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Abstract

Multiple Sclerosis (MS) is a chronic neurological disorder with significant diagnostic and prog-

nostic challenges. Optical Coherence Tomography (OCT) has emerged as a valuable tool for

assessing retinal changes in MS patients, offering insights into neuro-degeneration. However,

variability in OCT measurement techniques and the lack of standardization limit its full po-

tential. Combining OCT data with machine learning (ML) offers an innovative approach for

improving diagnostic accuracy and understanding disease mechanisms.

This study had two objectives: (1) to develop and evaluate machine learning models for analyzing

OCT data to classify MS severity and (2) to review OCT measurement techniques, focusing on

retinal structures, variability across manufacturers, and segmentation methods.

A retrospective analysis was conducted on OCT data from 230 MS patients, derived from an ini-

tial cohort of 740 after addressing missing EDSS scores and other pre-processing steps. ML mod-

els, including Random Forest (RF), Support Vector Machine (SVM), XGBoost, and k-Nearest

Neighbors (KNN), were employed to classify patients into Non-Severe and Severe categories

based on EDSS thresholds. Key features were identified using LASSO. The study also reviewed

segmentation methods and measurement variability across different OCT devices currently used

by ophthalmologists, in comparison with the Canon OCT-HS100 system.

Overall, the Random Forest model emerged as the most robust classifier, achieving an F1-Score of

0.74 for the left eye and 0.72 for the right eye, with high precision and balanced recall across both

datasets. SVM and XGBoost also performed well, with F1-Scores of 0.73 and 0.72, respectively,

highlighting their potential for OCT-based MS severity classification. KNN showed consistent

performance, particularly for the right-eye dataset, achieving an F1-Score of 0.70.

While the overall performance was strong, it was observed that the models struggled to accurately

predict the the severe cases due to data imbalance in this category. This imbalance led to lower

precision and recall for the severe category.

The Feature importance analysis identified critical predictors of MS severity, including Superior

and Temporal sectors of the retina, Central ILM-RPE, retinal asymmetry metrics, and Nasal

regions of the nerve fiber layer, ganglion Cell layer and inner pleciform layer. These findings align

with existing evidence linking retinal thinning and asymmetry to MS-related neuro-degeneration.

The literature review highlighted significant variability in segmentation methods and device-

specific metrics. Proprietary OCT devices, including Canon, Cirrus HD-OCT, and Spectralis,

offer unique strengths but differ in scan patterns, resolution, and normative databases. This

shows the need for standardization and the development of adaptable tools to address device-

specific challenges

This study demonstrates the utility of ML models, particularly Random Forest, for classifying

MS severity based on OCT data and emphasizes the importance of retinal structural features

in predicting disease progression. Future work should focus on expanding datasets, refining

segmentation methods, and addressing standardization to enhance the clinical applicability of

OCT-based ML models in MS management.
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1 Introduction

Multiple Sclerosis is an autoimmune disease that affects the central nervous system and, when

left untreated, can cause neuro-degeneration, leading to severe disabilities such as partial or

total blindness, sensory loss, and other impairments. Although relatively uncommon, it occurs

most frequently in individuals aged 20 to 40, often resulting in long-term disability (Goodin,

2014). Early diagnosis of Multiple Sclerosis is essential in helping patients with the disease make

better decisions about their future concerning issues such as family planning, lifelong healthcare,

and maintaining employment (Ramagopalan and Sadovnick, 2011). This makes it essential to

gain insights into the underlying causes of the disease and the principal mechanisms of disease

evolution that would help in finding a cure or building therapies for patients, as well as ways of

primary prevention of future disease.

The current diagnostic methods for multiple Sclerosis are extensively explained in the 2017

McDonald Criteria, with the latest revisions placing emphasis on increased sensitivity to allow

earlier diagnosis (Thompson et al., 2018). The introduction over the years of diagnostic tools

and methods such as Magnetic Resonance Imaging (MRI) and neuro-imaging have become im-

portant in the monitoring and detection of Multiple Sclerosis and are usually the tools for choice

in the clinical setting (Wattjes et al., 2021). However, these alone might not be as effective in

the diagnosis of the disease, given multiple sclerosis manifestations make following the disease

over time challenging and require the incorporation of various clinical, laboratory, and radio-

logical data. Access to this type of data requires advanced models to analyze and interpret it

effectively. The data includes long-term neuro-performance measures, blood and cerebrospinal

fluid (CSF) biomarkers, imaging results, electrodiagnostic data, patient-reported outcomes, and

optical coherence tomography (OCT). In order to achieve these models, Artificial Intelligence

offers an avenue for this kind of modeling to derive insights from these data.

Optical Coherence Tomography (OCT) is one of the widely used rapidly developing medical

imaging technologies; it serves as a non-invasive imaging tool that provides high-resolution cross-

sectional images of the retina; it was first proposed by Huang et al., 1991. The relatively low

resolution of the first OCT devices has been gradually improved so that the image quality is

now able to resolve more subtle changes in retinal layers. Numerous studies have shown that

OCT can be used in monitoring and confirming many common and sight-threatening ocular

conditions, such as glaucoma (Geevarghese et al., 2021), diabetic retinopathy (Amoaku et al.,

2020), and age-related macular degeneration (Flores et al., 2021).

OCT, being able to provide high-resolution images of the retina, offers a unique window into

neurodegeneration because it reflects changes in both the optic nerve and brain pathways. Neu-

rodegeneration and inflammation in MS cause damage to the optic nerves, which leads to the

thinning of the retinal layers. OCT can detect and quantify this thinning by measuring the

retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL). These layers

are particularly sensitive to damage in MS patients, where axonal and neuronal loss are com-

mon. The thickness of these retinal layers, as assessed through OCT, has been correlated with

disability progression and cognitive impairment in MS patients.

Studies have demonstrated that RNFL and GCIPL thinning, as captured by OCT, are linked

with greater physical disability and cognitive decline in MS, particularly in those with progressive

forms of the disease (Shi et al., 2019). This association shows OCT’s potential as a marker for
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disease activity and prognosis.

Machine Learning (ML) has transformed healthcare, particularly in medical imaging, where its

ability to process and analyze huge datasets is improving diagnostic and prognostic practices

(Ranschaert et al., 2019). ML algorithms, capable of learning from data, help in uncovering

intricate patterns that are not immediately visible to the human eye. In the diagnosis of Multiple

Sclerosis (MS), these technologies offer the potential to enhance understanding, prediction, and

the development of medicines.

Despite the significant progress in understanding and managing Multiple Sclerosis (MS), current

diagnostic and prognostic methods using Optical Coherence Tomography (OCT) remain limited

by their reliance on traditional statistical analyses and visual inspection by clinicians (Cavaliere

et al., 2019). Several studies have employed parameters from OCT to train machine learning

algorithms for diagnosis, but not all relevant features have been fully identified, and most studies

do not use a wide range of features extracted from the OCT images (Rothman et al., 2019). The

current practice of visually inspecting OCT scans also lacks objectivity and scalability, especially

in large datasets. Moreover, there are few large-scale longitudinal studies that have thoroughly

explored how OCT data can be used in clinical decision-making and its impact on predicting

MS progression.

This study focuses on evaluating different machine learning models for the classification of pa-

tients with Multiple Sclerosis (MS) based on a collection of features derived from an Optical

Coherence Tomography (OCT) imaging device. These features include measurements across

various anatomical regions, such as sectoral thicknesses (Four and Twelve Sectors of the optic

disc), optic nerve head (ONH) parameters, retinal nerve fiber layer (RNFL) metrics, ganglion cell

layer with inner plexiform layer (GCL+IPL), combined nerve fiber layer, ganglion cell layer, and

inner plexiform layer (NFL+GCL+IPL), as well as thickness and volume parameters between

the inner limiting membrane (ILM) and retinal pigment epithelium (RPE) or Bruch’s membrane

(BM).

1.1 Description of Research

This study utilizes a comprehensive OCT dataset from MS Centrum Pelt, consisting of eye scans

from 230 MS patients for both left and right eye. The primary aim is to analyze retinal and optic

nerve parameters to gain insights into Multiple Sclerosis (MS) progression. By combining patient

data with OCT-derived features, the research focuses on building machine learning models to

enhance the diagnostic potential of OCT in MS. Given the subjective nature of current OCT

interpretations by ophthalmologists, this study seeks to develop objective, machine learning

driven approaches that can help in the standardizing and supporting decision-making in MS

diagnosis.

1.2 Study Objectives

This study has two main objectives:

• To develop machine learning models for analyzing OCT data to improve diagnostic accu-

racy in MS patients.

• To conduct a literature review on OCT measurement techniques, focusing on retinal struc-
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tures and variations across manufacturers. It also involves exploring existing segmentation

methods for OCT images.

The thesis is organized as follows: Section 2 provides a comprehensive overview of the state of

Optical Coherence Tomography (OCT) and its applications in the context of Multiple Sclerosis

(MS), including a review of existing literature on OCT measurement techniques and segmen-

tation methods. Section 3 describes the dataset used in this study, detailing data extraction,

preparation, and exploratory analyses, as well as the OCT protocols followed and the study

variables considered. Section 4 outlines the machine learning methods employed, including Sup-

port Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), and Gradient

Boosting, along with the pipeline for model development and assessment. Section 5 presents

the results of the study, including feature engineering, model performance metrics, feature im-

portance analysis, and the clinical relevance of the findings. Section 8 discusses the ethical

considerations, societal relevance, and stakeholder awareness associated with the research. Sec-

tion 6 interprets the results in detail, highlighting key insights and addressing methodological

challenges. Section 7 identifies potential drawbacks of the methods used, while Section 9 summa-

rizes the conclusions of the study. Finally, Section 10 proposes ideas for future research, building

on the study’s findings and addressing identified limitations.

2 Literature Review

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that generates high-

resolution cross-sectional images of the retina (Clinic, 2024). The technique is based on the prin-

ciple of low-coherence interferometry, where the echo time delay and intensity of back-scattered

light from retinal tissue layers are measured and analyzed. By interpreting the resulting inter-

ference patterns, OCT systems reconstruct detailed cross-sectional views of the retina (Zeppieri

et al., 2023). The resolution of these images depends on the bandwidth of the light source, with

broader bandwidths delivering superior axial resolution. Different manufacturers incorporate

various light source technologies, impacting both the resolution and depth of tissue penetration.

Among the available OCT technologies, spectral-domain OCT (SD-OCT) is particularly stands

out for its ability to acquire entire depth profiles in a single scan, offering faster and more efficient

imaging compared to older time-domain OCT systems (Liu et al., 2014).

By producing detailed maps of retinal layers, OCT serves as an essential tool for diagnosing

and monitoring neurological conditions such as multiple sclerosis (MS) (El Ayoubi et al., 2024).

Key OCT-derived metrics, including Retinal Nerve Fiber Layer (RNFL) thickness, Ganglion

Cell Layer + Inner Plexiform Layer (GCL+IPL) thickness, and macular volume, are extensively

studied in the context of MS (Schneider et al., 2013) where the RNFL thinning correlates with

axonal loss, while reductions in GCL+IPL thickness reflect neuro-degeneration, making both

metrics critical indicators of MS severity and progression. Furthermore, changes in macular

volume are associated with retinal atrophy, further linking retinal alterations to central nervous

system damage in MS (Kaushik and Fraser, 2020). The ability of OCT to provide comprehensive

insights into retinal structure highlights its critical role in advancing the understanding and

management of MS. To enhance clarity, in the Appendix, Figure 6 illustrates the Retinal Nerve

Fiber Layer (RNFL), Ganglion Cell Layer + Inner Plexiform Layer (GCL+IPL), and macular

regions.
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2.1 Segmentation Algorithms

The measurement of retinal structures, such as RNFL, macular, and GCL thickness, relies on

automated segmentation algorithms that identify and delineate different retinal layers (Zahavi

et al., 2021). The accuracy of these measurements directly depends on the performance of these

algorithms. As highlighted in research on segmentation software performance, variations in al-

gorithms between manufacturers can lead to discrepancies in measurements (Tian et al., 2016).

Specifically, the Cirrus HD-OCT (Zeiss) utilizes a spectral-domain approach and is known for

its robust RNFL analysis, with segmentation algorithms optimized for detecting glaucomatous

changes. The Spectralis OCT (Heidelberg Engineering), also an SD-OCT system, offers high

image quality and incorporates a confocal scanning laser ophthalmoscope (cSLO) for precise

anatomical registration, enhancing image stability and follow-up measurements (Abe et al.,

2015). Its segmentation capabilities are particularly strong for macular analysis and detailed

layer segmentation. Canon OCT-HS100 and Xephilio OCT-A1 also use SD-OCT, offering high-

speed image acquisition and detailed retinal layer analysis, although detailed information on

their specific segmentation algorithms is proprietary information.

Differences between manufacturers extend beyond segmentation algorithms to include scan pat-

terns, image processing techniques, and normative databases (Rivas-Villar et al., 2023). Scan

patterns dictate the imaged retinal regions and data acquisition density (Society, 2024). Differ-

ent patterns may emphasize different anatomical regions, potentially influencing measurement

outcomes. Image processing techniques, such as noise reduction and motion correction, also

vary, affecting image quality and measurement precision. Normative databases, used to compare

individual measurements to a healthy population, are manufacturer-specific and may introduce

variability in interpretation. Therefore, it is crucial to consider these factors when comparing

measurements from different OCT platforms and interpreting clinical data.

The increasing need for independent and customizable OCT image processing has led to the de-

velopment of open-source segmentation tools. These tools provide flexibility and reproducibility,

complementing proprietary software by enabling independent analyses, customized workflows,

and cross-platform applications. However, these tools have limitations when applied to specific

OCT data formats, such as those extracted from Canon OCT-HS100 and Xephilio OCT-A1

systems, which are not natively supported by these tools.

EyeSeg (Perry and Fernandez, 2020) is a fast and efficient encoder-decoder architecture specifi-

cally designed for accurate semantic segmentation tasks in contexts with limited annotated data.

EyeSeg’s innovative use of a customized loss function—combining categorical cross-entropy and

generalized dice loss addresses challenges posed by imbalanced class distributions. Initially vali-

dated in the OpenEDS 2020 Semantic Segmentation Challenge, EyeSeg achieved a 94.5% mean

Intersection Over Union (mIOU), outperforming state-of-the-art models by 10.5% in accuracy.

It incorporates advanced features such as residual connections and dilated convolutions, allowing

for computational efficiency without sacrificing performance. EyeSeg is particularly well-suited

for tasks requiring precise segmentation, such as eye-tracking in augmented reality and virtual

reality environments. However, while it demonstrates robust segmentation capabilities, EyeSeg’s

applicability to Canon OCT-HS100 or Xephilio OCT-A1 data would require significant adapta-

tion, as it was developed for datasets like OpenEDS2020, which differ in imaging protocols and

data structures.
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Eyepy, a python-based framework, simplifies the processing of OCT volumes using the unified

EyeVolume object, supporting formats such as Heyex (E2E, VOL, XML), Topcon FDA, and

public datasets e.g., Duke AMD and RETOUCH Challenge (Morelle, 2023). It enables visual-

ization, quantification (e.g., drusen analysis), and data handling. While highly flexible, its lack

of native support for Canon OCT-HS100 or Xephilio OCT-A1 data and data conversion steps

or modifications to the codebase might be necessary to bridge compatibility gaps.

PyOCT focuses on spectral-domain OCT (SD-OCT) and digital holography microscopy (DHM),

offering tools for reconstruction workflows like background subtraction, spectral resampling, dis-

persion correction, and Fourier transformations (Yuechuan, 2022). It also includes advanced

DHM features like phase retrieval and quantitative phase imaging. PyOCT supports batch pro-

cessing for large datasets and extensive parameter customization but requires pre-processing or

adaptation to handle Canon and Xephilio OCT data, which utilize proprietary imaging protocols

and file structures.

ReLayer (Ometto et al., 2019) is an open-access, web-based platform that facilitates retinal

layer segmentation and thickness measurement extraction from OCT images. Designed to work

with devices, including Heidelberg Spectralis, Topcon 3D OCT-2000, and OptoVue AngioVue,

ReLayer employs a two-step segmentation process. Initially, the platform applies Gaussian fil-

tering to reduce noise and the Sobel operator to compute vertical gradients for edge detection.

These gradients are analyzed column-wise to identify nodal points for retinal layers such as the

inner limiting membrane (ILM), inner/outer segment (ISOS), and retinal pigment epithelium

(RPE). The second step refines these boundaries using a one-dimensional active contour model

that balances edge adherence with smoothness constraints, ensuring accurate and anatomically

consistent segmentation. ReLayer’s cross-platform adaptability is achieved through resampling,

standardizing micrometer-to-pixel ratios, and device resolutions. Validation studies have shown

ReLayer’s performance to be highly accurate for healthy retinas and competitive for pathological

cases, making it suitable for longitudinal and cross-sectional studies.

Another open-source segmentation algorithm from Bhargava et al., 2015 for multi-device appli-

cation provides a robust framework for OCT segmentation, addressing the variability between

devices such as Cirrus HD-OCT and Spectralis OCT. This algorithm operates through three main

stages: preprocessing, pixel classification, and graph-based multilayer segmentation. Preprocess-

ing involves normalizing intensities and flattening scans relative to the Bruch’s membrane (BM)

boundary. A random forest classifier then assigns probabilities for each pixel to belong to nine

retinal layer boundaries, informed by manually segmented training data. Finally, a graph-based

segmentation refines these probabilities by enforcing constraints on smoothness and inter-layer

distances. Validation across multiple platforms demonstrated excellent agreement for layers such

as the ganglion cell and inner plexiform layer (GCIP) and the inner nuclear layer (INL) at the

cohort level. However, individual-level variability, particularly for the macular retinal nerve fiber

layer (mRNFL), highlighted limitations in tracking longitudinal changes.

A graph-based multi-surface segmentation algorithm from Dufour et al., 2012 takes a novel ap-

proach by integrating prior knowledge models and energy minimization techniques. Designed for

efficiency and robustness, this algorithm segments retinal layers and pathologies such as drusen.

It employs a three-stage process: coarse segmentation of the ILM, simultaneous segmentation

of the upper and lower retinal pigment epithelium (RPE) boundaries, and segmentation of in-

ner retinal surfaces guided by prior models. The energy minimization framework incorporates

5
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boundary energy, smoothness energy, and interaction energy, balancing anatomical consistency

with flexibility to accommodate noise and pathologies. Hard constraints strictly enforce spatial

relationships between layers, while soft constraints allow adaptive handling of morphological

variations. The algorithm’s efficiency is demonstrated by its execution time of under 15 seconds

per volume and memory usage of less than 1 GB. Validation on healthy and pathological datasets

showed segmentation errors lower than inter-observer variability and comparable performance

to manual annotations in challenging cases.

The existing open-source tools, while robust and highly customizable, face challenges in natively

supporting data from Canon OCT-HS100 and Xephilio OCT-A1 devices due to the proprietary

imaging protocols and data formats unique to these systems. Adapting these tools requires a

multi-step process. First, developing data conversion pipelines to translate proprietary formats

into widely supported ones is essential for ensuring compatibility. Next, the algorithms must be

adjusted to account for the unique imaging characteristics of these devices, including differences

in resolution, scan patterns, and artifact profiles. Additionally, these adaptations need to be rig-

orously validated through systematic testing to ensure accuracy, reliability, and reproducibility

in segmentation outcomes. These modifications are critical for integrating the advanced capa-

bilities of open-source tools—such as EyeSeg, Eyepy, PyOCT, ReLayer, and other graph-based

segmentation algorithms with data from Canon and Xephilio OCT devices, thereby extending

their utility to a broader range of imaging systems.

2.2 OCT Device Comparison

We examine how these devices acquire measurements in key anatomical regions (optic disc,

retinal nerve fiber layer (RNFL), and macula) and highlight the technological and functional

differences among manufacturers. The optic disc is a critical region for evaluating glaucomatous

damage. The Heidelberg Spectralis OCT employs the Bruch’s Membrane Opening-Minimum

Rim Width (BMO-MRW) method, which measures the neuroretinal rim width using 24 radial

scans centered on the optic nerve head (Mitsch et al., 2019). This method offers higher geometric

precision and reliability, particularly for anatomically complex cases. Spectralis also incorporates

metrics such as neuroretinal rim volume and ONH asymmetry analysis, enhancing its diagnostic

capabilities, for technical details see Chauhan and Burgoyne, 2013.

The Cirrus HD-OCT employs a cube-based approach for optic nerve head analysis, specifically

for measuring rim area and cup-to-disc parameters, rather than directly calculating neuroretinal

rim width (NRW) using the Bruch’s Membrane Opening-Minimum Rim Width (BMO-MRW)

method. The device acquires a 6×6 mm Optic Disc Cube scan, consisting of 200 B-scans, each

with 200 A-scans, to create a detailed 3D representation of the optic nerve head. Instead of

using the BMO-MRW technique, Cirrus HD-OCT employs a unique algorithm that determines

the rim area through a three-dimensional calculation (Mitsch et al., 2019). This process involves,

the Bruch’s Membrane Opening serving as the foundational reference point for defining the

inner margin of the neuroretinal rim, Adjacent radial scan axes defining lateral edges, while

intersections with the internal limiting membrane (ILM) form the peripheral boundaries and

optimization of the cross-sectional area representing the lateral vectors, more details on the

measurements are described in the patents for the Cirrus HD-OCT device in Everett and Oakley,

2015.

The Canon HS100 OCT uses a 6×6 mm Disc 3D scan with 256 B-scans (each containing 512
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A-scans), in contrast to the BMO-RW radial scan methodology employed by the Spectralis.

This process is automated, and specific acquisition details are proprietary. Unlike the Spectralis,

Canon does not offer ONH asymmetry analysis or BMO-centric alignment for cup-to-disc ratio

measurements, which may limit its diagnostic potential (Brautaset et al., 2016). A summary of

the differences in optic disc measurements between the devices is provided in Table 1.

Feature Cirrus HD-OCT Spectralis OCT Canon HS100 OCT

Neuroretinal Rim

Width

Cube-based rim

area measurement

BMO-MRW radial

scans

Disc 3D scan protocol

ONH Asymmetry Anal-

ysis

No Yes No

Cup-to-Disc Ratio Derived from cube

scan

BMO-centric anal-

ysis

Automated cup-to-

disc ratio

Neuroretinal Rim Vol-

ume

No Yes No

Alignment and Tracking Basic tracking cSLO-enhanced

alignment

Automatic alignment

and tracking

Table 1: Comparison of Optic Disc Measurements Across OCT Devices. Source: Compiled

from manufacturer specifications, published research papers, and independent analysis.

Retinal nerve fiber layer (RNFL) thickness is another vital parameter in multiple sclerosis diag-

nostics. Cirrus HD-OCT measures RNFL thickness along a single 3.46 mm circular scan centered

on the optic nerve head. It provides average, quadrant, and clock-hour thickness measurements,

visualized through a TSNIT plot, which is compared against an age-matched normative database.

The device also constructs RNFL thickness maps using a 6×6 mm cube scan for enhanced spatial

assessment (Cirrus, 2020).

Region Cirrus HD-OCT Spectralis OCT Canon HS100 OCT

RNFL Thickness Single scan circle Multiple concentric

circles

Single scan circle

Additional RNFL Circles No Yes No

RNFL Thickness Map Cube-based BMO-aligned Single 3D scan

Macular Layer Segmen-

tation

GCL+IPL Full segmentation

of all layers

GCL+IPL &

NFL+GCL+IPL

Macular Asymmetry

Analysis

No Intra- and inter-eye

analysis

No

Posterior Pole Analysis No Yes No

Normative Database Age-specific Age-, race-, and

axial-length-

matched

Age-specific

Alignment and Tracking Basic tracking cSLO-enhanced Automatic

Table 2: Comparison of RNFL and macular measurements across OCT devices, including Cirrus

HD-OCT, Spectralis OCT, and Canon HS100 OCT. Source: Compiled from manufacturer

specifications, published research papers, and independent analysis.
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Spectralis OCT offers RNFL thickness measurements using multiple concentric circles (3.46

mm, 4.1 mm, and 4.7 mm), allowing for a more comprehensive evaluation of regional RNFL

variations. This device also aligns RNFL scans with the BMO center, enhancing reproducibility

and accuracy. The normative comparison includes adjustments for age, race, and axial length,

making it more robust than Cirrus (Spectralis, 2025). Canon HS100 OCT measures RNFL

thickness along a single 3.46 mm circle, similar to Cirrus, and generates TSNIT plots based

on age-matched normative data. However, it does not support concentric scans or cube-based

RNFL mapping (Canon, 2020).

In macular analysis, Cirrus HD-OCT focuses on Ganglion Cell Analysis (GCA) to measure the

combined thickness of the ganglion cell layer and inner plexiform layer (GCL+IPL). This mea-

surement has been seen to be a reliable biomarker for early glaucoma detection. However, Cirrus

does not segment individual macular layers or provide intra-eye asymmetry analysis. Spectralis

OCT initially measured total macular thickness but now includes detailed segmentation of mac-

ular layers (e.g., GCL+IPL, RNFL) with the Glaucoma Module Premium Edition (GMPE). It

also performs intra-eye and inter-eye asymmetry analyses, as well as posterior pole asymmetry

analysis, which compares superior and inferior retinal thickness. Canon HS100 OCT measures

GCL+IPL and NFL+GCL+IPL thickness but lacks segmentation of individual layers and asym-

metry analysis. The comparative features of RNFL and macula measurements are summarized

in Table 2.

2.3 Advancements in OCT Analysis

Beyond the hardware and segmentation methods of the specific devices, advancements in deep

learning have introduced significant innovations in OCT image segmentation. This has enabled

automated segmentation with higher accuracy and efficiency. Fully supervised learning models,

such as U-Net and its variants, have set benchmarks in retinal layer segmentation, achieving Dice

coefficients exceeding 91.1% (Lee et al., 2017). These models excel in segmenting layers such

as the RNFL and GCL+IPL, which are critical for assessing conditions like multiple sclerosis,

macular edema, glaucoma etc. However, the requirement for large, annotated datasets remains

a barrier, as manual labeling of OCT scans is labor-intensive and requires expert knowledge.

To mitigate this challenge, semi-supervised and weakly supervised methods have gained traction.

Semi-supervised techniques, which combine labeled and unlabeled data during training, reduce

the dependence on extensive manual annotations. For instance, adversarial learning frameworks

have shown promise in enhancing segmentation accuracy by leveraging unlabeled data to com-

plement limited labeled datasets (Liu et al., 2018). Similarly, weakly supervised models, which

rely on image-level annotations, have demonstrated competitive performance, particularly in

identifying and segmenting small pathological regions, though they often require specialized

pre-processing to adapt to device-specific imaging protocols (Liu et al., 2018).

Another critical area of innovation in OCT imaging is the development of explainable AI mod-

els. For clinical applications, transparency in the decision-making process is essential. Tools

such as Class Activation Mapping (CAM) and attention mechanisms, (Zhou et al., 2016) enable

visualization of the regions influencing model predictions, ensuring alignment with clinical un-

derstanding and facilitating adoption in medical practice. These tools are especially valuable in

high-stakes diagnostics, where confidence in automated segmentation outcomes is important.
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The variability in OCT device outputs stemming from differences in resolution, scan patterns,

and proprietary algorithms remains a significant challenge. Open-source tools like EyeSeg, Eyepy,

and PyOCT are designed to provide independent and flexible segmentation capabilities but

face limitations in handling proprietary data formats from devices like Canon HS100 OCT and

Xephilio OCT-A1. Addressing these compatibility issues requires developing data conversion

pipelines and adjusting algorithms to accommodate the unique imaging characteristics of these

devices. Rigorous validation of these adaptations is critical to ensure the reliability of measure-

ments derived from open-source tools.

In the future, reinforcement learning and hybrid models combining traditional and deep learning

techniques present opportunities for further advancement . These models aim to generalize across

datasets and devices, overcoming the challenges posed by data variability and device-specific

segmentation requirements (Minaee et al., 2021). Additionally, efforts to create standardized

imaging protocols and expand the availability of diverse, annotated datasets will be instrumental

in fostering collaboration and innovation within the field.

2.4 Related Works Using OCT Data for MS Diagnosis

A number of studies have demonstrated the application of machine learning techniques in the

OCT domain for diagnosing multiple sclerosis. These studies demonstrate the potential of ML

algorithms in distinguishing MS patients from healthy controls, utilizing OCT derived features.

For example Garćıa Mesa et al., 2023 achieved 87.3% accuracy using RF, k-NN, and SVM for

distinguishing MS patients from controls with Cirrus HD-OCT 5000 imaging.

Similarly, Montoĺıo et al., 2022 reported 95.8% accuracy with SVM, neural networks, and en-

semble classifiers with Spectralis OCT data. These results highlight the robustness of RF for

OCT-derived feature analysis in MS.

Higher diagnostic accuracies in some studies can be attributed to advanced advanced OCT

devices and diverse datasets, for instance Palomar et al., 2019 achieved an accuracy of 95.74%

with Swept-Source OCT (SS-OCT) data using SVM, RF, and AdaBoost classifiers. This study

also reported high sensitivity (97.22%) and specificity (95.16%), showcasing the utility of different

classifiers and imaging technologies.

Furthermore, Garcia-Martin et al., 2021 demonstrated near-perfect diagnostic performance with

sensitivity and specificity values of 98% using a convolutional neural network (CNN) applied

to Spectralis OCT data. These findings highlight the potential of deep learning approaches for

OCT-based MS analysis.
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Author Analysis Type Subjects Machine Classifiers Results(best

model)

Garćıa Mesa

et al., 2023

Diagnosis 40 MS patients,

27 Controls

Cirrus HD-OCT

5000

SVM, k-NN,

Random Forest,

Bagging Classi-

fier

Accuracy: 87.3%,

F1-score: 87.3%,

AUC: 87.6%

Montoĺıo et al.,

2022

Diagnosis 72 MS patients,

30 Controls

Spectralis OCT SVM, k-NN,

DT, Naive

Bayes, Ensem-

ble Classifier,

Neural Net-

works

Accuracy: 95.8%,

AUC: 95.8%

Montoĺıo et al.,

2021

Diagnosis 108 MS pa-

tients, 104

Controls

Cirrus HD-OCT Multiple Linear

Regression,

SVM, DT, k-

NN, NB

Accuracy: 87.7%;

Sensitivity: 87.0%;

Specificity: 88.5%;

Precision: 88.7%;

AUC: 0.8775)

Garcia-Martin

et al., 2021

Diagnosis 48 MS patients,

48 Controls

Spectralis OCT CNN Sensitivity = Speci-

ficity = 0.98.

Cavaliere et al.,

2019

Diagnosis 28 MS patients,

22 Controls, 15

RIS, 31 CIS

Spectralis OCT k-NN Accuracy FMC:

54%, HC: 74%

MCC FMC: 43%,

HC: 68%

Palomar et al.,

2019

Diagnosis 80 MS patients,

180 Controls

Swept-Source

OCT (SS-OCT)

SVM, Random

Forest, Ad-

aBoost

Accuracy: 95.74%,

Sensitivity:

97.22%, Speci-

ficity: 95.16%

Table 3: Comparison of MS studies using OCT data and machine learning

Montoĺıo et al., 2022 explored the diagnostic capacity of Cirrus HD-OCT data combined with

multiple ML models, including SVM and Decision Trees (DT). The study reported an accuracy

of 87.7%, along with a sensitivity of 87.0%, specificity of 88.5%, and a precision of 88.7%. In

contrast, Cavaliere et al., 2019 evaluated k-NN classifiers for distinguishing between MS, Radi-

ologically Isolated Syndrome (RIS), and Clinically Isolated Syndrome (CIS), obtaining varying

accuracies depending on the classification focus, such as 74% for healthy controls.

The variability in diagnostic performance across studies reflects differences in OCT devices,

datasets, and ML models. Studies employing high-resolution OCT devices, such as Spectralis,

Cirrus-OCT often report superior performance, emphasizing the importance of imaging quality

and advanced classification techniques. Table 3 provides a comprehensive summary of these

studies.

3 Data

3.1 Dataset

This study utilized OCT scans from patients with Multiple Sclerosis from the MS Centrum Pelt.

The dataset included two eyes per patient, providing a detailed representation of retinal features

for each individual. Patients underwent comprehensive ophthalmological examinations, with

OCT measurements obtained using the Canon OCT-HS100. The scans were performed using

the Macula 3D (10 mm x 10 mm scanning area), Glaucoma 3D (10 mm x 10 mm scanning area),
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and Disc 3D (6 mm x 6 mm scanning area) protocols. EDSS scores, based on the McDonald

criteria, were recorded during these examinations. The OCT dataset initially contained 740

patients prior to data preparation.

3.2 Data Extraction and Preparation

The dataset was securely stored in an encrypted format with anonymized patient IDs and was

accessed via a controlled container, ensuring data security and confidentiality. It consisted of two

main components: clinical patient data stored in an imed file, and OCT scan data provided in

XML files. The imed file contained information such as patient demographics, MS classification,

visit details, patient treatments and clinical measures, including the Expanded Disability Status

Scale (EDSS). The XML files recorded OCT measurements for both eyes, with scans from up to

740 patients across multiple visits.

A data preparation process was carried out to create a clean, integrated dataset suitable for anal-

ysis by combining clinical patient data and OCT measurement data while ensuring consistency

across all records. This process involved several key steps:

First, clinical patient data from the imed file, including patient-specific attributes such as year of

birth, onset date, diagnosis date, treatment records, and the start of progression, were linked to

the OCT measurement dataset from the XML files. Next, EDSS scores and their corresponding

visit dates, sourced from the clinical records in the imed file, were merged with the OCT dataset.

To ensure alignment between the OCT scans and the clinical assessments, the OCT scan dates

were matched to the closest corresponding EDSS visit dates. This matching ensured that OCT

measurements accurately reflected the clinical context.

To facilitate meaningful analysis, the dataset was further filtered to include only records where

both OCT data and EDSS scores were available for both eyes of a patient, with both measure-

ments taken on the same day. Imputation for missing EDSS scores was deemed inappropriate,

as it could give a false impression of treatment outcomes and the prognosis of MS, particularly

in the context of this retrospective study. The final dataset of 230 patients, classified into two

categories of MS severity on consultation with an ophthalmologist, Non-Severe (EDSS < 6) and

Severe (EDSS ≥ 6), enabled robust analysis of the relationships between OCT features and MS

disease severity.

3.3 Study Variables

Variables encompassing patient demographics, clinical information, and detailed optical coher-

ence tomography (OCT) features were utilized to explore potential predictors of disease severity

in Multiple Sclerosis (MS). The primary outcome variable was the EDSS Category, which clas-

sified patients into two groups: Not Severe and Severe.

Demographic and clinical variables included patient-specific information such as year of birth,

gender, ethnicity, date of onset of MS symptoms and diagnosis date. These variables were critical

for understanding the progression of MS and its influence on patients’ clinical profiles.

The dataset also included OCT features extracted from the XML files, categorized based on the

anatomical regions of the eye. These features provided detailed insights into retinal structure,

enabling the analysis of changes associated with multiple sclerosis.
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The Four Sectors measurements of the Optic Disc were derived from the temporal, superior,

nasal, and inferior retinal sectors. These features offered a broad view of the retinal nerve fiber

layer (RNFL) health, helping to identify potential localized differences in thickness. Additionally,

Twelve Sector measurements of the Optic Disc captured data from twelve distinct regions of the

RNFL, providing a more granular structural analysis of the retina.

Variables Description

PatientID, Birth Date, Gender, Ethnicity, Date of Onset,

Diagnosis Date, Start of Progression

Patient clinical data

Temporal, Superior, Nasal, Inferior Retinal Nerve Fiber Layer (RNFL) thickness values for

the Four Retinal Sectors of the peripapillary region (Optic

Disc)

Temporal (Inferotemporal, Superotemporal), Superior

(Superotemporal, Superonasal), Nasal (Superonasal, In-

feronasal), Inferior (Inferonasal, Inferotemporal)

Retinal Nerve Fiber Layer (RNFL) thickness values for the

Twelve Retinal Sectors of the peripapillary region (Optic

Disc).

Disc Area, Rim Area, Cup Volume, Rim Volume, Cup-

to-Disc Area Ratio (CDR), Vertical Cup-to-Disc Ratio

(VCDR), Horizontal Cup-to-Disc Ratio (HCDR), Rim-to-

Disc Minimum Ratio (RDMR), Disc Damage Likelihood

Scale (DDLS)

Optic Nerve Head measurements.

TSNIT Average, Standard Deviation Average and standard deviation of Retinal Nerve Fiber

Layer (RNFL) thickness across the Temporal, Superior,

Nasal, and Inferior regions.

Total(GCL+IPL), Total(NFL+GCL+IPL), Supe-

rior(GCL+IPL, NFL+GCL+IPL), Inferior(GCL+IPL,

NFL+GCL+IPL), Paracentral and Peripheral Thick-

ness Values (Para/PeriInferiorNasal(GCL+IPL,

NFL+GCL+IPL), Para/PeriInferiorTempo-

ral(GCL+IPL, NFL+GCL+IPL), Para/PeriSuperi-

orTemporal(GCL+IPL, NFL+GCL+IPL), Para/PeriSu-

periorNasal(GCL+IPL, NFL+GCL+IPL))

Combined thickness values of the macula and optic disc,

including Retinal Nerve Fiber Layer (RNFL), Ganglion

Cell Layer (GCL), and Inner Plexiform Layer (IPL).

Paracentral and Peripheral Thick-

ness(Para/PeriTemporal, Para/PeriNasal, Para/PeriSu-

perior, Para/PeriInferior), Central Fovea Thickness,

Minimum Thickness, Average Thickness, Volume

Thickness values for the Internal Limiting Membrane to

Retinal Pigment Epithelium (ILM-RPE).

Paracentral and Peripheral Thick-

ness(Para/PeriTemporal, Para/PeriNasal, Para/PeriSu-

perior, Para/PeriInferior), Central Fovea Thickness,

Minimum Thickness, Average Thickness

Thickness values for the Internal Limiting Membrane to

Bruch’s Membrane (ILM-BM).

Table 4: Summary of Variables

The Optic Nerve Head (ONH) features included variables such as disc area, rim area, and rim

volume. These features were critical for evaluating neuro-degenerative changes that might affect

the optic nerve head. Complementary to this, RNFL features such as the TSNIT (Temporal-

Superior-Nasal-Inferior-Temporal) average and standard deviation provided summary metrics of

RNFL thickness across various sectors of Optic Disc.

The dataset also contained features representing the combined thickness of retinal layers of the

macula and optic disc. GCL+IPL features represented the combined thickness of the ganglion

cell layer (GCL) and inner plexiform layer (IPL), while NFL+GCL+IPL features aggregated

measurements from the nerve fiber layer (NFL), GCL, and IPL. These combined measurements

were particularly useful for assessing retinal layers that could possibly contribute to the neuro-
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degenerative processes.

Features such as ILM-RPE and ILM-BM spanned the internal limiting membrane (ILM) to the

retinal pigment epithelium (RPE) or Bruch’s membrane (BM). These features offered broader

insights into retinal and macular health, complementing the more localized metrics provided by

the other features. Table 4 summarizes the variables included in the dataset.

3.4 OCT Protocols

The Canon OCT-HS100 device provides a comprehensive analysis of both retinal and optic-disc

regions through a combination of quantitative and qualitative evaluations. This study used three

distinct scan modes i.e., Macula 3D, Glaucoma 3D, and Disc 3D. Macula 3D is performed on

the region centered on the macula, with a scanning area of 10x10 mm and the primary scanning

direction being horizontal. Glaucoma 3D is similarly centered on the macula with the same scan

area of 10x10 mm, but the primary scanning direction is vertical. Disc 3D is centered on the

optic disc, with a scan area of 6x6 mm and the primary scanning direction being horizontal.

(a) Ganglion Cell Analysis (b) ETDRS for Macular Thickness Analysis

(c) Optic-Disc RNFL and ONH Analyses

Figure 1: OCT Analysis Sectors (Garćıa Mesa et al., 2023)
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These modes enable detailed assessments in three key categories, the Ganglion Cell Analy-

sis, which evaluates the Ganglion Cell Layer (GCL) and Inner Plexiform Layer (IPL); Macu-

lar Thickness Analysis, which measures the macular thickness; Optic-Disc Retinal Nerve Fiber

Layer(RNFL) and Optic Nerve Head (ONH) analyses, which provide a detailed evaluation of the

optic disc and Retinal Nerve Fiber Layer. Each of these scan modes have a different focus area,

ensuring that both macular and optic-disc regions are thoroughly analyzed.

The Ganglion Cell Analysis utilized six-sector maps centered on the fovea for evaluation as seen in

Figure 1a. The Macular Thickness Analysis applied the Early Treatment Diabetic Retinopathy

Study (ETDRS) grid, which was positioned at the center of the fovea, dividing the macular

region into nine distinct regions as seen in Figure 1b. For the Optic Disc Analysis, a clock-like

grid was used, segmenting the optic disc into twelve sectors and four anatomical regions as seen

in Figure 1c.

3.5 Exploratory Data Analysis

The study included a diverse cohort of 230 patients, with demographic and clinical characteristics

summarized in Table 5. These details show gender distribution, age range, and EDSS scores,

providing a comprehensive overview of the sample and the distribution of disease severity.

Demographic Information Category Details

Gender Distribution Male 77 patients (33.5%)

Female 153 patients (66.5%)

Age Distribution Age Range 20–82 years

Mean Age 49.8 years

Standard Deviation 11.5 years

Age Groups 20–30 years: 10 patients (4.3%)

31–40 years: 40 patients (17.3%)

41–50 years: 64 patients (27.8%)

51–60 years: 70 patients (30.4%)

61–70 years: 38 patients (16.5%)

70+ years: 8 patients (3.4%)

EDSS Scores EDSS Range 0 to 8

Mean EDSS score 3

Standard Deviation 1.8

Table 5: Demographic and clinical characteristics of the study population.

3.6 Software

All statistical analyses were conducted using R (version 4.3.3). The normality of numerical

variables was evaluated using the Shapiro-Wilk test. Statistical significance was defined as a

p-value < 0.05. The Machine learning experiments, including model training and evaluation,

were performed using Python (version 3.9.20) with the scikit-learn library.
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4 Methodology

A range of machine learning algorithms was utilized to classify multiple sclerosis (MS) patients

based on their clinical and demographic data. The selected models Support Vector Machine

(SVM), Random Forest, K-Nearest Neighbors (KNN), and XGBoost (eXtreme Gradient Boost-

ing) were chosen for their effectiveness in handling diverse datasets and their ability to provide

reliable classification results. Each model was carefully configured and evaluated to determine

its suitability for predicting MS severity.

4.1 Support Vector Machine (SVM)

Support Vector Machine is an algorithm for linear and non-linear classification problems. The

main objective of SVM is to find the optimal hyperplane that maximizes the margin between

classes. The decision function of a linear SVM classifier is given by:

f(x) = wTx+ b

where w is the weight vector representing the direction of the boundary, b is the bias term, a

constant that shifts the boundary and x is the input feature vector. The margin is defined as

the distance between the decision boundary and the closest data points, called support vectors.

The optimization problem for SVM is:

min
w,b

1

2
∥w∥2 subject to yi(w

Txi + b) ≥ 1, ∀i (1)

where yi is the label of the i-th data point.

To find this optimal boundary, SVM solves the optimization problem in (1) that ensures all

data points are correctly classified while maximizing the margin. For more complex, non-linear

problems, SVM uses kernel functions (like polynomial or radial basis functions) to map the data

into a higher-dimensional space, where it becomes easier to separate the classes. The SVM was

chosen for its ability to handle both linear and non-linear classification tasks.

4.2 Random Forest

Random Forest is an ensemble learning method based on decision trees. Decision tree classi-

fiers are supervised methods that model outcomes and predictions using a flowchart–like a tree

structure. Trees are composed from top to bottom of a root node, internal nodes (branches)

and leaf nodes. The tree is constructed via a process of an if-else statement that identifies ways

to split predictor space and classify the outcome based on different conditions of predictors. In

a decision tree, each internal node represents a test on a feature of a dataset, each leaf node

represents an outcome, and branches represent the decision rules that lead to class labels. These

trees are relatively unstable and are normally replaced by a random forest of decision trees.

The goal is to build an ensemble of T decision trees, where each tree ht(x) is trained on a random

subset of the training data by sampling with replacement. The final classification prediction, ŷ

is obtained by aggregating the outputs of these trees through majority voting:
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ŷ = mode ({h1(x), h2(x), . . . , hT (x)})

where

ht(x)

represents the prediction of the t-th decision tree for an input x. During the training process

of a decision tree, the algorithm iteratively splits the data at each node by selecting the feature

that provides the most informative division of the dataset. This selection is based on a criterion

that measures the purity of the subsets created after the split. In our case, the Gini impurity

was used as the splitting criterion, calculated as:

Gini Index = 1−
K∑
i=1

p2i ,

where pi is the proportion of samples belonging to class i.

To further enhance diversity among the trees, Random Forest limits the number of features

considered for splitting at each node to a random subset of the total features. Random Forest

efficiently handles datasets with many features, making it ideal for our application.

4.3 K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a simple, non-parametric classification algorithm that assigns a label to

a data point based on the majority class of its k-nearest neighbors in the feature space. Given a

test point x, the KNN classifier finds the k-nearest training points in the feature space, typically

using the Euclidean distance:

d(x, x′) =

√√√√ m∑
i=1

(xi − x′
i)

2.

The prediction is made by selecting the majority class among the k-nearest neighbors:

ŷ = mode ({yi1 , yi2 , . . . , yik})

where yi1 , yi2 , . . . , yik are the labels of the k-nearest neighbors.

KNN was used for its simplicity and its effectiveness in capturing local patterns in the data.

Since MS progression can vary significantly between individuals, KNN is useful for classifying

patients based on the similarity to their neighbors in the feature space.

4.4 XGBoost

XGBoost is a gradient boosting algorithm that combines weak learners (decision trees) sequen-

tially to minimize a loss function. At each iteration, a new tree is added to correct the errors of

the previous ensemble:
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ft(x) = ft−1(x) + ht(x),

where ht(x) is the new tree and ft(x) is the updated prediction.

where Ft(x) is the prediction of the model at iteration t, ht(x) is the weak learner, and η is the

learning rate. The final prediction for a data point x is obtained by summing the contributions

of all T weak learners:

ŷ =

T∑
t=1

ηht(x).

In order to prevent over-fitting XGBoost uses an objective function to improve its performance

and reduce over-fitting. This objective function includes two parts: one measures how well the

model predicts the actual values, and the other adds a penalty for making the model too complex.

By adding this penalty, XGBoost prevents the model from fitting the noise in the training data,

which helps it perform better on new, unseen data. XGBoost Boosting was used for since it

focuses on correcting errors iteratively, it can effectively capture non-linear relationships in the

data and provide accurate classifications even with limited data.

4.5 Hyperparameter Tuning

Hyperparameter tuning is a crucial step in the model development process, allowing us to opti-

mize model performance by identifying the best combination of parameters for each algorithm.

For this study, hyperparameter tuning was done using a grid search approach. This method

involves systematically searching through a predefined range of hyperparameters for each model

to find the configuration that yields the best cross-validation performance. Cross-validation was

employed to ensure that the selected parameters generalize well to unseen data by evaluating

the model across multiple data splits.

The grid search explored combinations of hyperparameters specific to each model. For Random

Forest, parameters such as the number of estimators, minimum samples required for splitting

and leaf nodes, and tree depth were tuned. For Support Vector Machines (SVM), the kernel type,

gamma, and regularization parameter C were adjusted, along with class weighting in some cases.

XGBoost required tuning of parameters like the number of estimators, learning rate, maximum

tree depth, and subsample ratio. For K-Nearest Neighbors (KNN), the number of neighbors,

distance metric, and weighting scheme were varied to identify the optimal configuration.

4.6 Model Assessment

The performance of the classification models was evaluated using several metrics derived from

the confusion matrix. The confusion matrix is useful for calculation of the accuracy, sensitivity,

specificity and precision. It includes four parameters True Positives (TP), which represents

the positive samples correctly classified as positive; True Negatives (TN), which represents the

negative samples correctly classified as negative; False Positives (FP), which shows the negative

samples incorrectly classified as positive; and False Negatives (FN), which represents the positive

samples incorrectly classified as negative.
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Accuracy was calculated to measure the overall correctness of the models, representing the

proportion of correctly classified instances, both positive and negative, out of the total instances.

It was determined as

Accuracy =
TP + TN

TP + TN + FP + FN
.

Sensitivity, also referred to as recall, quantified the proportion of actual positive cases correctly

identified by the models. Sensitivity represented the models’ ability to correctly classify severe

MS patients and was calculated as

Sensitivity =
TP

TP + FN
.

Specificity was used to evaluate the proportion of actual negative cases correctly identified,

reflecting the ability to classify non-severe MS patients correctly. It was expressed as

Specificity =
TN

TN + FP
.

Balanced accuracy was used to provide a fair evaluation of the models on the imbalanced dataset.

It was calculated as the average of sensitivity and specificity, ensuring equal weight for both

classes:

Balanced Accuracy =
Sensitivity + Specificity

2
.

Precision, or positive predictive value, measured the proportion of predicted positive cases that

were truly positive, assessing the reliability of the models’ positive predictions. Precision was

computed as

Precision =
TP

TP + FP
.

The F1 score was used to provide a balanced measure of the models’ performance by calculating

the mean of precision and sensitivity. This metric was particularly important for addressing the

trade-off between false positives and false negatives, especially given the class imbalance in the

dataset. The F1 score was defined as

F1 = 2 · Precision · Sensitivity
Precision + Sensitivity

.

In addition to these metrics, the Receiver Operating Characteristic (ROC) curve was analyzed to

evaluate the models’ diagnostic performance across various classification thresholds. The ROC

curve plotted the true positive rate (TPR), or sensitivity, against the false positive rate (FPR),

which was calculated as

FPR =
FP

FP + TN
.

This curve illustrated the trade-off between sensitivity and specificity as the discrimination

threshold varied. The area under the curve (AUC) was used as a single scalar value to summa-

rize the model’s performance across all thresholds. An AUC value closer to 1 indicated superior

classification performance, with higher sensitivity and specificity across a range of thresholds.
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4.7 Machine Learning Pipeline

Amachine learning pipeline was implemented to classify MS patients and predict disability status

using clinical and OCT data. The pipeline consisted of several key steps: data pre-processing,

feature selection, model building, cross-validation, and model evaluation as shown in Figure 2.

During data pre-processing, two issues were addressed: missing values in numerical OCT mea-

surements and class imbalance in the outcome variable, EDSS Category. Missing values were

handled through imputation using sector means for the features. To enhance the quality of the

dataset, normalization was applied to numerical variables, and one-hot encoding was applied to

categorical variables in the patient demographic data. The numerical variables in the training set

were scaled to have a mean of 0 and a standard deviation of 1. The test set was then normalized

using the mean and standard deviation of the training set to prevent information leakage during

training.

After pre-processing, the dataset was split into training and test sets to facilitate model devel-

opment and evaluation. The training set was used to build the predictive models, while the test

set served as an independent dataset for performance evaluation.

To address the class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was

applied on the training set. SMOTE is commonly used in clinical machine learning studies

to create a balanced dataset by generating synthetic examples for the minority class. This

technique involves selecting a random sample from the minority class and identifying its k-

nearest neighbors (k-NN) (Chawla et al., 2002). For this study, the default values k=5 was

used. Synthetic data points were generated by interpolating between the selected sample and

its neighbors, augmenting the minority class to be equal to the majority class.

Feature selection is a critical step in the development of predictive models, offering several

benefits such as reducing over-fitting, improving predictive accuracy, and lowering computational

costs. To identify the most relevant features in our analysis, feature selection was performed using

a Logistic Regression model with Elastic Net regularization, optimized through Grid Search.

Elastic Net, which combines L1 and L2 penalties, was chosen for its ability to handle feature

selection by shrinking less relevant coefficients to zero. The Grid Search optimized several hyper-

parameters, including the regularization strength and the ratio between L1 and L2 penalties.

After cross-validation, features with non-zero coefficients in the final model were retained, and

the original data was filtered accordingly. This resulted in new training set containing only the

selected features, which were used across all models.

Model building was carried out using the filtered training set, four different models were fit-

ted to the data. Classifier performance was optimized through hyperparameter tuning using

Grid Search, which systematically explored combinations of hyperparameter values to minimize

misclassification rates and maximize overall performance.

To address the limitations of a relatively small dataset that resulted from our pre-processing

and reduce the risk of over-fitting, k-fold cross-validation was employed. This method ensures

that results are not influenced by the initial data split, providing a more robust assessment of

model performance. The dataset was randomly partitioned into k folds, with one fold serving as

the test set and the remaining k-1 folds used as the training set. This process was repeated k

times, allowing each fold to act as the test set once. The overall performance of the model was

calculated by averaging the results across all k iterations. A 10-fold cross-validation approach
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was adopted, as it offers a balance between computational efficiency and reliable performance

estimation.

The final step involved evaluating the models on the test set. This independent evaluation

provided an unbiased assessment of model performance. The pipeline steps, from data pre-

processing to evaluation, are illustrated in Figure 2.

Figure 2: Machine learning Pipeline.
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5 Results

5.1 Feature Engineering

Feature engineering plays a crucial role in transforming raw data into meaningful variables that

can enhance the performance of machine learning models. This process involved creating new

features to capture structural patterns in the eye and patient-specific metrics, which are crucial

for diagnosing and monitoring multiple sclerosis (MS). By summarizing retinal and optic nerve

characteristics, the engineered features provide a comprehensive understanding of the underlying

changes associated with MS progression.

Key features derived from the OCT data include measurements from four quadrants: Temporal,

Superior, Nasal, and Inferior. These measurements were used to calculate averages for each

quadrant, offering a spatial understanding of the retinal nerve fiber layer (RNFL) thickness.

The averages, named the Temporal , Superior , Nasal , and Inferior Quadrants, are essen-

tial for identifying thinning or thickening in specific areas, which are early signs of MS-related

changes. Additionally, asymmetry metrics such as Superior-Inferior Asymmetry and Temporal-

Nasal Asymmetry were developed to measure differences between these regions. These features

are useful for detecting localized changes that might not be evident in overall averages.

Other important features focus on the optic nerve head. The Normalized Rim Area, which is

the ratio of the rim area to the disc area, provides a way to assess changes in the optic nerve.

Similarly, the Cup-to-Disc Area Ratio measures the size of the cup relative to the disc, helping

to track optic nerve health. The Rim-to-Cup Volume Ratio, which compares the rim volume to

the cup volume, offers additional insight into changes in the optic nerve.

Variance features were created to capture variability within specific retinal layers. These include

Temporal (NFL+GCL+IPL) Variance, Nasal (NFL+GCL+IPL) Variance, Superior (NFL+GCL+IPL)

Variance, and Inferior (NFL+GCL+IPL) Variance. These features highlight differences in the

thickness of the Nerve Fiber Layer (NFL), Ganglion Cell Layer (GCL), and Inner Plexiform

Layer (IPL) in various regions of the retina, helping to identify irregularities linked to MS.

Features related to retinal volume were also included. Total ILM-RPE Volume and Total ILM-

BM Volume measure the overall thickness of the retina from the inner limiting membrane (ILM)

to the retinal pigment epithelium (RPE) and Bruch’s membrane (BM), respectively. Ratios such

as the Ratio ILM-RPE Central-Peripheral and Ratio ILM-BM Para-Peri were added to compare

differences between central and peripheral regions of the retina, highlighting specific patterns in

thickness.

Finally, global metrics i.e., the Normalized TSNIT Average, which normalizes RNFL thickness

along the TSNIT (Temporal-Superior-Nasal-Inferior-Temporal) profile relative to disc area, and

TSNIT Coefficient of Variation (TSNIT CoV), which measures variability in this profile, provide

an overall view of RNFL patterns and help identify disruptions linked to MS. The engineered

features are summarized in Table 6.
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Feature Description

Temporal Quadrant, Supe-

rior Quadrant, Nasal Quad-

rant, Inferior Quadrant

Average RNFL thickness measurements across the Temporal, Su-

perior, Nasal, and Inferior quadrants, summarizing regional RNFL

health.

Superior-Inferior Asymme-

try, Temporal-Nasal Asym-

metry

Quantify imbalances between superior and inferior quadrants,

and between temporal and nasal quadrants, highlighting local-

ized structural changes.

Normalized Rim Area Ratio of the optic nerve rim area to the disc area, indicating struc-

tural integrity of the optic nerve head.

Cup-to-Disc Area Ratio Proportion of the cup area to the disc area, used to assess optic

nerve degeneration.

Rim-to-Cup Volume Ratio Ratio of rim volume to cup volume, reflecting the distribution of

optic nerve volume.

Temporal NFL+GCL+IPL

Variance, Nasal

NFL+GCL+IPL Variance,

Superior NFL+GCL+IPL

Variance, Inferior

NFL+GCL+IPL Vari-

ance

Variability in the thickness of the Nerve Fiber Layer (NFL), Gan-

glion Cell Layer (GCL), and Inner Plexiform Layer (IPL) across

different regions, providing insights into retinal layer irregulari-

ties.

Total ILM-RPE Volume, To-

tal ILM-BM Volume

Overall retinal volume from the Inner Limiting Membrane (ILM)

to the Retinal Pigment Epithelium (RPE) and Bruch’s Membrane

(BM), capturing global retinal structure.

Ratio ILM-RPE Central-

Peripheral, Ratio ILM-BM

Para-Peri

Ratios capturing structural differences between central and pe-

ripheral regions of the retina, highlighting localized patterns.

Normalized TSNIT Average RNFL thickness profile along the TSNIT (Temporal-Superior-

Nasal-Inferior-Temporal) curve, normalized to the optic disc area.

TSNIT Coefficient of Varia-

tion (TSNIT CoV)

Variability in the TSNIT thickness profile, indicating consistency

or irregularity in RNFL patterns.

Table 6: Summary of Engineered Features Derived from OCT Data

5.2 MS Diagnostic Model

A diagnostic model was developed to classify the severity of multiple sclerosis (MS) using data

from 230 patients, comprising 154 Not Severe cases and 76 Severe cases. The analysis involved

a greedy approach, where various dataset configurations were evaluated to determine the most

effective combination of features. These configurations included inter-eye differences for all OCT

features to capture asymmetrical optic nerve damage, total OCT features alone to assess global

structural changes, and localized OCT features alone to focus on specific anatomical regions such

as the optic disc, macula, and RNFL.

We also analyzed individual protocols separately to evaluate the predictive value of each imaging

technique and explored datasets with treatment information to assess the potential influence on

MS. While these approaches aimed to capture distinct aspects of MS pathology, we do not present

results from these intermediate analyses. Instead, we focus exclusively on the diagnostic model

derived from the final dataset configuration, which demonstrated the strongest performance and
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interpretability.

The analysis utilized two datasets: Dataset 1 for the left eye and Dataset 2 for the right eye,

each containing 75 features derived from optical coherence tomography (OCT) measurements

using three distinct protocols. The datasets were analyzed separately because MS often presents

asymmetrically, with optic nerve damage or retinal nerve fiber layer (RNFL) thinning differing

between the two eyes. This independent analysis allows the model to capture eye-specific patterns

of damage.

The first protocol, Ganglion Cell Layer and Inner Plexiform Layer (GCIPL), included 15 OCT

features, capturing the structure of the retinal layers, which are commonly affected in MS. The

second protocol, Macular Thickness, provided 24 OCT features, offering detailed measurements

of the macula to evaluate potential damage caused by MS. The third protocol, Optic Disc and

Retinal Nerve Fiber Layer (RNFL) measurements from the Optic Nerve Head, contributed 27

OCT features, essential for assessing the health of the optic nerve and detecting its degeneration

in MS patients.

Here, ”protocol” refers to the specific method used to obtain measurements for a particular

aspect of OCT analysis, with each protocol generating a unique set of features for the dataset.

For the analysis, the features derived from all three protocols were combined into a single dataset

for each eye, creating a comprehensive dataset that included not only the OCT measurements

but also patient clinical data and engineered features. This resulted in a total of 95 features in

the dataset, allowing the model to leverage information from all protocols to classify MS severity.

A systematic approach was implemented for feature selection to optimize the classification mod-

els. Initially, a correlation analysis was conducted on all numeric features to identify pairs with

a Spearman’s rank correlation coefficient of 0.9 or higher. Features exhibiting high correlations

were deemed redundant, as they contributed similar information to the models, possibly adding

unnecessary complexity without improving predictive accuracy. As a result, the total number of

features was reduced from 94 to 27 in both Dataset 1 (left eye) and Dataset 2 (right eye), for

subsequent modeling.

The data was then split into training and test sets. The training set comprised 161 patients, with

108 classified as ”Not Severe” and 53 as ”Severe.” The test set included 69 patients, with 46 ”Not

Severe” and 23 ”Severe.” To address the imbalance in the training set, the Synthetic Minority

Oversampling Technique (SMOTE) was employed. SMOTE generated synthetic samples for the

minority class (”Severe”), resulting in a balanced training set with 108 patients in each class.

This step was crucial for mitigating potential biases that could arise from class imbalance.

To further refine the feature set, feature selection was performed using a Logistic Regression

model with Elastic Net regularization, optimized through Grid Search. Elastic Net, which com-

bines L1 and L2 penalties, was chosen for its ability to handle feature selection by shrinking

less relevant coefficients to zero. The Grid Search optimized several hyper-parameters, including

the regularization strength and the ratio between L1 and L2 penalties. After cross-validation,

features with non-zero coefficients in the final model were retained, resulting in a reduced dataset

containing only the most relevant features.

For the left eye dataset, Random Forest, XGBoost, and KNN each selected nine features:

the four-sector measurements of the optic disc (Temporal, Superior, Nasal, Inferior), Supe-

rior (GCL+IPL), ParaInferiorNasal (NFL+GCL+IPL), Central (ILM-RPE), Superior-Inferior
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Asymmetry, and Temporal-Nasal Asymmetry. SVM retained 13 features, including these core

features but also adding CupVolume (ONHParameters), ParaInferiorNasal (GCL+IPL), Supe-

rior (NFL+GCL+IPL) Variance, Ratio ILM-BM Para-Peri, and Age.

For the right eye dataset, Random Forest and KNN retained seven features: Temporal and

Superior sector measurements of the Optic disc, Volume (ILM RPE), Age, Superior-Inferior

Asymmetry, Temporal-Nasal Asymmetry, and Superior NFL-GCL-IPL Variance. XGBoost re-

tained nine features, overlapping with Random Forest but adding CupVolume (ONHParameters)

and Rim-to-Cup Volume Ratio. SVM retained the largest subset of 29 features, including addi-

tional structural features like DiscArea (ONHParameters) and demographic indicators such as

Patient Sex and Ethnic Group.

5.3 Model Performance

The performance metrics for each model evaluated on both the left and right eye datasets are

summarized in Table 7. These metrics, which include precision, recall, F1-score, and accuracy,

are averaged across both classes and provide a comprehensive assessment of the models’ ability

to classify the severity of multiple sclerosis (MS). The results below are based on evaluations

conducted on the test set, ensuring an unbiased assessment of model performance.

The Random Forest (RF) model demonstrated consistent performance across both datasets.

The confusion matrix on the left eye dataset shows that the model correctly identified 37 ”Not

Severe” cases (TN) and 14 “Severe” cases (TP). However, it misclassified 9 “Not Severe” cases as

“Severe” (FP) and 9 “Severe” cases as “Not Severe” (FN). This balanced performance is reflected

in its precision, recall, and F1-score of 0.74, indicating that the model performed equally well in

identifying both classes. On the right eye dataset, Random Forest correctly classified 45 “Not

Severe” cases (TN) and 5 “Severe” cases (TP). However, the model showed a drop in sensitivity,

as it misclassified 18 ”Severe” cases as “Not Severe” (FN), while only 1 “Not Severe” case was

incorrectly identified as “Severe” (FP). This resulted in a lower F1-score of 0.67, with recall

reduced to 0.72.

Model Dataset Precision Recall F1-Score Accuracy

Random Forest
Left Eye 0.74 0.74 0.74 0.74

Right Eye 0.75 0.72 0.67 0.72

SVM
Left Eye 0.73 0.72 0.73 0.72

Right Eye 0.79 0.70 0.60 0.70

XGBoost
Left Eye 0.72 0.72 0.72 0.72

Right Eye 0.65 0.68 0.63 0.68

KNN
Left Eye 0.71 0.71 0.71 0.71

Right Eye 0.75 0.74 0.70 0.74

Table 7: Performance metrics for the models evaluated on the left and right eye datasets.

The Support Vector Machine (SVM) model showed competitive performance. On the left eye

dataset, the confusion matrix indicates that the model correctly classified 36 “Not Severe” cases

(TN) and 14 “Severe” cases (TP). However, 10 “Not Severe” cases were misclassified as “Severe”

(FP), and 9 “Severe” cases were misclassified as “Not Severe” (FN). This performance aligns with
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its F1-score of 0.73 and accuracy of 0.72. On the right eye dataset, SVM correctly identified 46

“Not Severe” cases (TN) but only 2 “Severe” cases (TP). The model misclassified a substantial

21 “Severe” cases as “Not Severe” (FN), indicating a significant drop in sensitivity to severe

cases. Despite this, no “Not Severe” cases were misclassified as “Severe” (FP), which explains

its high precision of 0.79, though the recall dropped to 0.70.

XGBoost’s performance was generally consistent but slightly lower compared to other models.

On the left eye dataset, the confusion matrix shows that the model correctly identified “Not

Severe” cases (TN) and 12 “Severe” cases (TP), while 8 “Not Severe” cases were misclassified as

“Severe” (FP) and 11 “Severe” cases were misclassified as “Not Severe” (FN). This resulted in an

F1-score of 0.72, reflecting moderate performance. On the right eye dataset, the model correctly

classified 42 “Not Severe” cases (TN) and 5 “Severe” cases (TP). However, it misclassified 18

“Severe” cases as “Not Severe” (FN) and 4 ”Not Severe” cases as “Severe” (FP). The increase

in both false positives and false negatives contributed to its lower F1-score of 0.63 and overall

accuracy of 0.68.

The KNN model demonstrated stable performance across both datasets. On the left eye dataset,

the confusion matrix reveals that the model correctly identified 36 “Not Severe” cases (TN) and

15 “Severe” cases (TP). However, it misclassified 10 “Not Severe” cases as “Severe” (FP) and

10 “Severe” cases as “Not Severe” (FN). This resulted in an F1-score of 0.71, with precision

and recall both at 0.71, and an overall accuracy of 0.71. On the right eye dataset, the model

correctly classified 44 “Not Severe” cases (TN) and 7 “Severe” cases (TP). However, it misclas-

sified 16 “Severe” cases as “Not Severe” (FN) and 2 “Not Severe” cases as “Severe” (FP). This

performance yielded an F1-score of 0.70, with slightly higher precision at 0.75 and recall at 0.74,

and an accuracy of 0.74.

The confusion matrices for each model are provided in Figures 3 and 4. Random Forest and KNN

showed balanced classification results with relatively fewer false positives and false negatives,

particularly on the left eye dataset. SVM exhibited strong precision, especially on the right eye

dataset, but struggled with recall, reflecting a difficulty in identifying severe cases. XGBoost

showed moderate performance, with higher misclassification rates for both false positives and

false negatives, particularly on the right eye dataset.
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Figure 3: Confusion Matrices for Models on Left Eye Datasets

For the Right Eye dataset, RF and KNN both demonstrated the strongest performance, each

achieving an AUC of 0.74. XGBoost followed with an AUC of 0.70, showing consistent but

slightly lower performance compared to the top models. SVM had the lowest performance with

an AUC of 0.67. These results indicate that RF consistently outperformed other models on both

datasets, while SVM struggled the most in both contexts.
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Figure 4: Confusion Matrices for Models on Right Eye Datasets

The Receiver Operating Characteristic (ROC) curves in Figure 5 highlight the performance

of the models across the datasets. For the Left Eye dataset, the Random Forest (RF) model

achieved the highest area under the curve (AUC) at 0.72, closely followed by XGBoost at 0.71.

KNN demonstrated moderate performance with an AUC of 0.67, while SVM had the lowest

classification capability on this dataset, achieving an AUC of 0.63.
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Figure 5: ROC Curves for Models on Left and Right Eye Datasets
28



While the overall results presented earlier provided a broad view of model performance, careful

interpretation is required. The results discussed below are derived by evaluating the models

specifically on the severe class, with metrics i.e., precision, recall, and F1-score calculated exclu-

sively for this class rather than averaging performance across both classes. A closer analysis of

the severe cases, as detailed in Table 8, highlights notable variability and significant limitations

in the models’ ability to effectively distinguish severe cases.

For the left eye, the random forest model demonstrated the highest balanced accuracy of 0.7065,

with all metrics for the severe class (precision, recall, and F1 score) at 0.6087, indicating consis-

tent moderate performance in identifying severe cases. The support vector machine (SVM) had a

balanced accuracy of 0.6957, and F1 score of 0.5957 for the severe class, with precision and recall

values of 0.5833 and 0.6087, respectively. The XGBoost model and k-nearest neighbors (KNN)

both had a balanced accuracy of 0.6739; however, XGBoost underperformed in recall (0.5217)

for severe cases, resulting in an F1 score of 0.5581 while the KNN model, showed consistent

metrics across precision, recall, and F1 score at 0.5652.

Model Dataset Precision Recall F1-Score Balanced Accuracy

Random Forest
Left Eye 0.6087 0.6087 0.6087 0.7065

Right Eye 0.8333 0.2174 0.3448 0.5978

SVM
Left Eye 0.5833 0.6087 0.5957 0.6957

Right Eye 1.0000 0.0870 0.1600 0.5435

XGBoost
Left Eye 0.6000 0.5217 0.5581 0.6739

Right Eye 0.5556 0.2174 0.3125 0.5652

KNN
Left Eye 0.5652 0.5652 0.5652 0.6739

Right Eye 0.7778 0.3043 0.4375 0.6304

Table 8: Performance metrics for the models evaluated on the left and right eye datasets for the

severe class

For the right eye, the overall results showed reduced performance across all models compared to

the left eye. The random forest model, despite achieving a balanced accuracy of 0.5978, showed

a poor performance on the recall for severe cases at 0.2174, although it attained a high precision

of 0.8333 with the F1 score of only 0.3448, showing limitation in identifying severe cases. The

SVM model had the lowest balanced accuracy of 0.5435 and struggled significantly with severe

cases, achieving perfect precision (1.0000) but a very low recall of 0.0870, with an F1 score of

0.1600. XGBoost exhibited slightly better performance with a balanced accuracy of 0.5652 and

an F1 score of 0.3125 for severe cases, though its recall (0.2174) remained low. The KNN model

achieved the highest balanced accuracy for the right eye at 0.6304, with moderate performance

in identifying severe cases, reflected by a precision of 0.7778, recall of 0.3043, and F1 score of

0.4375.

5.4 Feature Importance

Feature importance analysis revealed critical contributions of specific features to classifying

multiple sclerosis (MS) severity. Distinct patterns emerged when analyzing left and right eye

datasets, highlighting key clinical and OCT-derived features.
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For dataset 1, the Random Forest model identified retinal features from the superior and temporal

optic disc sectors, Central ILM-RPE, and ParaInferiorNasal (NFL+GCL+IPL) as significant

predictors. These findings indicate the role of central retinal thickness and nasal GCL+IPL

thinning in MS progression, consistent with Shi et al., 2019.

The SVM model showed the temporal and superior sectors of the optic disc and Temporal-

Nasal Asymmetry as important predictors of severity. Asymmetry measures are particularly

valuable for capturing localized retinal changes, which are characteristic of MS-related neuro-

degeneration. This is supported by research demonstrating that inter-eye differences in retinal

measurements can serve as diagnostic indicators for MS (Petzold et al., 2021).

Rank Random Forest SVM

1 Superior (Four Sectors) Temporal-Nasal Asymmetry

2 Temporal (Four Sectors) Temporal (Four Sectors)

3 Central (ILM-RPE) Nasal (Four Sectors)

4 ParaInferiorNasal (NFL+GCL+IPL) Superior (Four Sectors)

5 Superior-Inferior Asymmetry ParaInferiorNasal (NFL+GCL+IPL)

6 Superior (GCL+IPL) Superior-Inferior Asymmetry (NFL+GCL+IPL)

7 Inferior (Four Sectors) Superior (GCL+IPL)

8 Nasal (Four Sectors) Central (ILM-RPE)

9 Temporal-Nasal Asymmetry Inferior (Four Sectors)

Rank XGBoost KNN

1 ParaInferiorNasal (NFL+GCL+IPL) Inferior (Four Sectors)

2 Superior (Four Sectors) Temporal (Four Sectors)

3 Temporal (Four Sectors) Superior (Four Sectors)

4 Central (ILM-RPE) Superior-Inferior Asymmetry

5 Superior (GCL+IPL) Nasal (Four Sectors)

6 Superior-Inferior Asymmetry Temporal-Nasal Asymmetry

7 Inferior (Four Sectors) ParaInferiorNasal (NFL+GCL+IPL)

8 Temporal-Nasal Asymmetry Superior (GCL+IPL)

9 Nasal (Four Sectors) Central (ILM-RPE)

Table 9: Top predictive features identified by the models using the left eye dataset.

XGBoost placed significant importance on regions like the ParaInferiorNasal (NFL+GCL+IPL),

superior sectors, and temporal sectors. These findings show the relevance of inferior nasal regions,

which may exhibit signs of MS-related retinal damage as highlighted in Garćıa Mesa et al., 2023

which showed progressive thinning of the GCIPL is associated with MS.

The KNN model relied on features related to retinal sectors, i.e., the inferior, temporal, and

superior regions of the optic disc. The top predictive features using dataset 1 are showed in

Table 9.

For the dataset 2, the Random Forest model identified the temporal and superior sectors of the

optic disc, as well as retinal volume (ILM-RPE), as the most important features. The SVM

model identified regions, including the Superior (GCL+IPL) and PeriInferiorNasal (GCL+IPL),

as key features. These features relating to the ganglion cell and inner plexiform layers, have
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shown in previous research that they are associated with MS as highlighted in Garcia-Martin

et al., 2014.

XGBoost showed clinical features, particularly Age, alongside superior sectors of the optic disc

and structural variance metrics were the most important. This suggests that age, shows cumu-

lative disease burden, and also interacts with structural changes to influence disease severity.

The focus on variance metrics also reflects the model’s ability to detect subtle and uneven reti-

nal changes that are a characteristic of MS. The KNN model for the right eye dataset ranked

structural features such as the superior sectors, retinal volume, and asymmetry metrics as most

important, according to Petzold et al., 2021 these differences in retinal measurements can serve

as diagnostic indicators for MS. The top predictive features using dataset 2 are indicated in

Table 10.

Rank Random Forest SVM

1 Temporal (Four Sectors) Superior (GCL+IPL)

2 Volume (ILM-RPE) PeriInferiorNasal (GCL+IPL)

3 Superior (Four Sectors) ParaInferiorNasal (GCL+IPL)

4 Age Temporal (Four Sectors)

5 Superior (NFL+GCL+IPL) Variance Superior (NFL+GCL+IPL) Variance

6 Superior-Inferior Asymmetry Temporal(NFL+GCL+IPL) Variance

7 Temporal-Nasal Asymmetry Volume (ILM RPE)

Rank XGBoost KNN

1 Age Superior (Four Sectors)

2 Superior (Four Sectors) Volume (ILM-RPE)

3 Superior (NFL+GCL+IPL) Variance Temporal-Nasal Asymmetry

4 Temporal (Four Sectors) Age

5 Superior-Inferior Asymmetry Temporal (Four Sectors)

6 Rim-to-Cup Volume Ratio Superior-Inferior Asymmetry

7 CupVolume (ONH Parameters) Superior (NFL+GCL+IPL) Variance

Table 10: Top predictive features identified by the models using the right eye dataset.

Among the models evaluated, the Random Forest algorithm showed the best overall performance

for both left and right eye datasets. For the left eye, the optimal model parameters included

100 estimators, a minimum of 18 samples per split, 8 samples per leaf, and no restriction on

tree depth. This configuration achieved an F1-score and accuracy of 0.74, reflecting a strong

balance between precision and recall. For the right eye, the best-performing Random Forest

model utilized 75 estimators, a minimum of 12 samples per split, 8 samples per leaf, and a

maximum tree depth of 20. Although its performance was slightly lower, with an F1-score of

0.67 and accuracy of 0.72, it remained the top model for this dataset.

The differences observed between the left and right eyes in the results are likely attributable to the

asymmetric progression of Multiple Sclerosis (MS), a characteristic feature of the disease. MS-

related damage is inherently multifocal and localized, often resulting in varying degrees of retinal

thinning and structural alterations between the eyes. This asymmetry is primarily driven by the

random distribution of lesions in the central nervous system, including the optic nerves, which
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may differentially affect the left and right eyes. Optic neuritis, a common early manifestation of

MS, frequently occurs unilaterally, leading to more pronounced damage in one eye compared to

the other. This phenomenon has been extensively documented in studies such as Saidha et al.,

2015. Other factors, such as natural biological variability, differences in treatment responses,

and technical variations in OCT measurements, may further contribute to these discrepancies.

6 Discussion

This study aimed to develop machine learning models to analyze OCT data for improving di-

agnostic accuracy in MS patients. Additionally, it sought to review the literature on OCT

measurement techniques, emphasizing retinal structures, variations across manufacturers, and

existing segmentation methods for OCT images.

The results highlight that the models used have the ability to classify MS severity, however,

they face significant difficulty, particularly in identifying severe cases, which shows the need for

further development before these models can be considered for clinical application and use.

The overall performance metrics based on both classes indicate that Random Forest (RF) and K-

Nearest Neighbors (KNN) showed consistent performance across the left and right eye datasets.

For the left eye, RF achieved precision, recall, F1-score, and accuracy of 0.74, while KNN recorded

values of 0.71. Both models demonstrated a moderate performance, with RF slightly performing

better than KNN. Support Vector Machine (SVM) performed similarly to RF, with precision of

0.73, recall of 0.72, and accuracy of 0.72, while XGBoost showed slightly lower results (precision,

recall, F1-score, and accuracy of 0.72).

In the right eye dataset, all models faced challenges. RF had a precision of 0.75 and recall of

0.72, but its F1-score dropped to 0.67, indicating difficulties in identifying all true positives.

KNN performed slightly better with precision of 0.75, recall of 0.74, and F1-score of 0.70, but

still struggled with severe cases. SVM achieved the highest precision (0.79), but had recall of

0.70 and F1-score of 0.60. XGBoost had the lowest performance with a precision of 0.65, recall

of 0.68, and F1-score of 0.63. Despite the use of SMOTE to address class imbalance, all models

struggled to accurately identify severe cases in the right eye, potentially due to the dataset’s

inability to capture subtle structural differences in OCT features related to MS severity. Given

that all patients in the study had MS, such subtle differences between severe and non-severe

cases are expected. Introducing a control group could have potentially enhanced the distinction

of these OCT features and improve classification outcomes.

The performance of the models on the severe class revealed significant weaknesses. When focusing

on the right eye dataset, Random Forest (RF) showed high precision (0.83) but had poor recall

(0.22), resulting in a low F1-score of 0.34. This suggests RF could identify severe cases but

missed many true positives. Similarly, Support Vector Machine (SVM) had perfect precision

(1.00) but an extremely low recall (0.09), leading to a very low F1-score of 0.16, suggesting that

this model often failed to correctly identify severe cases.

XGBoost and KNN also struggled with recall for severe cases. XGBoost had a precision of 0.56

and recall of 0.22, with an F1-score of 0.31, while KNN had better precision (0.78) and recall

(0.30), resulting in an F1-score of 0.44. These results highlight that all models had difficulty

identifying severe cases reliably, a critical limitation for clinical decision-making. Despite the
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use of SMOTE, the models were unable to capture the subtle features linked to severe MS cases,

emphasizing the need for improvements in recall to support accurate detection of severe cases in

clinical settings.

A key question arising from these findings is whether OCT data alone can reliably differentiate

severe from non-severe cases. The performance observed, particularly for the severe class, sug-

gests that OCT data, while valuable, may not be sufficient as a standalone diagnostic tool. The

results indicate that these models have the potential but are not yet ready for standalone use in

clinical practice. With further refinement and the adoption of deep learning models that incorpo-

rate advanced image recognition techniques specific to OCT data, there is potential to improve

performance. Such advancements could enable these models to be effectively used within an inte-

grated diagnostic framework. Rather than functioning independently, these models may be more

impactful when combined with other clinical tools and data sources, such as longitudinal patient

records, advanced imaging techniques, and clinical biomarkers. This integrated approach could

provide a more comprehensive understanding of MS severity and enhance diagnostic accuracy.

The performance differences between the left and right eye datasets for severe cases were notable.

For example, Random Forest achieved a balanced accuracy of 0.7065 on the left eye dataset but

dropped to 0.5978 for the right eye. These differences may be attributed to biological or clinical

factors, as MS often presents asymmetrically, with retinal damage being more pronounced in

one eye. Alternatively, the discrepancies could be due to the dataset’s under-representation of

severe cases, which might have biased the models towards the majority class. Additionally, the

models’ limited sensitivity to subtle structural variations in the OCT data highlights the need

for larger datasets and enhanced training to improve performance and address discrepancies

effectively. Incorporating domain-specific knowledge into the feature selection process could also

help capture more nuanced patterns related to MS severity. Examining and including inter-eye

relationships may provide additional insights into MS-related retinal changes, thereby enhancing

the models’ generalizability, particularly given the observed differences in performance between

the left and right eye datasets in this study.

The feature importance analysis from the fitted models identified structural retinal features as

critical predictors of MS severity. Specifically, measurements from the superior and temporal

sectors, central retinal thickness (Central ILM-RPE), and nasal regions related to the combined

NFL, GCL, and IPL layers (NFL+GCL+IPL) were highly influential. These findings are con-

sistent with previous studies, emphasizing the importance of these features in understanding

retinal changes associated with MS progression and diagnostics.

This study differs from most previous research by focusing exclusively on an MS-only cohort

and stratifying patients by severity rather than comparing MS patients to healthy controls.

While the absence of a control group limits direct comparisons to other studies, the findings

highlight the clinical relevance of intra-disease classification. Unlike studies aimed at diagnosing

MS, this research provides actionable insights into disease progression, an area of significant

clinical importance, by identifying retinal features that differentiate between severe and non

severe patients.

Comparable studies in the literature have reported similar diagnostic performance using OCT-

based ML models. For instance, Garćıa Mesa et al., 2023 achieved an 87.3% accuracy using

RF, k-NN, and SVM for distinguishing MS patients from controls, while Montoĺıo et al., 2022

and Palomar et al., 2019 reported diagnostic accuracies of 87.7% and 95.8%, respectively, with
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advanced OCT devices like Spectralis and Cirrus HD-OCT. The superior performance in these

studies likely reflects the advantages of higher-resolution imaging, larger datasets, and the in-

clusion of advanced classifiers, such as convolutional neural networks (CNNs), as demonstrated

by Garcia-Martin et al., 2021, who achieved near-perfect sensitivity and specificity (98%).

In summary, this study demonstrates the potential of machine learning models in leveraging

OCT data to classify MS severity, while also highlighting key limitations that must be addressed

for clinical application. The observed challenges, particularly in identifying severe cases across

the models used, emphasizes the need for enhanced model sensitivity, larger and more balanced

datasets, and the integration of advanced imaging techniques. These improvements, combined

with approaches that incorporate other clinical tools and biomarkers, could significantly enhance

the utility of these models in providing a comprehensive assessment of MS severity.

7 Possible Drawback of the Methods

The application of machine learning in this study faced several limitations. A small sample

size, combined with missing EDSS scores, reduced model robustness and generalizability. The

absence of a control group further hindered validation and the ability to establish comparative

baselines. Class imbalances, with under-representation of certain EDSS categories, biased the

models toward majority classes and reduced sensitivity for minority classes.

A significant challenge in broader clinical application lies in the models’ limited transferability.

The dataset, specific to a subset of MS patients, may not represent diverse demographics or

clinical settings. Variations in imaging protocols, device manufacturers, and population charac-

teristics could hinder application of models effectively in other settings, For example, differences

in OCT devices can result in inconsistent image resolutions and feature measurements, compli-

cating model applicability. Additionally, the lack of a healthy control group limits the assessment

of the models’ performance in heterogeneous populations.

8 Ethics, Societal Relevance, and Stakeholder Awareness

This study prioritized ethical considerations in handling patient data and implementing machine

learning (ML) models in healthcare. Patient privacy was safeguarded through the anonymization

of identifiers and secure, encrypted data storage, with controlled access ensuring compliance with

data protection regulations.

Ethical considerations extended to the use of ML models, emphasizing transparency, fairness,

and the minimization of bias. The model training process was carefully evaluated to ensure no

biases were introduced from clinical variables, maintaining equitable treatment across patient

subgroups.

The integration of ML in diagnosing Multiple Sclerosis (MS) has significant societal and clinical

implications. Early diagnosis through advanced OCT-based ML models enables timely treat-

ment, potentially improving outcomes by slowing disease progression. This is especially valuable

in resource-limited settings, where early access to specialized care is limited. By improving

diagnostic accuracy and reducing misdiagnoses, these tools can optimize healthcare workflows,

allowing providers to focus on complex cases and efficiently allocate resources.
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The outcomes of this research have direct implications for various stakeholders, including neu-

rologists, healthcare providers, and patients. For neurologists and clinicians, the study offers a

data-driven approach to enhance diagnostic precision. OCT features identified as possible pre-

dictive biomarkers can be tested in existing diagnostic frameworks, providing actionable insights

that support clinical judgment.

The outcomes directly benefit neurologists, healthcare providers, and patients. For clinicians,

the study offers a possible data-driven framework to enhance diagnostic precision, identifying

actionable OCT features as potential biomarkers for MS severity. Healthcare institutions can

leverage the scalability of AI-driven tools to enhance care quality while reducing costs. Patients

benefit most from improved diagnostic accuracy, which builds trust, reduces uncertainty, and

supports the development of personalized treatment plans, empowering them to make informed

decisions about their healthcare.

9 Conclusion

This study demonstrates the potential of machine learning (ML) models to classify multiple

sclerosis (MS) severity using OCT-derived features. Among the models evaluated, Random

Forest (RF) showed the most robust and consistent performance, particularly for the left eye

dataset, while Support Vector Machines (SVM) and k-Nearest Neighbors (KNN) also exhibited

competitive results. Despite these advancements, challenges remain, particularly in classifying

severe cases and ensuring model generalizability across diverse datasets.

Key findings highlight the importance of structural retinal features, such as measurements from

the superior and temporal sectors, central retinal thickness, and asymmetry metrics, in predicting

MS severity. These features align with known MS-related retinal changes and provide valuable

insights into disease progression. However, the limited sensitivity of the models to severe cases

shows the need for larger, balanced datasets and advanced techniques to enhance performance.

Standardization of OCT imaging protocols and segmentation tools is essential to address device-

specific variability and facilitate cross-platform applicability. Proprietary devices like Canon

HS100 OCT, while powerful, require further compatibility with open-source tools to enable

broader accessibility. Innovations in deep learning and explainable AI offer promising pathways

to improve segmentation accuracy and diagnostic transparency.

This study highlights the need for an integrated diagnostic framework that combines OCT data

with clinical variables and biomarkers to provide a comprehensive understanding of MS severity.

While the ML models developed here show promise, further research should focus on improving

sensitivity for severe cases, incorporating control groups for better benchmarking, and leveraging

advanced imaging techniques to achieve clinically viable solutions.

10 Ideas for Future Research

Future research should aim to address the limitations of the current study by expanding to

larger, more diverse datasets. Longitudinal studies tracking patients over extended periods

would be particularly valuable in assessing the prognostic value of OCT features. Such studies

could help discern how structural changes in retinal layers correlate with disease progression and

35



EDSS scores over time, thus improving model interpretability and clinical utility. Incorporating

healthy control groups would provide critical comparative insights to enhance the robustness of

findings.

To overcome limitations related to manual feature selection and extraction, future work should

explore advanced AI methods, such as convolutional neural networks (CNNs) or other deep learn-

ing architectures. These approaches can automate segmentation and feature extraction processes,

potentially capturing subtler patterns in OCT images. Furthermore, integrating multi-modal

data combining clinical, imaging, and even genetic information could lead to more comprehen-

sive models. This holistic approach may significantly enhance diagnostic accuracy and predictive

power.
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Palomar, A. P. d., Cegoñino, J., Montoĺıo, A., Orduna, E., Vilades, E., Sebastián, B., Pablo,

L. E., and Garcia-Martin, E. (2019). Swept source optical coherence tomography to early

detect multiple sclerosis disease. the use of machine learning techniques. PLOS ONE, 14(5):1–

18.

Perry, J. and Fernandez, A. (2020). Eyeseg: Fast and efficient few-shot semantic segmentation.

In European Conference on Computer Vision (ECCV) Workshops.

Petzold, A., Chua, S. Y., Khawaja, A. P., Keane, P. A., Khaw, P. T., Reisman, C., Dhillon, B.,

Strouthidis, N. G., Foster, P. J., Patel, P. J., et al. (2021). Retinal asymmetry in multiple

sclerosis. Brain, 144(1):224–235.

Ramagopalan, S. V. and Sadovnick, A. D. (2011). Epidemiology of multiple sclerosis. Neurologic

clinics, 29(2):207–217.

Ranschaert, E. R., Morozov, S., and Algra, P. R. (2019). Artificial intelligence in medical

imaging: opportunities, applications and risks. Springer.

Rivas-Villar, D., Motschi, A. R., Pircher, M., Hitzenberger, C. K., Schranz, M., Roberts, P. K.,
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Appendix

Figure 6: Visualization of retinal regions and their corresponding OCT scans: (a) Background

image of the eye highlighting the macula and optic disc, (b) Optical Coherence Tomography

(OCT) scan of the macula, (c) OCT scan of the peripapillary region. Key layers and structures:

mRNFL – macular retinal nerve fiber layer, GCL – ganglion cell layer, IPL – inner plexiform

layer, INL – inner nuclear layer, ONL – outer nuclear layer, BM – Bruch’s membrane, pRNFL

– peripapillary retinal nerve fiber layer, PT – prelaminar tissue, LC – lamina cribrosa,

Source: Olbert and Struhal, 2022
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Code

The code for all the models fitted to the analysis can be found at the following GitHub repository:

MS-Diagnostics

Tests and feature Engineering

# Extract all numeric features

features_to_test <- setdiff(colnames(numeric_features_df), "EDSS_

Binary")

# Apply Shapiro -Wilk test to each feature

shapiro_results <- lapply(features_to_test , function(feature) {

test_result <- shapiro.test(numeric_features_df[[ feature ]])

list(

Feature = feature ,

P_Value = test_result$p.value ,
W_Statistic = test_result$statistic

)

})

# results

shapiro_results_df <- do.call(rbind , lapply(shapiro_results ,

function(result) {

data.frame(

Feature = result$Feature ,
P_Value = result$P_Value ,
W_Statistic = result$W_Statistic ,
Significance = ifelse(result$P_Value < 0.05, "Significant", "

Non -Significant"),

stringsAsFactors = FALSE

)

}))

# Feature Engineering for Twelve Sectors

left <- left %>%

mutate(

# Quadrant Averages (optic Disc)

Temporal_Quadrant = rowMeans(select(., `Temporal (

TwelveSectors)`, `TemporalSuperiorTemporal (TwelveSectors)`, `
TemporalInferiorTemporal (TwelveSectors)`), na.rm = TRUE),

Superior_Quadrant = rowMeans(select(., `Superior (

TwelveSectors)`, `SuperiorSuperiorTemporal (TwelveSectors)`, `
SuperiorSuperiorNasal (TwelveSectors) `), na.rm = TRUE),

Nasal_Quadrant = rowMeans(select(., `Nasal (TwelveSectors)`, `
NasalSuperiorNasal (TwelveSectors)`, `NasalInferiorNasal (
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TwelveSectors) `), na.rm = TRUE),

Inferior_Quadrant = rowMeans(select(., `Inferior (

TwelveSectors)`, `InferiorInferiorNasal (TwelveSectors)`, `
InferiorInferiorTemporal (TwelveSectors)`), na.rm = TRUE))

right <- right %>%

mutate(

# Quadrant Averages (optic Disc)

Temporal_Quadrant = rowMeans(select(., `Temporal (

TwelveSectors)`, `TemporalSuperiorTemporal (TwelveSectors)`, `
TemporalInferiorTemporal (TwelveSectors)`), na.rm = TRUE),

Superior_Quadrant = rowMeans(select(., `Superior (

TwelveSectors)`, `SuperiorSuperiorTemporal (TwelveSectors)`, `
SuperiorSuperiorNasal (TwelveSectors) `), na.rm = TRUE),

Nasal_Quadrant = rowMeans(select(., `Nasal (TwelveSectors)`, `
NasalSuperiorNasal (TwelveSectors)`, `NasalInferiorNasal (

TwelveSectors) `), na.rm = TRUE),

Inferior_Quadrant = rowMeans(select(., `Inferior (

TwelveSectors)`, `InferiorInferiorNasal (TwelveSectors)`, `
InferiorInferiorTemporal (TwelveSectors)`), na.rm = TRUE))

# Feature Engineering for Four Sectors

left <- left %>%

mutate(

# Asymmetry Features

Superior_Inferior_Asymmetry = `Superior (FourSectors)` - `
Inferior (FourSectors)`,
Temporal_Nasal_Asymmetry = `Temporal (FourSectors)` - `Nasal (

FourSectors) `)

right <- right %>%

mutate(

# Asymmetry Features

Superior_Inferior_Asymmetry = `Superior (FourSectors)` - `
Inferior (FourSectors)`,
Temporal_Nasal_Asymmetry = `Temporal (FourSectors)` - `Nasal (

FourSectors) `)

# Feature Engineering for ONH Parameters

left <- left %>%

mutate(

# Normalized Rim Area

Normalized_Rim_Area = `RimArea (ONHParameters)` / `DiscArea (

ONHParameters)`,
# Cup -to-Disc Ratios
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Cup_to_Disc_Area_Ratio = `CDArea (ONHParameters)` / `DiscArea
(ONHParameters)`,
# Rim -to-Cup Ratios

Rim_to_Cup_Volume_Ratio = `RimVolume (ONHParameters)` / `
CupVolume (ONHParameters) `)

right <- right %>%

mutate(

# Normalized Rim Area

Normalized_Rim_Area = `RimArea (ONHParameters)` / `DiscArea (

ONHParameters)`,
# Cup -to-Disc Ratios

Cup_to_Disc_Area_Ratio = `CDArea (ONHParameters)` / `DiscArea
(ONHParameters)`,
# Rim -to-Cup Ratios

Rim_to_Cup_Volume_Ratio = `RimVolume (ONHParameters)` / `
CupVolume (ONHParameters) `)

# Feature Engineering for GCL , IPL , and NFL Layers

left <- left %>%

mutate(

# Quadrant Variances for NFL_GCL_IPL

Temporal_NFL_GCL_IPL_Variance = apply(select(., `
ParaInferiorTemporal (NFL_GCL_IPL)`, `ParaSuperiorTemporal (NFL

_GCL_IPL) `), 1, var , na.rm = TRUE),

Nasal_NFL_GCL_IPL_Variance = apply(select(., `
ParaInferiorNasal (NFL_GCL_IPL)`, `ParaSuperiorNasal (NFL_GCL_

IPL)`), 1, var , na.rm = TRUE),

Superior_NFL_GCL_IPL_Variance = apply(select(., `
ParaSuperiorTemporal (NFL_GCL_IPL)`, `ParaSuperiorNasal (NFL_

GCL_IPL)`), 1, var , na.rm = TRUE),

Inferior_NFL_GCL_IPL_Variance = apply(select(., `
ParaInferiorTemporal (NFL_GCL_IPL)`, `ParaInferiorNasal (NFL_

GCL_IPL)`), 1, var , na.rm = TRUE))

right <- right %>%

mutate(

# Quadrant Variances for NFL_GCL_IPL

Temporal_NFL_GCL_IPL_Variance = apply(select(., `
ParaInferiorTemporal (NFL_GCL_IPL)`, `ParaSuperiorTemporal (NFL

_GCL_IPL) `), 1, var , na.rm = TRUE),

Nasal_NFL_GCL_IPL_Variance = apply(select(., `
ParaInferiorNasal (NFL_GCL_IPL)`, `ParaSuperiorNasal (NFL_GCL_

IPL)`), 1, var , na.rm = TRUE),
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Superior_NFL_GCL_IPL_Variance = apply(select(., `
ParaSuperiorTemporal (NFL_GCL_IPL)`, `ParaSuperiorNasal (NFL_

GCL_IPL)`), 1, var , na.rm = TRUE),

Inferior_NFL_GCL_IPL_Variance = apply(select(., `
ParaInferiorTemporal (NFL_GCL_IPL)`, `ParaInferiorNasal (NFL_

GCL_IPL)`), 1, var , na.rm = TRUE))

# Feature Engineering for ILM_RPE and ILM_BM

left <- left %>%

mutate(

# Total Volumes

Total_ILM_RPE_Volume = rowSums(select(., `ParaTemporal (ILM_

RPE)`, `PeriTemporal (ILM_RPE)`, `ParaNasal (ILM_RPE)`, `
PeriNasal (ILM_RPE)`,

`ParaSuperior (ILM_RPE)

`, `PeriSuperior (ILM_RPE)`, `ParaInferior (ILM_RPE)`, `
PeriInferior (ILM_RPE)`),

na.rm = TRUE),

Total_ILM_BM_Volume = rowSums(select(., `ParaTemporal (ILM_BM)

`, `PeriTemporal (ILM_BM)`, `ParaNasal (ILM_BM)`, `PeriNasal (

ILM_BM)`,
`ParaSuperior (ILM_BM)`,

`PeriSuperior (ILM_BM)`, `ParaInferior (ILM_BM)`, `PeriInferior
(ILM_BM) `),

na.rm = TRUE),

# Regional Ratios

Ratio_ILM_RPE_Central_Peripheral = `Central (ILM_RPE)` /

rowMeans(select(., `ParaTemporal (ILM_RPE)`, `PeriTemporal (ILM

_RPE)`, `ParaNasal (ILM_RPE)`, `PeriNasal (ILM_RPE)`, `
ParaSuperior (ILM_RPE)`, `PeriSuperior (ILM_RPE)`, `
ParaInferior (ILM_RPE)`, `PeriInferior (ILM_RPE)`), na.rm =

TRUE),

Ratio_ILM_BM_Para_Peri = rowMeans(select(., `ParaTemporal (ILM

_BM)`, `ParaNasal (ILM_BM)`, `ParaSuperior (ILM_BM)`, `
ParaInferior (ILM_BM)`),

na.rm = TRUE) /

rowMeans(select(., `PeriTemporal (ILM

_BM)`, `PeriNasal (ILM_BM)`, `PeriSuperior (ILM_BM)`, `
PeriInferior (ILM_BM)`),

na.rm = TRUE))

right <- right %>%

mutate(

# Total Volumes

Total_ILM_RPE_Volume = rowSums(select(., `ParaTemporal (ILM_

RPE)`, `PeriTemporal (ILM_RPE)`, `ParaNasal (ILM_RPE)`, `
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PeriNasal (ILM_RPE)`,
`ParaSuperior (ILM_RPE)

`, `PeriSuperior (ILM_RPE)`, `ParaInferior (ILM_RPE)`, `
PeriInferior (ILM_RPE)`),

na.rm = TRUE),

Total_ILM_BM_Volume = rowSums(select(., `ParaTemporal (ILM_BM)

`, `PeriTemporal (ILM_BM)`, `ParaNasal (ILM_BM)`, `PeriNasal (

ILM_BM)`,
`ParaSuperior (ILM_BM)`,

`PeriSuperior (ILM_BM)`, `ParaInferior (ILM_BM)`, `PeriInferior
(ILM_BM) `),

na.rm = TRUE),

# Regional Ratios

Ratio_ILM_RPE_Central_Peripheral = `Central (ILM_RPE)` /

rowMeans(select(., `ParaTemporal (ILM_RPE)`, `PeriTemporal (ILM

_RPE)`, `ParaNasal (ILM_RPE)`, `PeriNasal (ILM_RPE)`, `
ParaSuperior (ILM_RPE)`, `PeriSuperior (ILM_RPE)`, `
ParaInferior (ILM_RPE)`, `PeriInferior (ILM_RPE)`), na.rm =

TRUE),

Ratio_ILM_BM_Para_Peri = rowMeans(select(., `ParaTemporal (ILM

_BM)`, `ParaNasal (ILM_BM)`, `ParaSuperior (ILM_BM)`, `
ParaInferior (ILM_BM)`),

na.rm = TRUE) /

rowMeans(select(., `PeriTemporal (ILM

_BM)`, `PeriNasal (ILM_BM)`, `PeriSuperior (ILM_BM)`, `
PeriInferior (ILM_BM)`),

na.rm = TRUE))

left <- left %>%

mutate(

# Normalized TSNIT Average

Normalized_TSNIT_Average = `TSNITAverage (RNFLParameters)` / `
DiscArea (ONHParameters)`,
# TSNIT Coefficient of Variation

TSNIT_CoV = `StandardDeviation (RNFLParameters)` / `
TSNITAverage (RNFLParameters)`)

right <- right %>%

mutate(

# Normalized TSNIT Average

Normalized_TSNIT_Average = `TSNITAverage (RNFLParameters)` / `
DiscArea (ONHParameters)`,
# TSNIT Coefficient of Variation

TSNIT_CoV = `StandardDeviation (RNFLParameters)` / `
TSNITAverage (RNFLParameters)`)
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