine splits. Features can be the presence of
a term in our document, defined by a certain score in our TF-IDF vector. For simplification,
we will use an example referring to three possible features: ’atrial’, ’age > 65’ and ’gender =
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female’. This introduces three possible splits that will be evaluated. For each split, the gain will
be calculated from the first- and second-order gradients of the corresponding TF-IDF vector
scores. If, for example, the gains for ’atrial’ and ’age > 65’ are positive and larger than zero,
these features will be considered in creating a new split. If the split for ’gender = female’ would
generate a negative or zero gain, it will not be made, and this node will become a leaf. For the
two features that generated a positive gain, the best one will be chosen to create a split. Let
us assume the presence of the term ’atrial’ gives us the highest positive gain, then this will be
used to create two child nodes: a left and a right node. The process will then repeat for each
child node.

Understanding how the splits and trees are built now makes it possible for us to understand
how we can add L1 and L2 regularization.

In the case of L1 regularization, we have a γ term, also known as the minimum split loss,
that will penalize the number of leaves. Higher γ values will lead to simpler trees with fewer
splits, which in its turn performs a more selective feature selection at the tree level and reduces
overfitting. To demonstrate this, we can refer to our example with three possible features to
split on.

Without L1 regularization, the gain is calculated as previously mentioned, using the first- and
second-order gradients of the vectors. Let us assume the following gains:

1. Split on ’atrial’, gain = 0.1

2. Split on ’age > 65’, gain = 0.05

3. Split on ’gender = female’, gain = -0.05

This will result in the first split being chosen, as it has the biggest gain. For example, if the
first feature indicates the presence of ’atrial’ in the text, one child node will be created with a
feature indicating ’atrial = 0’ (’atrial’ has a TF-IDF score of 0), and another child node with
’atrial > 0’ (’atrial’ has a TF-IDF score > 0). However, the second option can still propagate
through to the child nodes and can still be a viable option for a split later on in the decision
process.

With γ, we add a penalty to the gain function. In this case, given a γ = 0.08 the gains would
be calculated as follows:

1. Split on ’atrial’, gain = 0.1 - 0.08 = 0.02

2. Split on ’age > 65’, gain = 0.05 - 0.08 = -0.03

3. Split on ’gender = female’, gain = -0.05 - 0.08 = -0.13

We can see that with this penalty added, both options 2 and 3 will be rejected for a split. This
will also propagate through the child nodes, and splitting on these features will be less likely
as their gain will be reduced. This immediately implies the resulting trees will be simpler and
will only consider splits with a strong gain.

For simplicity in our example, we split on features that indicated a presence or absence of
a word from a document using the TF-IDF score. However, in reality, often times certain
thresholds are considered. For example, a feature may be described as ’atrial with TF-IDF >
0.3’, indicating the corresponding TF-IDF score for the term ’atrial’ should be > 0.3. If used
for a split, child nodes will be created that consider either documents with ’atrial with TF-IDF
> 0.3’ or documents with ’atrial with TF-IDF ≤ 0.3’. This means that the deeper we go into
the tree, the less training data a node gets as it tries to learn patterns to recognize the classes
effectively, as each split filters out data that doesn’t meet the condition. This means that when
we look into the node that was created for ’atrial with TF-IDF > 0.3’, we only consider notes
that conform to this condition and try to find other possible features for these documents that
produce a high gain to create further splits.
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This process is repeated until certain stopping criteria are met. Either no positive gain is found,
which stops the tree from splitting. Another option is that the maximum depth of the tree has
been reached. This is a hyperparameter that can be set to prevent trees from becoming too
complex. Another parameter is min_child_weight, which will enforce a certain minimum to
be reached before accepting a split. The ’child weight’ refers to the sum of Hessians that is
calculated during the split decision process. If, for example, the left child yields a high enough
value, but the right does not, a split will not be created. Another reason the process may
stop is when a node only predicts one class, indicating it has no point to split any further.
Other stopping criteria can also be implemented but will not be discussed any further in this
thesis.

For our models, we performed various hyperparameter optimization search techniques and ran
several tests to find the best hyperparameters for both our AF classification models on both
the MIMIC-IV-Ext-Cardio and Jessa-AF datasets. The final hyperparameters for each model
differ slightly and are specific to our input data. The results are presented in our results section,
where we go more in depth on this topic.

In our implementations, XGBoost serves as the classifier that learns to distinguish between AF-
positive and AF-negative discharge notes based on the TF-IDF feature representations.

3.2 Training and Validation Approach
Our training and validation approach utilized a predefined three-way split of the MIMIC-IV-
Ext-Cardio and the Jessa-AF dataset for both experiments. For each experiment, we kept a
training set used during training, a validation set used during training to validate across different
steps and help the model ’learn’ the patterns in the text, and a test set, which is completely
omitted during training and used to evaluate the final performance of the model.

Many machine learning approaches require at least some form of hyperparameter tuning to get
the most optimal results given the dataset you provide.

To optimize our XGBoost classifier’s hyperparameters while addressing the significant class im-
balance between AF-positive and AF-negative samples in our dataset, we employed a stratified
k-fold cross-validation strategy during our hyperparameter optimization.

In k-fold cross-validation, the training data is split into k folds that all have the same size.
During training, each fold is used exactly once as a validation set, while the remaining k − 1
folds are then combined to form the training set. The model is trained k times, once for each
fold, and then performance metrics are averaged across all folds to get a good estimate of model
generalization.

However, with imbalanced datasets, a regular split can produce folds where the proportion
of AF-positive records is much smaller or larger than in the original dataset, which can bias
training and evaluation, and will not follow our pre-defined proportions. To prevent this, we
used StratifiedKFold, which ensures that each fold has the same class distribution as the full
training set. In our case, this meant that every fold contained roughly the same ratio of AF-
positive and AF-negative samples.

In our experiment with both MIMIC-IV-Ext-Cardio and Jessa-AF, we implemented 5 folds
during training. This resulted in five stratified subsets. In each iteration during training, four
folds were used for training, and one fold was used for validation. The dataset was shuffled before
being split into 5 folds, but a random_state variable was set to ensure reproducibility.

3.2.1 Hyperparameter optimization
For the hyperparameter optimization, we implemented scikit-learn’s HalvingRandomSearchCV
Pedregosa et al. (2011). Using successive halving hyperparameter optimization through the
HalvingRandomSearchCV interface, we systematically reduced the search space of possible
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parameters that would work best for our dataset. We finally looked at the following parameter
space after running a few smaller tests with different search strategies and search grids:

• max_depth: [1, 2, 3, 4, 5, 6]

• n_estimators: [150, 200, 300]

• learning_rate: [0.01, 0.02, 0.03, 0.04, 0.05]

• gamma: [1, 1.5, 2, 2.5, 3]

• subsample: [0.6, 0.8, 1.0]

Scoring in each step of the training process was done on a pre-defined evaluation metric. We
chose to use the F1-score to evaluate the model’s performance. This means during each step
of the training process, the model was evaluated on the validation set at that step, and the
F1-score was calculated. Evaluation metrics will be discussed in more detail in section 3.3.
In our case, at each step in the training, all folds will be used to train a model with its pre-
determined train/validation split. At this step, the F1-scores from all folds will be averaged to
obtain the model’s cross-validation score. During training, the models with a higher F1-score
will be favored over others. During the hyperparameter search, this means that the grid in
searched in a way that favors a model with a higher F1-score.

3.2.2 Training/Validation/Test Split
Due to recommendations from the research team and having done some experiments, we em-
ployed the following strategy for the final training of our model AF classification models after
running different experiments with different combinations of hyperparameters:

• The training (and validation) set maintained a proportion of 50% AF-positive, and 50%
AF-negative cases to ensure training did not favor either class.

• The test set kept the original, imbalanced ratio between AF-positive and AF-negative
cases to ensure generalizability and provide a good benchmark of how to model would
perform in real-life scenarios.

Early stopping was implemented as well to prevent overfitting of the model. This allows the
training process to stop when the performance of the model stops improving, to prevent over-
fitting to the training data.

To assess our MIMIC-IV-Ext-Cardio AF classification model’s generalizability, we evaluated
the optimized model on two test sets:

• The original test set, created from the cardiology department discharge notes from MIMIC-
IV-Ext-Cardio, which the training and validation set was also sampled from.

• General MIMIC-IV test set: Discharge notes from other departments than the cardiology
department, from the MIMIC-IV-Ext-Diagnoses dataset (excl. cardiology department
notes), to further test performance across different types of discharge notes with less
cardiology-related data and terms

This approach allows us to understand both the model’s performance on similar data and its
ability to generalize to a broader hospital context.

3.3 Model Evaluation Metrics
As we previously mentioned, the best hyperparameter configuration was selected based on
the highest cross-validated F1-score. The F1-score balances the precision and recall and is
particularly important for medical applications where both false positives and false negatives
may have clinical implications. Focusing on accuracy was not our goal, but focusing on making
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the least amount of false negatives (and positives) was of more importance in a clinical setting
like ours.

Given the medical context and class imbalance inherent in the detection of AF, we employed
following evaluation metrics to assess model performance:

• F1-score. Calculates the harmonic mean of the precision and recall, defined by

F1 =
2

1
Precision + 1

Recall

= 2× Precision × Recall
Precision × Recall

This harmonic mean implies that the more precision and recall deviate from each other,
the worse the F1-score will be. This way, the F1-score equally weighs the importance
of correctly identifying an AF-positive record (recall) and minimizing false AF diagnoses
(precision).

• Precision. Measures the proportion of predicted AF records that are actually AF records.
It is calculated as:

Precision =
True Positives

True Positives + False Positives
While seemingly less important than missing positive cases, a high precision also implies
we avoid unnecessary reporting due to having too much false positives.

• Recall. Also known as sensitivity, it measures the proportion of the actual AF cases that
were correctly identified. It is calculated as:

Recall = True Positives
True Positives + False Negatives

A high recall value is crucial for clinical contexts to ensure no AF cases are missed.

Another metric that is often used in training contexts is the accuracy of a model. The accuracy
is the proportion of correct predictions across both classes, and is calculated as follows:

Accuracy =
True Positives + True Negatives

Total Predictions
Accuracy may be misleading due to the fact we are working with imbalanced datasets. However,
it is still a useful metric to get an overall overview of the model’s capabilities.

We have different approaches to evaluate the model. We compute F1-scores for each class (AF-
positive and AF-negative), as well as a macro-averaged and a weighted F1-score. A macro-
averaged F1-score will take the unweighted mean of metrics across both our AF-positive and
AF-negative class, given equal important to both AF and non-AF performance. The weighted
average will weigh the F1-score by its class’s support (number of samples), which provides a
better measure when working with class imbalance like in our case. This is why when talking
about a general F1-score, we often mention a ’weighted’ F1-score.

3.3.1 Larger n-grams
To improve the model’s ability to capture contextual information and handle negation patterns
commonly found in clinical discharge notes, we enhanced our initial unigram-based approach
by implementing variable-length n-gram features.

Our emphasis was mostly on negation handling. We did a limited amount of feature-engineering,
where we extracted the most common negation patterns found in our training data, including
’geen_vkf ’ (’no_af’) and ’vkf_uitgesloten’ (’af_excluded’), and enforced common negation pat-
terns to be treated as single tokens by replacing mentions terms like ’geen vkf’ and ’zonder vkf’
by their concatenated alternative, but abandoned this to not influence the performance indica-
tion of larger n-grams, and continued with our regular n-gram approach.
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3.4 FastText Embeddings Exploration
To potentially improve the standard approach with TF-IDF and XGBoost, some experiments
were done to improve our baseline approach by using FastText embeddings. FastText was
chosen over other embedding methods (such as Word2Vec) due to its ability to better capture
subword information, which is particularly useful in medical text where the terminology can be
highly specialized. FastText captures subword information through character n-grams, enabling
us to capture variations of relevant terms.

We utilized the pre-trained Common Crawl English FastText model provided by Facebook
Research (Bojanowski et al., 2016), which contains 300-dimensional vectors trained on 600
billion tokens. To use FastText embedding with our XGBoost approach, we evaluated two
different approaches:

1. Using XGBoost in combination with averaged FastText word embeddings

2. Using XGBoost in combination with TF-IDF weighted FastText word embeddings

3. Using XGBoost in combination with FastText sentence embeddings

3.4.1 Averaged FastText Word Embeddings
FastText can give us word-level embeddings, where each individual word gets a vector with
300 dimensions. A discharge note might have 1000+ words, with variable lengths. While
our traditional XGBoost approach expects a fixed size input, it expects each document to be
represented by the same number of features.

In this approach, we retrieved the FastText embedding vector for each word in the document.
A document would be represented by a matrix, where each row is a word’s embeddings. For
example, the sentence ’Patient has atrial fibrillation’ would be represented in a 4 × 300 matrix,
as it has 4 words with a FastText vector of dimension 300.

The first problem we encountered was the variable length of our documents. We solved this by
padding documents by zero vectors, so they would all have a matrix representation of the same
length. Now we needed a way for our document to be represented using a single vector. We
could flatten the matrix to feed it into XGBoost, but this led to incredibly long features, and
padding with zeros would reduce the performance of our approach. We could also average our
documents to a single vector, but this would lose all useful information that is captured.

Therefore, this approach was quickly abandoned.

3.4.2 TF-IDF Weighted FastText Embeddings
In an attempt to combine the strengths of both approaches, we experimented with weighting
FastText embeddings by TF-IDF importance scores. For each word in a document, we calculate
its TF-IDF importance score. Then, we get the FastText embedding vector for that word, and
multiply it by the TF-IDF score to weigh the vector. Instead of averaging all embeddings,
we computed a weighted average. This way, we tried to combine sparse (TF-IDF) and dense
(embedding) representations.

However, this approach also yielded inferior results compared to the baseline XGBoost + TF-
IDF approach, confirming the issues in our architectural approach, as well as the excellent base-
line performance of XGBoost combined with TF-IDF. Our AF classification approach appears
to benefit more from exact term presence than semantic similarity (embedding features).

3.4.3 FastText Sentence Embeddings
Instead of manually averaging word vectors, FastText has a built-in method specifically designed
for sentence or document-level representations. Sentence vectors are also created by getting
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weighted averages for the words in the sentence (or document). Using FastText’s internal
aggregation method yielded slightly better results (a weighted F1-score of 0.65 compared to
0.56 for manual averaging), but still significantly performed below the baseline.

Multiple attempts (TF-IDF weighting, dimensionality reduction, hybrid approaches) to en-
hance the FastText approach consistently failed to achieve competitive performance. The use
of FastText was abandoned in favor of the second phase of our study: CHA2DS2–VASc extrac-
tion.



Chapter 4

CHA2DS2–VASc Score
Extraction

In this chapter we discuss the implementation of our CHA2DS2–VASc score extraction model,
which was created by using a pre-trained Dutch Medical Language Model, named MedRoBERTa.nl
(Verkijk and Vossen, 2021). MedRoBERTa.nl is an implementation of RoBERTa that has been
fine-tuned. Before we dive into how this model works, we first take a look at the background
and current implementation of the transformer architecture, which lies at the base of the model
that was used.

4.1 Transformers
Before the transformer architecture was introduced, NLP relied heavily on Recurrent Neural
Network (RNN)s and Convolutional Neural Network (CNN)s. However, RNNs suffered from the
vanishing gradient problem when processing long (medical) documents. This meant that it was
difficult to capture dependencies between distant tokens, and it became increasingly difficult
to as the document’s length increased. Traditional implementations of RNNs will therefore
’forget’ potentially useful context or relationships between words, the more tokens it processes.
A popular example of an RNN is the Long Short Term Memory (LSTM) network, which reduces
the vanishing gradient problem in traditional RNNs. It does this by using a gate-system to
control which information should be forgotten, used as input, or used as output. CNNs, though
more parallelizable than RNNs, have architectural constraints that make them less suitable for
capturing a lot of context. However, we will not go into more detail on these architectures as
these are not directly relevant for our implementation.

Most of these existing methods struggled to perform well in modeling longer context, and
require many layers to capture long-range dependencies (Vaswani et al., 2023). Vaswani et al.
also state that the introduction of the Transformer model directly targeted the inefficiencies of
earlier methods such as RNNs and CNNs.

Apart from capturing long-term dependencies, it is also necessary to properly capture contextual
information and understanding. This is where the self-attention mechanism comes into play.
The self-attention mechanism, as it is referred to in ’Attention Is All You Need’ (Vaswani et al.,
2023), is used to weigh the importance of words in a given input sequence to better capture the
relationships between them. For example, from each word in an input text, we can look at and
relate to every other word in that input text. This is of course particularly useful for clinical
text processing. Medical notes often contain references that span across sentences (referring
to the long-range dependencies Vaswani et al. describe). It is also important to have a level
of contextual understanding, as the same medical term can have a different meaning based

43



44 CHAPTER 4. CHA2DS2–VASC SCORE EXTRACTION

Figure 4.1: A visualization of the different components of the Transformer architecture,
Figure 1 of Vaswani et al. (2023)

on the context. (e.g. ’patient has no history of stroke’ and ’patient has risk of stroke’ only
have a one word difference). This also plays into the fact that negation handling is important,
because the difference between ’not diagnosed with AF’ and ’diagnosed with AF’ make a big
difference.

In figure 4.1 we see the architecture of the original transformer as described in Vaswani et al.
(2023). Transformers can be divided into two parts: the encoder and the decoder. The key
difference is that in the case of the encoder, it receives some input text and is responsible for
understanding and extracting the relevant information, finally returning an embedded repre-
sentation of the input. In the case of the decoder, it receives some embedded input and returns
some expected output, which is often times human-readable Vaswani et al. (2023).

Originally, the transformer was developed for a translation task (English-to-French and English-
to-German), which used both encoder and decoder. However, many popular implementations
of the architecture only take on one of the tasks: encoding or decoding. Popular examples
of models based on the decoder-only transformer architecture are the different GPT-variants
by OpenAI, such as GPT-3 and GPT-4. However, in this thesis, we mostly experimented
with the encoder-only models, more specifically, Bidirectional Encoder Representations from
Transformers (BERT) and Robustly optimized BERT approach (RoBERTa).

4.2 BERT and RoBERTa Architecture
RoBERTa (Liu et al., 2019), as the name suggests, is an optimized version of BERT that has
implemented some improvements. It has the same basic transformer architecture as BERT, but
has been re-trained with optimized training procedures, as the research by Liu et al. stated
that BERT underperformed, and no architectural changes were necessary to get the more
performance out of the architecture (Liu et al., 2019). Both BERT and RoBERTa use the
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encoder-only transformer architecture, consisting of multiple transformers blocks. Each of these
blocks contain a multi-head self-attention mechanism. This means that instead of using only one
attention mechanism, BERT and RoBERTa use multiple ’heads’ that can run in parallel. Each
of these heads will learn to focus on different types of relationships between words or tokens
in the input data. For example, one head might capture dependency between words, such as
subject-verb relationships, while another head might capture broader syntactic structures in
the text. However, some studies, such as the ones done by Voita et al. (2019) and Michel et al.
(2019), suggest that only a limited amount of self-attention heads do the heavy lifting, and
many can be left out without a strong loss of performance.

A big difference between both architectures is that BERT focuses on two objectives, while
RoBERTa removes the Next Sentence Prediction (NSP) objective that was present in BERT
and focuses exclusively on Masked Language Modeling (MLM) Liu et al. (2019). Training for
this specific objective already improved the accuracy for benchmark tests, such as MNLI-m,
SQuAD 2.0 and GLUE, compared to BERT, according to Liu et al. (Liu et al., 2019).

In contrast to BERT, RoBERTa uses dynamic masking, larger batch sizes, more extended
training, and byte-level BPE encoding with a larger vocabulary size. We will explain how these
mechanisms come into play for our implementation in this section.

4.3 Fine-tuning of MedRoBERTa.nl
To create our CHA2DS2–VASc extraction model, we researched various possible options. It
quickly became obvious that using an existing language model would be the best way to move
forward. In figure 4.2 we present a diagram that shows the pipeline of our CHA2DS2–VASc
extraction approach.

Previous research (Kim et al., 2022) (Harnoune et al., 2021) (Liu et al., 2021) (Ji et al., 2021)
indicates good results are possible for various classification and extraction tasks within electronic
health records or clinical context using BERT and RoBERTa-based language models. Numerous
studies were conducted using language models that were trained on English medical text, as
there was a scarcity of high-quality models that were trained on Dutch clinical text. The input
datasets should often be translated to work well with pre-trained models on English medical
text, and according to translation, multiple studies confirm that even when the solutions were
effective when translating (bio)medical texts using machine translation, only a subset of them
complied with rigorous translation quality assessment criteria (Zappatore and Ruggieri, 2024).
Research by Névéol et al. indicates that medical texts contain a ’mixture of Latin and English
terminology in addition to the local language’ which ’adds a layer of complexity’ that translation
systems struggle to handle effectively (Névéol et al., 2018).

We therefore went on a search for any pre-trained models on Dutch medical language before
trying out popular options such as BioBERT, ClinicalBERT and PubMedBERT. During this
search, we stumbled upon the study by Muizelaar et al. (Muizelaar et al., 2024a), on the
creation of a language model for Dutch electronic health records.

The research by Muizelaar et al. (Muizelaar et al., 2024a) indicates the feasibility of deep BERT
models on the task of patient lifestyle classification specifically, and also shows promise for other
types of fine-tuning tasks. Our CHA2DS2–VASc extraction model for the Jessa-CHADSVASc
datasets builds upon this pre-trained model. The MedRoBERTa.nl model was trained from
scratch on approximately 10 million Dutch hospital notes from Amsterdam University Medical
Centers, providing domain-specific language crucial for accurate clinical information extraction
(Verkijk and Vossen, 2021).

While many existing studies that worked with BERT- and RoBERTa-based models utilized
English medical language models with translated datasets, recent work by Muizelaar et al.
(2024b) and Muizelaar et al. (2024a) specifically validate the effectiveness of deep BERT mod-
els for Dutch clinical text classification and extraction tasks, which supported our choice of
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Figure 4.2: A diagram showing the different steps that our input data goes through in
our CHA2DS2–VASc extraction and classification pipeline
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MedRoBERTa.nl.

In figure 4.3 we zoom in on the Transformer layers as they would appear in our pipeline.
The tokenized input gets converted into dense 768-dimensional vectors through two combined
embedding types:

• Token embeddings: Each token ID maps to a learned 768-dimensional vector

• Positional embeddings: Since transformers do not inherently keep track of sequence
order, positional embeddings encode the position of each token in the sequence

These are added together to create the input representations that capture both semantic mean-
ing and positional information.

The model uses 12 transformer layers, each containing two main sub-components:

• Multi-Head Self-Attention

• Feed-Forward Networks

The multi-head self attention mechanism creates three vectors: Query (Q), Key (K), and Value
(V) by multiplying the input with learned weight matrices, and computes attention scores by
taking the dot product of queries with all keys. This can be written as:

Attention(Q,K, V ) = softmax(QKT /dk)V

(Vaswani et al., 2023). This uses the softmax function, which is useful to convert raw attention
scores into a probability distribution that sum to 1. When we compute QKT /dk, we get raw
attention scores. The softmax function will normalize their weight by making all values positive
and summing to 1, and each score represents how much attention to pay to each token, creating
a robust attention mechanism that attaches a proper amount of weight to more important
tokens. Scaling using the division by the square root of the key dimension (dk) is used to
balance results proportionally (Vaswani et al., 2023).

As explained earlier, the model uses multiple heads (12 in our case) to attend to difference
relationships at the same time. Once the attention mechanism has aggregated contextual infor-
mation for each token, the resulting representations are passed through a Position-wise Feed-
Forward Network (FFN). This FFN is applied independently to each position in the sequence.
In other words, every token embedding (up to 512 tokens per sequence) goes through the same
feed-forward network with shared weights, but the computation is performed independently
for each token, allowing for parallel processing. The feed-forward network does not capture
relationship between positions, but rather handles non-linear transformations within each to-
ken’s representation, which allows the model to build richer features at the token level. The
feed-forward network has two linear transformations with a GELU activation (similar to ReLU)
in between (Vaswani et al., 2023). The linear transformations are used to expand or reduce
the dimensionality of the vectors. Concretely, in the case of RoBERTa (and MedRoBERTa.nl),
each token representation starts as a 768-dimensional vector. The first linear transformation
result in a vector of 3072 dimensions, by expanding our original vector by a factor of 4. The
GELU activation is then applied to introduce non-linearity. This is what makes the layers so
powerful, by providing a way to capture non-linear relationships within our embeddings.

The GELU activation function provides a gate-like mechanism, where small inputs get partially
suppressed (not completely thrown out like ReLU would) and large inputs pass through easily.
Negative inputs are not discarded, but are smoothed out. This is the main difference with
the ReLU activation function, which would throw away negative values and possible get rid of
important nuances. This is why RoBERTa models often use GELU instead of ReLU activation
(Liu et al., 2019) (Verkijk and Vossen, 2021). For example, the input embedding for ’possible
hypertension’ might be weakly positive. While ReLU would eliminate this completely if it was
negative, GELU preserves embeddings with low-confidence but potentially relevant evidence,
enabling more nuanced medical language processing.



48 CHAPTER 4. CHA2DS2–VASC SCORE EXTRACTION

Figure 4.3: A diagram showing the different layers in our fine-tuned MedRoBERTa.nl
approach and the expected output
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After GELU activation is applied, the second linear transformation reduces the dimensionality
back to 768, ensuring consistency for the following connections and layers.

The first layer is followed by 10 transformer layers with 12 attention heads each, capturing
relationships within the text. Each subsequent layer builds on contextualized representations
created by a previous layer, which gradually refines the model’s understanding of the sequence
of tokens.

Finally, the last transformer layer outputs highly contextualized embeddings for all tokens in
the text. The model then extracts the representation associated with the special [CLS] token,
which serves as a learned summary of the entire input sequence. This vector is then passed
as an input to the fine-tuning task, which in our case is the linear classification head. The
linear classification head maps the embeddings into logits, a term used to describe raw outputs
of a neural network without any functions such as softmax applied to it. In our case, the
classification head produces logits across ten possible CHA2DS2–VASc score categories (0-7, ’no
score’, or ’>2). Then, the softmax function is applied to normalize the logits into a probability
distribution over all the possible classes. This gives us a ’confidence score’ for the prediction
and ensures we learn how much probability the model assigns to each prediction.

The training of the classification head is done by minimizing the loss function between the
predicted probability distribution and the true label.

4.4 Text Pre-processing
For the CHA2DS2–VASc extraction task, we developed a specific pre-processing pipeline that
prioritizes clinically relevant sections of the discharge notes, specific to the Jessa-AF dataset.
The ’BESLUIT EN BESPREKING’ (Conclusion and Discussion) section was identified as
the primary location of the CHA2DS2–VASc score, containing approximately 80% of explicit
score mentions in our Jessa-CHADSVASc dataset. In our pre-processing, we employed regular
expressions to identify relevant sections using various terminology patterns. When the target
section was successfully found, we removed all content before that section header is encountered.
For cases where the section identification failed, we had a fallback strategy where we extracted
the ’MEDISCHE ANTECEDENTEN’ (’Medical History’) section first and handled it the same
way. In case neither of these sections was found, the first 512 tokens of the discharge note were
used to maintain consistency.

All text processing that was done for the CHA2DS2–VASc extraction models utilized the to-
kenizer from the MedRoBERTa.nl model. We used a sequence length of 512 tokens and did
not implement any sliding window approach. Example code showing how this was done can be
found in figure 4.4. For longer documents, we prioritized content from the most relevant sec-
tions, as previously discussed, and tested if this approach would be sufficient for our extraction
task.

It is important to note that any introduction meta-data was removed during pre-processing of
our Jessa-CHADSVASc datasets. By introduction meta-data, we primary mean certain repetitive
phrases that were used to introduce a patient, or imply the fact they were admitted to the cardi-
ology department. This was mostly to normalize our training data and make sure that repetitive
patterns not relating to any useful clinical information were removed beforehand.

4.5 Implementation Details
We used the Transformers library provided by HuggingFace (Wolf et al., 2020) to fine-tune the
MedRoBERTa.nl model. The process of fine-tuning is described by HuggingFace as adapting
a pretrained model to a specific task, with a smaller specialized dataset (Wolf et al., 2020).
Logically, Wolf et al. support the argument that this approach requires far less data and
computations compared to training a model from scratch. The HuggingFace Datasets library
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from transformers import AutoTokenizer

# Retrieve tokenizer from MedRoBERTa.nl
model_name = "CLTL/MedRoBERTa.nl"
tokenizer = AutoTokenizer.from_pretrained(model_name)

def prepare_dataset_for_model(df, text_col , label_col):
"""
Convert raw text + labels into tokenized dataset ready for

training
"""

# Tokenize all texts at once
encodings = tokenizer(

df[text_col].tolist(), # List of discharge note texts
truncation=True, # Truncate text after max_length
padding=True, # Pad shorter texts to same length
max_length=512, # Standard BERT/RoBERTa sequence

length
return_tensors='pt' # Return PyTorch tensors

)

# Create HuggingFace Dataset object for future use
dataset = Dataset.from_dict({

'input_ids': encodings['input_ids'], # Tokenized text
'attention_mask': encodings['attention_mask'],
'labels': df[label_col].tolist() # CHADS -VASC scores

})

Figure 4.4: Code snippet displaying the tokenization of the data before training
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(Lhoest et al., 2021) was used to create and handle the datasets used during the training process
and facilitate sharing and rebuilding our implementations.

Our implementation utilizes MedRoBERTa.nl as the base model with the following specifica-
tions:

• RoBERTa-based Masked Language Model, with 12 transformer layers, 768 hidden dimen-
sions and 12 attention heads

• Vocabulary size of 52,000 subword tokens optimized for Dutch medical text

• Pre-trained on 2.4 million Dutch hospital notes (2.5 GB of text data) from Amsterdam
UMC

• Maximum sequence length of 512 tokens (limitation of absolute positional embeddings,
and inherent to RoBERTa-based models)

• Fine-tuned for classification of CHA2DS2–VASc scores. This means we added a linear
classification head that transforms the 768-dimensional token representation to our 14-
class or 17-class output space (depending on the dataset that was used).

The domain-specific pre-training approach enables MedRoBERTa.nl to internalize Dutch medi-
cal terminology, abbreviations, and clinical language patterns that would be poorly represented
in other general language models.

The original MedRoBERTa.nl research (Verkijk and Vossen, 2021) demonstrated that training
from scratch on domain-specific data produces better semantic understanding than adapting
general models.

Our implementation employed PyTorch (Paszke et al., 2019) and HuggingFace’s Transformers li-
brary (Wolf et al., 2020) to create a sequence classification model for multi-label CHA2DS2–VASc
score classification. The model configuration is shown in figure 4.5.

By using the AutoModelForSequenceClassification functionality provided by the Transformers
library, we do not have to implement the architecture-specific details manually. Behind the
scenes, this will add a linear classification head to the existing model, which maps the output
of the model’s hidden layers to our pre-defined number of classes.

4.6 Jessa-CHADSVASc Model Architecture
The 52,000 subword vocabulary of MedRoBERTa.nl includes medical-specific tokens that enable
better processing of Dutch clinical text. Unlike general Dutch models, MedRoBERTa.nl should
be able to better handle medical compounds like ’atrial fibrillation’ as coherent units rather
than slitting them into non-medical subwords or sub-tokens.

4.6.1 Masked Language Modeling
Masked Language Modeling (MLM) is the primary objective in RoBERTa-based models. The
goal is to develop deep bidirectional representations. As described in the original paper that
introduced BERT (Devlin et al., 2019), a masked language model will randomly mask a number
of input tokens, and will then try to predict the original representation of the masked word in
the vocabulary, based on the surrounding context. Unlike other left-to-right language model
pre-training implementations, MLM allows us to use both the left and right context to make
predictions and to pretrain a deep bidirectional Transformer Devlin et al. (2019).

However, Devlin et al. note that by masking certain terms in each training step (epoch) by
replacing them with the ’[MASK]’ token, we are creating a mismatch between pre-training and
fine-tuning, as the ’[MASK]’ token will not be present in the fine-tuning step of the model. To
mitigate this, Devlin et al. made sure that the words that will be masked are randomly chosen
and masked as follows. About 15% of the words in a sentence are randomly chosen. Then, 80%
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# Define label mappings for CHA2DS2 -VASc scores
# These labels represent the labels used for the
# Jessa -CHADSVASc -10 dataset.
labels_to_score_dict = {

0: 0, # Score 0
1: 1, # Score 1
2: 2, # Score 2
3: 3, # Score 3
4: 4, # Score 4
5: 5, # Score 5
6: 6, # Score 6
7: 7, # Score 7
10: 'no_score', # No score mentioned
13: 'greater_than_2', # Score > 2 (clinical threshold)

}

# Create bidirectional mappings
label2id = {str(v): k for k, v in labels_to_score_dict.items()}
id2label = {k: str(v) for k, v in labels_to_score_dict.items()}

from transformers import AutoModelForSequenceClassification ,
AutoTokenizer

# Load pre-trained MedRoBERTa.nl model for sequence classification
model = AutoModelForSequenceClassification.from_pretrained(

"CLTL/MedRoBERTa.nl",
num_labels=14, # Specific to the dataset used
label2id=label2id ,
id2label=id2label

)

tokenizer = AutoTokenizer.from_pretrained("CLTL/MedRoBERTa.nl")

Figure 4.5: Model Configuration and Initialization
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of those are replaced with the special ’[MASK]’ token, 10% are swapped with random words,
and the last 10% are left as they are (Devlin et al., 2019). For medical contexts, this kind of
training is especially helpful as it allows the model to get familiar with medical terms, common
abbreviations, and the way clinical information is usually written.

RoBERTa’s masking approach is also dynamic. This implies that for each training epoch (cycle),
a new masking pattern is created and used, instead of the static masks that are created during
preprocessing in the case of BERT-based models. This approach will make sure the model
encounters a larger variety of token masking combinations. Clinical abbreviations like ’AF’ or
’afib’ for Atrial Fibrillation and ’DM’ for diabetes mellitus can be present inside of multiple or
even a single discharge note, and require the model to have some understanding of the clinical
context for accurate prediction.

4.6.2 Multi-Head Attention & Hidden state
One of the most important features of the architectures we are using is the attention mechanism.
MedRoBERTa.nl, the model we are fine-tuning for our Jessa-CHADSVASc model, makes use
of 12 attention heads per layer. These attention heads enable transformer models to focus on
different parts of representations at the same time. Each attention head learns to capture dis-
tinct linguistic patterns. This parallel processing is useful in the case of CHA2DS2–VASc score
extraction, where it is a possibility for the model to simultaneously identify risk factors, and
understand their clinical significance. However, in our case, due to the nature of the available
data and the pre-processing we have done, we hypothesized that our proposed implementa-
tion would result in more of a simple extraction task and any clinical understanding would be
limited. This will be discussed further in the Discussion section of this thesis.

Each of the 12 transformer layers that MedRoBERTa.nl has, has 12 attention heads on its
own. This means we have 144 total attention mechanisms that can process different aspects of
medical documentation present in our discharge notes.

4.6.3 Hidden state layers
When our data passes through the model. the layers of the model progressively refine the
representations of our data. Lower layers capture surface-level features (word boundaries, ba-
sic syntax), middle layers encode semantic relationships (medical entity recognition, negation
scope), while upper layers integrate contextual information for task-specific decisions (Tenney
et al., 2019). This hierarchical processing of the data enables the model to understand both
medical terminology and global document structure.

4.6.4 Positional Embeddings
RoBERTa uses learned absolute positional embeddings. While attention mechanisms are use-
ful, they do not look at the order of tokens in a document like Recurrent Neural Networks or
Convolutional Neural Networks would. This is where the positional embeddings come into play.
While different types of positional embeddings exists, RoBERTa uses the absolute type. These
embeddings are created by assigning unique position-specific vectors to each token position up
to the maximum sequence length, which in our case is 512 tokens, as we are limited by the pre-
trained model’s architecture. These embeddings are added directly to the input embeddings at
the bottoms of the encoder and decoder stacks (Wolf et al., 2020), before being processed by
any transformer layers. To implement such positional encoding, we could use one-hot-encoding
to embed the position of each token in a 512 vector, with all points being set to 0, except the
actual tokens position, which would get a 1. Positional embeddings, since they have the same
dimension as the input vector, can then be summed with the input embeddings. However, posi-
tional embeddings are often implemented in a smarter way, such as with embedding vocabulary
lookup tables, or using sine and cosine functions as discussed in the foundational paper for the
Transformer architecture (Wolf et al., 2020).
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tokenizer = AutoTokenizer.from_pretrained("CLTL/MedRoBERTa.nl")
sentence = "Patiënt meldt zich met voorkamerfibrillatie.
CHADS -VASc van 4 is vastgesteld."

# Tokens
tokens = tokenizer.tokenize(sentence)

# Input ID's
input_ids = tokenizer.encode(sentence , add_special_tokens=True)

model = AutoModelForSequenceClassification.from_pretrained(
model_name)

input_tensor = torch.tensor([input_ids]) # Vector with 23 points
position_tensor = torch.tensor([position_ids]) # Vector with 23

points

# Get the embeddings layer that is used internally
embeddings_layer = model.roberta.embeddings

# Get the position embeddings
with torch.no_grad():

position_embeddings = embeddings_layer.position_embeddings(
position_tensor)

Figure 4.6: Caption

There are learned and fixed absolute positional embeddings. As mentioned before, RoBERTa
uses the learned approach. This indicates the positional embeddings are randomly initialized
and are later ’learned’ through the training process (Wolf et al., 2020) (Liu et al., 2019), instead
of being pre-defined such as the one-hot-encoding or the sine and cosine implementation.

For example, we look at the sentence ’Patiënt meldt zich met voorkamerfibrillatie. CHADS-
VASc van 4 is vastgesteld.’ (’Patient presents with atrial fibrillation. CHADS-VASc of 4 is es-
tablished.’). We use our tokenizer that was pre-initialized and pre-trained from MedRoBERTa.nl
to tokenize our sentence. We can find the example code in figure 4.6. The generated tokens
from this sentence will be the following: ['Patiënt', 'meldt', 'zich', 'met', 'voor',
'kamer', 'fibrill', 'atie', '.', 'CHADS', '-', 'VASc', 'van', '4', 'is',
'vastgesteld', '.'].

Each position in the sequence receives a unique learned embedding vector. Table 4.1 shows the
first 8 dimensions of each positional embedding for our example. We notice that, for example,
at position 10 and 21, the same token '.' is used, but it is embedded very differently. This is
of course important, as the order of the tokens matter, especially in our case, where we wish to
extract a specific score from the discharge notes.

Position Embedding Vector Token
0 [0.021, -0.003, -0.006, -0.005, 0.026, -0.008, 0.029, -0.002] <s>
1 [-0.034, -0.012, -0.021, -0.025, -0.005, 0.010, -0.004, 0.007] Patient
2 [-0.007, -0.002, -0.050, -0.006, 0.023, -0.024, 0.006, 0.050] present
3 [-0.038, -0.023, 0.010, 0.039, 0.028, 0.046, 0.020, 0.005] s
4 [-0.017, -0.039, 0.014, -0.017, 0.010, -0.016, -0.005, 0.010] with
5 [0.003, -0.031, 0.028, 0.002, 0.010, 0.019, -0.030, 0.015] at
6 [0.005, -0.026, 0.009, -0.032, -0.008, -0.029, 0.006, -0.005] rial
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Table 4.1 continued from previous page
Position Embedding Vector Token
7 [0.015, -0.024, 0.023, -0.035, -0.003, 0.012, -0.020, 0.026] fib
8 [-0.005, -0.036, 0.022, -0.019, 0.028, -0.002, 0.029, 0.001] rill
9 [-0.006, -0.020, 0.011, -0.010, 0.061, 0.019, -0.035, 0.020] ation
10 [-0.014, -0.007, 0.009, -0.002, 0.044, -0.010, 0.033, -0.001] .
11 [-0.024, 0.010, 0.000, 0.004, 0.009, 0.004, -0.018, 0.034] CHADS
12 [-0.034, -0.010, -0.024, 0.017, 0.038, -0.046, 0.049, -0.005] -
13 [-0.025, 0.027, 0.011, 0.011, 0.023, -0.013, 0.027, 0.005] VASc
14 [-0.044, -0.032, -0.007, 0.012, 0.023, 0.050, 0.031, 0.005] of
15 [-0.006, 0.026, -0.018, -0.013, -0.003, 0.024, -0.015, 0.032] 4
16 [-0.002, -0.015, 0.003, 0.008, 0.022, 0.047, 0.027, 0.030] is
17 [-0.003, 0.028, 0.005, -0.024, -0.006, -0.005, 0.002, 0.012] e
18 [-0.006, -0.010, 0.002, -0.028, 0.041, -0.016, 0.013, 0.017] stab
19 [-0.041, 0.008, -0.002, -0.051, -0.013, 0.000, 0.033, -0.007] lis
20 [-0.012, 0.004, 0.020, -0.007, 0.028, 0.003, 0.005, 0.035] hed
21 [-0.044, 0.000, -0.002, -0.009, 0.002, 0.025, 0.023, 0.024] .
22 [-0.006, 0.025, 0.006, -0.004, -0.003, -0.006, 0.001, 0.034] </s>

Table 4.1: Positional embeddings for each token position (first 8 dimensions)

Hyperparameter Search To find the optimal configuration for the CHA2DS2–VASc classi-
fication model, we implemented an automated hyperparameter search using Optuna (Akiba
et al., 2019), a Python optimization framework. Rather than manually testing different com-
binations of hyperparameters, we looked for an approach similar to our hyperparameter search
in the AF classification model using XGBoost. The approach using Optuna works similarly to
the approach with PyTorch in the case of XGBoost, as it systematically explores the search
space to maximize the model’s performance, given a pre-defined evaluation metric.

The hyperparameter search was integrated with Hugging Face Transformers’ built-in optimiza-
tion functionality. The search space covered six key hyperparameters:

• Learning rate

• Batch size: Tested categorical options of 2, 4, and 8 for both training and evaluation,
considering lower batch sizes performed better in tests

• Number of epochs: Varied from 1 to 10, as more epochs seemed to overfit model quickly

• Weight decay: Used to further fine-tune the model after the previous ones were established

• Warmup steps: Tested to see influence on model performance for gradual learning rate
scheduling

Optuna uses an estimator algorithm, which builds probabilistic models of the objective function
based on previous trials (Akiba et al., 2019). This optimization approach should be more
efficient than random search, as it learns from earlier results to guide future hyperparameter
selection. In contrast to the successive halving we used for XGBoost optimization, the algorithm
Optuna allows for more variety in combinations of hyperparameters. The search was configured
to maximize the F1-score, to once again get a balanced evaluation metric that balances both
precision and recall.

The final hyperparameters that were used to create the final model are shown in figure 4.7.

The number of epochs was carefully selected after testing, where overfitting was happening after
three epochs. The other hyperparameters were then experimented with further. The higher
weight decay value of 0.2057 shows that strong L2-regularization helps prevent overfitting on
this dataset.
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Hyperparameter Value
Learning rate 2e-5 (linear decay schedule)
Batch size 4 (per device, so 8 in total)
Training epochs 3 (early stopping on validation loss)
Weight decay 0.2057
Warmup steps 458 (almost 1 full epoch)

Figure 4.7: Hyperparameters used in the experiment for the CHA2DS2–VASc extrac-
tion model

By default, the AdamW (Adam with decoupled Weight decay) optimizer is used. This optimizer
is widely used for training transformer models and is an improved version of the standard Adam
optimizer, where weight decay is applied directly to the weights and not to the gradients. It is
also the default optimizer when using the Trainer and TrainingArguments interface through
the Transformers library (Vaswani et al., 2023).

The learning rate warmup steps will allow us to gradually increase the learning rate from 0 to
our target learning rate over the specified number of steps. This is mainly used to prevent loss
spikes early in training, where the model is still unstable.

4.7 Model Evaluation Metrics
We evaluated model performance using several complementary metrics appropriate for multi-
label classification. Precision, Recall, and F1-Score were calculated both per label and macro-
averaged across both classes. These metrics are crucial for clinical applications, where both
false positives and false negatives have significant implications. The same arguments used for
the AF classification task can be used here, as the data behind the model remains mostly the
same.



Chapter 5

Results

In this chapter, we discuss the experimental results of our methodologies applied to the pre-
viously discussed datasets, both for atrial fibrillation classification and CHA2DS2–VASc score
extraction from hospital discharge notes. The results will be discussed in three main sections:
Atrial fibrillation classification, CHA2DS2–VASc score extraction and quality indicator analysis
for AF patients.

5.1 Atrial Fibrillation Classification
5.1.1 Baseline Model Performance
MIMIC-IV-Ext-Cardio Dataset Results
Our XGBoost classifier combined with TF-IDF vectors performed well on the MIMIC-IV-Ext-
Cardio dataset, with an F1-score of 0.90 for the positive class (AF) and an F1-score of 0.96
for the negative class (non-AF). This brings the model to a weighted F1-score of 0.95, as
seen in table 5.1. The F1-score was chosen as the most meaningful evaluation metric for the
performance of our models, given both the clinical context and the importance to capture as
little false positives and false negatives as possible.

The F1-score is typically calculated for each class individually and then averaged to provide an
overview of the model’s overall performance. F1-scores can be both macro-averaged or weighted
on each class. Macro-averaging computes the unweighted mean of F1-scores across all classes,
treating each class with the same importance regardless of how many samples it contains.
Weighted averaging, in contrast, assigns importance to each class’s F1-score, weighted to its
prevalence (support) in the dataset.

As we often work with a very imbalanced dataset, with much more non-AF cases than AF-cases,
the weighted F1-score provides the most clinically relevant performance measure. However, the
macro-average is also shown, as this may show a more realistic view for our use case, where
a class imbalance will always be likely due to the prevalance of AF patients within cardiology
departments.

We also report individual F1-scores to ensure we can discuss performance on both positive and
negative AF class.

The resulting optimized XGBoost model achieved 95% overall accuracy on the cardiology de-
partment discharge notes from the test set, but in our case, looking at the F1 score gives a
better overall view of the performance of the model.

The high precision (0.96) for non-AF cases indicates that there are minimal false positives.
The strong recall (0.94) for AF cases in its turn also indicates an effective identification of
true AF patients. Both metrics result in a well-balanced F1-score for both the non-AF class
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Class Precision Recall F1-Score Support
Non-AF 0.98 0.95 0.96 6,216
AF 0.87 0.94 0.90 2,279
Overall Accuracy 0.95 8,495
Macro avg 0.92 0.94 0.93 8,495
Weighted avg 0.95 0.95 0.95 8,495

Table 5.1: A table showing the results of the performance metrics for the XGBoost +
TF-IDF AF classification model on the MIMIC-IV-Ext-Cardio dataset

Class Precision Recall F1-Score Support
Non-AF 0.95 0.86 0.90 100,300
AF 0.65 0.85 0.74 30,580
Overall Accuracy 0.86 130,880
Macro avg 0.80 0.86 0.82 130,880
Weighted avg 0.88 0.86 0.86 130,880

Table 5.2: A table showing the results of the performance metrics for the XGBoost +
TF-IDF AF classification model on the MIMIC-IV-Ext-No-Cardio dataset

(0.96) and the AF class (0.90). However, we do notice a reduction in precision for the AF class,
with a precision of 0.87 compared to the non-AF class precision of 0.98. This indicates that
while the model excels at correctly identifying non-AF cases, it produces more false positives
when predicting AF, meaning some non-AF patients are incorrectly classified as having atrial
fibrillation.

To evaluate the robustness across different clinical contexts for the optimized XGBoost classifier,
we tested it on the MIMIC-IV-Ext-No-Cardio test dataset. This test set contained 130,880
records (significantly more than our cardiology-only dataset), with approximately 30% AF
cases (30,580) and 70% non-AF cases (100,300).

In table 5.2, we can see the performance metrics measured on the predictions of the MIMIC-
IV-Ext-No-Cardio test dataset. The F1-score for the AF class dropped substantially from 0.90
to 0.74, and AF precision declined significantly from 0.87 to 0.65. This indicates false positives
increase when using our model in a context it was not trained for. However, we notice that
AF recall had less of a decrease (from 0.94 to 0.85), indicating the model captures a lot of true
AF cases. In clinical contexts, it is of course better to have a higher recall, where it may be
better to over-diagnose than to under-diagnose. In our case, the model would primarily used
for reporting purposes, but the argument still holds.

Overall, these results indicate the model works well on the cardiology data, and will most likely
perform well in a similar context. These findings highlight the importance of domain-specific
training data and suggest that broader generalization may need more training data from various
other clinical contexts or a more robust feature engineering approach.

Jessa Hospital Dataset Results
Applying the same XGBoost and TF-IDF methodology to the Dutch hospital discharge notes
from the Jessa Hospital dataset, resulted in the performance metrics shown in table 5.3. While
the model achieved a high overall accuracy of 93%, the AF F1-score of 0.71 reveals more nuanced
performance challenges when compared to the English datasets. The model demonstrates strong
performance on non-AF cases with an F1-score of 0.96, but shows concerning limitations for
AF detection:

With an AF F1-score of 0.71, it is substantially lower than the F1-score we reached for the
model trained on the MIMIC-IV-Ext-Cardio dataset. The precision of 0.71 and recall of 0.72
for the AF class create a F1 score of 0.71 for the AF class, while the F1-score is 0.96 for the
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Class Precision Recall F1-Score Support
Non-AF 0.96 0.96 0.96 2,233
AF 0.71 0.72 0.71 306
Overall Accuracy 0.93 2,539
Macro avg 0.84 0.84 0.84 2,539
Weighted avg 0.93 0.93 0.93 2,539

Table 5.3: A table showing the results of the performance metrics for the XGBoost +
TF-IDF AF classification model on the Jessa Hospital dataset

Class Precision Recall F1-Score Support
Non-AF 0.97 0.97 0.97 2,233
AF 0.76 0.79 0.78 306
Overall Accuracy 0.94 2,539
Macro avg 0.87 0.88 0.87 2,539
Weighted avg 0.95 0.94 0.95 2,539

Table 5.4: A table showing the results of the performance metrics for the XGBoost +
TF-IDF AF classification model on the Jessa Hospital dataset using the enhanced n-gram
approach with n-range=(1,3)

negative class. This indicates the model performs well in detecting cases not related to AF, but
struggles to correctly identify Atrial Fibrillation (AF) samples well. The recall of 0.72 means
the model fails to identify a significant number of actual AF cases, which is dissapointing.

Interestingly, the Jessa model shows more balanced precision and recall (0.71 and 0.72) com-
pared to the MIMIC model, which typically had higher precision than recall. This suggests the
model struggles equally with both false positives and false negatives when applied to Dutch clin-
ical text. The maintained high weighted F1-score (0.93) and accuracy (93%) are largely driven
by good performance on the majority non-AF class, and is a good indication of why class-specific
F1-scores provide more meaningful insight into model quality for our application.

We will discuss possible causes for these performance differences in the discussion chapter of
this thesis.

5.1.2 Larger N-gram Approach
Our initial analysis of the results revealed that our unigram-based model struggled with negation
patterns that are common in the discharge notes, such as mentions of ’geen vkf ’ (’no af’) and
’uitgesloten voorkamerfibrillatie’ (’excluded atrial fibrillation’). To address this limitation of
our model, we implemented an enhanced approach with larger n-grams. Instead of capturing
unigrams, which only capture one term at a time, we experimented with an n-gram range of 1
to 3, so we could capture important features in unigrams, bigrams and trigrams.

For this model, the only element we changed in our approach was the size of the n-grams. The
hyperparameter search was performed again for this approach, and the model was trained on
the Jessa-AF dataset again.

This approach seemed to already yield better results, as can be seen in table 5.4.

The model seemed to better capture negations, where this time ’vkf’ (’af), ’ablatie’ (’ablation’),
’ablatie uitgevoerd’ (’ablation performed’), ’snel ventriculair ’ (’fast ventricular’), ’cardiover-
sie uitgevoerd’ (’cardioversion performed’), ’voorkamerfibrillatie’ (’atrial fibrillation’), ’lixiana’
(antigoagulant medication), were highly important features.

Most terms directly indicate the presence of AF, while others indicate a common treatment for
patients with AF, such as catheter ablation or anticoagulant medications such as Lixiana.
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Model Test
Dataset

Test size AF test cases Language Dept.

MIMIC MIMIC-IV-
Ext-Cardio

8,495 2,279 (27%) English Cardiology

MIMIC MIMIC-
IV-Ext-No-
Cardio

130,880 30,590 (23%) English All Depts

Jessa Jessa Hospi-
tal

2,539 306 (12%) Dutch Cardiology

Table 5.5: Test set characteristics for the three different experiments including the
MIMIC-IV-Ext-Cardio and the Jessa Hospital model. MIMIC = MIMIC-IV-Ext-Cardio
model, Jessa = Jessa Hospital model

Model Accuracy AF Precision AF Recall AF F1
MIMIC-IV-Ext-Cardio 0.95 0.87 0.94 0.90
MIMIC-IV-Ext-Cardio (On Non-Cardio) 0.86 0.65 0.85 0.74
Jessa Hospital 0.94 0.78 0.65 0.71

Table 5.6: Performance results for the positive AF class for the three different test sets
including the MIMIC-IV-Ext-Cardio and the Jessa Hospital model.

5.1.3 FastText Embeddings Exploration
During the development phase using the MIMIC-IV data, we investigated the potential of
FastText embeddings as an alternative to TF-IDF vectorization. We hypothesized that the
introduction of word embeddings would positively influence the performance of our XGBoost
model. However, our experiments revealed that our approach using the FastText embeddings
did not outperform the traditional TF-IDF methodology, and took up too much time to our
liking.

Given the better performance of TF-IDF combined with XGBoost on the MIMIC-IV dataset,
we proceeded with this approach for the Jessa Hospital experiments, rather than investing more
time and computational resources in the FastText optimization.

5.1.4 Result Analysis
Comparing the performance of both classification models across the different datasets reveals
some notable insights. Table 5.6 shows the performance metrics for the positive class for both
models, once for the Jessa model and twice for the MIMIC-IV-Ext-Cardio model: Once for
both the regular test set and once for the second test set with notes from outside the cardiology
department.

We notice here that the cardiology-focused datasets yield better AF detection performance
regardless of the size of the dataset. Both models trained on MIMIC-IV-Ext-Cardio and the
Jessa hospital dataset yield better precision for the positive class. However, for the Jessa
hospital, the recall appears to be lower than both other models. The Jessa dataset of course
has fewer samples (2.539 total records in the test set with only 12% being positives). These
results will again be discussed in more detail in chapter 6 of this thesis.

We notice that for the Jessa model’s results, the recall for the positive class (0.74) is actually
quite similar to that of the MIMIC-IV-Ext-Cardio model tested on the MIMIC-IV-Ext-No-
Cardio test set (0.71).

In our first hypothesis (H1), we predicted that XGBoost with TF-IDF could achieve >90%
accuracy for AF identification. Our results partially support this hypothesis:
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Metric Score
Overall Accuracy 0.95
Macro F1-Score 0.82
Weighted F1-Score 0.95

Table 5.7: Table showing the overall evaluation metrics on the final CHA2DS2–VASc
extraction model, trained on Jessa-CHADSVASc-10

• Our implementation on MIMIC-IV-Ext-Cardio achieved 95% accuracy.

• Our implementation on Jessa-AF achieved 93% accuracy.

Our hypothesis therefore is confirmed. However, AF-specific F1-scores were more variable (0.90
vs 0.71), and provide more insight into the actual performance of the mode, suggesting language
and dataset-specific challenges are still at play and should be looked into further.

5.2 CHA2DS2–VASc Score Extraction

5.2.1 Model Performance
For CHA2DS2–VASc score extraction from the Dutch hospital discharge notes from the Jessa
dataset, we fine-tuned the MedRoBERTa.nl model (Verkijk and Vossen, 2021). This approach
was selected based on recommendations from the research team’s prior experience, as well as
prior research demonstrating superior performance of domain-specific and language-specific pre-
trained models for clinical information extraction tasks as discussed in the Methodology section
of this thesis.

Fine-tuning Results on Jessa-CHADSVASc-10
Our fine-tuned MedRoBERTa.nl model achieved promising results on the CHA2DS2–VASc
score extraction task. The model was trained on the Jessa-CHADSVASc-10 dataset, which
contained 1,482 records with 10 different classes after removing records with extremely rare
scores.

The optimized model achieved the performance metrics on the test set as presented in table
5.7.

The training process showed clear convergence over 3 epochs, with both training and validation
loss decreasing steadily. The validation F1-score improved from 0.40 in epoch 1 to 0.95 in
epoch 3, while validation accuracy increased from 0.55 to 0.95, demonstrating effective learning
without overfitting.

As presented in table 5.8, the model demonstrated strong performance across all classes, with
F1-scores consistently above 0.89 for most categories, except for the ’Greater than 2’ class. This
result was expected, as the training, validation and test data only contained very few samples
for this class.

The model performed exceptionally well at identifying when no explicit CHA2DS2–VASc score
was mentioned (F1-score: 0.967). This is useful in our research objective to identify quality
indicators from discharge notes through modern Natural Language Processing techniques. The
absence of a reported CHA2DS2–VASc score is an important metric. Most individual score
classes achieved perfect F1-scores, partially due to the very low number of records in the test
set, with only minor performance drops for score 3 (F1: 0.889) and the ’greater than 2’ category,
which obviously had insufficient training examples as its one test case got predicted as a score
of ’2’ instead of ’greater than 2’.
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CHA2DS2–VASc Score F1-Score Support
0 1.000 5
1 1.000 7
2 1.000 12
3 0.889 14
4 0.909 12
5 0.909 5
6 1.000 2
7 1.000 1
No score 0.967 44
Greater than 2 0.000 1

Table 5.8: Table showing the per-class evaluation metrics on the final CHA2DS2–VASc
extraction model, trained on Jessa-CHADSVASc-10

5.2.2 Result Analysis
The results demonstrate that fine-tuning MedRoBERTa.nl for CHA2DS2–VASc score classifi-
cation achieves good performance levels that could be clinically useful, and show promise for
other possible fine-tuning tasks. The model’s ability to achieve 95% overall accuracy and a
0.82 macro F1-score suggests our approach in fine-tuning a Dutch pre-trained model specific to
clinical text shows promise for future further implementations.

We analyzed the misclassifications for our evaluation of the Jessa-CHADSVASc model. One
case contained two different CHA2DS2–VASc scores mentioned in the same document (both 4
and 3), likely due to score recalculation during an extended hospital stay. The model predicted
score 3 while the ground truth was 4. This explains the slight drop in F1-score. Another
test case included a mentioned score of ’CHADSVASC >2’ and was incorrectly predicted as
’no_score.’ This error likely stems from limited training examples for inequality expressions
and variations in Dutch phrasing in the training data (such as ’groter dan 2’ (’greater than
2’). The remaining errors in the test set occurred when the text was truncated at the 512-
token limit, causing the actual score mention to be cut off. This represents a fundamental
architectural limitation rather than a model learning issue. Earlier tests with a subset of the
Jessa-CHADSVASc dataset that only included 512 tokens around the CHA2DS2–VASc score as
input-data performed well but were not continued due to time constraints.

Apart the very few records that this impacted in our testset, our preprocessing approach,
which prioritized the ’BESLUIT EN BESPREKING’ (Conclusion and Discussion) section of
the discharge notes, proved highly effective.

From a clinical perspective, the model’s overall performance is good. The ability to correctly
identify explicit score mentions with >95% accuracy allows for more in the future. The model’s
few errors represent edge cases or limitations of our architectural design choices, and mostly
still correctly identifies the presence of a score, given that it is in the input text.

H2 predicted >85% accuracy for CHA2DS2-VASc extraction using MedRoBERTa.nl. Results
strongly support this hypothesis with 95% overall accuracy, demonstrating the effectiveness of
domain-specific Dutch medical language models. Again, the F1-score provides more insight as
an evaluation metric in our case. We note a weighted F1-score of 0.95 for our CHA2DS2–VASc
classification model trained on Jessa-CHADSVASc-10.

5.3 Quality Indicator Analysis
Building on our AF classification and CHA2DS2–VASc extraction models, we analyzed adher-
ence to ESC quality indicators for AF patients in the Jessa Hospital dataset.
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5.3.1 Proportion of AF Patients with Reported CHADS-VASc Score
Using our combined pipeline of AF classification followed by CHA2DS2–VASc extraction, we
analyzed documentation practices for the first quality indicator: the proportion of AF patients
with a reported CHA2DS2–VASc score.

Of the 1,489 AF-positive cases identified in our Jessa-CHADSVASc-10 dataset

• 662 cases (44.5%) had an explicit CHA2DS2–VASc score documented

• 827 cases (55.5%) had no explicit score mentioned in the discharge notes

This finding suggests that despite the guidelines put forward by the ESC, recommending
CHA2DS2–VASc score calculation for all AF patients, reporting of these scores in discharge
notes remains rather inconsistent.

The distribution of the various scores present in Jessa-CHADSVASc is shown in table 5.9, both
as a percentage of the discharge notes that had a reported score, as well as the percentage in
regards to the total dataset of patient diagnosed wit AF.

CHA2DS2–VASc Score Count Percentage of Reported Percentage of Total AF
0 58 8.8% 3.9%
1 74 11.2% 5.0%
2 133 20.1% 8.9%
3 149 22.5% 10.0%
4 129 19.5% 8.7%
5 71 10.7% 4.8%
6 21 3.2% 1.4%
7 10 1.5% 0.7%
8 3 0.5% 0.2%
9 3 0.5% 0.2%
>2 (unspecified) 11 1.7% 0.7%

Table 5.9: A table showing the distribution of CHA2DS2–VASc scores across the Jessa-
CHADSVASc-10 dataset

The distribution shows a spread across different scores, with scores 2 to 4 being most common
(combined they form 62.1% of total documented scores).

5.3.2 Proportion of AF Patients with Reported CHADS-VASc Score
> 2

Among the 1,489 AF-positive cases, 26.7% of them have a reported CHA2DS2–VASc score
strictly greater than two.

We identified 11 cases in our Jessa-CHADSVASc-10 dataset where scores were documented
using inequality expressions (e.g., ’CHADSVASC >2’). This represents a small but clinically
significant subset where instead of noting exact scores, a typical threshold was used. Our

Score Category Count Percentage of Total AF Percentage of Documented Scores
Score >2 397 26.7% 60.0%
Score = 2 133 8.9% 20.1%
Score <2 132 8.9% 19.9%

Table 5.10: A table listing the distribution of records with a CHA2DS2–VASc score of
2 or greater
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approach for CHA2DS2–VASc extraction did not sufficiently test these cases due to the lack of
adequate training data.



Chapter 6

Discussion

In this chapter, we analyze and interpret our research findings and examine the performance
of the various approaches we researched for automated AF classification and CHA2DS2–VASc
score extraction. We will discuss the further implications of our findings, acknowledge the limi-
tations, and aim to situate our findings within a broader context of medical NLP research.

6.1 XGBoost as a Baseline Solution
Our results demonstrate that XGBoost in combination with TF-IDF features provides a good
baseline for AF classification tasks. The strong performance that was achieved on the MIMIC-IV-
Ext-Cardio dataset (95% accuracy, 0.95 weighted F1-score) confirms that traditional machine
learning approaches, like the one we used, remain competitive for well-defined classification
tasks in clinical text. This is supported by the research of Falter et al., which has found good
results for the classification of diseases using ICD-10 codes using the same approach (Falter
et al., 2024).

However, we noticed a strong performance drop in our model created for the Jessa-AF dataset.

6.1.1 Feature Importance
Analysis of the most predictive features for AF classification in the Jessa Hospital dataset reveals
both the strengths and limitations of our TF-IDF approach. The top 5 features were:

• snel (rapid/fast), capturing symptomatic descriptions often related to patients with Atrial
Fibrillation

• vkf, an abbreviation of Atrial Fibrillation in Dutch (voorkamerfibrillatie)

• voorkamerfibrillatie (Atrial Fibrillation)

• cardiologie (cardiology), indication of the related department, often mentioned in AF
positive samples

• novo, related to frequent term ’AF de novo’, indicating the presence of new-onset AF

These features demonstrate that the model effectively learned both explicit diagnostic termi-
nology (’vkf’, ’voorkamerfibrillatie’) and clinical descriptors (’snel’, ’novo’). However, they also
reveal potential limitations. There seems to be a heavy reliance on explicit terminology, such as
the bias towards mentions of ’cardiologie’. Not only does this influence the classification of Atrial
Fibrillation (AF) cases, but we make the hypothesis that this would also reduce generalizability
of the model outside of the current context.
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While the term ’novo’ may often refer to ’AF de novo’ in our training set, this is not always the
case, as the term can be used for other diagnoses as well. This may have played an important
role in the reduced F1-score for AF positive cases.

6.1.2 TF-IDF Vectorization
The effectiveness of a more traditional approach with TF-IDF vectorization can be attributed
to several factors. TF-IDF vectorization seems to clearly capture the importance of specific
medical terminology related to AF, such as ’atrium’, ’fibrillation’, ’vkf’ and ’novo’, which proved
to be highly predictive features in both of our AF classification models. The term ’novo’ was
mostly predictive in the case of our Jessa-AF dataset, as many discharge notes mentioned ’AF
de novo’, with ’de novo’ indicating a new onset AF that was not previously diagnosed in the
patient. We hypothesize this may have been a very predictive term due to the small number
of samples in the Jessa dataset, indicating the model might lose some of its predictive power
if used in a broader context, as this term might be used in combination with other diagnoses.
This of course has to be thoroughly tested and researched. However, the only available Dutch
discharge notes we had at our disposal were the ones in the Jessa Hospital dataset. This dataset
only includes discharge notes from their cardiology department, which has already filtered out
more noise and less relevant discharge notes from other departments.

The bag-of-words representation (the ’Term-Frequency’ part of the TF-IDF method) using
unigrams (n-gram with n=1), loses sequential information. For example, we may consider the
following sentences:

1. ’Patient has no history of atrial fibrillation’

2. ’Patient has atrial fibrillation, no complications’

Our approach would consider most of the same key terms for both sentences: ’patient’, ’atrial’,
’fibrillation’, and ’no’, with ’history’ and ’complications’ being the outliers. However, all of these
key terms appear exactly once in either sentence, indicating they are all equally important,
which is not the case.

However, as we previously mentioned, the presence of certain diagnostic terms, regardless of
order, look to be highly predictive in our experiments. This is where our traditional approach
with XGBoost and TF-IDF may lack. While the use of bi- and trigrams improved our AF-
classification model for the Jessa-AF dataset, it seems there are still some pre-processing steps
that can be taken and tested to further improve our models. Some of these can include bet-
ter negation handling and improving OOV-terms by using pre-trained embeddings specific for
clinical data.

Further research is necessary to discover how well pre-trained embeddings would work with a
traditional XGBoost classifier and if they have a significant influence on the performance of the
model.

6.1.3 XGBoost
XGBoost’s gradient boosting algorithm excels at handling high-dimensional and sparse feature
spaces created by TF-IDF vectorization. The algorithm’s ability to automatically select relevant
features through its tree-building process contributed significantly to the strong results. In the
case of our Jessa-AF classification model, ’vkf ’ (’af’) and other terms specific to the treatment
of AF seem to be highly predictive. We notice that some form of understanding is needed to
make proper nuances for when Atrial Fibrillation is mentioned in the discharge notes as part
of medical history, and if it is no longer present. This is where our Jessa-AF model seemed to
lack performance, as terms like ’vkf ’ are mentioned often in these samples.
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6.1.4 Enhanced N-gram Approach
The enhanced n-gram approach (n-range=(1,3)) showed meaningful improvements for the Jessa-
AF dataset, with AF F1-score increasing from 0.71 to 0.78. This improvement can be attributed
to better capture of contextual patterns and negation phrases that are crucial in Dutch dis-
charge notes. We now notice the importance of capturing more than just the presence of certain
terms in clinical text handling.

The most important features identified by the enhanced model included both direct diagnostic
terms (often bigrams) and treatment options used in patient with AF, suggesting the model
learned to associate AF not only with explicit mentions but also with common therapeutic
interventions for AF patients.

The performance drop between our English (MIMIC) and Dutch (Jessa) datasets suggests some
language-specific challenges might still come into play in clinical NLP, despite using similar
methodologies. The Jessa AF dataset’s smaller size (2,539 records vs 8,495 for MIMIC-IV-Ext-
Cardio) likely contributed to reduced generalization capability and caused our model to overfit
more to the small number of records it was trained on.

6.1.5 Embedding-Based Approaches
Our exploration of FastText embeddings as an alternative to TF-IDF vectorization revealed
mixed results. While we hypothesized that word embeddings would better capture semantic
relationships and handle Out-of-Vocabulary (OOV) words common in clinical text, our exper-
iments showed that FastText did not outperform the traditional TF-IDF methodology on our
datasets. The underwhelming performance is likely due to our implementation architecture,
where we averaged FastText vectors to reduce dimensionality, and therefore losing much of the
semantic information that makes embeddings valuable.

However, it still seemed FastText had many of the same OOV words as our traditional TF-IDF
approach when it came to medical specific terms, indicating more domain-specific pre-trained
embeddings would have been necessary to capture more relevant context. As this approach was
quickly abandoned, no further arguments can be made as we had only tested our approach with
averaged FastText vectors. We hypothesize different approaches in using FastText vectors in
combination with XGBoost may yield better results.

For a simple binary classification task, XGBoost in combination with TF-IDF seems to perform
well enough. Further research is needed to decide its relevance in multi-label classification, such
as the automated classification of ICD-10 codes related to AF, which would require a more
nuanced understanding of the types of AF a patient can present with.

6.2 Technical Achievements and Limitations
Our CHA2DS2–VASc score extraction model using fine-tuned MedRoBERTa.nl achieved strong
performance (95% overall accuracy, 0.82 macro F1-score) on a rather small test set, demonstrat-
ing the value of domain-specific and language-specific pre-trained models for clinical information
extraction tasks. Unlike traditional approaches such as our TF-IDF + XGBoost baseline for
AF classification, transformers can capture more complex relationships within text, making
them more suitable for tasks requiring contextual understanding. However, do to the nature
of our dataset, as well as the small size, we cannot make significant claims on how well our
model makes use of the clinical context. The CHA2DS2–VASc extraction task is a rather simple
classification task, and our training data often had exact scores mentioned in the notes. We
want to stress the importance that further testing is needed on different splits of the dataset, as
well as test sets with more variety, such as only having the risk factors indicated but no actual
mention of the score itself. We hypothesize our model will not perform well in that case, as it
is fine-tuned to our training set.
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Several technical limitations emerged during our implementation. The 512-token limitation
inherent to the RoBERTa and BERT architecture presents a significant constraint for clinical
documents, which can often exceed this length. We addressed this through prioritized text
preprocessing, focusing on clinically relevant sections such as only using the ’BESLUIT EN
BESPREKING’ (Conclusion and Discussion) section. While this approach has proven it some-
times fails in classifying a proper CHA2DS2–VASc score in longer documents, the impact on
our dataset is rather small.

We could have addressed this limitation through a sliding window approach, processing doc-
uments in overlapping segments and perhaps aggregating predictions, but time constraints
prevented implementation of other approaches.

6.2.1 Dutch Medical Text Challenges
Working with Dutch medical text presented unique challenges compared to working with En-
glish records. The scarcity of high-quality Dutch medical language models limited our options,
though MedRoBERTa.nl proved to be an excellent choice for our CHA2DS2–VASc extraction
task. The model’s training on 2.4 million Dutch hospital notes provided the domain-specific
vocabulary necessary for understanding clinical abbreviations and Dutch medical terminol-
ogy.

6.2.2 Data Limitations
The significant class imbalance in our Jessa-AF dataset (88% AF-negative vs 12% AF-positive)
poses challenges for model training and evaluation. While this imbalance seems clinically rep-
resentative, it required careful consideration of evaluation metrics and training strategies. Our
approach of using balanced training sets while maintaining realistic test set distributions helped
us to prevent overfitting in our models, but we notice that performance could have been even
better. More thorough research is needed to find out if more training data or significantly
different splits would have made a difference for the models trained on our Jessa Hospital
dataset.

The relatively small size of our Jessa Hospital dataset compared to MIMIC-IV limited our ability
to train a more complex model. This constraint was particularly evident in our CHA2DS2–VASc
extraction model, where several score categories had very few examples, resulting in limited
training and test data for rare classes. However, the different experiments proved the feasibility
of using modern NLP techniques to form an aid to hospital diagnosis reporting using modern
LLMs that have been pre-trained on similar data (Dutch clinical text).

The manual annotation process for CHA2DS2–VASc scores on the Jessa-AF dataset revealed
some inconsistencies. Some records contained contradictory score information or used various
notation formats, which proposed challenges during the creation of the models.

6.2.3 Generalizability Considerations
In the case of our AF-classification model MIMIC-IV-Ext-Cardio, its performance varied sig-
nificantly across the test set of MIMIC-IV-Ext-Cardio and the test set of MIMIC-IV-Ext-No-
Cardio. The model showed reduced performance when applied to non-cardiology departments
(accuracy dropped from 95% to 86%), highlighting the importance of domain-specific training
data. This suggests that while our approaches work well within their intended clinical context,
broader generalization may require additional training or a different approach altogether.

6.2.4 Interpretability
An important consideration for clincial use of the proposed models is model interpretability.
Our XGBoost models provide feature importance and confidence scores that can help clinicians
understand which terms drive AF classification decisions, and provide insight into the confidence
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our models put behind a prediction. The transformer-based CHA2DS2–VASc extraction model,
while it works with pre-trained embeddings and builds in some form of reasoning, still operates
as a black box that is harder to interpret. Future work could incorporate attention visualization
or other interpretability techniques to help better understand how the model arrives at its
predictions.

6.3 Hypothesis Validation
6.3.1 Primary Hypotheses
Addressing RQ1 and H3 on ESC quality indicator measurement, our combined pipeline re-
vealed only 44.5% of AF patients had documented CHA2DS2–VASc scores, while 26.7% had
clinically significant scores (>2). Given the model we trained by fine-tuning the pre-trained
MedRoBERTa.nl model, we believe it is feasible to use modern NLP techniques for (partially)
automated measurement and reporting for guideline adherence. Using confidence scores, our
models can indicate how certain it is about a given prediction, making it possible for automated
tools to have a human-in-the-loop approach, where certain low-confidence predictions can still
be manually checked, but significantly reduce the time needed in reporting. More extensive
research is needed to see how these approaches would generalize and work in real-life clinical
settings to confirm their performance.

6.3.2 Secondary Hypotheses
We hypothesized AF-classification models trained on cardiology department data would show
reduced performance when applied to other departments (H4). This is confirmed by our results
on the MIMIC-IV model. Performance degraded from 95% accuracy to 86% when applying
cardiology-trained models to general hospital data, and confirms our hypothesis about domain-
specific training importance. However, we attribute the loss in accuracy mostly due to the
approaches used. As our models were trained on the MIMIC-IV-Ext-Cardio using unigrams, it
was highly specialized towards our department-specific terminology, and only used unigrams,
indicating a more thorough clinical understanding or reasoning system might be necessary to
better capture certain nuances that are present in a broader scope, such as many different
departments in a hospital.

While H5 was not directly tested by comparing general language models to our fine-tuned
implementation of the pre-trained MedRoBERTa.nl model, we can provide some insight into
the feasibility of creating a domain-specific task using a related pre-trained model. With our
pre-trained approach, the lack of excellent performance for our CHA2DS2–VASc extraction
model for Jessa can be mostly attributed to the heavy class imbalance and lack of samples for
each class, given our linear classification head that was applied to the pre-trained model.

We hypothesize that models such as MedRoBERTa.nl will provide a better starting ground
than any other general language models would, but identify that there is still more research
to be done to truly extract its full potential, given our CHA2DS2–VASc extraction task. The
multi-class classification approach we employed at first, might yield worse results than other
fine-tuning tasks using MedRoBERTa.nl. We therefore note that other types of fine-tuning
tasks should be tested before making any further conclusions.

6.4 Future Work for AF classification
Future research should explore approaches that incorporate word embeddings with XGBoost,
rather than simple vector averaging as done in our FastText approach. Techniques that capture
semantic information, as well as reducing OOV-terms for clinical texts, while maintaining the
benefits of gradient boosting, seem to be the way forward.
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Our current binary AF classification could be extended to multi-label classification, distinguish-
ing between different types of AF (paroxysmal, persistent, permanent), which would provide
more clinically relevant information for treatment decisions and closely relates to ICD-10 cod-
ing.

6.5 Future Work: Analysis of Anticoagulants
A natural extension of our work would be to analyze anticoagulant prescription patterns in
relation to CHA2DS2–VASc scores. This could help assess the second ESC quality indicator:
’Proportion of AF patients with significant CHA2DS2–VASc score (≥2) that received anticoag-
ulant therapy.’ This analysis would require additional natural language processing to extract
medication information from discharge notes, and validate whether patients with a clinically
significant score received the proposed treatment.
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Conclusion

This thesis provides insight into how Natural Language Processing techniques can aid in hospital
reporting, particularly relating to guidelines set in place by the ESC in regards to patients
diagnosed with Atrial Fibrillation.

7.1 Summary of Contributions

7.1.1 Technical Contributions
We developed a robust XGBoost classifier for detection of AF, utilizing the power of TF-IDF
vectorization to achieve a model with 95% accuracy on English cardiology discharge notes from
the MIMIC-IV-Ext-Cardio dataset, and a 93% accuracy on our Jessa-AF dataset with Dutch
discharge notes. While accuracies seem excellent, we emphasized the importance of other eval-
uation metrics in clinical contexts as well as when working with a large class imbalance. The
metric we often used was the F1-score, both weighted as well as calculated for each class seper-
ately. With a weighted average F1-score of 0.95 for both the MIMIC-IV-Ext-Cardio model and
the Jessa-AF, we can conclude Natural Language Processing (NLP) techniques, including tra-
ditional machine learning approaches, are effective and provide a good aid for hospital diagnosis
reporting.

We successfully fine-tuned an existing model (MedRoBERTa.nl), pre-trained on a large dataset
of Dutch clinical text, for our CHA2DS2–VASc score extraction task, achieving both an ac-
curacy and a weighted F1-score of 95%. This represents one of the first implementations of
a score extraction task using a pre-trained transformer-based model in Dutch healthcare set-
tings. While the original study by Verkijk and Vossen (2021) tested the model’s performance
on a downstream task for classifying discharge notes across broad domains, we proved the fea-
sibility of other downstream tasks using domain-specific pre-trained models, given differently
structured Dutch data from a different hospital.

7.1.2 Research Contributions
Our analysis of the Jessa-AF and Jessa-CHADSVASc dataset revealed that only 44.5% of AF
patients had a documented CHA2DS2–VASc score, highlighting the importance of NLP-based
reporting aids.

We established a pre-processing pipeline specifically designed for handling Dutch medical text,
including the analysis of clinical abbreviations and domain-specific terminology. We provided
a baseline performance metric for AF-classification and CHA2DS2–VASc score extraction tasks
that can serve as reference points for future research in clinical NLP applications, as well as
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provide a good baseline for similar downstream tasks using language-specific pre-trained large
language models.

7.2 Results
Our research addressed the primary research questions:

• RQ1: Modern NLP techniques can measure ESC quality indicators through discharge
letters with good accuracy. Our combined pipeline identified AF patients and extracted
CHA2DS2–VASc scores with sufficient accuracy. Given the models’ lower confidence scores
on wrong predictions, it is feasible to create a tool that could aid hospital reporting
with a human-in-the-loop approach, where humans can manually check cases flagged as
uncertain.

• RQ2: XGBoost with TF-IDF achieved an accuracy of >90% for the classification of AF,
confirming our first hypothesis (H1). The enhanced n-gram approach improved perfor-
mance on the Jessa dataset from an F1-score of 0.71 to 0.78, indicating there is still room
for improvement and our model provides a good baseline.

• RQ3: The fine-tuned MedRoBERTa.nl model succesfully extracted CHA2DS2–VASc scores
with 95% overall accuracy, which strongly supports Hypothesis H2 and demonstrates the
effectiveness of our approach.

7.3 Future Research

7.3.1 Automated ICD-10 Coding
Extending the binary AF classification to multi-label classification for the different types of
Atrial Fibrillation (e.g. paroxysmal, persistent, permanent) would provide interesting insights
in how the more traditional approach using XGBoost and TF-IDF features hold. It will also
enable us to perform more precise ICD-10 coding and providing clinically relevant information
for treatment decisions, as well as even more thorough reporting.

7.3.2 Model Improvements
More sophisticated approaches to better capture contextual understanding in medical text for
our AF classification models should be researched. Our experiments with FastText yielded
poor results, but there is room for improvement. It might be interesting to see how well
other approaches, such as fine-tuning of a Large Language Model pre-trained on Dutch medical
text, such as MedRoBERTa.nl, would perform in other downstream tasks related to Atrial
Fibrillation.

More research is needed to incorporate word embeddings with XGBoost beyond our simple
approaches and to test their feasibility within a clinical context.

Another approach we did not have time to finish was a sliding window approach and attention
visualization techniques to handle longer clinical documents and improve model interpretability
for clinical decision support.

To further test approaches for CHA2DS2–VASc extraction, it would be interesting to directly
focus on inferring CHA2DS2–VASc scores from risk factors rather than any explicit score ex-
traction. However, we hypothesize this task will be much more difficult given a smaller dataset
and relies heavily on the pre-trained approaches that would be used.
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7.3.3 Additional Quality Indicators
Apart from the quality indicators mentioned in this thesis, many other indicators exist for
patients with Atrial Fibrillation. A logical next step in our pipeline would be to asses antico-
agulant therapy for diagnosed patients. The quality indicator ’Proportion of AF patients with
significant CHA2DS2–VASc score (≥2) that received anticoagulant therapy.’ set by the ESC
can be researched further. We see promise in the fine-tuning of existing clinical models for more
advanced information extraction from Dutch discharge notes. We note that in this thesis, we
did not test the performance of any approaches that included translation of our original dataset,
and think further research in this topic would also give meaningful insight into the possibilities
for other quality indicators.

7.4 Personal Reflection
This thesis provided a great learning opportunity for me and allowed me to work with real
clinical data from Jessa Hospital. I got to sharpen my knowledge on modern techniques such as
Large Language Models, as well as other interesting Natural Language Processing techniques
that were discussed in this thesis.

It was extremely interesting to learn about the ethical considerations and the responsibilities
that come with working with real human clinical data, and found it a great addition to my
learning journey to take certain courses on Human Subjects Research that allowed me to work
with datasets such as MIMIC-IV (Johnson et al., 2024) (Johnson et al., 2023a).

I had anticipated more comprehensive outcomes at the start of this academic year, but I soon
came to the conclusion that careful testing, documentation, and well-considered strategies are
necessary when working on a bigger domain-specific project.

This work has shown that while modern Natural Language Processing (NLP) techniques hold
great promise for improving reporting in healthcare settings and quality assessment, successful
implementation requires careful consideration of domain knowledge, ethical implications, and a
thorough feature engineering and pre-processing approach. The results suggest that both more
traditional techniques like XGBoost in combination with TF-IDF, as well as Large Language
Models can serve as a valuable aid to healthcare professionals, but in my opinion, I think human
oversight and clinical judgment remain important, especially in more hazardous contexts outside
of reporting.

The baseline approaches that were established in this thesis show there are many future inves-
tigations and practical applications for the reporting of quality indicators possible and there is
still a lot of research to be done using modern NLP techniques.
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