Transnational University Limburg is a unique collaboration of two universities in two
countries: the University of Hasselt and Maastricht University.

KNOWLEDGE IN ACTION

www.uhasselt.be

Universiteit Hasselt

Campus Hasselt:

Martelarenlaan 42 | 3500 Hasselt
Campus Diepenbeek:

Agoralaan Gebouw D | 3590 Diepenbeek

% Maastricht University

KNOWLEDGE IN ACTION

Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science

Master's thesis

Unveiling the Digital Phenotype of Physical Activity Behavior in Community-Dwelling
Older Adults

Anas Nazar Abdulghani
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

speciolizoﬁon Biostatistics

SUPERVISOR :
Prof. dr. Bruno BONNECHERE

% Maastricht University

KNOWLEDGE IN ACTION

Faculty of Sciences
School for Information Technology

Master of Statistics and Data Science

Master's thesis

Unveiling the Digital Phenotype of Physical Activity Behavior in Community-Dwelling
Older Adults

Anas Nazar Abdulghani
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics and Data Science,

specialization Biostatistics

SUPERVISOR :
Prof. dr. Bruno BONNECHERE

Contents

I_Abstract]
2__Introductionl
2.1 Background and motivation|
[2.1.1 Physical activity in older adults|.
[2.1.2 Digital phenotypingl
. mportance of predicting physical activity|o 0oL
2.2 1 { predicti hysical activity]
[2.3 Ethical thinking, societal relevance, and stakeholder awareness|
[2.4 Research objectives for predicting physical activity in older adults|
B _Materials and Methods
. tudy Design an articipants|o oL
[3.1 Study D dP |
. ata Description|o
(3.2 Data D n|
B8.2.1 Cross-sectional datal
[3.2.2 Longitudinal data] L
. ata PreprocessIng] oL o e e e e e e e e
3.3 D o
I;;l;ill !:Ig!:i:i_:iszs li!!lli!l gli!lill
[3.3.2 Longitudinal data] o
3.3.3 Missing data]
[3.4 Predictive modeling for the cross-sectional datal
|3.4.1 Linear and logistic regression|
B.42 FElastic Net] oo
13.4.3 Light Gradient Boosting,
13.4.4 Metrics for the cross-sectional data analysis|
[3.5 Modeling for the longitudinal data] o0
8.5.1 Recurrent Neural Networksl
13.5.2 LightGBM for time series forecasting|.
[3.5.3 Training and parameter estimation:|
B.6 Outcome transformationd]
[4_Results|
[4.1 Cross-sectional Analysis| o o
4.1.1 Exploration|
AT2 Metricd o
(413 Predictive factors
[4.2 Longitudinal Analysis|
4.2.1 Exploration|
4.2.2 Model specifications|
4.2.3 Model comparisons|.
E; onl
[5.1 Objective 1: The cross-sectional analysis|.
[5.2 Objective 2: The longitudinal analysis|,
b3 [imitations and drawbacks of the methods.
0.4 Ideas for future work and researchl

19
19
19
20
22
23
23
25
26

ii

39

42

1 Abstract

Background and motivation: Physical activity (PA) is an important factor for maintaining
health and well-being, especially in older adults. Understanding patterns of PA can help in
designing better interventions and monitoring strategies. With the increasing availability of
wearable devices and mobile applications, detailed and continuous data on daily activity and
related factors can be collected longitudinally. This thesis aims to apply machine learning
methods to such data to predict PA patterns and identify key factors influencing these behaviors
among community-dwelling older adults.

Objectives: The general aim of this thesis is to investigate the application of machine learning
models in digital phenotyping with two main objectives. The two objectives are: (1) To identify
important predictors of physical activity, mild depression status, and risk of fall using cross-
sectional data. (2) To develop and evaluate predictive models for forecasting individual PA (step
count) and determine the minimal window size required for accurate next-day PA predictions.

Materials and methods: The study utilized both cross-sectional and longitudinal datasets,
integrating data from activity tracker devices and ecological momentary assessments (EMA).
Cross-sectional analysis involved features obtained from questionnaires, physical tests, and self-
reported variables to predict depression status, risk of fall, and PA levels using machine learning
models like Light GBM, Elastic Net, and Linear or Logistic regression. Longitudinal analysis
focused on forecasting step counts using time series data from wearable devices, employing models
such as LightGBM, Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM).

Key findings: The most important predictors for the PA levels were items from the exercise
self-efficacy scale (ESES) and exercise identity scale (EIS). In predicting fall risk, the key factor
was the quadriceps score of the right leg. The primary predictor for mild depression status was
a specific item from the International Physical Activity Questionnaire (IPAQ). Additionally,
oxygen saturation (post-test) emerged as the most predictive variable when considering the
IPAQ as a continuous measurement. In the longitudinal analysis, using a seven-day sequence of
step count data provided the best performance for forecasting physical activity for the entire
next day (comprising four time segments). In contrast, a six-day sequence was found to be

optimal when predicting the number of steps for a single future time segment.
Limitations and future work:

Limitations of this thesis include reliance on selecting a single best model without leveraging
stacking approaches, potential suboptimal temporal pattern learning by the Light GBM model,
and limited hyperparameter tuning in the longitudinal analysis. Future work should explore
advanced model tuning, stacking methods, and additional models that may better capture
complex temporal dependencies. Also, it is recommended to collect more data by incorporating
additional features and increasing the number of participants.

Conclusion: This thesis examined machine and deep learning models to address two objectives
by using cross-sectional data to identify factors associated with PA levels in older adults, showing
that self-efficacy was an important predictor. However, the overall prediction performance for
PA and related outcomes was limited. In the longitudinal analysis, models were developed to
predict future step counts using past activity data. It was found that a seven-day history of
step counts provided the best next-day predictions, while features from EMA did not improve

these predictions. Although some models were able to predict the step count accurately for
some individuals, differences in activity patterns, methodological drawbacks, and the size of the
dataset limited the ability to generalize the results for other participants. Further work with
additional methods, larger and more diverse data is needed to improve model performance and
support personalized health interventions.

2 Introduction

2.1 Background and motivation
2.1.1 Physical activity in older adults

According to the World Health Organization (WHO), the world population aged over 60 years
will have doubled in number by 2050, with an estimated total of 2 billion people [1]. Aging
is associated with some physiological changes, with reduced aerobic capacity (indicated by
declining VO2max in inactive individuals) and sarcopenia (loss of skeletal muscle mass, strength,
and function), which are crucial with respect to quality of life, functional independence, and
mortality. These conditions can be exacerbated by physical inactivity [2]. In the broad definition
of Physical activity (PA), it includes formal exercise, sports, and physical efforts performed as
part of daily tasks, occupation, leisure, or active transportation [3].

On a global scale, physical inactivity, which is defined by the WHO as engaging in less than 150
to 300 minutes of moderate-intensity or 75 to 150 minutes of vigorous-intensity physical activity
per week, remains prevalent in older adult populations. Specifically, 19-25% of individuals aged
60-69 years and 42-59% of those aged 80 years and older do not meet the PA guidelines for
aerobic activity [4]. This can be associated with a rise in noncommunicable diseases such as
cardiovascular disease, type 2 diabetes, stroke, and dementia [3].

Regular physical activity in older adults is associated with some health benefits, including
improvements in physical function and enhanced mental and cognitive well-being [3]. Also,
longitudinal studies suggest a reduction of risk of dementia, particularly Alzheimer’s disease, for
physically active individuals [2].

Furthermore, PA has a positive effect on functional independence in older adults, even for those
individuals who are at risk of falls |3]. For example, structured exercise programs have been
shown to have substantial positive effects on falls, functional ability, and overall capacity [4].
Moreover, multicomponent exercises can further improve these outcomes. [5].

To summarize, many studies have consistently concluded the beneficial effect of PA on health in
older adults. It is estimated that 3.2 million deaths per year are due to physical inactivity. For
this reason, sometimes PA is regarded as medicine for older adults [5].

2.1.2 Digital phenotyping

Digital phenotyping is an emerging approach to health data collection that uses digital tools like
smartphones and wearables to passively and continuously monitor physiological, behavioral, and
psychological metrics. By using this approach, researchers can build models over time for PA
patterns [6].

According to a scoping review by Lee et al. [6], digital phenotyping has the potential for early
intervention and prevention of serious medical conditions. This is particularly important for
aging populations, who often struggle with recall bias when self-reporting PA. [6]. Daniels
et al. [7] found that integrating ecological momentary assessment (EMA), wearable devices,
and temporal frameworks strengthens the evaluation of PA. Additionally, their work indicated
that low-intensity PA was influenced by motivation and self-efficacy, showing the importance of
real-time contextual data in behavioral health assessments.

According to Song et al. [8], digital behavioral indicators like sleep behavior, PA, and heart
rate variability can be considered as predictors for same-day and next-day depressive symptoms
among socially at-risk older individuals who live in their usual environments. Furthermore,
these technologies also support the daily individualized feedback on the health status of older
individuals, which can enhance participation and contribute to positive health outcomes.

The clinical relevance of digital phenotyping stems from its alignment with the P4 medicine
principles: Predictive, Preventive, Personalized, and Participatory care. This is useful in
supporting early interventions in disease management, when conventional methods may be
limited in detecting dynamic behavioral changes across diverse time and settings due to limited
evaluations [9].

2.2 Importance of predicting physical activity

In recent years, machine learning—based predictive modeling has played a vital role in PA research
by detecting activity levels, predicting adherence to PA goals, and producing individualized
feedback, which are important to keep a sustained activity in aging populations [10] [11] . Deep
learning- and machine learning-driven digital phenotyping methods offer promising new ways to
capture within- and between-subject variation in physical activity, particularly when conventional
methods like questionnaires are limited by recall bias or low temporal detail [12].

2.3 Ethical thinking, societal relevance, and stakeholder awareness

This thesis involves the analysis of existing datasets collected as part of ongoing research studies.
The data used in the studies were anonymized before being shared with the author. Both the
cross-sectional and longitudinal datasets were shared under ethical and institutional approval.
The longitudinal data, which was collected using Garmin devices and the SEMA3 app, was
approved by the Ethical Committee at Hasselt University.

This thesis aims to improve the understanding of physical activity behaviors in older adults,
which can support the development of effective health interventions and policies to promote
healthy aging. The findings may assist healthcare providers and policymakers in designing better
strategies to encourage activity and prevent related health issues. Additionally, technology
developers, such as companies developing the Garmin devices and the SEMA3 app, may benefit
from the insights generated to enhance their products for more accurate monitoring and user
engagement.

2.4 Research objectives for predicting physical activity in older adults

The general aim of this thesis is to explore how machine learning and deep learning models
can be applied within the context of digital phenotyping to better understand and predict PA
behaviors in older adults. Two distinct datasets are utilized for this aim: a cross-sectional
dataset consisting of demographic, clinical, and psychological variables from older participants,
and a longitudinal dataset combining step count data from wearable devices (Garmin) with
EMA collected over two weeks.

e Objective 1: The cross-sectional analysis

To identify baseline predictive factors of PA, risk of falling based on fall history in the

past six months, and mild depression in a cross-sectional dataset of older adults using
Logistic Regression, Linear Regression, regularized regression (Elastic Net), and tree-based
gradient boosting (LightGBM). This objective focuses on between-subject variability in
self-reported PA and its associations with demographic and other reported factors.

Objective 2: The longitudinal analysis

To develop time-series predictive models of step count using longitudinal Garmin wearable
data, both alone and in combination with EMA variables. This objective leverages
deep learning methods such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) networks, and machine learning approaches such as Light Gradient-Boosting
Machine (LightGBM) to explore within-subject temporal dynamics and assess whether
contextual and psychological EMA inputs improve short-term PA predictions. In addition,
this also aims to explore the minimal amount of period data (optimal time window) required
to make reliable next-day predictions of PA.

3 Materials and Methods

3.1 Study Design and Participants

This thesis focuses on the analysis of data that were collected from the following study. The study
used a two-week prospective observational design to gather detailed information on PA behaviors
and their influencing factors. The study was registered at Clinical Trials.gov (NCT06094374) on
17 October 2023 and approved by the Ethical Committee of Hasselt University (B1152023000011).
The full study protocol detailing recruitment strategies, data collection procedures, and analytical
methods has been presented separately [13]. Informed consent was obtained from all subjects
before participation. The cross-sectional part involved self-reported questionnaires to collect
demographic and contextual data, as well as clinical tests to assess relevant health and functional
status. Additionally, longitudinal data were collected through EMA and continuous monitoring
using wearable devices. The study took place in a natural setting to ensure that participants could
carry out their usual daily activities without disruption (ecological assessment). Participants
were community-dwelling older adults aged 65 years and above, living independently either in
their own homes or serviced apartments [7].

3.2 Data Description
3.2.1 Cross-sectional data

To collect the cross-sectional data, participants were asked to fill out questionnaires and
also participated in a clinical evaluation. The questions encompassed various psychological
and behavioral domains, including quality of life (WHOQOL), physical activity (IPAQ as a
continuous measurement), depression (geriatric depression scale or GDS category), as well as
sociodemographic information such as age, sex, marital status, and living situation.

Clinical measures included objective tests like the 6-minute walking distance test and body mass
index (BMI). In addition to these, a comprehensive set of variables was collected encompassing
lifestyle factors (e.g., smoking status, alcohol consumption, voluntary work), health indicators
(e.g., blood pressure, heart rate, pain score, health score), mobility and physical capability
measures (e.g., hand and leg muscle strength, balance tests), cognitive function tests (e.g., memory
and reaction time scores), psychological scales (e.g., perceived stress scale (PSS), loneliness scale,
goal attainment scale (GAS)), exercise motivation (e.g., exercise identity scale (EIS), exercise
self-efficacy scale (ESES), behavioral regulation in exercise questionnaire (BREQ)), and digital
health readiness (e.g., digital health readiness questionnaire (DHRQ) subscales). In total, 308
variables were systematically collected per participant, providing a rich multidimensional dataset
capturing the physical, psychological, social, and contextual factors relevant to aging and digital
phenotyping.

3.2.2 Longitudinal data

During the 14-day study period, participants’ daily physical activity (step counts) was continuously
recorded using the Garmin Vivosmart 5@®) activity tracker (Garmin International, Olathe, KS).
Each participant had 56 time points (4 timesteps per day over 14 days), which corresponds to
three-hour segments (e.g., 8:00-11:00, 12:00-15:00, 15:00-18:00, and 18:00-23:00). At each time
segment or timestep, the number of steps was aggregated.

With regards to the EMA variables, participants used the SEMA3 smartphone application
(Melbourne eResearch Group, Melbourne, Australia) and received four random prompts each
day at times that were evenly distributed across the same four time intervals as for the PA
recordings: 8:00-11:00, 12:00-15:00, 15:00-18:00, and 18:00—23:00.

At each prompt, participants were asked to rate five main areas: physical well-being, mental
well-being, motivation, efficacy, and context. The assessments included questions about self-rated
health, physical symptoms such as muscle stiffness, pain, dizziness, shortness of breath, and
fatigue, as well as contextual factors and overall quality of life (QoL). To reduce response bias
and improve data quality, the order of the questions was randomized [7].

3.3 Data preprocessing
3.3.1 Cross-sectional data

Variables were categorized based on their number of unique values. Specifically, variables with
five or fewer unique values were treated as categorical, and they were dummy-coded before model
training. In contrast, variables with six or more unique values were considered continuous and
were treated as numerical predictors for model training.

Variables exhibiting very low or near-zero variance, characterized by having the same value in
the majority of observations, were excluded from the analysis. This step was taken because
such variables generally contribute little to predictive performance and can potentially create
problems during model training [14].

All the cross-sectional analysis was done using R version 4.3.3.

3.3.2 Longitudinal data

The EMA and step count data were aligned using participant ID, date, and time segment. The
resulting dataset captured within-subject temporal variation in physical activity and contextual
or psychological conditions, with a focus on predicting the number of steps in the following day
and finding the minimal time window for reliable predictions. In the longitudinal dataset, some
participants had measurements for only a few days with large gaps between them, resulting in a
high proportion of missing data. These participants were excluded from the analysis to ensure
data completeness. Specifically, participants with more than 30% missing values in the outcome
variable and without complete measurements over the 14-day period were removed. For those
with more than 14 days of data, only the first 14 days were used to allow for a fair comparison.
After applying these criteria, a total of 100 participants were included in the analysis.

The longitudinal analysis was conducted using Python version 3.10.18.

3.3.3 Missing data

To handle missing values in some features in the cross-sectional dataset, multiple imputations
using the mice package in R were used. The method of imputation relied on the distribution of
different variables. For categorical variables with more than two unique values, Proportional
Odds Logistic Regression (polr) was used. Logistic Regression (logreg) was utilized to impute
the binary variables, and Predictive Mean Matching (pmm) was used to impute the continuous
variables. Ten imputations were performed with ten iterations to generate ten complete datasets.

For models that relied on the imputed datasets, such as Logistic Regression and Elastic Net,
each complete dataset had its own coefficients, which were then used to generate the predictions
on the test data, producing ten predicted values. These predictions were then averaged to obtain
the final predicted value from the test set.

3.4 Predictive modeling for the cross-sectional data
3.4.1 Linear and logistic regression

Linear and Logistic Regression models were used to predict four outcomes in the cross-sectional
dataset. Risk of fall, GDS category (mild depression status), and ITPAQ category were binary
outcomes, while IPAQ as a continuous measurement (IPAQ MET minutes/week) was a continuous
outcome. Thus, linear regression was used for predicting the continuous outcome, while the
binary outcomes were predicted using logistic regression models.

Linear Regression

Linear Regression is a statistical method used for predicting a continuous outcome. The general
form of a multiple linear regression model, as formulated by [15], is:

Y = Bo + f1X1i + BoXoi + -+ BpXpi + & (Eq. 1)

For the i-th participant, Y; represents the continuous measurement of IPAQ, X1;, Xo;, ..., X}
are the predictors values for the i-th subject in the cross-sectional dataset, Sy is the intercept
and f1, ..., Bp are the coefficients for each predictor, and ¢; is the error term.

To estimate the coefficients, the least squares method was used, which minimizes the residual
sum of squares (RSS):

2
n n

p
RSS = Z(?/i —)% = Z Yi — Bo — Zﬁjxij (Eq. 2)

i=1 i=1 j=1

This method yields a closed-form solution for 8 = (8o, ..., 3p)1:

B=(X"X)"' X"y (Eq. 3)

where B is the vector of estimated coeffcients, X is the design matrix and y is the vector of
outcomes |15].

Logistic Regression

Logistic Regression is used for binary classification problems, where the outcome is binary (takes
the values of 0 for failure and 1 for success). In the cross-sectional dataset, three outcomes of
risk of fall, GDS category, and TPAQ category were modeled using Logistic Regression. Logistic
regression models use log-odds of success vs failure as outcome, and use the logit link function,
and they are formulated by [15] as:

PY, =1|X;
oo (20 L)

_ X1 Xo; + - - - X, Eq. 4
1—P(Yi:1|X¢)) Bo + B1X1i + PaXoi + -+ + BpXp (Eq. 4)

which gives the logistic function:

e(Bo+B1X1i+B2Xoi++Bp Xpi)
1 4 e(Bo+B1X1i+B2Xoi++BpXpi) (Eq. 5)

P(Yi=1| X)) =

Where P(Y; = 1| X;) is the probability of success for the i-th subject. Model coefficients are
estimated using maximum likelihood estimation (MLE), which looks for the set of parameters
B that maximizes the likelihood of observing the data. The likelihood for n independent
observations is:

I n 1 Yi 1 1—y; -
= R 1—— .
W 1;[1<1+6_X1T'6> (1+6_XiTﬁ> (Eq. 6)

)

This is solved using an iterative optimization algorithm like Newton-Raphson.

Given the large number of predictors, the top 10 to 30 predictors were selected based on
information gain for fitting the models.

As for variables with high pairwise correlations of 60% or more, only one was selected while the
others were excluded from the analysis.

3.4.2 Elastic Net

The Elastic Net is a regularization and variable selection technique that can overcome some
of the challenges encountered by traditional penalized regression methods, especially in high-
dimensional settings where the number of predictors p exceeds the number of observations n.
This method is suited for datasets like the cross-sectional data, which consists of 108 observations
and 308 predictors. Since many of these predictors are likely to be highly correlated, the Elastic
Net is an appropriate method to address this issue.

Elastic Net was developed to do both shrinkage and automatic variable selection, combining the
advantages of LASSO and ridge regression. LASSO uses an /1 —norm penalty to support sparsity
by setting some coefficients exactly equal to zero, while ridge regression uses an £s—norm penalty
to shrink the size of all coefficients, particularly for predictors with high correlation. Following
the formulation by Hastie et al. [16], the Elastic Net’s objective function for Linear Regression
can be expressed as:

n

(Bo.) = argg3§g{2ﬁl > = XT 974 (1)l +a||5||1)} (Eq. 7

where:

e n: The number of samples or participants in the cross-sectional data.
e (3p: The model intercept.
e [3: The estimated vector of regression coefficients of the predictors.

° XiT : The p-dimentional vector representing the predictors’ values for the i-th sample.

y;: The observed continuous outcome for the i-th individual.

A: The regularization parameter that controls the overall degree of penalty. A > 0.
e «: The mixing parameter:

— a = 1: corresponds to LASSO (pure ¢; regularization).

— «a = 0: corresponds to ridge regression (pure ¢ regularization).

— 0 < a < 1: corresponds to Elastic Net.

I8]]1: The ¢; norm of the vector of coefficients 3, defined as Z§:1 |Bj]. This supports
sparsity by shrinking some coefficients exactly to zero.

|B]13: The squared L2 norm of 3, defined as Z;’:l ﬁjz. This promotes small but nonzero
values of the coefficients to stabilize the model in the presence of multicollinearity [16].

The regularization parameter A and the mixing parameter o were optimized through cross-
validation to select the values that minimize prediction errors.

The Elastic Net was used for regression (for the continuous measurement of IPAQ) and
classification (GDS category, risk of fall, and IPAQ category). For the latter, the previous
framework can be extended to Generalized Linear Models (GLMs) by replacing the residual sum
of squares with a negative log-likelihood function as formulated by Hastie et al. [16]:

.. 1 1
(Bo, B) = argg;%g{ — néﬁ (vi, Bo + X7 B) + A <(1 —a)5[I8113 +a!\6\|1) } (Eq. 8)

where y; is the observed categorical outcome for the i-th participant, and ¢ (yi, Bo + XZ»T ﬁ) is the
log-likelihood term for subject 1.

3.4.3 Light Gradient Boosting

Light Gradient Boosting (LightGBM, also abbreviated as LGBM) is a gradient boosting
framework that uses tree-based learning algorithms designed for efficient training, particularly
suitable for complex structured data, such as the cross-sectional dataset.

Light GBM builds an ensemble of decision trees sequentially, where each new tree is added to
correct the residuals or errors made by the previous trees. According to [15], the general formula
for the boosting method is:

b=1

where f (z) is the predicted value of the b-th tree, B is the total number of trees, and r is the
learning rate that regulates the learning process of the model.

Unlike other gradient boosting methods, such as Extreme Gradient Boosting (XGBoost),
LightGBM employs a leaf-wise tree growth strategy with depth constraints, which often leads to
improved performance [17].

Given the presence of features with missing values in the cross-sectional dataset, Light GBM uses
a sparsity-aware split algorithm. It learns the directions for missing values, and it utilizes them
without imputation during the building of trees.

To help with the classification and the regression problem in the cross-sectional dataset, Light GBM
was chosen alongside Elastic Net due to its ability to capture complex relationships between the
predictors and the outcomes.

There are several parameters that need to be tuned for the Light GBM (LGBM) model:
e learning rate (learn_rate): Controls the rate r at which the model learns.
e n_estimators (trees): The number of trees (boosting rounds) B to build.
e max._depth (tree_depth) The maximum depth of a tree.
e min_child_samples (min_-n) The minimum number of data points needed to create a leaf.

e min split_gain (loss_reduction) Minimum loss reduction needed to make a split at a tree
node.

e subsample (sample_size) The subsampling rate, which is the fraction of the training data
sampled for each tree.

e reg alpha (lambda_11) L1 regularization applied to leaf weights to promote sparsity..

e reg_lambda (lambda_12) L2 regularization applied to leaf weights to help decrease model
complexity.

e num_leaves (num_leaves) The maximum number of leaves permitted in a tree.

3.4.4 Metrics for the cross-sectional data analysis

The cross-sectional dataset was split into a train (70%) and a test (30%) set using a stratified
splitting approach. Stratification splitting ensures that the class distribution in each set is
similar to that in the complete dataset. This may avoid bias that can arise in the estimation of
the performance if one class is under- or over-represented in either set. Next, stratified k-fold
cross-validation (CV) on the training set for model hyperparameter tuning and selection was
performed. This is done to keep the class distribution similar in each fold. In K-fold CV, k-1
folds are used for training, and the remaining fold (hold-out set) is used for validation. This
ensures that every sample is used for both training and validation. It also reduces overfitting and
makes the model generalize better to new unseen samples [18|. Stratified splitting and stratified
CV help to preserve the class distribution throughout the process of training and validation,
which improves the generalizability of the model to unseen new data.

To calculate the CV for a metric during training, CV) = %Zle X;, where X can be recall,
specificity, precision, Precision-Recall Area Under the Curve (PR AUC), etc.

11

Hyperparameter tuning

Bayesian optimization is used since it is more efficient than the full grid search approach, and it
typically offers better optimized parameters than random search. The method involves treating
the performance of a model as an unknown function that needs to be optimized. It constructs a
probabilistic model (Gaussian process) to predict better settings or combinations of parameter
values based on previous observations. The model takes into account uncertainty and also focuses
on exploiting more promising areas in the parameter space. At each step, it chooses the next
set of parameters by maximizing a criterion (e.g., expected improvement) by using previous
information to make better choices |19].

Model comparisons

Three different models were fitted separately for the binary and continuous outcomes. This
approach allowed for the comparison of model performance using various evaluation metrics to
determine the model with the best prediction performance.

A variety of metrics were used that were selected based on the distribution of each outcome
variable. These served to assess the performance of the models and compare different models.
For the IPAQ as a continuous measurement, Mean Absolute Error (MAE) was one of the metrics
used. MAE is calculated as follows:

1< .
MAE = —~ > lyi — il (Eq. 10)

=1

where it measures the absolute difference between the predicted value g; and the true observed
value y;, and taking the average of them yields MAE.

Median Absolute Error (MedAE) was also used to evaluate the regression models, which can be
calculated as follows:

MedAE = median (|y; — 3|) (Eq. 11)

where i = 1, ...,n. MedAE is a better metric to use than MAE for the evaluation of models when
an outcome is skewed, since it is less sensitive to outlying observations [20)].

For binary classification, each prediction can fall into one of four categories when it is compared
to the true value or label. A true positive (TP) is when the model correctly predicts a positive
outcome, while a true negative (TN) occurs when a negative outcome is predicted correctly. In
contrast, a false positive (FP) occurs when a model falsely predicts a positive value for a negative
label, and a false negative (FN) occurs when a positive label is incorrectly classified as negative.
These four categories help to calculate the performance metrics for binary classifications. A 2x2
confusion matrix is shown in table [I} which can provide a good way for measuring the prediction
performance, where the diagonal entries represent the correct prediction (TP and TN), while the
off-diagonal elements show the number of misclassifications made by the model (FP and FN).

The metrics that were used in the classification, as formulated by [21]:

e Recall (Sensitivity) = TPZ_%
e Specificity = %}}P

12

fion — TP
e Precision = 75 7p

TP+TN
TP+TN+FP+FN

e Accuracy =

Sensitivity+Specificity
2

Balanced accuracy =

Precision X Recall
Precision+Recall

Area Under Precision-Recall Curve (PR AUC): The Area Under the Precision-Recall Curve
(PR AUC) is calculated by measuring the area under the curve that plots precision against

e F'1 score = 2 x

recall across all possible classification thresholds. PR AUC can provide a more informative
assessment of model performance when dealing with imbalanced datasets. In such cases,
PR AUC is often preferred over the Area Under the Receiver Operating Characteristic
Curve (ROC AUC), because ROC AUC can be misleading by giving an overly optimistic
evaluation when the model misclassifies most of the minority class instances |22]. Therefore,
PR AUC was used as the primary evaluation metric for selecting the best classification

model.
Truth
Prediction ‘ Yes (positive) No (negative)
Yes (positive) TP FP
No (negative) FN TN

Table 1: Structure of a confusion matrix used in binary classification

Class imbalance

Class imbalance can negatively impact model training by reducing the ability to identify minority
classes accurately. To address this, class weights were applied during training to assign higher
importance to minority class observations and improve model performance.

3.5 Modeling for the longitudinal data
3.5.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of Artificial Neural Networks (ANNs) developed
to model sequential data, making them suitable for forecasting physical activity in sequential
data. In contrast to feedforward neural networks, RNNs use information from previous time
steps, creating a memory of past input that helps the network to learn temporal dependencies.

The formulations used in the following description of the RNN architecture follow the ones
presented in [23].

RNN architecture

In a simple RNN, input data is introduced into the network model sequentially, being processed
one timestep at a time. To compute the current hidden state h; at time ¢, the network takes an
input vector x; and combines it with the previous hidden state h;_1 from the previous time step.
h: and the output y; are computed as follows:

13

he = f <W2~h(xt b) + W (hey + bh)) (Eq. 12)
yr = g (Wi (he + bo)) (Eq. 13)

where VVZ-h, W}?, and Wy are the input, recurrent, and output weight matrices. b;, by, and b,
are the respective bias vectors. f(-) is an activation function (e.g., ReLU). g(-) is often a linear
transformation for regression [23].

Through this recursive procedure, RNNs can capture the dependencies between different time
steps in a sequence.

O-TOTE-0

Figure 1: Simple structure of RNN

Figure [1| shows the architecture of an RNN. There are three primary layers: the input layer, the
hidden layer, and the output layer.

e Input layer: x represents the input data at the current time step ¢, which could be the
number of steps, or the EMA variables after normalization.

h

7

e Hidden layer: the input passes through the input weight matrix W;', which projects it
into the hidden state. At the same time, the recurrent weight matrix WZ is multiplied
with the previous hidden state h[t — 1]. They are then combined with the bias terms and
introduced to an activation function such as ReLU, to get the current hidden state hlt].

This enables the network to retain information from previous steps.

e Output layer: The output weight matrix W9 transforms the current hidden state h[t] to
produce the output y[t]. This output can be the predicted number of steps.

This structure allows the RNN to learn sequential patterns in longitudinal data. The same
parameter weights (and biases) are used at each time step to make the model generalize across a
variety of temporal positions.

However, a simple RNN struggles to learn long-term dependencies due to the vanishing gradient
problem. For this purpose, recurrent layers such as Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) are used to address this issue.

LSTM

LSTM networks are a type of RNN that were developed to address some limitations that were
encountered in simple RNNs in capturing long-term dependencies. They do not suffer from
vanishing gradient during training, since they have gated methods that enable the model to
retain or discard information throughout long sequences, which improves memory control [23].

o fr= O'(Wth +Ush; 1 + bf)

14

e iy =0(W;x; + U1 +b;)
e o =0(Wyx; +U,hy_1 +by,)
Ci=g(Wex; + Uy +b,)

Ct:(ftXCt—i—itht)

) ht = gg(Ct) X Ot

where x; is the input vector at time t. f;, i;, and o; are forget, input, and output gates,

respectively. o(-) is a sigmoid activation function (o(x) = H%), Wy, Wi, W, W, Uy,
U;, U, and U, are weight matrices. by, b;, b., and b, are bias vectors. g(-) and go(-) are

non-linear activation functions.

Each component in the cells has a unique role in regulating the information flow. The forget
gate controls how much information to remove from the previous state C;_1. The input gate
regulates the amount of influence that the new candidate C; should have on the new current
state C;. To generate the hidden state hy;, LSTM applies a nonlinear transformation to the
current state and filters it by using the output gate, which controls what information is passed
next.

GRU

GRU is a variant of the LSTM that models the temporal dependencies in sequential data. Unlike
LSTM, GRU merges the forget and input gates into a single update gate, which regulates the
amount of information to forget or remember. As a result, it has fewer parameters (weights) to
estimate, making its training faster than the LSTM architecture. The update gate regulates how
much information in the cell should be updated by the candidate state. Additionally, there is a
reset gate that controls how much the previous state should influence the current state.

e 2 =0(W_x;,+U,h; 1 +Db,)
o 1y =0(W,x;+U,h4_1 +b,)
e h; = g(Wirxi + 71 x Upghy_1 + by,)
e hy =(1—2) x hy_1 4+ 2z x hy

where z; is the update gate and r; is the reset gate. W,, W,., Wy, U,, U,., and Uy, are weight
matrices. b,, b,, and by, are the bias terms. h; and h; are the candidate state and the hidden
state, respectively. Figure 2] shows the cells of both LSTM and GRU networks.

15

Figure 2: Architectural comparison of LSTM (left) and GRU (right) cells

3.5.2 LightGBM for time series forecasting

Light GBM was applied to time series forecasting in the longitudinal dataset by using lagged
features as inputs. This approach has been shown to be valid for forecasting, provided that
appropriate feature engineering is performed [24].

Lagged feature construction for Light GBM forecasting

To predict the number of steps at a given time ¢, lagged versions of the outcome variable were
constructed as features from previous time steps. For example, if the current time is ¢4, then the
model uses the values at t3, to, and ¢1 as input features.

Table 2: Example of lagged feature construction (single timestep)

Time Steps (Number of steps) | Lag 1 Lag2 Lag3
t1 1200 — — —
to 1500 1200 — —
t3 1350 1500 1200 —
ty 1700 1350 1500 1200
ts 1600 1700 1350 1500

Other longitudinal predictors, such as the EMA variables (e.g., motivation, physical well-being),
were lagged similarly.

3.5.3 Training and parameter estimation:

The participants in the longitudinal dataset were randomly divided into training (70%), validation
(10%), and testing (20%) sets.

To train the model to forecast the continuous outcome of step count, the predicted values are
compared with the actual or target values, which helps to construct a loss function. The main
parameters (weights and biases) are estimated by minimizing the Mean Absolute Error (MAE)
loss function:

16

T
* 1 *
MAE(y,y") = & >y —vfl (Eq. 14)
t=1

Where T is the sequence length, y; is the target value at time ¢, and y; is the predicted value of
the step count.

The MedAE was used as an evaluation metric because it is less sensitive to outlying observations
compared to other evaluation metrics:

MedAE(y,y*) = H‘ledial‘l (Eq. 15)
Yt—yf

where t = 1,...,T
Model comparison

To determine the minimum number of days needed as input to predict the physical activity
for the following day (consisting of 4 timesteps), the predictive performance of several model
configurations for forecasting step count was compared. In total, 6 combinations were tested:
LSTM with EMA variables (LSTM Steps + EMA), LSTM without EMA features (LSTM Steps
only), GRU with EMA variables (GRU Steps + EMA), GRU without EMA variables (GRU
Steps only), Light GBM with EMA features (LGBM Steps + EMA), and Light GBM using only
lagged features derived from the step count variable (LGBM Steps only).

The primary metric used to evaluate the models was the MedAE divided by the median of the
test data (MedAE/Median). This metric is scale-invariant because it accounts for the scale of
the data, and lower values indicate better model performance.

Backpropagation Through Time

To train the RNN and update the values of weights, gradients of the loss functions with respect
to the parameters are computed using Backpropagation Through Time (BPTT). In this method,
the network is unrolled over time, and propagation is performed across the time steps.

The model parameters were optimized using the Adam optimizer, which is an adaptive learning
method that is based on first-order and second-order moments. One advantage of Adam is
that it adaptively adjusts the learning rate for each parameter, and this often leads to better
performance [23].

Success criterion

Model evaluation was performed by forecasting short-term PA, measured as the number of steps
at the next time point, based on a lagged sequence of previous activity. For each participant,
the predictions were assessed using the percentage error, calculated as:

[9i—yil

el iy #0
Percentage error at time ¢ = |7Q'yjy'| ' vi 7

s, ity =0

17

where g; is the predicted value at timestep 7 and y; is the actual value at the same timestep. If
the actual value is zero, the denominator is set to 1 to avoid division by zero. A single prediction
at a timestep 7 is considered correct if this percentage error is less than or equal to 0.10. A
successful prediction for a particular participant is then defined as having at least 0.80 of their
predicted values with percentage errors of 0.10 or less.

3.6 Outcome transformation:

To improve the training and performance of the regression models, the outcome variable in the
longitudinal analysis was transformed using the Yeo-Johnson transformation, which helps to
reduce skewness in highly skewed data [25]. This transformed outcome was used during the model
training process. After obtaining predictions from the models, the values were converted back to
the original scale by applying the inverse transformation, using the parameter A optimized from
the training data.

The Yeo-Johnson transformation of a continuous outcome (y) is:

et it A £ 0,y >0
log(y + 1) ifA=0,y>0

DY) =4] (Eq. 16)
S 1f)\7é2,y<0

—log(—y+1) ifA=29y<0

18

4 Results

4.1 Cross-sectional Analysis
4.1.1 Exploration

Table |3| shows summary statistics of some of the continuous variables according to their
distribution, including the mean, standard deviation (SD), median, and 25th and 75th percentiles
in the cross-sectional dataset. The mean age of the participants was 70.1 years (SD = 4.59),
and the median BMI was 26.3 (23; 28.4). For physical activity as a continuous measurement,
participants reported a median activity of 5143.50 MET-minutes/week (2642; 9973.3).

The table also shows the summary of categorical variables. The majority of the participants
were married (72.2%), they were living with a partner (78.7%), and most of them were retired
(97.2%).

Regarding the categorical outcome variables, according to the IPAQ categorization, 71.3% of
the participants were highly active, while only one participant was categorized as having low
physical activity levels. Due to the insufficient representation of the low activity group, the single
participant in this category was excluded from the analysis. Consequently, the classification
task was adjusted to a binary problem using only the moderate (as the negative class) and high
activity (as the positive class) categories, as a single sample is insufficient for effective model
training. Furthermore, 16.7% of participants experienced a fall incidence in the past 6 months,
and 33.3% had mild depression according to GDS.

19

Table 3: Cross-sectional data summary statistics. Continuous data are presented as mean (SD)
or median (p25; p75) according to the distribution of the data. The outcome variables are in
bold.

Continuous variable Statistic Minimum - Maximum
Age (years) 70.1 (4.59) 64-87
BMI (kg/m?) 26.3 (23.0; 28.4) 19-42.3
6min walking distance test 572.4 (90.8) 240-855
Speed 5.91 (0.80) 3.8-8.4
WHOQOL Physical Health 76.0 (11.8) 39.29-100
WHOQOL Psychological 72.3 (10.2) 45.83-91.67
WHOQOL Social 75.0 (66.7; 83.3) 25-100
WHOQOL Environment 83.7 (10.1) 56.25-100
IPAQ MET-min/week 5143.5 (2642.0; 9973.3) 99-64848
Categorical variable value n (%)
Sex male 47 (44.52%)
female 60 (55.56%)
other 1 (0.93)
Marital state Single 8 (7.4%)
Living together 9 (8.3%)
Married 78 (72.2%)
Divorced 8 (7.4%)
Widow 5 (4.6%)
Physical constraints Yes 8 (7.4%)
No 100 (92.6%)
Retired Yes 105 (97.2%)
No 3 (2.8%)
Living situation Living with partner 85 (78.7%)
Living alone 20 (18.5%)
Living with children 1 (0.9%)
Other 2 (1.9%)
IPAQ category Low 1 (0.9%)
Moderate 30 (27.8%)
High 77 (71.3%)
GDS category Mild depressed 6 (33.3%)
Not depressed 72 (66.7%)
Falling in the past 6 months yes 8 (16.7%)
No 90 (83.3%)

4.1.2 Metrics

Table [4] presents the performance comparison of the models for mild depression status prediction.
The Light GBM model achieved the highest PR AUC of 0.8, outperforming the PR AUC of

20

Logistic Regression and Elastic Net models.

The LightGBM classification model achieved a recall (sensitivity) of 0.545, indicating a moderate
ability to correctly identify positive cases, while its specificity of 0.818 reflects a strong performance
in correctly identifying negative cases. The model’s precision was 0.6, suggesting a reasonable
proportion of true positive predictions among all positive predictions. Overall, the F1 score of
0.571 balances precision and recall, and the balanced accuracy of 0.682

The Light GBM model achieved a PR AUC of 0.381 in predicting fall risk, indicating limited
overall ability to distinguish minority cases. The recall (sensitivity) was 0.333, showing that
the model correctly identified only a third of actual fall risk cases, highlighting challenges in
detecting the positive class. The specificity was 0.750, reflecting a relatively good performance
in correctly identifying individuals without fall risk. Precision was 0.222, meaning that among
those predicted as at risk, only about one-fifth were true positives, indicating a high false positive
rate. The F1 score was 0.267, reflecting the balance between precision and recall. The balanced
accuracy was 0.542, representing the average of recall and specificity, and indicating moderate
classification performance due to class imbalance.

With regards to the classification task distinguishing between high and moderate levels of
PA based on the IPAQ category, the Light GBM model achieved a PR AUC score of 0.809,
demonstrating a strong ability to discriminate between classes across different thresholds
compared to other models. The model’s recall was 0.875, indicating that it successfully identified
a high proportion of individuals with high physical activity. Precision was 0.808, showing that
most of the predicted high activity cases were correct and showing reliable positive predictions.
The F1 score was 0.840, indicating a good balance between precision and recall. Specificity was
0.444, suggesting the model had difficulty in correctly identifying the moderate activity class.
The balanced accuracy was 0.660, reflecting overall moderate accuracy that accounts for both
sensitivity and specificity in the presence of class imbalance.

The models’ performance in predicting IPAQ MET minutes per week was assessed using multiple
error metrics in table 5, with a focus on the MedAE divided by the median (MedAE/Median) of
the observed values of the test data. The Light GBM model achieved the lowest Med AE/Median
value of 0.551, indicating the best prediction performance among the models. In comparison,
the LR and EN models exhibited higher MedAE/Median values of 0.859 and 0.785, respectively.
While Light GBM provides better prediction of IPAQ MET minutes per week compared to the
other two models, the overall prediction error remains substantial, reflecting the challenges of
modeling PA using the cross-sectional data.

Truth Truth Truth
Prediction ‘ Yes No Prediction ‘ Yes No Prediction ‘ Yes No
Yes 6 4 Yes 2 7 Yes 21 5
No 5 18 No 4 21 No 3 4
GDS LGBM Falling LGBM IPAQ LGBM

Table 6: Confusion matrices for the selected models (Yes = positive class, No = negative class).

21

Table 4: Evaluation metrics for binary outcomes (LR = Logistic Regression, EN = Elastic Net,
LGBM = LightGBM).

. GDS Fall TPAQ

Metric

LR EN LGBM , LR EN LGBM , LR EN LGBM
F1 Score 0.615 0.476 0.571 0.353 0.300 0.267 0.303 0.682 0.840
Precision 0.533 0.500 0.600 0.273 0.214 0.222 0.556 0.750 0.808
Recall (Sensitivity) 0.727 0.455 0.545 0.500 0.500 0.333 0.208 0.625 0.875
Specificity 0.682 0.773 0.818 0.714 0.607 0.750 0.556 0.444 0.444
Accuracy 0.697 0.667 0.727 0.676 0.588 0.676 0.303 0.576 0.758
Bal. Accuracy 0.705 0.614 0.682 0.607 0.554 0.542 0.382 0.535 0.660
PR_AUC 0.444 0.504 0.800 0.174 0.190 0.381 0.653 0.764 0.809

Table 5: Evaluation metrics for IPAQ MET minutes/week (LR = Linear Regression, EN =
Elastic Net, LGBM = Light GBM).

Model ~ MAE MedAE MAE/Mean MedAE/Median

LR 7349 4439 0.801 0.859
EN 6049 3974 0.704 0.785
LGBM 2788 6102 0.711 0.551

4.1.3 Predictive factors

Figure [3] shows the most important predictors for several outcome variables based on the best-
performing models selected from the previous analyses. The Light GBM variable importance
scores were based on gain, which represents the percentage contribution of each feature to the
model, calculated from the total gain of the splits involving that feature.

For the GDS category, the Light GBM model highlighted an item from the IPAQ as the most
important predictive factor. The second and third most important predictors were quadriceps
strength on the left side and BMI, respectively. As for the prediction of risk of fall using the
Light GBM model, the most predictive feature was the quadriceps strength of the right leg.
Regarding the IPAQ category prediction with the Light GBM model, the three most important
predictive variables were an item from ESES, an item from the EIS, and the 6-minute walking
distance test. Moving to the IPAQ as a continuous measurement, the primary predictive variable
was oxygen saturation (post-test), followed by an item from the WHOQOL questionnaire, and
the EIS total score.

22

Most predictive features for
GDS Category using LightGBM

ipagq_3 -

kg_qua_left -

bmi -

eis_4-

sit_reach_values_3 -

loading_left -

cfi_17-

whogol_23_X3 -

eses_8_X4-

pro_sup_angle_flat_I -

=2
S
=]
=4
= -
@
e
=}
e
o
S

015
Importance

Most predictive features for
IPAQ Category using LightGBM

eses_10_X3-

eis_SUM -

6min_walking_distanc -

eses_SUM -

sit_reach_values_3 -

kg_qua_left -

clearance_left -

eis_3-

sit_reach_values_1 -

memeory_test3_score -

2
=
=1
o
=
&
=2
=)

Impertance

Most predictive features for
Falling using LGBM

score_qua_right -

gsq 1 X2-

maobility -

loneliness_scale_4_X2 -

gsq_6_X3-

dhrg_health_literacy2_X4 -

clearance_right -

score_hand_| -

box_block_3 -

Bmin_walking_percentage -

o
>

0.10
Importance

=4
& -
S
=4
S -
@

Most predictive features for
ipag_METminperweek using LightGBM

saturation_mea_post -

whogol_3_X2 -

eis_SUM -

gas_7_X1-
dhrqg_toegang4_X5 -
borg_vermoeidheid_po -
steppage_toe_right -
impuls_co_test?_score -
stance_time_left -

impuls_co_test1_score -

0.050 0.075

Importance

0.025

2
o
=1
=]

Figure 3: Most important features for the cross-sectional selected models

4.2 Longitudinal Analysis
4.2.1 Exploration

Table [7] summarizes the variables of the integrated dataset from the Garmin device and SEMA3
app. The results are obtained after processing the data. The main outcome of interest is the
number of steps (Steps), with a median of 1143 steps per time period (p25 = 375, p75 = 2374),
and it ranges between 0 and 21459 steps. The distribution of the number of steps is strongly

23

right-skewed, with a large number of zero values and fewer observations with high step counts,

as shown in Figure

The EMA variables collected from the SEMA3 app had a range from 0 to 100. Physical well-being
had a median of 23.81 (14.3; 33.3). Similarly, mental well-being was low with a median of 23.81
(14.3; 42.9). Both of these features had a right-skewed distribution, as shown in Figure . In
contrast, motivation to be active had a median of 85.71 (57.1; 100). The median of the average
Self-efficacy level was 100. Finally, a median context of 92.86 suggests that most participants
were in environments that were supportive of physical activity. The distributions of motivation,
self-efficacy, and context variables are left-skewed, as illustrated in Figure

After the datasets were combined and properly aligned, the percentage of missing step count data
measured by the Garmin device was 2.8%, while each of the EMA variables had a missingness of

62.2%.

Table 7: Longitudinal variables summary statistics

Variable Median (p25; p75) Minimum - Maximum Missing (%)

Steps 1143 (375; 2374) 0-21459 157 (2.8%)

Physical 23.8 (14.3; 33.3) 9.52-100 3483 (62.2%)

Mental 23.8 (14.3; 42.9) 14.29-100 3483 (62.2%)

Motivation 85.7 (57.1; 100) 3.57-100 3483 (62.2%)

Efficacy 100.0 (71.4; 100) 14.29-100 3483 (62.2%)

Context 92.9 (71.4; 100) 14.29-100 3483 (62.2%)
Steps PHYSICAL NORM MENTAL NORM

2500 500
2000 600 400

£ 1500
E

Frequency
IS
8
5]
Frequency
w
&
5]

1000 300 200

500 100

0 5000 10000 15000 20000 20 40 60
Value Value

MOTIVATION NORM EFFICACY NORM CONTEXT NORM

IS
8
5]
Frequency
Frequency

0 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Value Value Value

Figure 4: Histograms of longitudinal variables

Figure [5| shows the longitudinal step count data for four selected participants, representing
different patterns observed across the study duration. The plots indicate considerable variation
within participant 76, whose step counts ranged from 0 to over 7500 and changed substantially
over time. Participants 73 and 89 exhibited distinct step count patterns characterized by

24

sharp increases, indicating occasional periods of elevated physical activity. On the other hand,
participant 6 had a smaller range of step counts, mostly below 3,000, showing less variation
in their step counts. These patterns can also highlight notable between-subject differences in

physical activity levels.

Participant ID 6 - Step count over time Participant ID 73 - Step count over time

20000
2500

2000 15000

Steps

10000

5000

30 30
Timestep Timestep

Participant ID 76 - Step count over time Participant ID 89 - Step count over time

12000

8000
10000

8000
6000

Steps

4000

4000

2000
2000

30 30
Timestep Timestep

Figure 5: Selected plots for participants’ longitudinal profiles

Figure@displays the distribution of step count (Steps) before and after applying the transformation.
The transformed values show considerably less skewness compared to the original data.

Original Steps Transformed Steps (Yeo-Johnson)
1400 300
1200 250
1000
200
> >
T 9
c 2
¢ 800 = °
5 E]
g 9 150
fin i
600
100
400
200 30
0 - 7 T T 0
0 5000 10000 15000 20000 0 10 20 30 40 50 60
Steps Transformed Steps

Figure 6: Outcome transformation using Yeo-Johnson transformation

4.2.2 Model specifications

Training of the GRU and LSTM models was conducted using 20 epochs, a batch size of 16, and
a learning rate of 0.005. The model architectures consisted of the following layers:

25

Table 8: GRU and LSTM model specifications

GRU model LSTM model

Masking layer for missing values Masking layer for missing values

GRU (128 units, return sequences) LSTM (128 units, return sequences)

GRU (64 units, no return sequences) LSTM (64 units, no return sequences)

Dense (16 units, ReLU activation) Dense (16 units, ReLU activation)

Dense (1 unit, output layer) for single-step prediction | Dense (1 unit, output layer) for single-step prediction
Dense (4 units, output layer) for multi-step (4 timesteps) prediction | Dense (4 units, output layer) for multi-step (4 timesteps) prediction

The parameter values applied in the Light GBM models are summarized in table [9]

Table 9: Light GBM parameters

Parameter Value
n_estimators 3000
num leaves 1000
max_depth 100
min child_samples 1

min split_gain 0
subsample 1
learning_ rate 0.005
reg_alpha 0.01
reg_lambda 0.01

4.2.3 Model comparisons

Figure [7] shows the model comparisons to predict the number of steps for the entire next day
(four timesteps). The blue line represents the baseline performance (common sense model), which
predicts the next step count by simply using the current step count. This approach does not
involve any modeling and is included only as a reference point for comparing the performance of
the developed models. All six models outperformed this baseline.

The results of the model comparisons indicate that the Light GBM model without EMA input
(LGBM (Steps only)) achieved the best performance, with the lowest MedAE/median error
ratios across days two to seven. Its error decreased gradually over the seven days, reaching a
minimum of 0.31 on day seven. The Light GBM model with EMA features demonstrated worse
performance, with MedAE /median ratios between 0.41 and 0.48 over seven days, showing no
improvement from adding the lagged EMA features to the input.

The GRU model using only previous steps as input showed moderate performance, with error
values ranging from approximately 0.44 to 0.52.

As for the GRU model with EMA features, it exhibited higher overall errors, mostly exceeding
0.6 and reaching up to 0.72 on day six.

The errors for LSTM (Steps + EMA) and GRU (Steps + EMA) were close across the days,
indicating comparable predictive ability between these two model types. As for the LSTM (Steps
only) model, it showed fluctuation in error ratios across the days compared to the GRU (Steps

only) model.

26

MedAE/Median over Days for All Models to Predict Full-Day Activity (4 Timesteps)
1.0 \'—‘

0.9 1

o
™

—e— Baseline (Common-Sense)
LGBM (Steps only)

I
~

—— LGBM (Steps + EMA)

— /\ I ¢ —A— GRU (Steps only)
JE /\— D \‘/ —&— GRU (Steps + EMA)

—&— LSTM (Steps only)

/\/ LSTM (Steps + EMA)
0.5 1
4 A A

0.4 4

MedAE / Median

o
o

0.39

1 2 3 2 5 5 7
Day
Figure 7: Median Absolute Error (MedAE) / Median over days for different models predicting
next-day step counts (four timesteps), lower values indicate better models’ performance

The Light GBM model, using step counts from the past seven days, was selected to forecast PA
for the next four timesteps. Table [10| shows the performance of these Light GBM (Steps only)
for forecasting a full day, along with the mean and median step count in the test data. The
evaluation on the test set resulted in a MedAE of 414.37 steps and a MedAE/Median ratio of
0.306.

Table 10: Light GBM (Steps only) model evaluation metrics on the test set for forecasting a full
day PA

Metric Value
MAE 981.15
MedAE 414.37
Mean 2083.78
Median 1355.00
MAE / Mean 0.471

MedAE / Median 0.306

Figure |8 shows the model comparisons to predict the following number of steps for a single
timestep only. The results showed that the Light GBM model using only previous step counts
consistently achieved low MedAE/median error ratios between 0.26 on day six and 0.31 on
day three, maintaining stable performance across the days and showing low sensitivity to input
sequence length. In comparison, the Light GBM model with EMA features had higher error
values, ranging from 0.40 to 0.45. The GRU model using step counts only exhibited error values
from approximately 0.42 to 0.53, while the GRU model with EMA included had errors between
0.55 and 0.76. The LSTM (Steps only) model showed decreased errors on day one and day six
(about 0.46) compared to the other days. As for the LSTM with EMA model, it reached a peak

27

error of approximately 0.65 on day seven, while the LSTM (Steps only) model presented lower
error rates compared to the LSTM with EMA, with error ratios close to those of the GRU (Steps

only) model.

MedAE/Median over Days for All Models to Predict Next Activity (1 Timestep)

——M

1.0 A

—e— Baseline (Common-Sense)
LGBM (Steps only)

—8— LGBM (Steps + EMA)

—&— GRU (Steps only)

—9— GRU (Steps + EMA)

—&#— LSTM (Steps only)
/ LSTM (Steps + EMA)

ol
©

MedAE / Median

©
o

0.4 1

1 2 3 4 5 [3 7
Day

Figure 8: Median Absolute Error (MedAE) / Median over days for different models predicting
next-timestep PA (a single timestep), lower values indicate better models’ performance

Table 11| shows the metrics of the selected mode for forecasting a single timestep with 6 days of
input. The model achieved a MedAE of 345.93 steps and a MedAE/Median ratio of 0.260.

Table 11: Light GBM (Steps only) model evaluation metrics on the test set for single timestep

forecasting

Metric Value
MAE 933.57
MedAE 345.93
Mean 2041.32
Median 1330.00
MAE / Mean 0.457

MedAE / Median 0.260

To further examine the behavior of the models, an additional analysis was performed using a
fixed sequence length of six days, with different temporal arrangements of inputs and targets.
Instead of using sequences covering the entire day, each input consisted of step counts from the
same time segment (e.g., morning, noon, afternoon, or evening) across six consecutive days. The
target was either the step count for the same time segment on the following day (e.g., using six
mornings to predict the next morning) or the step count for a different time segment on the same
or next day (e.g., using six afternoons to predict the next noon). This approach was intended to
investigate whether certain time-of-day combinations provide more predictive information for
step count and to compare model performance when predicting within the same time segment

28

versus across different segment configurations. The results of these models are presented in
Figure [0

The Light GBM model trained solely on lagged step count features achieved the lowest MedAE /median
values overall. Specifically, the afternoon-to-afternoon prediction, using a sequence of six
step counts from the afternoon to predict the number of steps in the next afternoon, had a
MedAE/Median error ratio of 0.27. The noon-to-noon and morning-to-morning predictions each
showed error ratios of 0.36, while the evening-to-evening prediction had a ratio of 0.31. These
findings suggest that the model performed best for forecasting the afternoon PA.

When using morning segments as input, the prediction errors were 0.32 for predicting noon PA,
0.33 for afternoon, and 0.38 for evening activity. Predicting the morning PA from the previous
afternoon step counts had a relatively high error ratio of 0.48. In contrast, a lower error of
0.34 was obtained by predicting evening PA from afternoon input. Using evening PA as input
achieved high error ratios of 0.49 and 0.50 for predicting morning and noon step counts. In
contrast, it yielded lower error ratios of 0.30 and 0.31 for predicting afternoon and evening PA,
respectively.

The top-right heatmap shows the Light GBM model results when EMA variables were incorporated
alongside lagged step count inputs. Compared to the model without EMA variables, the inclusion
of EMA features resulted in higher MedAE/median error ratios across most time segment
combinations, indicating a modest decline in predictive performance. The afternoon-to-afternoon
prediction showed the lowest error ratio of 0.35.

The two heatmaps in the middle show the results for the GRU models. In the GRU (Steps only)
model, the overall MedAE/median error ratios are higher compared to those of the Light GBM
models for morning-to-morning and afternoon-to-afternoon configurations. The best performance
was observed when using evening input to predict evening (0.41), as well as predicting afternoon
PA from morning input (0.41).

When EMA variables were added to the GRU model, as illustrated in the middle heatmap on
the right, the highest error ratios continued to occur when predicting morning PA from all time
segments, similar to the pattern seen in the GRU model using the previous steps only. In contrast,
the afternoon-to-afternoon predictions exhibited the lowest error ratio of 0.39, comparable to
the pattern observed in the Light GBM models.

The heatmaps at the bottom show the performance of the LSTM models with and without
EMA data. For the LSTM model using only the previous step counts, the best performance was
observed when predicting the afternoon segment from the afternoon input, with an error ratio of
0.36. This result surpassed both GRU models for the same time segment configuration. After
adding EMA data to the LSTM model (right heatmap), the prediction error ratios for the noon
target generally decreased.

29

MedAE/Median
LGBM (Steps only)

MedAE/Median
LGBM (Steps + EMA)

Evening
Evening

Afternoon
Afternoon

Source
Noon

Source
Noon

Morning
Morning

Morning Noon Afternoon Evening Morning Noon Afternoon Evening
Target Target

MedAE/Median
RNN GRU (Steps only)

MedAE/Median
RNN GRU (Steps + EMA)

Evening
Evening

Afternoon
Afternoon

Source
Source

Noon
Noon

0.63

Morning
Morning

'
Morning Noon Afternoon Evening Morning Noon Afternoon Evening
Target Target

MedAE/Median
RNN LSTM (Steps only)

MedAE/Median
RNN LSTM (Steps + EMA)

Evening
Evening

Afternoon
Afternoon

Source
Noon

Source
Noon

Morning
Morning

Morning Noon Afternoon Evening Morning Noon Afternoon Evening
Target Target

Figure 9: MedAE/Median across time segments and models.

Table [12| summarizes the evaluation of the Light GBM (Steps only) model’s predictions of the
number of steps at the next time point (single timestep), for individual participants.

Predictions were based on a six-day lagged sequence of previous PA. For each participant, the
table reports the total number of predictions, the number of correct predictions (defined as
having a percentage error of 10% or less at a timestep), and the percentage of correct predictions
out of the total number of predictions within the participant.

Among the 20 participants in the test set, four participants satisfied this success criterion. Their
respective correct prediction rates were notably high, ranging from 93.10% to 100%, suggesting
that the model was capable of capturing meaningful temporal patterns in these individuals’
physical activity behavior. For example, participant 61 had 32 out of 32 predictions classified as
correct (100%), reflecting exceptional model performance for this individual.

In contrast, the majority of participants (16 out of 20) fell below the 80% threshold. For some
individuals, the percentage of correct predictions was extremely low (6.25% for Participant 59),
indicating substantial model underperformance and showing that the model failed to generalize
effectively for these participants.

30

Table 12: Per-participant accuracy summary based on the proportion of predictions with
percentage error < 10%. Participants with at least 80% accurate predictions are highlighted in
bold.

Participant ID Total predictions Correct predictions Percentage correct predictions

2 32 10 31.25%

3 32 7 21.88%
14 32 9 28.13%
25 32 6 18.75%
38 32 20 62.50%
44 32 7 21.88%
52 32 10 31.25%
96 29 27 93.10%
99 32 2 6.25%
61 32 32 100.00%
63 31 9 29.03%
69 31 8 25.81%
70 32 8 25.00%
73 32 9 28.13%
74 32 16 50.00%
80 32 10 31.25%
93 32 8 25.00%
109 32 32 100.00%
111 32 32 100.00%
112 31 9 29.03%

Furthermore, a Leave-One-participant-Out (LOO) was conducted using six-day input to predict
the next single step count using the Light GBM model without EMA. The testing procedure
involved iteratively holding out the data from one participant as the test set, while training the
model on the data from the other 99 participants using the parameters in table [9] This process
was repeated for each participant in the whole dataset, so that every individual’s data was used
once as a test set. The error was calculated separately for each participant’s prediction, based
on the model trained without their data. Figure [10| shows the per-participant success rates for
the following single-step count predictions using the Light GBM model without EMA inputs and
a six-day input sequence. Out of the 100 participants, only 43 of them met the success criterion

(in green bars).

31

Participant Success Rates (Green = Success = 80%)

Success Rate

Success Rate

Success Rate

Success Rate

&

o
S

K

<
K§

>

o
Ky

©
K

A
K

&
QS

9
O

Q N ‘z
R AR

Figure 10: Per-participant success rates, defined as the proportion of predictions with percentage
error < 10%. Each bar represents an individual participant. Green bars indicate participants who
met the predefined success criterion (success rate > 80%), while red bars indicate participants
who did not meet this threshold.

Table [I3] presents the p-values from different tests, including the Wilcoxon rank-sum test for
age and IPAQ as continuous measurements, and Fisher’s exact test for the other variables,
conducted to assess whether there was a systematic difference between participants in meeting
the success criterion. No variables were statistically significant, indicating no evidence of
systematic differences based on the measured characteristics.

Table 13: P-values from Wilcoxon and Fisher’s exact tests examining differences in participant
characteristics between those meeting and not meeting the success criterion.

Variable p-value
Age 0.8026
IPAQ category 0.3657
Sex 1

Fall risk 0.5984
GDS category 0.6683

IPAQ MET-min/week 0.549

Figure [11] presents the predicted and actual step counts for 4 participants using the Light GBM
model without including EMA features. These plots are provided to visually demonstrate the
model’s performance on different individuals in the test dataset. The objective was to predict
the step count for the following single timestep based on a sequence of step counts from the

32

previous six days.

Two plots for participants 25 and 74 illustrate examples of poor model performance. The
predicted step counts do not closely follow the actual values. The model often fails to capture
the overall pattern of the step counts over time, missing several peaks where the actual steps
increased sharply. At times, the predictions move in a different direction from the observed
data. This shows that the model was unable to adequately learn the PA patterns for these

participants, resulting in relatively large prediction errors of 18.75% for participant 25 and 50.0%
for participant 74.

In contrast, the other plots (Participant 56 and 109) demonstrate good model performance. The
predicted step counts closely followed the actual values, with the lines mostly overlapping. The
model was able to capture temporal dependencies in step counts over time. These participants

had some of the highest percentages of good predictions, exceeding 80%, which is reflected in
the close alignment between the predicted and actual values.

Participant ID 25: Actual vs Predicted Values

Participant ID 56: Actual vs Predicted Values

4000
3000

«

oy

£ 2000

1000

RS

~— Actual
Predicted

5000

4000

3000

Steps

2000

1000

| A

— Actual
Predicted

25
Timestep

Participant ID 74: Actual vs Predicted Values

25

35 40 a5 50
Timestep

Participant ID 109: Actual vs Predicted Values

10000

8000

6000

Steps

4000

2000

| \mﬁ\ﬂﬁ NAA!

—— Actual
Predicted

8000

6000

Steps

4000

2000

[\ / \/
|/ \ \V

—— Actual
Predicted

Timestep

25

35 40 45 50
Timestep

Figure 11: Prediction plots for selected participants. The blue line shows the actual step counts,
while the orange line shows the model’s predicted values.

In summary, the results of the longitudinal analysis showed that the most optimal input length
for predicting PA for the next day (measured in four time steps) was seven days of step count
data without EMA, using the Light GBM model (Steps only). Similarly, for predicting PA at a

single timestep, the model performed best when using PA data from the previous six days with
the Light GBM model (Steps only).

33

5 Discussion

The general aim of this thesis was to investigate different machine learning and deep learning
methods and select the models that best predict PA, following two objectives. The first was
to identify key predictors associated with PA and related outcomes of mild depression and risk
of fall. The other objective aimed to find the optimal window size of the previous step counts
needed to forecast PA correctly. First, the most important results of the two research questions
will be discussed before addressing the limitations of the methods and ideas for future work.

5.1 Objective 1: The cross-sectional analysis

Among the different models evaluated for predicting the GDS category, the Light GBM model
demonstrated the best overall performance. Within this model, the most important predictor was
a specific item from the IPAQ. Indicating the strong association between specific self-reported PA
behavior and mild depression status. The next important predictor was the quadriceps strength
on the left side, measured in kilograms. Showing that lower limb strength was relevant for
distinguishing between individuals with mild depression and those without depression. However,
this needs to be interpreted with caution due to some limited performance metrics (e.g., F1
score) and sample size.

In the study by Song et al. [26], a sample of 7880 older adults in China was used to develop
and evaluate a Light GBM model for predicting depression that was assessed using the CESD-10
scale. Their model achieved a Receiver Operating Characteristic Area Under the Curve (ROC
AUC) value of 0.738. The most important predictors identified by the model included self-rated
health and nighttime sleep duration, underscoring their significant roles in the occurrence of
mild depression among older adults. These results differ from the predictive factors identified
in this thesis. Nevertheless, because this thesis is based on a smaller sample size and shows
different predictive factors compared to the much larger study by Song et al., and considering
the limited performance of some of the metrics of Light GBM (F1 score of 0.571) presented at
table [4] the identified predictive factors in the thesis for GDS may have limited reliability.

As for the risk of fall prediction model using Light GBM, which outperformed the other models,
the most important feature was the quadriceps strength of the right leg. This shows the important
role of lower limb muscle strength in maintaining balance and preventing falls among older adults.
The other variables did not have a notable effect on the classification of this outcome due to a
small importance score of less than 0.10. However, the reliability of these predictive variables is
severely limited due to the low predictive performance of the model (PR AUC of 0.381).

In contrast to the results of the analysis of the thesis, Liang et al. [27] developed different
machine learning classification models for falling, and they used posturographic data from 215
community-dwelling older adults. For classification based on fall history in the prior year, they
employed ensemble classifiers, and the models achieved an ROC AUC of around 0.7.

Unlike Liang et al. |27], who found posturographic factors to be the most important predictors of
risk of fall, the Light GBM model in this thesis did not find any balance control-related variables
that were important predictors. This difference could be due to the smaller sample size of the
cross-sectional data, which limited the ability to detect strong associations. Another possibility
is that other factors in the cross-sectional data, such as the quadriceps strength of the right
leg, may have a stronger influence on the risk of fall, making the effect of balance measures less

34

influential. Further research with a larger number of participants and more specific balance tests
may help to better understand these associations.

With regards to the IPAQ category, the Light GBM had superior overall performance compared
to the other models. Exercise motivation had the most influence in classifying PA levels. The
other factors were not as predictive (importance score was less than 0.10)

As for the IPAQ as a continuous measurement, the Light GBM model showed that the importance
of physiological status and perceived quality of life in predicting PA as a continuous measurement
in the cross-sectional analysis. But their importance scores were small (less than 0.10).

In general, the models identified certain variables as important predictors. However, their overall
performance was generally limited. As a result, these findings are not very reliable and should
be interpreted carefully, since the models might not have fully captured the true relationships
between the predictors and the outcomes.

5.2 Objective 2: The longitudinal analysis

To address the second objective of the study, the Light GBM model using only lagged step counts
was selected due to its consistently superior performance compared to other models. When
forecasting PA for a full day, a sequence length of seven days (28 time steps) yielded the best
results. The inclusion of psychological, contextual, and other EMA variables failed to enhance
the prediction of next-day step counts, as model performance slightly deteriorated.

Similarly, when predicting the number of steps at a single future time point, using a six-
day window provided the best performance. The inclusion of EMA features did not improve
the prediction performance. Highlighting that recent step counts alone are more informative
predictors of short-term physical activity.

Mamun et al. [28] conducted a study utilizing data collected from Fitbit Charge 2 wearable devices
and smartphone applications BeWell24 and SleepWell24. The study included 99 participants,
many of whom had more than 100 days of recorded observations. The authors employed LSTM
models with a window size of seven days to predict the next day’s physical activity of total step
counts per day. They used multimodal features combining daily app engagement metrics, such
as minutes used and times opened, along with physical activity measures, including sedentary
duration, total device wear time, and other features. The final LSTM model achieved an MAE
of 1677 steps for the prediabetic dataset and 2152 steps for the sleep dataset in forecasting the
next day’s step counts. In contrast to Mamun et al. [28], this thesis predicts physical activity
using step counts divided into four three-hour time segments per day, rather than using total
daily step counts. The final model developed here uses data from a seven-day window and
relies only on step counts and time of day as input. This model achieved a MedAE of 414 steps
(MedAE/Median of 0.31) in forecasting the next day’s activity across four time segments.

With regard to the model combinations using fixed sequence lengths of six days for specific time
segments, the analysis revealed notable differences in predictive performance dependent on the
input-target temporal alignment. The Light GBM model using only lagged step counts achieved
the best performance for within-segment predictions, specifically for afternoon-to-afternoon and
evening-to-evening forecasts. Cross-segment configurations showed that forecasting morning
targets was challenging, especially from noon, afternoon, or evening PA. In contrast, afternoon

35

and evening targets were less difficult to forecast.

Adding EMA variables, such as contextual and psychological features, did not improve the
performance of the models, including Light GBM, GRU, and LSTM, in most tasks, such as full
day forecasting, single time step forecast, and different configurations of time segment inputs
and targets.

The LOO analysis showed that for 43% of the participants, the Light GBM without EMA features
model achieved a success rate of at least 80% when forecasting a single time step. However, for
the remaining participants, the success rate was considerably lower. For these participants with
lower performance, using only previous step counts or including EMA inputs did not help the
model to learn their PA patterns accurately. These differences may reflect greater variability or
irregularity in the daily activity patterns, which may limit the model’s ability to learn the PA
patterns of these participants.

An additional analysis was performed to determine if participants who met the success criterion
of having correct predictions differed from those who did not based on demographic or clinical
variables such as age, gender, fall risk, IPAQ category, and mild depression status. The results
showed no statistically significant differences, indicating that variations in predictive performance
were not systematically linked to these factors. This can be due to other unmeasured factors
that may be influencing the differences in model performance across different participants.

5.3 Limitations and drawbacks of the methods

In both the cross-sectional and longitudinal analyses, several candidate models were trained, and
the model with the best performance according to the selected evaluation metric was chosen.
This approach can have some limitations. Different models may capture different patterns in
the data. By selecting only one model, these additional patterns were omitted, and possible
improvements from combining different model predictions, such as through stacking methods,
were not considered [29].

The performance of the model for predicting the GDS category was relatively poor for some
metrics. This may be due to the limited sample size or the small number of participants in the
study. Additionally, important factors such as additional sleep patterns were not included in
the cross-sectional dataset, which could have affected the model’s ability to correctly predict
depression status |26].

The drawback of the risk of fall prediction model included low performance caused by class
imbalance and a small dataset size. These factors limited the model’s ability to detect strong
associations compared to other studies [27].

As for the limitation of the longitudinal prediction modeling, the final selected Light GBM model
without EMA achieved accurate predictions for some participants, but lower performance for
others. One possibility is that for some participants, relying solely on previous step counts or
adding features from EMA did not provide useful information for predicting their PA, which may
indicate that their activity patterns were influenced by external, unmeasured factors such as
environmental conditions or other variables that were not measured in the longitudinal dataset.
Another possibility is that some participants shared similar physical activity patterns, allowing
the model to learn these patterns from certain individuals and generalize them to others with

36

similar PA behaviors.

Moreover, another drawback is that Light GBM, being a model primarily developed for tabular
data, may not be ideally suited to capture temporal dependencies in time series data. Unlike
RNNSs or other methods specifically developed to learn complex temporal patterns for forecasting,
Light GBM might have limitations in effectively modeling the sequential nature of physical activity
data and may not learn more temporal PA patterns that are present in the dataset without
comprehensive feature engineering [24]. Therefore, while the results of the final model provide
valuable insights, they should be interpreted with caution, given these potential limitations in
capturing temporal dynamics.

In addition, hyperparameter tuning using Bayesian optimization was conducted on the final
selected Light GBM (Steps only) model. However, this tuning process did not result in improved
parameter values compared to those obtained before the optimization. This is due to the number
of parameters to tune (nine), combined with a limited number of iterations, which restricted
the optimization from finding better parameter combinations. For the GRU and LSTM models,
no formal hyperparameter tuning was performed; several different choices of model structures
were tested initially, and the best-performing setup was chosen and used consistently across all
related models.

Furthermore, the modeling involved transforming the outcome variable of step count using
the Yeo-Johnson transformation, training the models using these transformed values, and then
back-transforming the predictions for evaluation. However, back-transformation can introduce
bias into the predicted values [30].

5.4 Ideas for future work and research

Future work should include collecting more data (increasing the number of participants and
other types of data that could influence the level of physical activity, such as weather, sleep,
or air quality) for both the cross-sectional and longitudinal datasets. Having larger and more
diverse data can help improve the reliability of the predictive models and allow for a better
understanding of which variables serve as reliable predictors. This increased data availability
may also support capturing a wider range of PA patterns and behaviors, helping the models to
generalize better across different participants.

Regarding the methodology, future work should explore a broader range of modeling techniques.
Specifically, additional deep learning methods such as Temporal Convolutional Neural Networks
(TCNs) could be investigated alongside the recurrent models already used for the longitudinal
analysis. Combining these approaches with formal hyperparameter tuning methods, like Bayesian
optimization, for all models could further improve predictive performance. This would allow for
a more thorough comparison of different algorithms and help identify the most effective modeling
strategies for forecasting PA [24].

Additionally, stacking methods should be investigated for both cross-sectional and longitudinal
data analysis. Stacking is an ensemble learning method where predictions from multiple base
models at the first level are used as input features for a meta-model at the next level. The
meta-model combines the predictions from the base models. It takes into account differences
caused by various parameter settings and different subsets of data used to train the base models.
This approach can improve prediction performance by combining the strengths of the base

37

models and reducing their overall errors. Examples of this improvement have been shown in
time series forecasting and logistic regression with imbalanced data [29].

Furthermore, future research should investigate bias correction techniques for the back-transformation
of predicted values or explore alternative methods to handle the skewness of step count data in
longitudinal models [30].

38

6 Conclusion

This thesis examined the application of machine learning and deep learning techniques to predict
physical activity levels in older adults, using both cross-sectional and longitudinal datasets.
Several types of models were evaluated, including Linear and Logistic Regression, Light GBM,
RNN such as GRU and LSTM, and Elastic Net.

In the cross-sectional analysis, models were developed to predict PA levels and related outcomes
of falling risk and mild depression status. The Light GBM model achieved the best overall results
for this task. The most important predictor identified for the IPAQ category outcome was an
item from the ESES. Showing that particular aspects of exercise self-efficacy were important in
differentiating between high and moderate physical activity levels.

In the longitudinal analysis, time series models were trained to predict step counts using
sequences of past observations. The results showed that a seven-day input sequence provided
the best predictive performance for full-day PA, measured in four time steps. Six-day input was
the optimal window for single-time-step forecasts. However, model performance varied across
individuals, and the models had limited ability to generalize correctly across all participants.

Overall, this thesis demonstrates the potential of combining wearable sensor data and machine
learning methods to understand and predict physical activity in older adults. Some predictive
models performed well, particularly for participants whose physical activity could be accurately
predicted from their previous observations. However, further work is necessary to improve the
generalizability of these models and to facilitate personalized health interventions.

39

References

[1] World Health Organization. Ageing and health. 2024. URL: https://www.who.int/news-
room/fact-sheets/detail/ageing-and-health.

[2] Thomas Vogel et al. “Health benefits of physical activity in older patients: a review”. In:
International Journal of Clinical Practice (2009).

[3] Birgitta Langhammer, Astrid Bergland, and Elisabeth Rydwik. “The Importance of
Physical Activity Exercise among Older People”. In: BioMed Research International
(2018).

[4] Marina B. Pinheiro et al. “Impact of physical activity programs and services for older
adults: a rapid review”. In: International Journal of Behavioral Nutrition and Physical
Activity (2022).

[5] Denise Taylor. “Physical activity is medicine for older adults”. In: Postgraduate Medical
Journal (2014).

[6] Kyungmi Lee et al. “Using digital phenotyping to understand health-related outcomes: A
scoping review”. In: International Journal of Medical Informatics (2023).

[7] Kim Daniels et al. “From Steps to Context: Optimizing Digital Phenotyping for Physical
Activity Monitoring in Older Adults by Integrating Wearable Data and Ecological Momentary
Assessment”. In: Sensors (2025).

[8] Yifan Lu et al. “Association Between Physical Activity and Risk of Depression: A
Systematic Review and Meta-Analysis of Prospective Studies”. In: International Journal
of Environmental Research and Public Health (2022).

[9] Yingbo Zhang et al. “The comprehensive clinical benefits of digital phenotyping: from
broad adoption to full impact”. In: npj Digital Medicine (2025).

[10] Ezgi Hasret Kozan Cikirikci and Melek Nihal Esin. “The impact of machine learning on
physical activity-related health outcomes: A systematic review and meta-analysis”. In:
International Nursing Review (2025).

[11] Mo Zhou et al. “Evaluating Machine Learning-Based Automated Personalized Daily Step
Goals Delivered Through a Mobile Phone App: Randomized Controlled Trial”. In: JMIR
mHealth and uHealth (2018).

[12] Schenelle Dayna Dlima et al. “Digital Phenotyping in Health Using Machine Learning
Approaches: Scoping Review”. In: JMIR Bioinformatics and Biotechnology (2022).

[13] Kim Daniels et al. “Characterising physical activity patterns in community-dwelling older
adults using digital phenotyping: a 2-week observational study protocol”. In: BMJ Open
(2025).

[14] Max Kuhn. “Building Predictive Models in R Using the caret Package”. In: Journal of
Statistical Software (2008).

[15] Trevor Hastie and Robert Tibshirani. An Introduction to Statistical Learning: with Applications
in R. Springer, 2013.

[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Regularization Paths for
Generalized Linear Models via Coordinate Descent”. In: Journal of Statistical Software
(2010).

[17] Guolin Ke et al. “LightGBM: A Highly Efficient Gradient Boosting Decision Tree”. In:
Proceedings of the 31st International Conference on Neural Information Processing Systems

(NeurIPS). 2017.

40

https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

Michael W. Browne. “Cross-validation methods”. In: Journal of Mathematical Psychology
(2000).

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical Bayesian Optimization of
Machine Learning Algorithms”. In: Advances in Neural Information Processing Systems.
2012.

Alexei Botchkarev. “Performance Metrics (Error Measures) in Machine Learning Regression,
Forecasting and Prognostics: Properties and Typology”. In: (2024).

Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-Class Classification:
An Owverview. Tech. rep. CRIF S.p.A. and Department of Computer Science, University of
Bologna, 2020.

Takaya Saito and Marc Rehmsmeier. “The Precision-Recall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets”. In: PLOS
ONE (2015).

Filippo Maria Bianchi et al. “An overview and comparative analysis of Recurrent Neural
Networks for Short Term Load Forecasting”. In: arXiv preprint arXiv:1705.04378 (2018).
Bryan Lim and Stefan Zohren. “Time-series forecasting with deep learning: a survey”. In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences (2021).

Sanford Weisberg. Yeo-Johnson Power Transformations. Tech. rep. Department of Applied
Statistics, University of Minnesota, 2001.

Yan Li Qing Song et al. “Machine Learning Algorithms to Predict Depression in Older
Adults in China: A Cross-Sectional Study”. In: Frontiers in Public Health (2025).
Huey-Wen Liang et al. “Fall risk classification with posturographic parameters in community-
dwelling older adults: a machine learning and explainable artificial intelligence approach”.
In: Journal of NeuroEngineering and Rehabilitation (2024).

Abdullah Mamun et al. “Multimodal Physical Activity Forecasting in Free-Living Clinical
Settings: Hunting Opportunities for Just-in-Time Interventions”. In: arXiv preprint
arXiv:2410.09643 (2024).

Bohdan Pavlyshenko. “Using Stacking Approaches for Machine Learning Models”. In:
Proceedings of the IEEE Second International Conference on Data Stream Mining &
Processing (DSMP). 2018.

Sushant More. “Identifying and Overcoming Transformation Bias in Forecasting Models”.
In: arXiv preprint arXiv:2208.12264 (2022).

41

7 Software code

The full code is available at this GitHub Repository
https://github.com/AnasNazar98/Thesis_software_code.git

The software codes of a few selected models are presented in this document; the complete
software files and code are in the repository.

Cross-sectional R code

imputing the cross-sectional data

rm(list = 1s())
library(tidyverse)
library (skimr)
library (magrittr)
library (readxl)
library(writexl)

HUHHHHHHHBH B HHH B S HHH B S RHHH RS R A BB RS R B H B RS R HH B RSB HBH SR HH B S SHH BB SR B RS H R B RS HHH
Cross-sectional data

HUBHHBHBHBH R B BB H R BHB SR A BB RSB B BB RS R B BB RS R B BB R RV BB H RV BB R R B BB S BR BB RS R R BB RS R B RS
cross <- read_excel(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/

Clinical_Anas.xlsx’)

str (cross)
glimpse (cross)

cross <- cross %>%
mutate (across(starts_with(’ipaq_’), ~ ifelse(. == ’NULL’, NA, .)))

cross <- cross %>%
mutate (across(starts_with(’ipaq_’), ~ ifelse(. == ’ik heb geen matige

lichamelijke activiteiten gedaan’, 0, .)))

cross <- cross %>%
mutate (across (starts_with(’borg’), ~ ifelse(. == ’NULL’, NA, .)))

cross <- cross %>%

mutate (across (where(is.character), ~ na_if (., °’NULL’)))

cross <- cross %>%

mutate (across (everything (), ~ ifelse(. == ’Ja’, 1, .)))
cross <- cross %>%
mutate (across (everything (), ~ ifelse(. == ’Universitair onderwijs’, NA, .)))
cross$gds_category <- ifelse(cross$gds_category == ’Mild depressed’, 1, 0)
cross <- cross %>%
mutate (IPAQ_category = case_when/(
IPAQ_category == ’Low’ ~ 1,
IPAQ_category == ’moderate’ ~ 2,
IPAQ_category == ’high’ = 3,

42

https://github.com/AnasNazar98/Thesis_software_code.git
https://github.com/AnasNazar98/Thesis_software_code.git

))

cross <- cross %>%
mutate (across (where(is.character), as.numeric))

processed data for modelling

write_xlsx(cross, ’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/cross_new.

xlsx’)
library(mice)

cross <- cross %>%

mutate (
diploma = as.factor(diploma),
kinvent_hand_1l = as.numeric(kinvent_hand_1),

IPAQ_category = as.ordered(IPAQ_category)

imputation_methods <- make.method(cross)

imputation_methods[’diploma’] <- ’polr’

imputation_methods [’bloodpressure_sys’] <- ’pmm’
imputation_methods[’bloodpressure_dia’] <- ’pmm’
imputation_methods[’heartrate’] <- ’pmm’
imputation_methods[’saturation_mea_post’] <- ’pmm’

imputation_methods [’heartbeat_post’] <- ’pmm’
imputation_methods[’kinvent_hand_1’] <- ’logreg’
imputation_methods[’score_hand_1’] <- ’pmm’
imputation_methods[’score_hand_r’] <- ’pmm’

imputation_methods [’score_qua_left’] <- ’pmm’
imputation_methods[’score_qua_right’] <- ’pmm’
imputation_methods[’sit_reach_values_1’] <- ’pmm’
imputation_methods[’sit_reach_values_2’] <- ’pmm’
imputation_methods[’sit_reach_values_3°’] <- ’pmm’
imputation_methods[’sit_reach_highest’] <- ’pmm’
imputation_methods [’symmetry’] <- ’pmm’
imputation_methods[’cadence’] <- ’pmm’
imputation_methods [’speed’] <- ’pmm’
imputation_methods[’stance_time_left’] <- ’pmm’
imputation_methods[’stance_time_right’] <- ’pmm’
imputation_methods[’swing_time_left’] <- ’pmm’
imputation_methods[’swing_time_right’] <- ’pmm’

imputation_methods[’double_support’] <- ’pmm’
imputation_methods [’propulsion_dur_left’] <- ’pmm’
imputation_methods [’propulsion_dur_right’] <- ’pmm’
imputation_methods[’flatfoot_left’] <- ’pmm’
imputation_methods[’flatfoot_right’] <- ’pmm’
imputation_methods[’loading_left’] <- ’pmm’
imputation_methods[’loading_right’] <- ’pmm’
imputation_methods [’propulsion_ratio_left’] <- ’pmm’
imputation_methods [’propulsion_ratio_righ’] <- ’pmm’
imputation_methods [’pro_sup_angle_heelgr_1’] <- ’pmm’
imputation_methods [’pro_sup_angle_flat_1’] <- ’pmm’
imputation_methods[’pro_sup_angle_heelli_l’] <- ’pmm’
imputation_methods[’pro_sup_angle_toeli_l’] <- ’pmm’

43

99 | imputation_methods[’pro_sup_angle_heelgr_r’] <- ’pmm’
100 | imputation_methods[’pro_sup_angle_flat_r’] <- ’pmm’

101 | imputation_methods[’pro_sup_angle_heelli_r’] <- ’pmm’
102 | imputation_methods[’pro_sup_angle_toeli_r’] <- ’pmm’
103 | imputation_methods[’step_progr_angle_left’] <- ’pmm’
104 | imputation_methods[’step_progr_angle_right’] <- ’pmm’

105 | imputation_methods [’circumduction_left’] <- ’pmm’
106 imputation_methods[’circumduction_right’] <- ’pmm’
107 | imputation_methods[’clearance_left’] <- ’pmm’

108 | imputation_methods[’clearance_right’] <- ’pmm’

109 | imputation_methods[’steppage_heel_left’] <- ’pmm’
110 | imputation_methods [’steppage_heel_right’] <- ’pmm’
111 | imputation_methods [’steppage_toe_left’] <- ’pmm’
112 | imputation_methods[’steppage_toe_right’] <- ’pmm’

114 |library (doParallel)
115 | library (finetune)

117 |# processing

118 |ncores <- parallel::detectCores() - 3
119 | ¢l <- makePSOCKcluster (ncores)

120 | registerDoParallel(cl)

122 | imputed_data <- mice(cross, method = imputation_methods, m = 10, maxit = 10)

124 | cross_imputed <- complete(imputed_data, 10)

125 |view(cross_imputed)

126 |# saving the imputed data for modelling

127 |write_xlsx(cross_imputed, ’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
all_imputations.xlsx’)

128 | HHAHAHHAHHBHAHARABAHARBHBHAHBRH R HAR B HH AR BHRHA RIS

131 [rm(list = 1s(Q))

132 | library(tidyverse)
133 | library (dplyr)

134 | library (ggplot2)
135 | library (skimr)

136 | library (magrittr)
137 | library (readxl)

138 | library(writexl)
130 | library (corrplot)
140 |library (glmnet)

141 | library (caret)

142 | library (pROC)

143 | library (xgboost)
144 | library (PRROC)

145 | library (tidymodels)
146 | library (vip)

147 | library (dials)

148 | library (purrr)

140 | library (tibble)

150 | library (yardstick)
151 | library(recipes)
152 | library (finetune)

153 | library (future)

44

158

159

160

161

162

163

164

165

166

167

193

194

195

196

HARBHBARHBARBHBRARHBRRHBRARBHARBBARBHBABHBRBHBRARHBARBBAARHBAR BB ARAHBRAHBRRHBRAH S

Logistic Regression IPAQ category
HARBRARAABRBRBRARRRRRBRBRRRRRRBAARRRRRARBHBRRRABRBRRBRBHA BB R R BB B R B AR AR BH AR RS HH

rm(list = 1s())
seed <- 42

sheet_names <- excel_sheets("C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/

imputations/all_imputations.xlsx")

for (i in seq_along(sheet_names)){

sheet_data <- read_excel("C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/

imputations/all_imputations.xlsx",
sheet = sheet_names[i])

assign(pasteO("cross", i), sheet_data, envir = .GlobalEnv)
}
cross_all <- list(crossl, cross2, cross3, cross4, crossb,

cross6, cross7, cross8, cross9, crossioO)

gender <- read_xlsx(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
Qualtrics_vragenlijst_fysiek_final_241024.xlsx’)

data_train <- list ()

data_test <- list ()

coef_df_list <- list()

predictions_list <- list()

length <- 1

for (i in 1:length){

cross <- cross_all[[i]]

cross <- cross_all[[i]]

cross$gender <- gender$gender

cross <- cross %>%

filter (! IPAQ_category == "1") %>%
mutate (IPAQ_category = ifelse(IPAQ_category == "2", 0, 1))
outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes’, ’No’), levels =

c(’Yes’, ’No’))

cross <- cross %>%

mutate (across (everything (), as.numeric (as.character (.))))

45

for (col in names(cross)) {
unique_vals <- length(unique(na.omit(cross[[coll]l)))
if (unique_vals <= 5) {
cross[[coll]] <- as.factor(cross[[colll)

cross <- cross %>%
mutate (across (
where (is.factor),
~ if (all(levels(.) %in% c("1",
factor(ifelse(. == "2",6 "Q",
} else {

ll2|l))) {

)

cross <- cross %>
dplyr::select(-participant_id, -starts_with("ipaq"),
)

cross$IPAQ_category <- outcome

cross <- cross %>% mutate(case_wts

"1"), levels = c("0",

lllll))

-starts_with (?IPAQ’)

ifelse (IPAQ_category == "Yes", 1, 5),

case_wts = importance_weights (case_wts))

model <- ’Logistic Regression’
label <- ’IPAQ Category’

cross$IPAQ_category <- outcome

set.seed (seed)

data_split <- initial_split(cross,
data_train[[i]] <- training(data_split)
data_test [[i]] <- testing(data_split)

spec_default <- logistic_reg() %>%
set_engine ("glm") %>%
set_mode("classification")

46

strata = IPAQ_category, prop = 0.70)

298

299

300

301

rec_default <- recipe(IPAQ_category ~ ., data = data_train[[i]]) %>%
step_unknown (all_nominal_predictors (), new_level = "unknown") %>
step_dummy (all_nominal_predictors ()) %>%
step_zv(all_predictors()) %>%
step_normalize (all_numeric_predictors()) %>%
step_corr(all_numeric_predictors (), threshold = 0.6)

wf_default <- workflow () %>%
add_recipe(rec_default) %>%
add_model (spec_default) %>% add_case_weights(case_wts)

library(FSelectorRcpp)

rec_baked <- prep(rec_default, training = data_train[[i]])
data_train_for_vip <- bake(rec_baked, new_data = data_train[[i]])

data_train_for_vip <- data_train_for_vip %>} dplyr::select(
-case_wts)

vi_df <- information_gain(IPAQ_category ~ . - case_wts, data = data_train[[

ill)

top_vars <- vi_df %>%
arrange (desc (importance)) %>%
slice_head(n = 80) %>%
pull(attributes)

library(stringr)

cleaned_vars <- top_vars %>%
str_remove ("_X\\d+$") %>%
unique ()

data_train[[i]] <- data_train[[i]] %>% dplyr::select(all_of(c(cleaned_vars,
"IPAQ_category", "case_wts")))

data_test [[i]] <- data_test [[1i]] %>% dplyr::select(all_of(c(cleaned_vars,
"IPAQ_category")))

data_test [[i]] <- data_test[[i]] %>% dplyr::select(all_of(c(cleaned_vars,
"IPAQ_category")))

rec_default <- recipe(IPAQ_category ~ ., data = data_train[[i]l]) %>%
step_unknown(all_nominal_predictors (), new_level = "unknown") %>
step_dummy (all_nominal_predictors ()) %>%
step_zv(all_predictors ()) %>%

47

346

359
360
361
362
363

364

step_normalize (all_numeric_predictors()) %>%
step_corr(all_numeric_predictors (), threshold = 0.6)

wf_default <- workflow () %>%
add_recipe(rec_default) %>%
add_model (spec_default) %>% add_case_weights (case_wts)

default_res <- last_fit(

wf_default,

split = data_split,

metrics = metric_set (
yardstick::f_meas,
yardstick::precision,
yardstick::recall,
yardstick::spec,
yardstick::accuracy,
yardstick::bal_accuracy

, yardstick::pr_auc

collect_metrics(default_res)
preds <- collect_predictions(default_res) %>%
mutate (.pred_class = factor(if_else(.pred_Yes >= 0.5, "Yes", "No"),

levels = c("Yes", "No")))

collect_metrics(default_res)
conf_mat (preds, truth = IPAQ_category, estimate = .pred_class)

final_model <- extract_fit_parsnip(default_res$.workflow[[1]])
summary (final_model$fit)

coef_df <- coef (summary(final_model$fit)) %>%
as.data.frame () %>%
rownames_to_column ("feature") %>%

dplyr::select(feature, coefficient = Estimate)

coef_df_list[[i]] <- coef_df

test_probs <- preds$.pred_Yes

48

366
367
368

369

389
390
391
392
393

394

396
397
398
399

100

test_preds <- preds$.pred_class
truth <- data_test[[i]]$IPAQ_category

predictions_list[[i]] <- tibble(
truth = truth,

.pred_class = test_preds,
.pred_Yes = test_probs
)
combined_coefs <- bind_rows(coef_df_list, .id = "imputation")
combined_predictions <- bind_rows(predictions_list, .id = "imputation")
all_preds <- bind_rows(predictions_list, .id = "imputation")

pred_list <- 1list()
for (i in 1:length) {

pred_list[[i]] <- predictions_1list[[i]]$.pred_Yes
avg_preds <- rowMeans(do.call(cbind, pred_list))
truth <- predictions_list[[1]]$truth

final_avg_preds <- data.frame (
.pred_Yes = avg_preds,

truth = factor (truth, levels = c("Yes", "No")),
.pred_class = factor(ifelse(avg_preds >= 0.5, "Yes", "No"), levels =
n’ IINOIl))
)
conf_mat(final_avg_preds, truth = truth, estimate = .pred_class)

truth <- final_avg_preds$truth
pred <- final_avg_preds$.pred_class
probs <- final_avg_preds$.pred_Yes

truth <- factor(truth, levels = c("Yes", "No"))
pred <- factor(pred, levels = c("Yes", "No"))

f1 <- f_meas_vec (truth, pred)

49

c("Yes

121 precision <- precision_vec (truth, pred)

122 recall <- recall_vec(truth, pred)

123 specificity <- specificity_vec(truth, pred)
124 accuracy <- accuracy_vec (truth, pred)

125 bal_accuracy <- bal_accuracy_vec (truth, pred)
126 pr_auc <- pr_auc_vec(truth, probs, event_level = "first")
127

428

129 metrics <- tibble(

130 Metric = c(

131 "F1 Score",

132 "Precision",

133 "Recall (Sensitivity)",

134 "Specificity",

135 "Accuracy",

136 "Bal. Accuracy",

137 "PR_AUC"

138),

139 Value = c(

140 f1,

441 precision,

142 recall,

143 specificity,

144 accuracy,

145 bal_accuracy,

146 pr_auc

147)

148)

149 (metrics)

450 conf_mat(final_avg_preds, truth = truth, estimate = .pred_class)
151

152

153 model <- ’Logistic regression’

454 label <- ’IPAQ Category’

155

156 all_coefs <- bind_rows(coef_df_list, .id = "imputation")
157

158 pooled_coefs <- all_coefs %>%

159 group_by (feature) %>%

160 summarise (mean_coef = mean(coefficient, na.rm = TRUE)) %>%
161 ungroup ()

162 pooled_coefs <- pooled_coefs %>%

463 rename (coef = mean_coef) %>%

164 filter (coef != 0)

165

166 intercept <- pooled_coefs %>%

167 filter (feature == "(Intercept)") %>%

168 pull (coef)

169

170 coefs <- pooled_coefs %>%

171 filter (feature != "(Intercept)")

172

173

174

175 coef_df <- pooled_coefs %>%

476 filter (feature != "(Intercept)", coef != 0) %>%

20

189
190

191

193
194
495
196
197
198

199

mutate (

direction = ifelse(coef > O, "Positive", "Negative"),
abs_coef = abs(coef)
) h>%
slice_max (order_by = abs_coef, n = 10)
model <- ’Logistic Regression’

label <- ’IPAQ Category’

ggplot (coef_df , aes(x = reorder(feature, abs_coef), y = abs_coef, fill =
direction)) +
geom_col () +
coord_flip() +

scale_fill_manual (values = c("Positive" = "dodgerblue", "Negative" = "red")
) +
labs (
title = paste(’Most predictive features for\n’, label, ’using’, model),
x = "Feature",
y = "Importance (|Coefficient]|)",
fill = "Effect Direction"
) +

theme_minimal ()
HEHEHBHBEH AR BB HEHBH BB HAH BB BB BHHEHAH BB BB BB HEHEH B R BB BB RS HEH B R B H AR BB H R RS HEH B HH
HAHRAHBHBAHABBARAHBHBAHAH BB RBRAHAHAHBHBRBRARAHAHBHBAH BB BA R AR BHBRH AR BRBRB R R AR AHS
HEHSEHBHBEHAHHEHEHBH BB HAH BB BB HHEHAEH B R BB R B HEHEH B R BB AR RS H A H R BB H AR B SH AR B SRS H B H S
HAHRAHBHBAHAHBAHAHBHBAH AR BB ABRAHAHAHBHBAB BB R AR AH B R BAB BB BAH AR BB RHBHBRBRB BB A HEH S

Elastic Net IPAQ category
HARBHAHAHBHBRRFHRAR AR B R B AR AR BRB RS R BB R R AR BHBR BB SR AR AR AR B AR BB R AR AR R R BB R AR BH SRR SRS

rm(list = 1s())
seed <- 42

sheet_names <- excel_sheets("C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
imputations/all_imputations.xlsx")

for (i in seq_along(sheet_names)){

sheet_data <- read_excel("C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/

imputations/all_imputations.xlsx",
sheet = sheet_names[i])

assign(paste0("cross", i), sheet_data, envir = .GlobalEnv)
}
cross_all <- list(crossl, cross2, cross3, crossd4, crossb,

cross6, cross7, cross8, cross9, crossiO)

gender <- read_xlsx(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
Qualtrics_vragenlijst_fysiek_final_241024.x1lsx’)

51

S
o

o
N
ot

data_train <- list ()
data_test <- 1list ()

coef_df_list <- 1list ()

predictions_list <- 1list ()

for (i in 1:10) {
cross <- cross_all[[i]]

cross$gender <- gender$gender

cross <- cross %>%
filter (! IPAQ_category == "1") U>%
mutate (IPAQ_category = ifelse(IPAQ_category == "2", 0, 1))

cross$sit_reach_values_3[is.na(cross$sit_reach_values_3)] <- 0

outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes’, ’No’), levels = c
(’Yes?’, ’No’))

cross <- cross %>%
mutate (across (everything (), ~ as.numeric(as.character(.))))

zero_var_indices <- nearZeroVar (cross)

cross <- cross[, -zero_var_indices]

for (col in names(cross)) {
unique_vals <- length(unique(na.omit(cross[[col]])))
if (unique_vals <= 5) {
cross[[coll]] <- as.factor(cross[[coll]l)

cross <- cross %>%
mutate (across(
where (is.factor),
~ if (all(levels(.) %in% c("1", "2"))) {
factor(ifelse(. == "2", "Q", "1"), levels = c("O", "1"))
} else {

))

outcome <- factor(ifelse(cross$IPAQ_category 1, ’Yes’, ’No’), levels = c(’

Yes’, ’No’))

92

577 | cross <- cross %>%
578 dplyr::select(-participant_id, -starts_with("ipaq"), -starts_with("IPAQ"))

580 | cross$IPAQ_category <- outcome

583 | cross <- cross %>% mutate(case_wts ifelse (IPAQ_category == "Yes", 1, 2.5),

584 case_wts = importance_weights (case_wts))

586 | model <- ’Elastic Net’
587 | label <- ’IPAQ category’

5380 | set.seed(seed)

500 | data_split <- initial_split(cross, strata = IPAQ_category, prop = 0.70)
501 |data_train[[i]] <- training(data_split)

502 |data_test [[1i]] <- testing(data_split)

503 | }

505 | table (cross$IPAQ_category)

506 | (start_time <- Sys.time())

507 | for(i in 1:10){

508 | set.seed(seed)

500 | data_folds <- vfold_cv(data_train[[i]], strata
data_train[[i]]))

600 |data_folds <- vfold_cv(data_train[[i]], strata = IPAQ_category, v = 10
601 |)

IPAQ_category, v = nrow(

603 | library (tune)
604 | library (doParallel)

606 | spec <- logistic_reg(
607 penalty = tune ()

608 ,mixture = tune ()

609 |) %>%

610 set_engine("glmnet"

611) W%

612 set_mode ("classification")

614 | params <- parameters (
615 penalty(range = c(-5, 1))
616 ,mixture (range = c(0, 1)))

620 |rec <- recipe(IPAQ_category ~ ., data = data_train([[i]]) %>%
621 step_normalize (all_numeric_predictors()) %>%
622 step_dummy (all_nominal_predictors())

627 |wf <- workflow () ¥%>%
628 add_recipe (rec) %>%
629 add_model (spec) %>% add_case_weights(case_wts)

93

632 | rec_prep <- prep(rec, training = data_train[[i]])
633 | processed_data <- bake(rec_prep, new_data = NULL)

638 | plan(sequential)
630 | plan(multisession, workers = parallel::detectCores() - 2, gc = TRUE)

641 | set.seed(seed)
612 | res <- tune_bayes (

643 wf,

644 resamples = data_folds,
645 param_info = params,

646 initial = 20,

647 iter = 20,

648 metrics = metric_set (
649 f_meas,

650 yardstick::precision,

652)

653 ,control = control_bayes(
654 verbose = T,

655 no_improve = 20,

656 seed = 123,

657 save_pred = TRUE,

658 allow_par = TRUE

659)

660 |)
661
662 | plan(sequential)
663 | plan ()

664
665 | ipaq_cat_en_res <- res
666
667
668
660 | best_parms <- select_best(res, metric = "precision")
670
671 | set.seed(seed)

672 | final <- finalize_workflow(wf, best_parms)

674 | final_res <- last_fit (final, data_split, metrics = metric_set (
675 f_meas,

676 yardstick::precision,

677 yardstick::recall,

678 yardstick::specificity,
679 yardstick::accuracy,

680 yardstick::bal_accuracy,
681 pr_auc

682

683))

684 | collect_metrics(final_res)

636 | final_fit <- fit(final, data = data_train[[i]])

o4

688 | (glmnet_model <- extract_fit_parsnip(final_fit)$fit)
689
600 | (best_params <- select_best(res, metric = "precision"))
691 | (best_lambda <- best_params$penalty)

6902 | (best_alpha <- best_params$mixture)

604 | coefs <- coef(glmnet_model, s = best_lambda)

6906 | coef_df <- data.frame(

697 feature = rownames (coefs),

698 coefficient = as.vector((coefs)))

700 | coef_df_1list [[i]] <- coef_df

702 | predictions_list [[i]] <- collect_predictions(final_res)
703 | }

704 | end_time <- Sys.time ()

705 | (parallel_time <- end_time - start_time)

707 | library(writexl)

711 | combined_coefs <- bind_rows(coef_df_list, .id = "imputation")

712 | combined_predictions <- bind_rows(predictions_list, .id = "imputation")
713

714

715

716

717

718 |all_preds <- bind_rows(predictions_list, .id = "imputation")

721 | pred_list <- list ()

723 |for (i in 1:10) {

724 | pred_list [[i]] <- predictions_list[[i]]$.pred_Yes
725 |}

727 | avg_preds <- rowMeans (do.call(cbind, pred_list))

729 | truth <- predictions_list[[1]]$IPAQ_category

731 | final_avg_preds <- data.frame(
732 .pred_Yes = avg_preds,

733 truth = factor (truth, levels = c("Yes", "No")),

734 .pred_class = factor(ifelse(avg_preds >= 0.5, "Yes", "No"), levels = c("Yes"
IINOII))

735 |)

736

738 conf_mat(final_avg_preds, truth = truth, estimate = .pred_class)

742 | truth <- final_avg_preds$truth

95

743 | pred <- final_avg_preds$.pred_class
744 | probs <- final_avg_preds$.pred_Yes

746 | truth <- factor(truth, levels = c("Yes", "No"))
747 | pred <- factor(pred, levels = c("Yes", "No"))

749 | 1 <- f_meas_vec (truth, pred)
750 | precision <- precision_vec(truth, pred)
751 | recall <- recall_vec(truth, pred)

752 | specificity <- specificity_vec(truth, pred)

753 | accuracy <- accuracy_vec (truth, pred)

754 | bal_accuracy <- bal_accuracy_vec(truth, pred)

755 | pr_auc <- pr_auc_vec(truth, probs, event_level = "first")

758 |metrics <- tibble(
759 Metric = c(

760 "F1 Score",

761 "Precision",

762 "Recall (Sensitivity)",
763 "Specificity",
764 "Accuracy",

765 "Bal. Accuracy",
766 "PR_AUC"

767),

768 Value = c(

769 f1,

770 precision,

771 recall,

772 specificity,

773 accuracy,

774 bal_accuracy,

775 pr_auc

779 | print (metrics)
780 | conf_mat (final_avg_preds, truth = truth, estimate = .pred_class)

783 |model <- ’Elastic Net’
784 | label <- ’GDS category’

786 |all_coefs <- bind_rows(coef_df_list, .id = "imputation")

788 | pooled_coefs <- all_coefs %>%
789 group_by (feature) %>%
790 summarise (mean_coef = mean(coefficient, na.rm = TRUE)) %>%

791 ungroup ()

793 | pooled_coefs <- pooled_coefs %>%
794 rename (coef = mean_coef) %>%
795 filter (coef != 0)

796
797 | intercept <- pooled_coefs %>

798 filter (feature == "(Intercept)") %>%

o6

799
800
801

802

844

845

pull(coef)

coefs <- pooled_coefs %>%
filter (feature != "(Intercept)")

coef_df <- pooled_coefs >%

filter (feature != "(Intercept)", coef != 0) %>}

mutate (
direction = ifelse(coef > 0, "Positive", "Negative"),
abs_coef = abs(coef)

) %>%

slice_max (order_by = abs_coef, n = 10)

model <- ’Elastic Net’
label <- ’IPAQ category’

ggplot (coef_df , aes(x = reorder(feature, abs_coef), y = abs_coef, fill =
direction)) +
geom_col () +
coord_flip() +

scale_fill_manual (values = c("Positive" = "dodgerblue", "Negative" = "red"))
+
labs (
title = paste(’Most predictive features for\n’, label, ’using’, model),
x = "Feature",
y = "Importance (|Coefficient])",
fill = "Effect Direction"
) +

theme_minimal ()
HEHSHBHBEHAH BB HEHBH BB HAH BB B A BB HHEHAH BB BB R BB SR H B R BB R BB R H B R B H AR B RS H BB SR A HH
HAEHAHBHBAHAH BB HAHBH B HAH BB R B RHHAHAHBHBABRA R HAHBHBAH BB R AR AR BHBEH AR BB RB RS HEHEH S
HEHSEHBHBEH AR BB HEHBH BB HAH BB B A BB A BB HAH B R BB R B BB HEH B R B H BB RS HEH AR B H AR B H RS HEH B H S
HARAHBHBAHAH B R AHBHBAHAH BB RBRAHAHAHBHBABRARAHAHBHBAB BB BA B AR BHBAH AR BRBRB BB AHAH S

LightGBM ipaq category
HARRRAHAHABHBRBRARRARRBRBAARRBRBHARRRRRAHBHBRRBRBARRRBRBHA R R R AR BB RB AR AR BHA R RS HH

rm(list = 1s())
seed <- 42

cross <- read_excel(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
cross_processed.xlsx’)

gender <- read_xlsx(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
Qualtrics_vragenlijst_fysiek_final_241024.x1lsx’)

cross$gender <- gender$gender

o7

846
847
848
849
850

851

858
859
860
861
862
863
864
865
866
867
868

869

889
890
891
892
893
894
895
896
897
898

899

cross <- cross %>%

filter (! IPAQ_category == "1") ¥%>%
mutate (IPAQ_category = ifelse(IPAQ_category == "2", 0, 1))
outcome <- factor(ifelse(cross$IPAQ_category == ’1’, ’Yes’, ’No’),

Yes’, ’No’))

cross <- cross %>%
mutate (across (everything (), ~ as.numeric(as.character(.))))

zero_var_indices <- nearZeroVar (cross)

cross <- cross[, -zero_var_indices]

for (col in names(cross)) {
unique_vals <- length(unique(na.omit(cross[[colll)))
if (unique_vals <= 5) {
cross[[coll]] <- as.factor(cross[[colll)

cross <- cross %>%
mutate (across(
where (is.factor),
~ if (all(levels(.) %in% c("1", "2"))) {
factor(ifelse(. == "2", "Qo", "1"), levels = c("0", "1"))
} else {

))

outcome <- factor(ifelse(cross$IPAQ_category ’1°, ’Yes’, ’No’),

Yes’, ’No’))

cross <- cross %>%

dplyr::select(-participant_id, -starts_with("ipaq"), -starts_with("IPAQ"))

cross$IPAQ_category <- outcome

cross <- cross %>} mutate(case_wts ifelse (IPAQ_category == "Yes",

case_wts = importance_weights(case_wts))

o8

levels =

levels =

1: 2),

c(’

c(’

900 | model <- ’Elastic Net’
901 | label <- ’IPAQ category’

904 | set.seed(seed)

905 | data_split <- initial_split(cross, strata = IPAQ_category, prop = 0.7)
906 | data_train <- training(data_split)

907 | data_test <- testing(data_split)

908 | library (bonsai)

911 | spec_default <- boost_tree() %>¥%
912 set_engine ("lightgbm") %>%
913 set_mode ("classification")

916 | rec_default <- recipe(IPAQ_category ~ ., data = data_train) %>%
917 step_unknown (all_nominal_predictors(), new_level = "unknown") %>%

919 step_dummy (all_nominal_predictors())

921 | wf_default <- workflow () %>%
922 add_recipe (rec_default) %>%
923 add_model (spec_default) %>% add_case_weights(case_wts)

033 | default_res <- last_fit(

934 wf_default,

935 split = data_split,

936 metrics = metric_set(

937 yardstick::f_meas,

938 yardstick::precision,

939 yardstick::recall,

940 yardstick::spec,

941 yardstick::accuracy,

942 yardstick::bal_accuracy,
943 yardstick::pr_auc

944)

945 |)
946
947
948 | collect_metrics(default_res)

949

952 | preds <- collect_predictions(default_res) %>%
953 mutate (. pred_class = factor(if_else(.pred_Yes >= 0.5, "Yes", "No"), levels =
C(llYesll, "NO")))

954

99

959
960
961
962
963
964
965
966
967

968

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001

collect_metrics(default_res)

conf_mat (preds, truth = IPAQ_category, estimate =

fitted_model <- extract_fit_parsnip(default_res)

vip(fitted_model$fit, num_features = 10) +
ggtitle (paste(’Most predictive features for\n’,

set.seed(seed)
spec <- boost_tree(

trees = tune(),

tree_depth = tune(),

min_n = tune(),

loss_reduction = tune(),

sample_size = tune(),

learn_rate = tune ()

) %>%

set_engine ("lightgbm",
lambda_11 = tune(),
lambda_12 = tune ()
, num_leaves = tune()) %>%

set_mode("classification")

library(dials)

set.seed(seed)

params <- parameters (
trees (),
tree_depth (),
min_n (),
loss_reduction (),
sample_size = sample_prop(),
learn_rate (),

.pred_class)

label, ’using’, model))

lambda_11 = penalty(range = c(-5, 1)),
lambda_12 = penalty(range = c(-5, 1))
, num_leaves ()
)
rec <- recipe(IPAQ_category ~ ., data = data_train) %>%

step_unknown(all_nominal_predictors(), new_level
step_dummy (all_nominal_predictors()) %>%
step_zv(all_predictors())

wf <- workflow() %>%

add_recipe(rec) %>%
add_model (spec) %>} add_case_weights (case_wts)

60

= "unknown") %>%

1029

1030

1038
1039
1040

1041

1059
1060
1061
1062
1063
1064
1065

1066

set.seed(seed)

set.seed(seed)
data_folds <- vfold_cv(data_train, strata = IPAQ_category

, v =5
)
data_folds
library (doParallel)
library (future)
plan(multisession, workers = parallel::detectCores() - 4)

Bayesian tuning
set.seed(seed)

(start_time <- Sys.time())
res <- tune_bayes(

wf,

resamples = data_folds,
param_info = params,
initial = 50,

iter = 20,

metrics = metric_set (

yardstick::f_meas,
yardstick::precision
),
control = control_bayes(
verbose = TRUE,
no_improve = 10,
seed = 123,

save_pred

TRUE ,
TRUE

allow_par

)
end_time <- Sys.time ()
(parallel_time <- end_time - start_time)

ipagq_cat_lgbm_res <- res

res <- ipaq_cat_lgbm_res

cross <- cross %>%

mutate (case_wts ifelse (IPAQ_category == "Yes", 1, 2),

case_wts = importance_weights(case_wts))

set.seed(seed)

61

1067
1068
1069

1070

1078
1079
1080

1081

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

1100

1108

1109

data_split <- initial_split(cross, strata = IPAQ_category, prop

data_train <- training(data_split)
data_test <- testing(data_split)

collect_metrics(res)
best_parms <- select_best(res, metric = "precision")

spec <- boost_tree(

trees = best_parms$trees,
tree_depth = best_parms$tree_depth,
min_n = best_parms$min_n,
loss_reduction = best_parms$loss_reduction,
sample_size = best_parms$sample_size,
learn_rate = best_parms$learn_rate

) h>%

set_engine ("lightgbm",
lambda_11 = best_parms$lambda_11,
lambda_12 = best_parms$lambda_12
, num_leaves = best_parms$num_leaves) %>%
set_mode("classification")

rec <- recipe(IPAQ_category ~ ., data = data_train) %>%
step_unknown (all_nominal_predictors (), new_level = "unknown")
step_dummy (all_nominal_predictors ()) %>%
step_zv(all_predictors())

final <- workflow () %>%
add_recipe(rec) %>%
add_model (spec) %>% add_case_weights(case_wts)

set.seed(seed)
final_fit <- fit(final, data = data_train)

final_res <- last_fit(final, data_split, metrics = metric_set(
yardstick::f_meas,
yardstick::precision,
yardstick::recall,
yardstick::spec,
yardstick::accuracy,
yardstick::bal_accuracy,
yardstick::pr_auc

))
collect_metrics(final_res)
preds <- collect_predictions(final_res) %>%
mutate (.pred_class = factor(if_else(.pred_Yes >= 0.5, "Yes",
C("YeS", IINOII)))
conf_mat(preds, truth = IPAQ_category, estimate = .pred_class)
label <- ’IPAQ Category’

model <- ’LightGBM’

vip(final_fit, num_features = 10) +

62

= 0.70)

h>%

"No"), levels =

ggtitle (paste(’Most predictive features for\n’, label, ’using’, model))

Longitudinal software code

Software code in Python for the RNN sequence prediction

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import itertools as itr

from skimpy import skim

from scipy.stats import iqr

from sklearn.model_selection import train_test_split

from feature_engine.timeseries.forecasting import LagFeatures

from feature_engine.timeseries.forecasting import WindowFeatures

from feature_engine.timeseries.forecasting import ExpandingWindowFeatures

import lightgbm as 1gb

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from sklearn.metrics import median_absolute_error

from sktime.performance_metrics.forecasting import
MedianAbsolutePercentageError

from sklearn.metrics import mean_absolute_error, median_absolute_error,
r2_score

import tensorflow as tf
import random

import os
import time
day_number = 7

SEED = 99
tf.random.set_seed (SEED)
random.seed (SEED)
np.random.seed (SEED)

garmin = pd.read_excel(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
Garmin_days_EMA_Anas.xlsx’,
index_col=0)
ema = pd.read_csv(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
EMA_days_Answered_Final.csv’

, sep=’;"’
, decimal=’,"’)
garmin_valid_ids = garmin[garmin[’day’] == 14][’participant_id’].unique ()

garmin = (garmin

.query ("day <= 14 and participant_id in @garmin_valid_ids"))

63

98

99

100

101

103

104

garmin = (garmin
.groupby ([’participant_id’, ’day’, ’date’, ’hours_cat’])
.agg(Steps = ("Steps", lambda x: np.sum(x)))
.sort_values ([’participant_id’, ’date’, ’hours_cat’])
.reset_index (drop=False))

garmin[’hours_cat’] = pd.Categorical(garmin[’hours_cat ’]
, categories=[’Morning’, ’Noon’, ’Afternoon’, ’Evening’])
garmin = (garmin
.sort_values([’participant_id’, ’day’, ’date’, ’hours_cat
participant_id = garmin[’participant_id’].unique ()

day = np.arange(1l, 15)
hours_cat = garmin[’hours_cat’].unique()

’1))

template = pd.DataFrame(list (itr.product(participant_id, day, hours_cat)),

columns=[’participant_id’, ’day’, ’hours_cat’])

template[’timestep’] = (template
.groupby (’participant_id’)
.cumcount () + 1)

template = pd.merge(template, garmin, on=["participant_id", "day",
, how=’left’)

garmin = template.copy()

ema["Time_cat"] = pd.Categorical(ema[’Time_cat’],
categories=[’Morning’, ’Noon’, ’Afternoon’, ’Evening’])
ema = (ema
.rename (columns = {"Time_cat": "hours_cat"}))
garmin = pd.merge (garmin, ema, how=’left’,
on=["participant_id", "day", "hours_cat"])
garmin[’date’] = (garmin
.groupby (["participant_id", "day"]) [’date’]

.transform(lambda x: x.ffill () .bfil1()))

garmin.columns

"hours_cat"]

garmin = (garmin
.get([’participant_id’, ’day’, ’hours_cat’, ’timestep’, ’date’,
PHYSICAL_NORM’, ’MENTAL_NORM’, °MOTIVATION_NORM’, °
EFFICACY_NORM’,
>CONTEXT_NORM’, ’Steps’]))

64

144
145
146
147
148

149

np.random.seed (SEED)
shuffled_ids = np.random.permutation(participant_id)
n = len(shuffled_ids)

train_size = int(np.floor (0.7 * n))

val_size = int(np.floor (0.1 * n))

train_ids = shuffled_ids[:train_size]

val_ids = shuffled_ids[train_size:train_size + val_sizel]
test_ids = shuffled_ids[train_size + val_size:]

print (len(train_ids), len(val_ids), len(test_ids))
print (sorted(train_ids))

print (sorted(val_ids))

print (sorted(test_ids))

HEHEHAHHEH AR HSHEHEHHEH AR BB AR EHHEH AR BB B ESHEHEH B S H A H S H B H B S B SR H BB R BB S 4 S
Yeo-Johnson

from feature_engine.transformation import YeoJohnsonTransformer

steps_train_df = garmin[garmin[’participant_id’].isin(train_ids)]J[[’>Steps’]1].
dropna ()
step_transformer = YeoJohnsonTransformer (variables=[’Steps’])

step_transformer.fit (steps_train_df)
garmin[’Steps_original’] = garmin[’Steps’]

steps_non_null = garmin.loc[garmin[’Steps’].notna(), [’Steps’]]
transformed_steps = step_transformer.transform(steps_non_null)

garmin[’Steps_transformed’] = np.nan
garmin.loc[steps_non_null.index, ’Steps_transformed’] = transformed_steps][’

Steps ’]

garmin[’Steps’] = garmin[’Steps_transformed’]

HURBHH U R H B UG H VRS HHH AR BB AR BB AR BB ARG H B BB H B RS H B R EGH B R BB B UGB H BB H B RS H BB S S B S SH B RS H
mask = -999

garmin = garmin.fillna(mask)

HAAHHSHH A HB LB H SR H B SR B SR H RSB BB H S S BB H B RS RS S RS SR H B SR B SRR BB SR H RS R B SR H RS R RSB HH S
lable = "Number of Steps"

model = "RNN"

lag_vars = [’Steps’
, "PHYSICAL_NORM", "MENTAL_NORM", "MOTIVATION_NORM", "
EFFICACY_NORM", "CONTEXT_NORM"

65

159
160
161
162
163
164
165

166

167
168

169

194
195
196
197
198

199

length = 4*day_number
lag_range = np.arange(l, length+1).tolist ()

hours_map = {’Morning’: 0, ’Noon’: 1, ’Afternoon’: 2, ’Evening’: 3}

garmin[’hours_idx’] = garmin[’hours_cat’].map(hours_map)

garmin = pd.concat([garmin, pd.get_dummies (garmin[’hours_cat’])], axis=1)

garmin[[’Morning’, ’Noon’, ’Afternoon’, ’Evening’]] = garmin[[’Morning’, ’Noon
>, ’Afternoon’, ’Evening’]].astype(int)

def make_lag(df):
1f = LagFeatures(periods=lag_range
, variables=lag_vars
, missing_values=’ignore’)
return 1f.fit_transform(df)

garmin = (
garmin
.groupby ([’participant_id ’])
.apply (make_lag)
.reset_index (drop=True)

)

garmin.columns

multi step
for i in range (0, 4):
garmin[f’Steps_t{i}’] = garmin.groupby(’participant_id’) [’Steps’].shift(-1i)
garmin[f’Steps_original_t{i}’] = garmin.groupby(’participant_id’) [’
Steps_original ’].shift(-1)

target_cols = [f’Steps_t{i}’ for i in range(0, 4)]

target_original_cols = [f’Steps_original_t{i}’ for i in range(4)]
no_missing = garmin[target_original_cols].notna().all(axis=1)
no_missing = garmin[target_original_cols].notna().all(axis=1)
no_mask = (garmin[target_original_cols] != mask).all(axis=1)
data_train = garmin[

garmin[’participant_id’].isin(train_ids) &
(garmin[’timestep’] > length) &

no_missing &

no_mask

data_val = garmin[

66

garmin[’participant_id’].isin(val_ids) &
(garmin[’timestep’] > length) &
no_missing &

no_mask

]

data_test = garmin|[
garmin[’participant_id’].isin(test_ids) &
(garmin[’timestep’] > length) &
no_missing &
no_mask

]

lagged_features = garmin.filter(regex=r"_lag_\d+$").columns.tolist ()

other_features = [’hours_cat’]
time_of_day_features = [’Noon’, ’Afternoon’, ’Evening’]

features = (time_of_day_features+
lagged_features)

sorted_lagged_columns = sorted(
[col for col in data_train.columns if ’Steps_lag_’ in coll],
key=lambda x: int(x.split(’_’)[-11),
reverse=True

)
X_train = (data_train
.get(features #+ [’participant_id’]
)
y_train = data_train.loc[:, target_cols]
X_val = (data_val
.get(features #+ [’participant_id’]
))
y_val = data_val.loc[:, target_cols]
X_test = (data_test
.get (features #+ [’participant_id’]
))

y_test = data_test.loc[:, target_cols]

step_cols = [f"Steps_lag_{i}" for i in range(length, 0, -1)]

67

268 | ema_vars = ["PHYSICAL_NORM", "MENTAL_NORM", "MOTIVATION_NORM", "EFFICACY_NORM",
"CONTEXT_NORM"]

260 | ema_cols = [[f"{var}_lag_{il}" for i in range(length, 0, -1)] for var in
ema_vars]

270 |time_cols = ["Noon", "Afternoon", "Evening"]

272 |# Train

273 | steps = X_train[step_cols].values.reshape(-1, length, 1)

274 |ema_0 = X_train[ema_cols[0]].values.reshape(-1, length, 1)
275 |ema_1 = X_train[ema_cols[1]].values.reshape(-1, length, 1)
276 | ema_2 = X_train[ema_cols[2]].values.reshape(-1, length, 1)
277 |ema_3 = X_train[ema_cols[3]].values.reshape(-1, length, 1)

278 |ema_4 = X_train[ema_cols[4]].values.reshape(-1, length, 1)

279 |time = X_train[time_cols].values.reshape(-1, 1, 3)

280 | time_repeated = np.repeat(time, length, axis=1)

281 | X_train_seq = np.concatenate ([steps

282 #, ema_0, ema_1, ema_2, ema_3, ema_4

, time_repeated], axis=2)

285 | # Val
286 | steps = X_val[step_cols].values.reshape(-1, length, 1)

287 | ema_0 X_val[ema_cols [0]].values.reshape(-1, length, 1)
X_val[ema_cols[1]].values.reshape(-1, length, 1)

X_val[ema_cols[2]].values.reshape(-1, length, 1)

288 | ema_1

289 | ema_2

200 |ema_3 = X_val[ema_cols[3]].values.reshape(-1, length, 1)

201 |ema_4 = X_val[ema_cols[4]].values.reshape(-1, length, 1)

202 |time = X_val[time_cols].values.reshape(-1, 1, 3)

203 | time_repeated = np.repeat(time, length, axis=1)

204 | X_val_seq = np.concatenate([steps

205 #, ema_0O, ema_1, ema_2, ema_3, ema_4
206 , time_repeated], axis=2)

297

208 |# Test

200 | steps = X_test[step_cols].values.reshape(-1, length, 1)

300 |ema_0 = X_test[ema_cols[0]].values.reshape(-1, length, 1)

301 |ema_1 = X_test[ema_cols[1]].values.reshape(-1, length, 1)
302 |ema_2 = X_test[ema_cols[2]].values.reshape(-1, length, 1)
303 |ema_3 = X_test[ema_cols[3]].values.reshape(-1, length, 1)
304 |ema_4 = X_test[ema_cols[4]].values.reshape(-1, length, 1)
305 |time = X_test[time_cols].values.reshape(-1, 1, 3)

306 | time_repeated = np.repeat(time, length, axis=1)

307 | X_test_seq = np.concatenate([steps

308 #, ema_0O, ema_1, ema_2, ema_3, ema_4
309 , time_repeated], axis=2)

310

311

312

313

314

315 | X_train = X_train_seq

316 | X_val = X_val_seq
317 | X_test = X_test_seq

321 | from sklearn.utils import shuffle

68

358

359

360

361

362

363

364

365

X_train, y_train = shuffle(X_train, y_train, random_state=42)

X_val, y_val = shuffle(X_val, y_val, random_state=42)
X_test, y_test = shuffle(X_test, y_test, random_state=42)

train_2d = X_train.reshape (-1, X_train.shape[-1])

medians = np.median(train_2d, axis=0)

igqrs = np.subtract (¥np.percentile(train_2d, [75, 25], axis=0))
iqrs[-4:1 = 1.0

igrs[iqrs == 0] = 1le-8

def robust_scale_ignore_mask(X, medians, iqrs, mask_value=-999) :

mask = (X == mask_value)

X_masked = np.where(mask, np.nan, X)
X_scaled = (X_masked - medians) / iqrs
X_scaled[mask] = mask_value

return X_scaled

X_train = robust_scale_ignore_mask(X_train, medians, iqrs, mask_value=-999)
X_val = robust_scale_ignore_mask(X_val, medians, iqrs, mask_value=-999)
X_test = robust_scale_ignore_mask(X_test, medians, iqrs, mask_value=-999)

HARAHBHBAH AR B R AR BHBAH AR BB ABRARAHBH BB AB BB R AH AR BB AB BB R B RH B AR AH BB R B RA R AR R BH

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import r2_score

from tensorflow.keras.layers import Masking, GRU, Dense

X_train = np.array(X_train)
X_val = np.array(X_val)
X_test = np.array(X_test)

y_train = np.array(y_train)
y_val = np.array(y_val)

y_test = np.array(y_test)

HARHAAHAHBH AR R AR R AR AR AR AR BB AR AR H SR AR AR AR BHA AR RSB B SRR RSB AA AR R R BB SR BB SR BRBHAS
modeling

model = Sequential ([
Masking (mask_value=mask, input_shape=(X_train.shape([1], X_train.shape[2])),

69

378
379
380

381

388
389
390

391

GRU (128, return_sequences=True),
GRU(64, return_sequences=False),

Dense (16, activation=’relu’),
Dense (4)
ID)

model = Sequential ([
Masking (mask_value=mask, input_shape=(X_train.shape[1l], X_train.shape([2])),

LSTM (128, return_sequences=True),
LSTM(64, return_sequences=False),

Dense (16, activation=’relu’),
Dense (4)
iD)

from tensorflow.keras.optimizers import Adam
optimizer = Adam(learning_rate=0.005)
model .compile (optimizer=optimizer, loss=’mae’, metrics=[’mae’])

early_stop = EarlyStopping(monitor=’val_loss’, patience=100,
restore_best_weights=True)

history = model.fit(
X_train, y_train,
validation_data=(X_val, y_val),
epochs=20,
batch_size=16,
callbacks=[early_stop],
verbose=1

y_pred_train = model.predict(X_train)
y_pred_val = model.predict(X_val)
y_pred_test = model.predict(X_test)

def evaluate(y_true, y_pred, name=""):
#y_true = pd.Series(y_true).reset_index(drop=True)
#y_pred = pd.Series(y_pred) .reset_index(drop=True)

mae = mean_absolute_error (y_true, y_pred)
medae = median_absolute_error (y_true, y_pred)
r2 = r2_score(y_true, y_pred)

mean_val = np.mean(y_true)

70

149

470

median_val = np.median(y_true)

print (f"\n{name} Set Evaluation:")

print (£"MAE: {mae:.2f}")

print (£"MedAE: {medae:.2£f1}")

print (£"R2: {r2:.2£3")

print (f"Mean: {mean_val:.2f}")

print (f"Median: {median_val:.2f}")
print (f"MAE / Mean: {mae / mean_val:.3f}")

print (f"MedAE / Median: {medae / median_val:.3f1}")

return {
>MAE’: round(mae, 2),
’MedAE’: round(medae, 2),
’R2’: round(r2, 2),
’Mean’: round(mean_val, 2),
’Median’: round(median_val, 2),
’MAE/Mean’: round(mae / mean_val, 3),
’MedAE/Median’: round(medae / median_val, 3)

y_train_flat = y_train.reshape(-1)
y_val_flat = y_val.reshape(-1)
y_test_flat = y_test.reshape(-1)

y_pred_train_flat = y_pred_train.reshape(-1)
y_pred_val_flat = y_pred_val.reshape(-1)
y_pred_test_flat = y_pred_test.reshape(-1)

y_train_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps’:
y_train_flat})) [’Steps’]

y_pred_train_inv_flat = step_transformer.inverse_transform(pd.DataFrame({’Steps
’: y_pred_train_flat}))[’Steps’]

y_val_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps’:
y_val_flat})) [’Steps’]
y_pred_val_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps’:
y_pred_val_flat})) [’Steps’]

y_test_inv_flat = step_transformer.inverse_transform(pd.DataFrame({’Steps’:
y_test_flatl})) [’Steps’]

y_pred_test_inv_flat = step_transformer.inverse_transform(pd.DataFrame ({’Steps
’: y_pred_test_flatl}))[’Steps’]

evaluations

evaluate(y_train_inv_flat, y_pred_train_inv_flat, name="Train")
evaluate(y_val_inv_flat, y_pred_val_inv_flat, name="Validation")
evaluate(y_test_inv_flat, y_pred_test_inv_flat, name="Test")

71

189

490

191

192

193

194

196
197
198

199

metrics = evaluate(y_test_inv_flat, y_pred_test_inv_flat, name="Test")

HARHH AR AR BARBH B AR HH B AR A B AR H B AR BB AR AR BR AR B RS R BB AR H R AR B R AR BHBAR BB AR A B BR AR B R H B RRH
HARHHBEHBHBABH B AR HH B AR HH AR HH BB H B AR BB BRBHBRBH B AR HH R AR B R AR B H AR R R B AR B AR AR BRAHBRRH
HARBHBRABHBABHBRAAHBARHB AR B RARBBARBHBRABHBRBHBRARHRARBBARARHBARBBARARBRAHBRRHBRAH
HARBHBRAAHBARHBRAFHBRAHBRAHBRARBBARAHBRAAHBRASHBRARHRAR BB AR R B RAR B BAR AR BRAHBRAHBRAH
HARHHBRABHBARBHBRAHH B AR B AR BB RAR BB ARAHBRBH VRS HBRAHH R AR BB AR HH BB H B AR AR BRAH B R AR B RRH

import matplotlib.pyplot as plt

loss curves

plt.figure(figsize=(10, 6))

plt.plot (history.history[’loss’], label=’Training Loss’, linewidth=2)
plt.plot (history.history[’val_loss’], label=’Validation Loss’, linewidth=2)
plt.title(’Training and Validation Loss over Epochs’)

plt.xlabel (’Epoch’)

plt.ylabel (’MAE Loss’)

plt.legend ()

plt.grid(True)

plt.tight_layout ()

plt.show ()

loss = history.history[’loss’]
val_loss = history.history[’val_loss’]

plt.figure(figsize=(8, 5))

plt.plot (loss, label=’Training Loss (MAE)’)
plt.plot(val_loss, label=’Validation Loss (MAE)’)
plt.title(’Model Training History’)

plt.xlabel (’Epoch’)

plt.ylabel (’MAE’)

plt.legend ()

plt.tight_layout ()

plt.show ()

HERHHARHHARARARBRARAARBRHHBRRRBRHAR AR R AR HAR AR B R B AR AR R BB R AR AR AR BHARAR R BH AR RS RS
HERAHARBHARAH AR BRARAARBRAHRRARBRAAR R R BB HARRHRBRHAR AR BB R AR SRR BHARRRRRBH AR RS RS
HERHHARHHARARARBRARAR R BB HAR AR R AR BAR AR R AR HAR AR AR HAR AR R BB H AR R RRBH AR AR R BHAHAH AR S
Code for LightGBM sequence prediction

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

72

548

import itertools as itr

from skimpy import skim

from scipy.stats import iqr

from sklearn.model_selection import train_test_split

from feature_engine.timeseries.forecasting import LagFeatures

from feature_engine.timeseries.forecasting import WindowFeatures

from feature_engine.timeseries.forecasting import ExpandingWindowFeatures

import lightgbm as 1gb

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

from sklearn.metrics import median_absolute_error

from sktime.performance_metrics.forecasting import
MedianAbsolutePercentageError

from sklearn.metrics import mean_absolute_error, median_absolute_error,
r2_score

import tensorflow as tf
import random

import os
import time
day_number = 7

SEED = 99
tf.random.set_seed (SEED)
random.seed (SEED)
np.random.seed (SEED)

garmin = pd.read_excel(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
Garmin_days_EMA_Anas.xlsx’,
index_col=0)
ema = pd.read_csv(’C:/Users/anasn/Desktop/E/Semester 4/Thesis/files/
EMA_days_Answered_Final.csv’

, sep=’;"’
, decimal=’,"’)
garmin_valid_ids = garmin[garmin[’day’] == 14][’participant_id’].unique ()

garmin = (garmin
.query ("day <= 14 and participant_id in @garmin_valid_ids"))

garmin = (garmin
.groupby ([’participant_id’, ’day’, ’date’, ’hours_cat’])
.agg(Steps = ("Steps", lambda x: np.sum(x)))
.sort_values ([’participant_id’, ’date’, ’hours_cat’])
.reset_index (drop=False))

garmin[’hours_cat’] = pd.Categorical(garmin[’hours_cat ’]
, categories=[’Morning’, ’Noon’, ’Afternoon’, ’Evening’])
garmin = (garmin
.sort_values ([’participant_id’, ’day’, ’date’, ’hours_cat’]))

73

589
590

591

602
603

604

607
608

609

participant_id = garmin[’participant_id’].unique ()
day = np.arange(1l, 15)
hours_cat = garmin[’hours_cat’].unique()

template = pd.DataFrame (list (itr.product(participant_id, day, hours_cat)),

columns=[’participant_id’, ’day’, ’hours_cat’])

template[’timestep’] = (template
.groupby (’participant_id’)
.cumcount () + 1)

template = pd.merge(template, garmin, on=["participant_id", "day",
, how=’left’)

garmin = template.copy ()

ema["Time_cat"] = pd.Categorical(ema[’Time_cat’],
categories=[’Morning’, ’Noon’, ’Afternoon’, ’Evening’])
ema = (ema
.rename (columns = {"Time_cat": "hours_cat"}))
garmin = pd.merge (garmin, ema, how=’left’,
on=["participant_id", "day", "hours_cat"])
garmin[’date’] = (garmin
.groupby (["participant_id", "day"])[’date’]

.transform(lambda x: x.ffill () .bfil1()))

garmin.columns

garmin = (garmin
.get ([’ participant_id’, ’day’, ’hours_cat’, ’timestep’, °’
PHYSICAL_NORM’, ’MENTAL_NORM’, ’MOTIVATION_NORM’,
EFFICACY_NORM’,
>CONTEXT_NORM’, ’Steps’]))

np.random.seed (SEED)
shuffled_ids = np.random.permutation(participant_id)
n = len(shuffled_ids)

train_size = int(np.floor (0.7 * n))
val_size = int(np.floor (0.1 * n))
train_ids = shuffled_ids[:train_size]

74

"hours_cat"]

date’,

)

649

650

651

652

661

662

663

664

665

666

667

668

669

680

681

682

683

684

685

686

688

689

690

691

692

693

694

val_ids = shuffled_ids[train_size:train_size + val_sizel]
test_ids = shuffled_ids[train_size + val_size:]

print (len(train_ids), len(val_ids), len(test_ids))
print (sorted(train_ids))

print (sorted(val_ids))

print (sorted(test_ids))

HARBHBRABHBAAHBRAHHBAAH B AR B RAR BB AR B BRAH B AR H B R AR H R AR BB AR BB BAR BB AR A BB R AR B RRHBRRH

Yeo-Johnson

from feature_engine.transformation import YeoJohnsonTransformer

steps_train_df = garmin[garmin[’participant_id’].isin(train_ids)][[’Steps’]].
dropna ()
step_transformer = YeoJohnsonTransformer (variables=[’Steps’])

step_transformer.fit (steps_train_df)
garmin[’Steps_original’] = garmin[’Steps’]

steps_non_null = garmin.loc[garmin[’Steps’].notna(), [’Steps’]]
transformed_steps = step_transformer.transform(steps_non_null)

garmin[’Steps_transformed’] = np.nan
garmin.loc[steps_non_null.index, ’Steps_transformed’] = transformed_steps[’
Steps’]

garmin[’Steps’] = garmin[’Steps_transformed’]

HARHHAH AR R AR R AR R AR AR AR AR BB AR AR AR AR AR B R BHA AR H SR H SRR RSB AS AR SRR S SR B RS RS SBHAS
lable = "Number of Steps"
model = "LGBM"
HURHAS R BB R AR RAARHRE R BB AR R AR BHA AR H SR AR AR AR B RS R BB SR HA R BB B AR BB S BB SR AR SR RSB HAS
lag_vars = [’Steps’
#, "PHYSICAL_NORM", "MENTAL_NORM", "MOTIVATION_NORM", "
EFFICACY_NORM", "CONTEXT_NORM"

length = 4*day_number
lag_range = np.arange(l, length+1).tolist ()

hours_map = {’Morning’: 0, ’Noon’: 1, ’Afternoon’: 2, ’Evening’: 3}
garmin[’hours_idx’] = garmin[’hours_cat’].map(hours_map)
garmin = pd.concat([garmin, pd.get_dummies(garmin[’hours_cat’])], axis=1)

garmin [[’Morning’, ’Noon’, ’Afternoon’, ’Evening’]] = garmin[[’Morning’, ’Noon
>, ’Afternoon’, ’Evening’]].astype(int)

75

695
696
697
698

699

def make_lag(df):
1f = LagFeatures(periods=lag_range
#list (range (1, length+1))
, variables=lag_vars
, missing_values=’ignore’)
return 1f.fit_transform(df)

garmin = (
garmin
.groupby ([’participant_id ’])
.apply (make_lag)
.reset_index (drop=True)

)

garmin.columns

HARHH BB HBABH B AR HH B AR R B AR HRAR BB AR B HBR AR B RS HBRAHH R AR B R AR BHBARH B AR R B R AR B AR HHRHHS
multi step
for i in range(0, 4):
garmin [f’Steps_t{i}’] = garmin.groupby(’participant_id’) [’Steps’].shift(-1i)
garmin [f’Steps_original_t{i}’] = garmin.groupby(’participant_id’) [’
Steps_original ’].shift (-1)

target_cols = [f’Steps_t{i}’ for i in range (0, 4)]
target_original_cols = [f’Steps_original_t{i}’ for i in range (4)]
no_missing = garmin[target_original_cols].notna().all(axis=1)
data_train = garminl([

garmin[’participant_id’].isin(train_ids) &
(garmin[’timestep’] > length) &
no_missing

]

data_val = garmin[
garmin[’participant_id’].isin(val_ids) &
(garmin[’timestep’] > length) &
no_missing

]

data_test = garmin([

garmin[’participant_id’].isin(test_ids) &
(garmin[’timestep’] > length) &
no_missing

76

796
797
798
799
800

801

lagged_features = garmin.filter(regex=r"_lag_\d+$").columns.tolist ()

other_features = [’hours_cat’]
time_of_day_features = [’Noon’, ’Afternoon’, ’Evening’]

features = (time_of_day_features
+ lagged_features)

X_train = (data_train

.get(features + [’participant_id’]))
y_train = data_train.loc[:, target_cols]
X_val = (data_val

.get(features + [’participant_id’]))
y_val = data_val.loc[:, target_cols]

X_test = (data_test
.get(features + [’participant_id’]))

y_test = data_test.loc[:, target_cols]

HARBHBRAAHBARBHBRAAHBRRBHB AR B RARBBARBHBRAAHBRBHBRARHRARBBAARBRAR B BB AR BRAHBRAHBRAH

from sklearn.multioutput import MultiOutputRegressor
from sklearn.metrics import mean_absolute_error
import lightgbm as 1gb

base_model = 1lgb.LGBMRegressor (
n_estimators=3000,
num_leaves=1000,
max_depth=100,
min_child_samples=1,
min_split_gain=0,
#subsample=1,
learning_rate=0.005,
reg_alpha=0.01,
reg_lambda=0.01,

objective=’regression_11",

7

random_state=123,

808 n_jobs=-1,

809 verbosity=-1

810 |)

811

812

813

814 |model = MultiOutputRegressor (base_model)
815

816 | model.fit (X_train, y_train
817)

818

y_pred_train = model.predict(X_train)
model.predict (X_val)

model.predict (X_test)

y_pred_val =
821 |y_pred_test =

def evaluate(y_true, y_pred, name=""):

#y_true pd.Series(y_true) .reset_index (drop=True)

827 #y_pred pd.Series(y_pred) .reset_index (drop=True)

mae = mean_absolute_error (y_true, y_pred)
median_absolute_error (y_true, y_pred)
y_pred)

np.mean(y_true)

medae =
r2 = r2_score(y_true,
mean_val =

median_val = np.median(y_true)

print (f"\n{name} Set Evaluation:")
print (£"MAE: {mae:.2f}")
print (£"MedAE: {medae:.2f}")
print (£"R2: {r2:.2£3}")

844
845
846
847
848

849

859

860

861

print (f"Mean:

print (f"Median:

print (£"MAE / Mean:
print (f"MedAE / Median:

return {
’MAE ’ :
’MedAE ’:
’R27:
’Mean ’:

round (r2,

’Median’:
’MAE/Mean ’:
’MedAE/Median’:

y_train_inv =
y_pred_train_inv =
y_val_inv = pd.DataFrame ()
y_pred_val_inv =

y_test_inv = pd.DataFrame ()

round (mae,
round (medae ,

round (mean_val,

round (median_val,
round (mae / mean_val,

pd.DataFrame ()

{mean_val:.2f}")
{median_val:.2f}")

{mae / mean_val:.3f}")
{medae / median_val:.3f}")

2),

2),

2),

2),

2),

3),
round (medae / median_val,

pd.DataFrame ()

pd.DataFrame ()

78

3)

862
863
864
865
866
867
868
869

870

876

8717

878

879

880

881

887
888

889

y_pred_test_inv = pd.DataFrame ()

for i, col in enumerate(y_train.columns):
col_train = pd.DataFrame({’Steps’: y_train.iloc[:, il})
col_pred_train = pd.DataFrame ({’Steps’: y_pred_trainl([:, il})

col_val = pd.DataFrame({’Steps’: y_val.iloc[:, il})
col_pred_val = pd.DataFrame ({’Steps’: y_pred_vall:, il})

col_test = pd.DataFrame({’Steps’: y_test.iloc[:, il})
col_pred_test = pd.DataFrame ({’Steps’: y_pred_test[:, il})

y_train_inv [f’Steps_t{i+1}’] = step_transformer.inverse_transform(col_train
)[’Steps’]
y_pred_train_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(

col_pred_train) [’Steps’]

y_val_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(col_val) [’
Steps ’]
y_pred_val_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(

col_pred_val) [’Steps’]

y_test_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(col_test)
[’Steps’]
y_pred_test_inv[f’Steps_t{i+1}’] = step_transformer.inverse_transform(

col_pred_test) [’Steps’]

Run evaluations

#evaluate(y_train_inv, y_pred_train_inv, name="Train")
#evaluate(y_val_inv, y_pred_val_inv, name="Validation")
evaluate(y_test_inv, y_pred_test_inv, name="Test")

79

	Abstract
	Introduction
	Background and motivation
	Physical activity in older adults
	Digital phenotyping

	Importance of predicting physical activity
	Ethical thinking, societal relevance, and stakeholder awareness
	Research objectives for predicting physical activity in older adults

	Materials and Methods
	Study Design and Participants
	Data Description
	Cross-sectional data
	Longitudinal data

	Data preprocessing
	Cross-sectional data
	Longitudinal data
	Missing data

	Predictive modeling for the cross-sectional data
	Linear and logistic regression
	Elastic Net
	Light Gradient Boosting
	Metrics for the cross-sectional data analysis

	Modeling for the longitudinal data
	Recurrent Neural Networks
	LightGBM for time series forecasting
	Training and parameter estimation:

	Outcome transformation:

	Results
	Cross-sectional Analysis
	Exploration
	Metrics
	Predictive factors

	Longitudinal Analysis
	Exploration
	Model specifications
	Model comparisons

	Discussion
	Objective 1: The cross-sectional analysis
	Objective 2: The longitudinal analysis
	Limitations and drawbacks of the methods
	Ideas for future work and research

	Conclusion
	Software code

