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Abstract

Background: Educational attainment is a key socioeconomic indicator widely used

in mortality analyses to evaluate health inequalities in a population. However, missing

education levels (ELs) in the data limit these analyses. This study analyses the pat-

terns of missingness of this variable in the Belgian linked cause of death (COD) data,

and implements a method to impute the missing ELs.

Methods: Linked COD data were provided by Statbel, and ill-defined deaths re-

distributed by Sciensano. Patterns of missingness were evaluated to determine key

variables for the imputation process. To complement the descriptive analyses, a mixed-

effects ordinal logistic regression model was also fitted to further inform the methodol-

ogy. A probabilistic imputation procedure was then developed and implemented based

on Bayes’ rule, using COD, age groups, sex and region as the explanatory variables.

The model-based approach was also used as a comparative method to the manual prob-

abilistic procedure.

Results: The proportion of missing data in this study was approximately 10.4%, among

which the ELs for the cohort below 15 years old were completely missing. The covari-

ates indicated subtle systematic patterns in missingness, especially when examined in

combination with one another. Age group was the most influential variable in the data,

and inclusion of COD information better captured the underlying structure in the data.

The imputation process generated datasets that preserve the underlying distribution in

the data, even in relation to the covariates; an observation that was made from both

the probabilistic and model-based approaches. The complete dataset indicated that the

majority of deaths were more likely to be for individuals with a lower education level.

Conclusion: The imputation procedure filled the gaps in educational attainment, lead-

ing to complete datasets that would be used to examine health disparities by ELs. The

methodology can be flexibly tailored to datasets with similar challenges, thus improving

mortality-related analyses based on the complete datasets.

Key Words: Education level, Missing data, Probabilistic imputation, Cause of death,

Burden of disease, Health inequalities, Belgium
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1 Introduction

1.1 Background

Effective assessment of health interventions and formulation of public health policies re-

quire accurate and comprehensive vital statistics. Among these, statistics on causes of

death (COD) are essential for comprehending mortality patterns and guiding public health

initiatives. They inform the allocation of resources in the health sector, and provide crit-

ical insights for epidemiological research [1]. Historically, the procedures and systems for

designating the underlying cause of death have evolved from as basic as mortality announce-

ments in the 16th century [2], to civil registration systems in the 18th century, advancing

and laying the groundwork for the International Classification of Diseases (ICD), which is

currently used for uniform COD reporting worldwide [3]. This has led to high-quality COD

data for monitoring the health of populations, thus transforming the ability of governments,

institutions and researchers to analyse mortality and inform targeted interventions.

In Belgium, COD data is acquired in a series of steps. The process begins when the stan-

dardised death certificate (Model IIIC or IIID) is filled in by a certifying doctor upon the

demise of an individual. The forms are subsequently finalised by the municipal authori-

ties, and then sent to the regions, which review, code, and add the information to their

systems. Thereafter, the information is sent to Statbel, the Belgian statistical office, where

the databases are consolidated [4]. As part of the process, Statbel links the death certificate

data to the National Register of Natural Persons (RNPP), ensuring completeness of the

information and enabling alignment of deaths of Belgian residents and non-residents. This

linkage allows the addition of more demographic and socioeconomic variables to enrich the

COD data. Among these variables is educational attainment, which originates from the

population census based on administrative data.

Educational attainment is a key socioeconomic determinant of health, as it has been demon-

strated to be strongly linked to various health indicators such as access to healthcare ser-

vices, mortality rates and morbidity prevalence [5, 6]. Highly educated individuals tend

to live healthier lifestyles and are likely to be associated with pronounced health-seeking

behaviour, leading to better health outcomes and increased longevity. On the other hand,

previous studies and reports on the health of the Belgian population have demonstrated

a strong association between lower education levels (ELs) and adverse health-related be-

haviours. The 2021 health status report [7] outlined that individuals with low EL are more

likely to smoke daily, consume sugary drinks more frequently, and have higher obesity rates

(BMI ≥ 30). Additionally, a study on the evolution of life expectancies between 2001 and

2011 by Renard et al. [8] indicated that life expectancies increased across all ELs, but the

increase was more substantial among highly educated individuals.

In addition to the relationship between educational attainment and various health-related

behaviours and outcomes, it is important to evaluate how educational inequalities manifest

in mortality patterns. Incorporating EL information into analyses focused on COD allows
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for an examination of which CODs disproportionately affect the various levels of educa-

tion, thus offering essential insights for targeted interventions and public health policies.

However, the linked COD databases have missing EL information for some records, hence

limiting the ability to fully investigate the health disparities. Earlier studies conducted by

Renard et al. [9, 10] on educational disparities in premature mortality have also identified

this missingness as a significant limitation in their work. In these studies, the missing EL

information was either treated as a separate category or excluded from analyses, potentially

introducing bias in the results due to underestimation of the inequalities.

1.2 Sources of Missingness

In earlier censuses, some of the sources of missingness for EL data were as a result of non-

response in census forms, where individuals with low EL were less likely to declare, and

very sick people were unlikely to complete the forms. Due to changes in data collection

methods in the 2011 census, where questionnaires were no longer used, missing EL data

was then a result of new migrants whose information was not in the existing databases

[8]. These sources have evolved such that in the 2021 census data, missingness was mainly

linked to international migration and the increasing diversity of educational backgrounds.

Some of the reasons for missingness include migrants, as well as Belgians whose highest EL

was obtained abroad, and the diplomas do not have direct equivalence in Belgium. This

issue also extends to European schools in Belgium, whose credentials are not included in

the databases [11].

1.3 Research Question and Study Rationale

The main research question considered in this study is: ‘To what extent does COD infor-

mation provide added value in imputing missing EL?’ Addressing the missingness of EL

information in mortality datasets is crucial because it poses a challenge in reliably examin-

ing health inequalities by educational attainment. This study seeks to address the issue by

evaluating the contribution of COD information to the imputation process, which would

then guide the steps followed in the multiple imputation process. Specifically, the study

implements a two-dimensional probabilistic redistribution approach to fill in the missing

information. This two-dimensional approach refers to a sequential methodology where, in

the first dimension, deaths for which the underlying cause is not clearly specified or not well

defined (commonly referred to as ill-defined deaths (IDDs)) are first redistributed, then the

information is used to impute missing ELs in the second dimension.

The first dimension has been previously developed and implemented by Devleesschauwer et

al. [12]. The process entails the redistribution of IDDs to specific causes following a four-

step probabilistic procedure. This procedure is based on a stratification approach, where

probabilities of specific ICD-10 codes are calculated within each stratum of age group and

sex, and the target code is randomly sampled from the causes in the stratum. In the first

step, the redistribution is done for IDDs with clearly explained codes; in cases where a

stratum has a small number of deaths, the target distribution is obtained from sex only.

In the second step, intrinsically uninformative causes such as ‘unspecified heart failure’ are
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redistributed based on packages that consist of ICD-10 codes that are related and relevant

to the CODs. The third step involves an internal redistribution, where uninformative codes

are randomly assigned to cause mentioned in the death certificate. In the final step, all

remaining IDDs are proportionally redistributed over specific causes within the last 5 years.

This study builds upon the work of Devleesschauwer et al. [12], developing a probabilistic

technique for the imputation process that uses the redistributed CODs together with other

demographic characteristics in the linked dataset, as a vital step towards achieving complete

datasets for producing valid and reliable indicators of health inequalities.

1.4 Study Objectives

The primary objective of this study is to develop and evaluate a reliable probabilistic

technique to impute missing ELs in the Belgian linked COD dataset. Specifically, the

study aims to:

I. Analyse the patterns of missingness for education level in the linked COD data.

II. Examine the extent to which COD data can be used to impute missing education

level

III. Impute missing education level via a two-dimensional redistribution process using

Monte Carlo simulations.

IV. Assess the validity of the imputed results.
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2 Data Description

The dataset used in this study is a subset of the data obtained from the work of Devleess-

chauwer et al. [12] for the year 2022, where ill-defined deaths have been probabilistically

redistributed in 100 iterations, thus 100 datasets with completely imputed COD. Each

dataset includes the demographic characteristics of the individual, the calculated years of

life lost (YLL) and information on the underlying COD. Only CODs vary from dataset to

dataset as a result of the imputation procedure, while the rest of the variables are identical

in all the datasets. For purposes of this analysis, only one of the 100 datasets is used,

such that the methods developed can be applied to the other datasets. Table 1 provides a

summary of the selected variables in the dataset that are relevant to the study.

Table 1: Overview of the variables in the dataset

Variable Description Type No. of

categories

Age group Age group at time of death Categorical 6

Sex Sex Categorical 2

Region Region of death Categorical 3

Province Province of death Categorical 11

Education Level Highest education level attained Categorical 9

YLL Years of life lost due to premature Numerical -

mortality

ICD Redistributed ICD-10 code for the Categorical 1663

underlying COD

GBD3 Level 3 GBD clusters Categorical 121

GBD2 Level 2 GBD clusters Categorical 20

GBD1 Level 1 GBD clusters Categorical 3

The age groups are defined within the following categories: [0-5), [5-15), [15-45), [45-65),

[65-85) and 85+. Years of life lost (YLL) is a pre-calculated metric that indicates the num-

ber of years lost due to premature mortality. It is calculated by multiplying the number

of age-specific deaths by the standard expected residual life expectancy at age of death,

from the GBD 2019 reference life expectancy table [13]. ICD refer to the ICD-10 code in-

dicating the underlying COD, which is further grouped into hierarchical nested categories

called “Levels”, with Level 1 (GBD1) as the highest and Level 3 (GBD3) as the lowest in

the dataset. For example, Tuberculosis, a level 3 cause, is nested within HIV/AIDS and

tuberculosis (level 2), which is nested within Communicable, maternal, neonatal, and nu-

tritional diseases (level 1). GBD level 3 was used as the covariate for COD, consistent with

the majority of Sciensano’s reports, especially the website displaying inequality estimates

related to the Belgian Burden of Disease [14]. Overall, in the Belgian National Burden

of Disease Study (BeBOD), there are 130 unique GBD3 categories. However, the dataset

used in this study had only 121 categories since some CODs were not represented in the

redistributed iteration.
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Educational Attainment

Classification of the education levels follow the 9-point scale according to the International

Standard Classification of Education (ISCED) [15], adopted by Statbel. Level 0 refers to

individuals whose highest attainment was below primary education; this level includes the

early childhood development and pre-primary education programs. Level 1 represents pri-

mary education, Level 2 refers to lower secondary education, and Levels 3 and 4 represent

upper secondary and post-secondary non-tertiary education, respectively. Level 5 is for

short-cycle tertiary education, which encompasses practical and job-oriented programmes

that prepare students for the job market or for other tertiary education programmes [16].

Level 6 indicates completion of a bachelor’s degree or equivalent, Level 7 is completion of

a master’s degree, and Level 8 represents the highest level of attainment, i.e., doctorate or

equivalent.

For analytical purposes, a new variable was created that consolidates the 9 levels into

three categories, following the ISCED standard. Levels 0 to 2 were categorised as “Low”,

Levels 3 and 4 as “Medium”, and Levels 5-8 categorised as “High”. Additionally, a binary

variable was created to indicate whether the education level was observed or missing for

each individual:

Ri =

{
1, if EL is observed

0, if EL is missing

All the variables in the dataset were fully observed with no missing values, except education

level, which is the target variable for imputation.
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3 Methods and Materials

3.1 Patterns of Missingness

Exploratory Analysis

To address this objective, an exploration of the patterns and mechanisms of missingness

in the education level variable in the linked dataset was conducted. The variables con-

sidered were COD, sex, age group and region. These variables were selected based on

their established relationship with educational attainment and their relevance in Belgian

health research. Besides COD, which is the primary variable of interest, sex and age group

were considered because they are fundamental demographic determinants of educational

attainment. In addition to these, region was considered important due to the documented

differences in educational levels, as well as health inequalities among the three regions. For

instance, Statbel reports that 77% of the 26-64 year-olds in Flanders have at least upper

secondary EL. In Wallonia, the percentage of this population is 69%, and even lower in

Brussels, where the proportion is 66%.

This exploration was conducted in three parts. First, the distributions of observed ELs

across the variables, as well as in strata created by combining the variables, were explored

as a basis for understanding the composition of the data and any existing associations. For

example, if from the data it would be that individuals in one age cohort are more likely to

have a certain educational attainment compared to another cohort, the relationship would

be an indication of the importance of age in explaining educational attainment. Second,

patterns of missingness were also examined, where for each stratum based on a single or

combination of variables, the proportion of missing values relative to all records in that

stratum was evaluated. This enabled the identification of any systematic patterns of miss-

ingness in the covariates to provide guidance on the variables that would be essential for

imputing the missing information. Additionally, these results would provide preliminary

evidence of the potential underlying missingness mechanism. Specifically, systematic as-

sociations between the missing education information and the observed variables would

suggest that the data are likely to be missing at random (MAR). Otherwise, it would be

that the data are likely to be missing completely at random (MCAR). Third, comparisons of

the characteristics of the fully observed and the missing subgroups were done to determine

whether the demographic characteristics differed in these subgroups. Notable differences

from this comparison would mean that complete-case analyses on the data would lead to

biased estimates and conclusions, hence the relevance of imputation.

Little’s MCAR Test

A test for formally assessing whether data are MCAR was developed by Little, known as

Little’s MCAR test [17]. The null hypothesis in this test is that the data are MCAR, against

the alternative that the data are not MCAR. The test evaluates mean differences across

various subgroups in the data for cases that share the same pattern of missingness [18], with

the distribution of the test statistic being asymptotically chi-squared. A key assumption
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of this test is multivariate normality, and departures from this assumption would lead to

unreliable results. Considering the categorical nature of the EL covariate, this test was

deemed inappropriate for this study. Additionally, among the various limitations of this

test highlighted by Enders (2010) [18] is that when evaluating the mean differences, the

test assumes that the missing data patterns have a common variance-covariance matrix.

Hence, deviation from MCAR due to covariance would not be detected. Another important

limitation of this test-based approach is that a statistically significant p-value from the test

would only reject the hypothesis that the data are MCAR, implying that they are MAR or

MNAR, but does not distinguish between the two. The test is also not conclusive for the

MCAR mechanism since a non-significant result does not necessarily prove MCAR. This

study, therefore, relied on the insights from the exploratory analyses to determine whether

or not the data are MAR.

3.2 Model-based Assessment

To complement the exploratory analyses, a model-based approach was used to further exam-

ine the extent to which COD, as well as the other variables, explain educational attainment

based on the observed data. Given the nature of the variable of interest, which is categori-

cal and has a natural ordering, an ordinal logistic regression model was fitted. A series of

models were fitted, considering each covariate separately and all possible combinations of

the covariates. For models with COD, mixed effects models were fitted where COD was

treated as a random effect.

The rationale for the mixed effects model was based on the large number of COD categories

(121), resulting in 120 parameters for a single covariate if considered as a fixed effect, hence

increasing the risk of overfitting and affecting the parsimony of the model. Moreover, the

model efficiency would also be affected if there are CODs with few observations, leading to

unreliable estimates. The random effects, on the other hand, introduce the advantage of

“borrowing strength”, where estimates for the sparse CODs are shrunk towards the overall

mean, leading to more reliable estimates.

Ordinal Logistic Regression Model

The model considered in this analysis is the proportional odds model described by Mc-

Cullagh [19]. In this model, the three-level categorisation of EL (low, medium and high)

was considered as the outcome instead of the nine ISCED levels for interpretability and to

ensure adequate sample sizes in each level, hence reducing sparsity issues. For the fixed

effects models, i.e., models without COD, the general equation of the model is of the form:

logit[P (Y ≤ j|X)] = log

[
P (Y ≤ j)

P (Y > j)

]
= αj − β·X (1)

Where:

• Y is the outcome (education level)

• j = 1, 2 refers to the two thresholds (or cut-points) such that:
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– α1 is the log odds of being in low vs medium or high ELs, and

– α2 is the log odds of being in low or medium vs high EL

• X is the vector of the covariates in the model, and

• β is the vector of their regression coefficients

On the other hand, the general form of the equation for mixed effects models is:

logit[P (Y ≤ j|X,b)] = αj − (β·X+ b) (2)

Where b is a vector of the random intercepts for the 121 CODs, and bi ∼ N(0, σ2). For

instance, the equation for the model with sex, region and COD as the covariates becomes:

logit[P (Y ≤ j)] = αj − (β1 · Sex + β2 · Flanders + β3 ·Wallonia + b) (3)

,with the reference category for sex being male, and for region is Brussels.

To check the proportional odds (PO) assumption, a numerical approach was used, where

two ordinary binary logistic regression models were fitted separately and their empirical

odds ratios (OR) compared to the OR from the ordinal model. Below is the approach used

in creating the variables:

bin1 :

{
0, for low EL

1, for medium or high EL
bin2 :

{
0, for low or medium EL

1, for high EL

The PO assumption implies that for any covariate in the model, the binary ORs should

be similar to the OR from the ordinal model, such that if from the ordinal model, a vari-

able increases the odds of being in a higher category, both binary ORs would reflect this

phenomenon. In instances where this is not the case, e.g., if some estimates vary greatly,

to the extent of changing directions, then the partial proportional odds models were to be

considered since the PO assumption is violated, and the affected variable would be allowed

to have different slopes for each EL threshold [20]. The choice of this approach was due to

the presence of random effects, which makes it difficult to use the standard tests to check

the PO assumption.

The ordinal logistic models were implemented using appropriate functions from the ordinal

package in R [21], which has functions that allow inclusion of random effects and is flexible

to allow fitting a partial proportional odds model in case of violation of the PO assumption.

For binary models used to check the PO assumption, the glm() and glmer() functions were

used accordingly.

The Akaike Information Criterion (AIC) values for each model were thereafter evaluated

to determine the model that provides a better fit to the data. Importantly, since one of the

objectives of the study was to examine the extent to which COD information can be used

to impute missing ELs, comparison of AIC for the models with and without COD would

provide insights to assess the contribution of COD relative to the other covariates.
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3.3 Imputation of Missing Education Levels

3.3.1 Probabilistic Approach

In this second dimension of the redistribution process, missing ELs were imputed in two

steps. In the first step, the imputation was done for individuals under 15 years old, i.e.,

age groups [0,5) and [5,15). The regulation implemented in the 2021 Census [22] stated

that the education level for individuals under 15 years should be stated as Not applicable

(NAP). Therefore, missing ELs for these individuals were assigned the code “NAP”. In

the second step, the probabilistic approach was used to impute data for the remaining age

groups, using the 9-level ISCED classification to retain the granularity of the ISCED scale.

Here, the probability of an EL was calculated conditional on COD and the demographic

variables, making use of Bayes’ rule [23, 24]:

P (E|COD,X) =
P (COD|E,X) · P (E|X)

P (COD|X)
(4)

Where E is education level and X is a vector of the demographic variables; age group,

sex and region. On the left-hand side (LHS) of the equation is the set of probabilities of

each possible EL of the individual, given the specific values of their characteristics (i.e.,

COD, age group, sex and region). The components on the RHS, used to estimate these

probabilities, are calculated specific to the values of X and COD for the missing record. As

an illustration, suppose for a record with missing EL, the characteristics were as follows:

COD - Ischemic heart disease, sex - Male, age group - [45-65) and region - Wallonia. Then;

• P (COD|E,X) is the probability of COD being Ischemic heart disease, given the

demographic characteristics above and each educational attainment. These values

can only be calculated from the subset with ELs observed for this disease.

• P (E|X) is the probability of an EL given the age group is [45-65), sex is male, and

region is Wallonia. This is calculated from the broader population, for each EL.

• P (COD|X) is the aggregate probability of dying of Ischemic heart disease, given that

sex is male, age group is [45-65), and region is Wallonia, across all ELs.

This results in a set of estimated probabilities for each possible EL, representing how likely

the individual is to have attained each level based on their observed characteristics.

These calculations were done for every combination of the covariates, with the ELs and

their probabilities stored in a list of lists. Imputation was then done by randomly sampling

an EL from the list, depending on the characteristics of the individual whose EL informa-

tion was missing. For instance, if from a given combination of values of the variables in the

observed subset the following probabilities were calculated for each EL: (ISCED 0: 0.61,

ISCED 2: 0.10, ISCED 7: 0.29), the imputation value would be obtained by randomly

sampling between ELs 0, 2 and 7, using these probabilities. In case of combinations of

COD and X (sex, age group, region) in the missing subset that were not observed in the

complete subset, and cases where COD is sparse in the data (i.e., less than 10 records) a
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fallback strategy was adopted, where the probabilities were calculated based on age group

only. This method was preferred to a stratification approach ( i.e., creating strata defined

by combinations of sex, age group, region and COD, then calculating probabilities empiri-

cally), since the stratification technique would be easily affected by sparse cells.

Since the datasets from the first dimension (IDD redistribution) were probabilistically redis-

tributed using 100 iterations, the procedure from this second dimension was only performed

once for each dataset. This way, at the end of the two-dimensional redistribution process,

there would be 100 datasets with complete datasets, i.e., all IDDs are redistributed and

missing EL data imputed, hence accounting for the uncertainty of the imputed values for

these two variables.

3.3.2 Model-based Imputation

While the focus of the study was to use a probabilistic framework to impute the missing

EL information, a model-based alternative was also considered to evaluate the robustness

and possible differences between the two methods. The ordinal logistic regression model

described in Section 3.2 was fitted to the fully observed subset, and the predicted probabili-

ties were obtained based on the estimates of the coefficients in the model. These predictions

were then used to impute the missing information. Similar to the probabilistic approach,

this technique was applied to the 100 datasets, hence 100 fully-imputed datasets.

One drawback of this method is that it uses and imputes the three aggregated levels of ed-

ucation (low, medium and high) instead of the ELs imputed in the probabilistic approach

(ISCED 0-8). Therefore, for comparisons, the imputed values from the probabilistic method

were regrouped into the three categories.

This comparison helped to evaluate whether the simpler, probabilistic method sufficiently

captures the underlying structure in the data without the need for a model that would

require additional complexities, such as validity of the assumptions on which the model is

based, or whether the model-based approach leads to more plausible results.

Evaluation of the Imputed Results

To evaluate the plausibility of the imputed values, the distribution of the imputed ELs

in the final dataset (fully imputed) was compared to the complete subset (fully observed

data, pre-imputation) across the key variables. Through this comparison, it was possible

to assess whether the imputation preserved significant patterns in the data and maintained

consistency with the population’s known structure. Using insights from the comparison of

the differences in demographic characteristics initially done in the exploratory step as the

basis, outstanding variations between the fully imputed dataset from the original would

suggest potential issues with the imputation process.

These checks, however, were considered as informal evaluations of internal consistency and

plausibility of the results and do not confirm the correctness of the imputed values since
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the true education levels for these missing cases are unknown.

3.4 Software

All analyses were conducted using the R software version 4.4.2 [21]. Statistical tests were

performed at a 5% level of significance.
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4 Results

4.1 Distribution of Education Levels

Overall distribution

The subset of linked COD data considered for this analysis had a total of 116,378 records,

with only 12,113 (10.41%) missing. Educational attainment for all individuals under 15

years, i.e., age groups [0,5) and [5, 15) was missing, the total count being 522 (0.45% of the

dataset). ISCED levels 1, 2 and 3 had the highest proportions in the dataset, with ISCED

level 5 having the least representation(approximately 0.3%) as shown in Figure 1.

Figure 1: Overall distribution of education levels in the dataset

Due to the complete missingness of EL information in the two age groups below 15 years,

analyses on the fully observed subset had only four age groups.

Educational Attainment by COD

A heatmap displaying the proportions of ISCED levels across various GBD level 3 causes

of death was generated to explore whether educational attainment differs systematically

between individuals who died from more common versus rare diseases. Each line in Figure

2 represents a specific COD, ordered from rare CODs (top) to the most frequent ones.

While there was no clear systematic pattern between the rare and common diseases across

the ELs, the plot generally indicated dominance in the lower ELs, i.e., ISCED levels 1, 2,

and 3, which was reflected in the common and rare cases alike. For instance, educational

attainment for individuals who died of rare cases such as COD with very few to only one

count in the whole dataset indicated proportions close to 100% (represented by the bright

yellow shades), and were more dominant in ISCED levels 1,2,3 and in a few cases, level

4. However, this appeared to be a reflection of the general distribution of the data (shown
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in Figure 1). Due to the high cardinality of the COD variable (121 categories), it was

relatively difficult to observe or characterise distinct patterns across the ELs; hence, the

need for model-based assessment conducted in the sections that follow.

Figure 2: Distribution of Educational attainment across GBD Level 3, with CODs ar-

ranged from rare CODs (top) to the most common ones in the dataset

Educational Attainment by Age groups and Sex

The overall proportions of observations among males and females were fairly close, with

50.8% of the individuals being females and 49.2% males. Sex, by itself, showed similar

proportions among males and females across most of the ELs, except for ISCED level 7

(master’s or equivalent), where males had a notably higher proportion compared to females

(Appendix A.1). For age groups, the older population (85+) mostly had up to ISCED

level 1 (primary education), while for most 15-65 year olds the educational attainment was

generally above primary education (EL beyond level 1). Upon combining age groups and

sex, both males and females indicated similar trends in how proportions of ELs shift across

age groups as shown in Figure 3. For instance, among both sexes, proportions for the lowest

EL (ISCED level 0) tend to increase in the older age groups. However, subtle differences

were observed, especially in higher ELs (ISCED level 7 and 8, which represent master’s

level and doctorate or equivalent, respectively). For females, proportions for these ELs

indicated a clear decline as the age groups progressed, while in the male population, the

proportions tend to be relatively the same across the age groups, which suggests historical

gender disparities in regard to educational attainment. A similar observation was made

for ISCED level 6 (bachelor’s degree or equivalent), where the proportions fluctuated only

slightly among males, with 45-85 year olds having higher proportions. Females, on the
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other hand, had substantial proportions in this EL, though with a notable decline in the

older cohorts. This indicates that for the population in the dataset, age could be considered

a good indicator of educational attainment. Sex, by itself, had a less pronounced role but

indicated some subtle differences when considered in combination with age group.

Figure 3: Distribution of ELs across age groups and sex

Distribution by Region

Overall, Flanders had the highest population in the dataset, with a proportion of approxi-

mately 58.6%; while Wallonia and Brussels had 34.2% and 7.2% respectively. The summary

presented in Table 2 highlights the differences in EL composition, especially in the order of

ELs with the highest proportions. Although with minimal differences in the percentages,

Brussels indicated ISCED level 2 as the most dominant, followed by level 3, then level 1.

Different orders for the highest proportions were observed in Flanders (levels 1, 2, then 3)

as well as in Wallonia (2, 1, 3).

Table 2: Proportions (in %) of observed ISCED levels in each region

ISCED Level Brussels Flanders Wallonia

0 8.450 5.344 8.018

1 16.968 29.487 22.704

2 20.803 25.042 27.611

3 18.224 18.193 17.301

4 1.358 1.045 0.868

5 0.023 0.048 0.003

6 10.996 8.090 9.306

7 7.262 3.231 3.426

8 1.052 0.382 0.375
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4.2 Patterns of Missingness

Univariate Analyses

Sex, by itself, showed relatively similar probabilities of missing data, with a 9.32% propor-

tion among males and 10.7% among females. Among the four age groups, the 85+ year-olds

were more likely to have missingness compared to the younger population, and , among the

three regions, Brussels was the most likely to have missingness (Appendix A.1). Figure 4

shows the pattern of missingness across COD categories. The proportions appeared fairly

similar across the levels, and the higher proportions seen in the least frequent can be at-

tributed to the sparsity of these CODs. However, due to the high number of categories and

the nominal nature of this variable, the patterns could not be easily deciphered without the

risk of overinterpreting the plot. Therefore, a higher level of the COD (GBD1), with only

three categories, was examined to determine any substantial differences. Contrary to the

overall distribution of data among the GBD1 categories, where non-communicable diseases

had the highest proportion in the data, the category of communicable, maternal, neonatal

and nutritional diseases was more likely to have missingness of EL (11.2%), compared to

non-communicable diseases (9.9%) and injuries (8.7%).

Figure 4: Patterns of missingness for the 121 COD categories ordered by most frequent

(left) to least frequent (right)

Patterns of Missingness by Age groups, Sex and Region

Figure 5 displays a notable variation of missingness across the strata defined by age groups

and sex. 45-65 year-olds had lower proportions of missing data for both sexes. In addition to

that, younger ([15, 45)) and older (85+) cohorts had higher proportions of missingness, with

the female population being slightly more prone to having missing data. The middle age

group ([45,65)) indicated a slightly different pattern compared to the others, where males

had a slightly higher proportion of missingness. Given these subtle patterns, it is probable

that these demographic characteristics are likely to influence the probability of missingness.

Adding regions to the strata showed even more conspicuous patterns, where Brussels gener-

ally had higher proportions of missing data compared to the two other regions. In Brussels,

the proportions for males decreased across the age groups; an occurrence that is observed

in this region only. Additionally, compared to other regions where females exhibited a

tendency to have similar or higher proportions of missingness compared to males in the

majority of the age groups, Brussels had a reverse pattern, where in all age groups except

in the oldest cohort (85+ year-olds), males tend to have higher proportions of missingness.

These observations, though relatively nuanced, suggest that the missingness mechanism
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Figure 5: Patterns of missingness by age groups and sex

Figure 6: Patterns of missingness by age groups, sex and regions

in this dataset is more likely not to be MCAR. These findings highlight the necessity to

address the issue of missingness through imputation.
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Characteristics of the demographic variables in the complete and missing sub-

sets

Considering only the ten most frequent CODs for illustration, Ischemic heart disease and

Alzheimer’s disease were the top two; the remaining causes differed only by order, but were

the same in both subsets.

(a) Fully Observed (b) Missing

Figure 7: Top 10 CODs in complete and missing subsets

In the complete subset, females had slightly higher proportions compared to males, although

the values were very close, as displayed in Figure 8a. A similar observation was seen in the

missing subset; however, the difference was a bit more pronounced. For age groups, the two

older cohorts had almost the same proportions in the complete subset, but in the missing

subset, a consistently increasing trend was observed across the age groups. Combination

of age groups and sex reflected the differences already observed in the individual plots

(Appendix A.1). For regions only, both subsets had similar observations, where Flanders

had the highest proportion, followed by Wallonia, then Brussels. Similar to the sex-age

group strata, combining regions, age groups and sex indicated similar compositions in the

two subsets, with higher proportions in the older populations as shown in Figure 9.

(a) Differences by sex only (b) Differences by age group only

Figure 8: Composition within sex and age groups
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Figure 9: Differences by age groups, sex and regions

4.3 Ordinal Logistic Regression Model

For each combination of the variables, the ordinal logistic regression model was fitted, and

the PO assumption evaluated. All models with age group as a covariate violated the PO

assumption, while for the other models, the assumption was not violated. In the cases

with violations, the parameter estimates of the binary variables (specifically, bin2, which

represents low or medium EL vs high) varied from the estimate obtained from the ordinal

model for some age groups. An illustration of this finding is displayed in Table 3, which has

a summary of estimates for the fixed effects only for the model with age group and GBD3

as the covariates. The estimates from the binary variables vary notably to the extent of

changing signs, e.g., for the 45-65 year-olds.

Table 3: Parameter estimates to illustrate a model that violates the PO assumption (with

calculated ORs in brackets)

Ordinal Low vs Medium or High Low or Medium vs High

Covariate: Estimate 95% CI Estimate 95% CI Estimate 95% CI

Age group

[45,65) -0.1142 [-0.1977; -0.0306] -0.2385 [-0.3338; -0.1432] 0.0760 [-0.0423; 0.1943]

(0.8921) (0.7878) (1.0790)

[65,85) -0.5916 [-0.6733; -0.5100] -0.8560 [-0.9487; -0.7633] -0.0594 [-0.1746; 0.0558]

(0.5534) (0.4249) (0.9423)

[85,Inf) -1.0720 [-1.1553; -0.9887] -1.3405 [-1.4346; -1.2464] -0.4604 [-0.5780; -0.3428]

(0.3423) (0.2617) (0.6310)
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The estimates in the table represent the log odds for the covariates. Given the negative

sign in the regression equation 2, the odds of Y ≤ j, comparing individuals at any level k

(the levels of the categorical variable) with those at the reference point is given by e−βk .

This implies that the OR presented in the table, i.e., eβk is therefore the odds of Y > j

in this comparison. Based on the ordinal OR, individuals aged [45–65), for instance, have

about 11% lower odds of having a higher educational attainment compared to those in the

reference group ([15–45) year-olds), and the effect is assumed to be the same across all

thresholds for EL. The binary ORs, on the other hand, show that for this age group, the

odds are 23% lower for the low vs medium or high threshold, but 8% higher for the low

or medium vs high threshold. This means that individuals in this age group had a higher

chance of having the “high” EL compared to low or medium, compared to individuals in

the 15-45 years cohort; conditional on the cause of death. Consequently, partial propor-

tional odds (PPO) models were fitted for those that violated the assumption, allowing age

groups to have non-proportional odds (i.e., different effects for each threshold), while the

remaining covariates had proportional odds.

Table 4 displays the respective AIC values for the models fitted. The AIC values for mod-

els with age group as a covariate are from the PPO models. Among the models without

GBD3, all models with age group as a covariate indicated notable reduction in AIC values,

implying that age group improves the fit. GBD3 by itself, i.e., a random effects only model,

had worse performance compared to most of the models in which it was not included, es-

pecially those with age group as one of the covariates. However, when GBD3 was added

as a random effect to the models with the other covariates (hence a mixed effect model), a

substantial reduction in AIC was observed for all of them. Additionally, the reduction in

AIC when age group is present was still consistent in these models. This improvement in

fit shows that with GBD3 as one of the explanatory variables, the underlying structure in

the data is better captured compared to when it is excluded.

Table 4: Table with AIC values from the models fitted

Without GBD3 With GBD3

Variable(s) in the model AIC AIC

GBD3 only - 183101.28

Sex 183596.50 182099.34

Agegroup 181330.00 179912.32

Region 184337.33 182612.91

Sex + Agegroup 179905.01 179326.68

Sex + Region 183075.08 181582.84

Agegroup + Region 180010.24 179452.63

Sex + Agegroup + Region 179427.20 178848.05

The parameter estimates for the model with all the covariates (sex, age group, region and

GBD3), which had a better performance among all the models considered, are summarised
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in Table 5. The equation of this partial proportional odds (PPO) model is:

log

[
P (Y ≤ j)

P (Y > j)

]
= αj −

(
3∑

k=1

βk,j ·Agegrpk + β4 · Sex + β5 · Flanders + β6 ·Wallonia + b

)
(5)

In this equation, αj represents the baseline log-odds for each threshold, i.e., threshold-

specific intercept. βk,j represents varying coefficients for age groups, which depend on the

threshold j due to the relaxed PO assumption. β4, β5 and β6 are coefficients for sex, Flan-

ders and Wallonia regions, respectively, and these are constant across all the thresholds.

The random intercepts for GBD3 are represented by b, assumed to be normally distributed

with a mean of 0 and variance σ2.

Table 5: Parameter estimates for the model with all covariates

Covariate Parameter Estimate Odds Ratio SE p-value

AGEGRP : [45,65)

Low|Medium β1,1 -0.2095 0.8110 0.0489 < 0.001

Medium|High β1,2 0.1058 1.1116 0.0605 0.6189

AGEGRP : [65,85)

Low|Medium β2,1 -0.8168 0.4418 0.0474 < 0.001

Medium|High β2,2 -0.0034 0.9966 0.0582 0.0169

AGEGRP : [85,Inf)

Low|Medium β3,1 -1.2537 0.2854 0.0483 < 0.001

Medium|High β3,2 -0.3438 0.7091 0.0592 < 0.001

SEX : Female β4 -0.3403 0.7116 0.0138 < 0.001

REGION : FL β5 -0.5331 0.5868 0.0243 < 0.001

REGION : WA β6 -0.5293 0.5890 0.0254 < 0.001

Threshold Parameter Estimate Inverse logit SE

Low|Medium α1 -0.9587 0.2771 0.0555

Medium|High α2 1.0231 0.7356 0.0645

Random Effects Parameter Variance

GBD3 b 0.0420

The thresholds are labeled Low|Medium and Medium|High, illustrating that the log odds

correspond to P(EL ≤ Low)/P(EL > Low) and can be alternatively presented as P(EL ≤
Low)/P(EL ≥ Medium) for the first one, with a similar derivation for the second threshold.

The results from the model imply that if the linear combination of the covariates and the

random effect is less than -0.9587, the individual would be more likely to have low educa-

tional attainment; between -0.9587 and 1.0231, they would be likely to have medium, and

greater than 1.0231, they would be likely to have high educational attainment. From the

calculated inverse logits 1, if after computing all the values on the RHS the value of the

1Formula: e
αj

1+e
αj
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inverse logit (the probability) would be less than 0.2771, the individual would be likely to

have “low” EL; “medium” if the probability is between 0.2771 and 0.7356, and “high” if

the probability is greater than 0.7356.

The OR for age group [45, 65) for the comparison of low vs medium or high was 0.8110,

meaning this cohort has approximately 19% lower odds of being in medium or high level,

compared to the [15,45) cohort when all the other variables are controlled for, and con-

ditional on the COD. This effect was statistically significant (p-value < 0.001). For the

comparison of being in high vs low or medium, this age group had approximately 11%

higher odds compared to the reference group. However, this effect was not statistically sig-

nificant (p-value = 0.6189). In the other age groups, the odds, compared to the reference

group, were significantly lower for both thresholds.

The OR for females was 0.7116 (p-value < 0.001), implying that while controlling for the

other covariates, the odds of females having higher categories of educational attainment was

significantly lower by about 29% compared to the males. The odds for the two regions were

similar (41% lower) compared to the reference group, which is Brussels, conditional on the

COD and controlling for the other covariates. These results confirm the observations from

the exploratory analyses for variables like age group and sex, and uncover some insights

that were otherwise difficult to observe from the visualisations.

The intra-cluster correlation for the random effects was approximately 1.3%, which repre-

sents the variability in educational attainment explained by GBD3. This value is calculated

as;

ICC =
σ2

σ2 + π2/3
=

0.042

0.042 + π2/3

4.4 Imputation

Probabilistic Imputation

Prior to the imputation process, the fully observed subset and the subset with missing data

were examined for any differences, especially in the composition of the covariates necessary

for the procedure. This was done to identify whether there were CODs with missing values

that had no presence whatsoever in the observed subset, and if there were some COD,

age group, region and sex combinations in the missing subset but not previously observed.

From this check, all CODs in the missing subset had at least some records in the fully

observed subset. Of the 11,591 records with missingness (excluding the 522 records for

under 15-year-olds), approximately 99.6% had combinations of all four covariates that were

already present in the observed data, with only 48 (approximately 0.4%) having combina-

tions of COD with only two or one of the other covariates. These 48 observations were

imputed using the fallback strategy, i.e., probabilities calculated from age groups only from

the complete subset.
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Following the imputation procedure, 0.45% of the data, representing age groups [0,5) and

[5,15), were imputed using the “NAP” code. For the remaining age groups, the resulting

distribution of education levels in the fully imputed dataset indicated very minimal de-

viations from the proportions previously observed from the complete subset. This small

difference could be a result of the proportion of missingness being quite small in the dataset

of 116,378 records, hence the possibility of the results being masked by proportions in the

already observed records. For this reason, a subset of only the records whose ELs were

imputed was also examined, and the proportions displayed in Table 6, based on the higher

categorisation of educational attainment (low, medium and high). These summaries are

based on only one of the datasets out of the 100, therefore, these proportions would differ

because of the difference in the composition of CODs in each dataset achieved in the process

of IDD redistribution [12].

Table 6: Summary of proportions (in %) in the complete subset, subset of imputed and

the fully imputed dataset from the probabilistic approach

EL Observed Imputed subset Fully imputed

Low 64.78 63.78 64.68

Medium 21.00 18.75 20.76

High 14.22 13.16 14.11

NAP - 4.31 0.45

The proportions in the fully imputed dataset were very similar to the observed proportions.

This similarity was also reflected in the relationships between educational attainment and

other variables. For the subset with only imputed records, slight differences were observed

for these proportions, indicating some difference in proportionality as a result of the imputa-

tion method used. However, based on the similarities initially observed from the comparison

of the demographic characteristics between the complete and missing subsets, the imputa-

tion procedure was less likely to result in very pronounced differences. Figure 10 juxtaposes

the distribution of ELs across age groups for the fully observed subset against the imputed

subset.

Generally, the imputation process preserved the overall pattern of educational attainment

across age groups, with older cohorts being more likely to have lower ELs. Additionally,

ISCED level 5 continued to exhibit the lowest frequency as in the complete subset. However,

a closer examination of the patterns revealed some subtle differences, especially at lower

ELs. In ISCED level 2, for instance, the age groups with the highest proportions switched,

such that in the observed, the [65,85) cohort had the highest, followed by [85, Inf), while

in the imputed subset, this order was reversed. Furthermore, the absolute differences in

proportions for lower ELs were more pronounced in the imputed dataset. These differences,

though subtle, indicate that the imputation procedure did not provide a perfect replicate

of the relationships in the complete subset, especially with the key demographic variables.
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Figure 10: Side by side comparison of the distribution of ELs in the complete subset and

the imputed subset

Model-based Imputation

The model whose estimates have been presented and interpreted in Section 4.3 was fitted

to the data. Since all CODs in the subset with missing ELs were also observed in the

complete cases, the model fitted on the observed data provided all the required random

effects estimates for this procedure. For each missing record, the systematic component of

Equation 5 was obtained by using the specific estimates depending on the value of their

characteristics (COD, sex, age group and region). This generated predicted probabilities

for each EL (low, medium and high) for every record with missing information.

Table 7 summarises the proportions obtained after imputation. Similar to the observations

made from the probabilistic approach, the fully imputed dataset had similar proportions

to the observed ones, but the subset of only imputed records had small differences.

Table 7: Summary of proportions (in %) in the complete subset, subset of imputed and

the fully imputed dataset from the model-based approach

EL Observed Imputed subset Fully imputed

Low 64.78 63.11 64.61

Medium 21.00 19.66 20.86

High 14.22 12.92 14.08

NAP - 4.31 0.45
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5 Discussion

The challenge of missing information on educational attainment is a fundamental method-

ological issue in studies focusing on health inequalities using this socioeconomic indicator.

In Belgium, as in other countries, misclassified or, in some cases, missing educational levels

in linked death datasets can lead to biased estimates of educational inequalities in mortality,

making cross-country comparisons (e.g., for OECD countries) difficult [25]. International

studies have also reflected this challenge as one that may lead to bias in mortality-related

estimates. For instance, in Switzerland, a lack of high-quality linked data, caused by miss-

ingness and misclassification, resulted in the underestimation of socioeconomic inequalities

in death rates [26].

In light of this, the study sought to address the challenge of missingness in the linked

COD data using a two-step probabilistic procedure. In the first step, individuals under 15

years of age were assigned a ‘Not Applicable’ (NAP) code. For the remaining age groups,

a probabilistic imputation approach based on Bayes’ rule was used, where the choice of

variables considered was driven by the patterns observed in the data, as well as known

relevance based on prior studies. This analysis was therefore grounded in a thorough

analysis of the structure of the dataset used, as a foundation for the process. By leveraging

the probabilistic, as well as a model-based approach, the study aimed at generating plausible

imputation values, thus minimizing bias in subsequent studies that rely on EL information.

Summary of findings

In the linked COD data analysed in this study, approximately 10.41% of the records had

missing EL information; this included all individuals under the age of 15 years for whom

EL data were completely missing. For this reason, records for those below 15 years old were

excluded from the exploratory analyses. Overall, the representation of males and females

was fairly equal in the dataset. More records were observed among the older population,

which is in line with the Belgian life expectancy [7]. The relationship between educational

attainment and the covariates revealed slight differences across various strata. In the lower

ELs, the proportions increased across age for both sexes, indicating that the older popu-

lation were less likely to have high educational attainment. On the other hand, in higher

ELs (ISCED 6-8) the proportions among females consistently declined across age groups,

compared to the proportions of males for the same levels, where the values did not fluctuate

much across age. This is a reflection of the historical educational inequality among males

and females, as reported by Ronsijn (2014) [27], that in the earlier years, the impact of

educational expansion was more pronounced among males than females. COD, by itself,

did not show notable differences across groups due to the high cardinality of the variable.

The covariates indicated subtle patterns of missingness, such that the oldest cohort (85+)

and the cohort of [45,65) were more likely to have missing ELs, with females having a slightly

higher probability compared to males. For COD, patterns could not be easily deduced from

the visual inspections due to the high number of categories. Generally, individuals from
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Brussels were more likely to have missing data compared to the other regions. In addition

to that, contrary to Flanders and Wallonia where males and females had comparable proba-

bilities across age, in Brussels, males were more likely to have missingness across age. These

differences, though subtle, highlighted the importance of considering these variables when

imputing EL. A comparison of the demographic characteristics between the fully observed

and missing subset revealed that the two populations were similar in this regard.

From the ordinal logistic regression models, improvement in fit was observed when COD

was included in the model. This underscores the additional value of GBD3 in capturing the

underlying structure in the data. Specifically, the model with all the covariates provided

a better fit to the data compared to the other models. Inferences from this model mostly

reflected the insights from the visualisations, e.g., the age group [45,65) having higher odds

of attaining the highest ELs compared to the [15, 45) cohort. The model, however, un-

covered an important association between COD and educational attainment, a relationship

that was otherwise difficult to observe from the visualisations.

The distribution of educational levels in the fully imputed dataset was considerably similar

to that observed in the complete subset; both overall and in relationship to the key vari-

ables. This indicates that the underlying structure of the data was preserved during the

imputation process; an observation that was not surprising because both the fully observed

and missing subsets had similar demographic characteristics. Moreover, in line with the

demographic reality that deaths are more common among the older population, who, his-

torically, had lower educational attainment, it is noteworthy that a larger share of imputed

values fell into the lower ELs. Although the imputation process did not lead to values that

are drastically different from the complete cases, it is still advantageous to impute missing

values rather than completely ignore them for robust estimates.

Comparison with other studies

Similar to the insights from this study, both from the complete cases and fully imputed

data, various studies have consistently shown an association between higher mortality risks

and lower educational attainment. This relationship can be attributed to the older pop-

ulation, who, overall, are less likely to have attained the higher ELs, as well as the fact

that certain causes of death, especially those related to health-seeking behaviours, are more

likely among less educated individuals [7, 28].

In a study of mortality in the US, Lourés et. al [24] also implemented a similar probabilistic

approach to impute missing educational attainment. While they did not directly compare

the distributions in the complete cases to those in the imputed datasets, they leveraged

the fact that this approach makes optimal use of the available information in the dataset

through the components used to calculate the probabilities (Equation 4) [23]. As a result,

the complete datasets enabled them to conduct comprehensive analyses of mortality using

educational attainment as a stratifier.
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Strengths and Limitations

A key strength of the probabilistic process used in this study is the generation of complete

datasets, and more importantly, imputation of ELs at a granular level, in line with ISCED

levels (0-8), which can be useful in other analyses. Additionally, the process followed in

creating the linked COD dataset used ensures the data covers the entire Belgian population,

hence the data can be reliably used in mortality analyses [8]. This process is also flexible

and can be adapted for similar use cases, with variables tailored to the patterns observed

in those datasets.

Nonetheless, the study has several limitations. The variable selection process is data-driven,

since imputation was done using variables identified in the data as potentially associated

with educational attainment. For this reason, a different dataset with varying population

characteristics may require other variables that better explain the structure in the data.

Additionally, all the individuals under 15 years of age had missing EL, thus limiting the

ability to assess educational attainment for this cohort, given there is a likelihood that some

may have completed certain educational levels prior to their death, especially the lower ed-

ucational levels. Furthermore, this process was computationally intensive, such that the

probabilistic procedure required a long processing time even for one dataset.

It is worth noting that since this procedure uses COD information to impute ELs, and

the imputed EL would be later used to analyse health inequalities, careful assessment is

required, especially in cases where the proportion of missingness is high, such that the

associations observed are not artificially introduced in the imputation process.

Future Work

Future studies could leverage the imputed datasets to conduct comprehensive analyses of

the linked COD dataset, such as exploring health disparities using educational attainment

to yield insights that can be used to inform public health policies. Moreover, if available,

additional socioeconomic variables such as information on employment would further refine

probable education levels, taking into account that certain types of jobs require individuals

to have attained specific levels of education.
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6 Ethical Thinking, Societal Relevance, and Stakeholder Aware-

ness

6.1 Ethical Standards Relevant to the Study

The data used in this study are for deceased persons, whose personal information is exempt

from data protection laws according to the GDPR. Nonetheless, there were no variables in

the dataset that could be used to re-identify the individuals. Moreover, to ensure privacy

and integrity of the data provided by the company, all data processing and analyses were

done on Sciensano’s virtual machine.

6.2 Societal Relevance

This study contributes to the accurate analysis of health disparities within the Belgian

population by ensuring the completeness of the linked COD data. Results generated from

the downstream analyses that use this data would provide helpful insights that can be

used by public health officials to make informed, evidence-based decisions on public health

policies, as well as implement targeted interventions. This would consequently enhance

health equity and lead to a healthier nation by meeting the needs of the population-at-risk.

6.3 Stakeholder awareness

This study is directly relevant to Sciensano Service Health Information, the government and

other decision-making bodies, as well as the general population. Sciensano Service Health

Information is particularly interested in complete and high-quality datasets that can be

used in generating vital statistics. This would ultimately lead to the calculation of accurate

estimates of the burden of disease and other key health indicators that are relevant to the

general population.

7 Conclusion

This study developed and implemented a probabilistic procedure to impute missing EL

information. Building upon the IDD redistribution framework [12], the study leveraged the

COD information, in combination with key demographic variables, to “fill the gaps” in EL

information. The procedure resulted in a fully imputed dataset that conserves the overall

distribution of data in the population, with the majority of the deceased persons having

lower educational levels, which aligns with previous studies. The results from the procedure

developed would be useful in future applications, including complementing the data used

in tracking the Belgian National Burden of Disease (BeBOD).
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Appendix A: Supplementary Results

A.1 Results from the Exploratory Analyses

Univariate Plots for Distribution of ELs

(a) Distribution of ELs by age (b) Distribution of ELs by sex

Additional Plots for Patterns of Missingness

(a) Patterns of missingness by age (b) Patterns of missingness by region

Additional plots for differences in characteristics between complete and missing

subsets

(a) Differences by sex and age groups (b) Differences by region
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A.2 Estimates for the PO Assumption Check for the Selected Model

Ordinal Bin1 Bin2

Covariate Estimate p-value Estimate p-value Estimate p-value

(SE) (SE) (SE)

Sex: F -0.3243 < 0.001 -0.3238 < 0.001 -0.3579 < 0.001

(0.0132) (0.0135) (0.0184)

Age group: [45,65) -0.1542 0.0001 -0.2921 < 0.001 0.0345 0.5559

(0.04032) (0.0466) (0.0586)

Age group: [65,85) -0.6602 < 0.001 -0.9446 < 0.001 -0.1058 0.0554

(0.03796) (0.0439) (0.0553)

Age group: [85,Inf) -1.1160 < 0.001 -1.4094 < 0.001 -0.4609 < 0.001

(0.03845) (0.0443) (0.0560)

Region: Flanders -0.5344 < 0.001 -0.4739 < 0.001 -0.6819 < 0.001

(0.02421) (0.0253) (0.0303)

Region: Wallonia -0.5377 < 0.001 -0.5026 < 0.001 -0.5686 < 0.001

(0.02525) (0.0264) (0.0316)

Table 8: Parameter Estimates for the ordinal and two binary models. Standard errors are

provided in brackets for each estimate
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Appendix B: R Codes

The R Codes presented here are for the selected regression model, its PO assumption check,

and the imputation methodologies implemented. The building blocks, including data pro-

cessing, exploratory analyses and all the other models fitted, can be found on Github

https://github.com/Carol0128/Filling-the-Void.

#libraries

library(ggplot2)

library(dplyr)

library(stringr)

library(tidyr)

library(ordinal)

library(lme4)

##:::::::::::Ordinal Logistic Regression Model ::::::::::::::

# ordinal model

allvars_olr_model <- clmm(CD_ISCED_CENSUS_2 ~ SEX + AGEGRP + REGIOJ +

(1|GBD3_RED4), data = df_observed)

summary(allvars_olr_model)

##:::Check for PO assumption

# creating bin1 and bin2 variables

df_observed <- df_observed %>% mutate(

bin1 = ifelse(CD_ISCED_CENSUS_2 == "Low", 0, 1),

bin2 = ifelse(CD_ISCED_CENSUS_2 == "High", 1, 0))

# binary model for bin1

allvars_glm_model1 <- glmer(bin1 ~ SEX + AGEGRP + REGIOJ + (1|GBD3_RED4),

family = binomial, data = df_observed)

summary(allvars_glm_model1)

# binary model for bin 2

allvars_glm_model2 <- glmer(bin2 ~ SEX + AGEGRP + REGIOJ + (1|GBD3_RED4),

family = binomial, data = df_observed)

summary(allvars_glm_model2)

##:::Partial Proportional Odds Model

all_vars_ppo_model <- clmm2(CD_ISCED_CENSUS_2 ~ REGIOJ + SEX, nominal = ~ AGEGRP,

random = GBD3_RED4, data = df_observed, Hess = TRUE)

summary(all_vars_ppo_model)
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##:::::::::::IMPUTATION ::::::::::::::

##::: Probabilistic Imputation

prob_impute <- function(data){

#STEP1: NAP for under 15 years

data <- data %>% mutate(CD_ISCED_CENSUS_IMP1 = ifelse(is.na(CD_ISCED_CENSUS) &

AGEGRP %in% c("[0,5)", "[5,15)"), "NAP",

as.character(CD_ISCED_CENSUS)))

# column to hold imputed values in Step 2

data$CD_ISCED_CENSUS_IMP2 <- as.character(data$CD_ISCED_CENSUS_IMP1)

#records for which Ed level is not missing after step 1

df_observed_imp1 <- data %>% filter(!is.na(CD_ISCED_CENSUS_IMP1))

#records for which Ed level is missing

df_missing_imp1 <- data %>% filter(is.na(CD_ISCED_CENSUS_IMP1))

# Calculating the probabilities

## 1. p(C | e, X)

p_cod_given_EX <- df_observed_imp1 %>%

group_by(GBD3_RED4, CD_ISCED_CENSUS_IMP1, AGEGRP, REGIOJ, SEX) %>%

summarise(n_cex = n(), .groups = "drop") %>%

group_by(CD_ISCED_CENSUS_IMP1, AGEGRP, REGIOJ, SEX) %>%

mutate(m_cex = sum(n_cex), p_cod_eX = n_cex / sum(n_cex))

## 2. p(e | X)

p_E_given_X <- df_observed_imp1 %>%

group_by(CD_ISCED_CENSUS_IMP1, AGEGRP, REGIOJ, SEX) %>%

summarise(n_ex = n(), .groups = "drop") %>%

group_by(AGEGRP, REGIOJ, SEX) %>%

mutate(m_ex = sum(n_ex), p_e_X = n_ex / sum(n_ex))

## 3. p(C | X)

p_cod_given_X <- df_observed_imp1 %>%

group_by(GBD3_RED4, AGEGRP, REGIOJ, SEX) %>%

summarise(n_cx = n(), .groups = "drop") %>%

group_by(AGEGRP, REGIOJ, SEX) %>%

mutate(m_cx = sum(n_cx), p_cod_X = n_cx / sum(n_cx))

## I Calculating the posterior p(E|C, X) from the 3 components

posterior_df <- p_cod_given_EX %>%

left_join(p_E_given_X, by = c("REGIOJ", "AGEGRP", "SEX",

"CD_ISCED_CENSUS_IMP1")) %>%
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left_join(p_cod_given_X, by = c("REGIOJ", "AGEGRP", "SEX", "GBD3_RED4")) %>%

mutate(p_E_given_all = (p_cod_eX * p_e_X) / p_cod_X)

# creating a list of lists with each EL and it prob for every COD,X combination

posterior_summary <- posterior_df %>% group_by(GBD3_RED4, AGEGRP, SEX,

REGIOJ) %>%

summarise(group_size = mean(n_cx), ed_prob_list =

list(purrr::map2(as.character(CD_ISCED_CENSUS_IMP1),

p_E_given_all, ~ list(ED = .x, p = .y))), .groups = "drop")

## II. Fallback probs when there are missing sets or sparse groups

p_E_given_age <- df_observed_imp1 %>%

group_by(CD_ISCED_CENSUS_IMP1, AGEGRP) %>% summarise(n = n(), .groups = "drop") %>%

group_by(AGEGRP) %>% mutate(m = sum(n), p_E_age = n/sum(n)) %>%

summarise(ed_prob_list = list(purrr::map2(as.character(CD_ISCED_CENSUS_IMP1),

p_E_age, ~ list(ED = .x, p = .y))), .groups = "drop")

#Imputation begins here

for (i in 1:nrow(df_missing_imp1)){

row <- df_missing_imp1[i,]

#find matching group from the posterior summary table

match_prob <- posterior_summary %>% filter(GBD3_RED4 == row$GBD3_RED4,

REGIOJ == row$REGIOJ, AGEGRP == row$AGEGRP, SEX == row$SEX)

stratum_size <- match_prob$group_size

cat("Imputing row", i, "\n")

# If a match is found

if (nrow(match_prob) > 0 && stratum_size > 9) {

ed_prob_list <- match_prob$ed_prob_list[[1]]

# Extracting Ed level and probs to simplify sampling step

ed_levels <- sapply(ed_prob_list, function(x) x$ED)

probs <- sapply(ed_prob_list, function(x) x$p)

# Randomly sample Education level

selected_ED <- sample(ed_levels, 1, prob = as.numeric(probs))

}

# If there is no match:

else{

match_fallback <- p_E_given_age %>% filter(AGEGRP == row$AGEGRP)
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ed_prob_list2 <- match_fallback$ed_prob_list[[1]]

ed_levels2 <- sapply(ed_prob_list2, function(x) x$ED)

probs2 <- sapply(ed_prob_list2, function(x) x$p)

selected_ED <- sample(ed_levels2, 1, prob = probs2)

}

# impute the selected one in the initial dataset

df_missing_imp1[i, "CD_ISCED_CENSUS_IMP2"] <- selected_ED

}

df_full <- rbind(df_observed_imp1, df_missing_imp1)

#categorization for low, medium, high (and the new category - NAP)

df_full <- df_full %>% mutate(CD_ISCED_CENSUS2_IMP2 =

ifelse(CD_ISCED_CENSUS_IMP2 == "NAP", "NAP",

ifelse(CD_ISCED_CENSUS_IMP2 %in% c(0,1,2), "Low",

ifelse(CD_ISCED_CENSUS_IMP2 %in% c(3,4), "Medium", "High"))))%>%

mutate(CD_ISCED_CENSUS2_IMP2 = factor(CD_ISCED_CENSUS2_IMP2,

levels = c("Low", "Medium", "High", "NAP"), ordered = T))

return(df_full)

}

# implementing the function on a (preprocessed) dataset

prob_imputed_df <- prob_impute(df)

##::: Model-Based Imputation

# Here, the predicted probabilities are calculated using the inverse logit formula

# since the functions do not directly provide these values

model_impute <- function(data){

#STEP1: NAP for under 15 years

data <- data %>%

mutate(CD_ISCED_CENSUS2_IMP1 = ifelse(is.na(CD_ISCED_CENSUS_2) &

AGEGRP %in% c("[0,5)", "[5,15)"),

"NAP", as.character(CD_ISCED_CENSUS_2)))

# column for imputed values in Step 2

data$CD_ISCED_CENSUS2_IMP2 <- as.character(data$CD_ISCED_CENSUS2_IMP1)

#split observed and missing subsets
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df_obs2 <- data %>% filter(!is.na(CD_ISCED_CENSUS2_IMP1))

#records for which Ed level is missing

df_miss2 <- data %>% filter(is.na(CD_ISCED_CENSUS2_IMP1))

# dummies for the predictor variables; to make calculation of eta easy

df_missing_copy <- df_miss2 %>% transmute(GBD3_RED4,

SEXF = ifelse(SEX == "F",1,0),

REGIOJFL = ifelse(REGIOJ == "FL", 1, 0),

REGIOJWA = ifelse(REGIOJ == "WA", 1, 0),

`AGEGRP[45,65)` = ifelse(AGEGRP == "[45,65)",1,0),

`AGEGRP[65,85)` = ifelse(AGEGRP == "[65,85)",1,0),

`AGEGRP[85,Inf)` = ifelse(AGEGRP == "[85,Inf)",1,0))

model.fit <- clmm2(CD_ISCED_CENSUS_2 ~ REGIOJ + SEX,

nominal = ~ AGEGRP, random = GBD3_RED4,

data = df_obs2, Hess = TRUE)

m2 <- clmm(CD_ISCED_CENSUS_2 ~ (1 | GBD3_RED4), data = df_obs2)

# Fixed effects for proportional variables

po_betas <- model.fit$beta

X_po_cols <- names(po_betas)

X_po_fixed <- as.matrix(df_missing_copy[, X_po_cols])

eta_po_fixed <- X_po_fixed %*% po_betas

#Matrix with alphas and beta-coefficients for the uncommon slopes

theta_matrix <- model.fit$Theta

#-- extract cumulative thresholds (alpha_j) as an array

alpha <- matrix(theta_matrix["(Intercept)", ], nrow = 1)

# effects for non proportional variables

beta_age_low <- -1*as.vector(t(theta_matrix[-1, 1]))

beta_age_medium <- -1*as.vector(t(theta_matrix[-1, 2]))

X_npo_fixed <- as.matrix(df_missing_copy[, 5:7])

eta_age_low <- X_npo_fixed %*% beta_age_low

eta_age_medium <- X_npo_fixed %*% beta_age_medium

# Random effects
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re <- model.fit$ranef

re_df <- data.frame(GBD3_RED4 = rownames(ranef(m2)$GBD3_RED4), RE_Int = re)

# left join re_df with the df_missing_copy

df_missing_copy <- df_missing_copy %>%left_join(re_df, by = "GBD3_RED4")

b_i <- df_missing_copy$RE_Int # random effects for COD in missing df

# RHS linear predictors

eta_low <- eta_po_fixed + eta_age_low + b_i

eta_medium <- eta_po_fixed + eta_age_medium + b_i

# Cumulative probabilities

cumprobs_low <- sapply(alpha[1], function(x) plogis(x - eta_low))

cumprobs_medium <- sapply(alpha[2], function(x) plogis(x - eta_medium))

# 'predicted' probabilities for each category

probs <- matrix(NA, nrow = length(eta_low), ncol = 3)

colnames(probs) <- c("Low", "Medium", "High")

probs[, 1] <- cumprobs_low

probs[, 2] <- cumprobs_medium - cumprobs_low

probs[, 3] <- 1 - cumprobs_medium

return(list(missing = df_miss2, observed = df_obs2,

probs = probs))

}

model_output <- model_impute(df)

model_probs <- model_output$probs

model_df_miss <- model_output$missing # df that will be imputed

model_df_obs <- model_output$observed # complete-case df, to be merged with imputed

#sampling 1 category per row using the probabilities

el_sampled <- apply(model_probs, 1, function(p) {

sample(categories, size = 1, prob = p) })

model_df_miss$CD_ISCED_CENSUS2_IMP2 <- el_sampled #impute

model_imputed_df <- rbind(model_df_obs, model_df_miss)
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