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1 Abstract

Background and motivation: Physical activity (PA) is an important factor for maintaining

health and well-being, especially in older adults. Understanding patterns of PA can help in

designing better interventions and monitoring strategies. With the increasing availability of

wearable devices and mobile applications, detailed and continuous data on daily activity and

related factors can be collected longitudinally. This thesis aims to apply machine learning

methods to such data to predict PA patterns and identify key factors influencing these behaviors

among community-dwelling older adults.

Objectives: The general aim of this thesis is to investigate the application of machine learning

models in digital phenotyping with two main objectives. The two objectives are: (1) To identify

important predictors of physical activity, mild depression status, and risk of fall using cross-

sectional data. (2) To develop and evaluate predictive models for forecasting individual PA (step

count) and determine the minimal window size required for accurate next-day PA predictions.

Materials and methods: The study utilized both cross-sectional and longitudinal datasets,

integrating data from activity tracker devices and ecological momentary assessments (EMA).

Cross-sectional analysis involved features obtained from questionnaires, physical tests, and self-

reported variables to predict depression status, risk of fall, and PA levels using machine learning

models like LightGBM, Elastic Net, and Linear or Logistic regression. Longitudinal analysis

focused on forecasting step counts using time series data from wearable devices, employing models

such as LightGBM, Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM).

Key findings: The most important predictors for the PA levels were items from the exercise

self-efficacy scale (ESES) and exercise identity scale (EIS). In predicting fall risk, the key factor

was the quadriceps score of the right leg. The primary predictor for mild depression status was

a specific item from the International Physical Activity Questionnaire (IPAQ). Additionally,

oxygen saturation (post-test) emerged as the most predictive variable when considering the

IPAQ as a continuous measurement. In the longitudinal analysis, using a seven-day sequence of

step count data provided the best performance for forecasting physical activity for the entire

next day (comprising four time segments). In contrast, a six-day sequence was found to be

optimal when predicting the number of steps for a single future time segment.

Limitations and future work:

Limitations of this thesis include reliance on selecting a single best model without leveraging

stacking approaches, potential suboptimal temporal pattern learning by the LightGBM model,

and limited hyperparameter tuning in the longitudinal analysis. Future work should explore

advanced model tuning, stacking methods, and additional models that may better capture

complex temporal dependencies. Also, it is recommended to collect more data by incorporating

additional features and increasing the number of participants.

Conclusion: This thesis examined machine and deep learning models to address two objectives

by using cross-sectional data to identify factors associated with PA levels in older adults, showing

that self-efficacy was an important predictor. However, the overall prediction performance for

PA and related outcomes was limited. In the longitudinal analysis, models were developed to

predict future step counts using past activity data. It was found that a seven-day history of

step counts provided the best next-day predictions, while features from EMA did not improve
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these predictions. Although some models were able to predict the step count accurately for

some individuals, differences in activity patterns, methodological drawbacks, and the size of the

dataset limited the ability to generalize the results for other participants. Further work with

additional methods, larger and more diverse data is needed to improve model performance and

support personalized health interventions.
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2 Introduction

2.1 Background and motivation

2.1.1 Physical activity in older adults

According to the World Health Organization (WHO), the world population aged over 60 years

will have doubled in number by 2050, with an estimated total of 2 billion people [1]. Aging

is associated with some physiological changes, with reduced aerobic capacity (indicated by

declining VO2max in inactive individuals) and sarcopenia (loss of skeletal muscle mass, strength,

and function), which are crucial with respect to quality of life, functional independence, and

mortality. These conditions can be exacerbated by physical inactivity [2]. In the broad definition

of Physical activity (PA), it includes formal exercise, sports, and physical efforts performed as

part of daily tasks, occupation, leisure, or active transportation [3].

On a global scale, physical inactivity, which is defined by the WHO as engaging in less than 150

to 300 minutes of moderate-intensity or 75 to 150 minutes of vigorous-intensity physical activity

per week, remains prevalent in older adult populations. Specifically, 19–25% of individuals aged

60–69 years and 42–59% of those aged 80 years and older do not meet the PA guidelines for

aerobic activity [4]. This can be associated with a rise in noncommunicable diseases such as

cardiovascular disease, type 2 diabetes, stroke, and dementia [3].

Regular physical activity in older adults is associated with some health benefits, including

improvements in physical function and enhanced mental and cognitive well-being [3]. Also,

longitudinal studies suggest a reduction of risk of dementia, particularly Alzheimer’s disease, for

physically active individuals [2].

Furthermore, PA has a positive effect on functional independence in older adults, even for those

individuals who are at risk of falls [3]. For example, structured exercise programs have been

shown to have substantial positive effects on falls, functional ability, and overall capacity [4].

Moreover, multicomponent exercises can further improve these outcomes. [5].

To summarize, many studies have consistently concluded the beneficial effect of PA on health in

older adults. It is estimated that 3.2 million deaths per year are due to physical inactivity. For

this reason, sometimes PA is regarded as medicine for older adults [5].

2.1.2 Digital phenotyping

Digital phenotyping is an emerging approach to health data collection that uses digital tools like

smartphones and wearables to passively and continuously monitor physiological, behavioral, and

psychological metrics. By using this approach, researchers can build models over time for PA

patterns [6].

According to a scoping review by Lee et al. [6], digital phenotyping has the potential for early

intervention and prevention of serious medical conditions. This is particularly important for

aging populations, who often struggle with recall bias when self-reporting PA. [6]. Daniels

et al. [7] found that integrating ecological momentary assessment (EMA), wearable devices,

and temporal frameworks strengthens the evaluation of PA. Additionally, their work indicated

that low-intensity PA was influenced by motivation and self-efficacy, showing the importance of

real-time contextual data in behavioral health assessments.
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According to Song et al. [8], digital behavioral indicators like sleep behavior, PA, and heart

rate variability can be considered as predictors for same-day and next-day depressive symptoms

among socially at-risk older individuals who live in their usual environments. Furthermore,

these technologies also support the daily individualized feedback on the health status of older

individuals, which can enhance participation and contribute to positive health outcomes.

The clinical relevance of digital phenotyping stems from its alignment with the P4 medicine

principles: Predictive, Preventive, Personalized, and Participatory care. This is useful in

supporting early interventions in disease management, when conventional methods may be

limited in detecting dynamic behavioral changes across diverse time and settings due to limited

evaluations [9].

2.2 Importance of predicting physical activity

In recent years, machine learning–based predictive modeling has played a vital role in PA research

by detecting activity levels, predicting adherence to PA goals, and producing individualized

feedback, which are important to keep a sustained activity in aging populations [10] [11] . Deep

learning- and machine learning-driven digital phenotyping methods offer promising new ways to

capture within- and between-subject variation in physical activity, particularly when conventional

methods like questionnaires are limited by recall bias or low temporal detail [12].

2.3 Ethical thinking, societal relevance, and stakeholder awareness

This thesis involves the analysis of existing datasets collected as part of ongoing research studies.

The data used in the studies were anonymized before being shared with the author. Both the

cross-sectional and longitudinal datasets were shared under ethical and institutional approval.

The longitudinal data, which was collected using Garmin devices and the SEMA3 app, was

approved by the Ethical Committee at Hasselt University.

This thesis aims to improve the understanding of physical activity behaviors in older adults,

which can support the development of effective health interventions and policies to promote

healthy aging. The findings may assist healthcare providers and policymakers in designing better

strategies to encourage activity and prevent related health issues. Additionally, technology

developers, such as companies developing the Garmin devices and the SEMA3 app, may benefit

from the insights generated to enhance their products for more accurate monitoring and user

engagement.

2.4 Research objectives for predicting physical activity in older adults

The general aim of this thesis is to explore how machine learning and deep learning models

can be applied within the context of digital phenotyping to better understand and predict PA

behaviors in older adults. Two distinct datasets are utilized for this aim: a cross-sectional

dataset consisting of demographic, clinical, and psychological variables from older participants,

and a longitudinal dataset combining step count data from wearable devices (Garmin) with

EMA collected over two weeks.

• Objective 1: The cross-sectional analysis

To identify baseline predictive factors of PA, risk of falling based on fall history in the
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past six months, and mild depression in a cross-sectional dataset of older adults using

Logistic Regression, Linear Regression, regularized regression (Elastic Net), and tree-based

gradient boosting (LightGBM). This objective focuses on between-subject variability in

self-reported PA and its associations with demographic and other reported factors.

• Objective 2: The longitudinal analysis

To develop time-series predictive models of step count using longitudinal Garmin wearable

data, both alone and in combination with EMA variables. This objective leverages

deep learning methods such as Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU) networks, and machine learning approaches such as Light Gradient-Boosting

Machine (LightGBM) to explore within-subject temporal dynamics and assess whether

contextual and psychological EMA inputs improve short-term PA predictions. In addition,

this also aims to explore the minimal amount of period data (optimal time window) required

to make reliable next-day predictions of PA.

5



3 Materials and Methods

3.1 Study Design and Participants

This thesis focuses on the analysis of data that were collected from the following study. The study

used a two-week prospective observational design to gather detailed information on PA behaviors

and their influencing factors. The study was registered at Clinical Trials.gov (NCT06094374) on

17 October 2023 and approved by the Ethical Committee of Hasselt University (B1152023000011).

The full study protocol detailing recruitment strategies, data collection procedures, and analytical

methods has been presented separately [13]. Informed consent was obtained from all subjects

before participation. The cross-sectional part involved self-reported questionnaires to collect

demographic and contextual data, as well as clinical tests to assess relevant health and functional

status. Additionally, longitudinal data were collected through EMA and continuous monitoring

using wearable devices. The study took place in a natural setting to ensure that participants could

carry out their usual daily activities without disruption (ecological assessment). Participants

were community-dwelling older adults aged 65 years and above, living independently either in

their own homes or serviced apartments [7].

3.2 Data Description

3.2.1 Cross-sectional data

To collect the cross-sectional data, participants were asked to fill out questionnaires and

also participated in a clinical evaluation. The questions encompassed various psychological

and behavioral domains, including quality of life (WHOQOL), physical activity (IPAQ as a

continuous measurement), depression (geriatric depression scale or GDS category), as well as

sociodemographic information such as age, sex, marital status, and living situation.

Clinical measures included objective tests like the 6-minute walking distance test and body mass

index (BMI). In addition to these, a comprehensive set of variables was collected encompassing

lifestyle factors (e.g., smoking status, alcohol consumption, voluntary work), health indicators

(e.g., blood pressure, heart rate, pain score, health score), mobility and physical capability

measures (e.g., hand and leg muscle strength, balance tests), cognitive function tests (e.g., memory

and reaction time scores), psychological scales (e.g., perceived stress scale (PSS), loneliness scale,

goal attainment scale (GAS)), exercise motivation (e.g., exercise identity scale (EIS), exercise

self-efficacy scale (ESES), behavioral regulation in exercise questionnaire (BREQ)), and digital

health readiness (e.g., digital health readiness questionnaire (DHRQ) subscales). In total, 308

variables were systematically collected per participant, providing a rich multidimensional dataset

capturing the physical, psychological, social, and contextual factors relevant to aging and digital

phenotyping.

3.2.2 Longitudinal data

During the 14-day study period, participants’ daily physical activity (step counts) was continuously

recorded using the Garmin Vivosmart 5® activity tracker (Garmin International, Olathe, KS).

Each participant had 56 time points (4 timesteps per day over 14 days), which corresponds to

three-hour segments (e.g., 8:00–11:00, 12:00–15:00, 15:00–18:00, and 18:00–23:00). At each time

segment or timestep, the number of steps was aggregated.
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With regards to the EMA variables, participants used the SEMA3 smartphone application

(Melbourne eResearch Group, Melbourne, Australia) and received four random prompts each

day at times that were evenly distributed across the same four time intervals as for the PA

recordings: 8:00–11:00, 12:00–15:00, 15:00–18:00, and 18:00–23:00.

At each prompt, participants were asked to rate five main areas: physical well-being, mental

well-being, motivation, efficacy, and context. The assessments included questions about self-rated

health, physical symptoms such as muscle stiffness, pain, dizziness, shortness of breath, and

fatigue, as well as contextual factors and overall quality of life (QoL). To reduce response bias

and improve data quality, the order of the questions was randomized [7].

3.3 Data preprocessing

3.3.1 Cross-sectional data

Variables were categorized based on their number of unique values. Specifically, variables with

five or fewer unique values were treated as categorical, and they were dummy-coded before model

training. In contrast, variables with six or more unique values were considered continuous and

were treated as numerical predictors for model training.

Variables exhibiting very low or near-zero variance, characterized by having the same value in

the majority of observations, were excluded from the analysis. This step was taken because

such variables generally contribute little to predictive performance and can potentially create

problems during model training [14].

All the cross-sectional analysis was done using R version 4.3.3.

3.3.2 Longitudinal data

The EMA and step count data were aligned using participant ID, date, and time segment. The

resulting dataset captured within-subject temporal variation in physical activity and contextual

or psychological conditions, with a focus on predicting the number of steps in the following day

and finding the minimal time window for reliable predictions. In the longitudinal dataset, some

participants had measurements for only a few days with large gaps between them, resulting in a

high proportion of missing data. These participants were excluded from the analysis to ensure

data completeness. Specifically, participants with more than 30% missing values in the outcome

variable and without complete measurements over the 14-day period were removed. For those

with more than 14 days of data, only the first 14 days were used to allow for a fair comparison.

After applying these criteria, a total of 100 participants were included in the analysis.

The longitudinal analysis was conducted using Python version 3.10.18.

3.3.3 Missing data

To handle missing values in some features in the cross-sectional dataset, multiple imputations

using the mice package in R were used. The method of imputation relied on the distribution of

different variables. For categorical variables with more than two unique values, Proportional

Odds Logistic Regression (polr) was used. Logistic Regression (logreg) was utilized to impute

the binary variables, and Predictive Mean Matching (pmm) was used to impute the continuous

variables. Ten imputations were performed with ten iterations to generate ten complete datasets.
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For models that relied on the imputed datasets, such as Logistic Regression and Elastic Net,

each complete dataset had its own coefficients, which were then used to generate the predictions

on the test data, producing ten predicted values. These predictions were then averaged to obtain

the final predicted value from the test set.

3.4 Predictive modeling for the cross-sectional data

3.4.1 Linear and logistic regression

Linear and Logistic Regression models were used to predict four outcomes in the cross-sectional

dataset. Risk of fall, GDS category (mild depression status), and IPAQ category were binary

outcomes, while IPAQ as a continuous measurement (IPAQ MET minutes/week) was a continuous

outcome. Thus, linear regression was used for predicting the continuous outcome, while the

binary outcomes were predicted using logistic regression models.

Linear Regression

Linear Regression is a statistical method used for predicting a continuous outcome. The general

form of a multiple linear regression model, as formulated by [15], is:

Yi = β0 + β1X1i + β2X2i + · · ·+ βpXpi + εi (Eq. 1)

For the i-th participant, Yi represents the continuous measurement of IPAQ, X1i, X2i, ..., Xpi

are the predictors values for the i-th subject in the cross-sectional dataset, β0 is the intercept

and β1, ..., βp are the coefficients for each predictor, and εi is the error term.

To estimate the coefficients, the least squares method was used, which minimizes the residual

sum of squares (RSS):

RSS =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

yi − β0 −
p∑

j=1

βjxij

2

(Eq. 2)

This method yields a closed-form solution for β = (β0, . . . , βp)
T :

β̂ = (XTX)−1XTy (Eq. 3)

where β̂ is the vector of estimated coeffcients, X is the design matrix and y is the vector of

outcomes [15].

Logistic Regression

Logistic Regression is used for binary classification problems, where the outcome is binary (takes

the values of 0 for failure and 1 for success). In the cross-sectional dataset, three outcomes of

risk of fall, GDS category, and IPAQ category were modeled using Logistic Regression. Logistic

regression models use log-odds of success vs failure as outcome, and use the logit link function,

and they are formulated by [15] as:
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log

(
P (Yi = 1 | Xi)

1− P (Yi = 1 | Xi)

)
= β0 + β1X1i + β2X2i + · · ·+ βpXpi (Eq. 4)

which gives the logistic function:

P (Yi = 1 | Xi) =
e(β0+β1X1i+β2X2i+···+βpXpi)

1 + e(β0+β1X1i+β2X2i+···+βpXpi)
(Eq. 5)

Where P (Yi = 1 | Xi) is the probability of success for the i-th subject. Model coefficients are

estimated using maximum likelihood estimation (MLE), which looks for the set of parameters

β that maximizes the likelihood of observing the data. The likelihood for n independent

observations is:

L(β) =

n∏
i=1

(
1

1 + e−XT
i β

)yi (
1− 1

1 + e−XT
i β

)1−yi

(Eq. 6)

This is solved using an iterative optimization algorithm like Newton-Raphson.

Given the large number of predictors, the top 10 to 30 predictors were selected based on

information gain for fitting the models.

As for variables with high pairwise correlations of 60% or more, only one was selected while the

others were excluded from the analysis.

3.4.2 Elastic Net

The Elastic Net is a regularization and variable selection technique that can overcome some

of the challenges encountered by traditional penalized regression methods, especially in high-

dimensional settings where the number of predictors p exceeds the number of observations n.

This method is suited for datasets like the cross-sectional data, which consists of 108 observations

and 308 predictors. Since many of these predictors are likely to be highly correlated, the Elastic

Net is an appropriate method to address this issue.

Elastic Net was developed to do both shrinkage and automatic variable selection, combining the

advantages of LASSO and ridge regression. LASSO uses an ℓ1−norm penalty to support sparsity

by setting some coefficients exactly equal to zero, while ridge regression uses an ℓ2−norm penalty

to shrink the size of all coefficients, particularly for predictors with high correlation. Following

the formulation by Hastie et al. [16], the Elastic Net’s objective function for Linear Regression

can be expressed as:

(β̂0, β̂) = argmin
β0,β

{
1

2n

n∑
i=1

(yi − β0 −X⊤
i β)

2 + λ

(
(1− α)

1

2
∥β∥22 + α∥β∥1

)}
(Eq. 7)

where:
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• n: The number of samples or participants in the cross-sectional data.

• β0: The model intercept.

• β: The estimated vector of regression coefficients of the predictors.

• X⊤
i : The p-dimentional vector representing the predictors’ values for the i-th sample.

• yi: The observed continuous outcome for the i-th individual.

• λ: The regularization parameter that controls the overall degree of penalty. λ ≥ 0.

• α: The mixing parameter:

– α = 1: corresponds to LASSO (pure ℓ1 regularization).

– α = 0: corresponds to ridge regression (pure ℓ2 regularization).

– 0 < α < 1: corresponds to Elastic Net.

• ∥β||1: The ℓ1 norm of the vector of coefficients β, defined as
∑p

j=1 |βj |. This supports

sparsity by shrinking some coefficients exactly to zero.

• ∥β∥22: The squared L2 norm of β, defined as
∑p

j=1 β
2
j . This promotes small but nonzero

values of the coefficients to stabilize the model in the presence of multicollinearity [16].

The regularization parameter λ and the mixing parameter α were optimized through cross-

validation to select the values that minimize prediction errors.

The Elastic Net was used for regression (for the continuous measurement of IPAQ) and

classification (GDS category, risk of fall, and IPAQ category). For the latter, the previous

framework can be extended to Generalized Linear Models (GLMs) by replacing the residual sum

of squares with a negative log-likelihood function as formulated by Hastie et al. [16]:

(β̂0, β̂) = argmin
β0,β

{
− 1

n

n∑
i=1

ℓ
(
yi, β0 +XT

i β
)
+ λ

(
(1− α)

1

2
∥β∥22 + α∥β∥1

)}
(Eq. 8)

where yi is the observed categorical outcome for the i-th participant, and ℓ
(
yi, β0 +XT

i β
)
is the

log-likelihood term for subject i.

3.4.3 Light Gradient Boosting

Light Gradient Boosting (LightGBM, also abbreviated as LGBM) is a gradient boosting

framework that uses tree-based learning algorithms designed for efficient training, particularly

suitable for complex structured data, such as the cross-sectional dataset.

LightGBM builds an ensemble of decision trees sequentially, where each new tree is added to

correct the residuals or errors made by the previous trees. According to [15], the general formula

for the boosting method is:

f̂(x) =
B∑
b=1

rfb(x). (Eq. 9)
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where f̂(x) is the predicted value of the b-th tree, B is the total number of trees, and r is the

learning rate that regulates the learning process of the model.

Unlike other gradient boosting methods, such as Extreme Gradient Boosting (XGBoost),

LightGBM employs a leaf-wise tree growth strategy with depth constraints, which often leads to

improved performance [17].

Given the presence of features with missing values in the cross-sectional dataset, LightGBM uses

a sparsity-aware split algorithm. It learns the directions for missing values, and it utilizes them

without imputation during the building of trees.

To help with the classification and the regression problem in the cross-sectional dataset, LightGBM

was chosen alongside Elastic Net due to its ability to capture complex relationships between the

predictors and the outcomes.

There are several parameters that need to be tuned for the LightGBM (LGBM) model:

• learning rate (learn rate): Controls the rate r at which the model learns.

• n estimators (trees): The number of trees (boosting rounds) B to build.

• max depth (tree depth) The maximum depth of a tree.

• min child samples (min n) The minimum number of data points needed to create a leaf.

• min split gain (loss reduction) Minimum loss reduction needed to make a split at a tree

node.

• subsample (sample size) The subsampling rate, which is the fraction of the training data

sampled for each tree.

• reg alpha (lambda l1) L1 regularization applied to leaf weights to promote sparsity..

• reg lambda (lambda l2) L2 regularization applied to leaf weights to help decrease model

complexity.

• num leaves (num leaves) The maximum number of leaves permitted in a tree.

3.4.4 Metrics for the cross-sectional data analysis

The cross-sectional dataset was split into a train (70%) and a test (30%) set using a stratified

splitting approach. Stratification splitting ensures that the class distribution in each set is

similar to that in the complete dataset. This may avoid bias that can arise in the estimation of

the performance if one class is under- or over-represented in either set. Next, stratified k-fold

cross-validation (CV) on the training set for model hyperparameter tuning and selection was

performed. This is done to keep the class distribution similar in each fold. In K-fold CV, k-1

folds are used for training, and the remaining fold (hold-out set) is used for validation. This

ensures that every sample is used for both training and validation. It also reduces overfitting and

makes the model generalize better to new unseen samples [18]. Stratified splitting and stratified

CV help to preserve the class distribution throughout the process of training and validation,

which improves the generalizability of the model to unseen new data.

To calculate the CV for a metric during training, CV(k) =
1
k

∑k
i=1Xi, where X can be recall,

specificity, precision, Precision-Recall Area Under the Curve (PR AUC), etc.
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Hyperparameter tuning

Bayesian optimization is used since it is more efficient than the full grid search approach, and it

typically offers better optimized parameters than random search. The method involves treating

the performance of a model as an unknown function that needs to be optimized. It constructs a

probabilistic model (Gaussian process) to predict better settings or combinations of parameter

values based on previous observations. The model takes into account uncertainty and also focuses

on exploiting more promising areas in the parameter space. At each step, it chooses the next

set of parameters by maximizing a criterion (e.g., expected improvement) by using previous

information to make better choices [19].

Model comparisons

Three different models were fitted separately for the binary and continuous outcomes. This

approach allowed for the comparison of model performance using various evaluation metrics to

determine the model with the best prediction performance.

A variety of metrics were used that were selected based on the distribution of each outcome

variable. These served to assess the performance of the models and compare different models.

For the IPAQ as a continuous measurement, Mean Absolute Error (MAE) was one of the metrics

used. MAE is calculated as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (Eq. 10)

where it measures the absolute difference between the predicted value ŷi and the true observed

value yi, and taking the average of them yields MAE.

Median Absolute Error (MedAE) was also used to evaluate the regression models, which can be

calculated as follows:

MedAE = median ( |yi − ŷi| ) (Eq. 11)

where i = 1, ..., n. MedAE is a better metric to use than MAE for the evaluation of models when

an outcome is skewed, since it is less sensitive to outlying observations [20].

For binary classification, each prediction can fall into one of four categories when it is compared

to the true value or label. A true positive (TP) is when the model correctly predicts a positive

outcome, while a true negative (TN) occurs when a negative outcome is predicted correctly. In

contrast, a false positive (FP) occurs when a model falsely predicts a positive value for a negative

label, and a false negative (FN) occurs when a positive label is incorrectly classified as negative.

These four categories help to calculate the performance metrics for binary classifications. A 2x2

confusion matrix is shown in table 1, which can provide a good way for measuring the prediction

performance, where the diagonal entries represent the correct prediction (TP and TN), while the

off-diagonal elements show the number of misclassifications made by the model (FP and FN).

The metrics that were used in the classification, as formulated by [21]:

• Recall (Sensitivity) = TP
TP+FN

• Specificity = TN
TN+FP
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• Precision = TP
TP+FP

• Accuracy = TP+TN
TP+TN+FP+FN

• Balanced accuracy = Sensitivity+Specificity
2

• F1 score = 2× Precision×Recall
Precision+Recall

• Area Under Precision-Recall Curve (PR AUC): The Area Under the Precision-Recall Curve

(PR AUC) is calculated by measuring the area under the curve that plots precision against

recall across all possible classification thresholds. PR AUC can provide a more informative

assessment of model performance when dealing with imbalanced datasets. In such cases,

PR AUC is often preferred over the Area Under the Receiver Operating Characteristic

Curve (ROC AUC), because ROC AUC can be misleading by giving an overly optimistic

evaluation when the model misclassifies most of the minority class instances [22]. Therefore,

PR AUC was used as the primary evaluation metric for selecting the best classification

model.

Truth

Prediction Yes (positive) No (negative)

Yes (positive) TP FP

No (negative) FN TN

Table 1: Structure of a confusion matrix used in binary classification

Class imbalance

Class imbalance can negatively impact model training by reducing the ability to identify minority

classes accurately. To address this, class weights were applied during training to assign higher

importance to minority class observations and improve model performance.

3.5 Modeling for the longitudinal data

3.5.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of Artificial Neural Networks (ANNs) developed

to model sequential data, making them suitable for forecasting physical activity in sequential

data. In contrast to feedforward neural networks, RNNs use information from previous time

steps, creating a memory of past input that helps the network to learn temporal dependencies.

The formulations used in the following description of the RNN architecture follow the ones

presented in [23].

RNN architecture

In a simple RNN, input data is introduced into the network model sequentially, being processed

one timestep at a time. To compute the current hidden state ht at time t, the network takes an

input vector xt and combines it with the previous hidden state ht−1 from the previous time step.

ht and the output yt are computed as follows:

13



ht = f
(
W h

i (xt + bi) +W h
h (ht−1 + bh)

)
(Eq. 12)

yt = g (W o
h(ht + bo)) (Eq. 13)

where W h
i , W

h
h , and W

o
h are the input, recurrent, and output weight matrices. bi, bh, and bo

are the respective bias vectors. f(·) is an activation function (e.g., ReLU). g(·) is often a linear

transformation for regression [23].

Through this recursive procedure, RNNs can capture the dependencies between different time

steps in a sequence.

Figure 1: Simple structure of RNN

Figure 1 shows the architecture of an RNN. There are three primary layers: the input layer, the

hidden layer, and the output layer.

• Input layer: x represents the input data at the current time step t, which could be the

number of steps, or the EMA variables after normalization.

• Hidden layer: the input passes through the input weight matrix Wh
i , which projects it

into the hidden state. At the same time, the recurrent weight matrix Wh
h is multiplied

with the previous hidden state h[t− 1]. They are then combined with the bias terms and

introduced to an activation function such as ReLU , to get the current hidden state h[t].

This enables the network to retain information from previous steps.

• Output layer: The output weight matrix Wo
h transforms the current hidden state h[t] to

produce the output y[t]. This output can be the predicted number of steps.

This structure allows the RNN to learn sequential patterns in longitudinal data. The same

parameter weights (and biases) are used at each time step to make the model generalize across a

variety of temporal positions.

However, a simple RNN struggles to learn long-term dependencies due to the vanishing gradient

problem. For this purpose, recurrent layers such as Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU) are used to address this issue.

LSTM

LSTM networks are a type of RNN that were developed to address some limitations that were

encountered in simple RNNs in capturing long-term dependencies. They do not suffer from

vanishing gradient during training, since they have gated methods that enable the model to

retain or discard information throughout long sequences, which improves memory control [23].

• ft = σ(Wfxt +Ufht−1 + bf )
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• it = σ(Wixt +Uiht−1 + bi)

• ot = σ(Woxt +Uoht−1 + bo)

• C̃t = g1(Wcxt +Ucht−1 + bc)

• Ct = (ft ×Ct + it × C̃t)

• ht = g2(Ct)× ot

where xt is the input vector at time t. ft, it, and ot are forget, input, and output gates,

respectively. σ(·) is a sigmoid activation function (σ(x) = 1
1+e−x ), Wf , Wi, Wc, Wo, Uf ,

Ui, Uc, and Uo are weight matrices. bf , bi, bc, and bo are bias vectors. g1(·) and g2(·) are
non-linear activation functions.

Each component in the cells has a unique role in regulating the information flow. The forget

gate controls how much information to remove from the previous state Ct−1. The input gate

regulates the amount of influence that the new candidate C̃t should have on the new current

state Ct. To generate the hidden state ht, LSTM applies a nonlinear transformation to the

current state and filters it by using the output gate, which controls what information is passed

next.

GRU

GRU is a variant of the LSTM that models the temporal dependencies in sequential data. Unlike

LSTM, GRU merges the forget and input gates into a single update gate, which regulates the

amount of information to forget or remember. As a result, it has fewer parameters (weights) to

estimate, making its training faster than the LSTM architecture. The update gate regulates how

much information in the cell should be updated by the candidate state. Additionally, there is a

reset gate that controls how much the previous state should influence the current state.

• zt = σ(Wzxt +Uzht−1 + bz)

• rt = σ(Wrxt +Urht−1 + br)

• h̃t = g(Whxt + rt ×Uhht−1 + bh)

• ht = (1− zt)× ht−1 + zt × h̃t

where zt is the update gate and rt is the reset gate. Wz, Wr, Wh, Uz, Ur, and Uh are weight

matrices. bz, br, and bh are the bias terms. h̃t and ht are the candidate state and the hidden

state, respectively. Figure 2 shows the cells of both LSTM and GRU networks.
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Figure 2: Architectural comparison of LSTM (left) and GRU (right) cells

3.5.2 LightGBM for time series forecasting

LightGBM was applied to time series forecasting in the longitudinal dataset by using lagged

features as inputs. This approach has been shown to be valid for forecasting, provided that

appropriate feature engineering is performed [24].

Lagged feature construction for LightGBM forecasting

To predict the number of steps at a given time t, lagged versions of the outcome variable were

constructed as features from previous time steps. For example, if the current time is t4, then the

model uses the values at t3, t2, and t1 as input features.

Table 2: Example of lagged feature construction (single timestep)

Time Steps (Number of steps) Lag 1 Lag 2 Lag 3

t1 1200 — — —

t2 1500 1200 — —

t3 1350 1500 1200 —

t4 1700 1350 1500 1200

t5 1600 1700 1350 1500

Other longitudinal predictors, such as the EMA variables (e.g., motivation, physical well-being),

were lagged similarly.

3.5.3 Training and parameter estimation:

The participants in the longitudinal dataset were randomly divided into training (70%), validation

(10%), and testing (20%) sets.

To train the model to forecast the continuous outcome of step count, the predicted values are

compared with the actual or target values, which helps to construct a loss function. The main

parameters (weights and biases) are estimated by minimizing the Mean Absolute Error (MAE)

loss function:
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MAE(y, y∗) =
1

T

T∑
t=1

|yt − y∗t | (Eq. 14)

Where T is the sequence length, y∗t is the target value at time t, and yt is the predicted value of

the step count.

The MedAE was used as an evaluation metric because it is less sensitive to outlying observations

compared to other evaluation metrics:

MedAE(y, y∗) = median
|yt−y∗t |

(Eq. 15)

where t = 1, ..., T

Model comparison

To determine the minimum number of days needed as input to predict the physical activity

for the following day (consisting of 4 timesteps), the predictive performance of several model

configurations for forecasting step count was compared. In total, 6 combinations were tested:

LSTM with EMA variables (LSTM Steps + EMA), LSTM without EMA features (LSTM Steps

only), GRU with EMA variables (GRU Steps + EMA), GRU without EMA variables (GRU

Steps only), LightGBM with EMA features (LGBM Steps + EMA), and LightGBM using only

lagged features derived from the step count variable (LGBM Steps only).

The primary metric used to evaluate the models was the MedAE divided by the median of the

test data (MedAE/Median). This metric is scale-invariant because it accounts for the scale of

the data, and lower values indicate better model performance.

Backpropagation Through Time

To train the RNN and update the values of weights, gradients of the loss functions with respect

to the parameters are computed using Backpropagation Through Time (BPTT). In this method,

the network is unrolled over time, and propagation is performed across the time steps.

The model parameters were optimized using the Adam optimizer, which is an adaptive learning

method that is based on first-order and second-order moments. One advantage of Adam is

that it adaptively adjusts the learning rate for each parameter, and this often leads to better

performance [23].

Success criterion

Model evaluation was performed by forecasting short-term PA, measured as the number of steps

at the next time point, based on a lagged sequence of previous activity. For each participant,

the predictions were assessed using the percentage error, calculated as:

Percentage error at time i =

{ |ŷi−yi|
yi

, if yi ̸= 0
|ŷi−yi|

1 , if yi = 0
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where ŷi is the predicted value at timestep i and yi is the actual value at the same timestep. If

the actual value is zero, the denominator is set to 1 to avoid division by zero. A single prediction

at a timestep i is considered correct if this percentage error is less than or equal to 0.10. A

successful prediction for a particular participant is then defined as having at least 0.80 of their

predicted values with percentage errors of 0.10 or less.

3.6 Outcome transformation:

To improve the training and performance of the regression models, the outcome variable in the

longitudinal analysis was transformed using the Yeo-Johnson transformation, which helps to

reduce skewness in highly skewed data [25]. This transformed outcome was used during the model

training process. After obtaining predictions from the models, the values were converted back to

the original scale by applying the inverse transformation, using the parameter λ optimized from

the training data.

The Yeo-Johnson transformation of a continuous outcome (y) is:

ψ(λ, y) =



(y+1)λ−1
λ if λ ̸= 0, y ≥ 0

log(y + 1) if λ = 0, y ≥ 0
−[(−y+1)2−λ−1]

2−λ if λ ̸= 2, y < 0

− log(−y + 1) if λ = 2, y < 0

(Eq. 16)
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4 Results

4.1 Cross-sectional Analysis

4.1.1 Exploration

Table 3 shows summary statistics of some of the continuous variables according to their

distribution, including the mean, standard deviation (SD), median, and 25th and 75th percentiles

in the cross-sectional dataset. The mean age of the participants was 70.1 years (SD = 4.59),

and the median BMI was 26.3 (23; 28.4). For physical activity as a continuous measurement,

participants reported a median activity of 5143.50 MET-minutes/week (2642; 9973.3).

The table also shows the summary of categorical variables. The majority of the participants

were married (72.2%), they were living with a partner (78.7%), and most of them were retired

(97.2%).

Regarding the categorical outcome variables, according to the IPAQ categorization, 71.3% of

the participants were highly active, while only one participant was categorized as having low

physical activity levels. Due to the insufficient representation of the low activity group, the single

participant in this category was excluded from the analysis. Consequently, the classification

task was adjusted to a binary problem using only the moderate (as the negative class) and high

activity (as the positive class) categories, as a single sample is insufficient for effective model

training. Furthermore, 16.7% of participants experienced a fall incidence in the past 6 months,

and 33.3% had mild depression according to GDS.

19



Table 3: Cross-sectional data summary statistics. Continuous data are presented as mean (SD)

or median (p25; p75) according to the distribution of the data. The outcome variables are in

bold.

Continuous variable Statistic Minimum - Maximum

Age (years) 70.1 (4.59) 64–87

BMI (kg/m2) 26.3 (23.0; 28.4) 19–42.3

6min walking distance test 572.4 (90.8) 240–855

Speed 5.91 (0.80) 3.8–8.4

WHOQOL Physical Health 76.0 (11.8) 39.29–100

WHOQOL Psychological 72.3 (10.2) 45.83–91.67

WHOQOL Social 75.0 (66.7; 83.3) 25–100

WHOQOL Environment 83.7 (10.1) 56.25–100

IPAQ MET-min/week 5143.5 (2642.0; 9973.3) 99–64848

Categorical variable value n (%)

Sex male 47 (44.52%)

female 60 (55.56%)

other 1 (0.93)

Marital state Single 8 (7.4%)

Living together 9 (8.3%)

Married 78 (72.2%)

Divorced 8 (7.4%)

Widow 5 (4.6%)

Physical constraints Yes 8 (7.4%)

No 100 (92.6%)

Retired Yes 105 (97.2%)

No 3 (2.8%)

Living situation Living with partner 85 (78.7%)

Living alone 20 (18.5%)

Living with children 1 (0.9%)

Other 2 (1.9%)

IPAQ category Low 1 (0.9%)

Moderate 30 (27.8%)

High 77 (71.3%)

GDS category Mild depressed 36 (33.3%)

Not depressed 72 (66.7%)

Falling in the past 6 months yes 18 (16.7%)

No 90 (83.3%)

4.1.2 Metrics

Table 4 presents the performance comparison of the models for mild depression status prediction.

The LightGBM model achieved the highest PR AUC of 0.8, outperforming the PR AUC of
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Logistic Regression and Elastic Net models.

The LightGBM classification model achieved a recall (sensitivity) of 0.545, indicating a moderate

ability to correctly identify positive cases, while its specificity of 0.818 reflects a strong performance

in correctly identifying negative cases. The model’s precision was 0.6, suggesting a reasonable

proportion of true positive predictions among all positive predictions. Overall, the F1 score of

0.571 balances precision and recall, and the balanced accuracy of 0.682

The LightGBM model achieved a PR AUC of 0.381 in predicting fall risk, indicating limited

overall ability to distinguish minority cases. The recall (sensitivity) was 0.333, showing that

the model correctly identified only a third of actual fall risk cases, highlighting challenges in

detecting the positive class. The specificity was 0.750, reflecting a relatively good performance

in correctly identifying individuals without fall risk. Precision was 0.222, meaning that among

those predicted as at risk, only about one-fifth were true positives, indicating a high false positive

rate. The F1 score was 0.267, reflecting the balance between precision and recall. The balanced

accuracy was 0.542, representing the average of recall and specificity, and indicating moderate

classification performance due to class imbalance.

With regards to the classification task distinguishing between high and moderate levels of

PA based on the IPAQ category, the LightGBM model achieved a PR AUC score of 0.809,

demonstrating a strong ability to discriminate between classes across different thresholds

compared to other models. The model’s recall was 0.875, indicating that it successfully identified

a high proportion of individuals with high physical activity. Precision was 0.808, showing that

most of the predicted high activity cases were correct and showing reliable positive predictions.

The F1 score was 0.840, indicating a good balance between precision and recall. Specificity was

0.444, suggesting the model had difficulty in correctly identifying the moderate activity class.

The balanced accuracy was 0.660, reflecting overall moderate accuracy that accounts for both

sensitivity and specificity in the presence of class imbalance.

The models’ performance in predicting IPAQ MET minutes per week was assessed using multiple

error metrics in table 5, with a focus on the MedAE divided by the median (MedAE/Median) of

the observed values of the test data. The LightGBM model achieved the lowest MedAE/Median

value of 0.551, indicating the best prediction performance among the models. In comparison,

the LR and EN models exhibited higher MedAE/Median values of 0.859 and 0.785, respectively.

While LightGBM provides better prediction of IPAQ MET minutes per week compared to the

other two models, the overall prediction error remains substantial, reflecting the challenges of

modeling PA using the cross-sectional data.

Truth

Prediction Yes No

Yes 6 4

No 5 18

GDS LGBM

Truth

Prediction Yes No

Yes 2 7

No 4 21

Falling LGBM

Truth

Prediction Yes No

Yes 21 5

No 3 4

IPAQ LGBM

Table 6: Confusion matrices for the selected models (Yes = positive class, No = negative class).
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Table 4: Evaluation metrics for binary outcomes (LR = Logistic Regression, EN = Elastic Net,

LGBM = LightGBM).

Metric
GDS Fall IPAQ

LR EN LGBM LR EN LGBM LR EN LGBM

F1 Score 0.615 0.476 0.571 0.353 0.300 0.267 0.303 0.682 0.840

Precision 0.533 0.500 0.600 0.273 0.214 0.222 0.556 0.750 0.808

Recall (Sensitivity) 0.727 0.455 0.545 0.500 0.500 0.333 0.208 0.625 0.875

Specificity 0.682 0.773 0.818 0.714 0.607 0.750 0.556 0.444 0.444

Accuracy 0.697 0.667 0.727 0.676 0.588 0.676 0.303 0.576 0.758

Bal. Accuracy 0.705 0.614 0.682 0.607 0.554 0.542 0.382 0.535 0.660

PR AUC 0.444 0.504 0.800 0.174 0.190 0.381 0.653 0.764 0.809

Table 5: Evaluation metrics for IPAQ MET minutes/week (LR = Linear Regression, EN =

Elastic Net, LGBM = LightGBM).

Model MAE MedAE MAE/Mean MedAE/Median

LR 7349 4439 0.801 0.859

EN 6049 3974 0.704 0.785

LGBM 2788 6102 0.711 0.551

4.1.3 Predictive factors

Figure 3 shows the most important predictors for several outcome variables based on the best-

performing models selected from the previous analyses. The LightGBM variable importance

scores were based on gain, which represents the percentage contribution of each feature to the

model, calculated from the total gain of the splits involving that feature.

For the GDS category, the LightGBM model highlighted an item from the IPAQ as the most

important predictive factor. The second and third most important predictors were quadriceps

strength on the left side and BMI, respectively. As for the prediction of risk of fall using the

LightGBM model, the most predictive feature was the quadriceps strength of the right leg.

Regarding the IPAQ category prediction with the LightGBM model, the three most important

predictive variables were an item from ESES, an item from the EIS, and the 6-minute walking

distance test. Moving to the IPAQ as a continuous measurement, the primary predictive variable

was oxygen saturation (post-test), followed by an item from the WHOQOL questionnaire, and

the EIS total score.

22



Figure 3: Most important features for the cross-sectional selected models

4.2 Longitudinal Analysis

4.2.1 Exploration

Table 7 summarizes the variables of the integrated dataset from the Garmin device and SEMA3

app. The results are obtained after processing the data. The main outcome of interest is the

number of steps (Steps), with a median of 1143 steps per time period (p25 = 375, p75 = 2374),

and it ranges between 0 and 21459 steps. The distribution of the number of steps is strongly
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right-skewed, with a large number of zero values and fewer observations with high step counts,

as shown in Figure 4.

The EMA variables collected from the SEMA3 app had a range from 0 to 100. Physical well-being

had a median of 23.81 (14.3; 33.3). Similarly, mental well-being was low with a median of 23.81

(14.3; 42.9). Both of these features had a right-skewed distribution, as shown in Figure 4. In

contrast, motivation to be active had a median of 85.71 (57.1; 100). The median of the average

Self-efficacy level was 100. Finally, a median context of 92.86 suggests that most participants

were in environments that were supportive of physical activity. The distributions of motivation,

self-efficacy, and context variables are left-skewed, as illustrated in Figure 4.

After the datasets were combined and properly aligned, the percentage of missing step count data

measured by the Garmin device was 2.8%, while each of the EMA variables had a missingness of

62.2%.

Table 7: Longitudinal variables summary statistics

Variable Median (p25; p75) Minimum - Maximum Missing (%)

Steps 1143 (375; 2374) 0–21459 157 (2.8%)

Physical 23.8 (14.3; 33.3) 9.52–100 3483 (62.2%)

Mental 23.8 (14.3; 42.9) 14.29–100 3483 (62.2%)

Motivation 85.7 (57.1; 100) 3.57–100 3483 (62.2%)

Efficacy 100.0 (71.4; 100) 14.29–100 3483 (62.2%)

Context 92.9 (71.4; 100) 14.29–100 3483 (62.2%)

Figure 4: Histograms of longitudinal variables

Figure 5 shows the longitudinal step count data for four selected participants, representing

different patterns observed across the study duration. The plots indicate considerable variation

within participant 76, whose step counts ranged from 0 to over 7500 and changed substantially

over time. Participants 73 and 89 exhibited distinct step count patterns characterized by
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sharp increases, indicating occasional periods of elevated physical activity. On the other hand,

participant 6 had a smaller range of step counts, mostly below 3,000, showing less variation

in their step counts. These patterns can also highlight notable between-subject differences in

physical activity levels.

Figure 5: Selected plots for participants’ longitudinal profiles

Figure 6 displays the distribution of step count (Steps) before and after applying the transformation.

The transformed values show considerably less skewness compared to the original data.

Figure 6: Outcome transformation using Yeo-Johnson transformation

4.2.2 Model specifications

Training of the GRU and LSTM models was conducted using 20 epochs, a batch size of 16, and

a learning rate of 0.005. The model architectures consisted of the following layers:
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Table 8: GRU and LSTM model specifications

GRU model LSTM model

Masking layer for missing values Masking layer for missing values

GRU (128 units, return sequences) LSTM (128 units, return sequences)

GRU (64 units, no return sequences) LSTM (64 units, no return sequences)

Dense (16 units, ReLU activation) Dense (16 units, ReLU activation)

Dense (1 unit, output layer) for single-step prediction Dense (1 unit, output layer) for single-step prediction

Dense (4 units, output layer) for multi-step (4 timesteps) prediction Dense (4 units, output layer) for multi-step (4 timesteps) prediction

The parameter values applied in the LightGBM models are summarized in table 9

Table 9: LightGBM parameters

Parameter Value

n estimators 3000

num leaves 1000

max depth 100

min child samples 1

min split gain 0

subsample 1

learning rate 0.005

reg alpha 0.01

reg lambda 0.01

4.2.3 Model comparisons

Figure 7 shows the model comparisons to predict the number of steps for the entire next day

(four timesteps). The blue line represents the baseline performance (common sense model), which

predicts the next step count by simply using the current step count. This approach does not

involve any modeling and is included only as a reference point for comparing the performance of

the developed models. All six models outperformed this baseline.

The results of the model comparisons indicate that the LightGBM model without EMA input

(LGBM (Steps only)) achieved the best performance, with the lowest MedAE/median error

ratios across days two to seven. Its error decreased gradually over the seven days, reaching a

minimum of 0.31 on day seven. The LightGBM model with EMA features demonstrated worse

performance, with MedAE/median ratios between 0.41 and 0.48 over seven days, showing no

improvement from adding the lagged EMA features to the input.

The GRU model using only previous steps as input showed moderate performance, with error

values ranging from approximately 0.44 to 0.52.

As for the GRU model with EMA features, it exhibited higher overall errors, mostly exceeding

0.6 and reaching up to 0.72 on day six.

The errors for LSTM (Steps + EMA) and GRU (Steps + EMA) were close across the days,

indicating comparable predictive ability between these two model types. As for the LSTM (Steps

only) model, it showed fluctuation in error ratios across the days compared to the GRU (Steps

only) model.
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Figure 7: Median Absolute Error (MedAE) / Median over days for different models predicting

next-day step counts (four timesteps), lower values indicate better models’ performance

The LightGBM model, using step counts from the past seven days, was selected to forecast PA

for the next four timesteps. Table 10 shows the performance of these LightGBM (Steps only)

for forecasting a full day, along with the mean and median step count in the test data. The

evaluation on the test set resulted in a MedAE of 414.37 steps and a MedAE/Median ratio of

0.306.

Table 10: LightGBM (Steps only) model evaluation metrics on the test set for forecasting a full

day PA

Metric Value

MAE 981.15

MedAE 414.37

Mean 2083.78

Median 1355.00

MAE / Mean 0.471

MedAE / Median 0.306

Figure 8 shows the model comparisons to predict the following number of steps for a single

timestep only. The results showed that the LightGBM model using only previous step counts

consistently achieved low MedAE/median error ratios between 0.26 on day six and 0.31 on

day three, maintaining stable performance across the days and showing low sensitivity to input

sequence length. In comparison, the LightGBM model with EMA features had higher error

values, ranging from 0.40 to 0.45. The GRU model using step counts only exhibited error values

from approximately 0.42 to 0.53, while the GRU model with EMA included had errors between

0.55 and 0.76. The LSTM (Steps only) model showed decreased errors on day one and day six

(about 0.46) compared to the other days. As for the LSTM with EMA model, it reached a peak

27



error of approximately 0.65 on day seven, while the LSTM (Steps only) model presented lower

error rates compared to the LSTM with EMA, with error ratios close to those of the GRU (Steps

only) model.

Figure 8: Median Absolute Error (MedAE) / Median over days for different models predicting

next-timestep PA (a single timestep), lower values indicate better models’ performance

Table 11 shows the metrics of the selected mode for forecasting a single timestep with 6 days of

input. The model achieved a MedAE of 345.93 steps and a MedAE/Median ratio of 0.260.

Table 11: LightGBM (Steps only) model evaluation metrics on the test set for single timestep

forecasting

Metric Value

MAE 933.57

MedAE 345.93

Mean 2041.32

Median 1330.00

MAE / Mean 0.457

MedAE / Median 0.260

To further examine the behavior of the models, an additional analysis was performed using a

fixed sequence length of six days, with different temporal arrangements of inputs and targets.

Instead of using sequences covering the entire day, each input consisted of step counts from the

same time segment (e.g., morning, noon, afternoon, or evening) across six consecutive days. The

target was either the step count for the same time segment on the following day (e.g., using six

mornings to predict the next morning) or the step count for a different time segment on the same

or next day (e.g., using six afternoons to predict the next noon). This approach was intended to

investigate whether certain time-of-day combinations provide more predictive information for

step count and to compare model performance when predicting within the same time segment
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versus across different segment configurations. The results of these models are presented in

Figure 9.

The LightGBMmodel trained solely on lagged step count features achieved the lowest MedAE/median

values overall. Specifically, the afternoon-to-afternoon prediction, using a sequence of six

step counts from the afternoon to predict the number of steps in the next afternoon, had a

MedAE/Median error ratio of 0.27. The noon-to-noon and morning-to-morning predictions each

showed error ratios of 0.36, while the evening-to-evening prediction had a ratio of 0.31. These

findings suggest that the model performed best for forecasting the afternoon PA.

When using morning segments as input, the prediction errors were 0.32 for predicting noon PA,

0.33 for afternoon, and 0.38 for evening activity. Predicting the morning PA from the previous

afternoon step counts had a relatively high error ratio of 0.48. In contrast, a lower error of

0.34 was obtained by predicting evening PA from afternoon input. Using evening PA as input

achieved high error ratios of 0.49 and 0.50 for predicting morning and noon step counts. In

contrast, it yielded lower error ratios of 0.30 and 0.31 for predicting afternoon and evening PA,

respectively.

The top-right heatmap shows the LightGBMmodel results when EMA variables were incorporated

alongside lagged step count inputs. Compared to the model without EMA variables, the inclusion

of EMA features resulted in higher MedAE/median error ratios across most time segment

combinations, indicating a modest decline in predictive performance. The afternoon-to-afternoon

prediction showed the lowest error ratio of 0.35.

The two heatmaps in the middle show the results for the GRU models. In the GRU (Steps only)

model, the overall MedAE/median error ratios are higher compared to those of the LightGBM

models for morning-to-morning and afternoon-to-afternoon configurations. The best performance

was observed when using evening input to predict evening (0.41), as well as predicting afternoon

PA from morning input (0.41).

When EMA variables were added to the GRU model, as illustrated in the middle heatmap on

the right, the highest error ratios continued to occur when predicting morning PA from all time

segments, similar to the pattern seen in the GRU model using the previous steps only. In contrast,

the afternoon-to-afternoon predictions exhibited the lowest error ratio of 0.39, comparable to

the pattern observed in the LightGBM models.

The heatmaps at the bottom show the performance of the LSTM models with and without

EMA data. For the LSTM model using only the previous step counts, the best performance was

observed when predicting the afternoon segment from the afternoon input, with an error ratio of

0.36. This result surpassed both GRU models for the same time segment configuration. After

adding EMA data to the LSTM model (right heatmap), the prediction error ratios for the noon

target generally decreased.

29



Figure 9: MedAE/Median across time segments and models.

Table 12 summarizes the evaluation of the LightGBM (Steps only) model’s predictions of the

number of steps at the next time point (single timestep), for individual participants.

Predictions were based on a six-day lagged sequence of previous PA. For each participant, the

table reports the total number of predictions, the number of correct predictions (defined as

having a percentage error of 10% or less at a timestep), and the percentage of correct predictions

out of the total number of predictions within the participant.

Among the 20 participants in the test set, four participants satisfied this success criterion. Their

respective correct prediction rates were notably high, ranging from 93.10% to 100%, suggesting

that the model was capable of capturing meaningful temporal patterns in these individuals’

physical activity behavior. For example, participant 61 had 32 out of 32 predictions classified as

correct (100%), reflecting exceptional model performance for this individual.

In contrast, the majority of participants (16 out of 20) fell below the 80% threshold. For some

individuals, the percentage of correct predictions was extremely low (6.25% for Participant 59),

indicating substantial model underperformance and showing that the model failed to generalize

effectively for these participants.
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Table 12: Per-participant accuracy summary based on the proportion of predictions with

percentage error ≤ 10%. Participants with at least 80% accurate predictions are highlighted in

bold.

Participant ID Total predictions Correct predictions Percentage correct predictions

2 32 10 31.25%

3 32 7 21.88%

14 32 9 28.13%

25 32 6 18.75%

38 32 20 62.50%

44 32 7 21.88%

52 32 10 31.25%

56 29 27 93.10%

59 32 2 6.25%

61 32 32 100.00%

63 31 9 29.03%

69 31 8 25.81%

70 32 8 25.00%

73 32 9 28.13%

74 32 16 50.00%

80 32 10 31.25%

93 32 8 25.00%

109 32 32 100.00%

111 32 32 100.00%

112 31 9 29.03%

Furthermore, a Leave-One-participant-Out (LOO) was conducted using six-day input to predict

the next single step count using the LightGBM model without EMA. The testing procedure

involved iteratively holding out the data from one participant as the test set, while training the

model on the data from the other 99 participants using the parameters in table 9. This process

was repeated for each participant in the whole dataset, so that every individual’s data was used

once as a test set. The error was calculated separately for each participant’s prediction, based

on the model trained without their data. Figure 10 shows the per-participant success rates for

the following single-step count predictions using the LightGBM model without EMA inputs and

a six-day input sequence. Out of the 100 participants, only 43 of them met the success criterion

(in green bars).
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Figure 10: Per-participant success rates, defined as the proportion of predictions with percentage

error ≤ 10%. Each bar represents an individual participant. Green bars indicate participants who

met the predefined success criterion (success rate ≥ 80%), while red bars indicate participants

who did not meet this threshold.

Table 13 presents the p-values from different tests, including the Wilcoxon rank-sum test for

age and IPAQ as continuous measurements, and Fisher’s exact test for the other variables,

conducted to assess whether there was a systematic difference between participants in meeting

the success criterion. No variables were statistically significant, indicating no evidence of

systematic differences based on the measured characteristics.

Table 13: P-values from Wilcoxon and Fisher’s exact tests examining differences in participant

characteristics between those meeting and not meeting the success criterion.

Variable p-value

Age 0.8026

IPAQ category 0.3657

Sex 1

Fall risk 0.5984

GDS category 0.6683

IPAQ MET-min/week 0.549

Figure 11 presents the predicted and actual step counts for 4 participants using the LightGBM

model without including EMA features. These plots are provided to visually demonstrate the

model’s performance on different individuals in the test dataset. The objective was to predict

the step count for the following single timestep based on a sequence of step counts from the
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previous six days.

Two plots for participants 25 and 74 illustrate examples of poor model performance. The

predicted step counts do not closely follow the actual values. The model often fails to capture

the overall pattern of the step counts over time, missing several peaks where the actual steps

increased sharply. At times, the predictions move in a different direction from the observed

data. This shows that the model was unable to adequately learn the PA patterns for these

participants, resulting in relatively large prediction errors of 18.75% for participant 25 and 50.0%

for participant 74.

In contrast, the other plots (Participant 56 and 109) demonstrate good model performance. The

predicted step counts closely followed the actual values, with the lines mostly overlapping. The

model was able to capture temporal dependencies in step counts over time. These participants

had some of the highest percentages of good predictions, exceeding 80%, which is reflected in

the close alignment between the predicted and actual values.

Figure 11: Prediction plots for selected participants. The blue line shows the actual step counts,

while the orange line shows the model’s predicted values.

In summary, the results of the longitudinal analysis showed that the most optimal input length

for predicting PA for the next day (measured in four time steps) was seven days of step count

data without EMA, using the LightGBM model (Steps only). Similarly, for predicting PA at a

single timestep, the model performed best when using PA data from the previous six days with

the LightGBM model (Steps only).
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5 Discussion

The general aim of this thesis was to investigate different machine learning and deep learning

methods and select the models that best predict PA, following two objectives. The first was

to identify key predictors associated with PA and related outcomes of mild depression and risk

of fall. The other objective aimed to find the optimal window size of the previous step counts

needed to forecast PA correctly. First, the most important results of the two research questions

will be discussed before addressing the limitations of the methods and ideas for future work.

5.1 Objective 1: The cross-sectional analysis

Among the different models evaluated for predicting the GDS category, the LightGBM model

demonstrated the best overall performance. Within this model, the most important predictor was

a specific item from the IPAQ. Indicating the strong association between specific self-reported PA

behavior and mild depression status. The next important predictor was the quadriceps strength

on the left side, measured in kilograms. Showing that lower limb strength was relevant for

distinguishing between individuals with mild depression and those without depression. However,

this needs to be interpreted with caution due to some limited performance metrics (e.g., F1

score) and sample size.

In the study by Song et al. [26], a sample of 7880 older adults in China was used to develop

and evaluate a LightGBM model for predicting depression that was assessed using the CESD-10

scale. Their model achieved a Receiver Operating Characteristic Area Under the Curve (ROC

AUC) value of 0.738. The most important predictors identified by the model included self-rated

health and nighttime sleep duration, underscoring their significant roles in the occurrence of

mild depression among older adults. These results differ from the predictive factors identified

in this thesis. Nevertheless, because this thesis is based on a smaller sample size and shows

different predictive factors compared to the much larger study by Song et al., and considering

the limited performance of some of the metrics of LightGBM (F1 score of 0.571) presented at

table 4, the identified predictive factors in the thesis for GDS may have limited reliability.

As for the risk of fall prediction model using LightGBM, which outperformed the other models,

the most important feature was the quadriceps strength of the right leg. This shows the important

role of lower limb muscle strength in maintaining balance and preventing falls among older adults.

The other variables did not have a notable effect on the classification of this outcome due to a

small importance score of less than 0.10. However, the reliability of these predictive variables is

severely limited due to the low predictive performance of the model (PR AUC of 0.381).

In contrast to the results of the analysis of the thesis, Liang et al. [27] developed different

machine learning classification models for falling, and they used posturographic data from 215

community-dwelling older adults. For classification based on fall history in the prior year, they

employed ensemble classifiers, and the models achieved an ROC AUC of around 0.7.

Unlike Liang et al. [27], who found posturographic factors to be the most important predictors of

risk of fall, the LightGBM model in this thesis did not find any balance control-related variables

that were important predictors. This difference could be due to the smaller sample size of the

cross-sectional data, which limited the ability to detect strong associations. Another possibility

is that other factors in the cross-sectional data, such as the quadriceps strength of the right

leg, may have a stronger influence on the risk of fall, making the effect of balance measures less
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influential. Further research with a larger number of participants and more specific balance tests

may help to better understand these associations.

With regards to the IPAQ category, the LightGBM had superior overall performance compared

to the other models. Exercise motivation had the most influence in classifying PA levels. The

other factors were not as predictive (importance score was less than 0.10)

As for the IPAQ as a continuous measurement, the LightGBM model showed that the importance

of physiological status and perceived quality of life in predicting PA as a continuous measurement

in the cross-sectional analysis. But their importance scores were small (less than 0.10).

In general, the models identified certain variables as important predictors. However, their overall

performance was generally limited. As a result, these findings are not very reliable and should

be interpreted carefully, since the models might not have fully captured the true relationships

between the predictors and the outcomes.

5.2 Objective 2: The longitudinal analysis

To address the second objective of the study, the LightGBM model using only lagged step counts

was selected due to its consistently superior performance compared to other models. When

forecasting PA for a full day, a sequence length of seven days (28 time steps) yielded the best

results. The inclusion of psychological, contextual, and other EMA variables failed to enhance

the prediction of next-day step counts, as model performance slightly deteriorated.

Similarly, when predicting the number of steps at a single future time point, using a six-

day window provided the best performance. The inclusion of EMA features did not improve

the prediction performance. Highlighting that recent step counts alone are more informative

predictors of short-term physical activity.

Mamun et al. [28] conducted a study utilizing data collected from Fitbit Charge 2 wearable devices

and smartphone applications BeWell24 and SleepWell24. The study included 99 participants,

many of whom had more than 100 days of recorded observations. The authors employed LSTM

models with a window size of seven days to predict the next day’s physical activity of total step

counts per day. They used multimodal features combining daily app engagement metrics, such

as minutes used and times opened, along with physical activity measures, including sedentary

duration, total device wear time, and other features. The final LSTM model achieved an MAE

of 1677 steps for the prediabetic dataset and 2152 steps for the sleep dataset in forecasting the

next day’s step counts. In contrast to Mamun et al. [28], this thesis predicts physical activity

using step counts divided into four three-hour time segments per day, rather than using total

daily step counts. The final model developed here uses data from a seven-day window and

relies only on step counts and time of day as input. This model achieved a MedAE of 414 steps

(MedAE/Median of 0.31) in forecasting the next day’s activity across four time segments.

With regard to the model combinations using fixed sequence lengths of six days for specific time

segments, the analysis revealed notable differences in predictive performance dependent on the

input-target temporal alignment. The LightGBM model using only lagged step counts achieved

the best performance for within-segment predictions, specifically for afternoon-to-afternoon and

evening-to-evening forecasts. Cross-segment configurations showed that forecasting morning

targets was challenging, especially from noon, afternoon, or evening PA. In contrast, afternoon
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and evening targets were less difficult to forecast.

Adding EMA variables, such as contextual and psychological features, did not improve the

performance of the models, including LightGBM, GRU, and LSTM, in most tasks, such as full

day forecasting, single time step forecast, and different configurations of time segment inputs

and targets.

The LOO analysis showed that for 43% of the participants, the LightGBM without EMA features

model achieved a success rate of at least 80% when forecasting a single time step. However, for

the remaining participants, the success rate was considerably lower. For these participants with

lower performance, using only previous step counts or including EMA inputs did not help the

model to learn their PA patterns accurately. These differences may reflect greater variability or

irregularity in the daily activity patterns, which may limit the model’s ability to learn the PA

patterns of these participants.

An additional analysis was performed to determine if participants who met the success criterion

of having correct predictions differed from those who did not based on demographic or clinical

variables such as age, gender, fall risk, IPAQ category, and mild depression status. The results

showed no statistically significant differences, indicating that variations in predictive performance

were not systematically linked to these factors. This can be due to other unmeasured factors

that may be influencing the differences in model performance across different participants.

5.3 Limitations and drawbacks of the methods

In both the cross-sectional and longitudinal analyses, several candidate models were trained, and

the model with the best performance according to the selected evaluation metric was chosen.

This approach can have some limitations. Different models may capture different patterns in

the data. By selecting only one model, these additional patterns were omitted, and possible

improvements from combining different model predictions, such as through stacking methods,

were not considered [29].

The performance of the model for predicting the GDS category was relatively poor for some

metrics. This may be due to the limited sample size or the small number of participants in the

study. Additionally, important factors such as additional sleep patterns were not included in

the cross-sectional dataset, which could have affected the model’s ability to correctly predict

depression status [26].

The drawback of the risk of fall prediction model included low performance caused by class

imbalance and a small dataset size. These factors limited the model’s ability to detect strong

associations compared to other studies [27].

As for the limitation of the longitudinal prediction modeling, the final selected LightGBM model

without EMA achieved accurate predictions for some participants, but lower performance for

others. One possibility is that for some participants, relying solely on previous step counts or

adding features from EMA did not provide useful information for predicting their PA, which may

indicate that their activity patterns were influenced by external, unmeasured factors such as

environmental conditions or other variables that were not measured in the longitudinal dataset.

Another possibility is that some participants shared similar physical activity patterns, allowing

the model to learn these patterns from certain individuals and generalize them to others with
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similar PA behaviors.

Moreover, another drawback is that LightGBM, being a model primarily developed for tabular

data, may not be ideally suited to capture temporal dependencies in time series data. Unlike

RNNs or other methods specifically developed to learn complex temporal patterns for forecasting,

LightGBM might have limitations in effectively modeling the sequential nature of physical activity

data and may not learn more temporal PA patterns that are present in the dataset without

comprehensive feature engineering [24]. Therefore, while the results of the final model provide

valuable insights, they should be interpreted with caution, given these potential limitations in

capturing temporal dynamics.

In addition, hyperparameter tuning using Bayesian optimization was conducted on the final

selected LightGBM (Steps only) model. However, this tuning process did not result in improved

parameter values compared to those obtained before the optimization. This is due to the number

of parameters to tune (nine), combined with a limited number of iterations, which restricted

the optimization from finding better parameter combinations. For the GRU and LSTM models,

no formal hyperparameter tuning was performed; several different choices of model structures

were tested initially, and the best-performing setup was chosen and used consistently across all

related models.

Furthermore, the modeling involved transforming the outcome variable of step count using

the Yeo-Johnson transformation, training the models using these transformed values, and then

back-transforming the predictions for evaluation. However, back-transformation can introduce

bias into the predicted values [30].

5.4 Ideas for future work and research

Future work should include collecting more data (increasing the number of participants and

other types of data that could influence the level of physical activity, such as weather, sleep,

or air quality) for both the cross-sectional and longitudinal datasets. Having larger and more

diverse data can help improve the reliability of the predictive models and allow for a better

understanding of which variables serve as reliable predictors. This increased data availability

may also support capturing a wider range of PA patterns and behaviors, helping the models to

generalize better across different participants.

Regarding the methodology, future work should explore a broader range of modeling techniques.

Specifically, additional deep learning methods such as Temporal Convolutional Neural Networks

(TCNs) could be investigated alongside the recurrent models already used for the longitudinal

analysis. Combining these approaches with formal hyperparameter tuning methods, like Bayesian

optimization, for all models could further improve predictive performance. This would allow for

a more thorough comparison of different algorithms and help identify the most effective modeling

strategies for forecasting PA [24].

Additionally, stacking methods should be investigated for both cross-sectional and longitudinal

data analysis. Stacking is an ensemble learning method where predictions from multiple base

models at the first level are used as input features for a meta-model at the next level. The

meta-model combines the predictions from the base models. It takes into account differences

caused by various parameter settings and different subsets of data used to train the base models.

This approach can improve prediction performance by combining the strengths of the base
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models and reducing their overall errors. Examples of this improvement have been shown in

time series forecasting and logistic regression with imbalanced data [29].

Furthermore, future research should investigate bias correction techniques for the back-transformation

of predicted values or explore alternative methods to handle the skewness of step count data in

longitudinal models [30].
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6 Conclusion

This thesis examined the application of machine learning and deep learning techniques to predict

physical activity levels in older adults, using both cross-sectional and longitudinal datasets.

Several types of models were evaluated, including Linear and Logistic Regression, LightGBM,

RNN such as GRU and LSTM, and Elastic Net.

In the cross-sectional analysis, models were developed to predict PA levels and related outcomes

of falling risk and mild depression status. The LightGBM model achieved the best overall results

for this task. The most important predictor identified for the IPAQ category outcome was an

item from the ESES. Showing that particular aspects of exercise self-efficacy were important in

differentiating between high and moderate physical activity levels.

In the longitudinal analysis, time series models were trained to predict step counts using

sequences of past observations. The results showed that a seven-day input sequence provided

the best predictive performance for full-day PA, measured in four time steps. Six-day input was

the optimal window for single-time-step forecasts. However, model performance varied across

individuals, and the models had limited ability to generalize correctly across all participants.

Overall, this thesis demonstrates the potential of combining wearable sensor data and machine

learning methods to understand and predict physical activity in older adults. Some predictive

models performed well, particularly for participants whose physical activity could be accurately

predicted from their previous observations. However, further work is necessary to improve the

generalizability of these models and to facilitate personalized health interventions.
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7 Software code

The full code is available at this GitHub Repository

https://github.com/AnasNazar98/Thesis_software_code.git

The software codes of a few selected models are presented in this document; the complete

software files and code are in the repository.

Cross-sectional R code

1 # imputing the cross -sectional data

2

3 rm(list = ls())

4 library(tidyverse)

5 library(skimr)

6 library(magrittr)

7 library(readxl)

8 library(writexl)

9

10 ################################################################################

11 # Cross -sectional data

12 ################################################################################

13

14 cross <- read_excel(’C:/ Users/anasn/Desktop/E/Semester 4/ Thesis/files/

Clinical_Anas.xlsx ’)

15

16 str(cross)

17 glimpse(cross)

18

19 cross <- cross %>%

20 mutate(across(starts_with(’ipaq_ ’), ~ ifelse (. == ’NULL ’, NA, .)))

21

22 cross <- cross %>%

23 mutate(across(starts_with(’ipaq_ ’), ~ ifelse (. == ’ik heb geen matige

lichamelijke activiteiten gedaan ’, 0, .)))

24

25 cross <- cross %>%

26 mutate(across(starts_with(’borg ’), ~ ifelse (. == ’NULL ’, NA, .)))

27

28 cross <- cross %>%

29 mutate(across(where(is.character), ~ na_if(., ’NULL ’)))

30

31 cross <- cross %>%

32 mutate(across(everything (), ~ ifelse (. == ’Ja’, 1, .)))

33

34 cross <- cross %>%

35 mutate(across(everything (), ~ ifelse (. == ’Universitair onderwijs ’, NA, .)))

36

37 cross$gds_category <- ifelse(cross$gds_category == ’Mild depressed ’, 1, 0)

38

39 cross <- cross %>%

40 mutate(IPAQ_category = case_when(

41 IPAQ_category == ’Low ’ ~ 1,

42 IPAQ_category == ’moderate ’ ~ 2,

43 IPAQ_category == ’high ’ ~ 3,

42
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44

45 ))

46

47 cross <- cross %>%

48 mutate(across(where(is.character), as.numeric))

49

50 # processed data for modelling

51 write_xlsx(cross , ’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/cross_new.

xlsx ’)

52

53 library(mice)

54

55 cross <- cross %>%

56 mutate(

57 diploma = as.factor(diploma),

58 kinvent_hand_l = as.numeric(kinvent_hand_l),

59 IPAQ_category = as.ordered(IPAQ_category)

60 )

61

62 imputation_methods <- make.method(cross)

63

64 imputation_methods[’diploma ’] <- ’polr ’

65 imputation_methods[’bloodpressure_sys ’] <- ’pmm ’

66 imputation_methods[’bloodpressure_dia ’] <- ’pmm ’

67 imputation_methods[’heartrate ’] <- ’pmm ’

68 imputation_methods[’saturation_mea_post ’] <- ’pmm ’

69 imputation_methods[’heartbeat_post ’] <- ’pmm ’

70 imputation_methods[’kinvent_hand_l ’] <- ’logreg ’

71 imputation_methods[’score_hand_l ’] <- ’pmm ’

72 imputation_methods[’score_hand_r ’] <- ’pmm ’

73 imputation_methods[’score_qua_left ’] <- ’pmm ’

74 imputation_methods[’score_qua_right ’] <- ’pmm ’

75 imputation_methods[’sit_reach_values_1 ’] <- ’pmm ’

76 imputation_methods[’sit_reach_values_2 ’] <- ’pmm ’

77 imputation_methods[’sit_reach_values_3 ’] <- ’pmm ’

78 imputation_methods[’sit_reach_highest ’] <- ’pmm ’

79 imputation_methods[’symmetry ’] <- ’pmm ’

80 imputation_methods[’cadence ’] <- ’pmm ’

81 imputation_methods[’speed ’] <- ’pmm ’

82 imputation_methods[’stance_time_left ’] <- ’pmm ’

83 imputation_methods[’stance_time_right ’] <- ’pmm ’

84 imputation_methods[’swing_time_left ’] <- ’pmm ’

85 imputation_methods[’swing_time_right ’] <- ’pmm ’

86 imputation_methods[’double_support ’] <- ’pmm ’

87 imputation_methods[’propulsion_dur_left ’] <- ’pmm ’

88 imputation_methods[’propulsion_dur_right ’] <- ’pmm ’

89 imputation_methods[’flatfoot_left ’] <- ’pmm ’

90 imputation_methods[’flatfoot_right ’] <- ’pmm ’

91 imputation_methods[’loading_left ’] <- ’pmm ’

92 imputation_methods[’loading_right ’] <- ’pmm ’

93 imputation_methods[’propulsion_ratio_left ’] <- ’pmm ’

94 imputation_methods[’propulsion_ratio_righ ’] <- ’pmm ’

95 imputation_methods[’pro_sup_angle_heelgr_l ’] <- ’pmm ’

96 imputation_methods[’pro_sup_angle_flat_l ’] <- ’pmm ’

97 imputation_methods[’pro_sup_angle_heelli_l ’] <- ’pmm ’

98 imputation_methods[’pro_sup_angle_toeli_l ’] <- ’pmm ’
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99 imputation_methods[’pro_sup_angle_heelgr_r ’] <- ’pmm ’

100 imputation_methods[’pro_sup_angle_flat_r ’] <- ’pmm ’

101 imputation_methods[’pro_sup_angle_heelli_r ’] <- ’pmm ’

102 imputation_methods[’pro_sup_angle_toeli_r ’] <- ’pmm ’

103 imputation_methods[’step_progr_angle_left ’] <- ’pmm ’

104 imputation_methods[’step_progr_angle_right ’] <- ’pmm ’

105 imputation_methods[’circumduction_left ’] <- ’pmm ’

106 imputation_methods[’circumduction_right ’] <- ’pmm ’

107 imputation_methods[’clearance_left ’] <- ’pmm ’

108 imputation_methods[’clearance_right ’] <- ’pmm ’

109 imputation_methods[’steppage_heel_left ’] <- ’pmm ’

110 imputation_methods[’steppage_heel_right ’] <- ’pmm ’

111 imputation_methods[’steppage_toe_left ’] <- ’pmm ’

112 imputation_methods[’steppage_toe_right ’] <- ’pmm ’

113

114 library(doParallel)

115 library(finetune)

116

117 # processing

118 ncores <- parallel :: detectCores () - 3

119 cl <- makePSOCKcluster(ncores)

120 registerDoParallel(cl)

121

122 imputed_data <- mice(cross , method = imputation_methods , m = 10, maxit = 10)

123

124 cross_imputed <- complete(imputed_data , 10)

125 view(cross_imputed)

126 # saving the imputed data for modelling

127 write_xlsx(cross_imputed , ’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

all_imputations.xlsx ’)

128 #################################################

129

130

131 rm(list = ls())

132 library(tidyverse)

133 library(dplyr)

134 library(ggplot2)

135 library(skimr)

136 library(magrittr)

137 library(readxl)

138 library(writexl)

139 library(corrplot)

140 library(glmnet)

141 library(caret)

142 library(pROC)

143 library(xgboost)

144 library(PRROC)

145 library(tidymodels)

146 library(vip)

147 library(dials)

148 library(purrr)

149 library(tibble)

150 library(yardstick)

151 library(recipes)

152 library(finetune)

153 library(future)
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154

155 ################################################################################

156 # Logistic Regression IPAQ category

157 ################################################################################

158

159

160 rm(list = ls())

161 seed <- 42

162

163 sheet_names <- excel_sheets ("C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

imputations/all_imputations.xlsx")

164

165

166 for (i in seq_along(sheet_names)){

167 sheet_data <- read_excel ("C:/ Users/anasn/Desktop/E/Semester 4/ Thesis/files/

imputations/all_imputations.xlsx",

168 sheet = sheet_names[i])

169 assign(paste0 ("cross", i), sheet_data , envir = .GlobalEnv)

170 }

171 cross_all <- list(cross1 , cross2 , cross3 , cross4 , cross5 ,

172 cross6 , cross7 , cross8 , cross9 , cross10)

173

174 gender <- read_xlsx(’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

Qualtrics_vragenlijst_fysiek_final_241024.xlsx ’)

175

176

177 data_train <- list()

178 data_test <- list()

179

180 coef_df_list <- list()

181

182 predictions_list <- list()

183

184 length <- 1

185 for (i in 1: length){

186 cross <- cross_all [[i]]

187

188 cross <- cross_all [[i]]

189

190 cross$gender <- gender$gender
191

192

193 cross <- cross %>%

194 filter (! IPAQ_category == "1") %>%

195 mutate(IPAQ_category = ifelse(IPAQ_category == "2", 0, 1))

196

197

198 outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes ’, ’No ’), levels =

c(’Yes ’, ’No ’))

199

200

201 cross <- cross %>%

202 mutate(across(everything (), ~ as.numeric(as.character (.))))

203
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204

205

206

207 for (col in names(cross)) {

208 unique_vals <- length(unique(na.omit(cross [[col]])))

209 if (unique_vals <= 5) {

210 cross[[col]] <- as.factor(cross[[col]])

211 }

212 }

213

214

215 cross <- cross %>%

216 mutate(across(

217 where(is.factor),

218 ~ if (all(levels (.) %in% c("1", "2"))) {

219 factor(ifelse (. == "2", "0", "1"), levels = c("0", "1"))

220 } else {

221 .

222 }

223 ))

224

225

226

227

228

229

230 cross <- cross %>%

231 dplyr:: select(-participant_id , -starts_with ("ipaq"), -starts_with(’IPAQ ’)

)

232

233 cross$IPAQ_category <- outcome

234

235 cross <- cross %>% mutate(case_wts = ifelse(IPAQ_category == "Yes", 1, 5),

236 case_wts = importance_weights(case_wts))

237

238 model <- ’Logistic Regression ’

239 label <- ’IPAQ Category ’

240

241

242

243

244

245

246 cross$IPAQ_category <- outcome

247

248 set.seed(seed)

249 data_split <- initial_split(cross , strata = IPAQ_category , prop = 0.70)

250 data_train [[i]] <- training(data_split)

251 data_test [[i]] <- testing(data_split)

252

253

254

255 spec_default <- logistic_reg () %>%

256 set_engine ("glm") %>%

257 set_mode (" classification ")

258
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259

260 rec_default <- recipe(IPAQ_category ~ ., data = data_train [[i]]) %>%

261 step_unknown(all_nominal_predictors (), new_level = "unknown ") %>%

262 step_dummy(all_nominal_predictors ()) %>%

263 step_zv(all_predictors ()) %>%

264 step_normalize(all_numeric_predictors ()) %>%

265 step_corr(all_numeric_predictors (), threshold = 0.6)

266

267

268 wf_default <- workflow () %>%

269 add_recipe(rec_default) %>%

270 add_model(spec_default) %>% add_case_weights(case_wts)

271

272

273

274 library(FSelectorRcpp)

275

276

277 rec_baked <- prep(rec_default , training = data_train [[i]])

278

279 data_train_for_vip <- bake(rec_baked , new_data = data_train [[i]])

280

281 data_train_for_vip <- data_train_for_vip %>% dplyr:: select(

282 -case_wts)

283

284

285

286 vi_df <- information_gain(IPAQ_category ~ . - case_wts , data = data_train [[

i]])

287

288 top_vars <- vi_df %>%

289 arrange(desc(importance)) %>%

290 slice_head(n = 80) %>%

291 pull(attributes)

292

293 library(stringr)

294

295 cleaned_vars <- top_vars %>%

296 str_remove ("_X\\d+$") %>%

297 unique ()

298

299

300

301

302 data_train [[i]] <- data_train [[i]] %>% dplyr:: select(all_of(c(cleaned_vars ,

"IPAQ_category", "case_wts ")))

303 data_test [[i]] <- data_test [[i]] %>% dplyr:: select(all_of(c(cleaned_vars ,

"IPAQ_category ")))

304 data_test [[i]] <- data_test [[i]] %>% dplyr:: select(all_of(c(cleaned_vars ,

"IPAQ_category ")))

305

306

307 rec_default <- recipe(IPAQ_category ~ ., data = data_train [[i]]) %>%

308 step_unknown(all_nominal_predictors (), new_level = "unknown ") %>%

309 step_dummy(all_nominal_predictors ()) %>%

310 step_zv(all_predictors ()) %>%
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311 step_normalize(all_numeric_predictors ()) %>%

312 step_corr(all_numeric_predictors (), threshold = 0.6)

313

314

315

316 wf_default <- workflow () %>%

317 add_recipe(rec_default) %>%

318 add_model(spec_default) %>% add_case_weights(case_wts)

319

320

321

322

323 default_res <- last_fit(

324 wf_default ,

325 split = data_split ,

326 metrics = metric_set(

327 yardstick ::f_meas ,

328 yardstick ::precision ,

329 yardstick ::recall ,

330 yardstick ::spec ,

331 yardstick ::accuracy ,

332 yardstick :: bal_accuracy

333

334 , yardstick :: pr_auc

335

336 )

337 )

338

339

340 collect_metrics(default_res)

341

342 preds <- collect_predictions(default_res) %>%

343 mutate (. pred_class = factor(if_else (. pred_Yes >= 0.5, "Yes", "No"),

levels = c("Yes", "No")))

344

345 collect_metrics(default_res)

346 conf_mat(preds , truth = IPAQ_category , estimate = .pred_class)

347

348

349

350 final_model <- extract_fit_parsnip(default_res$.workflow [[1]])
351 summary(final_model$fit)
352

353

354

355 coef_df <- coef(summary(final_model$fit)) %>%

356 as.data.frame () %>%

357 rownames_to_column (" feature ") %>%

358 dplyr:: select(feature , coefficient = Estimate)

359

360 coef_df_list [[i]] <- coef_df

361

362

363

364

365 test_probs <- preds$.pred_Yes
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366 test_preds <- preds$.pred_class
367 truth <- data_test [[i]] $IPAQ_category
368

369

370 predictions_list [[i]] <- tibble(

371 truth = truth ,

372 .pred_class = test_preds ,

373 .pred_Yes = test_probs

374 )

375

376 }

377

378

379

380

381

382

383

384 combined_coefs <- bind_rows(coef_df_list , .id = "imputation ")

385 combined_predictions <- bind_rows(predictions_list , .id = "imputation ")

386

387

388

389

390

391 all_preds <- bind_rows(predictions_list , .id = "imputation ")

392

393

394 pred_list <- list()

395

396 for (i in 1: length) {

397 pred_list [[i]] <- predictions_list [[i]]$.pred_Yes
398 }

399

400 avg_preds <- rowMeans(do.call(cbind , pred_list))

401

402 truth <- predictions_list [[1]] $truth
403

404 final_avg_preds <- data.frame(

405 .pred_Yes = avg_preds ,

406 truth = factor(truth , levels = c("Yes", "No")),

407 .pred_class = factor(ifelse(avg_preds >= 0.5, "Yes", "No"), levels = c("Yes

", "No"))

408 )

409 conf_mat(final_avg_preds , truth = truth , estimate = .pred_class)

410

411

412

413 truth <- final_avg_preds$truth
414 pred <- final_avg_preds$.pred_class
415 probs <- final_avg_preds$.pred_Yes
416

417 truth <- factor(truth , levels = c("Yes", "No"))

418 pred <- factor(pred , levels = c("Yes", "No"))

419

420 f1 <- f_meas_vec(truth , pred)
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421 precision <- precision_vec(truth , pred)

422 recall <- recall_vec(truth , pred)

423 specificity <- specificity_vec(truth , pred)

424 accuracy <- accuracy_vec(truth , pred)

425 bal_accuracy <- bal_accuracy_vec(truth , pred)

426 pr_auc <- pr_auc_vec(truth , probs , event_level = "first ")

427

428

429 metrics <- tibble(

430 Metric = c(

431 "F1 Score",

432 "Precision",

433 "Recall (Sensitivity)",

434 "Specificity",

435 "Accuracy",

436 "Bal. Accuracy",

437 "PR_AUC"

438 ),

439 Value = c(

440 f1,

441 precision ,

442 recall ,

443 specificity ,

444 accuracy ,

445 bal_accuracy ,

446 pr_auc

447 )

448 )

449 (metrics)

450 conf_mat(final_avg_preds , truth = truth , estimate = .pred_class)

451

452

453 model <- ’Logistic regression ’

454 label <- ’IPAQ Category ’

455

456 all_coefs <- bind_rows(coef_df_list , .id = "imputation ")

457

458 pooled_coefs <- all_coefs %>%

459 group_by(feature) %>%

460 summarise(mean_coef = mean(coefficient , na.rm = TRUE)) %>%

461 ungroup ()

462 pooled_coefs <- pooled_coefs %>%

463 rename(coef = mean_coef) %>%

464 filter(coef != 0)

465

466 intercept <- pooled_coefs %>%

467 filter(feature == "( Intercept)") %>%

468 pull(coef)

469

470 coefs <- pooled_coefs %>%

471 filter(feature != "( Intercept)")

472

473

474

475 coef_df <- pooled_coefs %>%

476 filter(feature != "( Intercept)", coef != 0) %>%
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477 mutate(

478 direction = ifelse(coef > 0, "Positive", "Negative "),

479 abs_coef = abs(coef)

480 ) %>%

481 slice_max(order_by = abs_coef , n = 10)

482

483

484

485 model <- ’Logistic Regression ’

486 label <- ’IPAQ Category ’

487

488 ggplot(coef_df , aes(x = reorder(feature , abs_coef), y = abs_coef , fill =

direction)) +

489 geom_col () +

490 coord_flip () +

491 scale_fill_manual(values = c(" Positive" = "dodgerblue", "Negative" = "red")

) +

492 labs(

493 title = paste(’Most predictive features for\n’, label , ’using ’, model),

494 x = "Feature",

495 y = "Importance (| Coefficient |)",

496 fill = "Effect Direction"

497 ) +

498 theme_minimal ()

499

500 ################################################################################

501 ################################################################################

502 ################################################################################

503 ################################################################################

504 # Elastic Net IPAQ category

505 ################################################################################

506

507 rm(list = ls())

508 seed <- 42

509

510 sheet_names <- excel_sheets ("C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

imputations/all_imputations.xlsx")

511

512 for (i in seq_along(sheet_names)){

513 sheet_data <- read_excel ("C:/ Users/anasn/Desktop/E/Semester 4/ Thesis/files/

imputations/all_imputations.xlsx",

514 sheet = sheet_names[i])

515 assign(paste0 ("cross", i), sheet_data , envir = .GlobalEnv)

516 }

517 cross_all <- list(cross1 , cross2 , cross3 , cross4 , cross5 ,

518 cross6 , cross7 , cross8 , cross9 , cross10)

519

520 gender <- read_xlsx(’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

Qualtrics_vragenlijst_fysiek_final_241024.xlsx ’)

521

522
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523 data_train <- list()

524 data_test <- list()

525

526 coef_df_list <- list()

527

528 predictions_list <- list()

529

530

531 for (i in 1:10) {

532 cross <- cross_all [[i]]

533

534

535 cross$gender <- gender$gender
536

537 cross <- cross %>%

538 filter (! IPAQ_category == "1") %>%

539 mutate(IPAQ_category = ifelse(IPAQ_category == "2", 0, 1))

540

541 cross$sit_reach_values_3[is.na(cross$sit_reach_values_3)] <- 0

542

543 outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes ’, ’No ’), levels = c

(’Yes ’, ’No ’))

544

545 cross <- cross %>%

546 mutate(across(everything (), ~ as.numeric(as.character (.))))

547

548 zero_var_indices <- nearZeroVar(cross)

549

550 cross <- cross[, -zero_var_indices]

551

552

553 for (col in names(cross)) {

554 unique_vals <- length(unique(na.omit(cross [[col]])))

555 if (unique_vals <= 5) {

556 cross [[col]] <- as.factor(cross[[col]])

557 }

558 }

559

560

561 cross <- cross %>%

562 mutate(across(

563 where(is.factor),

564 ~ if (all(levels (.) %in% c("1", "2"))) {

565 factor(ifelse (. == "2", "0", "1"), levels = c("0", "1"))

566 } else {

567 .

568 }

569 ))

570

571

572

573 outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes ’, ’No ’), levels = c(’

Yes ’, ’No ’))

574

575

576
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577 cross <- cross %>%

578 dplyr:: select(-participant_id , -starts_with ("ipaq"), -starts_with ("IPAQ"))

579

580 cross$IPAQ_category <- outcome

581

582

583 cross <- cross %>% mutate(case_wts = ifelse(IPAQ_category == "Yes", 1, 2.5),

584 case_wts = importance_weights(case_wts))

585

586 model <- ’Elastic Net ’

587 label <- ’IPAQ category ’

588

589 set.seed(seed)

590 data_split <- initial_split(cross , strata = IPAQ_category , prop = 0.70)

591 data_train [[i]] <- training(data_split)

592 data_test [[i]] <- testing(data_split)

593 }

594

595 table(cross$IPAQ_category)
596 (start_time <- Sys.time())

597 for(i in 1:10){

598 set.seed(seed)

599 data_folds <- vfold_cv(data_train [[i]], strata = IPAQ_category , v = nrow(

data_train [[i]]))

600 data_folds <- vfold_cv(data_train [[i]], strata = IPAQ_category , v = 10

601 )

602

603 library(tune)

604 library(doParallel)

605

606 spec <- logistic_reg(

607 penalty = tune()

608 ,mixture = tune()

609 ) %>%

610 set_engine (" glmnet"

611 ) %>%

612 set_mode (" classification ")

613

614 params <- parameters(

615 penalty(range = c(-5, 1))

616 ,mixture(range = c(0, 1)))

617

618

619

620 rec <- recipe(IPAQ_category ~ ., data = data_train [[i]]) %>%

621 step_normalize(all_numeric_predictors ()) %>%

622 step_dummy(all_nominal_predictors ())

623

624

625

626

627 wf <- workflow () %>%

628 add_recipe(rec) %>%

629 add_model(spec) %>% add_case_weights(case_wts)

630

631
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632 rec_prep <- prep(rec , training = data_train [[i]])

633 processed_data <- bake(rec_prep , new_data = NULL)

634

635

636

637

638 plan(sequential)

639 plan(multisession , workers = parallel :: detectCores () - 2, gc = TRUE)

640

641 set.seed(seed)

642 res <- tune_bayes(

643 wf ,

644 resamples = data_folds ,

645 param_info = params ,

646 initial = 20,

647 iter = 20,

648 metrics = metric_set(

649 f_meas ,

650 yardstick ::precision ,

651

652 )

653 ,control = control_bayes(

654 verbose = T,

655 no_improve = 20,

656 seed = 123,

657 save_pred = TRUE ,

658 allow_par = TRUE

659 )

660 )

661

662 plan(sequential)

663 plan()

664

665 ipaq_cat_en_res <- res

666

667

668

669 best_parms <- select_best(res , metric = "precision ")

670

671 set.seed(seed)

672 final <- finalize_workflow(wf , best_parms)

673

674 final_res <- last_fit(final , data_split , metrics = metric_set(

675 f_meas ,

676 yardstick ::precision ,

677 yardstick ::recall ,

678 yardstick :: specificity ,

679 yardstick ::accuracy ,

680 yardstick :: bal_accuracy ,

681 pr_auc

682

683 ))

684 collect_metrics(final_res)

685

686 final_fit <- fit(final , data = data_train [[i]])

687
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688 (glmnet_model <- extract_fit_parsnip(final_fit)$fit)
689

690 (best_params <- select_best(res , metric = "precision "))

691 (best_lambda <- best_params$penalty)
692 (best_alpha <- best_params$mixture)
693

694 coefs <- coef(glmnet_model , s = best_lambda)

695

696 coef_df <- data.frame(

697 feature = rownames(coefs),

698 coefficient = as.vector ((coefs)))

699

700 coef_df_list [[i]] <- coef_df

701

702 predictions_list [[i]] <- collect_predictions(final_res)

703 }

704 end_time <- Sys.time()

705 (parallel_time <- end_time - start_time)

706

707 library(writexl)

708

709

710

711 combined_coefs <- bind_rows(coef_df_list , .id = "imputation ")

712 combined_predictions <- bind_rows(predictions_list , .id = "imputation ")

713

714

715

716

717

718 all_preds <- bind_rows(predictions_list , .id = "imputation ")

719

720

721 pred_list <- list()

722

723 for (i in 1:10) {

724 pred_list [[i]] <- predictions_list [[i]]$.pred_Yes
725 }

726

727 avg_preds <- rowMeans(do.call(cbind , pred_list))

728

729 truth <- predictions_list [[1]] $IPAQ_category
730

731 final_avg_preds <- data.frame(

732 .pred_Yes = avg_preds ,

733 truth = factor(truth , levels = c("Yes", "No")),

734 .pred_class = factor(ifelse(avg_preds >= 0.5, "Yes", "No"), levels = c("Yes",

"No"))

735 )

736

737

738 conf_mat(final_avg_preds , truth = truth , estimate = .pred_class)

739

740

741

742 truth <- final_avg_preds$truth
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743 pred <- final_avg_preds$.pred_class
744 probs <- final_avg_preds$.pred_Yes
745

746 truth <- factor(truth , levels = c("Yes", "No"))

747 pred <- factor(pred , levels = c("Yes", "No"))

748

749 f1 <- f_meas_vec(truth , pred)

750 precision <- precision_vec(truth , pred)

751 recall <- recall_vec(truth , pred)

752 specificity <- specificity_vec(truth , pred)

753 accuracy <- accuracy_vec(truth , pred)

754 bal_accuracy <- bal_accuracy_vec(truth , pred)

755 pr_auc <- pr_auc_vec(truth , probs , event_level = "first ")

756

757

758 metrics <- tibble(

759 Metric = c(

760 "F1 Score",

761 "Precision",

762 "Recall (Sensitivity)",

763 "Specificity",

764 "Accuracy",

765 "Bal. Accuracy",

766 "PR_AUC"

767 ),

768 Value = c(

769 f1,

770 precision ,

771 recall ,

772 specificity ,

773 accuracy ,

774 bal_accuracy ,

775 pr_auc

776 )

777 )

778

779 print(metrics)

780 conf_mat(final_avg_preds , truth = truth , estimate = .pred_class)

781

782

783 model <- ’Elastic Net ’

784 label <- ’GDS category ’

785

786 all_coefs <- bind_rows(coef_df_list , .id = "imputation ")

787

788 pooled_coefs <- all_coefs %>%

789 group_by(feature) %>%

790 summarise(mean_coef = mean(coefficient , na.rm = TRUE)) %>%

791 ungroup ()

792

793 pooled_coefs <- pooled_coefs %>%

794 rename(coef = mean_coef) %>%

795 filter(coef != 0)

796

797 intercept <- pooled_coefs %>%

798 filter(feature == "( Intercept)") %>%
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799 pull(coef)

800

801 coefs <- pooled_coefs %>%

802 filter(feature != "( Intercept)")

803

804

805

806 coef_df <- pooled_coefs %>%

807 filter(feature != "( Intercept)", coef != 0) %>%

808 mutate(

809 direction = ifelse(coef > 0, "Positive", "Negative "),

810 abs_coef = abs(coef)

811 ) %>%

812 slice_max(order_by = abs_coef , n = 10)

813

814

815

816 model <- ’Elastic Net ’

817 label <- ’IPAQ category ’

818

819 ggplot(coef_df , aes(x = reorder(feature , abs_coef), y = abs_coef , fill =

direction)) +

820 geom_col () +

821 coord_flip () +

822 scale_fill_manual(values = c(" Positive" = "dodgerblue", "Negative" = "red"))

+

823 labs(

824 title = paste(’Most predictive features for\n’, label , ’using ’, model),

825 x = "Feature",

826 y = "Importance (| Coefficient |)",

827 fill = "Effect Direction"

828 ) +

829 theme_minimal ()

830

831 ################################################################################

832 ################################################################################

833 ################################################################################

834 ################################################################################

835 # LightGBM ipaq category

836 ################################################################################

837 rm(list = ls())

838 seed <- 42

839

840 cross <- read_excel(’C:/ Users/anasn/Desktop/E/Semester 4/ Thesis/files/

cross_processed.xlsx ’)

841

842 gender <- read_xlsx(’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

Qualtrics_vragenlijst_fysiek_final_241024.xlsx ’)

843

844 cross$gender <- gender$gender
845
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846

847

848

849

850 cross <- cross %>%

851 filter (! IPAQ_category == "1") %>%

852 mutate(IPAQ_category = ifelse(IPAQ_category == "2", 0, 1))

853

854

855 outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes ’, ’No ’), levels = c(’

Yes ’, ’No ’))

856

857 cross <- cross %>%

858 mutate(across(everything (), ~ as.numeric(as.character (.))))

859

860 zero_var_indices <- nearZeroVar(cross)

861

862 cross <- cross[, -zero_var_indices]

863

864

865 for (col in names(cross)) {

866 unique_vals <- length(unique(na.omit(cross [[col]])))

867 if (unique_vals <= 5) {

868 cross [[col]] <- as.factor(cross[[col]])

869 }

870 }

871

872

873 cross <- cross %>%

874 mutate(across(

875 where(is.factor),

876 ~ if (all(levels (.) %in% c("1", "2"))) {

877 factor(ifelse (. == "2", "0", "1"), levels = c("0", "1"))

878 } else {

879 .

880 }

881 ))

882

883

884

885 outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes ’, ’No ’), levels = c(’

Yes ’, ’No ’))

886

887

888

889

890 cross <- cross %>%

891 dplyr:: select(-participant_id , -starts_with ("ipaq"), -starts_with ("IPAQ"))

892

893 cross$IPAQ_category <- outcome

894

895

896 cross <- cross %>% mutate(case_wts = ifelse(IPAQ_category == "Yes", 1, 2),

897 case_wts = importance_weights(case_wts))

898

899
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900 model <- ’Elastic Net ’

901 label <- ’IPAQ category ’

902

903

904 set.seed(seed)

905 data_split <- initial_split(cross , strata = IPAQ_category , prop = 0.7)

906 data_train <- training(data_split)

907 data_test <- testing(data_split)

908 library(bonsai)

909

910

911 spec_default <- boost_tree () %>%

912 set_engine (" lightgbm ") %>%

913 set_mode (" classification ")

914

915

916 rec_default <- recipe(IPAQ_category ~ ., data = data_train) %>%

917 step_unknown(all_nominal_predictors (), new_level = "unknown ") %>%

918

919 step_dummy(all_nominal_predictors ())

920

921 wf_default <- workflow () %>%

922 add_recipe(rec_default) %>%

923 add_model(spec_default) %>% add_case_weights(case_wts)

924

925

926

927

928

929

930

931

932

933 default_res <- last_fit(

934 wf_default ,

935 split = data_split ,

936 metrics = metric_set(

937 yardstick ::f_meas ,

938 yardstick ::precision ,

939 yardstick ::recall ,

940 yardstick ::spec ,

941 yardstick ::accuracy ,

942 yardstick :: bal_accuracy ,

943 yardstick :: pr_auc

944 )

945 )

946

947

948 collect_metrics(default_res)

949

950

951

952 preds <- collect_predictions(default_res) %>%

953 mutate (. pred_class = factor(if_else (. pred_Yes >= 0.5, "Yes", "No"), levels =

c("Yes", "No")))

954
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955

956 collect_metrics(default_res)

957

958 conf_mat(preds , truth = IPAQ_category , estimate = .pred_class)

959

960

961

962

963 fitted_model <- extract_fit_parsnip(default_res)

964

965 vip(fitted_model$fit , num_features = 10) +

966 ggtitle(paste(’Most predictive features for\n’, label , ’using ’, model))

967

968

969

970 set.seed(seed)

971 spec <- boost_tree(

972 trees = tune(),

973 tree_depth = tune(),

974 min_n = tune(),

975 loss_reduction = tune(),

976 sample_size = tune(),

977 learn_rate = tune()

978 ) %>%

979 set_engine (" lightgbm",

980 lambda_l1 = tune(),

981 lambda_l2 = tune()

982 , num_leaves = tune()) %>%

983 set_mode (" classification ")

984

985

986 library(dials)

987 set.seed(seed)

988 params <- parameters(

989 trees(),

990 tree_depth (),

991 min_n(),

992 loss_reduction (),

993 sample_size = sample_prop (),

994 learn_rate (),

995

996 lambda_l1 = penalty(range = c(-5, 1)),

997 lambda_l2 = penalty(range = c(-5, 1))

998 , num_leaves ()

999 )

1000

1001

1002 rec <- recipe(IPAQ_category ~ ., data = data_train) %>%

1003 step_unknown(all_nominal_predictors (), new_level = "unknown ") %>%

1004 step_dummy(all_nominal_predictors ()) %>%

1005 step_zv(all_predictors ())

1006

1007 wf <- workflow () %>%

1008 add_recipe(rec) %>%

1009 add_model(spec) %>% add_case_weights(case_wts)

1010
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1011

1012

1013

1014 set.seed(seed)

1015

1016 set.seed(seed)

1017 data_folds <- vfold_cv(data_train , strata = IPAQ_category

1018 , v = 5

1019 )

1020

1021 data_folds

1022

1023

1024 library(doParallel)

1025

1026

1027 library(future)

1028 plan(multisession , workers = parallel :: detectCores () - 4)

1029

1030

1031 # Bayesian tuning

1032 set.seed(seed)

1033 (start_time <- Sys.time())

1034 res <- tune_bayes(

1035 wf ,

1036 resamples = data_folds ,

1037 param_info = params ,

1038 initial = 50,

1039 iter = 20,

1040 metrics = metric_set(

1041 yardstick ::f_meas ,

1042 yardstick :: precision

1043 ),

1044 control = control_bayes(

1045 verbose = TRUE ,

1046 no_improve = 10,

1047 seed = 123,

1048 save_pred = TRUE ,

1049 allow_par = TRUE

1050 )

1051 )

1052 end_time <- Sys.time()

1053 (parallel_time <- end_time - start_time)

1054

1055 ipaq_cat_lgbm_res <- res

1056

1057

1058 res <- ipaq_cat_lgbm_res

1059

1060

1061

1062 cross <- cross %>%

1063 mutate(case_wts = ifelse(IPAQ_category == "Yes", 1, 2),

1064 case_wts = importance_weights(case_wts))

1065

1066 set.seed(seed)
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1067 data_split <- initial_split(cross , strata = IPAQ_category , prop = 0.70)

1068 data_train <- training(data_split)

1069 data_test <- testing(data_split)

1070

1071 collect_metrics(res)

1072

1073 best_parms <- select_best(res , metric = "precision ")

1074

1075 spec <- boost_tree(

1076 trees = best_parms$trees ,
1077 tree_depth = best_parms$tree_depth ,
1078 min_n = best_parms$min_n ,
1079 loss_reduction = best_parms$loss_reduction ,
1080 sample_size = best_parms$sample_size ,
1081 learn_rate = best_parms$learn_rate
1082 ) %>%

1083 set_engine (" lightgbm",

1084 lambda_l1 = best_parms$lambda_l1 ,
1085 lambda_l2 = best_parms$lambda_l2
1086 , num_leaves = best_parms$num_leaves) %>%

1087 set_mode (" classification ")

1088

1089

1090 rec <- recipe(IPAQ_category ~ ., data = data_train) %>%

1091 step_unknown(all_nominal_predictors (), new_level = "unknown ") %>%

1092 step_dummy(all_nominal_predictors ()) %>%

1093 step_zv(all_predictors ())

1094

1095 final <- workflow () %>%

1096 add_recipe(rec) %>%

1097 add_model(spec) %>% add_case_weights(case_wts)

1098

1099 set.seed(seed)

1100 final_fit <- fit(final , data = data_train)

1101

1102 final_res <- last_fit(final , data_split , metrics = metric_set(

1103 yardstick ::f_meas ,

1104 yardstick ::precision ,

1105 yardstick ::recall ,

1106 yardstick ::spec ,

1107 yardstick ::accuracy ,

1108 yardstick :: bal_accuracy ,

1109 yardstick :: pr_auc

1110 ))

1111

1112 collect_metrics(final_res)

1113

1114 preds <- collect_predictions(final_res) %>%

1115 mutate (. pred_class = factor(if_else (. pred_Yes >= 0.5, "Yes", "No"), levels =

c("Yes", "No")))

1116

1117 conf_mat(preds , truth = IPAQ_category , estimate = .pred_class)

1118

1119 label <- ’IPAQ Category ’

1120 model <- ’LightGBM ’

1121 vip(final_fit , num_features = 10) +
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1122 ggtitle(paste(’Most predictive features for\n’, label , ’using ’, model))

Longitudinal software code

1 # Software code in Python for the RNN sequence prediction

2

3

4

5

6 import numpy as np

7 import pandas as pd

8 import matplotlib.pyplot as plt

9

10 from sklearn.model_selection import train_test_split

11 import itertools as itr

12 from skimpy import skim

13 from scipy.stats import iqr

14 from sklearn.model_selection import train_test_split

15 from feature_engine.timeseries.forecasting import LagFeatures

16 from feature_engine.timeseries.forecasting import WindowFeatures

17 from feature_engine.timeseries.forecasting import ExpandingWindowFeatures

18 import lightgbm as lgb

19 import matplotlib.pyplot as plt

20 from sklearn.metrics import mean_squared_error , mean_absolute_error , r2_score

21 from sklearn.metrics import median_absolute_error

22 from sktime.performance_metrics.forecasting import

MedianAbsolutePercentageError

23 from sklearn.metrics import mean_absolute_error , median_absolute_error ,

r2_score

24

25 import tensorflow as tf

26 import random

27

28

29

30 import os

31 import time

32 day_number = 7

33

34

35 SEED = 99

36 tf.random.set_seed(SEED)

37 random.seed(SEED)

38 np.random.seed(SEED)

39

40 garmin = pd.read_excel(’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

Garmin_days_EMA_Anas.xlsx ’,

41 index_col =0)

42 ema = pd.read_csv(’C:/ Users/anasn/Desktop/E/Semester 4/ Thesis/files/

EMA_days_Answered_Final.csv ’

43 , sep=’;’

44 , decimal=’,’)

45

46 garmin_valid_ids = garmin[garmin[’day ’] == 14][’ participant_id ’]. unique ()

47

48 garmin = (garmin

49 .query ("day <= 14 and participant_id in @garmin_valid_ids "))
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50

51

52 garmin = (garmin

53 .groupby([’participant_id ’, ’day ’, ’date ’, ’hours_cat ’])

54 .agg(Steps = (" Steps", lambda x: np.sum(x)))

55 .sort_values ([’participant_id ’, ’date ’, ’hours_cat ’])

56 .reset_index(drop=False))

57

58 garmin[’hours_cat ’] = pd.Categorical(garmin[’hours_cat ’]

59 , categories =[’Morning ’, ’Noon ’, ’Afternoon ’, ’Evening ’])

60

61 garmin = (garmin

62 .sort_values ([’participant_id ’, ’day ’, ’date ’, ’hours_cat ’]))

63

64

65

66 participant_id = garmin[’participant_id ’]. unique ()

67 day = np.arange(1, 15)

68 hours_cat = garmin[’hours_cat ’]. unique ()

69

70 template = pd.DataFrame(list(itr.product(participant_id , day , hours_cat)),

71 columns=[’participant_id ’, ’day ’, ’hours_cat ’])

72

73 template[’timestep ’] = (template

74 .groupby(’participant_id ’)

75 .cumcount () + 1)

76

77 template = pd.merge(template , garmin , on=[" participant_id", "day", "hours_cat "]

78 , how=’left ’)

79

80 garmin = template.copy()

81

82 ema[" Time_cat "] = pd.Categorical(ema[’Time_cat ’],

83 categories =[’Morning ’, ’Noon ’, ’Afternoon ’, ’Evening ’])

84

85 ema = (ema

86 .rename(columns = {" Time_cat ": "hours_cat "}))

87

88 garmin = pd.merge(garmin , ema , how=’left ’,

89 on=[" participant_id", "day", "hours_cat "])

90

91

92 garmin[’date ’] = (garmin

93 .groupby ([" participant_id", "day"])[’date ’]

94 .transform(lambda x: x.ffill().bfill()))

95

96 garmin.columns

97

98

99 garmin = (garmin

100 .get([’participant_id ’, ’day ’, ’hours_cat ’, ’timestep ’, ’date ’,

101 ’PHYSICAL_NORM ’, ’MENTAL_NORM ’, ’MOTIVATION_NORM ’, ’

EFFICACY_NORM ’,

102 ’CONTEXT_NORM ’, ’Steps ’]))

103

104
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105 np.random.seed(SEED)

106 shuffled_ids = np.random.permutation(participant_id)

107 n = len(shuffled_ids)

108

109 train_size = int(np.floor (0.7 * n))

110 val_size = int(np.floor (0.1 * n))

111

112 train_ids = shuffled_ids [: train_size]

113 val_ids = shuffled_ids[train_size:train_size + val_size]

114 test_ids = shuffled_ids[train_size + val_size :]

115

116 print(len(train_ids), len(val_ids), len(test_ids))

117 print(sorted(train_ids))

118 print(sorted(val_ids))

119 print(sorted(test_ids))

120

121

122

123

124 ###############################################################################

125 # Yeo -Johnson

126

127 from feature_engine.transformation import YeoJohnsonTransformer

128

129

130 steps_train_df = garmin[garmin[’participant_id ’]. isin(train_ids)][[’Steps ’]].

dropna ()

131 step_transformer = YeoJohnsonTransformer(variables=[’Steps ’])

132 step_transformer.fit(steps_train_df)

133

134 garmin[’Steps_original ’] = garmin[’Steps ’]

135

136 steps_non_null = garmin.loc[garmin[’Steps ’]. notna (), [’Steps ’]]

137 transformed_steps = step_transformer.transform(steps_non_null)

138

139 garmin[’Steps_transformed ’] = np.nan

140 garmin.loc[steps_non_null.index , ’Steps_transformed ’] = transformed_steps[’

Steps ’]

141

142 garmin[’Steps ’] = garmin[’Steps_transformed ’]

143

144

145

146

147 ###############################################################################

148 mask = -999

149 garmin = garmin.fillna(mask)

150 ###############################################################################

151 lable = "Number of Steps"

152 model = "RNN"

153

154 lag_vars = [’Steps ’

155 , "PHYSICAL_NORM", "MENTAL_NORM", "MOTIVATION_NORM", "

EFFICACY_NORM", "CONTEXT_NORM"

156 ]

157
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158 length = 4* day_number

159 lag_range = np.arange(1, length +1).tolist ()

160

161

162 hours_map = {’Morning ’: 0, ’Noon ’: 1, ’Afternoon ’: 2, ’Evening ’: 3}

163 garmin[’hours_idx ’] = garmin[’hours_cat ’]. map(hours_map)

164

165 garmin = pd.concat ([garmin , pd.get_dummies(garmin[’hours_cat ’])], axis =1)

166 garmin[[’Morning ’, ’Noon ’, ’Afternoon ’, ’Evening ’]] = garmin[[’Morning ’, ’Noon

’, ’Afternoon ’, ’Evening ’]]. astype(int)

167

168

169 def make_lag(df):

170 lf = LagFeatures(periods=lag_range

171 , variables=lag_vars

172 , missing_values=’ignore ’)

173 return lf.fit_transform(df)

174

175

176

177 garmin = (

178 garmin

179 .groupby([’participant_id ’])

180 .apply(make_lag)

181 .reset_index(drop=True)

182 )

183

184 garmin.columns

185

186

187

188

189

190 # multi step

191 for i in range(0, 4):

192 garmin[f’Steps_t{i}’] = garmin.groupby(’participant_id ’)[’Steps ’]. shift(-i)

193 garmin[f’Steps_original_t{i}’] = garmin.groupby(’participant_id ’)[’

Steps_original ’]. shift(-i)

194

195

196 target_cols = [f’Steps_t{i}’ for i in range(0, 4)]

197

198 target_original_cols = [f’Steps_original_t{i}’ for i in range (4)]

199

200 no_missing = garmin[target_original_cols ]. notna().all(axis =1)

201 no_missing = garmin[target_original_cols ]. notna().all(axis =1)

202 no_mask = (garmin[target_original_cols] != mask).all(axis =1)

203

204 data_train = garmin[

205 garmin[’participant_id ’]. isin(train_ids) &

206 (garmin[’timestep ’] > length) &

207 no_missing &

208 no_mask

209 ]

210

211 data_val = garmin[
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212 garmin[’participant_id ’]. isin(val_ids) &

213 (garmin[’timestep ’] > length) &

214 no_missing &

215 no_mask

216 ]

217

218 data_test = garmin[

219 garmin[’participant_id ’]. isin(test_ids) &

220 (garmin[’timestep ’] > length) &

221 no_missing &

222 no_mask

223 ]

224

225

226 lagged_features = garmin.filter(regex=r"_lag_\d+$").columns.tolist ()
227

228

229

230 other_features = [’hours_cat ’]

231 time_of_day_features = [’Noon ’, ’Afternoon ’, ’Evening ’]

232

233

234 features = (time_of_day_features+

235 lagged_features)

236

237

238

239 sorted_lagged_columns = sorted(

240 [col for col in data_train.columns if ’Steps_lag_ ’ in col],

241 key=lambda x: int(x.split(’_’)[-1]),

242 reverse=True

243 )

244

245

246

247 X_train = (data_train

248 .get(features #+ [’participant_id ’]

249 ))

250 y_train = data_train.loc[:, target_cols]

251

252 X_val = (data_val

253 .get(features #+ [’participant_id ’]

254 ))

255 y_val = data_val.loc[:, target_cols]

256

257

258 X_test = (data_test

259 .get(features #+ [’participant_id ’]

260 ))

261 y_test = data_test.loc[:, target_cols]

262

263

264

265

266

267 step_cols = [f"Steps_lag_{i}" for i in range(length , 0, -1)]
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268 ema_vars = [" PHYSICAL_NORM", "MENTAL_NORM", "MOTIVATION_NORM", "EFFICACY_NORM",

"CONTEXT_NORM "]

269 ema_cols = [[f"{var}_lag_{i}" for i in range(length , 0, -1)] for var in

ema_vars]

270 time_cols = ["Noon", "Afternoon", "Evening "]

271

272 # Train

273 steps = X_train[step_cols ]. values.reshape(-1, length , 1)

274 ema_0 = X_train[ema_cols [0]]. values.reshape(-1, length , 1)

275 ema_1 = X_train[ema_cols [1]]. values.reshape(-1, length , 1)

276 ema_2 = X_train[ema_cols [2]]. values.reshape(-1, length , 1)

277 ema_3 = X_train[ema_cols [3]]. values.reshape(-1, length , 1)

278 ema_4 = X_train[ema_cols [4]]. values.reshape(-1, length , 1)

279 time = X_train[time_cols ]. values.reshape(-1, 1, 3)

280 time_repeated = np.repeat(time , length , axis =1)

281 X_train_seq = np.concatenate ([steps

282 #, ema_0 , ema_1 , ema_2 , ema_3 , ema_4

283 , time_repeated], axis =2)

284

285 # Val

286 steps = X_val[step_cols ]. values.reshape(-1, length , 1)

287 ema_0 = X_val[ema_cols [0]]. values.reshape(-1, length , 1)

288 ema_1 = X_val[ema_cols [1]]. values.reshape(-1, length , 1)

289 ema_2 = X_val[ema_cols [2]]. values.reshape(-1, length , 1)

290 ema_3 = X_val[ema_cols [3]]. values.reshape(-1, length , 1)

291 ema_4 = X_val[ema_cols [4]]. values.reshape(-1, length , 1)

292 time = X_val[time_cols ]. values.reshape(-1, 1, 3)

293 time_repeated = np.repeat(time , length , axis =1)

294 X_val_seq = np.concatenate ([ steps

295 #, ema_0 , ema_1 , ema_2 , ema_3 , ema_4

296 , time_repeated], axis =2)

297

298 # Test

299 steps = X_test[step_cols ]. values.reshape(-1, length , 1)

300 ema_0 = X_test[ema_cols [0]]. values.reshape(-1, length , 1)

301 ema_1 = X_test[ema_cols [1]]. values.reshape(-1, length , 1)

302 ema_2 = X_test[ema_cols [2]]. values.reshape(-1, length , 1)

303 ema_3 = X_test[ema_cols [3]]. values.reshape(-1, length , 1)

304 ema_4 = X_test[ema_cols [4]]. values.reshape(-1, length , 1)

305 time = X_test[time_cols ]. values.reshape(-1, 1, 3)

306 time_repeated = np.repeat(time , length , axis =1)

307 X_test_seq = np.concatenate ([steps

308 #, ema_0 , ema_1 , ema_2 , ema_3 , ema_4

309 , time_repeated], axis =2)

310

311

312

313

314

315 X_train = X_train_seq

316 X_val = X_val_seq

317 X_test = X_test_seq

318

319

320

321 from sklearn.utils import shuffle
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322

323 X_train , y_train = shuffle(X_train , y_train , random_state =42)

324

325 X_val , y_val = shuffle(X_val , y_val , random_state =42)

326 X_test , y_test = shuffle(X_test , y_test , random_state =42)

327

328

329

330

331

332

333 train_2d = X_train.reshape(-1, X_train.shape [-1])

334 medians = np.median(train_2d , axis =0)

335 iqrs = np.subtract (*np.percentile(train_2d , [75, 25], axis =0))

336 iqrs [-4:] = 1.0

337

338 iqrs[iqrs == 0] = 1e-8

339

340

341 def robust_scale_ignore_mask(X, medians , iqrs , mask_value =-999):

342 mask = (X == mask_value)

343 X_masked = np.where(mask , np.nan , X)

344

345 X_scaled = (X_masked - medians) / iqrs

346

347 X_scaled[mask] = mask_value

348

349 return X_scaled

350

351

352 X_train = robust_scale_ignore_mask(X_train , medians , iqrs , mask_value =-999)

353 X_val = robust_scale_ignore_mask(X_val , medians , iqrs , mask_value = -999)

354 X_test = robust_scale_ignore_mask(X_test , medians , iqrs , mask_value =-999)

355

356

357 ###############################################################################

358

359 from tensorflow.keras.models import Sequential

360 from tensorflow.keras.layers import LSTM , Dense , Dropout

361 from tensorflow.keras.callbacks import EarlyStopping

362 from sklearn.metrics import r2_score

363 from tensorflow.keras.layers import Masking , GRU , Dense

364

365 X_train = np.array(X_train)

366 X_val = np.array(X_val)

367 X_test = np.array(X_test)

368

369 y_train = np.array(y_train)

370 y_val = np.array(y_val)

371 y_test = np.array(y_test)

372

373 ###############################################################################

374 # modeling

375

376 model = Sequential ([

377 Masking(mask_value=mask , input_shape =( X_train.shape [1], X_train.shape [2])),
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378

379 GRU(128, return_sequences=True),

380 GRU(64, return_sequences=False),

381

382 Dense (16, activation=’relu ’),

383 Dense (4)

384 ])

385

386 model = Sequential ([

387 Masking(mask_value=mask , input_shape =( X_train.shape [1], X_train.shape [2])),

388

389 LSTM (128, return_sequences=True),

390

391 LSTM(64, return_sequences=False),

392

393 Dense (16, activation=’relu ’),

394 Dense (4)

395 ])

396

397

398 from tensorflow.keras.optimizers import Adam

399

400 optimizer = Adam(learning_rate =0.005)

401

402 model.compile(optimizer=optimizer , loss=’mae ’, metrics=[’mae ’])

403

404 early_stop = EarlyStopping(monitor=’val_loss ’, patience =100,

restore_best_weights=True)

405

406 history = model.fit(

407 X_train , y_train ,

408 validation_data =(X_val , y_val),

409 epochs =20,

410 batch_size =16,

411 callbacks =[ early_stop],

412 verbose =1

413 )

414

415

416

417

418 y_pred_train = model.predict(X_train)

419 y_pred_val = model.predict(X_val)

420 y_pred_test = model.predict(X_test)

421

422

423

424

425 def evaluate(y_true , y_pred , name =""):

426 #y_true = pd.Series(y_true).reset_index(drop=True)

427 #y_pred = pd.Series(y_pred).reset_index(drop=True)

428

429 mae = mean_absolute_error(y_true , y_pred)

430 medae = median_absolute_error(y_true , y_pred)

431 r2 = r2_score(y_true , y_pred)

432 mean_val = np.mean(y_true)

70



433 median_val = np.median(y_true)

434

435

436

437 print(f"\n{name} Set Evaluation :")

438 print(f"MAE: {mae:.2f}")

439 print(f"MedAE: {medae :.2f}")

440 print(f"R2: {r2:.2f}")

441 print(f"Mean: {mean_val :.2f}")

442 print(f"Median: {median_val :.2f}")

443 print(f"MAE / Mean: {mae / mean_val :.3f}")

444 print(f"MedAE / Median: {medae / median_val :.3f}")

445

446

447 return {

448 ’MAE ’: round(mae , 2),

449 ’MedAE ’: round(medae , 2),

450 ’R2 ’: round(r2, 2),

451 ’Mean ’: round(mean_val , 2),

452 ’Median ’: round(median_val , 2),

453 ’MAE/Mean ’: round(mae / mean_val , 3),

454 ’MedAE/Median ’: round(medae / median_val , 3)

455 }

456

457

458

459 y_train_flat = y_train.reshape (-1)

460 y_val_flat = y_val.reshape (-1)

461 y_test_flat = y_test.reshape (-1)

462

463 y_pred_train_flat = y_pred_train.reshape (-1)

464 y_pred_val_flat = y_pred_val.reshape (-1)

465 y_pred_test_flat = y_pred_test.reshape (-1)

466

467

468

469 y_train_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps ’:

y_train_flat }))[’Steps ’]

470 y_pred_train_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps

’: y_pred_train_flat }))[’Steps ’]

471

472 y_val_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps ’:

y_val_flat }))[’Steps ’]

473 y_pred_val_inv_flat = step_transformer.inverse_transform(pd.DataFrame({’Steps ’:

y_pred_val_flat }))[’Steps ’]

474

475 y_test_inv_flat = step_transformer.inverse_transform(pd.DataFrame({’Steps ’:

y_test_flat }))[’Steps ’]

476 y_pred_test_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps

’: y_pred_test_flat }))[’Steps ’]

477

478

479 # evaluations

480 evaluate(y_train_inv_flat , y_pred_train_inv_flat , name="Train ")

481 evaluate(y_val_inv_flat , y_pred_val_inv_flat , name=" Validation ")

482 evaluate(y_test_inv_flat , y_pred_test_inv_flat , name="Test")
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483

484 metrics = evaluate(y_test_inv_flat , y_pred_test_inv_flat , name="Test")

485

486 ###############################################################################

487 ###############################################################################

488 ###############################################################################

489 ###############################################################################

490 ###############################################################################

491

492

493

494

495 import matplotlib.pyplot as plt

496

497 # loss curves

498 plt.figure(figsize =(10, 6))

499 plt.plot(history.history[’loss ’], label=’Training Loss ’, linewidth =2)

500 plt.plot(history.history[’val_loss ’], label=’Validation Loss ’, linewidth =2)

501 plt.title(’Training and Validation Loss over Epochs ’)

502 plt.xlabel(’Epoch ’)

503 plt.ylabel(’MAE Loss ’)

504 plt.legend ()

505 plt.grid(True)

506 plt.tight_layout ()

507 plt.show()

508

509

510

511

512 loss = history.history[’loss ’]

513 val_loss = history.history[’val_loss ’]

514

515 plt.figure(figsize =(8, 5))

516 plt.plot(loss , label=’Training Loss (MAE)’)

517 plt.plot(val_loss , label=’Validation Loss (MAE)’)

518 plt.title(’Model Training History ’)

519 plt.xlabel(’Epoch ’)

520 plt.ylabel(’MAE ’)

521 plt.legend ()

522 plt.tight_layout ()

523 plt.show()

524

525 ################################################################################

526 ################################################################################

527 ################################################################################

528 # Code for LightGBM sequence prediction

529

530

531 import numpy as np

532 import pandas as pd

533 import matplotlib.pyplot as plt

534

535 from sklearn.model_selection import train_test_split
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536 import itertools as itr

537 from skimpy import skim

538 from scipy.stats import iqr

539 from sklearn.model_selection import train_test_split

540 from feature_engine.timeseries.forecasting import LagFeatures

541 from feature_engine.timeseries.forecasting import WindowFeatures

542 from feature_engine.timeseries.forecasting import ExpandingWindowFeatures

543 import lightgbm as lgb

544 import matplotlib.pyplot as plt

545 from sklearn.metrics import mean_squared_error , mean_absolute_error , r2_score

546 from sklearn.metrics import median_absolute_error

547 from sktime.performance_metrics.forecasting import

MedianAbsolutePercentageError

548 from sklearn.metrics import mean_absolute_error , median_absolute_error ,

r2_score

549

550 import tensorflow as tf

551 import random

552

553

554

555 import os

556 import time

557 day_number = 7

558

559

560 SEED = 99

561 tf.random.set_seed(SEED)

562 random.seed(SEED)

563 np.random.seed(SEED)

564

565 garmin = pd.read_excel(’C:/Users/anasn/Desktop/E/Semester 4/ Thesis/files/

Garmin_days_EMA_Anas.xlsx ’,

566 index_col =0)

567 ema = pd.read_csv(’C:/ Users/anasn/Desktop/E/Semester 4/ Thesis/files/

EMA_days_Answered_Final.csv ’

568 , sep=’;’

569 , decimal=’,’)

570

571 garmin_valid_ids = garmin[garmin[’day ’] == 14][’ participant_id ’]. unique ()

572

573 garmin = (garmin

574 .query ("day <= 14 and participant_id in @garmin_valid_ids "))

575

576

577 garmin = (garmin

578 .groupby([’participant_id ’, ’day ’, ’date ’, ’hours_cat ’])

579 .agg(Steps = (" Steps", lambda x: np.sum(x)))

580 .sort_values ([’participant_id ’, ’date ’, ’hours_cat ’])

581 .reset_index(drop=False))

582

583 garmin[’hours_cat ’] = pd.Categorical(garmin[’hours_cat ’]

584 , categories =[’Morning ’, ’Noon ’, ’Afternoon ’, ’Evening ’])

585

586 garmin = (garmin

587 .sort_values ([’participant_id ’, ’day ’, ’date ’, ’hours_cat ’]))
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588

589

590

591 participant_id = garmin[’participant_id ’]. unique ()

592 day = np.arange(1, 15)

593 hours_cat = garmin[’hours_cat ’]. unique ()

594

595 template = pd.DataFrame(list(itr.product(participant_id , day , hours_cat)),

596 columns=[’participant_id ’, ’day ’, ’hours_cat ’])

597

598 template[’timestep ’] = (template

599 .groupby(’participant_id ’)

600 .cumcount () + 1)

601

602 template = pd.merge(template , garmin , on=[" participant_id", "day", "hours_cat "]

603 , how=’left ’)

604

605 garmin = template.copy()

606

607 ema[" Time_cat "] = pd.Categorical(ema[’Time_cat ’],

608 categories =[’Morning ’, ’Noon ’, ’Afternoon ’, ’Evening ’])

609

610 ema = (ema

611 .rename(columns = {" Time_cat ": "hours_cat "}))

612

613 garmin = pd.merge(garmin , ema , how=’left ’,

614 on=[" participant_id", "day", "hours_cat "])

615

616

617 garmin[’date ’] = (garmin

618 .groupby ([" participant_id", "day"])[’date ’]

619 .transform(lambda x: x.ffill().bfill()))

620

621 garmin.columns

622

623

624 garmin = (garmin

625 .get([’participant_id ’, ’day ’, ’hours_cat ’, ’timestep ’, ’date ’,

626 ’PHYSICAL_NORM ’, ’MENTAL_NORM ’, ’MOTIVATION_NORM ’, ’

EFFICACY_NORM ’,

627 ’CONTEXT_NORM ’, ’Steps ’]))

628

629

630

631

632

633

634

635 np.random.seed(SEED)

636 shuffled_ids = np.random.permutation(participant_id)

637 n = len(shuffled_ids)

638

639 train_size = int(np.floor (0.7 * n))

640 val_size = int(np.floor (0.1 * n))

641

642 train_ids = shuffled_ids [: train_size]
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643 val_ids = shuffled_ids[train_size:train_size + val_size]

644 test_ids = shuffled_ids[train_size + val_size :]

645

646 print(len(train_ids), len(val_ids), len(test_ids))

647 print(sorted(train_ids))

648 print(sorted(val_ids))

649 print(sorted(test_ids))

650

651

652

653

654 ###############################################################################

655 # Yeo -Johnson

656

657 from feature_engine.transformation import YeoJohnsonTransformer

658

659

660 steps_train_df = garmin[garmin[’participant_id ’]. isin(train_ids)][[’Steps ’]].

dropna ()

661 step_transformer = YeoJohnsonTransformer(variables=[’Steps ’])

662 step_transformer.fit(steps_train_df)

663

664 garmin[’Steps_original ’] = garmin[’Steps ’]

665

666 steps_non_null = garmin.loc[garmin[’Steps ’]. notna (), [’Steps ’]]

667 transformed_steps = step_transformer.transform(steps_non_null)

668

669 garmin[’Steps_transformed ’] = np.nan

670 garmin.loc[steps_non_null.index , ’Steps_transformed ’] = transformed_steps[’

Steps ’]

671

672 garmin[’Steps ’] = garmin[’Steps_transformed ’]

673

674 ###############################################################################

675 lable = "Number of Steps"

676 model = "LGBM"

677 ###############################################################################

678 lag_vars = [’Steps ’

679 #, "PHYSICAL_NORM", "MENTAL_NORM", "MOTIVATION_NORM", "

EFFICACY_NORM", "CONTEXT_NORM"

680 ]

681

682 length = 4* day_number

683 lag_range = np.arange(1, length +1).tolist ()

684

685

686 hours_map = {’Morning ’: 0, ’Noon ’: 1, ’Afternoon ’: 2, ’Evening ’: 3}

687 garmin[’hours_idx ’] = garmin[’hours_cat ’]. map(hours_map)

688

689 garmin = pd.concat ([garmin , pd.get_dummies(garmin[’hours_cat ’])], axis =1)

690 garmin[[’Morning ’, ’Noon ’, ’Afternoon ’, ’Evening ’]] = garmin[[’Morning ’, ’Noon

’, ’Afternoon ’, ’Evening ’]]. astype(int)

691

692

693

694
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695

696

697

698

699 def make_lag(df):

700 lf = LagFeatures(periods=lag_range

701 #list(range(1, length +1))

702 , variables=lag_vars

703 , missing_values=’ignore ’)

704 return lf.fit_transform(df)

705

706

707

708

709

710 garmin = (

711 garmin

712 .groupby([’participant_id ’])

713 .apply(make_lag)

714 .reset_index(drop=True)

715 )

716

717 garmin.columns

718

719

720 ###############################################################################

721 # multi step

722 for i in range(0, 4):

723 garmin[f’Steps_t{i}’] = garmin.groupby(’participant_id ’)[’Steps ’]. shift(-i)

724 garmin[f’Steps_original_t{i}’] = garmin.groupby(’participant_id ’)[’

Steps_original ’]. shift(-i)

725

726

727

728 target_cols = [f’Steps_t{i}’ for i in range(0, 4)]

729

730 target_original_cols = [f’Steps_original_t{i}’ for i in range (4)]

731

732 no_missing = garmin[target_original_cols ]. notna().all(axis =1)

733

734 data_train = garmin[

735 garmin[’participant_id ’]. isin(train_ids) &

736 (garmin[’timestep ’] > length) &

737 no_missing

738 ]

739

740 data_val = garmin[

741 garmin[’participant_id ’]. isin(val_ids) &

742 (garmin[’timestep ’] > length) &

743 no_missing

744 ]

745

746 data_test = garmin[

747 garmin[’participant_id ’]. isin(test_ids) &

748 (garmin[’timestep ’] > length) &

749 no_missing
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750 ]

751

752

753

754

755

756

757 lagged_features = garmin.filter(regex=r"_lag_\d+$").columns.tolist ()
758

759

760

761

762

763

764 other_features = [’hours_cat ’]

765 time_of_day_features = [’Noon ’, ’Afternoon ’, ’Evening ’]

766

767

768 features = (time_of_day_features

769 + lagged_features)

770

771

772 X_train = (data_train

773 .get(features + [’participant_id ’]))

774 y_train = data_train.loc[:, target_cols]

775

776 X_val = (data_val

777 .get(features + [’participant_id ’]))

778 y_val = data_val.loc[:, target_cols]

779

780

781 X_test = (data_test

782 .get(features + [’participant_id ’]))

783 y_test = data_test.loc[:, target_cols]

784

785

786 ###############################################################################

787

788 from sklearn.multioutput import MultiOutputRegressor

789 from sklearn.metrics import mean_absolute_error

790 import lightgbm as lgb

791

792

793

794 base_model = lgb.LGBMRegressor(

795 n_estimators =3000,

796 num_leaves =1000 ,

797 max_depth =100,

798 min_child_samples =1,

799 min_split_gain =0,

800 #subsample =1,

801 learning_rate =0.005 ,

802 reg_alpha =0.01 ,

803 reg_lambda =0.01 ,

804

805 objective=’regression_l1 ’,
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806

807 random_state =123,

808 n_jobs=-1,

809 verbosity=-1

810 )

811

812

813

814 model = MultiOutputRegressor(base_model)

815

816 model.fit(X_train , y_train

817 )

818

819 y_pred_train = model.predict(X_train)

820 y_pred_val = model.predict(X_val)

821 y_pred_test = model.predict(X_test)

822

823

824

825 def evaluate(y_true , y_pred , name =""):

826 #y_true = pd.Series(y_true).reset_index(drop=True)

827 #y_pred = pd.Series(y_pred).reset_index(drop=True)

828

829 mae = mean_absolute_error(y_true , y_pred)

830 medae = median_absolute_error(y_true , y_pred)

831 r2 = r2_score(y_true , y_pred)

832 mean_val = np.mean(y_true)

833 median_val = np.median(y_true)

834

835

836

837 print(f"\n{name} Set Evaluation :")

838 print(f"MAE: {mae:.2f}")

839 print(f"MedAE: {medae :.2f}")

840 print(f"R2: {r2:.2f}")

841 print(f"Mean: {mean_val :.2f}")

842 print(f"Median: {median_val :.2f}")

843 print(f"MAE / Mean: {mae / mean_val :.3f}")

844 print(f"MedAE / Median: {medae / median_val :.3f}")

845

846

847 return {

848 ’MAE ’: round(mae , 2),

849 ’MedAE ’: round(medae , 2),

850 ’R2 ’: round(r2, 2),

851 ’Mean ’: round(mean_val , 2),

852 ’Median ’: round(median_val , 2),

853 ’MAE/Mean ’: round(mae / mean_val , 3),

854 ’MedAE/Median ’: round(medae / median_val , 3)

855 }

856

857 y_train_inv = pd.DataFrame ()

858 y_pred_train_inv = pd.DataFrame ()

859 y_val_inv = pd.DataFrame ()

860 y_pred_val_inv = pd.DataFrame ()

861 y_test_inv = pd.DataFrame ()
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862 y_pred_test_inv = pd.DataFrame ()

863

864 for i, col in enumerate(y_train.columns):

865 col_train = pd.DataFrame({’Steps ’: y_train.iloc[:, i]})

866 col_pred_train = pd.DataFrame ({’Steps ’: y_pred_train [:, i]})

867

868 col_val = pd.DataFrame({’Steps ’: y_val.iloc[:, i]})

869 col_pred_val = pd.DataFrame ({’Steps ’: y_pred_val [:, i]})

870

871 col_test = pd.DataFrame ({’Steps ’: y_test.iloc[:, i]})

872 col_pred_test = pd.DataFrame({’Steps ’: y_pred_test [:, i]})

873

874 y_train_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(col_train

)[’Steps ’]

875 y_pred_train_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(

col_pred_train)[’Steps ’]

876

877 y_val_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(col_val)[’

Steps ’]

878 y_pred_val_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(

col_pred_val)[’Steps ’]

879

880 y_test_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(col_test)

[’Steps ’]

881 y_pred_test_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(

col_pred_test)[’Steps ’]

882

883

884

885

886 # Run evaluations

887 #evaluate(y_train_inv , y_pred_train_inv , name=" Train")

888 #evaluate(y_val_inv , y_pred_val_inv , name=" Validation ")

889 evaluate(y_test_inv , y_pred_test_inv , name="Test")
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