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Abstract

Background: The energy needed to cook accounts for 36% of the total energy usage world-

wide. Approximately 2.4 billion people globally depend on non-renewable energy sources,

such as solid fuels, for cooking, heating, and other domestic uses. Recently, the WHO

reported that each year, 3.2 million people worldwide die from respiratory diseases caused

by air pollution created by the use of solid fuels for cooking, especially in the Global South.

An increase in the use of renewable energy sources, for cooking among other things, would

therefore enhance sustainability in an effort to mitigate climate change.

Objective: This project aims to compare various survival analysis methods to evaluate the

performance of various solar cooker appliances produced in resource-limited settings within

the Sc4all project. Particularly, the study evaluates the time to reach threshold temper-

atures of 50 ◦C or 70 ◦C, where shorter times imply better performance of the cooker.

Methods: The study utilized survival analysis models to evaluate the effect of various

covariates on the time to reach threshold temperatures of 50 ◦C or 70 ◦C, including Cox

proportional hazards models and Accelerated Failure Time models. Model averaging was

used to provide a comprehensive summary of the performance of different cooking appli-

ances by accounting for uncertainty in the selection of the best modeling assumptions. The

study focused solely on the time to reach threshold temperatures of 70 ◦C, as it is a plau-

sible temperature to attain a boiling water temperature, according to the protocol.

Results: The findings from AFT models reveal that cooking performance in terms of the

median time to reach a temperature threshold differs between different cookers and the

use of a plastic bag to induce a greenhouse effect. Fixing the solar irradiance to 700W/m

and the baseline water temperature to 20 ◦C, the prediction shows that Yama Dudo had

superior performance, reaching 70 ◦C at shorter median time, followed by SK14. Among

locally made cookers, Prototype 4 exhibited better performance, outperforming both other

locally made cookers and a commercial Brother cooker.

Conclusions: Despite the clear differences between commercial devices and solar cooker

prototypes developed in the context of the Sc4all project in terms of their performance, ex-

pressed conveniently in terms of the median time to reach a specific temperature threshold,

the developement and implementation of solar cooking requires additional efforts in study-

ing safety thereof. This study provides a first step towards a statistical modeling framework

including refined survival analysis techniques for the analysis of solar cooker performance

evaluation data with a more intuitive interpretation as compared to the established PEP

protocol that is currently in place.

Keywords : Solar energy, Censoring, Kaplan-Meier estimator, Cox PH model, AFT mod-

els, Model averaging.
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1 Introduction

1.1 Background

Energy is the ability to do work or cause changes in our daily relationships with our sur-

roundings, and is also called a thermodynamic quantity. Due to the current challenges

of the world and the need for clean energy generation, renewable energy sources have be-

come dominant. Strong encouragement of research in renewable energy sources has been

observed, especially after the oil crisis of 1973, with high fuel prices in a short period (Cuce

and Cuce, 2013). Globally, energy demand is increasing due to the increased population

and advances in technology (Kannan and Vakeesan, 2016).

The use of energy consumption shows an annual increase of 1% and 5% on average in de-

veloped and developing countries, respectively. This shows an increase in energy demand,

which has led to the utilization of renewable energy sources at the global level over the

last years. Renewable sources of energy occupy the throne as they contribute 14% to the

world’s energy demand, and this is expected to increase in the future (Herez et al., 2018).

In sub-Saharan African countries, charcoal is a significant source of energy and income,

with more than 80% of urban households using it (Rose et al., 2022). Several reasons make

charcoal a significant contributor to household income, especially in poor urban areas. It

has the potential to cook and heat because it has a high heating content, less bulky, easier

to transport, more accessible, and burns with less smoke compared to firewood (Zulu and

Richardson, 2013). Cooking is essential for humans to prepare food for survival; according

to Gorjian et al. (2022), the energy required for cooking accounts for 36% of the total energy

consumption worldwide. Most countries still depend on carbon-based resources, including

charcoal, firewood, and fossil fuels.

The use of charcoal in households has resulted in deforestation, air pollution, wood scarcity,

natural disasters and energy shortages. Incomplete combustion of wood and other wood

products at low amounts of oxygen and high temperatures produces a mixture of gases,

liquid and solid particles known as wood smoke (Bede-Ojimadu and Orisakwe, 2020). The

health impacts associated with the production process and the usage of charcoal are due

to the smoke produced during incomplete combustion, which exposes humans to pollutants

that lead to health risks and diseases such as cancer, heart disease, and lung disease (Idowu

et al., 2023). According to a recent WHO report, more than 3.2 million people worldwide

die from respiratory diseases each year due to air pollution, mainly indoors, due to the use

of solid fuel for cooking, as shown in Figure 1.
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Figure 1: Visual representation of the complex challenges linked to charcoal use, encom-

passing health risks from outdoor air pollution, ecological harm driven by deforestation, and

economic inefficiencies resulting from traditional production methods.

Solar energy has become more significant among other renewable sources due to its reliabil-

ity, cost-effectiveness and sustainability. It is a feasible and realistic solution in households

for sustainable development in terms of health, environmental and economic challenges

(Gorjian et al., 2022). Solar energy is estimated to fall on the Earth’s surface with an av-

erage of 120 Petawatt, equivalent to the energy demand required in 20 years. International

agencies predicted that in 2050, solar energy can supply up to 45% of the energy demand

for the world (Herez et al., 2018). Therefore, it is important to pursue solar industry,

which shows steady development and has become the best option for future energy de-

mands because of its reliability and the fact that it is not limited to other renewable energy

sources. Various research and innovations have been carried out and special devices have

been developed to utilize solar energy as a power source for many industrial applications

and technological advancements (Şen, 2004). A solar oven or cooker is a device that uses

solar energy to do various tasks such as cooking food and performing other operations such

as cleansing, sterilization and pasteurization.

This innovation emerged during the 18th century when the first experiment on solar cook-

ers was done by the German Physicist, Tschirn-Hausen. In 1767, a French-Swiss physicist,

Horace de Saussure, built a solar box to cook using solar energy where it reached a tem-

perature of 88 ◦C (Herez et al., 2018). Afterward, many experiments were done to develop

a strategy plan for a modern solar cooker. Currently, solar cookers are widely used in

different styles but are mainly classified into solar panel cookers, solar parabolic and solar

boxes (Cuce and Cuce, 2013). It has become an alternative as it encourages the adoption of

sustainable practices and reduces dependence on non-renewable energy sources. Therefore,

various numerical, analytical and experimental studies have been performed to enhance the

power capacity of solar cookers (Herez et al., 2018).
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The design of a solar cooker depends on the material used for construction, the climate of

the area and the income level in both developing and developed countries. The household-

level solar cookers are classified mainly into three classes, which are solar panel cookers,

solar box cookers and solar parabolic cookers. The solar panel cooker is used mainly be-

cause of its low cost of manufacturing, as it uses cheap raw materials, unlike the solar box

cooker. The solar box cooker is covered with a transparent glass cover so that the reflected

sunlight is directed into the insulated box. It is one of the suitable cookers designed in

the 1990s and early 2000s, consisting of a glass lid and the box is insulated to reduce heat

loss from the box to the environment. Solar parabolic cookers can be self-constructed by

using parabolas and large quantities of mirrors, but are not mainly used due to different

obstacles, such as the availability of the raw materials used, affordability and safety usage.

It is one of the best because it is heated to a maximum temperature within a short time, it

contains a stand for a cooking system supporting a pot inside, located at the center where

heating is facilitated by the parabolic reflector.

The Solar Cookers for All (Sc4all) project, which is financed by the Flemish government

through a VLIR-UOS SI project (project number: CD2023SIN371A104) entails an in-

teruniversity collaboration between the UHasselt and the University of Lubumbashi in the

Democratic Republic of Congo (DRC). The Sc4all project aims to develop different solar

cooker appliances that are locally produced based on available materials and in compliance

with the specific needs of the local communities. The results presented in this master’s the-

sis work rely on data collected within this project, in particular, for performance evaluation

experiments involving solar cookers.

1.2 Objective of the Study

The main objective of this study is to compare different survival models to evaluate the

performance of various solar cooker appliances produced in resource-limited settings within

the Sc4all project. The performance of the solar cooker in each experiment was evaluated

based on the time taken to reach threshold temperatures of 50 ◦C or 70 ◦C, where shorter

times imply better performance of the cooker.

1.3 Research Questions

I. Which prototype(s) are the most effective compared to commercial devices in terms

of the time to achieve the temperature threshold?

II. What are the key similarities and differences of the different approaches considered

in addressing the performance of the existing solar cooker appliances?

III. What insights can be derived from the analyzed methods to improve the design and

implementation of future solar cooker experiments?
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1.4 Significance of the Study

The previous master thesis study of Kauki (2024) relied on the use of the Cox proportional

hazards (PH) model to evaluate the performance of various solar cooker appliances pro-

duced in resource-limited settings within the Sc4all project. This study will contribute to

the primary goal of the ongoing Sc4all project of designing low-cost solar cookers by pro-

viding an in-depth comparison of the different survival analysis approaches in quantifying

the performance of novel solar cookers. By doing so, a thorough evaluation of the advan-

tages and disadvantages, including the underlying assumptions made, of different modeling

methods will be performed.

The report is organized as follows: Section 2 describes the data and introduces the method-

ology employed in the study, along with the statistical software used. In Section 3, the

results of the data analysis are presented and discussed based on the fitted models. Lastly,

Sections 4, 5 and 6 includes summary of the findings, ethical considerations, societal rel-

evance and stakeholder awareness, and recommendations related to the master thesis, re-

spectively.

4
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2 Methods and Materials

2.1 Data Description

This study utilized data from experiments conducted in Belgium by the Sc4all project

at UHasselt. Data were collected for various solar cooking appliances on different test

dates for three years (from July 2022 to September 2024), leading to a dataset of 1148

observations and 28 variables. The original experimental data consists of measurements

at the beginning and end of 10-minute time intervals with regard to ambient temperature,

temperature in the cooking pot, solar irradiance and wind speed, among other time fixed

factors such as the use of a plastic bag (see Table 1 for a detailed description of the original

variables). These measurements are subsequently converted into time-to-event data, with

the primary endpoint being the time to reach a specific temperature threshold of 50 ◦C or

70 ◦C, essentially leading to interval-censored time-to-event data. As a result, a total of 221

observations were included in this study, with variables of interest presented in Table 1.

Table 1: Description of the variables in the study. The table contains both categori-

cal/dummy and continuous variables.

Variable Description Details

Cooker type 12 solar cooker appliances used 4 oven types, 7

parabolic types and 1

OnlyPot

Ta1 Ambient temperature at the beginning Degree Celsius (°C)
Ta2 Ambient temperature at the end of experi-

ment

Degree Celsius (°C)

T1 Water temperature inside the pot at the be-

ginning of the experiment

Degree Celsius (°C)

T2 Water temperature inside the pot after the

experiment

Degree Celsius (°C)

I1 solar irradiance at the beginning Watts/ square meter

I2 solar irradiance at the end of experiment Watts/ square meter

H1 Time at the beginning Minutes

H2 Time at the end of the experiment Minutes

Time Time to reach a threshold temperature Minutes

Event Event (or censoring) indicator to reach a

threshold temperature

0 = No event, 1 =

Event of interest

PlasticBag usage of a plasticbag to capture the green-

house effect

0 = No plastic bag, 1

= Plastic bag present

Consequently, several sets of instruments were used to measure the aforementioned vari-

ables: An electronic balance was used to measure the water load in a pre-wetted container;

a digital thermometer was used to measure the water temperature inside the cooking pot;
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a pyranometer to measure solar irradiance and an anemometer was used to measure the

ambient temperature.

2.2 Solar Cooker Appliances

The study involves several cooker appliances, i.e., oven prototypes (1,2,5 and 6), parabolic

prototypes (2,3 and 4), and commercially available solar cookers being the Brother, Fornelia,

Yamo Dudo and SK14 (see Figure 3). Figure 2 displays a black cooking pot labelled

as OnlyPot, which is exposed outdoors to receive direct sunshine, with the water within

anticipated to reach temperatures of approximately 50°C to 70°C within 3 hours, although

it encounters difficulties in maintaining high temperatures.

Figure 2: Visual representation of a cooking black pot, referred to as OnlyPot, which was

merely used for comparison purposes to the solar cookers.

The performance of commercially available solar cookers was evaluated in the experiment

for comparison purposes with the locally made solar cookers.

Figure 3: Visual representation of the commercially available solar cookers included in

the study, referred to as YamaDudo (left), Brother (middle), Fornelia (middle) and SK14

(right).

6
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Additionally, Figure 4 depicts the oven-type solar cookers designated as oven prototypes

(1,2 and 5). Oven prototype 1 consists of a metallic frame box with a single reflective panel

featuring aluminum foil. Oven prototype 2 is an improved version of “Oven prototype 1”

which is enclosed in a cardboard box with four reflective panels featuring aluminum foil

to optimize reflection from four solar angles. Oven prototype 5 consists of a wooden box

featuring four reflective panels, which are covered with recycled soda cans and a cooking

pot is supported by bricks, which also preserve heat.

Figure 4: Visual representation of the locally made oven prototypes included in the study,

referred to as oven prototype 1 (left), oven prototype 2 (middle) and oven prototype 5 (right).

Furthermore, Figure 5 shows the locally made parabolic prototypes designated as prototypes

2, 3 and 4. Prototypes 2 and 3 comprise a steel frame featuring aluminum foil to reflect

solar irradiation. These prototypes lack a supporting platform, complicating the adjustment

towards the optimal solar direction. Prototype 4 was designed with a supporting stand that

can be effortlessly adjusted towards the sun at right angles.

Figure 5: Visual representation of the locally made parabolic prototypes included in the

study, referred to as prototype 2/3 (left) and prototype 4 (right).

7
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2.3 Performance Evaluation Process

In November 2013, the American Society of Agricultural and Biological Engineers revised

the protocol for evaluating and documenting solar cooker performance (ASAE S580.1). This

standard aims to create uniformity and consistency in the terms and units used to define,

test, rate, and assess solar cookers, their components and operating processes. It provides a

standardized format for presentation and interpretation of test results, enhancing commu-

nication and providing a distinctive measure of thermal performance, allowing consumers

to easily compare various designs when selecting a solar cooker. Moreover, this standard

defines solar cooker as comprising the cooking vessel(s), supporting platform, heat transfer

and retention surfaces, heat storage and transfer media, relevant pumps and controls, light

transmitting and reflecting surfaces, as well as all necessary adjustments, supports and solar

locating and tracking mechanisms that may be essential to a specific solar cooker (Funk,

2000). This standard ensures that the performance evaluation process (PEP) reduces the

impact of all environmental factors that could affect the performance of the solar cooker,

including wind, ambient temperature and solar irradiance (Mullick et al., 1987).

2.4 Survival Data Methods

Survival analysis is a domain in statistics studying time-to-event outcomes in the presence

of censoring (Burzykowski, 2024) and (Klein and Moeschberger, 2003). Hence, survival

analysis (also known as ”time-to-event analysis”) is used in several applied fields, includ-

ing medicine, public health, social science and engineering (Qi, 2009). In essence, events

are generally referred to as failures because they may be death, progression of disease, an

incident, or others (Saikia and Barman, 2017). Survival data differs from other types of

statistical data as the time until some specified event is not necessarily fully observed, lead-

ing to censoring, which can interrupt the observation of an event before it occurs (Lagakos,

1979). Due to the complexities provided by the censored data, various special statistical

methods were developed to analyze survival data (Saikia and Barman, 2017). To address

the main objective, the study utilized various survival analysis methods to examine the time

taken by the solar cookers to reach threshold temperatures of 50 ◦C or 70 ◦C, accounting

for other influencing variables.

2.4.1 Notations and Terminology

Let T represent a non-negative continuous random variable representing the time to a

specific event of interest. Such time-to-event data is typically summarized using the survival

and hazard function corresponding to the random variable T, for which estimators should

accommodate censoring of observations (see Subsection 2.2.2 for more details, Qi, 2009).

The survival function is defined as the probability that the survival time is larger than

or equal to t, expressed as S(t) = P (T > t) for t ≥ 0. The probability density function

8
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(pdf) of T is expressed as f(t) = F ′(t) = −S′(t) , where F (t) is a cumulative distribution

function. The hazard function is defined as the instantaneous risk of an event at time t ,

which is given by

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
=

f(t)

S(t)
, t ≥ 0. (1)

The cumulative hazard function can be obtained from:

Λ(t) =

∫ t

0
λ(u) du = −ln[S(t)]. (2)

2.4.2 Censoring

Censoring is a fundamental feature in survival analysis, indicating the situation in which

the event time is not fully observed for all subjects, although it is known to occur within a

specific time interval (Ma, 2023). In essence, we denote T ≥ 0 as the event time and C ≥ 0

as the censoring time, assuming that T is independent of C (and non-informative censoring)

(Lagakos, 1979). In a modern survival analysis, censoring can be broadly classified as left,

right and interval censoring (Somasundaran, 2023). In particular, left censoring occurs

when an observation exceeds its true value, that is T < C. In case of right censoring,

the observed time is the censoring time, that is T > C. Interval censoring occurs when

we only know that the true time of the event lies within a specific observed time interval

that satisfies CL < T < CU (Burzykowski, 2024). In most cases, interval-censored data are

translated to right-censored data for convenience (Liu, 2012). Although in theory the data

is interval-censored, we focus on right-censored observations obtained from experiments

where the cooker never reached the threshold temperatures at any time throughout the

experiment calendar period.

2.4.3 Time-to-Event Data

The observations for the experiments are given by

(z1, δ1, x1j), (z2, δ2, x2j), . . . , (zn, δn, xnj)

with

Zi = min(Ti, Ci) and ∆i = I(Ti ≤ Ci), (3)

where Ti and Ci are independent random variables for ith experiment for i = 1, 2, . . . , n.

Therefore, the observation (Zi,∆i) is said to be uncensored if ∆i = 1, suggesting that the

actual survival time has been observed. In contrast, an observation is said to be censored

if ∆i = 0, suggesting that one has observed the censoring time Ci and only has the partial

information that Ti > Ci (Gijbels, 2010). xij , for j = 1, 2, . . . , p, is the covariate value of

experiment i corresponding to covariate j. It can either be a time-invariant covariate xij
or a time-varying covariate, denoted by xij(t).

9
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2.4.4 Kaplan-Meier Estimate of the Survival Function

The Kaplan-Meier (KM) estimator is an estimator of the survival function S(t) based on

(right-)censored time-to-event data. It is also referred to as the product-limit estimator of

the survival function and is a step function that jumps at uncensored event times while it

remains constant whenever censored observations occur (Gijbels, 2010). More specifically,

the KM estimator of S(t) is defined as follows:

Ŝ(t) =
∏

j:t(j)≤t

(
1− dj

nj

)
, (4)

where S(t) = S(t−1) ·P (surviving up to time t), assuming S(0) = 1 for the observed times

t1, t2, . . . , tn. Additionally, t(1), t(2), . . . , t(d) are ordered event times for d ≤ n, where dj is

the number of observed temperatures of interest and because some events can be censored,

nj represents the risk-set size at t(j), meaning the number of experiments that have not

yet reached a threshold temperature before time t(j). As a result,
dj
nj

is a non-parametric

estimate of the hazard function, which represents the instantaneous risk of encountering

a temperature of interest while accounting for tied events using the Efron method (Goel

et al., 2010). In essence, to obtain a pointwise 95% confidence interval, the study essentially

used a delta approach using Greenwood’s formula to compute the variance of the KM

estimator with log(− log(S(t))) transformation. Furthermore, the log-rank test statistic

was used to statistically compare two or more survival curves under the null hypothesis

of no difference in survival probabilities between the different groups under consideration

(Goel et al., 2010). This was chosen by expecting that the differences between cookers in

their survival probabilities are equally weighted. The test statistic is given by

Log-rank test statistic =
G∑

g=1

(Og − Eg)
2

Eg
, (5)

where G equals the number of groups to compare, Og and Eg are the total number of

observed and expected events, respectively, and significance can be drawn by comparing the

calculated value with the chi-squared of G−1 degrees of freedom under the null hypothesis

(Goel et al., 2010).

2.5 Regression Approaches for Right-censored Time-to-Event Data

2.5.1 Cox Proportional Hazard Model

The Cox PH model is defined on the scale of the hazard function (Burzykowski, 2024). It is

a semi-parametric model with an unspecified baseline hazard function, and the covariates

have a multiplicative effect on the hazard function (Saikia and Barman, 2017). The Cox
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PH model is given by

λ(t|xi(t)) = λ0(t) exp

 p∑
j=1

βjxij(t)

 , (6)

where λ(t|xi(t)) is the hazard of an event of interest at time t for the ith experiment (for

i = 1, 2, . . . , n) given the time-varying covariate xij(t). λ0(t) is the baseline hazard for the

subject and β is the p× 1 vector of coefficients (Therneau et al., 2000). For covariate with

two levels (X = xi and X = xj) or a unit increase in a continuous covariate (X = x and

X = x+ 1), the hazard ratio is constant over time and it is given by

λ(t|xi)
λ(t|xj)

=
λ0(t)e

xiβ

λ0(t)exjβ
= exp {(xi − xj) β} ≡ C. (7)

The β′s are estimated using the partial likelihood function proposed by Cox (1972). The

partial likelihood is expressed as

L(β) =
n∏

i=1

∏
t≥0

{
Yi(t) ri(β, t)∑
j Yj(t) rj(β, t)

}dNi(t)

, (8)

where ri(β, t) is the risk score for subject i, and ri(β, t) = exp [xi(t)β] ≡ ri(t). In addition,

the function Ni(t) is the event counting process, which starts at 0 and stays 0 as long as

subject i has no event, and increases by 1 when an event occurs. The indicator function

Yi(t) defines the risk-set, which is equal to 1 if the subject i is under observation and at

risk at time t, and 0 otherwise.

In particular, for time-invariant covarites (xij(t) ≡ xij), the PH model is given by

λ(t|xi) = λ0(t) exp

 p∑
j=1

βjxij

 , (9)

As a result, the final Cox PH model considered in this study is expressed as

λ(t | xi(t)) = λ0(t) exp
( 6∑

j=1

βj Cookerji + β7Baseline temperaturei + β8 Solar irradiancei(t)

+ β9 PlasticBagi + β10 (PlasticBagi · Prototype 5i)
)
,

(10)

where β1, β2, . . . , β10 are the coefficients corresponding to each covariate. Cooker represents

dummy variables, where Cookerj = 0 denotes the Prototype 4 cooker and Cookerj = 1

indicates other remaining cookers included in the analysis. The baseline temperature is the

temperature of the water at the beginning of a specific experiment. PlasticBag is a dummy

variable for the use of a plastic bag covering the pot, with PlasticBag = 1 indicating the

11
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presence of a plastic bag and PlasticBag = 0 its absence. In terms of interaction, the study

only considered (PlasticBag vs. Prototype 5 ) due to highly imbalanced plastic bag data in

other cookers.

2.5.2 Accelerated Failure Time Models

The accelerated failure time (AFT) models have gained extensive attention in survival

analysis and have become a crucial alternative to Cox models, as they are more explicit

and direct in describing the covariate’s effect on the event time than Cox models (Yang

and Prentice, 2011). In contrast to the Cox PH model, the AFT model is a parametric

distribution of the time to event instead of a semi-parametric one, and the effect of covariates

acts multiplicatively on the logarithms of event times (Saikia and Barman, 2017). The

general form of the AFT models is given by

ln(Ti) = µ+ β1xi1 + · · ·+ βpxip + σ · εi, (11)

where ln(Ti) is the natural log-transformed survival time for the ith subject; x1, . . . , xp are

the time-invariant covariates with the coefficients β1, . . . , βp; εi is the i.i.d random error

term that is assumed to follow a specific probability distribution; µ is the intercept that

expresses the expected value of ln(T ) when all covariates equals zero; and σ is the scale

parameter. Focusing on the right-censored data, the AFT models can be fitted using the

maximum likelihood (ML) estimation approach. The likelihood function for right-censored

time-to-event data, with the observed event times t1, . . . , tn is given by

L(β, µ, σ) =

n∏
i=1

{fi(ti)}δi {Si(ti)}1−δi =

n∏
i=1

{
(σ · ti)−1fεi(wi)

}δi Sεi(wi)
1−δi , (12)

where fi(ti) and Si(ti) are the pdf and the survival function for the ith individual at time

t, respectively.

Additionally, fεi(wi) and Sεi(wi) are the density function and the survival function for the

residuals, respectively, with

wi =
ln(Ti)− µ− β1xi1 − · · · − βpxip

σ
. (13)

The log-likelihood function is then;

l(β, µ, σ) =
n∑

i=1

{−δi ln(ti)− δiln(σ) + δiln(fεi(wi)) + (1− δi)ln(Sεi(wi))} . (14)

ML estimates of the (p+2) unknown parameters µ, σ and β1, . . . , βp are obtained by maxi-

mizing the loglikelihood function using, for example, the Newton-Raphson procedure (Saikia

12
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and Barman, 2017).

As a result, the survival function S(t) in the AFT model can be expressed as

S(t | x) = S0

(
t

exp(xβ)

)
. (15)

where S0(.) is the baseline survival function corresponding to the baseline covariate values.

This reparameterization demonstrates that the survival time t is rescaled by a quantity

exp(xβ), referred to as the time acceleration or deceleration factor (or time ratio).

We considered the most frequently used AFT models, including Weibull, log-normal, log-

logistic, generalized gamma and generalized F AFT models. The final AFT model em-

ployed, based on the residual assumptions of the model mentioned earlier, is mathematically

expressed as

ln(Ti) = µ+
6∑

j=1

βj Cookerji + β7Baseline temperaturei + β8Average solar irradiancei

+ β9 PlasticBagi + β10 (PlasticBagi · Prototype 5i) + σ · εi,
(16)

where ln(Ti) is the log-transformed of the time taken by a cooker to reach a threshold tem-

perature. The coefficients β1, . . . , β10 are the effects of the covariates, which are expressed

as shortening ( βj < 0) or lengthening (βj > 0) the time to reach the threshold temperature.

The interpretations will be based on the time ratios indicated in the Equation 15. Also,

since solar irradiance is a time-varying covariate, we incorporated it in an average form for

an experimental window.

Generalized F model

The generalized F is a family of AFT models, including Weibull, exponential, log-normal,

log-logistic and generalized gamma models as special cases. The pdf of the generalized F

with four parameters β, σ, m1 and m2 is obtained by

fGF (t) =
exp (−βm1/σ) · t(m1/σ)−1 · (m1/m2)

m1

σB(m1,m2)
[
1 + (m1/m2) (exp (−β) · t)1/σ

](m1+m2)
, (17)

Where q = (m−1
1 −m−1

2 )(m−1
1 +m−1

2 )−1/2 and p = 2(m−1
1 +m−1

2 )−1. Consequently, by

fixing q and p, generalized F becomes Weibull (q = 1, p = 0), log-normal (q = 0, p = 0),

log-logistic (q = 0, p = 1) and generalized gamma (q > 0, p = 0).

Generalized Gamma model

The generalized gamma model is a subclass of the models included in the generalized F,
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which are Weibull, exponential and log-normal models. The survival function and the pdf

of the generalized gamma distribution with three parameters µ, κ and σ are given by

S(t) =


1− I(γ, u), if κ > 0

1− Φ(w), if κ = 0

I(γ, u), if κ < 0,

(18)

f(t) =


γγ

σt
√

γΓ(γ)
exp(w

√
γ − u), if κ ̸= 0

1
σt

√
2π

exp(−w2/2), if κ = 0,
(19)

where γ = |κ|−2, w = sign(κ) · [log(t)−µ]/σ, u = γ ·exp(|κ|w), Φ(w) is the standard normal

cumulative distribution function and I(γ, u) is the incomplete gamma function (Qi, 2009).

As a result, by fixing κ and σ, generalized gamma becomes Weibull (κ = 1), exponential

(κ = σ = 1) and log-normal (κ = 0).

Weibull model

The Weibull model assumes that εi follows a Gumbel distribution (i.e., extreme value) with

the pdf and survival function for the residuals fεi(w) = exp(w − exp(w)) and Sεi(w) =

exp(− exp(w)), respectively (Qi, 2009). Consequently, the event time T is weibull dis-

tributed with parameters; p = 1/σ and λ = exp (−µ−X′β) with a monotonic hazard

function. In addition, an exponential model is a special case of the Weibull model with

σ = 1. Moreover, the Weibull model is closed under both hazard-based and time-based

transformations; thus, it can be expressed as a PH model with β∗ = −β/σ.

Log-normal model

The log-normal model assumes that εi follows a standard normal distribution with the

pdf and survival function for the residuals fεi(w) = 1√
2π
e−w2/2 and Sεi(w) = 1 − Φ(w)

respectively (Saikia and Barman, 2017). Therefore, the event time T is log-normally dis-

tributed with mean; E(T ) = exp(µ +X′β) · exp
(
σ2/2

)
and variance; Var(T ) = {E(T )}2 ·{

exp(σ2)− 1
}
.

Log-logistic model

The log-logistic model assumes that εi follows a standard logistic distribution with the pdf

and survival function for the residuals fεi(w) = p
λ · (w/λ)p−1

[1+(t/λ)p]2
and Sεi(w) = 1/(1 + ew)

respectively. As a result, the event time T is log-logistically distributed with parameters;

p = 1/σ and λ = exp (µ+X′β) with a non-monotonic hazard function (Qi, 2009).

2.6 Choice of the Best Fitted Model

Model comparison strategies were employed to identify the most appropriate survival model

for the data, encompassing both nested and non-nested models. A likelihood ratio test was
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used to compare two nested models. The test statistic is defined as:

−2 logL(1) + 2 logL(2) = −2 log
(
L(1)/L(2)

)
, (20)

where L(1) and L(2) are the maximized likelihoods for model 1 and model 2, respectively.

Consequently, the test tests the null hypothesis that the additional parameters q in model

2 are all zero, which follows an asymptotic chi-square distribution with q degree of freedom.

A nonsignificant result implies that the simpler model is adequate, whereas a significant

result favors the complex model because of its added flexibility (Collett, 1994).

Furthermore, non-nested models including Weibull, log-normal, and log-logistic were com-

pared using the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC), defined respectively as:

AIC = −2 log(L) + 2k, BIC = −2 log(L) + k log(n), (21)

where L is the maximized likelihood, k is the number of parameters for a particular model,

and n is the sample size. The model with the lowest AIC or/and BIC values is preferred,

as it represents the optimal balance between model fit and complexity (Collett, 1994).

2.7 Model Diagnostics

Graphical methods for model diagnostics based on the residuals assessment are considered

in the context of the widely used Cox PH model and for Anderson-Gill’s generalization of

that model. These residuals and/or their transforms are useful for evaluating the functional

form of a covariate, the proportional hazards assumption, the leverage of each subject on the

estimates β′s, and the model’s goodness of fit given the subject (Therneau et al., 1990). This

study examined a diagnostic assessment for the Cox PH model using martingale residuals,

which assess the appropriate functional form of continuous covariates to be incorporated

into the model. In addition to the Cox PH model, scaled Schoenfeld residuals were used to

evaluate the proportional hazards assumption. Furthermore, the goodness of fit of the Cox

PH and AFT models was assessed using the deviance and Cox-snell residuals, respectively

(Collett, 1994).

2.7.1 Martingale Residuals

Martingale residuals are based on the difference between the counting process and the

integrated intensity function (Therneau et al., 1990). These residuals were employed to

assess the functional form of the continuous covariates to be incorporated in the Cox PH

model. The martingale residual for the ith subject at each time t is defined as

Mi(t) = Ni(t)−
∫ t

0
Yi(s)e

β′Zi(s)dΛ0(s), (i = 1, . . . , n), (22)
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where Ni(t) is the counting process representing the number of events experienced by the

subject i up to time t, Yi(s) is the at-risk indicator (1 if the subject is at risk at time s, 0

otherwise), Zi(s) is the covariate vector for the subject i, β is the regression coefficient vector

and Λ0(s) is the cumulative baseline hazard function. Martingale residuals are particularly

useful for identifying non-linearity in covariates, as plotting these residuals against covariate

values can reveal patterns indicating inappropriate functional forms. These residuals are

skewed and bounded above one, making them best suited for detecting misspecification of

continuous covariates in the Cox PH model.

2.7.2 Scaled Schoenfeld Residuals

The scaled Schoenfeld residuals are useful in assessing proportional hazards assumption,

which is a crucial assumption in the Cox PH model. The Scaled Schoenfeld residual at the

kth event time is defined as

r̂∗sk = r̂sk I(β̂, t̂(k)) = r̂sk var
−1(β̂, t̂(k)), (23)

where r̂sk =
∫ tk
tk−1

∑
i(Xi(s)− X̄(β̂, s)) dNi(s), and β̂ is the estimated coefficient. The plots

of scaled Schoenfeld residuals are effective for detecting non-proportionality of estimated

hazards in the fitted model across the covariate space (Grambsch and Therneau, 1994). In

principle, the Schoenfeld residuals are expected to be time-independent; thus, a smoothed

plot that shows a nonrandom pattern over time and/or systematic deviations from a hori-

zontal line indicates the violation of the PH assumption. A test for independence between

scaled Schoenfeld residuals and time was used to assess the PH assumption. A significant

p-value indicates a violation of the assumption.

2.7.3 Cox-Snell Residuals

Cox-Snell residuals are typically used to assess overall goodness of fit in AFT survival

models. We evaluated the presumed relation of unit exponentially distributed residuals for

a good model fit, as well as under a specific model violation. This is done graphically using

standard Cox-Snell residual plots. The Cox-Snell residual for the ith subject, denoted rCS,i,

is defined as

rCS,i = Λi(ti) = − lnSi(ti) = − lnSε(εi), (24)

As a result, the modified Cox-Snell residuals are given by r∗CS,i = rCS,i+1−δi, where δi = 0

for censored observations and δi = 1 for uncensored observations. In essence, for a properly

fitted model, a plot of the Cox-Snell residuals r∗CS against its estimated cumulative hazard

− ln [S(r∗CS)] is expected to show a straight line with zero intercept and unit slope (Cox

and Snell, 1968).
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2.8 Model Averaging Approach

Model averaging (MA) is a widely used and effective method for addressing model un-

certainty and enhancing predictive accuracy. MA emphasizes the pooling of estimates by

assigning higher weights to the better models, rather than depending on the model se-

lection for a single model based on a goodness-of-fit criterion (Zhu et al., 2023). Using

a single model might result in unreasonably small standard errors and narrow confidence

intervals, as it ignores variation from other competing models (Anderson and Burnham,

2002). Consequently, the MA approach can provide better estimates and more reliable con-

fidence intervals (Namata et al., 2008). As the distribution assumptions for the log time to

reach a threshold temperature may be questionable, we estimated the performance of the

solar cooker using three AFT models, including Weibull, log-normal and log-logistic and

averaged across these models using AIC weights. The average estimate for the covariate is

obtained by

β̄ =
∑
m∈M

wm · β̂m,

with weights

wm =
exp (−0.5∆m)∑M
k=1 exp (−0.5∆k)

. (25)

where β̄ is a weighted average of the estimate from model 16 with weights expressing the

relative importance of the fitted AFT models. These weights are based on ∆m, which is

the difference between the AIC value of the model m and the AIC value of the model with

the lowest AIC value. Furthermore, to use MA for statistical inference, the unconditional

variance of the model-averaged estimate β̄ for the large sample approximation is given by:

Var(β̄) =
∑
m∈M

wm

[
Var(β̂m) + (β̂m − β̄)2

]
. (26)

This variance estimator accounts for within and between model variability in estimates,

ensuring valid standard errors and confidence intervals that incorporate model uncertainty

(Anderson and Burnham, 2002).

2.9 Software and Testing

All analyses were conducted in R Statistical Software version 4.4.3 (R Core Team, 2025)

and SAS Studio for Academics (SAS Institute Inc., 2018). A significance level of 5% was

used throughout the study.
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3 Results

3.1 Exploratory Data Analysis

Table 2 shows the distribution of the events and censored events for each cooker involved

in the study for the time to reach the threshold temperatures of 50 ◦C and 70 ◦C. Also, the

table shows the distribution of experiments for whether or not the plastic bag was wrapped

around the pot. It has been proposed that a minimum of 10 events should be observed for a

covariate to be incorporated into multivariable models, such as the Cox PH model (Schober

and Vetter, 2018). As a result, cookers with at least 10 events will be involved in further

analysis, as shown by the blue colour. Also, observations for oven prototypes 1, 2 and 6

will be combined to make a single oven cooker designated as oven prototype 126. This

approach gives more observations, which could make the estimates in the analysis more

precise. Thus, the final model will only include the interaction term for the plastic bag

with Prototype 5, as the distribution of plastic bags in other cookers is highly unbalanced.

Furthermore, we will focus on the time required to reach a threshold temperature of 70 ◦C

for the remainder of the analysis, as this is a reasonable endpoint to achieve a water boiling

temperature according to the protocol.

Table 2: The distribution of event occurrence and censoring for 50°C and 70°C for each

cooker involved in the study, together with the distribution of the plastic bag (Yes or No).

50°C 70°C Plastic Bag

Cooker Censoring Events Censoring Events No Yes Total

Yamo Dudo 0 53 0 53 49 4 53

Brother 0 31 10 21 5 26 31

OnlyPot 1 5 6 0 3 3 6

Oven prototype 1 0 1 0 1 0 1 1

Oven prototype 2 0 5 1 4 0 5 5

Prototype 2 0 10 5 5 1 9 10

Prototype 3 1 3 2 2 0 4 4

Prototype 4 0 18 0 18 1 17 18

Prototype 5 0 14 2 12 9 6 14

Prototype 6 0 8 2 6 8 0 8

SK14 0 28 0 28 20 8 28

Fornelia 3 40 10 33 43 0 43

Figure 6 displays the KM curves of the survival function for the selected cookers individ-

ually compared to Prototype 4 without adjusting for other covariates information. The

p-values from the log-rank test shown in the plots test for no significant difference in the

time to reach a threshold temperature of 70 ◦C for the considered cookers at 5% level of
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significance. In particular, the plots demonstrate a highly significant difference between

Yamo Dudo and Prototype 4 (p-value < 0.0001). Also, the plot shows that Brother differs

significantly from Prototype 4 (p-value = 0.0069). Prototype 4 differs significantly from

Prototype 5 (p-value = 0.00024). Oven prototype 126 differs significantly from Prototype

4 (p-value < 0.0001). Furthermore, SK14 and Fornelia are not significantly different from

Prototype 4, with the p-values of 0.76 and 0.05, respectively. In addition to that, the KM

curves for a threshold temperature of 50 ◦C are depicted in the Appendix (see Figure 11).

Thus, because the KM method provides survival probability estimates without adjusting

for other covariates, the study moved on to model-based approaches to incorporate the

effects of those other covariates.

Figure 6: Kaplan-Meier curves of the survival function with the 95% pointwise C.I for the

cookers in the analysis. The two-sided p-values are based on a log-rank test comparing the

survival functions of the cookers. The dashed lines show the medium time in minutes.

19



Baraka Rashidi – Master Thesis (2024–2025)

3.2 Cox PH Model Diagnostics

3.2.1 Functional Form of Continuous Covariates

The martingale residuals from the null Cox PH model were plotted against each continuous

covariate, such as Irradiation and the baseline temperature, to assess their appropriate

functional form in the model. Figure 9 displays the smoothed plots for the time taken to

reach a 70 ◦C. Thus, the smoothed plots indicate that the solar irradiance is reasonably

linear and will be incorporated as a linear term in the model. In contrast, the baseline

temperature shows that the smoothed lines are nonlinear.

Figure 7: The smoothed curves of the martingale residuals vs. continuous covariates in-

cluded in the model. The red line is the smoothed line from a lowess function.

Furthermore, Table 3 shows the significance test for nonlinearity using a Poisson regression

approach. The result indicates that the solar irradiance can be included in a linear form,

since the smoothing is not significant (p-value = 0.0664). Moreover, the baseline temper-

ature is significantly different from linearity (p-value < 0.0001). Therefore, Figure 10 also

indicates that the baseline temperature deviates from linearity and it has to be included as

a nonlinear term in the model.

Table 3: Summary of an approximate significance test of smoothed terms for non-linearity

in the Poisson regression model. The (s) represents the smoothing parameter.

Variable Chisq P-value

s(Baseline temperature) 29.18 < 0.0001

s(Solar irradiance) 10.22 0.0664
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Figure 8: The plots for assessing the functional form based on the Poisson regression ap-

proach for the continuous covariates.

3.2.2 Proportional Hazards Assumption

Table 4 presents the summary of the Schoenfield test for proportional hazards assumptions

to the covariates included in the Cox PH model. The results reveal that some covariates,

such as Brother, Fornelia, Yamo Dudo, Oven prototype 126, baseline temperature and

plasticBag, violate the assumption of proportional hazards due to significant p-values. This

means that these covariate effects depend on time. In addition, the global test indicates

an overall violation (p-value < 0.0001), which suggests that a Cox PH model may not

adequately fit the provided data.

Table 4: Summary of the Schoenfeld test results for proportional hazards assumptions. ns()

represents the natural spline for baseline temperature with 4 degrees of freedom.

Variable Chisq df P-value

Brother 5.8660 1 0.0154

Fornelia 18.9220 1 < 0.0001

Oven prototype 126 4.6130 1 0.0317

Prototype 5 0.4970 1 0.4810

SK14 0.6910 1 0.4058

Yamo Dudo 11.4880 1 0.0007

ns(Baseline temperature, df = 4) 15.7150 4 0.0034

Solar irradiance 0.9020 1 0.3422

PlasticBag 13.0170 1 0.0003

Prototype 5:PlasticBag 1.1420 1 0.2853

GLOBAL 42.8100 13 < 0.0001
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Moreover, the scaled Schoenfeld residual plots for the covariates incorporated in the Cox

PH model are presented in the Appendix (see Figure 12). The systematic departure from a

horizontal line is indicative of the violation of the proportional hazards assumption. From

the graphical inspection, some covariates indicate the violation of the proportional hazards

assumptions as the lines deviate from the horizontal. For some cookers, the violation may

be due to a few observations that tend to have wide intervals. As a result, these plots

and the formal Schoenfeld test do not support the proportional hazards assumption. To

address this, the study was expanded to incorporate accelerated failure time (AFT) models,

providing a more suitable framework for time-to-event data when the proportional hazards

assumption is not met. This allows for a more robust covariate’s effects on the time to

reach a threshold temperature.

3.3 Choice of an AFT model

Table 5 displays the AIC and BIC values for the fitted AFT models involved in model

selection. The results indicate that log-logistic has the smallest AIC and BIC values,

suggesting the best fit to the provided data relative to the Weibull and log-normal models.

Since the generalised F and generalised gamma did not converge, we have opted for model

selection based on AIC or/and BIC criteria. Therefore, it is shown that the log-logistic

model provides the best fit.

Table 5: The summary results of the AIC and BIC values for the fitted AFT models.

Model logLik df AIC BIC

Log-logistic -639.48 11 1300.955 1337.181

Log-normal -644.18 11 1310.367 1346.593

Weibull -662.81 11 1347.622 1383.848

3.3.1 Goodness of Fit for the Log-logistic model

The figures below displays the residual plots of the log-logistic model for the evaluation

of the goodness of fit. As a result, Figure 9 implies that the KM of the data is likely to

correspond to the survival probability of the residuals from the log-logistic model, as there

is no substantial deviation of these functions. Thus, it suggests that the log-logistic model

fits the data well. Moreover, Figure 10 shows the Cox-Snell residuals of the log-logistic

model plotted against the cumulative hazards of the Cox-Snell residuals estimated using

the KM approach. As a result, the observed Cox-Snell residuals behave like censored data

from the unit exponential. Thus, the Cox-Snell residuals plot also indicates a good fit for

the log-logistic model.
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Figure 9: Residual plot for assessing the goodness of fit for Log-logistic AFT model.

Figure 10: Cox-Snell residual plot for assessing the goodness of fit for Log-logistic AFT

model.

3.3.2 Log-logistic Model Results

Table 6 summarises the parameter estimates for the fitted log-logistic model, specified in

Equation 16. Since the interaction effect was not significant, we will focus our interpretation

on the results obtained from the model without the interaction term. The results reveal

that adjusting for other covariates in the model, the median time to reach the threshold

of 70 ◦C is not significantly different for Fornelia as compared to the reference prototype

being prototype 4 (p-value = 0.7504).
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For Brother, the results show a significant difference from prototype 4 (p-value = 0.0009),

and the estimated median time of 1.6409 indicates a longer time to reach 70 ◦C by 64% as

compared to prototype 4, with a 95% confidence interval ranging from 1.2231 to 2.2011.

Prototype 5 is significantly different from prototype 4 (p-value = 0.0026), and the esti-

mated median time of 1.7071 indicates a longer time to reach 70 ◦C by 71% as compared

to prototype 4, with a 95% confidence interval of 1.21 to 2.42. The oven prototype 126 has

an estimated median time of 2.2146, which indicates a longer time to reach 70 ◦C by 121%

as compared to prototype 4. This effect is highly significant (p-value < 0.0001) with a 95%

confidence interval of 1.5607 to 3.1426. In contrast, the results show that Yamo Dudo and

SK14 have shorter times compared to prototype 4. In particular, SK14 takes a median time

of 0.6702, which indicates a shorter time to reach 70 ◦C by 33%. This effect is significantly

different (p-value = 0.0131) with a 95% confidence interval of 0.4889 to 0.9194. Yamo Dudo

takes a median time of 0.3910, which indicates a shorter time to reach 70 ◦C by 61%. This

effect was highly significant (p-value < 0.0001) with a 95% confidence interval of 0.2937 to

0.5198.

Furthermore, one-degree Celsius increase in the baseline temperature leads to a decrease in

median time to reach a temperature of 70 ◦C by 2%. This effect is highly significant (p-value

< 0.0001) with a 95% confidence interval of 0.9715 to 0.9814. Also, 100W/m2 increase in

the average solar irradiance leads to a decrease in median time to reach a temperature of

70 ◦C by 63%. This effect is highly significant (p-value < 0.0001) with a 95% confidence

interval of 0.998 to 0.999. In addition, the presence of a plastic bag around the cooking

pot decreases the median time by 19% as compared to when a plastic bag is absent. This

effect is statistically significant (p-value = 0.0324) with a 95% confidence interval of 0.6678

to 0.9824.

Table 6: Summary results of the fitted Log-logistic AFT model with the 95% confidence

intervals (CI) for the time ratios (TR).

Variable Parameter Estimate TR SE P-value 95% CI

Intercept µ 5.1855 178.675 0.3027 < 0.0001 [98.28, 322.05]

Brother β1 0.4951 1.6409 0.1499 0.0009 [1.2231, 2.2011]

Fornelia β2 -0.0571 0.9444 0.1794 0.7504 [0.6647, 1.3422]

Oven prototype 126 β3 0.7952 2.2146 0.1785 < 0.0001 [1.5607, 3.1426]

Prototype 5 β4 0.5346 1.7071 0.1772 0.0026 [1.2060, 2.4150]

SK14 β5 -0.4002 0.6702 0.1614 0.0131 [0.4889, 0.9194]

Yamo Dudo β6 -0.9392 0.3910 0.1454 < 0.0001 [0.2937, 0.5198]

Baseline temperature β7 -0.0239 0.9764 0.0026 < 0.0001 [0.9715, 0.9814]

Average solar irradiance β8 -0.0013 0.9987 0.0003 < 0.0001 [0.9982, 0.9992]

PlasticBag (Yes) β9 -0.2109 0.8096 0.0985 0.0324 [0.6678, 0.9824]
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Furthermore, Table 7 presents the summary of the pairwise comparisons between cookers

from the log-logistic model. The results reveal that there is a highly significant difference

among the commercial solar cookers in the time it takes to reach a temperature of 70 ◦C

(p-values < 0.0001). The results indicate that SK14 takes 71% longer median time as

compared to Yamo Dudo, with 95% CI ranging from 1.2309 to 2.3877. Brother takes 145%

and 420% longer median time than SK14 and Yamo Dudo, respectively.

Table 7: Summary of the pairwise comparisons of the cookers on the median time to reach

70 ◦C.

Contrast TR SE P-value 95% CI

Brother - Oven prototype 126 0.7406 0.164 0.2787 [0.4465, 1.2294]

Brother - Prototype 5 0.9613 0.159 1.0000 [0.5888, 1.5695]

Brother - SK14 2.4485 0.139 < .0001 [1.5946, 3.7570]

Brother - Yamo Dudo 4.1970 0.135 < .0001 [2.7696, 6.3624]

Oven prototype 126 - Prototype 5 1.2975 0.171 0.3873 [0.7667, 2.1974]

Oven prototype 126 - SK14 3.3035 0.150 < .0001 [2.0823, 5.2432]

Oven prototype 126 - Yamo Dudo 5.6645 0.142 < .0001 [3.6628, 8.7742]

Prototype 5 - SK14 2.5463 0.136 < .0001 [1.6750, 3.8718]

Prototype 5 - Yamo Dudo 4.3645 0.134 < .0001 [2.8856, 6.6093]

SK14 - Yamo Dudo 1.7147 0.108 < .0001 [1.2309, 2.3877]

3.4 Model Averaging Results

Table 8 presents a summary of the parameter estimates for the fitted AFT models as defined

in Equation 16, together with the model-averaged estimates. The findings reveal that the

estimates and standard errors in these fitted models do not differ substantially in most

variables. The findings show that the model averaging approach produces estimates and

standard errors that are very close to those obtained from the log-logistic model. This is

expected because the model-averaged estimates are dominated by a log-logistic model with

a weight of 0.99. Therefore, we considered the predictions of the median time to reach a

temperature of 70 ◦C based on the log-logistic model as the best predictions for this study.
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Table 8: Summary of the parameter estimates and standard errors for different AFT models

fitted to the provided data and the model-averaged estimates.

Log-logistic Log-normal Weibull MA

Variable Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 5.1855 0.3027 5.3509 0.3005 5.8128 0.3374 5.1870 0.3031

Brother 0.4951 0.1499 0.4539 0.1404 0.5526 0.1535 0.4948 0.1499

Fornelia -0.0571 0.1794 -0.1100 0.1823 -0.2287 0.1833 -0.0575 0.1795

Oven prototype 126 0.7952 0.1785 0.8203 0.1753 0.8634 0.1873 0.7954 0.1785

Prototype 5 0.5346 0.1772 0.4762 0.1816 0.2621 0.1958 0.5341 0.1774

SK14 -0.4002 0.1614 -0.4905 0.1667 -0.7014 0.1699 -0.4010 0.1616

Yamo Dudo -0.9392 0.1454 -0.9586 0.1492 -1.0919 0.1386 -0.9394 0.1454

Baseline temperature -0.0239 0.0026 -0.0244 0.0026 -0.0251 0.0028 -0.0239 0.0026

Average solar irradiance -0.0013 0.0003 -0.0014 0.0003 -0.0016 0.0003 -0.0013 0.0003

PlasticBag (Yes) -0.2109 0.0985 -0.2357 0.1015 -0.1443 0.0950 -0.2111 0.0986

AIC 1300 1310 1347 —–

WEIGHTS 0.991 0.009 0.000 —–

3.5 Prediction of the Median Survival Time

To determine the cooker with the best performance in the analysis, the predictions were

based on the median time taken for a certain cooker to reach a temperature of 70 ◦C, where

a shorter time implies better performance of the cooker. We performed the prediction by

fixing the covariate values in the log-logistic model, in accordance with the ASAE S580.1

protocol. As a result, the average solar irradiance was assessed at 700W/m2, as the cook-

ing power for each interval should be adjusted to a standard insolation of 700W/m2 (Funk,

2000). In addition, we considered the fixed baseline temperature of 20 ◦C and evaluated the

median time to reach 70 ◦C from 20 ◦C. Furthermore, the prediction was based on whether

or not the plastic bag was wrapped around the cooking pot, to gain insight into whether

the usage of a plastic bag is potentially advantageous while cooking.

Table 9 provides a summary of the predicted median time to reach a temperature of 70 ◦C

for the solar cookers, along with the prediction intervals (PI) based on asymptotic standard

error estimates. It also shows how the time taken varies depending on whether or not the

plastic bag is used. It is postulated that the use of a plastic bag reduces the time to reach

70 ◦C for all solar cookers compared to the absence of a plastic bag. The predictions indicate

that Yama Dudo performs better compared to other commercially and locally made solar

cookers, as it takes a median of 15 minutes to achieve a temperature of 70 ◦C when the

plastic bag is used with the 95% PI ranging from 8 to 28 minutes and a median of 18

minutes without a plastic bag with the 95% PI ranging from 10 to 33 minutes. Moreover,

for locally made cookers, Prototype 4 appears to perform better than other locally made

cookers, as well as the Brother, which is a commercial solar cooker. As a result, Prototype

26



Baraka Rashidi – Master Thesis (2024–2025)

4 takes a median of 37 minutes to achieve a temperature of 70 ◦C when the plastic bag is

used with the 95% PI ranging from 20 to 68 minutes and a median of 45 minutes without

a plastic bag with the 95% PI ranging from 25 to 81 minutes.

Table 9: Predicted median times to reach 70 ◦C (minutes) with 95% prediction intervals

(PI) for different solar cookers under hypothetical conditions.

Cooker PlasticBag: Yes PlasticBag: No

Time (min) 95% PI Time (min) 95% PI

Yamo Dudo 15 [8, 28] 18 [10, 33]

SK14 25 [12, 49] 30 [16, 59]

Fornelia — —– 43 [22, 84]

Prototype 4 37 [20, 68] 45 [25, 81]

Brother 60 [30, 118] 74 [38, 142]

Prototype 5 62 [31, 126] 77 [39, 152]

Oven prototype 126 99 [40, 164] 80 [50, 197]
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4 Discussion and Conclusion

The purpose of this study is to investigate different statistical analysis approaches to quan-

tify the performance of several solar cooker appliances produced in resource-limited settings

as part of the Sc4all project. The project focused on survival analysis techniques, which

evaluate the time required for solar cookers to reach a specified threshold temperature,

as specified in the protocol provided by ASABE. Survival analysis approaches offered a

flexible and effective way to evaluate the performance of solar cookers, accommodating the

complexity of the data collected in these performance experiments, and providing further

insights compared to conventional analysis techniques that emphasize a single measure of

performance through simple linear regression (Funk, 2000).

Consequently, several survival analysis approaches were employed to fulfill the objectives

of this study. To account for potential factors that influence the performance of the solar

cooker appliances such as solar irradiance and the baseline water temperature, this study

focused on survival models including the Cox PH model and AFT models, as well as model-

averaging approach, to predict how long it would take to achieve a threshold temperature

of 70 ◦C. The findings indicate that AFT models serve as a valuable and convenient alter-

native to the Cox PH models, considering that they do not require the strong assumption of

proportional hazards and offer a straightforward interpretation of the effects of covariates

in terms of the median time, making it more intuitive and meaningful in the world of solar

cookers. However, while AFT models are considered to be more advantageous over Cox

PH model, they lack a straightforward way of incorporating the time-varying covariates

like Cox PH models do. In addition, the model-averaging approach was utilized, indicating

that it is feasible to examine the performance of the solar cooker without adhering strongly

to the distribution assumptions demonstrated by the AFT models. This method is con-

sidered an innovative statistical technique for quantifying the performance of solar cooker

appliances, as it has not been previously utilized within the Sc4All project context.

The findings demonstrated that the Yamo Dudo cooker has more cooking efficiency com-

pared to Brother, Fornelia, SK14, Prototype 4 and Prototype 5, as it takes less time to

attain the optimal temperature of 70 ◦C, according to the protocol (Funk, 2000). It is es-

sential to reconcile the efficacy of solar cooker appliances with safety considerations. As a

result, even though Yamo Dudo emerged as the better cooker, it poses substantial safety

concerns. The design has a smooth parabolic surface that concentrates the entire beam

at a single focal point. This intense concentration of sun rays increases the risk of serious

burns or eye damage, especially among children or untrained users. The SK14 cooker, on

the other hand, is parabolic but does not have a smooth surface. It has a polygonal shape

with flat segments of about 10 cm, resulting in the solar beam being reflected onto a dif-

fused plane instead of a single point. This geometric design reduces the risk of accidental
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exposure to highly concentrated rays, making it a safer alternative. However, although

SK14 is user-friendly, it still reflects intense sunlight in flat beams, which might present a

certain disadvantage in terms of health risks, posing a considerable concern for Prototype 4.

These design differences underscore the necessity of heating efficiency alongside user safety,

especially in real-world settings where the solar cookers may be used in unsupervised or

domestic environments.

Furthermore, one of the most significant findings was the effect of using a plastic bag

wrapped around the cooking pot. The findings reveal that this practice decreased the

median time to attain a threshold temperature of 70 ◦C across all examined cooking ap-

pliances, highlighting its critical role in enhancing heat retention. This finding aligns well

with prior empirical observations and theoretical expectations. The use of a plastic bag

serves as an insulating layer, reducing the potential of convective and evaporative heat loss,

which can significantly affect cooking efficiency. These insights enhance both the scientific

comprehension and the practical advancement of solar cooking technologies.

5 Ethical Thinking, Societal Relevance and Stakeholder Aware-

ness

5.1 Ethical Thinking

This study utilized data from experiments conducted in Belgium within the Sc4All project

team at UHasselt. Data were collected for various solar cooking appliances from July 2022

to September 2024. The study emphasizes a strong commitment to transparency and scien-

tific integrity by publicly sharing data, methodologies, and findings with the stakeholders,

thereby ensuring accountability, fostering trust, and promoting collaborative efforts and

awareness regarding the adoption of sustainable renewable energy sources.

5.2 Societal Relevance

The objective of this thesis is to facilitate the development of solar cooking devices that

are affordable and work well in places where resources are limited, especially in developing

countries. The study examines the integration of renewable energy into everyday cook-

ing practices, emphasising the capacity of solar cookers to reduce reliance on conventional

biomass fuels, thereby fostering environmental sustainability and improving public health.

The study emphasises the need for community engagement through educational and aware-

ness initiatives, which can help local residents in adopting solar technologies and change

their energy consumption behaviours for better sustainability. This work has significant

implications that align with global efforts to address climate change by reducing green-

house effects, conserving natural resources and promoting energy independence. Therefore,
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the findings facilitate the pursuit of clean, reliable and affordable cooking solutions that

improve people’s lives and make communities that have limited resources more resilient.

5.3 Stakeholder Awareness

This research was the result of a collaborative endeavor involving multidisciplinary stake-

holders, including UHasselt, the University of Lubumbashi in the Democratic Republic of

Congo (DRC) and the Sc4All Project supported by the Flemish Government. The col-

laboration was instrumental in implementing an innovative approach for evaluating the

performance of solar cooker appliances. The diverse expertise and insights provided by

these partners enhanced the academic relevance and practical applicability of the master’s

thesis. Subsequently, the project team intends to travel to Tanzania to share their re-

search findings and participate in workshops and capacity-building initiatives focused on

sustainable energy technological advancements.

6 Recommendations for Future Experiments

To build on the findings and limitations of this thesis, as well as to deepen understand-

ing of the solar cooker experiments within the Sc4All project, numerous recommendations

can be made to guide future experimental studies. Despite the promising results obtained

from the utilised survival analysis approaches, the study suffers from data management and

manipulation. The experiment setup was not conducive to the use of survival methodolo-

gies, as the collected data lacked a time-to-event organization. These issues resulted in a

tedious effort to develop the time-to-event dataset. Thus, in future experimental studies,

it is recommended to consider the data collection approach that ensures the time-to-event

structure.

The analysis used right-censored time-to-event data for convenience, but future studies

should consider survival methods that properly handle the interval-censoring nature of data

to improve the results. In addition, future experiments may adopt an automatic recording

station developed by UH engineering students, which is currently operating in the Congo,

that can record event timing on a 3-second basis, so as to improve and simplify the appli-

cation of survival analysis statistical methods in this context. Moreover, to enhance the

precision of the estimates, it is recommended to extend to the use of conditional survival

models, such as the frailty model, that will account for the variability within different test

days. This is an appropriate way since the weather might vary depending on the day the

experiment is conducted, which may influence the performance of the solar cooker appli-

ances. Furthermore, to account for the time-varying covariates in AFT models, the future

studies should adopt a parsimonious approach, including manual development custom R

functions, as no direct built-in function currently available for this purpose.
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The study was constrained by a lack of sufficient events across several solar cooker appli-

ances. As a result, this led to the exclusion of some cookers, such as Prototype 2 and 3, from

further analysis. Thus, to address this issue, future research is recommended to undertake

adequate experiments as indicated by the report on sample size determination (Mwaura,

2025). Additionally, whenever possible, future experiments should also ensure balanced

data for the plastic bag usage condition to accurately detect the effect of the plastic bag

and to investigate the interaction effect between a specific solar cooker and the use of a

plastic bag. This will facilitate obtaining precise estimates and provide insights into the

performance of a particular solar cooker while applying a plastic bag.
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Appendix

Table 10: Summary results of the fitted Log-logistic AFT model with the time ratios (TR)

Variable Estimate TR SE p-value

(Intercept) 5.1104 166.0179 0.3051 < 0.0001

Cooker2Brother 0.4977 1.6450 0.1495 0.0009

Cooker2Fornelia 0.0041 1.0041 0.1834 0.9823

Cooker2Ovenproto126 0.8281 2.2891 0.1786 < 0.0001

Cooker2Proto5 0.7172 2.0489 0.2146 0.0008

Cooker2Sk14 -0.3594 0.6982 0.1634 0.0278

Cooker2YamoDudo -0.8851 0.4125 0.1495 < 0.0001

First Temperature -0.0238 0.9765 0.0026 < 0.0001

Average Irradiation -0.0013 0.9987 0.0003 < 0.0001

PlasticBag -0.1478 0.8625 0.1058 0.1625

Cooker2Proto5:PlasticBag -0.3758 0.6866 0.2497 0.1323
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Figure 11: Kaplan-Meier curves of the survival function for the cookers considered in the

analysis. The two-sided p-values are based on a log-rank test comparing the survival func-

tions for the cookers. The dashed lines show the medium time in minutes.
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Figure 12: Graphical diagnostics of the scaled Schoenfeld residuals for each covariate against

the time. The solid red lines represent smoothing spline fits, while the dashed blue lines show

standard error bands around the fit.
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Software Code

# Read data

df <- read.csv("C:\\Users\\barak\\Desktop\\UHASSELT\\SECOND YEAR\\2ND SEMESTER\\MASTER

THESIS\\ABOUT DATA\\DATA TO USE\\SolarCookerV20240925.csv",dec=",",sep = ";")↪→

# A: DATA MANAGEMENT

# Transforming data to Right-censored Time to Event Data(AFT models)

# create the collapsed variable (Ovenproto126)

df$cooker2 <- dplyr::case_when(df$Cooker %in% c("OvenProto1", "OvenProto2", "Proto6") ~

"Ovenproto126",TRUE ~ df$Cooker)↪→

df$H1 <- as_hms(df$H1)

df$H2 <- as_hms(df$H2)

df$H1_temp <- factor(df$H1, "%H:%M:%S")

df$H2_temp <- factor(df$H2, "%H:%M:%S")

df$TestDate <- as.Date(df$TestDate, format = "%Y.%m.%d")

df2 <- df %>% group_by(cooker2, TestDate) %>% mutate(trial_number = 1,trial_number =

ifelse((T1 == lag(T2, default = first(T2)) & H1 == lag(H2, default =first(H2))),

lag(trial_number, default = 1), row_number())) %>% tidyr::fill(trial_number,

↪→

↪→

.direction = "down")

exp_window <- c(1)

for (i in 2:nrow(df2)) {

prev_T2 <- df2$T2[i - 1]

curr_T1 <- df2$T1[i]

if (is.na(prev_T2) || is.na(curr_T1)) {

exp_window <- c(exp_window, exp_window[length(exp_window)] + 1)

} else if (abs(prev_T2 - curr_T1) <= 0) {

exp_window <- c(exp_window, exp_window[length(exp_window)])

} else {

exp_window <- c(exp_window, exp_window[length(exp_window)] + 1)

}

}

df2$exp_window <- exp_window

df2_trimmed <- df2 %>% group_by(cooker2, TestDate, exp_window) %>% mutate(

first_70_idx = which(T2 >= 70)[1],row_id = row_number(), AIrr = (I1 + I2) / 2) %>%

filter(is.na(first_70_idx) | row_id <= first_70_idx) %>% ungroup()↪→

df3 <- df2_trimmed %>% group_by(cooker2, TestDate, exp_window) %>% summarise(

trial_H1 = first(H1), trial_H2 = last(H2), first_temp = first(T1), final_temp = last(T2),

avg_irradiation = mean(AIrr, na.rm = TRUE),tot_time =↪→
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sum(as.numeric(difftime(last(H2), first(H1), units = "mins"))),

across(where(is.numeric) & !any_of(c("T1", "T2")), ~mean(.x, na.rm = TRUE)),

across(where(is.character), first),↪→

.groups = "drop")

df4 <- df3 %>% mutate(Event = ifelse(final_temp >= 70, 1, 0))

df5$cooker2 <- trimws(as.character(df4$cooker2))

selected_cookers <- c("Proto4","Proto5","YamoDudo", "Brother","Fornelia",

"Sk14","Ovenproto126")

df_subset <- df5[df5$cooker2 %in% selected_cookers, ]

df_subset$cooker2 <- factor(df_subset$cooker2)

# B: DATA EXPLORATORY

# Table of summary

summary_table <- df_subset %>%group_by(cooker2, Event) %>% summarise(count = n(), .groups

= "drop") %>%tidyr::pivot_wider(names_from = Event, values_from = count, values_fill

= list(count = 0)) %>% rename(Censor = `0`, Event = `1`) %>% mutate(Total = Censor +

Event)

↪→

↪→

↪→

print(summary_table)

summary_table2 <- df_subset %>%group_by(Cooker, PlasticBag) %>% summarise(count = n(),

.groups = "drop") %>%tidyr::pivot_wider(names_from = PlasticBag, values_from = count,

values_fill = list(count = 0)) %>%rename(No = `0`, Yes = `1`) %>% mutate(Total = No +

Yes)

↪→

↪→

↪→

print(summary_table2)

# Kaplan-Meier curves

fit <- survfit(Surv(tot_time, Event) ~ Cooker2, data = df_subset)

ggsurv3 <- ggsurvplot(fit,legend.title = "Cooker",xlab = "Time (Minutes)",

risk.table = FALSE,conf.int = TRUE,conf.type = "log-log",tables.height = 0.3,pval =

TRUE,pval.coord = c(25, 0.90), surv.median.line = "hv", ggtheme = theme_bw(),↪→

palette = c("red", "blue") )

print(ggsurv3)

# C: ANALYSIS

# Fit AFT models

(Generalized_Gamma <- flexsurvreg(Surv(tot_time, Event) ~ cooker2Brother

+cooker2Fornelia + cooker2Ovenproto126 + cooker2Proto5 + cooker2Sk14 +

cooker2YamoDudo + first_temp + avg_irradiation + PlasticBag,data = df_subset,

dist="gengamma"))

↪→

↪→

↪→

(Generalized_F <- flexsurvreg(Surv(tot_time, Event) ~ cooker2Brother +cooker2Fornelia +

cooker2Ovenproto126 + cooker2Proto5 + cooker2Sk14 + cooker2YamoDudo + first_temp +

avg_irradiation + PlasticBag,data = df_subset, dist="genf"))

↪→

↪→
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(lognormal <- survreg(Surv(tot_time, Event) ~ cooker2Brother +cooker2Fornelia +

cooker2Ovenproto126 + cooker2Proto5 + cooker2Sk14 + cooker2YamoDudo + first_temp +

avg_irradiation + PlasticBag,data = df_subset, dist="lognormal"))

↪→

↪→

(loglogistic <- survreg(Surv(tot_time, Event) ~ cooker2Brother +cooker2Fornelia +

cooker2Ovenproto126 + cooker2Proto5 + cooker2Sk14 + cooker2YamoDudo + first_temp +

avg_irradiation + PlasticBag,data = df_subset, dist="loglogistic"))

↪→

↪→

(weibull <- survreg(Surv(tot_time, Event) ~ cooker2Brother +cooker2Fornelia +

cooker2Ovenproto126 + cooker2Proto5 + cooker2Sk14 + cooker2YamoDudo + first_temp +

avg_irradiation + PlasticBag,data = df_subset, dist="weibull"))

↪→

↪→

# AIC and BIC values for each model

extractAIC(model)[2]

BIC(model)

# Pairwise comparisons (contrasts)

emm_pb1 <- emmeans(loglogistic, ~ cooker2)

pairwise_contrasts <- contrast(emm_pb1, method = "pairwise")

(emm<- summary(pairwise_contrasts, adjust = "holm"))

# Assessing goodness of fit

LL <- psm(Surv(tot_time, Event) ~ cooker2Brother +cooker2Fornelia + cooker2Ovenproto126 +

cooker2Proto5 + cooker2Sk14 + cooker2YamoDudo + first_temp + avg_irradiation +

PlasticBag,data = df_subset, dist="loglogistic", y=TRUE)

↪→

↪→

res.LL <-resid(LL,type="cens")

survplot(npsurv(res.LL ~1),conf ="none",ylab="Loglogistic", xlab="Residual")

lines(res.LL, lwd = 0.5, col = "red")

### cox-snell residual plot (SAS CODE)

/* Step 2: Fit the model */

proc lifereg data=WORK.IMPORT_CLEAN1;

class cooker2Brother cooker2Fornelia cooker2Ovenproto126 cooker2Proto5 cooker2Sk14

cooker2YamoDudo PlasticBag;↪→

model tot_time*Event(0) = cooker2Brother cooker2Fornelia cooker2Ovenproto126

cooker2Proto5 cooker2Sk14 cooker2YamoDudo PlasticBag first_temp avg_irradiation/

dist=llogistic;

↪→

↪→

output out=resids sres=stdres cres=coxsnell;run;

proc lifetest data=resids outsurv=surv_cs;

time coxsnell*Event(0); run;

data surv_cs;
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set surv_cs;

lsurv=-log(survival);

expct=coxsnell; run;

proc gplot data=surv_cs;

axis1 label=(f='Arial' h=1.8 'Cox-Snell Residual') value=(f='Arial' h=2.8) order=0 to 6

by 1 style=1 width=1 color=black;↪→

axis2 label=(angle=90 f='Arial' h=1.8 '-Ln(KM survival)') value=(f='Arial' h=2.8)

order=0 to 6 by 1 style=1 width=1 color=black;

symbol1 interpol=none value=dot h=1 c=black;

symbol2 interpol=join value=none l=1 c=red w=1;

plot lsurv*coxsnell expct*coxsnell / overlay vaxis=axis2 haxis=axis1;

run; quit;

# Model-averaging approach

model.set <- list(m1, m2, m3)

names(model.set) <- c("lognormal", "weibull", "loglogistic")

model.sel <- model.sel(model.set)

print(model.sel)

avg.model <- model.avg(model.set)

summary(avg.model)

# Prediction of the Median Survival Time

# Define coefficients

coefs <- list(intercept = 5.1855,CookerBrother = 0.4951,CookerFornelia =

-0.0571,CookerOvenproto126 = 0.7952,CookerProto5 = 0.5346,CookerSk14 = -0.4002,↪→

CookerYamoDudo = -0.9392,temp = -0.0239,irradiance = -0.0013,PlasticBag =

-0.2109,CookerProto4 = 0 )↪→

# Define standard errors for asymptotic prediction intervals

coefs_se <- list(intercept = 0.3027,CookerBrother = 0.1499,CookerFornelia = 0.1794,

CookerOvenproto126 = 0.1785, CookerProto5 = 0.1772, CookerSk14 =

0.1614,CookerYamoDudo = 0.1454,temp = 0.0026,irradiance = 0.0003,PlasticBag =

0.0985,CookerProto4 = 0 )

↪→

↪→

↪→

# conditions

baseline_temp <- 20

avg_irradiance <- 700

# Helper function for median prediction with PI

predict_median_with_PI <- function(cooker, plastic_bag) {cooker_coef <- ifelse(cooker

%in% names(coefs), coefs[[cooker]], 0)cooker_se <- ifelse(cooker %in%

names(coefs_se), coefs_se[[cooker]], 0)pb_coef <- ifelse(plastic_bag,

coefs$PlasticBag, 0)pb_se <- ifelse(plastic_bag, coefs_se$PlasticBag, 0)

↪→

↪→

↪→
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log_time <- coefs$intercept + cooker_coef +coefs$temp * baseline_temp + coefs$irradiance

* avg_irradiance +pb_coef↪→

log_time_se <- sqrt(coefs_se$intercept^2 + cooker_se^2 + pb_se^2)

median_time <- exp(log_time)

lower_PI <- exp(log_time - 1.96 * log_time_se)

upper_PI <- exp(log_time + 1.96 * log_time_se)

return(c(median_time, lower_PI, upper_PI))}

# List of cookers

cookers <- c("CookerProto4", "CookerBrother", "CookerFornelia",

"CookerOvenproto126","CookerProto5", "CookerSk14", "CookerYamoDudo")↪→

# Compute predictions with PI

predictions <- data.frame(Cooker = cookers,No_Bag = t(sapply(cookers, function(x)

predict_median_with_PI(x, FALSE))),With_Bag = t(sapply(cookers, function(x)

predict_median_with_PI(x, TRUE))))

↪→

↪→

# Rename columns for clarity

colnames(predictions) <- c("Cooker", "No_Bag_Median", "No_Bag_Lower_PI",

"No_Bag_Upper_PI","With_Bag_Median", "With_Bag_Lower_PI", "With_Bag_Upper_PI")↪→

# Print final dataframe

print(predictions)
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