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Abstract

Non-linear mixed-effects models offer a flexible means for analyzing longitudinal

data by allowing fixed and random effects to enter a model nonlinearly. Despite their

flexibility and interpretability, these models present substantial statistical and numeri-

cal challenges. The key challenge is the lack of explicit antiderivatives required for the

marginal likelihood in parameter estimation, which necessitates the use of numerical in-

tegration techniques. This thesis explores these challenges by fitting various non-linear

mixed-models to longitudinal data from the songbird brain regions HVC, RA, and a

so-called Area X.

Model fitting was conducted using SAS PROC NLMIXED, systematically evaluating

estimation procedures across different integral approximations (Gaussian and Laplace)

and varying the number and adaptiveness of quadrature points. The integration tech-

niques were combined with various optimization techniques which happen to be modi-

fications of the Newton-Raphson method.

The findings show that different combinations of integration and optimization tech-

niques have an effect on the parameter estimates when good starting values are chosen.

These results offer practical guidance for researchers modeling complex biological pro-

cesses and contribute to a better understanding of both the statistical and biological

aspects of how signal intensity changes in songbirds.

Keywords: Non-linear mixed-effects models, integration methods, optimization techniques,

parameter estimation.

2



Statistical and Numerical Challenges in Fitting Non-linear Mixed-effects Models

1 Introduction

Scientific research is often focused on understanding how things change over time. We

frequently deal with data gathered from the same units at various times, whether we are

studying learning and memory, tracking the growth of a population, or tracking the effects

of a new medication. Rarely do these repeated measurements, or longitudinal data, exhibit

straightforward, linear patterns. Rather, real-world processes are frequently non-linear, and

each unit may exhibit a distinct pattern of change [1], [2].

Non-linear mixed models (NLMM) have become more popular because of their flexibility

in handling such complex data collected from various fields, such as economics, pharma-

cokinetics and ecology. These models extend linear mixed-effects frameworks by allowing

parameters to enter the model nonlinearly, while accounting for both population-level effects

(fixed effects) and individual-specific deviations (random effects) that cannot be adequately

described by linear models [1], [2].

However, with this flexibility comes a set of unique challenges. Fitting an NLMM to

data is much more complicated than fitting a linear model. The main difficulty lies in

estimating the model parameters: because the model is non-linear in the random effects.

Estimation of NLMM parameters is typically performed using maximum likelihood estima-

tion (MLE) which works by selecting the parameters whose estimated values maximize the

likelihood function. Maximization of this likelihood requires integrating over the random

effects for which unlike in the linear case, non-linear mixed models usually have no explicit

antiderivates. The likelihood function that we need to maximize involves integrals that are

usually impossible to evaluate exactly [1]. To overcome this, statisticians have developed a

range of approximation methods. Early approaches, like first-order (FO) and conditional

first-order (CFO) linearizations, use Taylor expansions to simplify the problem, but can

introduce bias, especially when the data are sparse or the nonlinearity is strong [3], [4].

More accurate alternatives, such as the Laplace approximation and Gaussian quadrature,

have been developed to better approximate these difficult integrals, though they require

more computational resources and careful tuning [1], [5]. These computational challenges

are compounded by the need for robust optimization algorithms, such as Newton-Raphson

or quasi-Newton methods, to maximize the approximated likelihood, which can be sensitive

to starting values and prone to convergence issues in complex models [2].

Modern statistical software, such as SAS PROC NLMIXED, R’s nlme package, and Stata’s

menl command, provide tools for fitting NLMMs using these approximation techniques [6],

[7]. These procedures allow researchers to choose among different integral approximation

methods and optimization algorithms, and to assess the impact of these choices on param-

eter estimates and model fit. For example, the number and placement of quadrature points
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in Gaussian quadrature, or the starting values used in optimization, can affect both the

accuracy of parameter estimates and the time it takes to fit the model [1].

The goal of this thesis is to explore the statistical and computational challenges that arise

when fitting non-linear mixed-effects models, with a particular focus on the impact of

different integral approximation methods and optimization strategies. By systematically

evaluating these approaches, this work aims to provide practical guidance for researchers

analyzing complex longitudinal data.
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2 Motivating study

This thesis is inspired by a study wherein ten first-year female starlings were caught in the

wild during the winter before February and housed in two indoor cages on a stable 10-14

hour light-dark light cycle , selected to maintain birds in a durable state of photosensitivity.

All birds were studied with magnetic resonance imaging (MRI) for the first time between

March 15 and April 30, 2001. One or two days after the first MRI measurement, the five

treated birds were implanted with a capsule of crystalline testosterone subcutaneously in

the neck region. The capsule was left empty for the five control birds. Five to six weeks after

treatment, the birds were studied again by MRI and measurements of their signal intensity

were taken in three areas that is, the high vocal center (HVC), one of the major nuclei

in this circuit which contains interneurons and two distinct types of neurons projecting

respectively to the so-called nucleus robustus archistriatalis (RA) or to area X [8]. This is

graphically represented in Figure 1.

Figure 1: Schematic representation of song control nuclei in the songbird brain [8]

.

The data consists of ten birds each with about 30 repeated measurements of signal in-

tensity. The outcomes of interest are therefore the signal intensity(SI) of RA (SI RA),

area X (SI area X) and HVC (SI HV C). The times at which the measurements were

taken are also included in the dataset. Individual profiles of the birds for the three outcomes

SI HV C, SI RA and SI Area X were plotted (2, 3, 4), and they all exhibit non-linear

behavior thereby calling for the employment of non-linear models. Furthermore, there is

clearly between-bird variability indicated by the differences in rise and shapes of the dif-

ferent curves for the different birds, this calls for the use of random effects to account for

these differences.
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Figure 2: Individual-bird profiles for the signal intensity in the RA region

Figure 3: Individual-bird profiles for the signal intensity in area X

Figure 4: Individual-bird profiles for the signal intensity in the high vocal center
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3 Methodology

While established non-linear modeling approaches exist for the RA and Area X signal

intensities, previous applications of these models have not incorporated the correlational

structure present within individual birds. The situation differs for measurements of the sig-

nal intensity in the HVC region, where suitable non-linear functional forms have not been

well-established in the literature. Visual analysis of our data patterns indicates that the

underlying relationships would not be adequately captured by conventional linear modeling

techniques. We therefore look into two different modeling approaches to tackle this prob-

lem. We start by looking at fractional polynomial models, which increase the range of curve

shapes available and provide more flexibility than standard polynomial functions. Second,

considering the conceptual similarities between our HVC signal intensity problem and phar-

macokinetic processes, we investigate the suitability of two-compartment (bi-exponential)

pharmacokinetic models. Incorporating the within-subject correlation structure built-in

our repeated measures design, these modeling techniques seek to appropriately account for

the non-linear nature of the data [8].

All the models will be fitted using SAS procedure NLMIXED, using several integration

techniques such as adaptive Gaussian quadrature, non-adaptive Gaussian quadrature and

Laplace approximation.

As stated in [8], random-effects models can be fitted by maximum likelihood estimation

(MLE) which involves maximization of the marginal likelihood, obtained by integration

out the random effects. Each subject i has a contribution to the likelihood such as:

fi(yi|β,D, ϕ) =

∫ ∞

−∞

ni∏
j=1

fij(yij |bi, β, ϕ)f(bi|D)dbi, (1)

yij is the jth outcome measured for subject i, i = 1, ..., N , j = 1, ..., ni and yi is the ni

dimensional vector of all measurements available for subject i. ϕ is a scalar parameter and

β is a p-dimensional vector of unknown fixed regression coefficients. f is a real integrable

function, f(bi|D) is the density of the N(0, D) distribution of the random effects bi and D

is the random-effects covariance matrix.

From (1) the likelihood for β, D and ϕ is computed as

L(β,D, ϕ) =
N∏
i=1

fi(yi|β,D, ϕ)

=

N∏
i=1

∫ ∞

−∞

ni∏
j=1

fij(yij |bi, β, ϕ)f(bi|D)dbi. (2)

The primary challenge in maximizing (2) is that there areN integrals over the q-dimensional
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random effects bi. Unlike in linear mixed models, where these integrals can be evaluated

exactly due to the availability of explicit antiderivatives, non-linear mixed models typically

require these integrals to be approximated numerically, as explicit antiderivatives are gen-

erally unavailable. In such cases the definite integrals required for the marginal likelihood

can be approximated numerically, hence the need for numerical integration techniques.

One subdivision of numerical approximation is approximation of the integrand (replac-

ing the complex functions inside the integral with simpler functions). The main point of

approximating the integrand is to obtain integrals which are easier to integrate so that

explicit antiderivatives can be obtained, thereby making it possible to maximize the ap-

proximated likelihood. The numerical integration methods we will use include adaptive

Gaussian quadrature, non-adaptive Gaussian quadrature and Laplace approximation.

According to [9], Gaussian quadrature is a technique to approximate integrals that are

centered about the empirical Bayesian estimates of the random effects. The number of

quadrature points can be selected given a desired standard of accuracy. Adaptive and

non-adaptive Gaussian quadrature is designed for the approximating integral of the form

below: ∫ ∞

−∞
f(z)ϕ(z)dz (3)

In (3), f(z) is a known, smooth function and ϕ(z) is the density of the standard normal

distribution. ∫ ∞

−∞
f(z)ϕ(z)dz ≈

Q∑
q=1

wqf(zq). (4)

In (4), Q is the number of quadrature points and a larger Q results in a more accurate

approximation. wq is the quadrature weight chosen appropriately, zq are quadrature points

(nodes) and solutions to the Qth order Hermite polynomial. Here, the quadrature points zq
are chosen based on ϕ(z), independent of the function f(z) in the integrand [8]. Depending

on the support of f(z), the nodes, zq will or will not lie in the region of interest, this is a

potential short coming of this approach.

Following equation (2), the likelihood contribution for subject i is given by:

fi(yi|β,D, ϕ) =

∫ ∞

−∞

ni∏
j=1

fij(yij |β, bi, D, ϕ)f(bi)dbi (5)

In non-adaptive Gaussian quadrature,
∫ b
a f(z)ϕ(z)dz is approximated directly by the

weighted sum in equation (4). It does so by choosing nodes (quadrature points) in areas

of high density and when ϕ(z) is continuous, the quadrature rule is exact if f(z) is a

polynomial of up to 2Q−1. As mentioned earlier, more accurate approximation is obtained

with a higher number of quadrature points so their number can be increased or decreased

to get the desired level of accuracy but this could potentially increase the computational
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burden.

In this study, the number of quadrature points Q, zq and weights wq will be found using

the Gauss-Hermite quadrature (as used in SAS). This approximation can be viewed as an

extension of the classical Gaussian quadrature to approximate integrals of the form∫ ∞

−∞
exp(−z2)f(z)dz ≈

Q∑
q=1

w̃qf(zq) (6)

where with respect to the Gauss-Hermite quadrature, zq are the roots of the Hermite

polynomials. The weights are given by:

w̃q =
2Q−1Q!

√
π

Q2[HQ−1(zq)]2
. (7)

It is not uncommon that some quadrature points zq may lie outside the region of interest

when analyzing non-linear longitudinal data that is why the classical Gaussian quadrature

is adapted to ensure that more quadrature points lie in the region of interest. This is the

origin of adaptive Gaussian quadrature in which the nodes can be rescaled and centered so

that f(z)ϕ(z) is normally distributed. Adaptive Gaussian quadrature for the entire integral

over bi centers the integral at the empirical Bayes estimate of bi that minimizes

− log[f(yi|xi, bi, ϕ)p(bi|D)] (8)

in which ϕ and D are equal to their current estimates. More insights about Gauss-Hermite

quadrature can be found in [10].

The general idea is that the numerical approximation is applied to the likelihood contri-

bution of each subject for the N subjects in the study at hand. As mentioned earlier,

better approximation of the N integrals in the likelihood is achieved with higher values

of Q. Compared to classical Gaussian quadrature, adaptive Gaussian quadrature is more

accurate as it ensures that there are more quadrature points in the region of interest and it

frequently uses fewer points to attain the same level of precision. By dynamically updat-

ing the quadrature points and weights at each iteration of parameter estimation, adaptive

Gaussian quadrature improves the accuracy of approximating integrals involving random

effects. In particular, the locations and weights of the quadrature points are scaled and

centered based on the mode and curvature of the quadrature points, which are determined

by the current estimates of the model parameters, such as the dispersion parameter (ϕ), the

random effects covariance matrix (D), and the fixed effects (β) [1]. Although this method

offers a more precise approximation than classical (non-adaptive) Gaussian quadrature, it is

computationally more intensive, since the quadrature scheme must be recalculated at each

step of the optimization process. It is also important to note that Laplace approximation is

equivalent to adaptive Gaussian quadrature with one node (Q = 1, zq = 0) as this is how it
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will be applied when fitting the various models in SAS. In depth explanations about these

techniques can be found in [8], pages 273-275 and in [11], pages 379-405.

After the integration methods mentioned above have yielded integrals for which we have

explicitly found antiderivatives (the likelihood has been approximated), we will employ var-

ious optimization techniques such as Newton-Raphson with line search, Newton-Raphson

with ridging and Quasi-Newton optimization so as to maximize the likelihood function.

The Newton-Raphson algorithm is an iterative procedure that can be used to calculate

MLEs. The basic idea behind the algorithm is the following. First, construct a quadratic

approximation to the function of interest around some initial parameter value (hopefully

close to the MLE). Next, adjust the parameter value to that which maximizes the quadratic

approximation. This procedure is iterated until the parameter values stabilize [12]. How-

ever, this convergence requires that the initial guess be close enough to the solution. Since

we do not know this ideal initial guess, we have to use some alternative methods (modifi-

cations), which converge slower but guaranteed to get us closer to the solution. Once the

approximation is close enough to the solution, then we can switch to a genuine Newton

scheme, and in very few steps an excellent approximation is obtained. These modifications

can include the line search, ridging and other Newton-like methods (Quasi-Newton), these

are designed to enhance stability and help the algorithm skip problematic regions of the

parameter space.

The Netwon-Raphson is highly sensitive to starting values so poorly selected starting values

can lead to failure of convergence, this is something we will look out for as we fit our non-

linear mixed-effects models. It is therefore advisable to use Newton-Raphson in at least the

final iterations of any non-linear algorithm to take advantage of its fast local convergence,

but it will have to be modified in order to converge globally [13].

The non-convergence of the classical Newton-Raphson method can be eliminated by New-

ton’s method with line search in which the Newton correction is used to generate a direction

of search [14]. In the Newton-Raphson algorithm parameter estimates at each stage are up-

dated by utilizing the gradient (first derivative) and Hessian (second derivative matrix) of

the log-likelihood function. However, when a line search procedure is added to the Newton-

Raphson procedure the step size along the Newton direction is adaptively chosen at each

iteration by calculating the log-likelihood at several different candidate step sizes and choos-

ing the one that increased the log-likelihood the most. Therefore, Newton-Raphson with

line search combines the fast local convergence of Newton’s method with the robustness of

line search strategies, improving the stability and convergence of non-linear optimization

algorithms.

Newton-Raphson ridge is another optimization technique used to stabilize the Newton-

Raphson algorithm by adding a small positive constant to the diagonal elements of the
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Hessian (second derivative) matrix. This is meant to prevent numerical instability during

parameter estimation, especially in the presence of multicollinearity or near-singular matri-

ces which are common challenges in non-linear mixed models due to their complexity. This

modification will ensure that the Hessian matrix is invertible and also that the parameter

estimates are not out of control [15], [16], [17].

Sometimes the computation of the Hessian matrix is computationally expensive, in such

scenarios the (dual) Quasi-Newton optimization proves to be more efficient. The Quasi-

Newton approach does not require the computation of the Hessian matrix at each step but

rather uses its approximation unlike the line search and ridge modifications described ear-

lier [18]. This approach significantly reduces computational burden, especially for complex

models (such as ours) or large datasets, while still ensuring efficient and reliable conver-

gence [19].

3.1 Model of Van der Linden et al, (2002)

3.1.1 Model for SI RA

In [20], the following parametric shape for a single bird’s profile was employed:

SIij(RA) =
(ϕ0i + ϕ1iGi)t

η0i+ηi1Gi
ij

(τ0i + τ1iGi)η0i+η1iGi + tη0i+η1iGi
ij

+ γ0i + γ1G1i + εij . (9)

From (9), SIij(RA) is the measurement for bird i at time j, Gi is an indicator of group

membership (1 for testosterone-treated birds and 0 for control birds), and tij is the time

measurement. The maximal signal intensity, sometimes termed SImax, is denoted by ϕ0i

for an untreated bird and ϕ0i + ϕ1i for a treated one. The time required to reach 50% of

this maximum (T50) is τ0i and τ0i + τ1i, respectively. The shape of the curve is determined

by the parameters η0i and τ1i. Finally, εij is a measurement error term, typically assumed

to follow a normal distribution. The genesis of this model is rooted in knowledge about Mn

axonal transport and changes induced in the bird’s brain caused by testosterone treatment.

More details can be found in [21], [20], and [22].

In [20], they utilized Model (9) to each bird under investigation and then proceeded to

apply ANOVA (analysis of variance) to the estimates parameters. This approach rests on

the assumption that the measurements within the same bad are not correlated. In order

to account for this within bird correlation, we introduce the above model into the mixed-

effects framework in which the parameters are split into fixed and random effects [8].

In this model, all parameters were assumed to be different from one songbird to another,

since the non-linear model was fitted to each bird separately. We are now in a position to

analyze all data together, separating out averaged (fixed) effects from bird-specific (ran-

dom) effects, using the replacements below:
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ϕ0i + ϕ1iGi −→ ϕ0 + ϕ1Gi + fi, (10)

η0i + η1iGi −→ η0 + η1Gi + ni, (11)

τ0i + τ1iGi −→ τ0 + τ1Gi + ti, (12)

The ϕ, η, and τ parameters are fixed effects, while the vector (fi, ni, ti) is a bird-specific

vector of random effects, assumed to follow a trivariate normal distribution with mean 0

and variance D. Combining Model (9) with replacements (10) to (12), we obtain:

SIij(RA) =
(ϕ0 + ϕ1Gi + fi)t

η0+η1Gi+ni
ij

(τ0 + τ1Gi + ti)η0+η1Gi+ni + tη0+η1Gi+ni
ij

+ γ0 + γ1Gi + εij . (13)

The parameters have the same meaning they had in Model (9). The residual error terms

εij are assumed to be mutually independent and independent from the the random effects,

and to be drawn from a normal distribution, N(0, σ2).

We will therefore build a model for the second period, where treatment has been adminis-

tered because no treatment effect would be expected in the first period (measurements are

taken prior to treatment).

Just as applied by [23] we will use Model (13) to analyze the data for which the general form

has 8 fixed-effects parameters and 7 variance components (3 variances in D, 3 covariances

in D, and σ2). The model obtained from backward selection is as follows:

SIij(RA) =
(ϕ0 + fi)t

η0+η1Gi
ij

(τ0 + ti)η0+η1Gi + tη0+η1Gi
ij

+ εij . (14)

The same model will be fitted for the signal intensity of area X.

3.2 Fractional polynomials

This model will be fitted for the signal intensity of the high vocal center (HVC) up to the

cubic term in time (fractional polynomials will be applied to the time covariate) and it’s

formulated as below;

SI HV Cij =(β0 + βog ∗Gi) (15)

+ β1 + β1g ∗Gi) ∗ tij
+ (β2 + β2g ∗Gi) ∗ t2ij
+ (β3 + β3g ∗Gi) ∗ t3ij
+ b0i + b1i ∗ tij + b2i ∗ t2ij + b3i ∗ t3ij
+ εij .
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where SI HV Cij is the observed outcome for bird i at time j (tij
1) is the observed time at

which measurement j was taken for bird i and group membership (Gi
2). The fixed effects

include β0, β1, β2, and β3, representing the population-level intercept, linear, quadratic,

and cubic slopes over time, respectively. Group-specific differences are captured by β0g,

β1g, β2g, and β3g, which quantify treatment effects on the intercept and slopes. Individual

variability is modeled through subject-specific random effects b0i, b1i, b2i, and b3i for the in-

tercept, linear, quadratic, and cubic time terms respectively. This model incorporates time

(tij), squared time (t2ij), and cubed time (t3ij) as predictors, with residual errors εij assumed

to follow a normal distribution: εij ∼ N(0, σ2). The random effects vector (b0i, b1i, b2i, b3i)

is assumed to follow a multivariate normal distribution with mean vector 0 and diagonal

covariance matrix with variances d00, d11, d22, d33. The interaction terms to allow for group-

specific differences in each of the present effects, this is meant to show if there is an effect

of testosterone on the signal intensity of the birds. The model will be fitted in SAS using

the NLMIXED procedure.

In an attempt to find a model that fits and describes the data well, another model with

different fractional polynomials will be fitted and from among the two models, the best one

for the current data will be chosen according to the Akaike information criterion (AIC) and

Bayesian information criterion (BIC) and the model with the lowest of these two values

will be chosen.

This model includes fractional polynomials in terms of the logarithm and square root of

time and it is adopted from [8]. The model is formulated as follows:

SI HV Cij =(α0 + α1Gi + ai) (16)

+ (λ0 + λ1Gi + li)ln(tij)

+ (δ0 + δ1Gi + di)t
0.5
ij + εij .

where:

• SI HV Cij = observed outcome for bird i at time j.

• α0 = The overall intercept (baseline value of SIij when all other variables are zero

and for the reference group).

• α1 = The additional effect on the intercept for being in group Gi = 1 (the difference

in baseline between the groups).

• λ0 = The effect of log(tij) (log of time) on the outcome for the reference group.

• λ1 = The additional effect of log(tij) for group Gi = 1 (interaction between group

and log-time).

1tij carries the same meaning in all subsequent models
2Gij retains the same definition throughout
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• δ0 = The effect of the square of the time on the outcome for the reference group.

• δ1 = The interaction between group and square root of time (additional effect of t0.5ij

for the treated group, Gi = 1).

• ai = Subject-specific random intercept.

• li, di = Subject (bird)-specific random effect for the log-time term and the square root

time term.

• εij = The residual error for each observation and εij ∼ N(0, σ2).

The model will be fitted following the same procedure as that of the former model. The

results from the chosen model will be evaluated to identify any differences resulting from

using the various integration techniques.

3.3 Bi-exponential model

The HVC outcome is connected to pharmacokinetic theory which studies dispersion of

compounds through a living organism. HVC can therefore be viewed as the central com-

partment and area X and RA are the areas to which manganese is dispersed, therefore a

bi-exponential model seems like a good choice. As stated by [8], the mixed-effects approach

yields the model below:

Yij = exp(βi1 exp[− exp(−βi2tij ]− exp(βi3) exp(− exp[−βi4tij ] + εij . (17)

Splitting the β parameters into fixed and random effects and also including the group effect

leads to:

Yij =e(β1+γ1Gi+b1i) exp[−e(−β2+γ2Gi+b2i)tij ] (18)

− e(β3+γ3Gi+b3i) exp[−e(−β4+γ4Gi+b4i)tij ] + εij ,

where:

• Yij = The outcome for subject i at time j.

• β1 = Baseline log-amplitude of the first exponential component for the reference

group.

• β2 = Baseline log-rate (decay) parameter of the first exponential component for the

reference group.

• β3 = Baseline log-amplitude of the second exponential component for the reference

group.
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• β4 = Baseline log-rate (decay) parameter of the second exponential component for

the reference group.

• γ1, γ3 = Additional effect of being in group Gi = 1 on the log-amplitude of the first

and second component respectively.

• γ2, γ4 = Additional effect of being in group Gi = 1 on the log-rate of the first and

second component respectively.

• b1i, b3i = subject-specific random effects for the log-amplitude in the first and second

components respectively.

• b2i, b4i = subject-specific random effects for the log-rate in the first and second com-

ponents respectively.

• εij = residual error for the subject i at time j and εij ∼ N(0, σ2).

The amplitude parameters control the starting value or height of each exponential compo-

nent and the rate parameters control how quickly each exponential component decays over

time (higher rates mean faster decay). The group effects (γ terms) describe how group

membership affects the amplitude or rate for each component.

This model will be fitted using the SAS procedure NLMIXED and a fixed effects only

model will be fitted first so as to obtain starting values for the subsequent models. Given

the model complexity, we will increase the complexity of the model gradually first by adding

one group effect to each parameter one at a time and then the random effects one at a time

as well. The resulting model will then be reported and its goodness of fit investigated.

3.4 Two-stage approaches

For each of the above described models, a two-stage approach will be fitted and this is

because the two-stage approach simplifies fitting of complex models such as the ones we are

trying to fit. As described by [24], in the first stage, the individual-level models (the non-

linear models) will be fitted separately for each subject including only the time covariate and

no other covariates, providing subject-specific estimates of all the models. In the second

stage, these individual parameter estimates will be treated as observed outcomes and a

linear regression model including the other covariates of interest and subject-specific random

effects in order to estimate the population-level fixed effects, assess group differences, and

quantify between-subject variability. The multivariate regression model in stage two is of

the form:

βi = Kiβ + bi (19)

where:
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• βi = The subject-specific regression coefficients (parameter estimates) from stage one.

• Ki = A (q × p) matrix of known covariates.

• β = A p-dimensional vector of unknown regression parameters.

• bi = Random effects which are assumed to be independent with a q-dimensional

normal distribution with mean vector zero and general covariance matrix D.

After the second stage, the D matrix will be approximated by the empirical variance-

covariance matrix in order to measure the relationships between the individual-specific

model parameters, we will compute the sample covariance matrix using the Stage 1 pa-

rameter estimates for each subject. Specifically, after extracting the estimated values for

each individual, we will use the PROC CORR procedure with the COV option in SAS to

determine the covariance matrix. It is however important to note that the estimated matrix

is not the true D matrix, it only gives us an idea about the true D matrix matrix.

3.5 Other models

This subsection describes other models that could potentially fit the signal intensity of HVC

even better. These were selected from the CurveExpert professional software as the best

performing options for SI HV Cij .

3.5.1 Gaussian model

We will model the outcome variable (SI HV C) as a non-linear function of time using a

Gaussian (bell-shaped) curve with both fixed and random effects, implemented in SAS

procedure NLMIXED. This model allows the amplitude, peak position, and width of the

Gaussian curve to vary by group and individual (bird). The model equation is:

SI HV Cij = (a+ agGi + b1i) exp

(
−(tij − (b+ bgGi + b2i))

2

2((c2) + cgGi + b3i)

)
+εij , (20)

where:

• SI HV Cij = The outcome for subject i at time j.

• a = Baseline amplitude (height) of the Gaussian curve for the reference group.

• ag = Additional amplitude effect for the comparison group (testosterone-treated

birds).

• b = Baseline peak position (center of the curve) for the reference group.

• bg = Additional peak position effect for the comparison group.
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• c = Baseline width (spread) of the curve for the control birds.

• cg = Additional spread effect for the treated group.

• b1i, b2i, b3i = Subject-specific deviation in amplitude (height), peak position (center)

and width (spread) respectively.

• εij = Residual error and εij ∼ N(0, σ2).

3.5.2 Gompertz model

The Gompertz model is widely used for sigmoidal (S-shaped) growth or decay processes

and allows for both fixed and random effects on the curve parameters. The model has the

following parametric shape:

SI HV Cij = a exp[− exp((b+ bgGi + b1i)− (c+ cgGi)tij ] + εij , (21)

where:

• SI HV Cij = The outcome for subject i at time j.

• a = Asymptote (maximum value the curve approaches).

• b = Baseline location parameter (related to the timing of the inflection point, when

growth is fastest).

• bg = Additional effect on b for the comparison group.

• c = Baseline rate parameter (growth or decay rate).

• cg = Additional effect on c for the treated group.

• b1i = Subject-specific random effect on the location parameter b (individual timing

differences).

• εij = Residual error and εij ∼ N(0, σ2).

The rate parameter c, controls how quickly the curve rises or falls. This model allows the

growth (or decay) trajectory of each subject (bird) to follow a flexible S-shaped curve, with

group-level differences (control and treated group differences) in curve shape and timing,

and individual-level variation in the timing of the curve’s inflection point.
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3.5.3 Logistic model

We will model the outcome variable (SI HV Cij) as a non-linear function of time using a

logistic mixed-effects model, implemented in SAS PROC NLMIXED. The model equation

is:

SI HV Cij =
a

1 + (bgGi + b1i) exp[(−c+ cgGi + b2i)tij ]
+ εij . (22)

In model (22) SI HV Cij is the response for subject i at time j. The parameter a represents

the upper asymptote (maximum response), b and c are the baseline location/shape and rate

parameters for the reference group respectively, while bg and cg are the additional effects

for the comparison group. Subject-specific random effects b1i and b2i allow each individual

to have their own curve shape and rate. Residual errors εij are assumed to be normally

distributed with mean zero and variance σ2.

3.5.4 Ratkowsky model

This model is used for sigmoidal (S-shaped) growth and it allows for fixed and random

effects on the curve parameters just like in the Gompertz model described earlier. The

model is formulated as follows:

SI HV Cij =
a+ agGi + b1i

1 + exp[(b+ bgGi)− (c+ cgGi + b3i)tij ]
+ εij , (23)

where:

• SI HV Cij = The outcome for subject i at time j.

• a = Baseline upper asymptote (maximum response) for the reference group.

• ag = Additional effect on a for the comparison group.

• b = Baseline location parameter for the reference group.

• bg = Additional effect on b for the comparison group.

• c = Baseline rate parameter for the reference group.

• cg = Additional effect on c for the treated group.

• b1i, b3i = Subject-specific random effects on the asymptote and the rate parameter

respectively.

• εij = Residual error and εij ∼ N(0, D).

Baseline location parameter, b controls the inflection point or the time at which the curve

rises most steeply for the reference group. Baseline rate (slope) parameter, c controls how

rapidly the response increases over time for the control group.
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4 Results

4.1 Model of Van der Linden et al, (2002)

We built a model for the second period, where treatment had been administered because

no treatment effect would be expected in the first period (measurements were taken prior

to treatment).

Just as applied by [23] we use the model (13) to analyze the data for which the general form

has 8 fixed-effects parameters and 4 variance components (3 variances in D, 3 covariances

in D, and σ2). However, this model failed to converge and therefore a diagonal covariance

matrix was used in the final model3. The model is fitted using SAS procedure NLMIXED,

using several integration techniques such as adaptive Gaussian quadrature, non-adaptive

Gaussian quadrature and Laplace approximation.

The model obtained from backward selection is as follows:

SIij(RA) =
(ϕ0 + fi)t

η0+η1Gi
ij

(τ0 + ti)η0+η1Gi + tη0+η1Gi
ij

+ εij . (24)

Table 1: Parameter estimates from the model of Van der Linden et al, (2002) for the signal

intensity in the RA region at the second period.

Effect Parameter Estimate Std. Error Pr> |t|
ϕ0 0.4527 0.04775 < 0.0001

η0 2.1825 0.08016 < 0.0001

η1 0.4285 0.1060 0.0037

τ0 2.8480 0.1762 < 0.0001

V ar(fi) d11 0.02245 0.01010 0.0569

V ar(ti) d22 0.2883 0.1339 0.0635

Var(εij) σ2 0.000185 0.000017 < 0.0001

The results in Table 1 reflect the estimates obtained using adaptive Gaussian quadrature

and Laplace approximation, for non-adaptive Gaussian quadrature V ar(ti) is significant

(p < 0.001). The untreated birds have a significant estimated average baseline maximum

value of 0.4527 (p < 0.0001). The curve shape (steepness) parameter estimate for the control

birds is highly significant with p-value less than 0.0001 (mean = 2.1825). The average effect

of testosterone on the curve shape is estimated at 0.4285 and there is sufficient evidence to

support this effect, p = 0.0037, indicating that treated birds have a faster signal rise. The

average estimated time to half of the maximal signal intensity for the untreated birds is

2.8480 and this result is statistically significant, p < 0.0001. The variance of the random

3All subsequent models were fitted with a diagonal variance-covariance matrix except the two-stage

approaches.
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effect on the maximal signal intensity is estimated as 0.02245 and it is marginally significant

(p = 0.0569) meaning that there is insufficient evidence to support between-bird differences

in their maximum signal intensity. Variance of the random effect on the time to half of the

maximum signal intensity is estimated to be 0.2883 and it is not statistically significant

(p = 0.0635), therefore there is no evidence to support a difference in this effect between

control and treated birds. The within-bird (residual) variance is very small and highly

significant, thereby indicating that the model fits the data well. The fitted values plotted

against the observed values of the SI RA support our choice of model as shown in Figure

5.

Figure 5: Fitted curves for the signal intensity in the RA region by bird at the second

period.

A similar model was fit for the signal intensity of the Area X but all attempts led to

inconclusive results. Even changing the integration and optimization techniques yielded

unstable results, therefore no parameter estimates were obtained for this outcome.

4.2 Fractional polynomials

Given their flexibility and allowance for various parametric shapes we fit the model with

fractional polynomials wherein the fractional polynomials were applied to the time covari-

ate up to the third degree polynomial. We used several integration techniques such as

adaptive Gaussian quadrature (with 5 quadrature points), non-adaptive Gaussian quadra-
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ture (q = 5) and Laplace approximation (q = 1). The models using adaptive Gaussian

quadrature and Laplace approximation were unable to converge to a stable solution but

non-adaptive Gaussian quadrature reached convergence. However, following the description

of the fractional polynomials in Section 3, this model was compared to the model that in-

cluded the logarithmic and square root polynomials of time. The results of this comparison

are shown in Table 2.

Table 2: Model selection for the fractional polynomials model for the signal intensity of the

high vocal center (HVC).

Model -2loglik AIC BIC

Cubic -196.4 -170.4 -166.5

Log-sqrt -265.3 -245.3 -242.3

From Table 2, the ideal model was the latter model with logarithmic and square root

polynomials of time because it had the smallest values of AIC and BIC meaning it fit the

data better than the model with up to the third degree polynomial. The selected model

has the following output:

Table 3: Parameter estimates for the fractional polynomials model for the signal intensity

of the high vocal center (HVC).

Effect Parameter Estimate Standard Error Pr > |t|
α0 2.4606 0.4772 0.0013

α1 0.9505 0.6750 0.2019

λ0 0.2898 0.1640 0.1206

λ1 0.2421 0.2325 0.3324

δ0 -0.6343 0.1757 0.0086

δ1 -0.4040 0.2491 0.1489

SD(ai) da 1.1321 0.5095 0.0617

SD(li) dl 0.1318 0.0622 0.0719

SD(di) dd 0.1490 0.0707 0.0731

Residual SD σ2 0.0023 0.0002 < 0.0001

For the reference group at time zero, the mean SI HV C is 2.4606 and the group effect

(α1) was obtained as 0.9505 (p = 0.2019) meaning that there is insufficient evidence to

support the claim that being in group 1 (treated) affects the baseline SI HV C. Each unit

increase in log(time) increases SI HV C by 0.2898 in the reference group and this result

is not statistically significant, p = 0.1206. In the treated birds, the effect of log(time) is

further increased by 0.2421 and this result is not statistically significant (p = 0.3324). The

effect of
√
time for the reference group is estimated as −0.6343 and this effect is statistically

significant (p = 0.0086). In the testosterone-treated birds, the effect of
√
time is less nega-
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tive and non-significant (effect = −0.4040, p = 0.1489), indicating that there is no evidence

of a different trajectory compared to the control birds (reference group). da, dl, dd are the

standard deviations of the random effects on the intercept (SD = 1.1321, p = 0.0617), the

log(time) (SD = 0.1318, p = 0.0719) and square-root(time) (SD = 0.1490, p = 0.0731)

and they all indicate that there is no evidence of substantial individual variability in how

SI HV C changes with log(time) and square-root(time). The within-bird (residual) vari-

ance is very small and highly significant indicating that the model fits the data well. To

verify this outcome the fitted values were plotted against the observed values as shown in

Figure 6.

Figure 6: Fitted vs observed curves for the signal intensity if the high vocal center (HVC)

by bird at the second period.

The results in Table 4 reflect the model using adaptive Gaussian quadrature and it is worth

noting that they carry the same meaning as those from Table 3. The only statistically

significant effects are the intercept, α0 (effect = 2.4606, p = 0.0013) and the square-root

of time effect (effect = −0.6343 , p = 0.0086). This differs from the findings of the same

model fit with non-adaptive Gaussian quadrature.

Laplace approximation yields the same results as those from the model in which we em-

ployed adaptive Gaussian quadrature, therefore the same interpretations of the model pa-

rameter estimates hold. The model using non-adaptive Gaussian quadrature model also
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Table 4: Model parameter estimates (non-adaptive Gaussian quadrature).

Effect Parameter Estimate Standard Error Pr > |t|
α0 2.4325 0.08421 < .0001

α1 0.6390 0.1197 0.0011

λ0 0.8425 0.0579 < .0001

λ1 0.3789 0.0798 0.0021

δ0 -0.0347 0.0781 0.6706

δ1 -0.5939 0.1108 0.0010

SD(ai) da 0.0793 0.1108 < .0001

SD(li) dl 0.2778 0.0205 < .0001

SD(di) dd 0.1172 0.0065 < .0001

Residual SD σ2 0.0125 0.0011 < .0001

presents a good fit as shown in Figure 7. Figure 14 shows that the normality assumption

is reasonably fulfilled for this model.

Figure 7: Fitted vs observed curves for the signal intensity if the high vocal center (HVC)

by bird at the second period.

Looking at the AIC and BIC of these two models in Table 5 suggests that the model using

adaptive Gaussian quadrature is a better fit to the data.
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Table 5: Model comparison for the fractional polynomials model for the signal intensity of

the high vocal center (HVC)

Model -2loglik AIC BIC

Adaptive -656.7 -636.7 -633.7

Non-adaptive -265.3 -245.3 -242.3

4.3 Two-stage approaches

4.3.1 Fractional polynomials for outcome, SI HV C

Using the stage 1 parameter estimates as the outcome in the linear model along with the

inclusion of covariates, the second stage results are shown below:

Table 6: Stage 2 results for the signal intensity in the high vocal center (HVC).

Parameter Effect Group Estimate Std. Error Pr > |t|
α0 Intercept 4.5602 0.7866 0.0004

Group 0 -1.4957 1.1124 0.2157

λ0 Intercept 0.5474 0.1987 0.0249

Group 0 -0.2573 0.2810 0.3866

δ0 Intercept -2.9798 0.6001 0.0011

Group 0 1.1841 0.8486 0.2004

The baseline value of the signal intensity in the HVC region (when all predictors are zero) is

estimated at 4.56 and this is highly statistically significant (p < 0.001), indicating a strong

baseline effect. Furthermore, the group effect for the intercept is negative, suggesting that

the control group has a lower baseline signal intensity by about 1.5 units compared to the

reference group. However, this difference is not statistically significant (p = 0.22), so there

is no strong evidence for a baseline group difference. The coefficient for the log(time) term

at baseline is positive (0.5474) and significant (p = 0.025), suggesting that, on average, as

log(time) increases, signal intensity increases. The group effect of the log(time) coefficient

is −0.2573 but it is not statistically significant (p = 0.3866), indicating that there is no

evidence that the groups differ in how log(time) affects signal intensity in the high vocal

center. The coefficient for the square-root(time) term at baseline is negative (−2.9798) and

highly significant (p = 0.0011), indicating that as square-root(time) increases, signal in-

tensity decreases. However, the group effect for the square-root(time) coefficient is 1.1841,

suggesting that the untreated birds have a less negative effect of square-root(time) on the

signal intensity, but this effect is not statistically significant (p = 0.20). Since none of the

group effects are statistically significant, there is insufficient evidence to conclude that the

groups (testosterone-treated and untreated birds) differ.
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To measure the relationships between the individual fractional polynomial parameters,

we computed the sample covariance matrix using the Stage 1 parameter estimates for

each subject. Specifically, after extracting the estimated values for α0, λ1 and δ2 for each

individual, we used the SAS procedure CORR with the COV option to determine the

covariance matrix shown in Table 7.

Table 7: Covariance matrix of fractional polynomial parameters.

α0 λ0 δ0

α0 3.3715 0.6354 -2.4867

λ0 0.6354 0.1939 -0.5428

δ0 -2.4867 -0.5428 1.9898

The variance of α0 is 3.3715 showing that there is substantial variability in the intercept

parameter across individuals (birds). For the log(time) effect, variance is 0.1939 indicating

less variability in the log(time) between individuals. The variance is 1.9898 for the square-

root(time) suggesting moderate variability in the square-root(time) effect across individuals.

α0 and λ0 have a positive covariance (0.6354) meaning the birds with higher intercepts also

tend to have higher log(time) effects. There is a strong negative covariance between α0 and

δ0 (−2.4867) which indicates that birds with higher intercepts tend to have more negative

square-root(time) effects. Furthermore, λ0 and δ0 have a negative covariance of −0.5428

therefore, birds with higher log(time) effects tend to have more negative square-root(time)

effects.

4.3.2 Model of Van der Linden et al, (2002)

For SI RA:

Table 8: Stage 2 results for the signal intensity of the RA region from the Model of Van

der Linden et al, (2002).

Parameter Effect group Estimate Standard Error Pr > |t|
ϕ Intercept 0.4978 0.0722 0.0001

group 0 -0.0929 0.1020 0.3894

η Intercept 2.6520 0.1676 < .0001

group 0 -0.3945 0.2370 0.1347

τ Intercept 0.3633 0.0292 < .0001

group 0 -0.0185 0.0413 0.6660

The mean estimated maximal signal intensity (ϕ) of the testosterone-treated and control

birds did not differ significantly (difference = −0.0929, p = 0.3894). The estimated mean

maximal signal intensity in the treatment group is 0.4978 whereas the control birds have
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an estimated mean of 0.4049 4. There is no significant difference in the mean estimated

curve shape parameter (η) between the treated and control birds (difference = −0.3945,

p = 0.1347). The control birds have a mean shape parameter estimated at 2.2575 and that

of the treated birds is 2.6520. The mean estimated time to reach half of the maximal signal

intensity in the treated birds is not significantly different from that in the control birds

(difference = 0.0185, p = 0.6660). In the treated birds the mean estimated time to half of

the maximal signal intensity is 0.3633 while in the control birds it is estimated at 0.3488.

This therefore leads to the conclusion that there is no evidence of a difference between the

treated and control birds.

Consider the empirical covariance matrix below to estimate the variance-covariance (D)

matrix. From Table 9, the variance of ϕ (maximal signal intensity) is 0.0255 is relatively

Table 9: Covariance matrix for the Van der Linden model parameters for SI RA

ϕ η τ

ϕ 0.0255 -0.0053 0.0017

η -0.0053 0.1681 -0.00002

τ 0.0017 -0.00002 0.0039

small and this is similar to the variance of the time required to reach half of the maximum

signal intensity (τ) which is estimated at 0.0039. On the other hand, the variance of the

curve shape parameter (η) is much larger, 0.1681, indicating more variability. There is

a slight negative association between ϕ and η (covariance = −0.0053). Furthermore, the

covariance between ϕ and τ is 0.0017 which suggests a weak positive association and there

is essentially no relationship between η and τ (covariance= −0.00002). The matrix above

therefore shows that the variance in the curve shape parameter (η) is much larger than

for the other parameters, and covariances between parameters are small, suggesting that

individual differences in curve shape are the largest source of heterogeneity. Inspection of

the residuals shows that the normality assumption is satisfied despite minor deviations in

the tails, the residual plot can be found in Figure 13 in the appendix.

For SI Area X:

The results in Table 10 show that the average estimated maximal signal intensity for

testosterone-treated birds is 0.2399 and it is statistically significant (p = 0.0001). The

mean estimated maximal signal intensity of the control birds is 0.0992 and there is a signif-

icant difference between the treated and control birds in regards to ϕ (difference = 0.1407,

p = 0.0221). Control birds have a higher mean curve shape parameter (η) (mean = 3.0757)

than testosterone-treated birds (mean = 2.41); however, this difference was not statistically

significant (difference = 0.6652, p = 0.1790). This implies that there is not enough evidence

to draw the conclusion that testosterone treatment alters the curve shape parameter. The

4Φ (control birds) is obtained from: 0.4978-0.0929 = 0.4049
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Table 10: Stage 2 results for the signal intensity in Area X from the model of Van der

Linden et al, (2002).

Parameter Effect group Estimate Standard Error Pr > |t|
ϕ Intercept 0.2399 0.0351 0.0001

group 0 -0.1407 0.0497 0.0221

η Intercept 2.4105 0.3193 < .0001

group 0 0.6652 0.4516 0.1790

τ Intercept 0.4722 0.0445 < .0001

group 0 -0.0314 0.0630 0.6313

estimated average time to half of the maximal signal intensity is 0.4722 and it is statistically

significant (p < 0.0001), this is higher than the value estimated for the control birds (mean

= 0.4408). There is insufficient evidence to support the difference between the treated and

control birds for τ (difference = −0.0314, p = 0.6313).

Table 11: Covariance matrix of parameters from the model of Van der Linden et al, (2002)

for the signal intensity in Area X

ϕ η τ

ϕ 0.0110 -0.0546 0.0068

η -0.0546 0.5761 -0.0375

τ 0.0068 -0.0375 0.0091

The empirical covariance matrix in Table 11 shows that the variance of the maximal signal

intensity is 0.011 and that of the shape parameter and time to half maximal intensity is

0.5761 and 0.0091 respectively. There is a negative association between η and ϕ (−0.0546),

there is also a weak negative association between τ and η, −0.0375. Furthermore, there

is a weak positive association between ϕ and τ (0.0068). From the above matrix we can

conclude there is a substantial variability between individuals in regards to the shape of the

curves. Most subjects have similar peak intensities and the timing to reach half-maximal

intensity due to the low variability of ϕ and τ .

4.4 Bi-exponential model

The bi-exponential model presented multiple numerical and statistical challenges so much

so that there were no conclusive results when it was fitted to all the outcomes (SI RA,

SI HV C, SI Area X). This is because the several optimization techniques employed

failed to converge to a stable solution and also the singularity of the final Hessian matrix

indicating that the model was probably over-parameterized or even misspecified. To combat

these challenges a fixed effects only model was fitted but even then the Hessian matrix was

not positive definite (meaning the solution is a local maximum rather than the desired global
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maximum) therefore rendering the estimates invalid for interpretation. More attempts were

made by including the group (treatment) and random effects on a few of the parameters at

a time not only to establish their importance on each of the model parameters but also to

simplify the model but there was no improvement whatsoever. Iterated optimization was

applied in which a pair of the model parameters were fixed at a time and the remaining

pair was estimated. The newly estimated results were then used to fix the next pair of

parameters. These cycles were repeated several times until the model parameter estimated

were not changing any more but each cycle led to the same convergence issues described

above. All of these findings indicated that this model is not suitable for the data at hand.

This presented an opportunity to explore other possible models that could potentially fit

the data better. This exploration was done using the CurveExpert professional software

[25], the models obtained are reported in the next subsection.

4.5 Other models

4.5.1 Gaussian model

This model was fitted with adaptive Gaussian quadrature (q = 5) and optimization was

done using Newton-Raphson ridge.

Table 12: Parameter estimates of the gaussian model for the signal intensity in the high

vocal center (HVC)

Effect Parameter Estimate Standard Error Pr > |t|
a 2.1609 0.5007 0.0035

b -3.8991 2.2298 0.1238

c 10.8122 1.3574 < 0.0001

ag 0.7173 0.7082 0.3448

bg -1.4175 3.0043 0.6514

cg 30.1986 38.8993 0.4630

Residual SD σ 0.06638 0.0030 < 0.0001

SD(b1i) d1 1.1002 0.2620 0.0040

SD(b2i) d2 4.4678 1.1307 0.0055

SD(b3i) d3 54.1597 14.2809 0.0066

From Table 125, we observe that the average peak height, a in the reference group (control

birds, group = 0) is estimated as 2.1609 and it is statistically significant (p = 0.0035). The

estimated mean peak position, b for the reference group is −3.8991 but there is insufficient

evidence to support this estimate (p = 0.1238). The average spread of the curve is estimated

to be 10.8122 and this is highly significant with a p-value < 0.0001. The group effect on

the amplitude (peak height) is estimated to be 0.7173 and it is not statistically significant

5SD = standard deviation (
√
variance)
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(p = 0.3448). Similarly the group effect on the peak position (mean = −1.4175, p = 0.6514)

and on the spread of the curve (mean = 30.1986, p = 0.4630) are not statistically signifi-

cant, therefore there is no evidence that the treatment affects the amplitude (peak height),

peak position and spread of the curve. The standard deviations of all three random effects

(d1, d2, d3) are significant (p < 0.05), indicating substantial between-individual variability

in amplitude, peak position, and curve spread. The standard deviation of the curve spread

is especially large (p = 0.0066), suggesting that the width of the curve varies greatly among

individuals. The incredibly small and highly significant residual standard deviation (sigma)

indicates that the model describes the data well. This claim is backed by the goodness of fit

plot in Figure 8. Inspection of residuals in Figure 15 shows that the normality assumption

is reasonably fulfilled.

Figure 8: Fitted vs observed curves for the signal intensity in the high vocal center (HVC)

by bird at the second period for the Gaussian model.

4.5.2 Gompertz model

A Gompertz model including random and group effects on all the model parameters was

fit but it did not display a good fit to the data as shown in Figure 9. This inspired a model

reduction procedure in which the group effect was added to each of the model parameters

one at a time in order to establish their relevance in the model. This same process was

repeated for the choice of random effects and the final model without convergence issues
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and a good fit to the data was one that included one random effect and a group effect on

two of the model parameters. It was fitted using non-adaptive Gaussian quadrature (q = 5)

and Newton-Raphson ridge. The estimates of this model are presented in Table 13.

Figure 9: Fitted vs observed curves for the signal intensity in the high vocal center (HVC)

by bird at the second period for the poorly fitting Gompertz model.

The average estimated maximum value for the control (reference) group is 5.3788 and

this estimate is statistically significant (p < 0.0001). The location parameter estimate is

statistically significant with mean = 0.4416 and p−value < 0.0001 in the control birds. The

estimated average growth rate in the reference group is estimated to be −0.0394 and there

is enough evidence to support this outcome (p < 0.0001). There is a significant difference

in the location parameter between the testosterone-treated birds and the untreated birds

(difference = −0.3316, p < 0.0001) with treated birds having a lower estimate, 0.116.

Similarly the group effect on the growth rate is statistically significant with a difference

of −0.0188 and p = 0.04. The standard deviation of the random effect on the location

parameter is estimated as 0.3531 and it is statistically significant (p < 0.0001) indicating

that there are substantial individual differences in the location parameter. The within-bird

(residual) standard deviation is small and statistically significant indicating a good model

fit.

6location parameter estimate of the treated birds, b is given by 0.4416 - 0.3316 = 0.11
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Table 13: Parameter Estimates for the signal intensity in the high vocal center (HVC) from

the Gompertz model

Effect Parameter Estimate Standard Error Pr > |t|
a 5.3788 0.5085 < 0.0001

b 0.4416 0.0585 < 0.0001

c -0.0394 0.0062 0.0001

bg -0.3316 0.0426 < 0.0001

cg -0.0188 0.0078 0.0400

Residual SD σ 0.2099 0.0092 < 0.0001

SD(b1i) d1 0.3531 0.0378 < 0.0001

The plot of fitted versus observed values in Figure 10 and it suggests an acceptable fit of

the model to the data for some of the birds and a poor fit for the other birds. The residuals

were also assessed for normality and Figure 16 shows that most points fall close to the

diagonal reference line, with only slight deviations at the tails, therefore the residuals have

reasonable normality.

Figure 10: Fitted vs observed curves for the signal intensity in the high vocal center (HVC)

by bird at the second period for the Gompertz model.
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4.5.3 Logistic model

A three parameter logistic model was fit with two random effects after a model reduction

procedure similar to what was done in the subsection above (Gompertz model). The model

was fitted using non-adaptive Gaussian quadrature (q = 5) and Newton-Raphson with line

search. The resulting model parameter estimates are shown in Table 14:

Table 14: Parameter Estimates for the signal intensity in the high vocal center from the

logistic model.

Effect Parameter Estimate Standard Error Pr > |t|
a 2.7759 0.0359 < 0.0001

b 0.6264 0.0263 < 0.0001

c 0.0683 0.0154 0.0021

bg -0.0768 0.0148 0.0008

cg -0.0014 0.0174 0.9391

Residual SD σ 0.1804 0.0079 < 0.0001

SD(b1i) d1 0.3371 0.0118 < 0.0001

SD(b2i) d2 0.1983 0.0091 < 0.0001

Table 14 shows that the mean maximum value is estimated to be 2.7759 for the control

birds and there is enough evidence to make this claim. The shape parameter is significant

in the control birds with an estimated mean of 0.6264 and p-value less than 0.0001. The

mean growth rate of the untreated birds is estimated at 0.0683, this value is statistically

significant (p = 0.0021). There is a statistically significant difference in the shape parameter

between the testosterone-treated and untreated birds (difference = −0.0763, p = 0.0008).

The difference in growth rate between the treated and untreated birds is −0.001, this

result is however no statistically significant, p = 0.9391. The estimated standard deviation

of the random effect on the shape parameter is 0.337 with a p-value less than 0.0001

indicating substantial differences in the birds’ shape parameters. There are substantial

differences in the growth rate of the different birds and this is due to the highly significant

estimated standard deviation of the random effect on the growth parameter (SD = 0.198,

p < 0.0001). The residual (within-bird) standard deviation is small and highly significant

(σ = 0.18, p < 0.0001), this result is supported by the plot of fitted versus observed values

in Figure 11. Inspection of the residuals shows that the normality assumption is reasonably

fulfilled in Figure 17.
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Figure 11: Fitted vs observed curves for the signal intensity in the high vocal center (HVC)

by bird at the second period for the logistic model.

4.5.4 Ratkowsky model

A model including the group and random effects on all the model parameters failed to

converge, and this is clearly due to the fact the model is too complex for the data at hand.

To combat this issue the model was simplified by adding the group and random effects

separately to the model parameters and one at a time so that they’re only retained where

absolutely necessary. This process led to three models each with two random effects on a

different pair of model parameters and the group effect on each of the model parameters.

The table below shows the loglikelihood, BIC and AIC values from each of these models

and these were the basis for choosing a final model. The values in Table 15 above indicate

Table 15: Model selection for the Ratkowsky model for SI HV C

Model -2loglik AIC BIC

1 -464.4 -446.4 -443.7

2 -476.5 -458.3 -455.5

3 -233.7 -215.7 -213.0

that model 2 (with random effects on the asymptote and growth rate parameters) offers the

best fit to the data with appropriate complexity given that it has the lowest AIC and BIC.
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Results of this model using adaptive Gaussian quadrature (q = 5) and Newton-Raphson

with line search are shown in Table 16. 7

Table 16: Parameter estimates of the Ratkowsky model for the signal intensity of the high

vocal center, HVC

Effect Parameter Estimate Standard Error Pr > |t|
a 2.5943 0.6018 0.0026

b -0.8200 0.1879 0.0024

c 0.1152 0.1830 0.5466

ag 1.2317 1.0077 0.2564

bg 0.1729 0.4456 0.7080

cg -0.2363 0.2530 0.3777

Residual SD σ 0.07307 0.003374 < 0.0001

SD(b1i) d1 1.3121 0.3204 0.0035

SD(b3i) d3 0.3882 0.1103 0.0079

The asymptote (maximum value) for the reference group (control birds) is estimated to be

2.5943, there is sufficient evidence (p = 0.0026) to support this estimate which means that

the curves of the control birds level off at the point. There is a significant mean estimate

of the curve’s midpoint (mean = −0.82, p = 0.0024), suggesting that the curve rises most

steeply at −0.82. The mean growth rate, c is estimated to be 0.1152 but this estimate is

not statistically significant (p = 0.5466). The difference in the maximum value between the

treated and control birds is estimated at 1.2317, this difference is however not statistically

significant. Similarly, there is a non-significant difference in the curve’s midpoint (mean

= 0.1729, p = 0.7080) and the growth rate (mean = −0.2363, p = 0.3777) between the

testosterone-treated and control birds. The standard deviations of the random effects on the

maximum value (d1 = 1.3121, p = 0.0035) and on the growth rate (d3 = 0.3882, p = 0.0079)

indicate individual differences in their maximum value and how quickly their curves rise

respectively. The residual (within-bird) standard deviation, σ is small and statistically

significant which is an indicator of a good model fit.

7SD = standard deviation (
√
variance)
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Figure 12: Fitted vs observed curves for the signal intensity in the high vocal center (HVC)

by bird at the second period for the Ratkowsky model.

Figure 12 shows the fitted values from the Ratkowsky model plotted against the observed

values of the signal intensity in the high vocal center (HVC) from which we can conclude

that the model fit the data well with appropriate complexity. Figure 18 indicates that the

normality of residuals is acceptable despite the deviations at the tails.
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5 Discussion and Conclusions

The various models that were fitted for the signal intensity in the 3 regions, the high vocal

center, RA and area X all yielded different results and this section provides an overview of

these results. The model of Van der Linden et al, (2002) for the signal intensity in the RA

region indicates that there is a treatment effect which is shown by the significant difference

in the curve shape parameter. There is also evidence of substantial between-bird variability

in their maximal intensity and time to reach half of the maximum intensity. Similarly, the

fractional polynomials model also indicates a treatment effect because of the significance

of the baseline group effect. There is also a difference in the time effects for example the

treatment group has an additional effect over the control group so the increase in SI HV C

with log(time) is steeper in the treatment group and this is the same for the square root

of time. Adaptive Gaussian quadrature and Laplace approximation give different results

from the non-adaptive Gaussian quadrature but since the model employing the adaptive

Gaussian quadrature is a better fitting model, there is therefore no detected treatment

effect and the is supported by the model parameter estimates.

From the two-stage approach of the model of Van der Linden, for the SI RA outcome, there

is no significant group difference in the estimated maximal signal intensity, the curve shape

parameter as well as the time to reach half of the maximum signal intensity. Therefore,

there is no evidence of a treatment effect. For the outcome SI Area X, there is a signifi-

cant group difference in the maximal signal intensity of the control and testosterone-treated

birds. There is, however, insufficient evidence to claim a group effect on the curve shape

parameter as well as on the time required to reach half of the maximal intensity. As dis-

cussed in the above subsection, the bi-exponential model produced no interpretable results

and all attempts to improve its fit were in vain. The Gaussian model showed no treatment

effect on the peak height (amplitude), peak position and the curve spread. This is indicated

by the non-significance of the group effect on each of these parameters. There is however

substantial between-bird variability arising from the spread of the curve suggesting that the

width of the curves varies a lot among the birds. There is evidence of a treatment effect in

the Gompertz model and this is the case because there is significant group differences in the

location parameter as well as in the growth rate and there is also a lot of variability in the

location parameter between the birds. The logistic model indicated a significant difference

in the shape parameter of the two groups but the growth rate was not significantly in the

two groups. However, there is a lot of variability in the shape and growth rate between the

birds. Finally, the Ratkowsky model suggested no treatment effect whatsoever because the

treatment had no effect on the maximum value, the midpoint of the curve and the growth

rate of the birds. The between-bird deviations are quite pronounced in the maximum value

and the growth rate.
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5.1 Possible limitations of the methods used

Even with convergence, each of the approaches applied possesses limitations and some of

these include: Adaptive Gaussian quadrature is computationally more intense because the

quadrature points and weights have to be updated at each iteration of parameter estimation,

this can also take longer. While non-adaptive Gaussian quadrature can be faster since it

skips the extra calculations needed for adaptive centering, this speed comes at the cost of

potentially large errors in parameter estimation. Furthermore, using too few points can

produce inaccurate or unstable estimates, while using many points increases computation

time dramatically. The Laplace method is computationally efficient and often faster than

quadrature, but this comes at the expense of accuracy when the model or data do not meet

its assumptions.

The Newton-Raphson method is sensitive to starting values. Poor starting values can lead

to non-convergence or convergence to local, rather than global, maxima. This method relies

on the calculation and inversion of the Hessian (second derivative) matrix. If the Hessian is

near-singular or not positive definite (which often happens with complex or poorly scaled

models), the algorithm may fail or produce unreliable results. Even with line search, if

the step size is not chosen well, the algorithm can oscillate or take excessively small steps,

slowing convergence. Also, for models with many parameters, repeatedly calculating and

inverting the Hessian can be computationally expensive. In Newton-Raphson ridge, the

ridge modification adds a small value to the diagonal of the Hessian to improve invertibility,

but this can introduce bias into parameter estimates, especially if the ridge parameter is not

chosen carefully. Furthermore, it is only a partial solution because while it can help with

singularity or near-singularity of the Hessian matrix, it does not solve problems related to

poor starting values or convergence to local maxima. Quasi-Newton methods approximate

the Hessian matrix rather than computing it directly. This can lead to slower convergence,

especially for highly non-linear problems like the one we are presented with. Just like

Newton-Raphson, quasi-Newton methods can struggle to converge or may converge to local

optima if starting values are poor. Furthermore, because the Hessian is only approximated,

more iterations are often needed to reach convergence compared to the full Newton-Raphson

method. Also for highly non-linear models or those with complex likelihood surfaces, the

approximation may not be accurate enough, leading to convergence issues or suboptimal

solutions.

Convergence can be hampered by the high sensitivity of non-linear mixed models to ini-

tial values, particularly when little is known about the parameters. For non-linear mixed

models, it is therefore advised to select suitable initial values. In addition to careful initial-

ization, researchers should think about how computational strategies, model complexity,

and estimation techniques interact. As demonstrated throughout this thesis, the choice

of integral approximation and optimization technique can substantially affect both conver-

gence and the reliability of parameter estimates.
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6 Ethical thinking, societal relevance, and stakeholder aware-

ness

6.1 Ethical thinking

Ethical considerations include maintaining integrity and ensuring transparency in all re-

search phases. In this research, the context of the original study along with its objectives

were preserved in order to maintain the integrity of the study. In an effort to ensure trans-

parency, there is clear documentation of all methods, this also enables reproducibility of all

results.

6.2 Societal relevance

This study aims to explore the statistical and computational challenges that arise when

fitting non-linear mixed-effects models and by addressing some of these challenges, this

research increases flexibility and reduces the computational complexity of fitting non-linear

mixed-models. This study also creates better conditions for the success of more in-silico

experiments thereby reducing the need for extensive animal or human testing and hence

minimizing impact on living organisms. Additionally, the methodological contributions of

this research have direct applications in fields such as pharmacokinetics, ecology and many

other real-world problems. The project therefore supports better scientific understanding

and more informed decision-making.

6.3 Stakeholder awareness

Key stakeholders in this research include researchers, data subjects (such as, patients)

and policy makers. Efforts were made to engage with relevant literature to ensure that

the models and methods used were appropriate for the data and research questions at

hand. Researchers stand to gain from the scientific knowledge and exploration of the

challenges that come with fitting non-linear mixed-models. By improving the flexibility

of non-linear mixed-effects models, this project ensures that the patient-level differences

will be understood better and accounted for leading to more precise predictions about the

effects of a drug in different people thereby, supporting personalized medicine and improving

the quality of life of patients. By addressing the numerical and statistical barriers faced

when using NLMMs, policy makers stand to gain from the reliability of predictions and

recommendations which supports evidence-based decisions about societal needs such as

public health interventions.
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7 Ideas for future research

In the future, researchers could look into spline-based models which offer more flexibil-

ity than fractional polynomials to capture complex, non-linear relationships in the data

[26], [27], [28]. Another promising approach is the use of Bayesian methods, which give

researchers a natural framework for quantifying uncertainty in both parameter estimation

and predictions and enable them to incorporate prior information. This contrasts with

conventional frequentist approaches that depend on maximum likelihood estimation and

linearization. Bayesian methods are especially useful when working with very complex

models or small sample sizes [29].
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A Checking the normality of residuals

A.1 Model of Van der Linden, (2002)

This model satisfies the assumption of normality of the residuals.

Figure 13: Normal Q-Q plot of residuals from the model of Van der Linden, (2002) for the

signal intensity in the RA region.

A.2 Fractional Polynomials

Figure 14: Normal Q-Q plot of residuals from the model with fractional polynomials for

the signal intensity in the HVC region.
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A.3 Gaussian model

Figure 15: Normal Q-Q plot of residuals from the Gaussian model for the signal intensity

in the HVC region.

A.4 Gompertz model

Figure 16: Normal Q-Q plot of residuals from the Gompertz model for the signal intensity

in the HVC region.
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A.5 Logistic model

Figure 17: Normal Q-Q plot of residuals from the Logistic model for the signal intensity in

the HVC region.

A.6 Ratkowsky model

Figure 18: Normal Q-Q plot of residuals from the Ratkowsky model for the signal intensity

in the HVC region.
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SAS CODE

/*Van der Linden model*/

libname mydata "C:\Users\chris\OneDrive\Documents\BIOSTAT 2\SEM 2\Thesis\papers

\Songbird data";

data hulp2;

set mydata.vincent03;

if time <= 0 then delete;

if periode = 1 then delete;

run;

proc sort data=hulp2; by vogel; run;

/*For RA*/

proc nlmixed data=hulp2 tech=newrap qpoints=5 MAXITER=1000 cov; /*Adaptive*/

title ’sigmoide voor testosteron’;

parms phim=0.4 eta=2 etadiff=0.5 tau=3 d11=1E-5 sigma2=0.001 d22=1E-5;

teller = (phim + vm) * (time ** (eta + etadiff * groep));

noemer = ((tau + t) ** (eta + etadiff * groep)) + (time ** (eta + etadiff * groep));

gemid = teller/noemer;

model si_ra ~ normal(gemid,sigma2);

random vm t ~ normal([0, 0],[d11,0,d22]) subject=vogel out = mydata.eb;

bounds d11 > 0, d22 > 0, sigma2 > 0;

predict gemid out=pred_nlmixed;

run;

/*normality of residuals*/

data residuals;

set pred_nlmixed;

resid = si_ra - pred;

run;

/*Q-Q plot*/

proc univariate data=residuals normal;

var resid;

qqplot resid / normal(mu=est sigma=est);

title " ";

run;

/*Goodness of fit*/

proc sort data=pred_nlmixed;

by vogel time;
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run;

data pred_nlmixed;

set pred_nlmixed;

label vogel = "Bird";

run;

proc sgpanel data=pred_nlmixed;

panelby vogel / columns=4 rows=3;

series x=time y=Pred / lineattrs=(thickness=2 color=red) name=’fitted’;

scatter x=time y=si_ra / markerattrs=(symbol=circlefilled color=blue size=8) name=’obs’;

colaxis label="Time";

rowaxis label="SI_RA";

title " ";

run;

/* For Area_X*/

proc nlmixed data=hulp2 MAXITER=500 tech=newrap noad qpoints=5;

title ’sigmoide voor testosteron’;

parms phim=0.5 eta=1.5 etadiff=0.5 tau=4 d11=0.01 sigma2=0.01 d22=0.01;

teller = (phim + vm) * (time ** (eta + etadiff * groep));

noemer = ((tau + t) ** (eta + etadiff * groep)) + (time ** (eta + etadiff * groep));

gemid = teller/noemer;

model si_area_x ~ normal(gemid,sigma2);

random vm t ~ normal([0, 0],[d11,0,d22]) subject=vogel out = mydata.eb;

predict gemid out=mydata.predicted_values;

run;

/*Fractional polynomials*/

data hulp2;

set hulp2;

time2=time*time;

time3=time*time*time;

run;

proc nlmixed data=hulp2 maxiter=5000 tech=newrap noad qpoints=5;/*Non-adaptive*/

parms beta0=2.15 beta1=2.41 beta2=-7.91 beta3=5.47

beta0_g=0 beta1_g=0 beta2_g=0 beta3_g=0

d00=0.77 d11=1.10 d22=0.97 d33=1 sigma2=0.015;

linpred = (beta0 + beta0_g * groep)

+ (beta1 + beta1_g * groep) * time

+ (beta2 + beta2_g * groep) * time2

+ (beta3 + beta3_g * groep) * time3
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+ b0 + b1 * time + b2 * time2 + b3 * time3;

model si_hvc ~ normal(linpred, sigma2);

random b0 b1 b2 b3 ~ normal([0,0,0,0], [d00,0,d11,0,0,d22,0,0,0,d33]) subject=vogel;

predict linpred out=fit_diag;

run;

/**Adaptive gaussian quadrature**/

proc nlmixed data=hulp2 maxiter=5000 tech=quanew qpoints=5;/*with groep effect*/

parms beta0=2.15 beta1=2.41 beta2=-7.91 beta3=5.47

beta0_g=0 beta1_g=0 beta2_g=0 beta3_g=0

d00=0.77 d11=1.10 d22=0.97 d33=1 sigma2=0.015;

linpred = (beta0 + beta0_g * groep)

+ (beta1 + beta1_g * groep) * time

+ (beta2 + beta2_g * groep) * time2

+ (beta3 + beta3_g * groep) * time3

+ b0 + b1 * time + b2 * time2 + b3 * time3;

model si_hvc ~ normal(linpred, sigma2);

random b0 b1 b2 b3 ~ normal([0,0,0,0], [d00,0,d11,0,0,d22,0,0,0,d33]) subject=vogel;

predict linpred out=fit_diag;

run;

/*log-sqrt model*/

proc nlmixed data=hulp2 maxiter=5000 tech=newrap qpoints=5;/*adaptive gaussian quadrature*/

title ’Log/Square-root transformation model with group effects’;

parms alpha0=2.0 alpha1=0 lambda0=0.5 lambda1=0 delta0=0.1 delta1=0

d_a=0.1 d_l=0.1 d_d=0.1 sigma2=0.01;

/* Create transformed time variables */

logtime = log(time);

sqrttime = sqrt(time);

linpred = (alpha0 + alpha1*groep + a_i)

+ (lambda0 + lambda1*groep + l_i) * logtime

+ (delta0 + delta1*groep + d_i) * sqrttime;

model si_hvc ~ normal(linpred, sigma2);

random a_i l_i d_i ~ normal([0,0,0], [d_a,0,d_l,0,0,d_d]) subject=vogel;

predict linpred out=fit_diag_logsqrt;

run;

data fit_diag_logsqrt;

set fit_diag_logsqrt;
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label vogel = "Bird";

run;

/* Plot fitted and observed values *//*good fit*/

proc sgpanel data=fit_diag_logsqrt;

panelby vogel / columns=4 rows=3;

scatter x=time y=SI_HVC;

series x=time y=pred / lineattrs=(color=red thickness=2);

rowaxis label="HVC";

colaxis label="Time";

title " ";

run;

/*normality of residuals*/

data residuals;

set fit_diag_logsqrt;

resid = si_hvc - pred;

run;

/*Q-Q plot*/

proc univariate data=residuals normal;

var resid;

qqplot resid / normal(mu=est sigma=est) nolegend odstitle="Normal Q-Q Plot of Residuals";

run;

/**FINAL GAUSSIAN MODEL**/

proc nlmixed data=hulp2 maxiter=5000 tech=nrridg qpoints=5 cov;

*proc nlmixed data=hulp2 maxiter=1000 tech=newrap qpoints=5 cov;

parms a=1 b=3 c=1 sigma=0.5 d1=0.1 d2=0.1 d3=0.1 ag=0 bg=0 cg=0;

pred = (a+ag*groep+b1) * exp(-(time - (b+bg*groep+b2))**2 / (2*((c*c)+cg*groep+b3)));

model SI_HVC ~ normal(pred, sigma**2);

random b1 b2 b3 ~ normal([0,0,0], [d1*d1,0,d2*d2, 0,0, d3*d3]) subject=vogel;

predict pred out=gaussfit_hvc;

run;

data gaussfit_hvc;

set gaussfit_hvc;

label vogel = "Bird";

run;

/*Goodness of fit check*/

proc sgpanel data=gaussfit_hvc;/*good fit**/

panelby vogel / columns=4 rows=3;

scatter x=time y=SI_HVC;
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series x=time y=pred / lineattrs=(color=red thickness=2);

rowaxis label="HVC";

colaxis label="Time";

title " ";

run;

/*normality of residuals*/

data residuals;

set gaussfit_hvc;

resid = si_hvc - pred;

run;

/*Q-Q plot*/

proc univariate data=residuals normal;

var resid;

qqplot resid / normal(mu=est sigma=est) nolegend odstitle="Normal Q-Q Plot of Residuals";

run;

/*FINAL RATKOWSKY MODEL*/

proc nlmixed data=hulp2 maxiter=5000 tech=newrap qpoints=5;

parms a=0.3 b=1 c=1 sigma=0.5 d1=0.1 d3=0.1 ag=0.3326 cg=-0.3502 bg=-0.01625;

pred = (a+ag*groep + b1) / (1 + exp((b+bg*groep) - (c+cg*groep + b3)*time));

model SI_HVC ~ normal(pred, sigma**2);

random b1 b3 ~ normal([0,0],[d1*d1,0,d3*d3]) subject=vogel;

predict pred out=logistic_fit;

run;

/*Goodness of fit check*/

data logistic_fit;

set logistic_fit;

label vogel = "Bird";

run;

proc sgpanel data=logistic_fit;

panelby vogel / columns=4 rows=3;

scatter x=time y=SI_HVC;

series x=time y=pred / lineattrs=(color=red thickness=2);

rowaxis label="HVC";

colaxis label="Time";

title " ";

run;

/*normality of residuals*/

data residuals;
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set logistic_fit;

resid = si_hvc - pred;

run;

/*Q-Q plot*/

proc univariate data=residuals normal;

var resid;

qqplot resid / normal(mu=est sigma=est) nolegend odstitle="Normal Q-Q Plot of Residuals";

run;

/**Final Gompertz model**/

proc nlmixed data=hulp2 maxiter=10000 tech=nrridg noad qpoints=5;

parms a=1 b=1 c=1 sigma=0.5 bg=0 cg=0 d1=0.1;

pred = a * exp(-exp((b+bg*groep+b1) - (c+cg*groep)*time));

model SI_HVC ~ normal(pred, sigma**2);

random b1 ~ normal([0],[d1*d1]) subject=vogel;

predict pred out=gompertz_fit;

run;

/*Goodness of fit*/

data gompertz_fit;

set gompertz_fit;

label vogel = "Bird";

run;

proc sgpanel data=gompertz_fit;

panelby vogel / columns=4 rows=3;

scatter x=time y=SI_HVC;

series x=time y=pred / lineattrs=(color=red thickness=2);

rowaxis label="HVC";

colaxis label="Time";

title " ";

run;

/*normality of residuals*/

data residuals;

set gompertz_fit;

resid = si_hvc - pred;

run;

/*Q-Q plot*/

proc univariate data=residuals normal;

var resid;
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qqplot resid / normal(mu=est sigma=est) nolegend odstitle="Normal Q-Q Plot of Residuals";

run;

/*FINAL LOGISTIC MODEL*/

proc nlmixed data=hulp2 maxiter=5000 tech=newrap noad qpoints=5;

parms a=2.5 b=1 c=0.5 bg=0 cg=0 sigma=0.5 d1=0.1 d2=0.1;

pred = a / (1 + (b+bg*groep+b1) * exp((-c+cg*groep+b2) * time));

model SI_HVC ~ normal(pred, sigma**2);

random b1 b2 ~ normal ([0,0], [d1*d1,0,d2*d2]) subject = vogel;

predict pred out=logistic_fit;

run;

/*Goodness of fit*/

data logistic_fit;

set logistic_fit;

label vogel = "Bird";

run;

proc sgpanel data=logistic_fit;

panelby vogel / columns=4 rows=3;

scatter x=time y=SI_HVC;

series x=time y=pred / lineattrs=(color=red thickness=2);

rowaxis label="HVC";

colaxis label="Time";

title " ";

run;

/*normality of residuals*/

data residuals;

set logistic_fit;

resid = si_hvc - pred;

run;

/*Q-Q plot*/

proc univariate data=residuals normal;

var resid;

qqplot resid / normal(mu=est sigma=est) nolegend odstitle="Normal Q-Q Plot of Residuals";

run;

/*TWO-STAGE APPROACHES*/

/*CUBIC POLYNOMIAL MODEL*/

proc nlin data=hulp2 method=marquardt;

by vogel;
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parms beta0=2.15 beta1=2.41

beta2=-7.91 beta3=5.47;

pred = beta0

+ beta1*time

+ beta2*time**2

+ beta3*time**3;

model si_hvc = pred;

ods output ParameterEstimates=Stage1_Params;

run;

/***********STAGE 2*************/

proc transpose data=Stage1_Params

out=BirdParams(drop=_NAME_)

prefix=beta_;

by vogel;

id Parameter;

var Estimate;

run;

proc sort data=hulp2(keep=vogel groep) nodupkey; by vogel; run;

data BirdParams;

merge BirdParams hulp2(keep=vogel groep);

by vogel;

run;

proc print data=BirdParams (obs=10); run;

/*Fit linear model to the parameter estimates*/

proc mixed data=BirdParams;

class groep;

model beta_beta0 = groep / solution;

run;

proc mixed data=BirdParams;

class groep;

model beta_beta1 = groep / solution;

run;

proc mixed data=BirdParams;

class groep;

model beta_beta2 = groep / solution;

run;

proc mixed data=BirdParams;

class groep;

model beta_beta3 = groep / solution;
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run;

/* Compute the 4×4 covariance and correlation matrices */

proc corr data=BirdParams cov outp=CovCorr noprint;

var beta_beta0 beta_beta1 beta_beta2 beta_beta3;

run;

proc print data=CovCorr noobs label;

where _TYPE_ = ’COV’;

var beta_beta0 beta_beta1 beta_beta2 beta_beta3;

title "Covariance Matrix of Bird-Level Parameters";

run;

/**FRACTIONAL POLYNOMIAL MODEL**/

/*Stage 1 no group effect*/

proc nlin data=hulp2 method=marquardt;

by vogel; /* one fit per bird */

parms alpha0=2.0 lambda0=0.5 delta0=0.1;

logtime = log(time);

sqrttime = sqrt(time);

pred = alpha0 + lambda0*logtime + delta0*sqrttime;

model si_hvc = pred;

ods output ParameterEstimates=Stage1_Params;

run;

/***********STAGE 2*************/

proc transpose data=Stage1_Params out=BirdParams(drop=_NAME_);

by vogel;

id Parameter;

var Estimate;

run;

proc sort data=hulp2(keep=vogel groep) nodupkey; by vogel; run;

data BirdParams;

merge BirdParams hulp2(keep=vogel groep);

by vogel;

run;

/*Fit linear model to the parameter estimates*/

proc mixed data=BirdParams;

class groep;

model alpha0 = groep / solution;

run;
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proc mixed data=BirdParams;

class groep;

model lambda0 = groep / solution;

run;

proc mixed data=BirdParams;

class groep;

model delta0 = groep / solution;

run;

proc corr data=BirdParams cov outp=Covariance noprint;

var alpha0 lambda0 delta0;

run;

proc print data=Covariance;

run;

/***MODEL FOR RA (Model of Van der Linden)***/

/*Stage 1 no groep effect*/

proc nlin data=hulp2 method=marquardt;

by vogel;

parms phim=0.4 eta=2 tau=3;

pred = (phim) * (time**(eta))

/ ((tau)**(eta) + time**(eta));

model si_ra = pred;

ods output ParameterEstimates=Stage1_Params;

run;

/*Stage 2*/

proc transpose data=Stage1_Params out=Stage1_wide prefix=param_;

by vogel;

id Parameter;

var Estimate;

run;

data Stage1_analysis;

merge Stage1_wide (in=a)

hulp2 (keep=vogel groep);

by vogel;

if a;

run;

proc mixed data=Stage1_analysis; class groep; model param_phim = groep / solution;run;

proc mixed data=Stage1_analysis; class groep; model param_tau = groep / solution;run;

run;
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/*Bi-exponential model*/

/*For SI_Area_X */

proc nlmixed data=hulp2 maxiter=500 method=firo qpoints=5 noad;

parms beta1=0.5 beta2=0.0 beta3=-0.5 beta4=0 sigma=0.7 beta6=0 beta8=0

d3=0.1 d4=0.1;

pred = exp(beta1) * exp(-exp(beta2) * time)

+ exp(beta3+beta6*groep+b3) * exp(-exp(beta4+beta8*groep+b4) * time);

model SI_Area_X ~ normal(pred, sigma**2);

random b3 b4 ~ normal([0,0], [d3*d3,0,d4*d4]) subject=vogel;

run;

proc nlmixed data=hulp2 maxiter=500 method=firo qpoints=5 noad;

parms beta1=0.5 beta2=0.0 beta3=-0.5 beta4=0 sigma=0.7 beta5=0 beta6=0

d3=0.1 d1=0.1;

pred = exp(beta1+beta5*groep+b1) * exp(-exp(beta2) * time)

+ exp(beta3+beta6*groep+b3) * exp(-exp(beta4) * time);

model SI_Area_X ~ normal(pred, sigma**2);

random b1 b3 ~ normal([0,0], [d1*d1,0,d3*d3]) subject=vogel;

run;

/*For HVC*/

proc nlmixed data=hulp2 maxiter=500 method=firo qpoints=5 noad;

parms beta1=0.5 beta2=0.0 beta3=-0.5 beta4=0 sigma=0.7 beta6=0 beta8=0

d3=0.1 d4=0.1;

pred = exp(beta1) * exp(-exp(beta2) * time)

+ exp(beta3+beta6*groep+b3) * exp(-exp(beta4+beta8*groep+b4) * time);

model SI_HVC ~ normal(pred, sigma**2);

random b3 b4 ~ normal([0,0], [d3*d3,0,d4*d4]) subject=vogel;

run;

proc nlmixed data=hulp2 maxiter=500 method=firo qpoints=5 noad;

parms beta1=0.5 beta2=0.0 beta3=-0.5 beta4=0 sigma=0.7 beta5=0 beta6=0

d3=0.1 d1=0.1;

pred = exp(beta1+beta5*groep+b1) * exp(-exp(beta2) * time)

+ exp(beta3+beta6*groep+b3) * exp(-exp(beta4) * time);

model SI_HVC ~ normal(pred, sigma**2);

random b1 b3 ~ normal([0,0], [d1*d1,0,d3*d3]) subject=vogel;

run;

/*For RA*/
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proc nlmixed data=hulp2 maxiter=500 method=firo qpoints=5 noad;

parms beta1=0.5 beta2=0.0 beta3=-0.5 beta4=0 sigma=0.7 beta6=0 beta8=0

d3=0.1 d4=0.1;

pred = exp(beta1) * exp(-exp(beta2) * time)

+ exp(beta3+beta6*groep+b3) * exp(-exp(beta4+beta8*groep+b4) * time);

model SI_RA ~ normal(pred, sigma**2);

random b3 b4 ~ normal([0,0], [d3*d3,0,d4*d4]) subject=vogel;

run;

proc nlmixed data=hulp2 maxiter=500 method=firo qpoints=5 noad;

parms beta1=0.5 beta2=0.0 beta3=-0.5 beta4=0 sigma=0.7 beta5=0 beta6=0

d3=0.1 d1=0.1;

pred = exp(beta1+beta5*groep+b1) * exp(-exp(beta2) * time)

+ exp(beta3+beta6*groep+b3) * exp(-exp(beta4) * time);

model SI_RA ~ normal(pred, sigma**2);

random b1 b3 ~ normal([0,0], [d1*d1,0,d3*d3]) subject=vogel;

run;
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