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Abstract

Single-cell experiment enables researchers to uncover differences in cell composition be-
tween donors by profiling thousands of cells per sample. This approach is widely used,
for example, to investigate disease mechanisms, such as immune response and tumor
progression. However, designing an effective single-cell experiment remains challeng-
ing due to the compositional nature of the data, technical variability, and biological
variability between donors. These factors complicate both the estimation of cell type
abundance and the detection of differences between groups.

This thesis aims to support the design of single-cell experiments by investigating how
the number of cells and the number of biological samples (donors) influence (1) the
accuracy of cell type abundance estimation and (2) the ability to detect changes in
abundance across groups. A simulation framework based on the Dirichlet-multinomial
distribution was developed to generate single-cell count data under various experimental
settings. Estimation accuracy was assessed using metrics based on relative error, while
differential abundance testing was performed using voomCLR method.

The results indicate that cell count and sample size contribute differently to estimation
accuracy and statistical power. Abundance estimation accuracy improved primarily
with higher number of cells, while the number of donors had little additional effect. In
contrast, statistical power for detecting changes in cell type abundance increased mainly
with the number of donors, while increasing cell count had limited impact. These find-
ings suggest that the number of cells and the number of donors contribute to different
aspects of analysis performance and may need to be considered separately. Optimal
study design should therefore align with the specific study objective, whether to esti-
mate cell type proportions or detecting differences between groups.

Keywords: single-cell analysis, cell type abundance, Dirichlet-multinomial, composi-
tional data analysis
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1 Introduction

1.1 Background

Single-cell analysis refers to the study of individual cells to uncover the diversity and
differences within cell populations. By understanding its characteristics, single-cell anal-
ysis can give information about which cell types exist in a sample and whether there
are differences in cell type composition between individuals (Choi and Kim, 2019). This
approach is valuable in disease research because it helps reveal important differences
between cells. In cancer studies, for example, single-cell analysis has been used to better
understand tumor composition, track how cancer changes over time, and support the
development of more targeted treatments (Lei et al., 2021).

In practice, single-cell analysis is typically carried out through experiments in which
thousands of cells are profiled per sample and classified into types, allowing for com-
parisons of their relative abundance across individuals (L&hnemann et al., 2020). Com-
paring these proportions across samples or conditions can reveal important biological
differences. For example, changes in immune cell composition may signal the presence
of infection or inflammation, while a decrease in specific cell types could signal disease
progression. Single-cell analysis allows researchers to detect such changes in cell com-
position across individuals, which provide insights into underlying biological processes
and disease mechanisms (Jovic et al., 2022). However, this analysis is complicated by
the compositional nature of the data, as all cell type proportions must sum to one; an
increase in one type automatically leads to decreases in other types, which introduce
spurious correlations and inflate false discoveries if not properly accounted for (Quinn
et al., 2018).

In addition to compositional constraints, single-cell data are also affected by multiple
sources of variation. This includes technical variation due to random sampling of cells,
as illustrated in the SCOPIT framework (Davis et al., 2019), as well as biological vari-
ation, which has been shown to reduce the true positive rate in differential abundance
testing (Assefa et al., 2024). These factors can make it difficult to determine whether
observed differences in cell type frequencies reflect true biological changes or random
variation, especially when studying rare cell types. For example, the SCOPIT frame-
work shows that the number of cells required depends on the expected frequency of
each cell type, and a large number may be needed to ensure sufficient representation of



rare cell types (Davis et al., 2019). While SCOPIT provides guidance for planning the
number of cells to sample in a single group, it does not address how accurately those
proportions can be estimated or how donor-to-donor variation affects the estimation.

When the goal is to detect differences in cell type composition between groups, the
number of biological samples plays a key role. Simulation results from Assefa et al.
(2024) show that higher between-sample variability reduces the true positive rate in
differential abundance testing, but this effect can be reduced by increasing sample size
(Assefa et al., 2024). Methods such as LinDA and voomCLR have been developed
to improve robustness in differential abundance testing by adjusting for compositional
effects and variability across biological samples (Zhou et al., 2022; Assefa et al., 2024).
However, they do not provide practical guidance on how to choose the number of cells or
samples in designing the experiment. In contrast, Sensei proposed in Liang et al. (2022)
directly addresses power and sample size calculation for detecting differences in cell
type proportions across groups. It models the variability in cell type proportions across
individuals using a beta-binomial model, but does not account for the compositional
structure of the data or dependencies between cell types (Liang et al., 2022). As a
result, there is a need for a clearer understanding of how cell count and sample size work
together to affect estimation accuracy and testing performance in single-cell analysis.

1.2 Objectives

The objective of this study is to support the design of single-cell experiments aimed at
cell type abundance estimation and comparison between groups of biological samples.
Specifically, the first objective is to evaluate how the number of cells and the sample
size influence the accuracy of cell type abundance estimation. The second objective is
to assess how the number of cells and the sample size affect the ability to detect changes
in cell type abundance between experimental groups. While the effects of cell count and
sample size are often considered separately, this study takes an exploratory approach to
investigate whether cell count and sample size can be unified into a common framework
for guiding both estimation and testing in single-cell analysis.



2 Methodology

This chapter describes the methodological framework used to evaluate how experimental
design parameters influence estimation accuracy and the ability to detect differences
in single-cell analysis. The approach is based on parametric simulation of single-cell
count data using the Dirichlet-multinomial model, followed by downstream analysis to
assess abundance estimation and differential abundance detection under varying design
conditions.

2.1 The Dirichlet-multinomial distribution

In single-cell experiments, cell type composition data often take the form of counts, rep-
resenting how many cells of each type are observed in a given donor. Because the total
number of cells per donor is fixed, these counts are compositional, where they represent
proportions constrained to sum to one. Moreover, biological and technical variability
causes overdispersion, where there is more variation across donors than expected un-
der a simple multinomial model. The Dirichlet-multinomial distribution is commonly
used to model single-cell and other count data to account for both compositionality and
overdispersion (Assefa et al., 2024; Fordyce et al., 2011; Harrison et al., 2020).

The Dirichlet-multinomial distribution is a compound distribution of a multinomial dis-
tribution and a Dirichlet distribution that models cell counts across multiple categories
(cell types), where the underlying proportions themselves are random variables drawn
from a Dirichlet distribution (Ng and Tian, 2011). Formally, for donor i = 1,...,n and
cell type 7 =1,..., P, the model is defined as follows:

7; ~ Dirichlet(6;),Y; | 7; ~ Multinomial(N;, 7;) (2.1)

where:

i indexes donors (i = 1,...,n),

Jj indexes cell types (j =1,...,P),

7 = (w1, T2, ..., mip) is the vector of true cell types frequency,

0; = (0:1,0;2,...,60;p) are the parameters of the Dirichlet distribution,
Y; = (Y1, Yia,...,Y;p) is the observed count vector for donor 4,

N; = Zle Y;; is the total number of cells in the donor i.

The parameter vector @ controls both the mean proportions and the amount of variation
in those proportions across donors. The expected value of the proportion of cell type j



in donor i is given by

P
0
E[?Tij] = Hi;, where 90 = ; 9@']’ (22)
The variance of the proportion of cell type j in donor ¢ and the covariance between
proportions of two cell types j and k are given by
0;; (6o — 0s5) bt
98(90—|—1) ’ 08(004— 1)

This variance decreases as the total concentration 6y increases, indicating that the

Var[m;j] = COV[?Tij,’iTik] = (2.3)

Dirichlet distribution becomes more concentrated around the mean. The negative co-
variance arises because of the compositional constraint, where all proportions must sum
to one, so an increase in one cell type’s frequency implies a decrease in others.

The total concentration parameter 6y governs how much variability is present in the
proportions, where a large 0y leads to low variance in the proportions across donors,
meaning that the donors have similar compositions, while a small 6y results in more
variability across donors.

To introduce heterogeneity across cell types and across experimental groups, a log-
linear formulation can be applied to the Dirichlet parameters. For example, Assefa
et al. (2024) used the following formulation:

0ij = v - exp(Bo; + XiB1j) (2.4)

where X; = 0 if donor ¢ is from group 1 and X; = 1 if donor ¢ from group 2. The
parameter 7y controls the overall level of between-sample variability, while 8y, captures
the baseline abundance of cell type j, and (31; controls the magnitude of differential
abundance between the two groups of donors.

This parameterization provides a flexible framework for generating realistic variability
in cell type composition, and it serves as the basis for the simulation setup described in
the next section.

2.2 Abundance estimation

This section discusses how accurately cell type abundances can be estimated under
varying design parameters. Two estimation settings were established for the abundance
estimation: the single-sample case and the multiple-sample case. The single-sample case
focuses on understanding how many cells need to be sequenced from a single donor. It
supports a prospective approach to maintain a reasonable accuracy level or provides a
guideline to filter data in the retrospective approach. In the multiple-sample case, the
goal is to estimate the population-level cell type proportions across donors accurately.
It can support a prospective approach, such as determining how many cell counts and
donors are required to achieve a desired estimation accuracy. It also applies to retrospec-
tive evaluation, where the adequacy of the existing sample size is assessed to determine



whether population-level estimates can be trusted, particularly for low-abundance cell
types.

2.2.1 Simulation framework

To investigate the accuracy of cell type abundance estimation, cell count data were
simulated using the Dirichlet-multinomial model described in Section 2.1. For this
estimation analysis, a single-group setting was used, where all donors were assumed
to come from the same group. A log-linear formulation was used for the Dirichlet
parameters as defined in Equation (2.4), with the group indicator fixed as X; = 0 since
only one group was simulated. Under this setting, the Dirichlet parameters for each
donor i were defined as

0ij = - exp(Bo;) (2.5)
where So; ~ N (uo, 70) represents cell type-specific abundance variation, and v controls
the amount of variability across donors. In the single-sample setting, v was fixed at 1,

as only one donor was generated per simulation replicate. The mean of 3y; was fixed
at 0, while the 79 was fixed at 0.25.

To ensure consistency across simulation replicates, the values of By; and the resulting
Dirichlet parameters were generated once at the beginning of each simulation setting
and reused across all replicates. This reflects the assumption that donors within a group
share the same underlying distribution of cell type proportions, with variation across
donors arising from sampling variation under the Dirichlet-multinomial model.

Simulations were performed over a range of settings to reflect various experimental
conditions:

e Number of cells to sequence: N € {1000, 5000, 10000, 30000, 50000, 100000}

e Number of sample sizes: n € {1,5,10,20}

e Number of cell types: P € {5,10,20,30}

e Dirichlet scale: v € {1.5,1,0.25} (for multiple-sample case; n > 1)

For each simulation setting defined by N, n, P, and +, K = 500 replicates were gener-
ated. The following steps were performed in each simulation replicate:

1. For each donor i, draw the true cell type frequencies: 7r; ~ Dirichlet(8).

2. Given 7r;, draw observed counts: Y; | ; ~ Multinomial(N, 7r;).

3. Compute estimated frequencies F;; = 1]/{,]

To improve the stability of evaluation metrics, cell type filtering was applied at each
simulation run to exclude extremely low-abundance cell types from analysis. Specifi-
cally, cell types were excluded in a given simulation replicate if their estimated frequency
P;; fell below a predefined threshold, i.e., P;j; < ¢, where § € {0%,0.1%, 1%, 5%}, to
explore how the choice of the exclusion threshold affect the results.



2.2.2 Estimation accuracy and decision criteria

The accuracy of cell type abundance estimation was assessed using the relative absolute
error (RAE). This approach is based on the same idea described in Thompson (1987),
which is to control how far estimated frequencies are from the true values when choosing
a sample size. For each donor i and cell type j, it was defined as:

| Pij — il

7T7;j

RAE;; = (2.6)

where P;; = }]/(; is the estimated frequency based on observed counts, and m;; is the
true frequency drawn from the Dirichlet distribution.

In the single-sample setting (n = 1), the RAE values were directly used to assess
estimation accuracy. In the multiple-sample setting (n > 1), two approaches were

considered.

1. Mean RAE across donors: RAE was first computed for each donor and cell
type, then averaged across donors to summarize accuracy per cell type:

1 n
mRAE; = — > RAE; (2.7)
1=1

This summarizes estimation accuracy across donors for each cell type and reflects aver-
age error at the donor level.

2. Population-level RAE: A population-level estimate of RAE was computed by
averaging the estimated frequencies across donors, and then comparing this average to
the expected true frequency: ~
P. .
pRAEj == M; (2'8)
T

where P; = %Z?:l P;j is the average estimated frequency, and 7; = E[n;] = z—g is the
expected true frequency under the Dirichlet distribution (Equation 2.2). This captures
the bias in the group-level estimate.

To summarize estimation performance across simulation replicates, three decision cri-
teria were used to define a simulation as successful based on its error values. For each
criterion, the success probability IT was calculated as the proportion of simulation repli-
cates that meet the specified threshold conditions.

1. Strict criterion. A simulation replicate was considered successful only if all cell
types had estimation errors below a fixed threshold 7. This was applied using RAE);
in the single-sample case, while in the multiple-sample case it is either mRALE; or
pRAE;. Different error thresholds r € {5%, 10%, 15%,20%} were explored. This strict
criterion ensures that all cell types are estimated with given accuracy, but may be



overly conservative, particularly when low-abundant cell types are present. The success
probability was defined as:

K P
1
1_Istrict = ? E I ﬂ {El"I‘OI“jk < T‘} (29)
k=1 \j=1

where K is the number of simulation replicates, r is the error threshold, and Error;, is
either RAE;, mRAE;, or pRAE; in replicate k, depending on the setting.

2. Adaptive criterion. This criterion was only applied in the single-sample setting
(n = 1), where per-replicate observed frequencies P;; are available. Cell types were
stratified into three abundance groups based on their observed frequencies P;;: low
(Pij < 1%), medium (1% < P;; < 10%), and high (P;; > 10%). Each abundance group
was assigned a distinct threshold to reflect its relative estimation difficulty:

0.5, if P < 1% (low)
ri =140.1, if 1% < Pj; < 10% (medium)
0.05, if P;; > 10% (high)
A replicate was considered successful if all cell types satisfied their respective thresholds:

K P
1
Hadaptive = ? Z]I ﬂ {RAEJk § Tj} (2.10)
k=1 J=1
where K is the number of simulation replicates, and r; is the error threshold of cell type
j-

3. Relaxed criterion. A replicate was considered successful if at least a fraction ¥
of cell types satisfied the error threshold r (e.g., ¥ = 0.8), defined as:

K P
1 1
I elaxed = e E I B E I(Errorj, <r) > (2.11)
k=1 j=1

where K is the number of simulation replicates, r is the error threshold, and Error;j
is either RAE;, mRAFE;, or pRAFE; in replicate k, depending on the setting. In this
study, 1 was set to 0.8.

2.2.3 Determining number of cells and sample size

The simulation results were used to assess how different values of the number of cells
(N) and the number of donors (n) influence the accuracy of abundance estimation. For
each simulation setting, success probabilities I were computed under a range of decision
criteria based on relative error thresholds. Thresholds were then applied to identify the
simulation settings that yielded sufficiently accurate estimates. Specifically, a setting
was considered acceptable if the success probability exceeded a predefined threshold
(e.g., 95%). These results were used to identify minimum values of N and n required
to achieve reliable estimation under different settings of the number of cell types (P),
and between-sample variability (7).



2.3 Detecting changes in cell type abundance

This section describes the simulation framework used to evaluate how the number of
cells and donors affects the ability to detect changes in cell type abundance between
groups. The goal is to evaluate under which design settings the differentially abundant
(DA) cell types can be reliably identified with sufficient statistical power. A simulation-
based approach was implemented by combining Dirichlet-multinomial modeling of count
data with the voomCLR method for differential abundance testing.

2.3.1 Simulation framework

To investigate the ability to detect differential abundance between groups, data were
simulated under a two-group setting using the Dirichlet-multinomial model described in
Section 2.1. The group-specific Dirichlet parameters were defined using the log-linear
model in Equation 2.4.

The set of cell types was divided into two subsets: V), representing non-differentially
abundant (non-DA) cell types for which the null hypothesis holds, and V;, representing
truly differentially abundant (DA) cell types for which the alternative hypothesis holds.
These satisfy |Vo| + [V1| = P and Vo N V; = 0. The proportion of truly DA cell types
was set to be 20% of P, rounded up to the nearest integer.

For each DA cell type j € V1, the parameter 3 controls the magnitude of the group dif-
ference, while v controls the level of variability among donors. The baseline abundance
parameters (y; were generated using the same setting as in the abundance estimation
analysis, i.e., fy; ~ N(0,0.25). The differential abundance effects 3i; were sampled
from N (0, 2), following the Lupus case study configuration in Assefa et al. (2024).

Simulations were conducted under various settings to evaluate how design parameters
affect statistical power. The following parameter settings were explored:

e Number of cells per sample: N € {1000, 5000, 10000, 30000, 50000, 100000}

e Number of donors per group: n =n; = ns € {5,10,20}

e Number of cell types: P € {5,10,20,30}

e Dirichlet scale: v € {1.5,1,0.25}

For each simulation setting defined by N, n, P, and ~, a set of DA cell types was
selected. The corresponding log-scale parameters B¢ and (1, along with the group-
specific Dirichlet parameters 81 and 82 were generated once and held fixed across
all K = 100 replicates within that setting.

Within each simulation replicate, the following steps were performed:

1. For each donor i in group g € {1, 2}, draw the true cell type frequencies: m; ~
Dirichlet(0(9)).



2. Given m;, draw the observed counts: Y; | 7; ~ Multinomial(N, ;).

2.3.2 Differential abundance testing

To evaluate statistical power under each simulation setting, differential abundance
(DA) testing was performed using a linear modeling framework based on the wvoom-
CLR method (Assefa et al., 2024). This approach was designed to improve statistical
inference for compositional single-cell data by combining log-ratio transformation and
variance modeling. It addresses key challenges such as mean—variance dependence and
limited power due to small sample sizes, while also accounting for the relative nature
of cell type proportions. This method begins with a centered log-ratio (CLR) transfor-
mation of compositional count data, followed by mean-variance modeling to compute
observation-level weights. The weighted CLR-transformed data are then analyzed us-
ing linear models with empirical Bayes shrinkage. Bias correction is applied prior to
hypothesis testing to account for compositional effects.

CLR transformation

Observed count matrices were transformed using the centered log-ratio (CLR) transfor-

mation:
1/P

P
Y;i -
Zij = log 77 with Y; = H Vi) (2.12)
7j=1
where Y;; denotes the observed count of cell type j in donor 7, and P denotes the total

number of cell types. This transformation allows standard statistical tools to be applied
more appropriately by working with log-ratios rather than raw counts.

The mean-variance modeling and weights

CLR-transformed data often exhibit heteroscedasticity, where the variance depends on
the mean. To account for this, the mean-variance trend across cell types was estimated
using loess smoothing. When the number of cell types P was small, the variance was
approximated analytically using a Poisson or negative binomial assumption. For each
cell type j, weight was defined as w; = %, where 6]2 is the estimated variance of the

CLR-transformed abundance. These weigjhts were included in the linear model to re-
duce the influence of cell types with higher variability.

These two steps on CLR transformation and mean-variance modeling were performed
using voomCLR function from voomCLR package. This function outputs the CLR-
transformed values along with observation-level weights, which are then used in the
linear modeling step.



Linear modeling of CLR-transformed abundances

A weighted linear model was fitted separately for each cell type j using the CLR-
transformed data. The model can be written as:

Zij = Qoj + a1j group; + € (2.13)

where z;; is the CLR-transformed abundance for cell type j in donor ¢, group; is a bi-
nary indicator variable equal to 0 for group 1 and 1 for group 2, ayg; is the intercept for
cell type j, aq; is the group effect representing the log-fold change in CLR-transformed
abundance between the two groups, and ¢;; is the residual error term.

The model was fitted using weighted least squares, where the weights are derived from
the estimated mean-variance relationship (described in the previous section). The ImFit
function from limma package was used to fit the model. To improve the stability of the
variance estimates, especially in settings with a small number of donors, empirical Bayes
shrinkage was applied using the eBayes function. This approach results in moderated
t-statistics, which borrow information across cell types to produce more stable and
reliable hypothesis tests.

Bias correction and hypothesis testing

To address the compositional bias in effect size estimates caused by the CLR transfor-
mation, a bias correction method based on LinDA (Zhou et al., 2022) was applied using
topTableBC function from voomCLR package. This approach adjusts the estimated
group effects by subtracting the mode of all regression coefficients across cell types,
under the assumption that most cell types are not differentially abundant.

Let af‘jrre“ed denote the bias-corrected effect size for cell type j. Differential abundance

(lzqrrected
J
the moderated t-tests were adjusted using the Benjamini-Hochberg (BH) procedure to

control the false discovery rate (FDR) at 5%.

was then assessed by testing the null hypothesis: Hy : « = 0. p-values from

2.3.3 Power and error rate estimation

After hypothesis testing, performance was evaluated by calculating both power and false
discovery rate (FDR) under each simulation setting.

For each truly differentially abundant (DA) cell type, per-cell-type power was estimated
as the proportion of simulation replicates in which the cell type was detected as signifi-
cant (the null hypothesis was rejected). Average power was then calculated as the mean
of these per-cell-type power estimates across all truly DA cell types.

To quantify the proportion of false positives among all discoveries, the false discovery
rate (FDR) was computed within each simulation replicate as

FDR — number of non-DA cell types detected as significant

2.14
total number of significant discoveries ( )

10



The average FDR across replicates was then reported for each simulation setting.

2.3.4 Determining number of cells and sample size

The simulation framework was used to evaluate how different values of the number of
cells (N) and the number of donors (n) affected the ability to detect differential abun-
dance. For each simulation setting, power and FDR estimates were summarized across
replicates. Thresholds were then applied to identify settings that achieved sufficient
statistical performance, defined as achieving average power greater than 80% while con-
trolling FDR below 5%. These results were used to identify minimum values of N and
n required to meet performance criteria under different settings of the number of cell
types (P), and biological variability (7).

11






3 Results

A simulation framework based on the Dirichlet-Multinomial distribution was imple-
mented, capturing both technical sampling variability and biological heterogeneity across
donors. Estimation accuracy and statistical power were evaluated across a range of de-
sign parameters. The results are presented in two sections. Section 3.1 focuses on the
accuracy of cell type abundance estimation, examining both single-sample and multiple-
sample cases. Section 3.2 evaluates the ability to detect differential abundance between
groups, highlighting how the number of cells and the number of donors influences sta-
tistical power and false discovery rate.

3.1 Abundance estimation

3.1.1 Single-sample case

The accuracy of cell type abundance estimation was first evaluated in the single-sample
setting, where the goal is to determine how many cells need to be sequenced from a
single donor to achieve acceptable estimation accuracy. The success probability IT was
computed under varying total cell counts (N), number of cell types (P), and error
thresholds (r) for each simulation setting. Three decision criteria were considered: a
strict criterion applied to all cell types, an adaptive criterion that adjusts r based on
cell type abundance, and a relaxed criterion that allows a specified proportion of cell
types to exceed the threshold.

Figure 3.1 shows the estimated success probability 1I as a function of the total number
of cells (N), across different numbers of cell types (P). The lines correspond to different
decision criteria: strict (all cell types must satisfy the threshold), adaptive (thresholds
vary based on abundance), and relaxed (at least 80% of cell types must satisfy the
threshold). An error threshold of 5% was used for all cell types under the strict and
relaxed rules. The horizontal dashed line indicates the target success probability thresh-

old (A = 0.95).

Overall, the success probability IT increases with larger cell counts (V). In all differ-
ent settings of the number of cell types (P), the strict criterion has the lowest success
probability. This reflects the conservative behavior of this criterion, where all cell types’
estimated frequencies need to have a lower error than 5%. The adaptive and relaxed cri-
teria result in notably higher success probabilities and show similar performance across

13



most conditions.

As the number of cell types increases, the gap between the strict and the more flexible
criteria widens. For example, at P = 20 and P = 30, the success probability under
the strict criterion remains very low, even at N = 100,000, while both adaptive and
relaxed criteria approach or exceed the 95% target threshold. These trends suggest that
the strict criterion becomes increasingly challenging to satisfy in settings with a high
number of cell types.

Decision criteria —* strict —& adaptive —#% relaxed
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Figure 3.1: Success probability II, plotted against the number of cells (N) in various
number of cell types P and decision criteria, for single-sample case.

In practice, researchers may choose to exclude extremely low-abundance cell types from
evaluation, either to avoid unstable estimates or to focus on biologically meaningful cell
types. Figure 3.2 illustrates how applying different exclusion thresholds (i.e., 0.1%, 1%,
5%) affects the success probability II and the number of cells required. Each row in the
figure corresponds to a different exclusion threshold, while columns vary the number of
cell types (P). The same three decision criteria were applied as in the previous analysis.

Overall, higher exclusion thresholds result in increased success probabilities. This effect
is most notable in settings with larger numbers of cell types, where exclusion reduces
the challenge of meeting accuracy thresholds across all evaluated cell types. In contrast,
when the number of cell types is small (e.g., P = 5), exclusion had little to no effect
across all three criteria, likely because few cell types fall below the exclusion threshold.
As P increased, exclusion led to clearer improvements under the strict criterion, but
had a limited effect on the adaptive and relaxed criteria. This is likely because these
two criteria already account for the difficulty of estimating low-abundance cell types,
either by adjusting the threshold based on abundance (adaptive) or by allowing some
cell types to exceed it (relaxed). This highlights how excluding low-abundance cell types
can substantially reduce the number of cells needed to meet a desired accuracy level.
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Figure 3.2: Success probability II, plotted against the number of cells (N) in various
number of cell types P and decision criteria, with some cell types exclusion threshold,
for single-sample case.

Several error thresholds r € {5%,10%, 15%, 20%} for the strict criterion were also ex-
plored, and the results can be seen in Appendix A.3 (Figure A.2). As expected, higher
error tolerance led to higher success probabilities across all settings. The improvement
was especially noticeable for larger values of P, where stricter criteria were harder to
satisfy.

3.1.2 Multiple-sample case

Figure 3.3 presents the estimated success probability II in the multiple-sample setting
based on mRAFE approach and strict criterion, as a function of the total number of
cells (N), across different numbers of cell types (P), under medium between-sample
variability. Results are shown for the 5% error threshold. The horizontal dashed line
indicates the target success probability threshold (A = 0.95). Results for low and high
variability are provided in Appendix A.3 (Figure A.3).

Overall, the success probability increased with higher numbers of cell counts (N) and
decreased with higher numbers of cell types (P), consistent with trends observed in the
single-sample case. In general, success probability also declined with higher levels of
between-sample variability. Under high between-sample variability, success probabil-
ities remained close to zero across all conditions, indicating that more heterogeneous
populations require sequencing more cells to achieve the same level of accuracy.
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At P = 5, all donor sizes under low between-sample variability level reached approx-
imately 95% success probability at N = 30,000. Under medium variability, the 90%
success probability was reached at around N = 100,000. For P = 10, success probabil-
ity increases with N, but remains below the 95% threshold across all variability levels
even at the maximum cell count. This trend continues for P = 20 and P = 30, where
success probabilities remain low regardless of the number of donors or cells sequenced.
An unexpected trend is observed at P = 10 under medium between-sample variabil-
ity, where smaller donor sizes appeared to yield higher success probabilities than larger
ones. This will be revisited in the Discussion.
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Figure 3.3: Success probability II based on mRAFE approach and strict criterion, evalu-
ated for varying numbers of donors n under medium between-sample variability, plotted
against the number of cells N in various number of cell types P, for multiple-sample
case.

The effect of applying different exclusion thresholds on success probability in the multiple-
sample setting under medium between-sample variability is shown in Figure 3.4. Each

row corresponds to a different minimum abundance threshold (0.1%, 1%, and 5%),

while columns vary the number of cell types (P). Results for low and high variability

are provided in Appendix A.3 (Figure A.4 and A.5).

As observed in the single-sample setting, increasing the exclusion thresholds improves
success probability. This is particularly noticeable under high between-sample variabil-
ity, where the success probabilities increase significantly compared to the case without
exclusion. For P = 5, excluding cell types with a minimum observed frequency of 0.1%
has little impact, likely because few cell types fall below this threshold. In contrast,
the effect of exclusion becomes more pronounced for higher values of P. Notably, af-
ter exclusion, the relationship between the number of donors and success probability
becomes more intuitive, where higher n values consistently yield higher success proba-
bilities. For example, at P = 10, increasing n = 10 to n = 30 reach approximately the
95% success probability at around N = 50, 000, while n = 5 reaches it at N = 100, 000.
These results suggest that excluding low-abundance cell types not only improves overall
accuracy but also clarifies the effect of increasing sample size.
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Figure 3.4: Success probability IT based on mRAFE approach and strict criterion, evalu-

ated for varying number of donors n under medium between-sample variability, plotted

against the number of cells N in various number of cell types P, with some cell types
exclusion threshold, for multiple-sample case.

To complement the donor-level analysis, results based on the population-level RAE
(pPRAE) are presented in Appendix A.3 (Figure A.8). Unlike the mRAE results, the
pRAE results indicate that improvements in the success probability are driven by the
number of donors. Across all settings, success probability remained nearly constant
across different values of IV, which suggests that increasing the number of cells has little
to no effect on the accuracy. This suggests that population-level accuracy is primarily
governed by the number of donors.

3.2 Detecting changes in cell type abundance

This section presents simulation results evaluating the power to detect differential abun-
dance (DA) in a comparison of two groups of donors under varying study designs. Power
and false discovery rate (FDR) were estimated across combinations of number of cells
(N), sample size (n), number of cell types (P), and between-sample variability.

Because the differential abundance effect sizes (31) were held constant within each P,
performance comparisons across values of IV, n, and ~ within the same P setting reflect
the influence of design parameters rather than differences in effect magnitude. This
allows a more controlled evaluation of how experimental design affects statistical power
and FDR. The exact values of 31 used are provided in Appendix A.2 (Table A.3).
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3.2.1 Effect of cell count and sample size on power

Figure 3.5 shows the average power to detect DA cell types across varying values of
number of cells (N) and number of donors (n). Each panel corresponds to a combi-
nation of the number of cell types (P) and between-sample variability level (7). This
allows comparison within each panel to reflect the effect of design parameters. The
dashed line indicates the 80% power threshold.

Within each panel, average power increases with the number of donors, while the effect
of the number of cells is minimal. This suggests that increasing the number of donors
is generally more effective than increasing the number of cells for improving power,
especially when each donor already contains a moderate number of cells. For example,
in the case of P = 10 and medium variability, increasing n from 5 to 20 enables power
to exceed 80%, while differences across N remain small.

While power appears to vary across different P and ~ settings, comparisons between
panels should be interpreted with caution, as the underlying effect size configuration
(B31) differs across P. For this reason, the results are best interpreted by comparing

performance under the same P.
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Figure 3.5: Average power to detect differentially abundant cell types across combina-
tions of number of donors n, number of cells N, between-sample variability, and number
of cell types P.
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3.2.2 Effect of cell count and sample size on FDR

Figure 3.6 shows the average false discovery rate (FDR) across different values of num-
ber of cells (N) and sample size (n). Each panel corresponds to a combination of the
number of cell types (P) and between-sample variability level (). The dashed line
marks the 5% FDR threshold.

FDR was highest in settings with high between-sample variability and low number of
donors, particularly for lower values of P. Increasing the number of donors tended to
reduce FDR in many settings, but the patterns were not strictly decreasing and showed
some fluctuation. This is likely due to variation in the number of discoveries across
replicates, which can cause FDR estimates unstable, especially when few cell types are
detected.
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Figure 3.6: Average FDR to detect differentially abundant cell types across combinations
of number of donors n, number of cells N, between-sample variability, and number of
cell types P.
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4 Discussion and Conclusion

This thesis investigated how different cell counts and sample size settings affect the ac-
curacy of cell type abundance estimation and the ability to detect changes in cell type
abundance in single-cell experiments. A simulation framework based on the Dirichlet-
multinomial model was employed to generate single-cell count data across a range of
settings, including different numbers of cells, numbers of donors, numbers of cell types,
and levels of between-sample variability.

The first research question focused on evaluating the accuracy of cell type abundance
estimation across different simulation settings. From a prospective perspective, the
objective is to determine the required number of cells and donors to meet a desired
accuracy level, based on the number of cell types and the degree of between-sample
variability. Retrospectively, given a fixed study design setting (e.g., 10 donors with
10000 cells per donor to analyze 20 cell types), researchers can evaluate the accuracy of
the resulting cell type frequency estimates and potentially consider excluding unreliable
cell types if accuracy is insufficient for downstream analysis.

Estimation accuracy was evaluated using the relative absolute error (RAE), which com-
pares estimated cell type frequencies to the true frequencies. However, since it compares
relative frequencies, it tends to produce larger error values for low-abundance cell types.
To summarize performance across simulation replicates, the success probability 11 was
computed as the proportion of replicates that are successful, i.e., satisfied a predefined
threshold. It provides an empirical estimate of how a study design yields accurate esti-
mates under a given setting of cell counts, donors, number of cell types, and variability
between samples.

The definition of a successful replicate was based on one of three criteria. In the strict
criterion, a replicate is deemed successful only if all cell types have an error metric
below the threshold. The main advantage of this approach is that it ensures accurate
estimation across the entire cell type composition, which is essential when all popula-
tions are equally important or required for downstream analyses. However, it may be
too stringent when many low-abundance cell types are present, as they typically yield
higher RAE values due to their low frequencies (see Figure A.1 in Appendix A.3). This
often results in low success probabilities and higher number of donors requirements. The
adaptive criterion adjusts the error threshold for each cell type based on its observed
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frequency, allowing more tolerance for low-abundance cell types. This helps mitigate
the compositional bias of the RAE metric for low-abundance cell types. However, the
main drawback is that the chosen thresholds can be somewhat arbitrary, and the ap-
plication is limited to single-sample settings in this study’s framework. For the relaxed
criterion, a replicate is considered successful if a specified proportion (e.g., 80%) of cell
types meet the error threshold. While this approach improves flexibility, it offers no
control over which cell types fail or how large the errors are.

The use of cell type exclusion was also explored, where extremely low-abundance cell
types were excluded from error evaluation. This approach improved success probabil-
ities but introduced variability across replicates due to differences in which cell types
were excluded. The number of excluded cell types and the type of excluded cells may
differ in each replicate. This complicates the interpretation and limits generalizability.
Moreover, excessive exclusion could also result in misleading success probabilities or
underrepresentation of biologically important cell types.

In the multiple-sample setting, estimation error was summarized using the mean RAE
(mRAE), computed by averaging the per-donor RAEs for each cell type. This metric
attempts to reflect aggregate accuracy across donors. However, it may not fully capture
how both cell count and sample size contribute to estimation performance. Simulations
revealed that increasing number of cells reduced the average of mRAE, while increasing
number of donors reduced the variability in mRAE but had a limited effect on its aver-
age (see Figure A.9 in Appendix A.3). This suggests that increasing the number of cells
per donor plays a greater role in improving accuracy, whereas increasing the number of
donors improves the stability of estimates. An unexpected trend was observed under
certain conditions (e.g., P = 10), where a smaller number of donors n yielded higher
success probabilities than a larger n. Further exploration showed that this was linked
to low-abundance cell types and insufficient cell counts (see Figure A.11 in Appendix
A.3). In low N settings, estimates of a low-abundance cell type had high variability.
Increasing n alone did not resolve this unless N was also increased. These findings sug-
gest that increasing number of cells may be more impactful than an increasing number
of donors, particularly for low-abundance cell types.

An alternative summary metric was also explored to better capture the effects of both
the number of cells and the number of donors on the accuracy, that is using popula-
tion level RAE (pRAE), averaging the estimated cell type proportions across donors
and computing RAE on this group-level average, then comparing it to the expected
true frequencies derived from the Dirichlet distribution. However, this approach pri-
marily reflected only the effect of the number of donors, and not the number of cells
(see Figure A.10 in Appendix A.3). Thus, the choice of summary metric can influence
interpretation, and further work may be needed to develop more comprehensive metrics
that reflect both cell count and sample size.

The second research question evaluated how the number of cells and the number of
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donors influence the ability to detect differential abundance (DA) between groups. Sta-
tistical power was the main metric used to evaluate detection performance, with false
discovery rate (FDR) also examined to ensure that improved detection of true differences
did not come at the cost of more false positives. Using a simulation-based framework
and the voomCLR method, the number of cells, the number of donors, the number of
cell types, and degree of between-sample variability were varied to explore their effects.

It was found that increasing the number of donors had a stronger impact on power than
increasing the number of cells per donor. This is likely because voomCLR summarizes
cell type proportions within each donor and performs group comparisons across these
donor-level summaries, so each donor is treated as an independent observation in the
statistical test. Increasing the number of cells per donor improves the accuracy of the
estimates for each donor, but does not provide additional independent information for
distinguishing between groups. In contrast, increasing the number of donors adds more
biological replicates, reduces the influence of between-donor variation, and makes it
easier to detect group-level differences.

Power was also strongly influenced by between-sample variability. In settings with high
variability, power was consistently lower across all values of the number of cells and
donors. In these settings, increasing the number of donors stabilized group-level esti-
mates and improved power. In contrast, increasing the number of cells had little effect,
because improving estimates within donors does not reduce the variability that occurs
between donors. This suggests the importance of recruiting more donors rather than
solely increasing the number of cells, especially when high between-sample variability
is expected.

False discovery rate (FDR) was highest in settings with high between-sample variabil-
ity and a low number of donors, especially when the number of cell types was small.
Increasing the number of donors generally reduced the FDR, but this trend was not
strictly monotonic, and some fluctuation was observed. This variability may reflect
differences in the number of significant discoveries between replicates. When few cell
types are detected as significant, the FDR estimate becomes unstable. Overall, voom-
CLR maintained reasonable FDR control in most settings, except in settings with high
variability, low sample size, or few detected discoveries.

The combined results from both parts of this thesis show that different aspects of study
design play important roles depending on the goal of the analysis. When the focus is
on accurately estimating cell type proportions, sequencing more cells per donor is im-
portant, especially for low-abundance cell types. In contrast, increasing the number of
donors is the main factor influencing power and error control in differential abundance
testing. This emphasizes the importance of tailoring experimental design to the specific
research question.

While this study offers insights into how cell count and sample size influence estimation
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accuracy and the ability to detect differential abundance, several limitations should
be considered. First, the simulation framework assumes a specific structure of vari-
ability based on the Dirichlet-multinomial model, which may not capture all forms
of biological and technical variability present in real-world data. In particular, the
Dirichlet-multinomial model only allows negative correlations between cell type pro-
portions, since the total must always add up to one. This means it cannot represent
situations where certain cell types tend to increase or decrease together, as might oc-
cur with biologically related cell types. Second, in the abundance estimation, RAE is
sensitive to low-abundance cell types due to the compositional nature of relative fre-
quencies. Although the adaptive criterion was introduced to account for this, it depends
on threshold definitions that are somewhat arbitrary and currently limited to single-
sample settings. Third, the use of mRAE to summarize performance across donors
may mask potential improvements from increasing the number of donors. Fourth, the
strategy of excluding low-abundance cell types improved success probability, but the
variability in which cell types were excluded across replicates may limit the consistency
and generalizability of these results. Lastly, in the differential abundance detection, the
power depends on assumptions about effect size, so results may be higher or lower than
what would be observed in actual experiments.

Future work could extend this study in several ways. For abundance estimation, new
error metrics that are robust to compositional effects and low-abundance cell types
should be explored, along with summary measures that better capture the effects of both
cell count and sample size. For differential abundance testing, alternative DA detection
methods could be evaluated, and it would be valuable to validate the simulation-based
findings using real single-cell datasets.

4.1 Ethical thinking, societal relevance, and stakeholder
awareness

This study uses simulation-based methods to assess how different numbers of cells and
sample sizes affect estimation accuracy and the ability to detect changes in cell type
abundance. Although it does not involve real human data, it still relates to several
ethical and practical considerations.

The goal of this study is to help researchers make better decisions about how many
cells and donors to collect in their studies. A well-planned experiment can produce
more reliable results, while a poorly designed experiment can lead to misleading results
or a waste of resources. By identifying how many cells and donors are needed to reach a
certain level of accuracy or power, this study helps reduce unnecessary sample collection
from human or animal donors. This can lower costs and reduce the use of limited donor
material.

The methods and findings in this thesis are relevant for researchers, data analysts, and

24



professionals who are involved in designing and conducting single-cell studies. These
stakeholders rely on optimal study designs to obtain meaningful insights from single-
cell data while balancing accuracy, cost, and feasibility. Although this thesis does not
produce a single unified rule for determining optimal design parameters, it highlights
important trade-offs between cell count, sample size, number of cell types, and donor
variability.

A good experimental design can also lead to clearer research findings and faster progress
in understanding disease or developing treatments in areas like cancer research and drug
development. This way, improving methods in study design can have an indirect benefit
for society by supporting more effective research.

4.2 Conclusion

This thesis examined how the number of cells and donors impact the accuracy of cell
type abundance estimation and the power to detect differential abundance in single-cell
analysis. Using simulations based on the Dirichlet-multinomial model, the first part of
the study demonstrated that estimation accuracy was primarily driven by the number
of cells, while increasing number of donors had little effect. Meanwhile, the second part
of the study showed that power increased with number of donors, whereas the effect of
number of cells was limited.

This difference arises because abundance estimation is most sensitive to within-sample
sampling variability, which decreases as more cells are collected per donor. In contrast,
differential abundance testing involves comparing distributions across groups, which
benefits more from having multiple donors to reduce uncertainty in group-level esti-
mates. Although the initial aim was to derive a unified sample size framework, the
results show that the number of cells and the number of donors serve different pur-
poses. Therefore, this study suggests that they cannot be used interchangeably and
should be tailored to the study objective.
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A Appendix

A.1 R code

The R codes used in this thesis are available in https://github.com/luluasmils/

master-thesis
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A.2 Simulation parameters

Table A.1: Generated Dirichlet parameters (6;) and expected value of the cell type
proportion (y;) for each cell type j in different settings of number of cell types P, for
single-sample case.

P | cell type j 0; 1 P | cell type j 0; 1

5 | ppl 1 0.9189 | 0.1344 20 | ppl 19 1.4380 | 0.0662
5 | ppl 2 1.4220 | 0.2080 20 | ppl 20 1.1131 | 0.0512
5 | ppl 3 0.8869 | 0.1297 30 | ppl 1 1.2414 | 0.0402
5 | ppl_4 1.4701 | 0.2150 30 | ppl_2 0.6436 | 0.0208
5 | ppl 5 2.1396 | 0.3129 30 | ppl_3 1.1943 | 0.0387
10 | ppl 1 1.2750 | 0.1342 30 | ppl 4 0.9125 | 0.0295
10 | ppl_2 0.4594 | 0.0484 30 | ppl_b 1.4369 | 0.0465
10 | ppl_3 1.1911 | 0.1254 30 | ppl_6 1.6782 | 0.0543
10 | ppl 4 1.8128 | 0.1909 30 | ppl_7 1.2205 | 0.0395
10 | ppl 5 0.3279 | 0.0345 30 | ppl_8 0.5527 | 0.0179
10 | ppl 6 0.9467 | 0.0997 30 | ppl 9 0.9337 | 0.0302
10 | ppl 7 1.3818 | 0.1455 30 | ppl_10 0.8708 | 0.0282
10 | ppl_8 0.9100 | 0.0958 30 | ppl 11 0.4214 | 0.0136
10 | ppl 9 0.5682 | 0.0598 30 | ppl_12 1.2382 | 0.0401
10 | ppl 10 0.6242 | 0.0657 30 | ppl 13 0.4782 | 0.0155
20 | ppl 1 0.7610 | 0.0350 30 | ppl_14 1.3067 | 0.0423
20 | ppl_2 1.1393 | 0.0524 30 | ppl_15 0.5497 | 0.0178
20 | ppl_3 0.5492 | 0.0253 30 | ppl_16 0.6119 | 0.0198
20 | ppl_4 1.1460 | 0.0527 30 | ppl 17 1.3692 | 0.0443
20 | ppl_5 0.8234 | 0.0379 30 | ppl 18 1.4062 | 0.0455
20 | ppl 6 1.5463 | 0.0711 30 | ppl 19 0.7717 | 0.0250
20 | ppl 7 0.7038 | 0.0324 30 | ppl_20 1.8013 | 0.0583
20 | ppl_8 0.7827 | 0.0360 30 | ppl_21 0.7312 | 0.0237
20 | ppl 9 0.4427 | 0.0204 30 | ppl 22 0.3413 | 0.0110
20 | ppl 10 1.3928 | 0.0641 30 | ppl_23 2.4647 | 0.0798
20 | ppl 11 1.6347 | 0.0752 30 | ppl 24 1.4841 | 0.0480
20 | ppl 12 1.0263 | 0.0472 30 | ppl 25 0.7376 | 0.0239
20 | ppl 13 0.6944 | 0.0319 30 | ppl_ 26 0.6750 | 0.0219
20 | ppl_14 1.4111 | 0.0649 30 | ppl_27 0.7013 | 0.0227
20 | ppl 15 2.5950 | 0.1194 30 | ppl_28 1.5525 | 0.0503
20 | ppl 16 0.6232 | 0.0287 30 | ppl_29 0.7937 | 0.0257
20 | ppl_17 0.8260 | 0.0380 30 | ppl_30 0.7713 | 0.0250
20 | ppl 18 1.0851 | 0.0499

30



Table A.2: Expected value of the cell type proportion (u;) for each cell type j in different
settings of number of cell types P, for multiple-sample case.

P | cell type j 1 P | cellType I

5 | ppl_1 0.0908 20 | ppl_19 | 0.0635
5 | ppl 2 0.1604 20 | ppl_20 | 0.0278
5 | ppl 3 0.1574 30 | ppl 1 0.0379
5 | ppl 4 0.4356 30 | ppl 2 0.0170
5 | ppl_5 0.1557 30 | ppl 3 0.0207
10 | ppl 1 0.1093 30 | ppl 4 0.0629
10 | ppl 2 0.1633 30 | ppl_b 0.0288
10 | ppl_3 0.0694 30 | ppl_6 0.0438
10 | ppl 4 0.0871 30 | ppl_7 0.0338
10 | ppl_5 0.0702 30 | ppl_8 0.0337
10 | ppl_6 0.1049 30 | ppl_9 0.0203
10 | ppl 7 0.1271 30 | ppl_10 | 0.0129
10 | ppl_8 0.0349 30 | ppl 11 | 0.0290
10 | ppl 9 0.0629 30 | ppl 12 | 0.0534
10 | ppl_10 0.1709 30 | ppl_13 | 0.0286
20 | ppl 1 0.0424 30 | ppl _14 | 0.0209
20 | ppl 2 0.0448 30 | ppl 15 | 0.0332
20 | ppl_3 0.0598 30 | ppl_16 | 0.0240
20 | ppl_4 0.0631 30 | ppl_17 | 0.0130
20 | ppl_b 0.0471 30 | ppl 18 | 0.0551
20 | ppl_6 0.0751 30 | ppl_19 | 0.0654
20 | ppl 7 0.0139 30 | ppl_20 | 0.0154
20 | ppl_8 0.0263 30 | ppl 21 | 0.0287
20 | ppl_9 0.1132 30 | ppl_22 | 0.0242
20 | ppl 10 0.0308 30 | ppl 23 | 0.0489
20 | ppl 11 0.0275 | [ 30 | ppl_24 | 0.0294
20 | ppl 12 0.0642 | [ 30 [ ppl 25 | 0.0624
20 | ppl_13 0.0221 | [ 30 | ppl 26 | 0.0254
20 | ppl_14 0.0627 30 | ppl_27 | 0.0219
20 | ppl 15 0.0816 30 | ppl_28 | 0.0630
20 | ppl 16 0.0219 30 | ppl_29 | 0.0231
20 | ppl_17 0.0486 30 | ppl_30 | 0.0234
20 | ppl 18 0.0633
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Table A.3: Generated fi1; for each cell type j in different settings of number of cell

types P.

’ P ‘ cell type j ‘ B1j ‘
5 | ppl 3 -0.5616
10 | ppl 4 -0.8416
10 | ppl_6 -0.7588
20 | ppl_20 -2.1626
20 | ppl 5 -1.0160
20 | ppl 6 -0.5051
20 | ppl 1 1.3393
30 | ppl_12 -1.1714
30 | ppl_14 -0.6949
30 | ppl_27 -0.5342
30 | ppl_10 0.4860
30 | ppl_15 0.8643
30 | ppl_28 1.0047

A.3 Additional figures
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Figure A.1: RAE distribution for single-sample setting with P = 10. Y-axis limited to
RAE < 1.
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Figure A.2: Success probability II of different error thresholds r (RAE criteria), plotted
against the number of cells NV in various number of cell types P, for single-sample case.
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Figure A.3: Success probability IT based on mRAFE approach and strict criterion, eval-
uated for varying number of donors n with high and low between-sample variability,
plotted against the number of cells N in various number of cell types P, for multiple-
sample case.

33



n (number of donors) =#= 5 =4 10 =% 20 —* 30

P10

%0 ‘Ploysaiyy oxe

% | PlOysaly} oxs

%G ‘Ploys8ly} oxe

FEES FFeS Py F86S

N (number of cells)

Figure A.4: Success probability IT based on mRAE approach and strict criterion, evalu-
ated for varying number of donors n with low between-sample variability, plotted against
the number of cells IV in various number of cell types P, with some cell types exclusion
threshold, for multiple-sample case.
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Figure A.5: Success probability IT based on mRAFE approach and strict criterion, eval-
uated for varying number of donors n with high between-sample variability, plotted

against the number of cells N in various number of cell types P, with some cell types
exclusion threshold, for multiple-sample case.
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Figure A.6: Success probability II based on mRAE approach and relaxed criterion,
evaluated for varying number of donors n, plotted against the number of cells N in

various number of cell types P and between-sample variability levels, for multiple-
sample case.
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Figure A.7: Success probability II based on mRAE approach and relaxed criterion,
evaluated for varying number of donors n under medium between-sample variability,
plotted against the number of cells N in various number of cell types P, with some cell
types exclusion threshold, for multiple-sample case.
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Figure A.8: Success probability II based on pRAE approach and strict criterion, evalu-
ated for varying numbers of donors n under medium between-sample variability, plotted
against the number of cells IV in various number of cell types P, with some error thresh-
old, for multiple-sample case.
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Figure A.9: Distribution of mRAE across different numbers of cells (V) and donors
(n), under medium between-sample variability and P = 10, for three representative
cell types: ppl 8 (lowest frequency), ppl 4 (medium frequency), and ppl 10 (highest
frequency).
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Figure A.10: Distribution of pRAE across different numbers of cells (N) and donors
(n), under medium between-sample variability and P = 10, for three representative
cell types: ppl 8 (lowest frequency), ppl 4 (medium frequency), and ppl 10 (highest
frequency).
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Figure A.11: Distribution of mRAE across different numbers of cells (V) and donors

(n), under medium between-sample variability and P = 10, for three representative

cell types: ppl 8 (lowest frequency), ppl 4 (medium frequency), and ppl 10 (highest

frequency). Blue boxes indicate settings where lower n yields a higher proportion of

acceptable mRAE values (below 5%), while grey boxes indicate the opposite. The red
dashed line marks the 5% error threshold.
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