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Abstract

Understanding the composition of the female microbiome and its link to external factors is

important to promote reproductive and maternal health. While several works have linked

the vaginal microbiome with infertility and external factors, direct comparative studies

between subfertile and healthy women remain scarce. This limits understanding of the

microbiome-driven mechanisms of fertility issues. In this study, a comparative analysis

was done on the alpha diversity and taxon abundance in the vaginal microbiome of sub-

fertile women who are currently undergoing fertility treatment (“subfertile group”) with

those who do not have reproductive and fertility issues (“healthy group”) and with those

who had once initiated a fertility program (“benchmark group”). It also assessed the link

between external factors to the microbiome composition. Linear regression models of the

Shannon index and Chao1 index were fitted to assess differences in alpha diversity between

groups, adjusted for age, body mass index (BMI), smoking status, birth method, and hours

of sleep. Analyses of Compositions of Microbiomes with Bias Correction (ANCOM-BC)

were also performed to identify differentially abundant taxa and factors associated with the

abundance of specific taxa. The results revealed that the three groups have a low Shannon

index, which can be attributed to the dominance of the Lactobacillus species. The sub-

fertile group has reduced microbial richness (Chao1 index) compared to the healthy and

benchmark group. For women in the same group, the effect of age, BMI, and hours of

sleep on the Shannon index and Chao1 index were small, which may not be indicative of

a biologically relevant shift in alpha diversity. The study also found that smoking and the

birth method have no significant effect on alpha diversity. In terms of microbiome com-

position, subfertile women exhibited lower abundance of Lactobacillus jensenii and higher

abundance of Lactobacillus gasseri and Lactobacillus crispatus than the healthy group. In

comparison with the benchmark group, subfertile women showed higher abundance of Lac-

tobacillus crispatus, Lactobacillus gasseri, and Lactobacillus iners. These findings suggest

that different Lactobacillus species may be differentially associated with reproductive sta-

tus, highlighting the complexity of microbial influences on fertility. The results also suggest

a significant association between the abundance of at least one Lactobacillus species and

external factors, namely age, BMI, hours of sleep, and alcohol intake for subfertile women.

These factors may be considered when designing targeted interventions or personalized

fertility treatment. This study acknowledges certain limitations, including the absence of

potentially important variables that could influence microbiome diversity and abundance.

Moreover, the goal of the study was not to identify specific biomarkers of infertility, but to

explore the associations between fertility status, external factors, and vaginal microbiome

composition.

Keywords: infertility, vaginal microbiome, alpha diversity, differential abundance
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1 Introduction

1.1 Background

The human body is composed of microbiota that play a crucial role in maintaining normal

body functions, the immune system, and overall health conditions. Microbiota refers to the

collection of microorganisms, such as bacteria, fungi, archaea, viruses, and parasites, that

live within the human body. Microbiota is used interchangeably with microbiome, which

encompasses the entire ecosystem in which these organisms exist, including their genetic

material and environmental conditions (Del Campo-Moreno et al., 2018). These microor-

ganisms can be found in the oral cavity, skin, gastrointestinal tract, and reproductive tract,

among others. Their function includes synthesizing essential vitamins, breaking down food

to extract nutrients, improving the immune system function, and producing beneficial anti-

inflammatory compounds that prevent diseases (Moreno et al., 2018).

In a woman’s body, specifically, the genital tract is composed of microbiota that are essential

for reproductive and maternal health (F. Liu et al., 2021, Chen et al., 2017). The repro-

ductive tract of women is dominated by Lactobacillus species, which include L. crispatus,

L. jensenii, L. gasseri, and L. iners. These species are considered pivotal in maintaining

a healthy vaginal environment. Lactobacillus species secrete metabolic by-products in cer-

vicovaginal fluid that help protect against pathogens and infections (Petrova et al., 2015).

They help break down glycogen to lactic acid that reduces vaginal pH. This acidic environ-

ment makes it difficult for opportunistic pathogens to thrive, thereby preventing various

vaginal infections (Pagar et al., 2024, Zaino et al., 1994). Reports show that a low amount

of L. crispatus and colonization of Streptococcus agalactiae is linked to premature birth

(Fettweis et al., 2019, Son et al., 2018, Haque et al., 2017). Reduced abundance of Lacto-

bacillus species and presence of Gardnerella vaginalis and Atopobium vaginae characterizes

bacterial vaginosis, a common vaginal infection in women of reproductive age caused by an

imbalance of bacteria in the vagina (Shipitsyna et al., 2013). Bacterial vaginosis can in-

crease the risk of pelvic inflammatory disease, miscarriage, and premature birth (Bradshaw

and Sobel, 2016).

Recent studies have also linked the vaginal microbiome with infertility and external fac-

tors. Infertility, also termed subfertility, is characterized by the inability to conceive after

at least 12 months of regular, unprotected sexual activity (World Health Organization,

2023). Among the possible causes of infertility are disorders of the reproductive health sys-

tem (e.g., blocked fallopian tubes, endometriosis, polycystic ovarian syndrome or PCOS),

hormonal imbalance, or lifestyle factors (e.g., smoking, obesity, alcohol intake). Various re-

search has also described infertile women in terms of their microbiome composition. Women

with fertility issues were characterized with reduced microbiome diversity, lower levels of

Lactobacillus, and higher abundance of Atopobium, Aerococcus, and Bifidobacterium (Zhao
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et al., 2020). Another study of women who underwent in vitro fertilization (IVF) treat-

ment showed that a low level of Lactobacillus, a high level of Proteobacteria, and presence

Gardnerella vaginalis are associated with a low pregnancy rate, while a high abundance of

Lactobacillus crispatus is linked with a higher chance of getting pregnant (Koedooder et al.,

2019). Differences in microbiome composition have been associated with age, estrogen level,

personal hygiene practices, and antimicrobial medications (Lehtoranta et al., 2022). Body

mass index, hours of sleep, and smoking were also found to have a significant association

with the diversity of the vaginal microbiome (Lebeer et al., 2022). Furthermore, drinking

alcohol, smoking, and being exposed to psychosocial stress were linked with an increased

risk of having bacterial vaginosis (Morsli et al., 2024).

Despite existing research, direct comparative studies between subfertile and healthy women

remain scarce. Most of them focused on the characterization of infertile women, while some

have healthy controls with a few samples. This limits understanding of the microbiome-

driven mechanisms of fertility issues. In this thesis, the primary interest is to compare the

microbiome profiles of subfertile and healthy women, and to identify the external factors

associated with the vaginal microbiome profiles of these two groups. Data from subfertile

women came from the FLORA Project, a prospective clinical trial at the Brussels Uni-

versity Hospital (UZ Brussel) in Belgium, in collaboration with the University of Antwerp

(UAntwerp). The FLORA project aims to investigate the role of the microbiota in fertility

and its impact on IVF outcomes. It includes subfertile women currently undergoing IVF

treatment at UZ Brussel. Meanwhile, data from a healthy cohort came from the Isala

Project, a citizen science project by UAntwerp. The Isala Project also involved women

who had once initiated the fertility program due to their or their partner’s reduced fertility

(with a known or unknown cause), among other reasons. This cohort was also used to

benchmark the microbiome profile of subfertile women in the FLORA Project, which is the

secondary objective of this thesis.

1.2 Research questions

Using the FLORA and Isala Project dataset, this study aims to answer the following re-

search questions:

1. Are the microbiome profiles (i.e., alpha diversity and abundance of specific genera)

of subfertile women different from those of healthy women?

2. Are the microbiome profiles of subfertile women different from those who had once

initiated a fertility program?

3. What are the external factors associated with women’s microbiome profiles?

2



1.3 Relevance, stakeholders, and ethics

Understanding the composition of the female microbiome and its link to external factors

is essential in advancing reproductive and maternal health. By directly comparing the mi-

crobiome profiles of healthy and subfertile women, this thesis contributes to the growing

body of research aimed at identifying patterns in microbiome composition and its associ-

ation with subfertility. Although the causal link between specific vaginal microbiota and

infertility remains unclear, this study provides evidence-based findings that may support

existing studies or provide another perspective. By specifying the unique characteristics of

subfertile women and how they are influenced by external factors, this research may provide

insights on disease prevention and potential reproductive health intervention, among others.

The Isala and FLORA project are initiatives that were made possible through stakeholder

collaboration. They involved women volunteers who generously provided their personal and

sensitive data to serve the project goals, i.e., to better understand the vaginal microbiome

and fertility. Behind these projects are experts and researchers in the field of health, mi-

crobiology, epidemiology, and gynecology, among others, who play a crucial role in study

design and implementation. This thesis aims to benefit these groups by providing a mean-

ingful statistical analysis of microbiome data and its link to reproductive health status and

external influences. The findings of this study may also be used to guide the formulation

of the study design for targeted-interventional studies or personalized fertility treatment.

The output of this thesis contributes to existing studies that can be used by other students

and data analysts doing similar research. Most importantly, this study may also benefit

women of reproductive age and their family by knowing the factors that could help maintain

balance in the genital flora and improve their reproductive health and fertility treatment

outcomes.

In terms of ethical consideration, the Isala project was conducted in accordance with

the Declaration of Helsinki, and approved by the Ethics Committee of UZ Brussel/VUB

(1432022000115, approved on 5 July 2022). The FLORA project also followed the same

ethical principle. The Declaration of Helsinki, developed by the World Medical Association,

outlines the ethical guidelines for conducting medical research involving human subjects.

It emphasizes (i) protection of the health, safety, and well-being of human subjects; (ii)

informed consent; (iii) privacy and confidentiality of information; (iv) special protection for

vulnerable individuals; and (v) conformity of research to generally accepted scientific prin-

ciples (World Medical Association, 2013). Both the Isala and FLORA projects collected

data with the informed consent of the participants. The Isala project obtained a digital

informed consent, while the FLORA project used Institutional Review Board-approved in-

formed consent forms administered in a clinic. The Isala project provided volunteers with

all the necessary support and materials to ensure informed and safe participation. This

3



includes sampling kits, brochures, and instructional videos to facilitate the self-sampling,

storage, and transport of vaginal swabs. Meanwhile, the FLORA project followed standard

clinical practice, avoiding discomfort to patients during vaginal swabs. It also ensured that

the procedures do not require anaesthetic, interfere with the fertility treatment, or involve

any additional costs to the patients. Both projects ensured strict data confidentiality. Only

study staff, the Ethics Committee, and health authorities have access to the medical record

and information of the participants. Both projects strictly implemented the non-disclosure

of the name and any data related to the identity of participants. The project investiga-

tors used sample identification numbers or codes to replace the participant’s name prior

to transmitting the collected data to the database manager. The organizations behind the

projects also recognized and followed the European General Data Protection Regulation

(GDPR) in the collection, storage, processing, and protection of personal data of partici-

pants.

The datasets from the Isala and FLORA projects were shared with Hasselt University with

patient anonymity. All data were handled and processed with strict confidentiality. The

information gathered from the participants was used solely for the purposes of this thesis.

Statistical analyses were carried out with integrity, ensuring accuracy and transparency in

the reporting of findings to the best of the author’s ability. Relevant previous studies were

appropriately cited to acknowledge existing research and support the current work.
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2 Data description

In March 2020, UAntwerp opened a call for women volunteers at least 18 years old and

not pregnant to be part of the Isala Project, a citizen science project that aims to better

understand vaginal microbiome and its association with external factors. After obtaining a

digital informed consent, volunteers answered an extensive questionnaire about their back-

ground information. Sampling kits were sent to them and they self-collected vaginal swabs

in a standardized way (Lebeer et al., 2022). These samples were sent to UAntwerp for

laboratory analysis. The raw dataset of the Isala project consists of 3,349 respondents. To

extract only healthy women from the dataset, exclusion criteria were applied (Appendix

A). These criteria include having endometriosis or polycystic ovary syndrome (PCOS), ini-

tiated fertility program, and with diabetes or hematologic disorder. Respondents who are

currently breastfeeding, had antibiotic treatment in the past three months, and currently

using/used contraception were also excluded, as these could already have influenced their

microbiome composition. The final dataset for the healthy group also does not include

respondents who are older than 46 years to make it comparable to those of the FLORA

Project. Of the original 3,349 respondents, the sample size was reduced to 390. This rep-

resents the “healthy group” in the subsequent analyses. A separate group (not included in

the 390 samples) was also determined from the Isala project comprising the 146 women who

reported that a fertility program was once initiated for them. This represents the “bench-

mark group” in this study and was also compared with women in the FLORA project.

Meanwhile, the FLORA project aims to include 1,000 patients undergoing diagnostic hys-

teroscopy prior to their IVF treatment in UZ Brussel. In February 2025, the project had

gathered the data from 353 patients, which represent the “subfertile group” in this study.

Their demographic profiles were collected through a questionnaire and registered in an elec-

tronic system by a study nurse. Table 1 summarized the variables from the questionnaire

that were used in the analysis of alpha diversity and differential abundance in the subse-

quent sections. Vaginal swabs were also collected from these patients in UZ Brussel and

analyzed in UAntwerp.

Both projects have separate datasets on patient’s microbiome samples (i.e., Operational

Taxonomic Units). This is based on 16S rRNA amplicon sequencing conducted by the

UAntwerp. The raw count datasets of the healthy group and the benchmark group contain

285 and 260 unique taxa at the genus level, respectively, while the FLORA Project has 151

unique taxa. Prior to data analysis, data filtering was performed for the three groups. A

prevalence cut-off of 1% was imposed for both the Isala and FLORA datasets to filter out

possible contaminants and non-informative taxa. This retained only taxa that are present

in at least 1% of the samples.
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Table 1: Selected variables from the Isala and FLORA datasets

Variable Project Description

age Isala and FLORA age in years

BMI Isala and FLORA body mass index categorized into 1-normal

(ranging from 18.5 to 25)1, 0-otherwise

smoking Isala and FLORA 1-yes, 0-no

sleep Isala Hours spent sleeping, 0 if from 3 to 6.5;

1 if from 6.5 to 9; and 2 if from 9 to 12 hours

FLORA Originally collected as actual number of hours,

but recoded following the Isala dataset

born Isala and FLORA Method how the respondent was born,

1-natural means (i.e., vaginal birth), 0-caesarean section

fermented food Isala Frequency of consuming fermented food, alcohol,

alcohol and sweet beverages in the past 3 months (0-never,

sweet beverages 1-seldom, 2-monthly, 3-weekly, 4-more than three times

a week, 5-daily, 6-multiple times a day)

bread FLORA 1-eating dark bread, white bread, or sourdough bread,

0-not eating bread

alcohol FLORA number of glasses consumed in a week

soft drinks FLORA number of glasses consumed in a week

3 Methodology

3.1 Comparison between subfertile and healthy women

The primary objective of this study is to compare subfertile group (from the FLORA

project) with healthy group (from the Isala project), and identify external factors associ-

ated with their microbiome profiles. The comparison was done through data visualization,

estimation of alpha diversity, and analysis of differential abundance.

3.1.1 Data exploration

Exploratory data analysis was done to assess the distribution of patients according to char-

acteristics, namely, age, body mass index, smoking habit, hours of sleep, and birth method.

Data visualization was done to identify the most abundant taxa for the subfertile and

healthy groups. This is based on the relative abundance, which is defined as the proportion

of the observed count of a specific taxon and the total observed count in a sample.

1The WHO considers BMI less than 18.5 as underweight and above 25 as overweight among adults.

(World Health Organization, 2025)
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Alpha diversity, a measure of richness and evenness of species within a sample, was esti-

mated using the Shannon diversity index.

H ′
i = −

R∑
j=1

pij ln pij (1)

where H ′
i is the Shannon index for sample i, R is the number of unique taxa in sample i,

pij is the proportion of the jth taxon to the total observed count for sample i.

Species richness was also measured using Chao1 index:

SChao1 = Sobs +
n1(n1 − 1)

2(n2 + 1)
(2)

where SChao1 is the estimated number of species, Sobs is the observed total number of genera

in a sample, n1 is the number of singletons, and n2 is the number of doubletons. Singletons

are genera with counts equal to one in a sample, while doubletons have counts equal to two

(Chao, 1987).

3.1.2 Modeling of the alpha diversity

The subfertile and healthy groups were compared based on their Shannon index and Chao1

index. One common statistical test to determine whether two groups are different is the

t-test. However, in the presence of confounders, a linear regression model is deemed more

appropriate. Confounders are variables that affect both the response variable and the

covariate of interest, and they should be accounted for in the analysis. Confounding can

distort the true or potential outcome-exposure relationship. Failing to account or recognize

the confounding effect may result in invalid estimate of causal effect or false conclusion.

Therefore, to test whether the alpha diversity of the subfertile group is different from that

of the healthy group, the following linear regression model was fitted using the merged

datasets of the two groups.

yi = β0+β1Groupi+β2Agei+β3BMIi+β4Smokingi+β5Sleep1i+β6Sleep2i+β7Borni+ϵi (3)

where yi is the alpha diversity measure (Shannon index, Chao1 index) for sample i, i = 1,

2,...,743; βs are the regression coefficients; Groupi is the dummy variable for the group to

which sample i belongs, i.e., 1 for healthy group and 0 for subfertile group; ϵi is the error

term, assumed to be normally distributed with mean 0 and variance σ2. While Groupi is

the main covariate of interest, age (in years), BMI (1-normal, 0-otherwise), and smoking

(1-yes, 0-no) were also included in the model as confounders (Figure 1). Confounders in this

study were identified based on existing literature. Studies have shown that age, smoking,

and BMI influence both the alpha diversity and fertility (Bayoumi et al., 2024, Darıcı et al.,
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2025, Lebeer et al., 2022). The effect of two other variables, namely, being born through

natural means and number of hours spent sleeping in a day were likewise explored to make

use of the variables that are common and measured similarly in both datasets. Sleep1i is

1 if the hours spent sleeping is between 6.5 and 9 hours, 0 otherwise. Sleep2i is 1 if the

hours spent sleeping is between 9 and 12 hours, 0 otherwise. Borni is 1 if born through

natural means (vaginal birth), 0 if through caesarean section. A model with all possible

interaction terms between the group and each of the other variables was initially explored.

The final model was determined after removing insignificant interaction terms and model

diagnostics.

Figure 1: Directed acyclic graph of variables in alpha diversity model

3.1.3 Differential abundance analysis

In microbiome data analysis, the compositional effect is observed when changes in the

absolute abundance of certain taxa in relation to covariates cause a shift in the relative

abundance of all other taxa. As a result, the use of standard statistical methods that do

not account for the compositionality in the data can lead to high false discovery rates. One

of the recently developed approaches that accounts for this issue is the Analysis of Com-

positions of Microbiomes with Bias Correction or ANCOM-BC (Lin and Peddada, 2020).

Unlike other differential abundance analysis methods, ANCOM-BC takes into account the

sampling fraction in the normalization of the data, instead of relying solely on the library

size. Failing to account for differences in the sampling fraction can lead to bias and a false

conclusion that taxa are not differentially abundant (Lin and Peddada, 2020). ANCOM-BC

results also include the analysis of sensitivity to pseudo-count addition. Previous studies

have found that the choice of pseudo-counts could influence the results of differential abun-
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dance analysis leading to an increased rate of false positives. To avoid this, ANCOM-BC

performs pseudo-count sensitivity analysis. Prior to log transformation of observed counts,

ANCOM-BC considers pseudo-count values of 0.1, 0.5, and 1 for zero counts. It computes

the sensitivity score based on the proportion of times the adjusted p-value exceeds a spec-

ified significance level. A taxon is regarded as insensitive to the pseudo-count addition if

the taxon’s adjusted p-values consistently indicate either significance or non-significance

across various pseudo-count adjustments and align with the results from the complete data

(i.e., without pseudo-count addition). Lin and Peddada (2022) strongly recommended also

taking into consideration the results of the sensitivity analysis in the final assessment of

significance. ANCOM-BC uses a log-linear model formulated as follows:

yijk = dik + ujk + ϵijk (4)

where yijk is the log of the read count of the jth taxon of the ith sample in the kth group;

dik is the log of the sampling fraction in the ith sample from the kth group. Lin and Ped-

dada (2020) defined sampling fraction as “the ratio of the expected absolute abundance to

the corresponding absolute abundance in the ecosystem, which could be empirically esti-

mated by the ratio of library size to the microbial load”;

ujk is the log of the expected absolute abundance of the jth taxon in the kth group; and

ϵijk is the error term, assumed to be independently distributed with mean 0 and het-

eroskedastic variance

In this thesis project, ANCOM-BC was utilized to identify differentially abundant taxa

and factors associated with taxon abundance in the subfertile and healthy group. First,

ANCOM-BC was performed using the merged dataset of the Isala and FLORA project,

adjusting for the group variable (1=healthy, 0=subfertile) and confounders (i.e., age, BMI,

smoking). This was done to identify which taxa are differentially abundant between groups.

Second, ANCOM-BC was performed separately for the two groups, adjusting for eight

covariates. Similar to the alpha diversity model, age, BMI, smoking, being born through

natural means, and hours of sleep were considered as covariates. In addition, the effect of

dietary habits, namely consumption of fermented food, alcoholic beverages, and soft drinks,

was also of interest. However, information on these variables was measured differently for

the subfertile and healthy group. Specifically, the subfertile group has a binary response

(1-yes, 0-no) on eating bread and quantitative response (i.e., number of glasses per week)

on drinking alcohol and soft drinks. Meanwhile, the healthy group used the six-level Likert

scale (0-never, 1-seldom, 2-monthly, 3-weekly, 4-more than three times a week, 5-daily,

6-multiple times a day) on how frequent the respondents consume the food items in the

past three months. Given these differences, the datasets of the two groups were analyzed

separately to account for the effect of dietary habits. The separate model for the healthy

group and subfertile group can be formulated as follows:
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yij = di + bTj xi + ϵij (5)

where yij is the log of the read count of the jth taxon of the ith sample;

di is the log of the sampling fraction in the ith sample;

xi = (1, xi1,xi2, ...,xip)
T are the covariates of interest for the ith sample;

bj = (bj0,bj1, ...,bjp)
T are the corresponding coefficients for xi for taxon j; and

ϵij is the error term, assumed to be independently distributed with mean 0 and het-

eroskedastic variance (Lin and Peddada, 2024).

ANCOM-BC allows for the use of the raw count data and specification of the prevalence

cut-off and library size cut-off. In this study, prevalence cut-off was set at 10%, which is

one of the commonly used thresholds in microbiome analysis. This threshold means that a

taxon with nonzero counts in less than 10% of the samples were excluded from the analysis.

This narrows down the dimension of the analyses and removes non-informative or rare taxa.

A library size cut-off was equal to 1000, which excludes samples with library sizes less than

1000. All tests were adjusted for multiple comparisons using the Benjamini–Hochberg

procedure. The false discovery rate was set at 5%. Results of pseudo-count sensitivity

analysis were also presented.

3.2 Benchmarking subfertile women against those who previously initi-

ated a fertility program

The secondary objective of this study is to compare subfertile women who are currently

undergoing fertility treatment (from the FLORA project, referred to in this report as “sub-

fertile” group) with women who had once initiated a fertility program at any point in their

lives (from the Isala project, referred to as “benchmark” group). Women in these groups

both have fertility issues and are undergoing/underwent fertility treatment, which might

have affected their microbiome composition. The comparison aims to assess whether the

two groups have the same or different microbiome diversity and taxon abundance. This

was done using data visualization, specifically using plots of the most abundant taxa and

plots of the Shannon index and Chao1 index. To determine whether there is a difference in

alpha diversity between the subfertile and benchmark group, the following linear regression

model was fitted using the merged datasets of the two groups.

yi = β0+β1Groupi+β2Agei+β3BMIi+β4Smokingi+β5Sleep1i+β6Sleep2i+β7Borni+ϵi (6)

where yi is the alpha diversity measure (Shannon index, Chao1 index) for sample i, i = 1,

2,...,499; βs are the regression coefficients; Groupi is the dummy variable for the group to

which sample i belongs, i.e., 1 for benchmark group and 0 for subfertile group; ϵi is the error

term, assumed to be normally distributed with mean 0 and variance σ2. Age (in years),
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BMI (1-normal, 0-otherwise), and smoking (1-yes, 0-no) were also included in the model as

confounders. The effect of two other variables, namely, being born through natural means

and number of hours spent sleeping in a day were likewise explored. Sleep1i is 1 if the

hours spent sleeping is between 6.5 and 9 hours, 0 otherwise. Sleep2i is 1 if the hours

spent sleeping is between 9 and 12 hours, 0 otherwise. Borni is 1 if born through natural

means (vaginal birth), 0 if through caesarean section. A model with all possible interaction

terms between the group and each of the other variables was initially explored. The final

model was determined after removing insignificant interaction terms and model diagnostics.

To determine differentially abundant taxa and factors associated with the microbiome

composition of the benchmark group, differential abundance analysis was also done using

ANCOM-BC. First, ANCOM-BC was performed using the merged dataset of the Isala and

FLORA project, adjusting only for the group variable (1=benchmark, 0=subfertile) and

confounders (age, BMI, smoking). Second, ANCOM-BC was performed separately for the

two groups, adjusting for eight covariates, namely age, BMI, smoking, being born through

natural means, hours spent sleeping, consumption of fermented food, drinking alcohol, and

drinking soft drinks. A prior assessment of the correlation matrix of these covariates was

performed to ensure that none of these factors is strongly correlated with another factor

(Appendix B).

3.3 Software

The analyses in this project were performed using the R version 4.4.3 software (R Core

Team, 2025). Among the R libraries used were ggplot2 (Wickham, 2016), phyloseq (Mc-

Murdie and Holmes, 2013), tidyverse (Wickham et al., 2019), tidytacos (Wittouck et al.,

2025), vegan (Oksanen et al., 2025), psych (William Revelle, 2025), ANCOMBC (Lin and

Peddada, 2024), fossil (Vavrek, 2011), and pheatmap (Kolde, 2019).
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4 Results

4.1 Comparison between subfertile and healthy women

The primary objective of this study is to compare subfertile women with healthy women.

This section focuses on assessing the similarities or differences between these groups in

terms of respondents’ profiles, alpha diversity, and taxon abundance. Factors associated

with the microbiome composition were also discussed.

4.1.1 Data exploration

Table 2 shows the summary statistics for the respondents’ profiles. The age of subfertile

women has a mean of 36 and ranges from 24 to 46, while the age of healthy women has

a mean of 31 and ranges from 18 to 46. Almost 90% of the women in both groups were

born through natural means (i.e., vaginal birth). More than half of the subfertile (54%)

and healthy (64%) group has a normal BMI, while the rest are underweight, overweight,

or obese. Only a few respondents (5%) reported that they were smoking, and the majority

(78-80%) have 6.5 to 9.0 hours of sleep every night.

Table 2: Summary statistics of respondents’ profiles

Variable Subfertile Healthy

(n=353) (n=390)

Age (in years)

Mean 36 31

Std. dev. 4.6 6.4

Minimum 24 18

Maximum 46 46

Born through natural means 89.7% 89.0%

BMI (normal) 54.2% 63.7%

Smoking (yes) 4.8% 4.6%

Hours of sleep

From 3 to 6.5 hours 9.7% 14.1%

From 6.5 to 9 hours 77.7% 80.0%

From 9 to 12 hours 12.6% 5.9%

In terms of the microbiome data, the subfertile and healthy cohorts exhibit sparsity and

skewness in library sizes. Figure 2 illustrates a highly skewed distribution of library size

in both groups. The subfertile group has an average library size of 31,310 reads, ranging

from 1,663 to 140,381, while the healthy group averages 26,183 reads, with a range of 2,457

to 160,768. Despite the skewness, the average library sizes of the two groups are relatively

similar. Regarding sparsity, the data reveal that 89% of the read counts in the subfertile

group and 85% in the healthy group are zeros, reflecting a high degree of sparsity in both

datasets.
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Figure 2: Histogram of library size of the subfertile and healthy group

Figure 3 presents the most abundant taxa in the two groups based on mean relative abun-

dance. The subfertile group is dominated by Lactobacillus crispatus (37.9%), Lactobacillus

iners (30.7%), Bifidobacterium (8.6%), Lactobacillus jensenii (5.8%), and Lactobacillus

gasseri (4.2%). It is also composed of Fannyhessea (3.8%), Prevotella (2.9%), Sneathia

(1.6%), Anaerococcus (0.6%), and other taxa (3.8%). For the healthy group, the most

abundant taxa are Lactobacillus crispatus (36.9%), Lactobacillus iners (27.6%), Bifidobac-

terium (9.9%), Lactobacillus jensenii (5.5%), and Prevotella (4.2%). Also present in this

group’s microbiome are Lactobacillus gasseri (3.4%), Fannyhessea (1.9%), Anaerococcus

(1.3%), Streptococcus (1.3%), and other taxa (8.1%).

Figure 3: Mean relative abundance of top 10 taxa in subfertile and healthy group

Figure 4 shows the relative abundance of the top taxa by sample in the subfertile and

healthy group. The microbiome composition of most women in both groups is dominated

by Lactobacillus crispatus and Lactobacillus iners. Some subfertile women exhibit a high
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relative abundance of Sneathia, which was not observed in any of the women in the healthy

group. Meanwhile, some women in the healthy group show a high relative abundance of

Streptococcus, which was not observed in any women in the subfertile group.

Figure 4: Relative abundance of top 10 taxa by sample and group

Using the respondents’ profiles, differences in species richness were initially assessed using

Chao1 index plots. Chao1 index is a common estimator of species richness that takes into

account the observed number of species and the number of rare species (i.e., singletons and

doubletons). Figure 5 reveals that the subfertile group has a lower median Chao1 index

(4) than the healthy group (19). This indicates that compared to the healthy group, the

subfertile group has lower microbial richness, even after accounting for rare taxa (singletons

and doubletons). Slightly higher Chao1 index was also observed for women with less than

6.5 hours of sleep (16) than those with 6.5 to 9 hours of sleep (12) and more than 9 hours of

sleep (5). Meanwhile, the plot of the Chao1 index against age does not exhibit an increasing

or decreasing trend with respect to changes in age. Chao1 index was also observed to be

similar between normal (11) and not normal BMI (12); smoker (13) and non-smoker (11);
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and women born through natural means (12) and caesarean section (11).

Figure 5: Plots of Chao1 index by respondents’ profile
The five panels show the boxplot of Chao1 index (a) between subfertile and healthy group; (c) by BMI category; (d)

by smoking status; (e) by method of birth; and (f) by number of hours spent sleeping. Panel (b) is a scatterplot of

samples by Chao1 index and age. Dots in all panels represent the samples, color coded by group.

Similarly, the differences in Shannon index by respondent’s profiles were also assessed.

Shannon index is a measure of species richness and evenness in a sample. Figure 6 shows a

low Shannon index for the two groups, with subfertile and healthy women having a median

Shannon index of 0.19 and 0.73, respectively. The low Shannon index can be attributed

to the dominance of Lactobacillus species in either group. Women who have less time

spent sleeping (3 to 6.5 hours) exhibited a slightly higher alpha diversity (0.95) than those

with 6.5 to 9 hours (0.49) or 9 to 12 hours of sleep (0.42). The statistical significance of

these differences was discussed in Section 4.1.2, while biological relevance was discussed in

Section 5.1. In contrast, the plot of the Shannon index against age does not exhibit an

increasing or decreasing trend in alpha diversity with respect to changes in age. Shannon

index was also observed to be similar between normal (0.49) and not normal BMI (0.56);

smoker (0.61) and non-smoker (0.50); and women born through natural means (0.55) and

caesarean section (0.43).

15



Figure 6: Plots of Shannon index by respondents’ profile
The five panels show the boxplot of Shannon index (a) between subfertile and healthy group; (c) by BMI category;

(d) by smoking status; (e) by method of birth; and (f) by number of hours spent sleeping. Panel (b) is a scatterplot

of samples by Chao1 index and age. Dots in all panels represent the samples, color coded by group.

4.1.2 Model for alpha diversity

While Section 4.1.1 described the data through visual inspection, Section 4.1.2 was designed

to statistically test the difference between two groups. A linear regression model, as formu-

lated in Equation 3 of Section 3.1.2, was initially fitted. The first model used the estimated

Shannon index as the response variable, six main effects (i.e., group, age, BMI, smoking,

sleep, born) and the interaction terms between group and each of the five other covariates.

This model was then reduced to remove insignificant interaction terms and retained the

six main effects. The model diagnostics was performed prior to the interpretation of the

regression estimates (Appendix C).

Table 3 presents the parameter estimates from the final model for Shannon index. The

results showed that the Shannon index for healthy women is significantly higher than that

of subfertile women by 0.40 on average, holding other factors constant. The true difference

in Shannon index from that of subfertile women could lie somewhere between 0.31 and

0.49. This suggests that the microbiome composition of subfertile women is slightly lower

in richness and evenness compared to that of healthy women. Interpretation or possible
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biological relevance of this difference was discussed in Section 5.1.

Table 3: Regression estimates from the model for Shannon index

Parameter Estimate Std. error p-value 95% confidence interval

Intercept 0.5482 0.1628 0.0008 0.2285, 0.8678

group (healthy) 0.3972 0.0458 <0.0001 0.3073, 0.4872

age 0.0039 0.0038 0.2992 -0.0035, 0.0113

BMI (normal) -0.0911 0.0432 0.0354 -0.1760, -0.0062

smoking (yes) -0.0167 0.1020 0.8693 -0.2170, 0.1835

sleep (6.5 to 9h) -0.2832 0.0652 <0.0001 -0.4112, -0.1553

sleep (9 to 12h) -0.3377 0.0943 0.0005 -0.5129, -0.1424

born (natural means) 0.0711 0.0681 0.2963 -0.0625, 0.2048

Holding other factors constant (i.e., women are of the same group, age, BMI, smoking habit,

and birth method), the Shannon index is significantly lower for women who spend more

than 6.5 hours of sleep every night. Specifically, the Shannon index for women with 6.5 to

9 hours of sleep is estimated to be lower by 0.16 to 0.41 than for those with less than 6.5

hours of sleep. Similarly, a Shannon index lower by 0.14 to 0.51 is estimated for women

with 9 to 12 hours of sleep than for those with less than 6.5 hours of sleep.

In addition, women with normal BMI were estimated to have a Shannon index lower by

0.006 to 0.176 than those who were underweight, overweight or obese. For each year of

increase in age, women’s Shannon index varies between a decrease of 0.004 and an increase

of 0.011. The difference in Shannon index between smokers and non-smokers ranges from

-0.22 to 0.18. Compared to women delivered by caesarean section, those born naturally

could have Shannon index lower by 0.06 or higher by as much as 0.20. None of these fac-

tors - age, smoking status, or birth method - showed statistical significance.

Table 4 shows the parameter estimates from the model for Chao1 index. The results showed

that the Chao1 index for healthy women is significantly higher than that of subfertile

women. Holding other factors constant, the true difference in the Chao1 index from that

of subfertile women could be somewhere between 14 and 17. This suggests that subfertile

women could have fewer genera present in their microbiome composition than healthy

women. Women with normal BMI were also found to have a significantly lower Chao1

index by 2 to 4 than women who are underweight, overweight or obese. In contrast, the

effect of age, smoking, hours of sleep, and method of birth were found to be statistically

insignificant.
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Table 4: Regression estimates from the model for Chao1 index

Parameter Estimate Std. error p-value 95% confidence interval

Intercept 3.9706 2.6269 0.1310 -1.1872, 9.1284

group (healthy) 15.3844 0.7392 <0.0001 13.9331, 16.8356

age 0.0804 0.0608 0.1860 -0.0388, 0.1997

BMI (normal) -2.9664 0.6976 <0.0001 -4.3361, -1.5966

smoking (yes) 0.1010 1.6456 0.9510 -3.1300, 3.3319

sleep (6.5 to 9h) -0.1940 1.0513 0.8540 -2.2582, 1.8702

sleep (9 to 12h) -1.3804 1.5225 0.3650 -4.3697, 1.6088

born (natural means) 1.4728 1.0981 0.1800 -0.6833, 3.6289

4.1.3 Differential abundance analysis

As discussed in Section 3.1.3, ANCOM-BC was first implemented using the merged dataset

of the Isala and FLORA projects, adjusting for the group variable (1=healthy, 0=subfertile)

and confounders (age, BMI, smoking). This was done to identify differentially abundant

taxa between groups. This was followed by ANCOM-BC performed separately for the sub-

fertile and healthy group, adjusting for eight covariates.

Figure 7 illustrates the log-fold change of differentially abundant taxa, with only the group

variable (and confounders) in the model. These 28 taxa were found to be significant

at the 5% FDR level and passed the sensitivity analysis for the pseudo-count addition.

Adjusted for the effect of age, BMI, and smoking habit, the abundance of Lactobacil-

lus jensenii, Sarcina, Prevotella, Corynebacterium and 13 other taxa are expected to

be higher for the healthy group than subfertile group. Specifically, Lactobacillus jensenii

showed a log-fold change of 0.47 indicating that it is approximately 1.6 [exp(0.47)] times

higher in the healthy group than in the subfertile group. The log-fold change of Sarcina

(1.9), Prevotella (1.1), and Corynebacterium (1.1) suggests that these taxa are approxi-

mately 3 to 6 times higher in the healthy group. In contrast, the abundance of Mobiluncus,

Aerococcus, Ureaplasma, Bifidobacterium, Fannyhessea, Lactobacillus crispatus, Lacto-

bacillus gasseri, and four other taxa are lower in the healthy group than subfertile group.

The log-fold change for these taxa ranging from -1.90 to -0.35 suggests that their abundance

is approximately 30% to 85% lower in the healthy group than in the subfertile group.

18



Figure 7: Log-Fold Change of Differentially Abundant Taxa, adjusted for group and confounders
This figure shows the log-fold change for each differentially abundant taxa, adjusted for group, age, BMI, and smoking

habit. The 28 taxa are significant at the 5% FDR level and passed the ANCOM-BC sensitivity analysis for pseudo-

count addition. Blue bars indicate higher abundance of a taxon in the healthy group, while red bars indicate higher

abundance in the subfertile group.

Healthy group

Figure 8 presents the log-fold change of the 39 differentially abundant taxa for the healthy

group, adjusting for the eight covariates. These taxa were found to be significant at the

5% FDR level for at least one covariate (marked with black and green asterisks). Twelve

taxa (marked with a green asterisk) passed the sensitivity analysis for a specific covariate,

indicating that they are consistently significant across various pseudo-count adjustments.

Taxa that did not pass the sensitivity analysis means that their statistical significance may

be more sensitive to the choice of pseudo-counts used to address zero values in the data.

However, this does not necessarily indicate that they are false positives, particularly given

the known conservativeness of the ANCOM-BC2 sensitivity test, which may exclude bio-

logically relevant signals.
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Figure 8: Log Fold Change of the Differentially Abundant Taxa for the Healthy Group
The figure presents the differentially abundant taxa, adjusted for age, BMI, smoking habit, hours of sleep, frequency of

consuming fermented food, alcohol intake, and drinking sweet beverages. Red cells represent a log-fold change between

0 and -3, suggesting lower taxon abundance. Blue cells represent a log-fold change between 0 and 3, suggesting higher

taxon abundance. Cells with asterisk indicate significance at 5% FDR level. Asterisks in green indicate that taxa

have successfully passed the ANCOM-BC2 sensitivity analysis for pseudo-count addition. While this analysis is useful

for assessing robustness, it is known to be conservative and may exclude biologically relevant signals. Therefore, all

differentially abundant taxa, regardless of passing/failing the sensitivity analysis, were presented.

Lactobacillus species are among the 39 differentially abundant taxa found for the healthy

group. Lactobacillus species are known to have an essential role in maintaining a healthy

vaginal environment. The results revealed that the abundance of Lactobacillus crispatus is

negatively associated with the frequency of drinking sweet beverages. The abundance of

Lactobacillus gasseri is expected to be higher for healthy women with normal BMI than for

those who are underweight, overweight, or obese. In contrast, it is lower for women with 6.5

to 9 hours of sleep than for those with less than 6.5 hours of sleep. It is also lower for women
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who were born through vaginal birth than for those delivered through caesarean section.

While the abundance of Lactobacillus gasseri is positively associated with the frequency of

eating fermented food, it is negatively associated with drinking alcohol. The abundance of

Lactobacillus iners is higher for women with 6.5 to 9 hours of sleep than for those with less

than 6.5 hours. The abundance of Lactobacillus jensenii is positively associated with age

and frequency of eating fermented food. It is expected to be higher for women with normal

BMI and lower for women who were born through natural means.

The abundance of Actinotignum is positively associated with age and frequency of con-

suming fermented food and sweet beverages, but negatively associated with the frequency

of alcohol intake. It is also expected to be higher for women with normal BMI, but lower

for women who were born through vaginal birth. The abundance of Corynebacterium is

expected to be lower for women with normal BMI than for those with non-normal BMI. It

is higher for women with 6.5 to 9 hours of sleep than for those with less than 6.5 hours.

The abundance of Ezakiella tends to be lower for women with normal BMI and higher for

those with more than 6.5 hours of sleep. The abundance of Facklamia is estimated to be

lower for women with normal BMI and higher for women with 6.5 to 9 hours of sleep. The

abundance of Fenollaria is likewise higher for women who spent 6.5 to 9 hours sleeping.

Limosilactobacillus is higher for women with normal BMI but lower for those born through

vaginal birth. The abundance of Olegusella is higher for women born naturally than those

born by caesarean section, but it is negatively associated with the frequency of drinking

sweet beverages. The abundance of Peptococcus is higher for women with normal BMI and

those who frequently eat fermented food. The abundance of Porphyromonas is lower for

women with normal BMI than for those who are underweight, overweight or obese. The

abundance of Bifidobacterium is higher for women with 9 to 12 hours of sleep than for those

with less than 6.5 hours of sleep.

Results further revealed significant association of the abundance of Aerococcus, Parvi-

monas, Peptococcus, UBA4285 with age. The abundance of Aerococcus, Fannyhessea,

Alloscardovia, and five other taxa is lower for women with normal BMI. The abundance

of Alloscardovia is expected to be lower for smokers. The abundance of Campylobacter B,

Corynebacterium, Facklamia, and Ureaplasma is higher for women with more than 6.5 hours

of sleep. The abundance of Parvimonas, Mobiluncus, Sarcina, Ureaplasma and Winkia

is expected to be lower for women born through natural means. A positive association

was found between frequency of eating fermented food and the abundance of Aerococcus,

Fusobacterium, Mobiluncus, Peptococcus, Peptoniphilus B, and V eillonella. Meanwhile,

the abundance of Aerococcus, Fenollaria, Sarcina, and Urinicoccus is negatively associ-

ated with alcohol intake. A positive association was found between frequency of drinking

sweet beverages and the abundance of Mobiluncus, Parvimonas, Sarcina, and Sutterella;

while it has a negative association with Alloscardovia, Murdochiella, Peptostreptococcus,
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and QFNR01.

Subfertile group

Figure 9 shows the log-fold change of the 13 differentially abundant taxa for the subfertile

group, adjusting for eight covariates. The abundance of Lactobacillus crispatus is higher

for women with normal BMI than for underweight, overweight, or obese. It is also expected

to be higher for women with 9 to 12 hours of sleep than for those with less than 6.5 hours

of sleep. The abundance of Lactobacillus gasseri is expected to be higher for women with

normal BMI, but lower for women who were born through vaginal birth. The abundance

of Lactobacillus iners is negatively associated with age. It is lower for women with normal

BMI, but higher for women with more than 6.5 hours of sleep than for those with less than

6.5 hours of sleep.

Figure 9: Log Fold Change of the Differentially Abundant Taxa for the Subfertile Group
The figure presents the differentially abundant taxa, adjusted for age, BMI, smoking habit, hours of sleep, frequency of

consuming fermented food, alcohol intake, and drinking sweet beverages. Red cells represent a log-fold change between

0 and -4, suggesting lower taxon abundance. Blue cells represent a log-fold change between 0 and 4, suggesting higher

taxon abundance. Cells with asterisk indicate significance at 5% FDR level. Asterisks in green indicate that taxa

have successfully passed the ANCOM-BC2 sensitivity analysis for pseudo-count addition. While this analysis is useful

for assessing robustness, it is known to be conservative and may exclude biologically relevant signals. Therefore, all

differentially abundant taxa, regardless of passing/failing the sensitivity analysis, were presented.
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Results further revealed that the abundance of Dialister is higher for subfertile women with

normal BMI than those with non-normal BMI. In contrast, it is lower for women with 6.5

to 9 hours of sleep than for those with less than 6.5 hours. The abundance of Fannyhessea

is positively associated with age, alcohol intake, and soft drink consumption. It is also

higher for women with more than 6.5 hours of sleep and those who eat bread, but lower

for women born through natural delivery. The abundance of Finegoldia is expected to be

higher for women with normal BMI than non-normal BMI. It is also higher for those with 9

to 12 hours of sleep than those with less than 6.5 hours of sleep. The abundance of Limosi-

lactobacillus is higher for women with 9 to 12 hours of sleep than for those with less than

6.5 hours of sleep, and for women who eat bread. The abundance of Peptostreptococcus is

positively associated with alcohol intake. It is lower for women with 6.5 to 9 hours of sleep

than for those with less than 6.5 hours of sleep. It is also lower for women born naturally.

The abundance of Prevotella is expected to be lower for women with normal BMI. It is

also lower for those with 6.5 to 9 hours of sleep than for those with less than 6.5 hours of

sleep. The abundance of Anaerococcus is negatively associated with alcohol intake. The

abundance of Peptoniphilus A is expected to be lower for women with 6.5 to 9 hours of

sleep than for those with less than 6.5 hours. The abundance of UBA4285 is expected to be

lower for women born through natural means. It is also positively associated with alcohol

intake.
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4.2 Benchmarking subfertile women against those who initiated fertility

program

The secondary objective of this study is to compare subfertile women who are currently

undergoing fertility treatment (from the FLORA project, referred to in this report as “sub-

fertile” group) with women who had once initiated a fertility program at any point in their

lives (from the Isala project, referred to as “benchmark” group). Women in these groups

both have fertility issues and are undergoing/underwent fertility treatment, which might

have affected their microbiome composition. This section focuses on assessing whether the

two groups have the same or different microbiome diversity and taxon abundance. The

comparison between subfertile and benchmark groups was done through data visualization,

alpha diversity model, and differential abundance analysis.

4.2.1 Data exploration

Table 5 shows that the age of women in the benchmark group has a mean of 30 and ranges

from 18 to 46. More than 90% of them were born through natural means (i.e., vaginal

birth). Around 60% have a normal BMI, while the rest are underweight, overweight, or

obese. Only a few (6%) reported that they were smoking, and the majority (77%) have

6.5 to 9.0 hours of sleep every night. These characteristics are almost similar to those of

women in the subfertile group.

Table 5: Summary statistics of respondents’ profiles

Variable Subfertile Benchmark

(n=353) (n=146)

Age (in years)

Mean 36 30

Std. dev. 4.6 6.2

Minimum 24 18

Maximum 46 46

Born through natural means 89.7% 90.4%

BMI (normal) 54.2% 59.6%

Smoking (yes) 4.8% 6.2%

Hours of sleep

From 3 to 6.5 hours 9.7% 16.4%

From 6.5 to 9 hours 77.7% 77.4%

From 9 to 12 hours 12.6% 6.2%

Figure 10 presents the most abundant taxa in the two groups based on mean relative

abundance. As discussed in Section 4.1.1, the subfertile group is dominated by Lactobacil-

lus crispatus (37.9%), Lactobacillus iners (30.7%), Bifidobacterium (8.6%), Lactobacillus

jensenii (5.8%), and Lactobacillus gasseri (4.2%). It is also composed of Fannyhessea

(3.8%), Prevotella (2.9%), Sneathia (1.6%), Anaerococcus (0.6%), and other taxa (3.8%).
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Meanwhile, for the benchmark group, the most abundant taxa are Lactobacillus crispa-

tus (44.6%), Lactobacillus iners (20.4%), Bifidobacterium (8.2%), Lactobacillus jensenii

(6.8%), and Prevotella (3.9%). Also present in this group’s microbiome are Lactobacillus

gasseri (2.5%), Streptococcus (2.1%) Anaerococcus (1.5%), Finegoldia (0.9%), and other

taxa (9.1%).

Figure 10: Mean relative abundance of top 10 taxa in subfertile and benchmark group

Figure 11 shows the relative abundance of the top taxa by sample in the subfertile and

benchmark group. The microbiome composition of most women in both groups is domi-

nated by Lactobacillus crispatus and Lactobacillus iners. Some subfertile women exhibit a

high relative abundance of Sneathia, which was not observed in any of the women in the

benchmark group. Meanwhile, some women in the benchmark group show a high relative

abundance of Streptococcus, which was not observed in any women in the subfertile group.
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Figure 11: Relative abundance of top 10 taxa by sample and group

Figure 12 presents the plot of the Chao1 index by prespondent’s profile. Subfertile group

has a lower median Chao1 value (4) compared to the benchmark group (17). This suggests

that subfertile women have reduced microbial richness, i.e., fewer genera, compared to the

benchmark group. Slightly higher Chao1 index was also observed for women with less than

6.5 hours of sleep (12) than those with 6.5 to 9 hours of sleep (7) and more than 9 hours of

sleep (4). Meanwhile, the plot of the Chao1 index against age does not exhibit an increasing

or decreasing trend with respect to changes in age. Chao1 index was also observed to be

similar between normal (6) and not normal BMI (8); smoker (8) and non-smoker (6); and

women born through natural means (7) and caesarean section (8).
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Figure 12: Plots of Chao1 index by respondents’ profile
The five panels show the boxplot of Chao1 index (a) between subfertile and benchmark group; (c) by BMI category;

(d) by smoking status; (e) by method of birth; and (f) by number of hours spent sleeping. Panel (b) is a scatterplot

of samples by Chao1 index and age. Dots in all panels represent the samples, color coded by group.

Figure 13 shows the plot of Shannon index by respondents’ characteristics. The benchmark

group (0.59) has slightly higher median Shannon index than the subfertile group (0.19).

The low Shannon index in both groups can be attributed to the dominance of Lactobacil-

lus species. Women who have less time spent sleeping (3 to 6.5 hours) exhibited a higher

Shannon index (0.80) than those with 6.5 to 9 hours (0.35) or 9 to 12 hours of sleep (0.30).

The statistical significance of these differences was discussed in Section 4.2.2, while the

biological relevance was discussed in Section 5.2.

In contrast, the plots of the Shannon index against age do not exhibit an increasing or

decreasing trend with respect to changes in age. Shannon index was also observed to be

similar between normal (0.28) and not normal BMI (0.41); smoker (0.67) and non-smoker

(0.33); and women born through natural means (0.36) and caesarean section (0.28).
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Figure 13: Plots of Shannon index by respondents’ profile
The five panels show the boxplot of Shannon index (a) between subfertile and benchmark group; (c) by BMI category;

(d) by smoking status; (e) by method of birth; and (f) by number of hours spent sleeping. Panel (b) is a scatterplot

of samples by Chao1 index and age. Dots in all panels represent the samples, color coded by group.

4.2.2 Model for alpha diversity

To statistically test the difference in alpha diversity between two groups, a linear regression

model was initially fitted, as formulated in Equation 6 in Section 3.2 (with interaction).

The model diagnostics was performed prior to the interpretation of the regression estimates

for the final model (Appendix D).

Table 6 presents the parameter estimates from the final model for the Shannon index that

include a significant interaction term (i.e., group:sleep) and six main effects. The results

showed that there is no significant difference between the Shannon index of the subfertile

and benchmark group. The true difference in the Shannon index between these groups

could be somewhere between -0.19 and 0.40.
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Table 6: Regression estimates from the model for Shannon index

Parameter Estimate Std. error p-value 95% confidence interval

Intercept 0.2584 0.2145 0.2289 -0.1632, 0.6801

group (benchmark) 0.1051 0.1493 0.4819 -0.1885, 0.3987

age 0.0149 0.0049 0.0027 0.0052, 0.0247

BMI (normal) -0.1098 0.0513 0.0329 -0.2107, -0.0089

smoking (yes) 0.0624 0.1183 0.5981 -0.1700, 0.2948

sleep (6.5 to 9h) -0.4313 0.1057 <0.0001 -0.6391, -0.2236

sleep (9 to 12h) -0.4176 0.1319 0.0017 -0.6767, -0.1584

born (natural means) 0.1038 0.0842 0.2184 -0.0617, 0.2694

group (benchmark):sleep (6.5 to 9h) 0.3143 0.1583 0.0477 0.0032, 0.6254

group (benchmark):sleep (9 to 12h) 0.5116 0.2462 0.0383 0.0278, 0.9954

The results revealed that sleep duration affects each group differently. In the benchmark

group, compared to women with less than 6.5 hours of sleep, those sleeping 6.5 to 9 hours

showed a Shannon index 0.12 lower on average, while those sleeping 9 to 12 hours had

an index 0.09 higher.2 For the subfertile group, women with 6.5 to 9 hours of sleep have

Shannon index lower by 0.43 than those with less than 6.5 hours of sleep, while women

with 9 to 12 hours of sleep have an index lower by 0.42.

Age showed a significant positive effect on the Shannon index, with the true effect on alpha

diversity ranging between 0.005 and 0.025 for each year of increase in age. BMI also demon-

strated a statistically significant effect on the Shannon index, with women of normal BMI

showing a lower Shannon index by 0.01 to 0.21. The results also revealed two statistically

insignificant factors: smoking and birth method. The effect of smoking on the Shannon in-

dex ranged between -0.17 and 0.29, while women born through natural delivery could have

a Shannon index lower by 0.06 or higher by 0.27 than those born through caesarean section.

Table 7 presents the parameter estimates from the Chao1 index model. The results showed

that the Chao1 index of the benchmark group is significantly higher than that of the sub-

fertile group. The true difference could be somewhere between 12 and 16. This indicates

that women who had once initiated a fertility program show higher microbial richness than

women who are currently undergoing fertility treatment. Holding other factors constant

(i.e., women are of the same group, age, BMI, smoking status, and birth method), women

who have 6.5 to 9 hours of sleep have a significantly lower Chao1 index by around 4 than

those with less than 6.5 hours of sleep. The results further revealed that the effect of age,

BMI, smoking habit, and birth method on Chao1 index are not statistically significant.

2The effect of 6.5 to 9 hours of sleep compared to the reference category was estimated as 0.1051+(-

0.4313)+0.3143-0.1015 = -0.1170. Meanwhile, the effect of 9 to 12 hours sleep was estimated as 0.1015+(-

0.4176)+0.5116-0.1015 = 0.0940
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Table 7: Regression estimates from the model for Chao1 index

Parameter Estimate Std. error p-value 95% confidence interval

Intercept 5.1640 3.3275 0.1214 -1.3756, 11.7036

group (benchmark) 13.6890 0.9869 <0.0001 11.7494, 15.6286

age 0.1173 0.0801 0.1442 -0.0402, 0.2747

BMI (normal) -1.3456 0.8337 0.1073 -2.9840, 0.2929

smoking (yes) 1.8051 1.9216 0.3481 -1.9716, 5.5817

sleep (6.5 to 9h) -3.8196 1.3189 0.0039 -6.4117, -1.2275

sleep (9 to 12h) -3.3041 1.7793 0.0640 -6.8009, 0.1928

born (natural means) 1.0527 1.3663 0.4414 -1.6325, 3.7379

4.2.3 Differential abundance analysis

As discussed in Section 3.2, ANCOM-BC was first implemented using the merged dataset of

the Isala and FLORA projects, adjusting for the group variable (1=benchmark, 0=subfer-

tile) and confounders (age, BMI, smoking). This was followed by ANCOM-BC performed

separately for the subfertile and benchmark group, adjusting for eight covariates.

Figure 14 illustrates the log-fold change of differentially abundant taxa, with only the

group variable and confounders in the model. The results revealed that 11 taxa are

more abundant in the benchmark group than in the subfertile group. These taxa include

Sarcina, Finegoldia, and Anaerococcus, among others. In contrast, 12 taxa, which in-

clude Lactobacillus gasseri, Lactobacillus iners, Lactobacillus crispatus, Fannyhessea, and

Ureaplasma, have lower abundance in the benchmark group than in the subfertile group.
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Figure 14: Log-Fold Change of Differentially Abundant Taxa, adjusting for group and confounders
This figure shows the log-fold change for each differentially abundant taxa, adjusted for group, age, BMI, and smoking

habit. The 23 taxa are significant at the 5% FDR level and passed the ANCOM-BC sensitivity analysis for pseudo-

count addition. Blue bars indicate higher abundance of a taxon in the healthy group, while red bars indicate higher

abundance in the subfertile group.

Figure 15 presents the log-fold change of the 30 differentially abundant taxa for the bench-

mark group, adjusting for the eight covariates. These taxa include Lactobacillus species

that are known to be pivotal in maintaining a healthy vaginal environment. The results

revealed that the abundance of Lactobacillus crispatus is negatively associated with age.

The abundance of Lactobacillus gasseri is expected to be higher for women with normal

BMI than for those who are underweight, overweight or obese. It is also positively asso-

ciated with the frequency of drinking sweet beverages. In contrast, it is lower for women

who were born through vaginal birth than those born through caesarean section. The abun-

dance of Lactobacillus iners is higher for women born through vaginal birth than those born

through caesarean section. The abundance of Lactobacillus jensenii is positively associated

with the consumption of fermented food, but negatively associated with alcohol intake. It

is expected to be lower for women with normal BMI and those born through natural means.

In contrast, it is higher for women with 9 to 12 hours of sleep than for those with less than

6.5 hours of sleep.
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Figure 15: Log Fold Change of the Differentially Abundant Taxa for the Benchmark Group
The figure presents the differentially abundant taxa, adjusted for age, BMI, smoking habit, hours of sleep, frequency of

consuming fermented food, alcohol intake, and drinking sweet beverages. Red cells represent a log-fold change between

0 and -4, suggesting lower taxon abundance. Blue cells represent a log-fold change between 0 and 4, suggesting higher

taxon abundance. Cells with asterisk indicate significance at 5% FDR level. Asterisks in green indicate that taxa

have successfully passed the ANCOM-BC2 sensitivity analysis for pseudo-count addition. While this analysis is useful

for assessing robustness, it is known to be conservative and may exclude biologically relevant signals. Therefore, all

differentially abundant taxa, regardless of passing/failing the sensitivity analysis, were presented.

The results further revealed that the abundance of Fenollaria is negatively associated with

age, but positively linked to alcohol intake. The abundance of Porphyromonas is positively

associated with frequency of eating fermented food. It is also expected to be higher for

women born through natural means. The abundance of Staphylococcus is positively asso-

ciated with the frequency of eating fermented food. The abundance of Aerococcus is nega-
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tively associated with age. It is expected to be higher for women with normal BMI and for

those born through natural means, but lower for women with more than 6.5 hours of sleep.

The abundance of Ezakiella, Alloscardovia, Limosilactobacillus, Peptococcus, Atopobium,

Sarcina, and Ureaplasma is expected to be higher for women with normal BMI. In con-

trast, the abundance of Facklamia, Fannyhessea, Lawsonella, Mobiluncus, Moryella,

Olegusella, Peptoniphilus B, QFNR01, and Urinicoccus is lower for women with nor-

mal BMI. The abundance of Facklamia, Fannyhessea, and eight other taxa is higher for

women born through natural means. In contrast, the abundance of Alloscardovia, Sarcina,

UBA4285, and seven other taxa is lower for women born through natural means. The abun-

dance of Facklamia, Alloscardovia, and nine other taxa is positively associated with the

frequency of eating fermented food, while this factor is negatively associated with the abun-

dance of Fannyhessea, Fusobacterium, Porphyromonas A, and Atopobium. The abun-

dance of Facklamia, Lawsonella, Olegusella, and Peptoniphilus B is positively associated

with alcohol intake. In contrast, the abundance of Alloscardovia, Moryella, Peptococcus,

Peptostreptococcus, UBA4285, and Ureaplasma is negatively associated with alcohol in-

take. The abundance of Fannyhessea and QFNR01 has a positive association with the

consumption of sweet beverages, but the abundance of Allocardovia, Peptococcus, and

Porphyromonas A is negatively associated with this habit.

The comparison of the effect of external factors between the subfertile and the benchmark

group was further discussed in Section 5.2.
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5 Discussion

5.1 Comparison between subfertile and healthy group

The primary objective of this study is to compare the alpha diversity and taxon abundance

between healthy and subfertile women. This comparison aimed to identify microbial pat-

terns that may be associated with reproductive health and infertility.

The results revealed a low Shannon index for both groups. This can be attributed to the

dominance of Lactobacillus species. The Shannon index is estimated to be slightly higher

by 0.30 to 0.48 for healthy women than subfertile women. While statistically significant,

this may not indicate a clinically relevant or abnormal shift in alpha diversity, specifically

in terms of species evenness. In fact, previous studies reported that the average Shannon

index they observed for healthy women (i.e., with no fertility issues or bacterial vaginosis)

is 0.67 ±0.59 standard deviation (Gottschick et al., 2017) and 0.80 ±0.40 standard devi-

ation (Ichiyama et al., 2021). While Shannon index slightly varies, Chao1 index revealed

a more apparent difference between the two groups. Taking into account rare taxa, the

Chao1 index is significantly higher by 14 to 17 for the healthy group than for the subfertile

group. This suggests that the healthy group has a higher microbial richness, i.e., a greater

number of genera present in their vaginal tract, compared to the subfertile group. However,

it should be noted that a higher number of genera does not necessarily imply better vaginal

health and fertility status, especially if beneficial microbiota are less abundant than other,

potentially less favorable, taxa.

Holding other factors constant (i.e., women are of the same group, age, BMI, smoking

habit, and birth method), Shannon index is lower for women with more than 6.5 hours

of sleep. The difference in the Shannon index from those who sleep less than 6.5 hours is

approximately between 0.14 and 0.51. While this is statistically significant, the estimated

difference may also not be indicative of a biologically relevant change in alpha diversity

level, specifically species evenness. The effect of sleep was found to be statistically insignif-

icant for the Chao1 index. Previous studies have found that gut microbiome diversity is

positively associated with hours of sleep (Smith et al., 2019, Li et al., 2020). However, there

have been limited or perhaps no existing reports establishing a clear link between vaginal

microbiome diversity and hours of sleep — an area that can be further studied.

Women with normal BMI in both groups were found to have a significantly lower Shannon

index and Chao1 index. The true difference in Shannon index from those with non-normal

BMI could range from 0.01 to 0.18. The true difference in Chao1 index could lie somewhere

between 2 to 4 genera. While this is statistically significant, the estimated difference is

small to suggest biological relevance or a significant shift in alpha diversity. Meanwhile,

the birth method does not have a significant effect on the Shannon index and the Chao1
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index. Similarly, the effect of age and smoking on Shannon index was found to be insignif-

icant. This finding is not the same as the existing study (Lebeer et al., 2022), which can

be attributed to the presence of a significant grouping variable (1=healthy, 0=subfertile)

in the model and a small proportion of smokers in the dataset.

Previous studies emphasized that Lactobacillus species play an important role in maintain-

ing a healthy vaginal environment. However, variations in the abundance of these species

may not necessarily imply a direct link to subfertility. In this study, Lactobacillus jensenii

was found to be more abundant in the healthy group, while Lactobacillus crispatus and

Lactobacillus gasseri were more abundant in the subfertile group. These findings suggest

that different Lactobacillus species may be differentially associated with reproductive sta-

tus, highlighting the complexity of microbial influences on fertility. Among other taxa,

Fannyhessea, Mobiluncus, and Ureaplasma were found to be more abundant in the sub-

fertile group. Previous studies have associated these genera with bacterial vaginosis, which

is a condition marked by unusually high bacterial diversity and a reduction in typical

Lactobacillus species (Margolis and Fredricks, 2015, P. Liu et al., 2023, Mendling et al.,

2019). Similarly, Aerococcus and Bifidobacterium were also higher in subfertile women,

which is consistent with the findings of Zhao et al. (2020). The role of other species in

vaginal health and fertility remains unclear, and it is difficult to conclude that the abun-

dance of specific species is the cause of infertility.

Results further revealed that the association of specific taxa with age may vary for the

subfertile group and for the healthy group. Adjusted for BMI, smoking, birth method,

and dietary habits, the abundance of Lactobacillus iners decreases with age among sub-

fertile women, but not among healthy women. In contrast, the abundance of Lactobacil-

lus jensenii Actinotignum, Parvimonas, Peptococcus, and UBA4285 increases with age

among healthy women, but not among subfertile women. The abundance of Fannyhessea,

which has been linked to bacterial vaginosis, increases with age among subfertile women,

but not among healthy women. While age has been known to affect fertility among women

(e.g., due to reduced ovarian reserve and hormonal shifts), the findings of this study suggest

that aging in subfertile women may be accompanied by microbiome alterations that further

compromise reproductive potential.

Some taxa showed similar associations with lifestyle and dietary habits in both groups,

while others differed. The abundance of Lactobacillus gasseri and Lactobacillus jensenii

was found to be higher for women with normal BMI in the healthy group than for those

who are underweight, overweight or obese. The abundance of Lactobacillus crispatus and

Lactobacillus gasseri was also higher for women with normal BMI in the subfertile group.

The higher abundance of these Lactobacillus species in women with normal BMI may

suggest that healthy body weight supports a more favorable vaginal microbiome. In the
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subfertile group, abundance of Lactobacillus crispatus and Lactobacillus iners is expected

to be higher for women with more than 6.5 hours of sleep than for those with less than

6.5 hours of sleep. In the healthy group, higher abundance of Lactobacillus iners and

lower abundance of Lactobacillus jensenii is expected for women with more than 6.5 hours

of sleep. These findings suggest that while the association of sleep duration with micro-

bial composition differs between groups, lack of sleep could be a risk factor that can be

linked to vaginal health and fertility. In terms of dietary habits, consumption of fermented

food is negatively associated with Fannyhessea among the healthy group, but positive

association among the subfertile group. Consumption of sweet beverages has a negative

association with Lactobacillus crispatus among healthy women, but not among subfertile

women. A consistent negative association was found between alcohol consumption and

levels of Bifidobacterium and Lactobacillus gasseri for both groups. This suggests that

alcohol intake could also alter the vaginal environment, noting also how detrimental it is to

the gut microbiome (Lee and Lee, 2021). None of the taxa were found to have a significant

association with smoking, except for Alloscardovia in the healthy group. The statistical

insignificance of this factor may be attributed to the small proportion of smokers (5%) in

the dataset, which could limit the ability to detect meaningful associations.

Consistent in both groups, Lactobacillus gasseri is expected to be less abundant in women

born through natural means than in women delivered through caesarean section. The abun-

dance of three other taxa in the subfertile group and nine other taxa in the healthy group

is also lower for these women. This result should be interpreted with caution as caesarean

section at birth has been associated with bacterial vaginosis in adulthood (Stennett et al.,

2020).

5.2 Comparison between subfertile and benchmark group

The secondary objective of this study was to compare subfertile women who are currently

undergoing fertility treatment (from the FLORA project, referred to in this report as “sub-

fertile” group) with women who had once initiated a fertility program at any point in their

lives (from the Isala project, referred to as “benchmark” group). Women in these groups

both have fertility issues and are undergoing/underwent fertility treatment, which might

have affected their microbiome composition.

The results showed that the two groups do not differ in Shannon index, but the Chao1 index

for the benchmark group is significantly higher than the subfertile group. This difference

cannot be further explained due to the absence of other pertinent health information about

the benchmark group, such as the time since they received the treatment or complexity of

their health condition. There could be an alteration in their vaginal microbiome compo-

sition over time, which cannot be attributed to fertility treatment. To reiterate, a higher
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number of genera does not necessarily imply better vaginal health and fertility status, espe-

cially if beneficial microbiota are less abundant than other, potentially less favorable, taxa.

A significant interaction effect on Shannon index was found between the group and hours of

sleep, indicating that sleep duration affects each group differently. However, the true mean

difference in Shannon index between women with less than 6.5 hours of sleep and women

with more than 6.5 hours of sleep is estimated to be less than 0.5, which may not indicate

relevant shift in microbial evenness. Holding other factors constant (i.e., women are of same

group, age, BMI, smoking status, and birth method), women who have 6.5 to 9 hours of

sleep also have a lower Chao1 index, i.e., by around four genera, than those with less than

6.5 hours of sleep. Age and BMI were also found to have a significant effect on the Shannon

index. However, an increase of 0.01 for each year of increase in age and a reduction of 0.11

for normal BMI may not suggest a relevant shift in alpha diversity, particularly in terms

of microbial evenness. Meanwhile, the effect of age, BMI, smoking, and birth method on

Chao1 index was found to be insignificant.

Compared to the benchmark group, the subfertile group shows higher abundance of Lacto-

bacillus gasseri, Lactobacillus crispatus, Lactobacillus iners. A clear link of these findings

with fertility treatment is difficult to establish due to the lack of detailed health profiles of

women in the benchmark group. It is possible that women in the benchmark group represent

more complex or advanced cases of infertility, which could impact the composition of ben-

eficial vaginal microbiota. However, this cannot be confirmed within the scope of this study.

The results also revealed that the relationship between beneficial vaginal microbiota and

external factors is not consistent across groups. In the subfertile group, the abundance of

Lactobacillus crispatus is associated with BMI and hours of sleep, while in the benchmark

group, it is linked only to age. For Lactobacillus gasseri, a higher abundance is consistently

observed in women with normal BMI across groups. In contrast, Lactobacillus iners shows

lower abundance in women with normal BMI and higher abundance in those with more

than 6.5 hours of sleep in the subfertile group; but these associations are not observed in

the benchmark group. Additionally, Lactobacillus iners is more abundant in benchmark

women born via vaginal delivery, an association not seen in the subfertile group. Lactobacil-

lus jensenii demonstrates significant associations with BMI, hours of sleep, birth method,

alcohol intake, and fermented food consumption in the benchmark group, but not in the

subfertile group. These differences suggest that fertility treatment history may influence

how external factors affect the microbiome composition. These findings raise the possi-

bility that the vaginal microbiome’s responsiveness to lifestyle or physiological influences

changes along the fertility care continuum. Understanding these group-specific patterns

could help identify critical windows for microbiome-targeted interventions and inform more

personalized strategies to support reproductive health.
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5.3 Possible drawbacks

A key limitation of this study is the restricted availability of variables measured consis-

tently in both the Isala and FLORA projects. While other external factors might have

been relevant to include in the model, the analysis could only use variables that were com-

parable between the two datasets. There is also a limitation in the comparison between

the subfertile and benchmark group due to the unavailability of pertinent health informa-

tion about women who had once initiated a fertility program. This information includes

the specific reproductive health condition, kind of fertility treatment, and the duration of

fertility program, among others.

Another possible drawback is the effectiveness of the exclusion criteria applied for the Isala

dataset. As discussed in Section 2, the healthy group was identified by excluding individuals

who reported reproductive health conditions (such as PCOS and endometriosis), diabetes,

and hematologic disorders, among others. However, unreported fertility-related conditions

may result in some overlap between the healthy and subfertile cohorts, meaning the groups

are not necessarily mutually exclusive or perfectly defined.

As also discussed in Section 2, vaginal swabs in the Isala project were obtained through

home self-sampling, while swabs in the FLORA project were collected in a clinical set-

ting. This difference in collection method may introduce potential technical biases (e.g.,

contamination) and biological biases (e.g., unreported reproductive conditions or behav-

ioral differences) that could affect estimates of microbiome diversity and abundance. This

study acknowledges these limitations and addressed them through standard data filtering

and further adjustments in the modeling of the diversity and abundance to account for the

group effect and other potential confounders.

Despite these limitations, it is important to note that both the Isala and FLORA projects

contributed valuable data on the vaginal microbiome and demographic profiles of women.

This enabled meaningful comparative analyses of microbiome composition and its associa-

tions with external factors.

5.4 Future research

Researchers who are interested in characterizing healthy and subfertile women can consider

formulating a study design in which microbiome data and patient’s profiles are collected

and measured in a similar manner for both groups. This will allow them to explore relevant

external factors influencing the microbiome composition of both groups. Possible area for

future study include (i) the link between hours of sleep and vaginal microbiome diversity,

mentioned in Section 5.1; (ii) characterization of the role of specific taxa in vaginal health

and fertility; and (iii) impact of microbiome-targeted interventions on the abundance of
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Lactobacillus species and other beneficial microbiota.

6 Conclusion

This study characterized healthy women as having significantly higher microbial richness

than subfertile women. However, this finding should be interpreted with caution, as a

higher number of genera does not necessarily imply better vaginal health and fertility

status, especially if beneficial microbiota are less abundant than other, potentially less

favorable, taxa. In terms of microbiome composition, the findings suggest that different

Lactobacillus species may be differentially associated with reproductive status, highlighting

the complexity of microbial influences on fertility. The results also suggest a significant as-

sociation between the abundance of at least one Lactobacillus species and external factors,

namely age, BMI, hours of sleep, and alcohol intake, in subfertile women. These factors

may be considered when designing targeted interventions or personalized fertility treat-

ments. There may also be other important factors influencing the microbiome composition

that were beyond the scope of this study. In addition to Lactobacillus species, several other

taxa were found to be differentially abundant between the subfertile and healthy groups,

though their roles in vaginal health and fertility are not yet clearly established.

This study acknowledges certain limitations, including the absence of potentially important

variables that could influence microbiome diversity and taxon abundance. Moreover, the

primary aim was not to identify specific biomarkers of infertility, but to explore the associa-

tions between fertility status, external factors, and vaginal microbiome composition. Future

research should address these limitations and aim to identify potential microbiome-based

biomarkers of infertility through more comprehensive and targeted analyses.
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Appendices

Appendix A List of exclusion criteria for the Isala dataset

Description of respondents From n=3349, sample size No. of excluded

to be excluded was reduced to respondents

1. Greater than 46 years old 3111 238

2. Initiated fertility program 2965 146

3. Suffered from endometriosis or PCOS

(polycystic ovary syndrome) 1770 1195a

4. Currently breastfeeding 1707 63

5. Had antibiotic or antimycotic

treatment in the past three months 1347 360

6. With diabetes or hematologic

disorder 1219 128

7. Currently using/used contraception

in the last three months to

avoid getting pregnant 390 829

a - Out of 1195, only 91 and 69 women reported that they had suffered from PCOS and endometriosis, respectively.

Women with missing response (n=1042) were not assumed to be free of these conditions and were also excluded.

Hence, the remaining samples of size 1770 were the women who directly reported that they had not suffered from

PCOS or endometriosis.
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Appendix B Correlation matrix for Isala and FLORA co-

variates
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Appendix C Diagnostics of diversity model in Section 4.1.2

C.1 Normality and Homoscedasticity

C.2 Leverage/influential observations
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C.3 Linearity

C.4 Independence

Test test statistic p-value

Durbin-Watson test 1.9578 0.2750

C.5 Multicollinearity

GVIF Df GVIF(1/(2*Df))

group 1.1715 1 1.0823

age 1.1569 1 1.0756

BMI 1.0258 1 1.0128

smoking 1.0083 1 1.0042

sleep 1.0518 2 1.0127

born 1.0142 1 1.0071
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Appendix D Diagnostics of diversity model in Section 4.2.2

D.1 Normality and Homoscedasticity

D.2 Leverage/influential observations
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D.3 Linearity

D.4 Independence

Test test statistic p-value

Durbin-Watson test 1.93 0.2111

D.5 Multicollinearity

GVIF Df GVIF(1/(2*Df))

group 7.7639 1 2.78638

age 1.2663 1 1.1253

BMI 1.0340 1 1.0169

smoking 1.0333 1 1.0165

sleep 2.3428 2 1.2372

born 1.0344 1 1.0170

group:sleep 9.8168 2 1.7701
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Appendix E R codes

For research question 1

## Data filtering

Isala.OTU <- counts_matrix(Isala.count, sample_name = sample_id, taxon_name = taxon_id,

value = count)

prevalence1 <- colSums(Isala.OTU > 0) / nrow(Isala.OTU)

Isala.OTU <- Isala.OTU[, prevalence1 >= 0.01]

Flora.OTU <- counts_matrix(Flora.count, sample_name = sample_id, taxon_name = taxon_id,

value = count)

prevalence2 <- colSums(Flora.OTU > 0) / nrow(Flora.OTU)

Flora.OTU <- Flora.OTU[, prevalence2 >= 0.01]

## Shannon & Chao1 index for Isala

shannon <- diversity(Isala.OTU, index = "shannon")

shannon <- as.data.frame(shannon)

shannon$sample_id <- rownames(shannon)

chao1df <- as.data.frame(apply(Isala.OTU, 1, chao1))

chao1df$sample_id <- rownames(chao1df)

colnames(chao1df)[colnames(chao1df) == "apply(Isala.OTU, 1, chao1)"] <- "chao1"

IsalaDF.with.shannon <- merge(IsalaDF, shannon, by = "sample_id")

IsalaDF.for.model1 <- IsalaDF.with.shannon[,c("sample_id", "age", "BMI.cat", "smoking",

"sleep.cat", "born", "shannon")]

IsalaDF.for.model1 <- merge(IsalaDF.for.model1, chao1df, by = "sample_id")

## Shannon & Chao1 index for Flora

shannon <- diversity(Flora.OTU, index = "shannon")

shannon <- as.data.frame(shannon)

shannon$sample_id <- rownames(shannon)

chao1df <- as.data.frame(apply(Flora.OTU, 1, chao1))

chao1df$sample_id <- rownames(chao1df)

colnames(chao1df)[colnames(chao1df) == "apply(Flora.OTU, 1, chao1)"] <- "chao1"

sampledf.with.Shannon <- merge(Flora.samples, shannon, by = "sample_id")

FloraDF.for.model1 <- sampledf.with.Shannon[,c("sample_id", "age", "BMI.cat", "smoking",

"sleep.cat", "born", "shannon")]

FloraDF.for.model1 <- merge(FloraDF.for.model1, chao1df, by = "sample_id")

## Merge Isala & Flora datasets

MergedDF.for.model1 <- rbind(FloraDF.for.model1, IsalaDF.for.model1)

MergedDF.for.model1$group <- c(rep("0", 353), rep("1", 390))

## Fit linear models for alpha diversity

model1b <- lm(shannon ~ group + age + BMI.cat + smoking + sleep.cat + born,

data=MergedDF.for.model1)

model1b <- lm(chao1 ~ group + age + BMI.cat + smoking + sleep.cat + born,
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data=MergedDF.for.model1)

## Model diagnostics

# QQ plot for normality

qqnorm(resid(model1b))

qqline(resid(model1b))

# Homoscedasticity

plot(fitted(model1b), resid(model1b), main="Residual vs Fitted")

abline(h = 0, col = "red")

# Leverage/influence

hatvals <- hatvalues(model1b)

p <- length(coefficients(model1b))

n <- nobs(model1b)

avg_leverage <- p / n

plot(hatvalues(model1b), main = "Leverage")

abline(h = 3*avg_leverage, lty = 2, col = "red")

cooksD <- cooks.distance(model1b)

n <- nobs(model1b)

plot(cooksD, main = "Cook’s Distance")

abline(h = 4/n, lty = 2, col = "red")

outliers <- as.numeric(names(cooksD)[(cooksD > (4/n))])

# Linearity

modeldata <- model.frame(model1b)

modeldata$pred <- predict(model1b)

modeldata$resid <- residuals(model1b)

ggplot(modeldata, aes(x = age, y = resid)) +

geom_point() + geom_smooth(method = "loess") + labs(title = "Residuals vs age") +

theme_minimal()

# Independence

lmtest::dwtest(model1b)

# Multicollinearity

car::vif(model1b)

For research question 2

## Creating phyloseq object for merged Flora & Isala

all_taxa <- union(colnames(Isala.OTU), colnames(Flora.OTU))

for (col in setdiff(all_taxa, colnames(Isala.OTU))) {Isala.OTU[[col]]<- NA}

for (col in setdiff(all_taxa, colnames(Flora.OTU))) {Flora.OTU[[col]] <- NA}

Isala.OTU.all <- Isala.OTU[, all_taxa]

Flora.OTU.all <- Flora.OTU[, all_taxa]

Combined.otu <- rbind(Flora.OTU.all, Isala.OTU.all)

Combined.otu[is.na(Combined.otu)] <- 0

otu.tab.merged <- as.matrix(Combined.otu)
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sample.data <- MergedDF.for.model1 %>% filter(!is.na(BMI.cat) & !is.na(born)

& !is.na(sleep.cat))

rownames(sample.data) <- sample.data$sample_id

metadata.phyloseq <- sample_data(sample.data)

merged.physeq <- phyloseq(otu_table(otu.tab.merged, taxa_are_rows = FALSE),

metadata.phyloseq)

## ANCOM-BC for merged dataset

Merged1.ancombc <-ancombc2(data = merged.physeq,

fix_formula = "group + age + BMI.cat + smoking", p_adj_method = "BH", group = "group",

prv_cut = 0.10, lib_cut = 1000, struc_zero = FALSE, iter_control = list(tol = 1e-5,

max_iter = 100, verbose=FALSE), alpha = 0.05, global = FALSE)

## Creating phyloseq object for Flora

rownames(Flora.samples) <- Flora.samples$sample_id

Flora.samples.phylo <- sample_data(Flora.samples)

Flora.phylo <- phyloseq(otu_table(Flora.OTU, taxa_are_rows = FALSE), Flora.samples.phylo)

## ANCOM-BC for Flora

Flora.ancombc <-ancombc2(data = Flora.phylo,

fix_formula = "age + BMI.cat + smoking + sleep.cat + born + bread + soft_drinks +

spirits", p_adj_method = "BH", group = NULL, prv_cut = 0.1, lib_cut = 1000,

struc_zero = FALSE, iter_control = list(tol = 1e-5,max_iter = 100,

verbose=FALSE), alpha = 0.05, global = FALSE)

## Creating phyloseq object for Isala

rownames(IsalaDF) <- IsalaDF$sample_id

IsalaDF.phylo <- sample_data(IsalaDF)

Isala.phylo <- phyloseq(otu_table(Isala.OTU, taxa_are_rows = FALSE), IsalaDF.phylo)

## ANCOM-BC for Isala

Isala.ancombc <-ancombc2(data = Isala.phylo,

fix_formula = "age + BMI.cat + smoking + sleep.cat + born + fermentedfd +

alcohol + sugarbev", p_adj_method = "BH", group = NULL, prv_cut = 0.10, lib_cut = 1000,

struc_zero = FALSE, iter_control = list(tol = 1e-5,max_iter = 100,verbose=FALSE),

alpha = 0.05, global = FALSE)

For research question 3

## Shannon & Chao1 index for Isala

shannon <- diversity(Isala.OTU2, index = "shannon")

shannon <- as.data.frame(shannon)

shannon$sample_id <- rownames(shannon)

chao1df <- as.data.frame(apply(Isala.OTU2, 1, chao1))

chao1df$sample_id <- rownames(chao1df)
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colnames(chao1df)[colnames(chao1df) == "apply(Isala.OTU2, 1, chao1)"] <- "chao1"

IsalaDF2.with.shannon <- merge(IsalaDF2, shannon, by = "sample_id")

IsalaDF2.for.model1 <- IsalaDF2.with.shannon[,c("sample_id", "age", "BMI.cat",

"smoking", "sleep.cat", "born", "shannon")]

IsalaDF2.for.model1 <- merge(IsalaDF2.for.model1, chao1df, by = "sample_id")

## Merge Isala & Flora datasets

MergedDF2.for.model1 <- rbind(FloraDF.for.model1, IsalaDF2.for.model1)

MergedDF2.for.model1$group <- c(rep("0", 353), rep("1", 146))

## Fit linear model for alpha-diversity

model1b <- lm(shannon ~ group + age + BMI.cat + smoking + sleep.cat + born

+ group*sleep.cat, data=MergedDF2.for.model1)

summary(model1b)

model1b <- lm(chao1 ~ group + age + BMI.cat + smoking + sleep.cat + born,

data=MergedDF2.for.model1)

summary(model1b)

## Creating phyloseq object for merged Flora & Isala

all_taxa <- union(colnames(Isala.OTU2), colnames(Flora.OTU))

for (col in setdiff(all_taxa, colnames(Isala.OTU2))) {Isala.OTU2[[col]] <- NA}

for (col in setdiff(all_taxa, colnames(Flora.OTU))) {Flora.OTU[[col]]<- NA}

Isala.OTU2.all <- Isala.OTU2[, all_taxa]

Flora.OTU.all <- Flora.OTU[, all_taxa]

Combined.otu <- rbind(Flora.OTU.all, Isala.OTU2.all)

Combined.otu[is.na(Combined.otu)] <- 0

prevalence1 <- colSums(Combined.otu > 0) / nrow(Combined.otu)

Combined.otu <- Combined.otu[, prevalence1 >= 0.01]

otu.tab.merged <- as.matrix(Combined.otu)

sample.data <- MergedDF2.for.model1 %>% filter(!is.na(BMI.cat) & !is.na(born)

& !is.na(sleep.cat))

rownames(sample.data) <- sample.data$sample_id

IsalaDF2.phylo <- sample_data(sample.data)

merged.physeq2 <- phyloseq(otu_table(otu.tab.merged, taxa_are_rows = FALSE),

IsalaDF2.phylo)

## ANCOM-BC for merged dataset

Merged2.ancombc <-ancombc2(

data = merged.physeq2,

fix_formula = "group + age + BMI.cat + smoking",

p_adj_method = "BH",

group = "group",

prv_cut = 0.10,

lib_cut = 1000,
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struc_zero = TRUE,

iter_control = list(tol = 1e-5,max_iter = 100,verbose=FALSE),

alpha = 0.05, global = FALSE)

## Creating phyloseq object for Isala

rownames(IsalaDF2) <- IsalaDF2$sample_id

IsalaDF2.phylo <- sample_data(IsalaDF2)

Isala.phylo2 <- phyloseq(otu_table(Isala.OTU2, taxa_are_rows = FALSE), IsalaDF2.phylo)

## ANCOM-BC for IsalaDF2

Isala.ancombc2 <-ancombc2(

data = Isala.phylo2,

fix_formula = "age + BMI.cat + smoking + sleep.cat + born + fermentedfd +

alcohol + sugarbev",

p_adj_method = "BH",

group = NULL,

prv_cut = 0.1,

lib_cut = 1000,

struc_zero = FALSE,

iter_control = list(tol = 1e-5,max_iter = 100,verbose=FALSE),

alpha = 0.05, global = FALSE)
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