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Abstract

Background: Pharmacogenomics is shaping the future of precision medicine by study-
ing how differences in our genes affect our response to medications. Next-Generation
Sequencing technologies uncover numerous rare or novel variants, many of which
lack functional or clinical interpretation. The accurate prediction of these effects re-
mains challenging due to the lack of tools that are dedicated to predicting the effects
of pharmacovariants. This thesis evaluates the performance of four widely-used vari-
ant effect predictors — AlphaMissense, CADD, PolyPhen-2, and SIFT — in predicting
functional classifications of pharmacovariants. Moreover, several ensemble methods
combining these prediction scores were developed and evaluated to improve pharma-
cogenomic classification performance.

Methodology: 1 900 variants were retrieved from the PharmVar database, with 419
variants having established functional classifications (’no function’, ’decreased func-
tion’, ’normal function’, and ’increased function’) selected for analysis. Variant effect
predictions were performed using Ensembl VEP, with scores extracted and compared
against PharmVar functional annotations. Ensemble methods combining scores from
all four predictors were developed using multinomial logistic regression, random for-
est and support vector machine models.

Results: The individual variant effect prediction tools performed poorly in discrimi-
nating between functional pharmacogenomic annotations, with area under the curve
values ranging from 0.51 to 0.58. The ensemble support vector machine model demon-
strated superior performance, with an accuracy of 37.18%, a precision of 35.59% and
a recall of 37.78%. Moreover, an automated analysis pipeline was developed using
Nextflow to facilitate novel pharmacovariant analysis.

Conclusion: The findings presented in this thesis highlight the limited effectiveness
of current variant effect predictors in pharmacogenomics and underscore the need for
tools that are dedicated to predicting the effects of pharmacovariants. Although en-
semble methods, particularly support vector machines, offer moderate improvements,
further research is essential to enhance the interpretation of rare and novel pharmaco-
variants for clinical use.
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1 Introduction

Adverse drug reactions represent a major challenge in modern healthcare, contributing to
increased morbidity, hospitalisations, and healthcare costs (Osanlou et al., 2022). The con-
ventional approach to medication prescription is predicated on population averages and
takes into account factors such as the patient’s weight and age (T P et al., 2009). However,
this approach has been shown to be inadequate in addressing the broad inter-individual
variability in drug response. As a result, unintended consequences have frequently been
observed, including ineffective treatment outcomes and unwanted side effects (Anunobi,
2024).

Pharmacogenomics (PGx) offers a promising solution by tailoring drug therapy to an in-
dividual’s genetic makeup (Weinshilboum and Wang, 2017). The field of PGx investigates
how genetic variations influence drug metabolism, efficacy, and toxicity, thereby enabling
more precise, effective and safer prescribing practices (Hafidh et al., 2023). The integration
of PGx into clinical decision-making is a cornerstone of personalised medicine.

The advent of Next-Generation Sequencing (NGS) has made it possible to detect a large
number of genetic variants in a single analysis (Russell et al., 2020). However, most of
these variants are either novel or rare, and they lack clinical evidence to support their im-
pact on protein function (Zhou et al., 2022). The experimental methods employed to assess
the functional impact of each variant are expensive. Consequently, in silico tools have re-
cently emerged to evaluate how these variants affect protein function (Zhou and Lauschke,
2021). Despite recent advancements in PGx research, novel pharmacogenomic variants
could potentially contribute to unexplained variability in treatment responses. However,
understanding their impact remains challenging. The transition from population-based
prescribing to genetically-informed treatment is illustrated in Figure 1, which contrasts
the conventional and pharmacogenomic approaches to medication selection.

This thesis aims to evaluate four widely-used variant effect predictors (AlphaMissense,
CADD, PolyPhen-2 and SIFT) and assesses their accuracy in predicting the effect of phar-
macogenomic variants. Furthermore, it explores whether ensemble models that combine
these prediction scores can improve classification accuracy. Additionally, an automated
pipeline was developed. The pipeline streamlines this analysis process, making it easier
for researchers and clinicians to interpret newly discovered variants in pharmacogenes.

This thesis begins with a comprehensive literature review, including a historical perspec-
tive on PGx, its the key principles and terminology, sequencing technologies, the types of
genetic variants relevant to PGx, and the most commonly involved pharmacogenes in drug
metabolism. This is followed by a review of existing variant effect prediction tools and the
challenges of clinical implementation. Section 3 outlines the research objectives, which
focus on evaluating the predictive performance of the selected variant effect predictors.
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Section 4 describes the methodology, including data collection, variant effect prediction
and ensemble classifier development. This is followed by the results where the perfor-
mance of the individual variant effect predictors, the outcomes of the ensemble methods
and the implementation of an automated analysis pipeline based on Nextflow are pre-
sented. Section 6 discusses the implications of the findings, the methodological limitations
and the need for PGx-specific tools. Sections 7 and 8 consider ethical aspects and societal
relevance. Finally, section 9 provides concluding remarks and outlines directions of future
research.

Figure 1: A conceptual overview contrasting conventional prescribing practices with PGx-
guided approaches.
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2 Literature review

2.1 Historical perspective

The origins of genetics date back to 510 before Christ (Pirmohamed, 2011). During this
time period, the Greek philosopher and mathematician Pythagoras observed that the con-
sumption of fava beans induced a toxic response to some people but had no harmful effect
to others (Somogy, 2008). At the time, Pythagoras was unable to provide a hypothesis
that would provide an explanation for the observed variation in reactions to the beans
(Buguliskis, 2015). Today, the condition is referred to as favism, which is characterised
by a genetic mutation in the red blood cell enzyme glucose-6-phosphate dehydrogenase
(G6PD). This mutation has been observed to result in the development of potentially fatal
hemolytic anemia in the presence of certain foods, drugs, or chemicals (Meletis and Kon-
stantopoulos, 2004).

In 1959, Vogel (1959) introduced the concept of pharmacogenetics to describe how genetic
factors influence drug responses. A series of observations indicated that the response of
individuals varies greatly when exposed to equivalent doses of a pharmaceutical agent
(Caraco, 2004). For instance, approximately 10% of African Americans develop hemolytic
anaemia following treatment with the antimalarial drug primaquine, an adverse reaction
(ADR) that is rarely observed in individuals of European ancestry (Auwerx et al., 2022).
This observation is consistent with Motulsky’s suggestion that, because a particular gene
may be more prevalent in certain ethnic groups, any drug reaction that is more common
in a particular racial group will usually have a genetic basis — provided that other envi-
ronmental variables are equal (Motulsky, 1957). Decades later, the findings of Motulsky’s
study were confirmed by Nkhoma et al. (2009), who revealed that G6PD deficiency, due
to mutations in the X-linked G6PD gene, is geographically correlated with areas inhabited
by populations that have been exposed to malaria over time. G6PD deficiency tests are
important in these areas, since treatment with antimalarial drugs such as primaquine can
trigger hemolysis and lead to hemolytic anemia (Nkhoma et al., 2009; Mason et al., 2007).

The discovery of genetic variations in the metabolism of debrisoquine and sparteine led to
notable interest in pharmacogenetics in the clinical setting (Kalow, 2006). Researchers dis-
covered that the functional absence of the cytochrome liver enzyme CYP2D6 was responsi-
ble for both deficiencies (Owen et al., 2009). Its activity ranges from complete deficiency to
overactivity, which can lead to drug toxicity or therapeutic failure at recommended drug
doses (Sistonen et al., 2007).

Early pharmacogenetic research primarily investigated single-gene variants related to dif-
ferences in drug metabolism (Weinshilboum and Wang, 2006). However, complex traits
involving multiple genes with compensatory or overlapping roles are likely to account for
most of the genetic variability in drug response (Charlab and Zhang, 2013). In contrast
to pharmacogenetics, pharmacogenomics (PGx) is generally used for more advanced ap-
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proaches and examines the entire genotype (genome) in relation to drug response rather
than focusing only on one or a few genes (Stakos and Boudoulas, 2002). PGx holds the
promise of tailoring drugs to an individual’s genetic make-up, and is therefore of great
interest in clinical practice (Novello et al., 2007).

2.2 Pharmacogenomic principles and terminology

Drug responses are highly variable between patients (Lam and Cavallari, 2013). The vari-
ability is largely due to genetic variations among individuals in their capacity to process
and react to medications. The concept of drug response encompasses two distinct yet in-
terconnected domains: drug disposition, also termed pharmacokinetics (PK), and drug
effect, known as pharmacodynamics (PD) (Cohen and Kang, 2008). Pharmacokinetics is the
study of how the body deals with an administered drug, including absorption, distribu-
tion, metabolism and excretion (ADME) (Eusuf and Thomas, 2019). The blood and tissue
concentrations of drugs and their subsequent pharmacological or toxicological effects are
determined in the ADME process (Li et al., 2019). For many drugs, efficacy, toxicity and the
patient’s exposure to the drug can be affected by the activity of genetic variations in PK-
relevant ADME genes encoding enzymes, transporters, cell membrane and intracellular
receptors or components of ion channels (Arbitrio et al., 2018). On the other hand, phar-
macodynamics is the study of both the biochemical and physiological effects of drugs in the
body, as well as the relationship between drug concentration and the effect produced by
them (Neamt,u, 2020). Individuals may experience treatment failure or toxicity if the vari-
ability in a drug’s pharmacodynamics is not properly accounted for (Kantae et al., 2016).

An individual’s response to a drug, which encompasses both positive and negative reac-
tions, is a complex process influenced by numerous genes (Neamt,u, 2020). These individual-
specific responses make drug dosing challenging (Meyer et al., 2024). Patients may expe-
rience varying outcomes ranging from desired therapeutic effects to no effects or even
toxicities at the standard effective dose (Tyson et al., 2020). Research indicates that only
30 to 60% of individuals treated with antidepressants, antipsychotics, β-blockers or statins
respond appropriately, and that 5 to 7% of all hospital admissions are attributable to ADRs
(van der Drift et al., 2023). This underscores the challenges of optimising drug therapy.

Cytochrome P450 enzymes (CYPs) are of particular importance in PGx because of their
central role in drug metabolism (Lonah et al., 2023). Their primary function is to metabolise
a wide variety of xenobiotics and clear potentially toxic compounds from the body (Stocco
and Tyndale, 2022). This broad group of xenobiotics includes drugs, environmental pollu-
tants, cosmetics and food additives (Esteves et al., 2021). While generally harmless, they
can be potentially toxic. Drug developers and researchers study how different drugs can
affect, or be affected by, the activity of CYP enzymes, which can lead to unexpected clin-
ical outcomes (Gilani and Cassagnol, 2025). Phenotypic changes in metabolising activity
are typically classified in four groups: poor metabolisers (PMs), intermediate metabolis-
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ers (IMs), normal metabolisers (NMs) and ultra-rapid metabolisers (UMs), all four are at-
tributable to drug response due to genetic variations in CYP genes (Zhao et al., 2021).

One of the most important CYP enzymes is CYP2D6 (Taylor et al., 2020). It is a cytochrome
P450 enzyme encoded by the CYP2D6 gene and plays a crucial role in the metabolism
of approximately 25% of commonly prescribed drugs (Rüdesheim et al., 2022; Berg et al.,
2021). Genetic variations in the CYP2D6 gene influence the enzyme’s activity, affecting
drug response among individuals (Stojanović Marković et al., 2022). In 1996, Daly et al.
proposed a method for categorising the allelic variants of CYP2D6, the star-allele nomen-
clature. In the star-allele nomenclature, *1 is the reference sequence against which poly-
morphic sites are compared (Robarge et al., 2007). This is usually the first sequence de-
scribed that encodes a functional protein product. When a new variant is identified with
a nucleotide change that results in an amino acid substitution or is shown to affect tran-
scription, splicing, translation or post-transcriptional or post-translational modification,
then a unique number (e.g. CYP2D6*3) is assigned (Lee et al., 2019a). Non-functional
nucleotide changes that are thought to occur on the same chromosome or to be inher-
ited with a named star allele are defined by an additional number (e.g., CYP2D6*2.002,
CYP2D6*2.003) (Gaedigk et al., 2019). The main star allele is denoted by the additional
number 001 (e.g., CYP2D6*3.001). Where multiple variant alleles on the same chromo-
some are shown to have a functional effect on the protein in a context where no single
polymorphism has an effect, a new allele number is assigned (e.g. CYP2D6*17). All alleles
with the same star number, also referred to as suballeles, are assumed to have an equiva-
lent function (Nofziger et al., 2020).

To facilitate the interpretation of the activity of the CYP2D6 enzyme, Gaedigk et al. (2008)
developed the CYP2D6 Activity Score System. Based on the function assigned to the group
of alleles with the same star number to which the particular star allele belongs, the allele
receives an activity value (AV) ranging from zero to one (e.g., zero for no function, 0.5
for decreased function and one for normal function) (Caudle et al., 2020). If an allele con-
tains multiple copies of a functional gene, the value is multiplied by the number of copies
present (Crews et al., 2021). Every person inherits one paternal and one maternal allele,
forming the person’s diplotype (Shin et al., 2019). The sum of the activity values of each
allele in the diplotype equals the activity score of the diplotype (Caudle et al., 2020). The
activity score can then be translated into the associated phenotype (Gaedigk et al., 2017).
Figure 2 provides a visual representation of the processes from star allele to activity score
and from diplotype to phenotype.

The Activity Score axis in Figure 3, represents the range of values assigned to each type of
CYP2D6 metaboliser. This figure also provides an overview of the implications and rec-
ommendations for codeine therapy based on the CYP2D6 phenotype. CYP2D6 converts
codeine to its active metabolite, morphine, which is responsible for its pain-relieving effect
(Dean and Kane, 2021).
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Figure 2: Process from star allele to activity value and from genotype to phenotype.

CYP2D6 PMs carry two defective alleles and therefore produce almost no morphine after
administration of codeine (Wollmann et al., 2023). The activity score of the PMs is equal
to zero (Crews et al., 2021). A higher risk of adverse drug reactions may be experienced
by individuals with PMs when they are treated with drugs in which the CYP2D6 enzyme
plays a key role in the process of drug deactivation (Magarbeh et al., 2021). However, in
the context of prodrugs such as codeine, these individuals may exhibit a reduced therapeu-
tic response. The Dutch Pharmacogenetics Working Group (DPWG) advises that in cases
of PMs, the use of an alternative painkilling agent should be considered (Matic et al., 2022).

Individuals classified as CYP2D6 IMs exhibit reduced, though not absent, enzyme activity
leading to decreased conversion of codeine to morphine (Gaedigk et al., 2017; Dean and
Kane, 2021). Their CYP2D6 activity scores range from greater than zero to less than 1.25
(Crews et al., 2021). To ensure an adequate analgesic effect, the DPWG recommends either
increasing the dose of codeine or using an alternative analgesic (Matic et al., 2022).

NMs, on the other hand, show expected CYP2D6 activity and corresponding morphine
formation following codeine administration (Carranza-Leon et al., 2021). Their activity
score fall between 1.25 and 2.25 (Caudle et al., 2020). In these individuals, codeine can
generally be used safely, provided that the dose is adjusted according to the patient’s age
and weight (Crews et al., 2021).

UMs have markedly increased CYP2D6 activity, reflected by activity scores greater than
2.25 (Magarbeh et al., 2021; Dean and Kane, 2021). The increased enzymatic activity leads
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Figure 3: Overview of the metabolism of codeine by the CYP2D6 enzyme based on the
four metaboliser types: poor metabolisers (PM), intermediate metabolisers (IM), normal
metabolisers (NM) and ultra-rapid metabolisers (UM).

to rapid and excessive conversion of codeine to morphine, consequently raising the risk of
serious or even life-threatening ADRs. Given the risk of morphine toxicity, avoidance of
codeine and use of an alternative painkilling agent is recommended (Crews et al., 2021).

A comprehensive understanding of the molecular mechanisms underlying a drug’s action
on these enzymes is thus essential to ensure that patients receive appropriate therapy.
Beyond the CYP family, various other enzyme systems contribute to pharmacogenomic
variability. For instance, the thiopurine S-methyltransferase (TPMT) enzyme, which is re-
sponsible for the metabolism of thiopurine drugs, exhibits genetic polymorphisms that
result in variable enzyme activity (Zhou et al., 2020). The frequency of individuals car-
rying two non-functional TPMT alleles varies by ethnicity, ranging from 0.03% to 0.56%
(Zhou and Lauschke, 2022b). Having two non-functional alleles remarkably increases the
risk of life-threatening myelosuppression when given standard doses of thiopurine drugs.
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2.3 Sequencing technologies in pharmacogenomics

The assessment of genetic variants is a key component of PGx (van der Lee et al., 2020).
Since its development by Sanger et al. (1977), Sanger sequencing has been considered the
gold standard for identifying nucleotide sequence variations. Next-generation sequencing
(NGS) has transformed genetic research by offering high-throughput, cost-effective analy-
sis of DNA. Depending on the application, NGS can be applied at different scales - from
targeted panels to full exome or genome sequencing - providing flexibility for both clinical
and research settings (Schwarz et al., 2019). Currently, NGS technologies are widely used
in PGx research and clinical practice (Tafazoli et al., 2021). This is because NGS technol-
ogy enables parallel sequencing (Gerilovych et al., 2024). Parallel sequencing technologies
have revolutionised genomics by significantly increasing the speed, throughput and cost-
effectiveness of DNA sequencing (Abdi et al., 2024). The following paragraphs describe
three main types of NGS - targeted gene panels, exome-wide NGS and genome-wide NGS.

2.3.1 Targeted gene panels

Targeted gene panels analyse a predefined set of genes, typically those associated with
a specific phenotype (Shah et al., 2020). To investigate gene-drug associations, laborato-
ries often select panels that target genes involved in known drug pathways (Ji and Shaa-
ban, 2024). By limiting the number of genes sequenced, these panels reduce the cost of
achieving adequate coverage by maximising sequencing efficiency and minimising com-
putational and storage requirements (Rehder et al., 2021). Additionally, because they focus
mainly on known drug pathways, targeted gene panels are generally not designed to de-
tect novel variants (Enko et al., 2023).

2.3.2 Exome-wide next-generation sequencing

Exome-wide NGS, also known as Whole Exome Sequencing (WES), is focused on captur-
ing and sequencing the protein-coding regions of the genome (Satam et al., 2023). These
regions are collectively referred to as the exome. The exome accounts for 1.5% of the entire
genome (Jelin and Vora, 2018). WES allows for a comprehensive analysis of both common
and rare genetic variants associated with drug treatment outcomes (Wang et al., 2024). Al-
though WES offers broader coverage than targeted gene panels, it does not capture the
non-coding part of the genome, which plays an important role in gene regulation and pro-
tein folding (Burdick et al., 2020). If this part of the genome is also of interest, WES is less
suitable.

2.3.3 Genome-wide next-generation sequencing

Genome-wide NGS, otherwise referred to as Whole Genome Sequencing (WGS), is a tech-
nique that provides an overview of the entire human genome, including non-coding re-
gions (Zhou et al., 2022). One of the main differences between WGS and other forms of
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NGS is the considerably larger volume of data it generates. (Bagger et al., 2024). A key
application of WGS is the discovery of genetic variants and their association with known
and previously uncharacterised clinical conditions (Austin-Tse et al., 2022). Compared to
WES, the application of WGS has been demonstrated to generate a substantially higher
number of variants (Warr et al., 2015). This is attributable not only to the larger sequencing
space, but also to the fact that regions outside the exome are less evolutionarily conserved.

Mizzi et al. (2014) employed WGS to identify novel, potentially clinically relevant variants
affecting the structure and function of 231 pharmacogenes across 481 human genomes
representing diverse ethnic groups. This study aimed to investigate the advantages of
this approach over conventional genetic screening methods. The study demonstrated that
WGS can reveal a significant number of unique or rare pharmacogenomic markers that
would otherwise remain undetected by conventional methods, such as PCR or microarray-
based methods.

2.4 Genetic variants in pharmacogenomics

Recent advancements in sequencing technologies have facilitated the discovery of genetic
variation within the human genome (Russell et al., 2020). Genetic factors are among the
most important contributors to inter-individual variability in drug response (Katara and
Yadav, 2019). Understanding the relationship between genetic variations and drug re-
sponse is essential for optimising pharmacotherapy (Russell et al., 2020). However, se-
quencing techniques typically sequence DNA samples containing both maternal and pa-
ternal DNA, without distinguishing which variants originate from which parent (Choi
et al., 2018). In other words, it does not take into account the phase of the DNA in these
samples, i.e. the specific arrangement of variants on each of the two homologous chromo-
somes, collectively referred to as the diplotype.

The necessity of haplotype phasing is illustrated by Figure 4, with CYP2B6 serving as
an example. The inability to phase the rs3745274 (NC_000019.10:g.41006936G>T) and
rs2279343 (NC_000019.10:g.41009358A>G) variants to the correct allele can result in dif-
ferences in haplotype assignment (van der Lee et al., 2020). The most common situation
in individuals who are heterozygous for both variants is shown on the right side of the
figure, the CYP2B6*1/*6 diplotype. The left side shows an alternative configuration where
the variants are located on opposing alleles, resulting in a CYP2B6*4/*9 diplotype. Con-
sequently, it is not possible to determine directly on which parental chromosome a given
allele resides (Browning and Browning, 2011).

Therefore, only by performing phasing or haplotyping across the entire gene region, the
exact functional effect of an allele can be determined (Hari et al., 2023). In PGx, where most
known pharmacogenetic haplotypes are defined by specific combinations of genetic vari-
ants, these haplotypes are often classified using the star-allele nomenclature as described
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in section 2.2.

Figure 4: An illustrative example of the principle of haplotype phasing for CYP2B6.

2.4.1 Types of variants relevant to pharmacogenomics

The effectiveness of drugs varies greatly between individuals (Davis and Limdi, 2021). In
fact, pharmacological treatment is unsuccessful for 40-70% of patients. This means these
patients either experience ADRs or they demonstrate a lack of efficacy. It has been esti-
mated that 15–30% of this observed variability can be accounted for by genetic polymor-
phisms (Zhou et al., 2017). Genetic polymorphism is defined as having two or more alter-
native forms of an allele in an individual’s genome, resulting in varying phenotypes within
the same population (Sameer et al., 2021). Single nucleotide polymorphisms (SNPs), copy
number variants (CNVs), insertions or deletions (indels) and structural variants (SVs) are
the four most common types of polymorphism (Srinivasan et al., 2016). Although most
such polymorphisms are rare and have low allele frequencies, pharmacogenetic testing in
clinical practice is currently limited to validated and experimentally characterised variants
that allow qualified predictions to be made about their phenotypic consequences (Zhou
et al., 2017).

The 1000 Genomes Project has sampled and sequenced approximately 3,200 individuals
from 26 populations in Africa, East Asia, Europe, South Asia and the United States us-
ing both WGS and targeted exome sequencing (Gustafson et al., 2024; Belsare et al., 2019).
The project identified over 88 million genetic variations, including 84.7 million SNPs, 3.6
million short indels and 60,000 SVs. The project’s findings on the prevalence of variation
are of great value (Birney and Soranzo, 2015). Furthermore, it provides an understanding
of how genetic variation can differ between people from different continents, advancing
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knowledge of recent human evolution and medicine.

The star allele nomenclature proposed by Daly et al. (1996) was introduced in section 2.2
and was illustrated using the CYP2D6 gene. This nomenclature was first used to identify
alleles within the cytochrome P450 (CYP) gene family (Robarge et al., 2007). The nomencla-
ture was later extended to almost all genes studied in PGx. Each star allele corresponds to
a specific haplotype and is often linked to a functional phenotype (normal, decreased, in-
creased or no enzymatic function) (Lee et al., 2019b). This translates to the four metaboliser
types described in section 2.2.

2.4.2 Pharmacogenes and their role in drug metabolism

Some genetic variants, such as those in the cytochrome P450 (CYP) genes, affect several
drugs in different classes, while other gene-drug pairs are more specific (White et al., 2022).
These genes, which have been shown to influence drug response, are commonly referred
to as pharmacogenes or PGx genes (Katara and Yadav, 2019). Zhou and Lauschke (2022a)
conducted a study incorporating WES and WGS data from 141,614 unrelated individuals
across 12 human populations with the aim of extending current knowledge of the genetic
landscape of major drug-metabolising CYP genes. The study revealed that uncharacterised
rare alleles account for between 1.5% and 17.5% of the total genetically encoded functional
variability, highlighting the influence of common and rare genetic variations on outcomes
of pharmacotherapy.

Figure 5 provides an overview of nine pharmacogenes and the types of drugs whose
metabolism they influence. It should be noted that this figure only provides a few ex-
amples of gene-drug relatedness. The genes may also be involved in the metabolism of
other types of drugs. The nine pharmacogenes are classified as Very Important Pharmaco-
genes (VIPs) by the Pharmacogenomics Knowledge Base (PharmGKB). The Pharmacogene
Variation Consortium (PharmVar) provides a repository and the nomenclature of genes
which contribute to the variability in drug metabolism and response, including the nine
genes presented in Figure 5 (Gaedigk et al., 2021). Moreover, the Clinical Pharmacogenet-
ics Implementation Consortium (CPIC) provides guidelines for translating the genotype
information of the nine VIPs into actionable prescribing recommendations (Relling and
Klein, 2011).

As illustrated in Figure 5, CYP2D6, CYP2C19 and CYP2B6 are involved in the metabolism
of antidepressants (Bousman et al., 2023). Patients may be at risk for poor therapeutic
outcomes because they have CYP2D6, CYP2C19, or CYP2B6 allelic variants that alter the
biotransformation of antidepressants. In addition to its role in the metabolism of antide-
pressants, CYP2D6 is also involved in the metabolism of anti-cancer agents, such as ta-
moxifen. (Taylor et al., 2020). Tamoxifen inhibits tumour growth and promotes apoptosis
in oestrogen receptor-positive tumours (Mulder et al., 2021). This reduces the risk of breast
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Figure 5: Venn diagram of nine pharmacogenes listed by PharmVar and provided with
CPIC guidelines. The genes are grouped based on the drug class they are involved in
metabolising.

cancer recurrence and death. It has been estimated that the proportion of individuals with
poor or ultrarapid CYP2D6 metabolism is 5.4% and 3.1% in Europe, 1.9% and 4.6% in the
Americas, and 0.4% and 21.2% in Oceania, respectively. Therefore, the impact of these
metabolic phenotypes on tamoxifen treatment is unlikely to be negligible, potentially re-
sulting in reduced efficacy for hundreds of thousands of breast cancer patients (He et al.,
2020). Marcath et al. (2017) used patients’ genetics to adjust the dose of tamoxifen for
those with low-activity CYP2D6 genotypes. This approach increases treatment efficacy
without increasing toxicity related to the treatment. A second class of medical agents im-
pacted by CYP2B6 are antimicrobial agents such as artemisinin derivatives (Langmia et al.,
2021). While UM phenotypes are associated with reduced drug exposure, PM variants are
linked to increased plasma concentrations of artemisinin (Soyinka et al., 2022). However,
no studies have reported an association between CYP2B6 gene variants and the efficacy of
artemisinin.

Another clinically important pharmacogene is CYP3A5, which metabolises tacrolimus, an
immunosuppressant used to prevent organ rejection in transplant recipients (Barbarino
et al., 2013). Individuals with at least one functional allele generally have lower trough
concentrations of tacrolimus than individuals with two non-functional alleles (Birdwell
et al., 2015). This can result in a delayed achievement of the target blood concentration.

Mercaptopurine and azathioprine are generally used to treat non-malignant immunologi-
cal disorders, whereas thioguanine is used to treat leukemia (Relling et al., 2019). All three
of these medical agents belong to the thiopurine class of drugs and are metabolised by the
NUDT15 gene.
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Like thioguanine, fluoropyrimidines are anti-cancer drugs (Amstutz et al., 2018). Toxicity
associated with these drugs is often caused by reduced activity of the enzyme dihydropy-
rimidine dehydrogenase (DPD), which is the main enzyme responsible for the inactivation
of fluoropyrimidines (Henricks et al., 2018). The DPYD gene encodes DPD.

The anticoagulant warfarin is metabolised by both CYP4F2 and CYP2C9 (Johnson et al.,
2017). Warfarin is a commonly prescribed blood thinner to prevent blood clots in patients
with deep vein thrombosis, atrial cardiac arrhythmias, or prosthetic heart valves (Lee and
Klein, 2013). Another pharmacogene associated with the metabolism of a cardiovascular
agent is SLCO1B1 (Cooper-DeHoff et al., 2022). SLCO1B1 encodes a transporter that facil-
itates the uptake of statins in the liver. Statins are medications with powerful cholesterol-
lowering properties and have made outstanding contributions to the prevention of cardio-
vascular disease (Sirtori, 2014).

2.5 Variant Effect Prediction Tools

Sequencing provides the opportunity to detect both common and rare variants, but un-
covering the functional effects of rare variants, particularly with respect to drug response,
lack of response, or ADR, remains a challenge (Russell et al., 2020). Variant Effect Predic-
tors (VEPs) can be used. VEPs are software tools that accept (human) genetic variants and
predict the functional effects of these variants (Riccio et al., 2024). In order to interpret vari-
ants, certain requirements must be met (Hunt et al., 2022). This involves mapping the vari-
ants to transcripts and predicting molecular consequences. Variant interpretation requires
integration of all available knowledge, and predictive algorithms are used to evaluate the
impact of changes to a certain locus. Most prediction algorithms have been developed
to identify disease-causing variants, making them less suitable for PGx implementation
(Zhou and Lauschke, 2021). The general workflow of a variant effect predictor is illus-
trated in Figure 6.

Most variant effect predictors use Variant Call Format (VCF) as input data, since this is the
standard exchange format used in next-generation sequencing pipelines (McLaren et al.,
2016). A reference genome is required in order to map the input data (Cunningham et al.,
2022). This makes it possible to determine the genomic context of the variants, as well as
any differences and similarities to the reference. The next important step is transcript an-
notations, as illustrated in Figure 6. Since a single gene can have multiple transcripts due to
alternative splicing, the functional impact of variants on the protein can differ depending
on which transcript is affected and in which tissue it is expressed (Koroglu and Bilguvar,
2025). Therefore, accurately interpreting the variants requires annotating their effects in
every transcript. The annotation process is followed by the prediction of the functional
impact of the variants. Variant effect predictors are typically specialised in identifying
one or a few categories of variants, such as SNVs, indels, missense variants or SVs (Riccio
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Figure 6: The general workflow of variant effect predictors.

et al., 2024). Regarding the features they use in prediction, the predictors can typically
be categorised as homology sequence based or structural based models (Liu et al., 2022).
Predictors based on sequence homology make the assumption that amino acid changes in
conserved sequences are more likely to be deleterious when identified by searching ho-
mologous sequences across species than in other non-homologous positions, which are
considered to be tolerant (Cooper and Shendure, 2011). Structural-based predictors take
protein structure and folding into account to determine the effect of the associated vari-
ant (Gerasimavicius et al., 2025). Depending on the prediction tool used, either scores or
probabilities are calculated, or classification is employed to assign variants to pathogenic-
ity classes (Wang et al., 2022). The workflow ends with the generation of output in human-
and machine-readable formats. Examples of output data include VCF files and HTML
summary reports (McLaren et al., 2016). Several variant effect predictors will be intro-
duced in the following sections.

2.5.1 Ensembl VEP

Ensembl is a freely available platform that provides open-source bioinformatics tools (Schubach
et al., 2024). For more than 20 years, Ensembl has been developing systems to provide ref-
erence genome assemblies from public archives for interpreting genes, regulatory regions
and comparative data (Harrison et al., 2024). The Ensembl Variant Effect Predictor (En-
sembl VEP) is an Ensemble tool and provides methods for taking a systematic approach to
predict the functional impact of genetic variants (McLaren et al., 2016).

An increasing number of scoring algorithms are being developed to aid variant interpre-
tation (Hunt et al., 2022). For this reason, Ensembl VEP contains pre-calculated scores for
over 20 of these algorithms including CADD, PolyPhen, AlphaMissense and SIFT. Since
the predictor scores are pre-calculated, it ensures fast results (McLaren et al., 2016). The
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disadvantage of this is that, for some tools, only variants known to the Ensembl VEP can
be analysed.

2.5.2 AlphaMissense

AlphaFold is a machine learning approach developed by DeepMind that incorporates
physical and biological knowledge about protein structure into the design of the deep
learning algorithm, leveraging multi-sequence alignments (Jumper et al., 2021; Varadi et al.,
2024). AlphaMissense is an adaptation of AlphaFold that has been fine-tuned using databases
of human and primate variant population frequencies to predict the pathogenicity of mis-
sense variants (Cheng et al., 2023). AlphaMissense addopts two key components of Al-
phaFold: a highly accurate model of protein structure and the ability to acquire knowledge
about evolutionary constraints from related sequences.

AlphaMissense undergoes training in two stages. The first stage is similar to AlphaFold in
that it trains the network to predict the 3D structure of a reference sequence (Varadi et al.,
2024). In the second stage, the model is trained on human proteins so that the pathogenic-
ity of variants of the reference sequence can be predicted. Scores for AlphaMissense range
from zero to one and are calibrated using a ClinVar evaluation set (Cheng et al., 2023). They
can be interpreted as the approximate probability of a variant being clinically pathogenic.

In the study by Zhou et al. (2024), the performance of several predictors, including Al-
phamissense, was assessed on pharmacovariants. The constructed data set comprised all
missense variants with phenotypic annotations by CPIC and variants with high-quality
experimental characterisation data found in the literature. For the entire set variants a def-
inition is provided regarding the categorisation of variants as either deleterious or func-
tionally neutral. AlphaMissense demonstrated an excellent level of specificity (94%) but a
relatively low level of sensitivity (33%).

2.5.3 Combined Annotation-Dependent Depletion (CADD)

Combined Annotation-Dependent Depletion (CADD) is a variant effect predictor for ob-
jectively combining many different annotations into a single measure, the C-score, for any
possible human SNV or small indel event (Kircher et al., 2014). CADD, unlike other ma-
chine learning ensemble methods described in this section, not only focuses on genetic
variants impacting health and disease states. Instead, CADD assumes that most of the
variants that remain in humans after millions of years of natural selection are harmless or
neutral (Rentzsch et al., 2019). These variants are called ’proxy-neutral’. The proxy-neutral
variants are compared with a set of simulated variants that have not been purified by selec-
tion. Many of these variants are neutral, however some of them would be harmful, these
variants are called ’proxy deleterious’.
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Logistic regression models form the basis of CADD (Schubach et al., 2024). The raw scores
are those obtained directly from logistic regression. These scores reflect the degree to which
the variant is likely to have derived from the proxy-neutral (negative values) or proxy-
deleterious (positive values) class.

To improve interpretability, the raw scores are converted into PHRED-like rank scores,
which are based on the genome-wide distribution of scores for all potential SNVs (Rentzsch
et al., 2019; Ewing and Green, 1998). For example, regardless of the details of the anno-
tation set, model parameters, etc., a scaled score of 10 indicates a raw score in the 90th
percentile of all possible reference genome SNVs, while a score of 20 or greater indicates a
raw score in the 99th percentile%.

The performance of CADD was assessed by Mahmood et al. (2017). Seven different data
sets were used, each comprising variants classified as deleterious or benign. The Area
Under the Curve was used as a metric to assess the performance of CADD. This value
exhibited a range between 0.556 and 0.939 depending on the data set. This considerable
variability raises concerns regarding the practical application of CADD.

2.5.4 Polymorphism Phenotyping 2 (PolyPhen-2)

Polymorphism Phenotyping (PolyPhen-2) is a tool dedicated to the automated functional
annotation of coding non-synonymous SNPs (nsSNPs), i.e. SNPs located in coding regions
that result in amino acid variation in the protein products of genes (Ramensky, 2002). The
prediction is based on a set of sequence, phylogenetic, and structural features that charac-
terise the amino acid change (Adzhubei et al., 2013). For the given amino acid substitution
in the protein, PolyPhen-2 passes the features to a probabilistic classifier. The output score
is the probability of the substitution being damaging.

2.5.5 Sorting Intolerant From Tolerant (SIFT)

A protein may be able to tolerate an amino acid change and still function normally, or it
may be intolerant to the amino acid change (Vaser et al., 2016). The Sorting Intolerant From
Tolerant (SIFT) tool classifies an amino acid change as tolerated or deleterious to protein
function. SIFT is a tool based on sequence homology for sorting intolerant and tolerant
amino acid substitutions and predicting whether an amino acid substitution at a particu-
lar position in a protein has a phenotypic impact (Ng and Henikoff, 2001). SIFT is based on
the evolutionary conservation of amino acids within protein families (Kumar et al., 2009).
Positions that are highly conserved tend to be intolerant of substitution, while those with
a low degree of conservation are tolerant of most substitutions.

SIFT outputs a score between 0 and 1 with a cutoff of 0.05 (Hassan et al., 2019). Amino acid
substitutions with a score less than 0.05 are predicted to be deleterious and those with a
score equal to or greater than 0.05 are predicted to be tolerated.
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2.6 Clinical practice and challenges

In some healthcare systems, electronic health records (EHRs) are used to help clinicians
integrate PGx into their practice (Caraballo et al., 2019). If the EHR contains genetic in-
formation, the computerised clinical decision support (CDS) rules alert the prescriber to
a potential drug-gene interaction for certain medications (Caraballo et al., 2017). These
drug-gene alerts are similar to the alerts for drug-drug interactions that are already in
place at many institutions and pharmacies (Nicholson et al., 2021). Practitioners may also
have access to a computerised resource with additional pharmacogenomic information to
supplement the brief details provided in an alert. This shows that the implementation of
PGx is gradually increasing.

Several studies provide robust evidence of the benefits of PGx-guided therapeutic strate-
gies (Kabbani et al., 2023). For this reason, considerable effort has been directed towards
implementing PGx in routine clinical practice. Successful implementation of PGx testing
in this way assists both patients and providers in making therapy decisions (Haga and
LaPointe, 2013). Some pharmacogenomic tests are already being used in clinical settings,
demonstrating how integrating pharmacogenomic data into routine care can improve pa-
tient safety in a cost-effective way (Peruzzi et al., 2025). Despite growing enthusiasm and
evidence of successful PGx testing implementation efforts, a consensus on the best way to
integrate PGx testing into clinical practice has not yet been reached, and numerous chal-
lenges to its broader adoption remain (Maruf and Bousman, 2022).

Despite being generally aware of the importance of PGx and having a positive attitude to-
wards its ability to improve drug therapy and reduce adverse effects, survey data have
consistently shown that relatively few healthcare providers have adopted PGx testing
(Kabbani et al., 2023). This is primarily attributed to insufficient education, which may
hinder the clinical implementation of PGx testing (Luzum et al., 2021). PGx education
should focus on developing knowledge and skills, such as interpreting test results and
contextualising them when making treatment decisions (Just et al., 2019). In addition, ed-
ucation can help to close the existing gap between PGx treatment guidelines and clinical
practice.

Cost is also considered to be an important factor in the application of PGx in clinical prac-
tice by healthcare systems and patients, and it is often ranked as a major barrier to imple-
mentation (Morris et al., 2022). Third-party payers, especially those who provide health
insurance, want to know if PGx test coverage will lead to a decrease or increase in health-
care costs in the future. Another important insight regarding the costs of implementing
PGx is that many genetic variants have low population allele frequencies (Pirmohamed,
2023). This means that trials with large sample sizes would be needed, but these might
not be feasible because of both cost and difficulties in obtaining participants. It should be
noted that the implementation of PGx in clinical care has a promising future, given the
expectation that whole genome sequencing (WGS) will be cost-effective and technically
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feasible for all clinical testing procedures (Ji and Shaaban, 2024).

PGx requires robust ethical and legal frameworks, as human DNA is a highly sensitive
area (Shoaib et al., 2017). For instance, pharmacogenomic screening has consequences not
only for the individual being analysed, but also for relatives (Cai et al., 2020). Information
that is unanticipated is likely to arise when performing methods that evaluate either whole
genome sequencing information or large panels of pharmacogenomic variants (Williams
and Schoonmaker, 2023). For instance, a case of non-paternity could be revealed in a fam-
ily undergoing treatment for an inherited cancer, since family members may share both
pharmacogenomic variants and genetic markers of disease.

Despite the challenges that lie ahead, the potential benefits of PGx remain a strong mo-
tivation to overcome the problems preventing its adoption in clinical practice. Address-
ing these challenges and translating pharmacogenomic discoveries into concrete improve-
ments in patient care requires collaborative efforts involving researchers, clinicians, regu-
latory bodies and industry stakeholders.

3 Research objectives

A large number of variants can be identified by Next-Generation Sequencing (NGS) tech-
nologies, most of which are either novel, rare or lack clinical evidence regarding their
impact on protein function (Pandi et al., 2021). Evaluating the functional impact of a
multitude of variants through functional expression assays can be costly. As an alterna-
tive, in silico variant effect predictors (VEPs) have been developed to estimate the po-
tential impact of variants on protein function (AlSaeed et al., 2024). However, the utility
of these tools in pharmacogenomics (PGx) is limited. Most VEPs are trained on datasets
of disease-causing variants, where variants are classified as pathogenic or benign (Zhou
et al., 2018). In PGx, the classification paradigm differs, focusing on how variants affect
drug metabolism, typically categorised into metaboliser phenotypes: poor, intermediate,
normal, rapid, and ultra-rapid metabolisers (Zanger et al., 2004). Predictors optimised
for pathogenicity may therefore underperform when applied to pharmacovariants (Trem-
mel et al., 2025). This hinders their effectiveness in PGx-guided clinical decision-making,
for example when making treatment recommendations based on CPIC guidelines (Relling
and Klein, 2011).

The aim of this thesis is to evaluate the performance of variant effect predictors on known
pharmacogenomic variants. The specific objectives are:

1. Assessment of the performance of four widely used VEPs (AlphaMissense (Cheng
et al., 2023), CADD (Kircher et al., 2014), PolyPhen-2 (Ramensky, 2002) and SIFT (Ng
and Henikoff, 2001)) on a curated set of known variants.
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2. Exploration of ensemble methods by combining predictions from the individual VEPs
using machine learning approaches, with the goal of improving predictive accuracy
in the context of PGx.

3. Development of an automated analysis pipeline that facilitates future pharmacoge-
nomic analysis and integration in clinical care.

By addressing these objectives, this thesis aims to inform the development of more PGx-
specific predictive models and contribute to the optimisation of pharmacogenomic variant
interpretation.

4 Methods

4.1 Data description

To ensure comprehensive and up-to-date coverage of known pharmacogenomic haplo-
types, the human variants were obtained from the PharmVar API. All star alleles available
in the PharmVar database (version 6.2.2) were initially retrieved, after which the variants
of these alleles were selected. To ensure compatibility with modern bioinformatics tools
and annotations, only variants mapped to the GRCh38 human genome assembly were
included. This was necessary because variant effect predictors, such as Ensembl VEP, re-
quire genomic coordinates aligned with the reference genome used in their annotation
databases.

The selected variants were formatted in the standard Variant Call Format (VCF version
4.2), with each entry detailing the chromosome number, position, rs identifier (if present),
reference allele and alternate allele. Additionally, the CPIC clinical function annotations
were retrieved separately from the PharmVar database to facilitate supervised learning
during the ensemble method development. The final VCF file included a total of 1,900
variants.

Figure 7 summarises the number of variants for each gene included in this study. Notably,
the DPYD, CYP2D6 and CYP2A6 genes have the highest variant counts, which together
accounted for 68.47% of the total variants. The variants were also categorised according
to their predicted molecular consequence defined by the Sequence Ontology (SO) (Eilbeck
et al., 2005). Missense variants, which result in single amino acid substitutions, comprised
the majority of variants in this study (70.37%).

Table 1 provides an overview of the number of variants assigned to each PharmVar func-
tion. In this study, variants with established functional classification (’no function’, ’de-
creased function’, ’normal function’ and ’increased function’) by PharmVar were included.
A substantial proportion of variants in PharmVar lack definitive functional (’unknown or
uncertain’ and ’no function assigned’) annotations (n = 1481), indicating that there are still
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Figure 7: The number of variants that belong to each gene coloured by the variant type.

many gaps in the understanding of variant functionality. This also highlights the need
for accurate variant effect predictors. When comparing variant effect predictions with the
functional impact assigned by PharmVar, these four classes will be considered, resulting in
a final dataset of 419 variants. Furthermore, it is important to note that these four classes
are highly imbalanced: only seven variants are present with increased function. At the
other extreme, the ’no function’ variant class contains 189 variants. The groups with de-
creased and normal functionality lie between these extremes, with 127 and 96 variants, re-
spectively. This should be considered when developing the ensemble method as described
in section 4.3.

4.2 Variant effect predictors

This thesis evaluates four widely used variant effect predictors: SIFT, PolyPhen-2, CADD,
and AlphaMissense. The selection of these four tools was made on the basis of their ade-
quate documentation, which is very important given the intended utilisation of the tools in
a clinical context. Moreover, these tools are complementary in nature, due to the differing
perspectives they employ in their predictions. AlphaMissense takes into account the 3D
structure of a reference sequence, while CADD is driven by assumptions concerning the
neutrality of a variant in terms of its evolutionary and natural selection processes (Cheng
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Table 1: Overview of the number of variants grouped by their functional impact.

Functional impact Number of variants
No function 189
Decreased function 127
Normal function 96
Increased function 7
Unknown or uncertain function 381
Function not assigned 1100

et al., 2023; Schubach et al., 2024). Furthermore, the prediction process of Polyphen-2 is
based on sequence, phylogenetic and structural properties that characterise an amino acid
change, whereas SIFT is based on the evolutionary conservation of amino acids within
protein families (Adzhubei et al., 2013; Vaser et al., 2016).

The final data set used for this evaluation contains the 419 variants that belong to the four
relevant classes. Variant effect predictions were performed using Ensembl VEP (version
113), deployed via a Docker (Podman 4.9.4-rhel) container and Apptainer (Version 1.3.2-1).
The analysis was aligned to the GRCh38 genome assembly, matching the reference version
used in the Ensembl VEP cache. PolyPhen-2 (version 2.2.3) and SIFT (version 6.2.1) predic-
tion scores are incorporated into the Ensembl VEP’s output by default. Plugins were used
to integrate the additional predictors - CADD (version v1.7) and AlphaMissense (VEP re-
lease 113).

Table 2 summarises the score ranges, thresholds and their interpretation. AlphaMissense,
CADD and PolyPhen-2 use scales where a higher score indicates that the variant is more
likely to be deleterious, damaging or pathogenic. For SIFT, a variant with a score lower
than 0.05 is assumed to be deleterious. It should be noted that in the context of CADD, the
raw scores are used.

Prediction scores were extracted from the VEP-generated VCF output files using custom
scripts. Boxplots and density plots were then created to compare the score distributions
across the PharmVar functional impact assigned to the variants. Correlation analysis be-
tween the scores of each tool was performed using the Spearman rank correlation metric,
because of its robustness to outliers and its non-parametric nature (Rebekić et al., 2015).

The next comparison is based on receiver operating characteristic (ROC) curves and the
area under the curve (AUC). Three binary classification scenarios were constructed for
each prediction tool to enable variants with no functional impact, decreased functional
impact, or increased functional impact to be compared with variants that belong to the
class of variants with normal functionality. The tools were evaluated based on the ROC
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Table 2: Overview of the variant effect prediction tools by score range, threshold and in-
terpretation.

Tool Score Range Threshold Interpretation

AlphaMissense [0, 1] ≥ 0.564 Likely pathogenic
[0.34, 0.564] Ambiguous

≤ 0.34 Likely benign
CADD ≈ [–6, 35] > 10 No strict cutoff, but scores > 10 are

often flagged as potentially damaging
PolyPhen-2 [0, 1] ≥ 0.85 Probably damaging

[0.15, 0.85] Possibly damaging
< 0.15 Benign

SIFT [0, 1] ≤ 0.05 Deleterious
> 0.05 Tolerated

curves and the AUC, in terms of their ability to separate normal variants from the other
functional classes using their prediction scores.

4.3 Ensemble method

A predictive model was developed to investigate whether prediction scores can be used to
predict the functional classification of pharmacogenetic variants. To achieve this, the four
pathogenicity scoring systems - AlphaMissense, CADD, PolyPhen-2 and SIFT - were used
as input features.

As discussed earlier, only seven variants have been assigned to an increased function. This
underrepresentation can be attributed to the fact that the occurrence of increased func-
tional impact is most often associated with structural variants, especially duplicates. In
order to ensure more balanced classes during the training process of the ensemble method,
these variants were excluded. Additionally, variants for which one of the tools could not
compute a score were excluded. The final data set comprised 309 variants, all of which con-
stituted complete cases. Table 3 provides an overview of the number of variants assigned
to each PharmVar function. These three functional classes served as the target labels for
supervised classification.

All scores were processed to align their scales in the same direction, so that higher scores
consistently reflect greater predicted deleteriousness. To achieve this, SIFT scores were
inverted (i.e. 1 – SIFT) because lower SIFT values indicate a higher probability of a dele-
terious impact. As discussed in section 4.2, the score range of the predictors varies. The
implementation of Z-score normalisation was used to ensure that all features contribute
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Table 3: Overview of the number of variants assigned to the selected PharmVar functions.

Function Number of variants
No function 118
Decreased function 108
Normal function 83

equally to the model. Let sij be the score of tool i and variant j, then the normalised score
s̃ij is given by

s̃ij =
sij − si

σi

with i = {AlphaMissense, CADD, PolyPhen-2}, si the mean score of tool i and σi the stan-
dard deviation of the scores of tool i. For SIFT, the scores first need to be inverted, so the
following formula holds

s̃j =
(1 − sj)− s

σ

with si the mean score of SIFT and σi the standard deviation of the SIFT scores.

The data was divided into a training set and a test set by means of stratified random sam-
pling. This was done to ensure that the functional classes in the training and test sets
remained proportional to their distribution in the entire data set. In each functional class,
75% of the variants will be used for the training of the model, with the remaining 25%
being retained for the testing phase. This ratio of training data to test data is common
practice in the field of machine learning. Table 4 provides an overview of the number of
variants assigned to each functional class in the training set and the test set.

Table 4: Overview of the number of variants assigned to each functional class in the train-
ing set and test set of the ensemble method.

No function Decreased function Normal function
Training set 88 81 61
Test set 30 27 21

A machine learning model was trained using the scores from the four tools in the train-
ing set as input features. First, a multinomial logistic regression model was employed.
This model is characterised by its simplicity and the assumption of a linear relationship
between the input features and the log-odds of the functional classes. However, the linear
relationship is likely to be inadequate for this biologically complex problem. Subsequent
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to this, two additional machine learning models were proposed: random forest and sup-
port vector machines. Random forest was chosen for its non-parametric nature, it does
not assume anything about the correlation between the functional classes and the input
features. Support vector machines were trained using a radial kernel, as this effectively
handles non-linear relationships between the input features if present. Hyperparameter
optimisation was performed for the models based on random forest and support vector
machines using 5-fold cross-validation. Once the optimal parameters have been found,
the model was trained using the entire training set. Model performance was evaluated
on the independent test set using various metrics appropriate for multiclass classification.
These included overall accuracy, macro-averaged precision, macro-averaged recall, the F1
score (calculated by averaging the class-specific F1 scores) and ROC curves.

4.4 Computational environment

All variant effect predictions and the Nextflow pipeline generated to summarise the re-
sults were executed on the High-Performance Computing (HPC) infrastructure at the KU
Leuven/UHasselt Tier-2 clusters. This environment enabled the efficient processing of
large variant datasets. To ensure reproducibility across nodes, analyses were performed
using Apptainer containers. The output files were then uploaded to R to provide illus-
trative summaries of the results. The code is available as a GitHub repository: https:
//github.com/lorepellens/VEP_in_PGx.

5 Results

5.1 Variant effect predictors

The performance of four variant effect predictors (AlphaMissense, CADD, PolyPhen-2 and
SIFT) on pharmacovariants was investigated. The results obtained from these predictor
tools will be summarised in this section.

The distribution of scores across the PharmVar functional classes was examined to iden-
tify any clear differences between the classes for each predictor tool. Figure 8 presents the
score distributions using density plots. AlphaMissense exhibited distributions that were
all similar in shape and skewed to the left across the ’no function’, ’decreased function’,
and ’normal function’ variant classes. The overlap between these distributions indicates
limited discriminative power. The curve associated with an increased function displays a
different pattern. However, this interpretation should be treated with caution due to the
small sample size (n=7) in this class of variants as outlined in section 4.1. A similar pattern
was observed for PolyPhen-2 and SIFT. Conversely, CADD score distributions show no
clear pattern. One potential explanation for this could be that, in contrast to the scores of
the other predictors, the (raw) CADD scores are not scaled.
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Figure 8: Density plots showing the distribution of scores for variants belonging to the
same functional class, for each tool.

An alternative approach to visualise the distribution of prediction scores across the func-
tional classes is through the use of boxplots, as illustrated in Figure 9. Notably, the median
scores for the ’no function’, ’decreased function’ and ’normal function’ classes are approx-
imately equal for every tool except for PolyPhen-2. For this tool, while the median scores
for ’decreased function’ and ’normal function’ are still approximately equal to each other,
the median score for the ’no function’ class is elevated by approximately 0.25. The ob-
served discrepancies between these three classes and the ’increased function’ class across
all tools may be attributable to the limited sample size of variants with increased functional
impact, as discussed previously. The exact median scores and the standard deviation of the
functional classes are presented in Table 5 for each tool.

Table 5: The median score (with standard deviation) for the no functional, decreased func-
tional and normal functional classes for each variant effect predictor.

Variant effect predictor No function Decreased function Normal function Increased function
AlphaMissense 0.197 (0.321) 0.172 (0.309) 0.129 (0.293) 0.462 (0.288)
CADD 2.279 (1.747) 2.449 (1.456) 2.194 (1.674) -0.105 (1.814)
PolyPhen-2 0.354 (0.441) 0.106 (0.431) 0.089 (0.430) 0.741 (0.478)
SIFT 0.015 (0.307) 0.030 (0.212) 0.020 (0.268) 0.00 (0.006)

A comparative analysis of the tools can be conducted by examining their ROC curves
and AUC values. Figure 10 depicts the ROC curves for distinguishing between "normal
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Figure 9: Boxplots showing the distribution of scores for variants belonging to the same
functional class, for each tool.

function" and "no function" variants. The results indicate poor classification performance
across all tools. The AUC values of AlphaMissense, CADD, PolyPhen-2 and SIFT are equal
to 0.58, 0.51, 0.53 and 0.51 respectively. Given that all of these values are close to 0.5, the
predictive performance of the tools is barely better than random. AlphaMissense demon-
strates superior performance in comparison to the other tools, although this remains poor;
its curve shows a slight elevation above the diagonal.

The same approach can be used to evaluate the performance of the tools in distinguish-
ing between "normal function" and "decreased function" variants. This is shown in Figure
11. The AUC values are very similar to those for distinguishing between "normal func-
tion" and "no function" variants. They equal 0.53, 0.56, 0.51 and 0.51 for AlphaMissense,
CADD, PolyPhen-2 and SIFT respectively. CADD performs best in this case, although the
improvement over random classification is only minor.

As demonstrated in Figure 12, the ROC curves show the capacity to distinguish between
’normal function’ and ’increased function’ variants. The differences between these curves
and those presented in the preceding figures, i.e. Figures 10 and 11, were found to be re-
markable. This is likely attributable to the fact that these plots are based on only seven
variants, thus making it unfeasible to draw any conclusions from them. Further research
is required in order to provide detailed information on this functional class. This will ne-
cessitate the collection of additional data.
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Figure 10: ROC curves showing the ability to distinguish between ’normal function’ and
’no function’ variants, and AUC for each tool.

Figure 11: ROC curves showing the ability to distinguish between "normal function" and
"decreased function" variants, and AUC for each tool.

Finally, the relationships between the scores from the four tools were examined using
Spearman rank correlation analysis. Figure 13 shows the distribution of scores for each
tool on the diagonal. Off-diagonal, the correlations between each pair of tools are plotted
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Figure 12: ROC curves showing the ability to distinguish between "normal function" and
"increased function" variants, and AUC for each tool.

and summarised in the form of the Spearman correlation coefficient. As outlined in Table
6, the correlations are mainly strong and positive, except for SIFT, which has a strong neg-
ative correlation with all the other tools. SIFT scores are interpreted oppositely to those
of the other tools which is consistent with its inverse scoring system where lower values
indicate higher probability of deleteriousness as seen in Table 2. These strong correlations
suggest that multiple tools may provide redundant rather than complementary informa-
tion. This also explains why their ROC performances were similarly poor: they likely have
similar limitations when it comes to distinguishing functional categories in pharmacoge-
nomic contexts. The findings described in this section underscore the need for PGx-specific
prediction models, as these tools exhibit limited discriminative potential in differentiating
functionally important classes of pharmacovariants.

Table 6: Spearman’s rank correlation coefficients for every pair of prediction tools.

Correlation coefficient
AlphaMissense - CADD 0.737
AlphaMissense - PolyPhen-2 0.736
AlphaMissense - SIFT -0.796
CADD - PolyPhen-2 0.806
CADD - SIFT -0.813
PolyPhen-2 - SIFT -0.799
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Figure 13: Comparative analysis of the four variant effect predictors AlphaMissense,
CADD, PolyPhen-2 and SIFT using Spearman correlations. Negative correlations indicate
inverse relationships (e.g. lower SIFT scores correlate with higher AlphaMissense scores)

5.2 Ensemble method

Three ensemble methods were developed as described in section 4.3. The performance of
these models are summarised in Table 7.

Table 7: Summary of the performance results of the ensemble method based on multino-
mial logistic regression, random forest and support vector machine.

Training method Mean accuracy Mean recall Mean precision Mean F1-score
Multinomial Logistic

34.62% 35.83% 33.02% 32.86%
Regression
Random Forest 33.33% 32.43% 31.53% 30.54%
Support Vector Machine 37.18% 37.78% 35.59% 35.33%

Among the three ensemble methods, the multinomial logistic regression model was first
evaluated. The model achieved 34.62% accuracy, 35.83% mean recall, 33.02% mean preci-
sion and 32.86% mean F1-score. The corresponding ROC curves in Figure 14 demonstrate
limited discriminative ability across all functional classes, indicating minimal improve-
ment over random classification.

The ensemble method, which was trained using a random forest, exhibited the poorest
performance. The tuning of the parameters was achieved through the implementation of

29



five-fold cross-validation. The optimal configuration consisted of one randomly selected
feature (score) per split, a nodesize equal to 9 and 750 decision trees. The model demon-
strated a 33.33% level of accuracy accompanied by mean precision, mean recall and mean
F1-score equal to 32.43%, 31.53% and 30.54% respectively. These metrics indicate that the
model trained with random forest performs only marginally worse than the multinomial
logistic regression model.

Support Vector Machine demonstrates the most effective categorisation across all func-
tional categories. The cost and gamma value were chosen to be equal to 32 and 0.0625
respectively based on the results of five-fold cross-validation. As demonstrated in Figure
14, the ROC curves obtained from this model are, for the majority of values of sensitivity
and specificity, situated well above the diagonal line of random classification. This method
achieves the highest evaluation metrics: 37.18% accuracy, 37.78% mean recall, 35.59% mean
precision, and 35.33% mean F1 score.

Among the ensemble methods evaluated, the support vector machines demonstrated the
best performance in classifying pharmacovariants by functional impact. It outperformed
both multinomial logistic regression and random forest, although the overall predictive
accuracy remained modest.

Figure 14: ROC curves for the three ensemble methods colored by functional class (left:
multinomial logistic regression, middle: random forest, right: support vector machines).

5.3 Nextflow pipeline

A Nextflow (version 23.10.0) pipeline was developed to systematically annotate genetic
variants and assess their potential functional impact. This pipeline combines multiple
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variant effect predictors with the ensemble classification model based on support vector
machines developed in this thesis. The pipeline takes a VCF file as input for the variant
effect predictors. Figure 15 illustrates a schematic overview of the pipeline, with each mod-
ule described below.

Figure 15: Diagram of the nextflow pipeline.

Variant effect predictors
Each variant is annotated using the four variant effect predictors described in section 4.2.
The scores generated by each tool are stored in a VCF file with extra information on each
variant such as the chromosome number and rs identifier.

Preprocessing for ensemble method
The four VCF files obtained from the variant effect predictors are preprocessed by trans-
forming the scores into the correct format to be used as input of the ensemble method. The
process involves first inverting the SIFT scores, and subsequently normalising all scores
using Z-normalisation. Following this, the scores are aggregated into a single CSV file.

Ensemble variant effect predictor
The CSV file containing the scores of each variant will be used to predict the functional
impact of the variants present in the file directly, using the Ensemble method based on
support vector machines developed as described in section 5.2. The output is a CSV file
containing the rs identifier and PharmVar function for each variant.
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Report generation
Finally, the pipeline compiles the results into a structured HTML report. This includes an
overview of the types of variants in the first VCF file and a prioritised list of the top five po-
tentially high-impact variants. This automated pipeline ensures a consistent, reproducible
and interpretable assessment of variant function, focusing on PGx.

6 Discussion

This thesis evaluated the applicability of four widely used variant effect predictors - Al-
phaMissense, CADD, PolyPhen-2 and SIFT - in the context of PGx. While the literature
supports that these tools can identify disease-associated variants robustly, they are lim-
ited in their ability to predict the functional impact of pharmacovariants. This highlights
a fundamental challenge: PGx requires predictions that align with drug metabolism phe-
notypes rather than pathogenicity scores. Consequently, models trained for pathogenicity
prediction tend to underperform when applied to PGx. This finding aligns with recent
literature highlighting the need for PGx-specific tools.

The density plots and ROC curves in Section 5.1 further confirmed these shortcomings.
The evaluated predictors failed to distinguish between the functional classes of pharmaco-
variants, as defined by PharmVar. The resulting AUC scores had a range between 0.51 and
0.58 across all tools, which is barely better than random classification. These findings re-
inforce the idea that PGx is a domain-specific challenge that these tools were not designed
to address. Consequently, the conversion of tool scores into metaboliser classes is a chal-
lenging task. Moreover, the strong correlations observed between the tools indicate their
capacity to detect the same underlying biological signal in the data: deleteriousness. This
may contribute to their limited predictive ability, as they may be trained to make similar,
non-PGx-specific decisions when classifying variants.

In order to ascertain whether an ensemble method could lead to improvement, it was de-
veloped by combining scores from the individual tools in a multiclass classification frame-
work. Among the tested models, the support vector machine demonstrated superior per-
formance in comparison to the multinomial logistic regression and random forest models.
The support vector machine attained an accuracy rate of 37.18%, a precision of 35.59%
and a recall of 37.78%. The ensemble model that was trained using random forest demon-
strated the poorest performance. One potential explanation for this could be that random
forest tends to underperform if the feature space is not diverse or contains redundant sig-
nals. Multinomial logistic regression is also sensitive to multicollinearity, which can inflate
variance and reduce performance.

The moderate performance of the support vector machine ensemble method highlights the
difficulty of PGx classification using general-purpose predictors. Despite the fact that the
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overall predictive accuracy remained modest, it is hypothesised that performance gains
can be achieved by integrating biological domain knowledge into the models. For in-
stance, variant effect predictors like APF2 (Activity Prediction Framework 2) have demon-
strated success by integrating gene-specific attributes, drug-pathway data. APF2, devel-
oped by Zhou et al. (2024), was trained to predict enzyme activity using curated activity
scores, achieving a reported performance of over 80% in distinguishing functional classes
in CYP2D6. While this thesis relied solely on general-purpose predictors, it is promising
that a relatively simple ensemble method could yield clinically relevant insights. Nonethe-
less, leveraging domain-specific features may be essential for achieving robust PGx pre-
dictions. A potential constraint to consider is that the data sets used for training and
evaluating the ensemble method were limited due to missing scores or underrepresented
functional classes. This may have affected the generalisability of the model. The issue of
restricted access to data resources represents a common challenge in the context of PGx
studies.

The development of the Nextflow pipeline adds practical value by turning the findings
into a reproducible, scalable workflow. It integrates the four evaluated predictors and
the ensemble method, and supports VCF input. Although this level of automation is still
in its early stages of development, it is nevertheless a key step towards routine PGx in-
terpretation and clinical decision support. The pipeline delineated in this thesis will be
expanded upon subsequent analysis, incorporating recommendations concerning phar-
macogenomic relevance and implications for drug dosage. This expanded pipeline will
then be integrated in a clinical workflow.

7 Ethical thinking

As PGx research advances and becomes integrated into clinical practice, ethical challenges
arise that must be carefully considered. These challenges relate to data privacy, genetic
discrimination, incidental findings and informed consent.

This thesis used publicly available variant data obtained from PharmVar, and did not in-
volve patient-specific or identifiable genomic data. Nevertheless, any research involving
genetic information must acknowledge the sensitivity of such data. PGx testing involves
sensitive genetic information and can reveal potential responses to drugs, predispositions
to diseases, and inherited traits. If the predictive frameworks evaluated here were to be
applied in clinical settings, robust data protection standards would be required to prevent
misuse, discrimination or breaches of privacy.

Whole-genome and exome sequencing are often used in PGx and may reveal inciden-
tal or secondary findings that are unrelated to the drug response being studied. These
could include an increased risk of developing untreatable diseases or the discovery of non-
paternity. Ethical frameworks must therefore guide decisions on what should be reported
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back to patients.

Given the hereditary nature of genetic variants, pharmacogenomic testing often provides
insights not only about an individual, but also about their biological relatives. This raises
complex ethical questions regarding the obligation to inform family members of results
that could affect their health. For instance, a variant affecting drug metabolism in one per-
son may suggest comparable risks for their siblings or offspring. However, the patient’s
right to confidentiality must be balanced against the potential benefit to relatives. Clear
guidelines are needed to navigate these issues, particularly in cases where the patient does
not wish to share information.

A lack of transparency in variant effect predictors present additional ethical concerns.
There is a clear need for improvement in this ethical consideration. In many cases, the
pipelines and data sets used by the predictors are not open-source. This hinders the eval-
uation of the models and comparison with new tools.

In order to be implemented in a clinical setting, variant effect predictors must demonstrate
a high degree of accuracy. Despite this, these predictors are still at risk of misclassifying
a variant. This underscores the necessity for clear guidelines concerning the clinical ac-
countability of healthcare providers in cases where patients are not administered the most
efficient pharmaceutical agent as a result of the use of prediction tools.

The variants analysed in this thesis were sourced from databases which may reflect pop-
ulation biases, since certain populations (e.g., people of African, Indigenous, or mixed
ancestry) may be underrepresented in genomic studies. Consequently, the findings and
predictive models developed here may not be applicable to all ethnic groups. This raises
a critical ethical concern regarding the potential for unequal benefit, or even harm, if tools
trained on non-representative data are deployed in clinical settings. It is therefore essen-
tial to ensure diverse datasets and equitable access to PGx testing in order to avoid biased
clinical decisions.

8 Societal relevance and stakeholders

PGx has broad societal impact due to its intersection of genomics, healthcare, and bioin-
formatics. As a result, PGx is highly relevant to a variety of sectors and communities. As
the cost of genomic sequencing continues to decrease, individualised drug therapy can
quickly become a clinical reality.

The enhanced prediction of novel or rare variants has the power to reduce ADRs. This
has the potential to reduce both hospital admissions and medication changes, as well as a
decrease the need for emergency room visits. Overall, the incorporation of novel variants
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could result in lower healthcare costs through improved treatment outcomes.

The implementation of pharmacogenomic frameworks holds the promise of enhancing
healthcare services within hospital settings. The long-term goal of the Jessa Hospital is to
offer pre-emptive care through WGS. This thesis contributes to the growing understand-
ing of PGx as an important application of WGS, with the potential to advance the imple-
mentation of pre-emptive care in clinical settings, particularly for patients with complex
pharmacogenomic profiles involving novel or rare variants.

Provided they are implemented carefully and responsibly, PGx-specific variant effect pre-
dictors have the potential to guide healthcare professionals and patients towards more
informed treatment decisions. Patients stand to benefit from the improved drug safety
and efficacy. Given that healthcare professionals such as doctors, will use the predictors for
decision-making purposes, it is important that they have sufficient knowledge about them.
This necessitates investment in pharmacogenomic education that targets both healthcare
providers and patients alike.

The ongoing development and evaluation of PGx models will be of interest to researchers
and bioinformaticians, who play a critical role in advancing the field. At the same time,
it is crucial for regulatory and ethical bodies to ensure that predictive models are trans-
parent, fair and validated across diverse populations. Additionally, industry stakeholders,
including pharmaceutical companies and genomic service providers, are increasingly in-
corporating PGx into drug discovery and diagnostics. By bridging technical performance
with clinical relevance, the interdisciplinary nature of PGx research has the potential to
shape the future of personalised medicine.

9 Concluding remarks and future research

This thesis explored the landscape of variant effect prediction within PGx, emphasising the
importance of accurately assessing genetic variants for personalised medicine. By evalu-
ating different prediction tools and creating ensemble methods, it became clear that com-
bining multiple predictors can improve the reliability of predictions, thus facilitating more
informed clinical decision-making.

The ensemble method, which was constructed based on the scores of AlphaMissense,
CADD, PolyPhen-2 and SIFT, showed that training a combination of disease-related vari-
ant predictors along with PharmVar functional annotations has moderate performance
in predicting the function of pharmacovariants. This suggests that using more domain-
specific tools, such as APF2, could yield improved results; however, further validation
across diverse populations remains essential.

Future research should focus on several key areas. Firstly, integrating functional genomic
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data such as transcriptomics and proteomics could improve our understanding of variant
impacts. Secondly, developing machine learning models that are trained using large, well-
annotated pharmacogenomic datasets could enhance the precision and broad applicability
of the predictor. Thirdly, standardising variant interpretation guidelines will be crucial in
facilitating clinical adoption. Finally, pharmacogenomic education for healthcare profes-
sionals will be necessary to ensure safe use of variant effect predictors.

In conclusion, the ongoing evolution of variant effect prediction methodologies offers
great potential for the future of personalised pharmacotherapy. By encouraging interdisci-
plinary collaboration and making use of emerging technologies, the PGx community can
bring the full potential of precision medicine closer to realisation, ultimately improving
therapeutic outcomes and minimising ADRs.
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