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Abstract

Accurate long-term survival extrapolation is essential for health economic evaluations, par-

ticularly in oncology, where treatment benefits may extend well beyond clinical trial follow-up

periods. This study examines two methodological approaches to enhance survival model selec-

tion: k-fold cross-validation and inverse probability of censoring weighting (IPCW).

In this thesis, we investigated whether k-fold cross-validation could improve model selection

and extrapolation accuracy in survival analysis, paying particular attention to datasets show-

ing long-term survival plateaus. Traditional model selection based on information criteria like

AIC and BIC evaluates models using the entire dataset, which can lead to overfitting and

may not optimize extrapolation performance when projecting beyond observed data. In con-

trast, cross-validation assesses model fit on held-out data folds, providing more generalizability.

Additionally, we examined whether inverse probability of censoring weighting could improve

extrapolation accuracy in highly censored datasets, where we applied IPCW across simulated

samples with censoring levels ranging from around 40% to 80%.

We conducted simulation studies using eight diverse cancer datasets from clinical trials and

population registries to evaluate the performance of cross-validation compared to conventional

approaches across various parametric and spline-based models. We conducted simulation studies

using eight diverse cancer datasets from clinical trials and population registries to evaluate the

performance of cross-validation compared to conventional approaches across various parametric

and spline-based models.

Cross-validation provided modest improvements in extrapolation accuracy (measured using re-

stricted mean survival time) in approximately half of the datasets examined, though benefits

varied considerably by context. Despite clinical evidence supporting survival plateaus, flexible

spline models were consistently selected over mixture cure models across all datasets. IPCW

improved prediction accuracy in about 91% of comparisons, with peak benefits observed at

approximately 60% censoring.

These findings suggest that while cross-validation offers selective advantages for model selection,

inverse probability of censoring weighting consistently improves prediction accuracy under high

censoring conditions. The results have practical implications for enhancing survival analysis in

health technology assessments, particularly when dealing with immature data or populations

where a cure is clinically plausible.
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1 Introduction

Survival analysis makes an extremely important contribution to health economic assessments, par-

ticularly in the assessment of the economic value of new healthcare interventions. In most clinical

trials, due to time and resource constraints, the follow-up of patients is limited. This results in in-

complete knowledge of the long-term outcomes of the treatment, which are important for economic

evaluation of a drug (N. R. Latimer 2013). Health economic models tend to require extrapolation

from observed trial data to predict lifetime costs and impacts of interventions (NICE Decision

Support Unit 2013). It is therefore important that the extrapolations are accurate, since they

directly affect healthcare resource allocation decisions. Therefore, the selection of appropriate sur-

vival models is a critical methodological concern in health technology assessment (Jackson et al.

2017).

The challenge of selecting the most appropriate survival model for extrapolation has long been

recognized in health economics literature. The traditional approaches to select models have revolved

around goodness-of-fit criteria such as the Akaike Information Criterion (AIC) or the Bayesian

Information Criterion (BIC). The above measures balance fit by penalizing additional parameters,

thereby attempting to select models that generalize rather than overfit the data available. While

these metrics assess fit on observed data, they do not necessarily identify the model that best

predicts survival in the unobserved tail (NICE Decision Support Unit 2013).

A key issue with these conventional methods is that model fit is assessed using the full observed

dataset, which can give rise to models that fit the data too closely and then perform very poorly

when extrapolating beyond the observed time horizon. When selecting a model on the basis of how

well it fits the complete dataset, it will fit noise or patterns that exist only in the dataset itself

and not the underlying survival pattern itself (Harrell 2015). This is particularly problematic in

health economic evaluations, where extrapolations can extend decades beyond the available trial

data (N. R. Latimer 2013).

Machine learning techniques in recent years have strengthened model selection approaches in a

broad range of fields, with cross-validation being a robust method to estimate predictive perfor-

mance (Hastie, Tibshirani, and Friedman 2009). K-fold cross-validation is the dividing data into k

folds and systematically using k-1 folds for model training and reserving one fold for testing, hence

enabling assessment of model performance on new unseen data (Arlot and Celisse 2010). Despite

it’s use and application in predictive modeling, cross-validation is still partially underutilized in the

selection of survival models for health economic evaluation.

There are several advantages of Cross-validation over traditional model selection methods. Firstly, it

clearly evaluates out-of-sample predictive accuracy, reflecting the real-world scenarios where models

must extrapolate beyond the available data (Arlot and Celisse 2010). Second, it provides a more

stable model generalizability estimate by taking a mean performance for a number of train-test

splits in order to reduce the effects of idiosyncrasies present in a single partition of data (Molinaro,
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Simon, and Pfeiffer 2005). Third, cross-validation is less susceptible to sample size effects compared

to information criteria such as AIC and BIC, which could be particularly important where smaller

clinical datasets are frequent, as is often the case in health economic evaluations (Browne 2000).

In the survival modeling scenario, cross-validation can be used to identify models that generalize

well to new data, rather than those that best fit the observed data.

Despite these established benefits in predictive modeling, cross-validation remains underutilized in

the context of survival model selection for health economic evaluation, where standard information

criteria remain dominant in practice (Gallacher, Kimani, and Stallard 2021). This methodological

deficit represents an opportunity to potentially increase the validity of survival extrapolations that

inform economic models and healthcare resource allocation decisions.

A previous study has established that k-fold cross-validation can improve the selection of traditional

parametric and flexible survival models for extrapolation in health economic evaluations (Bermejo

and Grimm 2024). The study using seven datasets showed that the models selected using cross-

validation had significantly lower errors in restricted mean survival time (RMST) compared to the

models selected using classical AIC or BIC methods across the entire datasets. A finding worth

noting was that cross-validation tended to favor simpler models with better generalizability and

avoided the overfitting that occurred from more complex models.

However, a limitation identified in this previous work was the inability to adequately deal with

datasets with prolonged plateaus in their survival curves. These plateaus are increasingly common

in survival data, particularly in new modern treatments like immunotherapy and some advanced

oncology treatments. These developments in oncology treatment commonly yield a subgroup of

patients with prolonged survival or a ”cured” fraction, generating survival curve plateaus that

challenge classical parametric assumptions (Grant et al., 2019). There has been an increasing

focus on cure models, which account for a cured subpopulation. Mixture cure models (MCMs), for

instance, separate the population into cured and uncured components, yielding a more theoretical

model for such data.

This thesis extends the previous methodology to address the limitation by incorporating cure

models into the analysis. Specifically, we investigate whether k-fold cross-validation leads to better

extrapolation performance than the usual model selection methods for datasets with long-term

survival plateaus. The investigation ranges from standard parametric survival models to cure

models that directly model the presence of a cure fraction (Lambert et al. 2007).

2 Research Questions

This study examines whether the benefits of cross-validation observed for selecting standard sur-

vival models for health economic evaluations extend to the specialized context of cure models.
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Primary Research Questions:

• How does k-fold cross-validation improve model selection and extrapolation accuracy in mix-

ture cure models, particularly in datasets exhibiting long-term survival plateaus?

In addition to this primary research question, the thesis explores another secondary research ques-

tion aimed at improving the accuracy of extrapolation in survival data.

Secondary Research Question:

• How does inverse probability of censoring weighting (IPCW) affect extrapolation accuracy in

datasets with high censoring rates?

3 Description of the Datasets

To investigate the performance of cure models across diverse clinical contexts and keeping in mind

that cure models rely on a structural assumption of a cured population fraction, this study ana-

lyzes eight survival datasets obtained from a mix of clinical trial sources and observational cancer

registries. We selected these datasets based on the presence of long-term survival plateaus, their rel-

evance to oncology (particularly immunotherapy), and sufficient follow-up duration. Furthermore,

medical plausibility, whether a durable response or cure is biologically reasonable for the condition

and treatment, was a key consideration in selecting datasets appropriate for cure modeling.

A particular focus was placed on datasets reflecting immunotherapy outcomes, as these treatments

can achieve a prolonged response in some patients, which suggests the presence of a cured frac-

tion within the population (Patel et al. 2016). However, due to the lack of publicly available IPD

(individual patient-level data) from immunotherapy trials, due to proprietary and regulatory con-

straints, we used digitization techniques to reconstruct IPD from published Kaplan-Meier (KM)

survival curves.

Digitization involves obtaining survival times and event indicators from published Kaplan-Meier

plots through software tools such as DigitizeIt, WebPlotDigitizer, or the IPDfromKM algorithm

(Guyot et al. 2012). This approach provides an estimate of individual patient data (IPD) in cases

where the original datasets are not accessible. In this study, five datasets were reconstructed using

this method based on their reporting in key immunotherapy trials.

The remaining three datasets were selected from publicly available sources, including the SEER

registry (National Cancer Institute 2023) and curated clinical trial repositories, and cover a variety

of cancer types and censoring levels. The Kaplan-Meier curves presented in Figure 1 demonstrate

the survival patterns in the eight cancer datasets.
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Figure 1: Kaplan-Meier survival curves for the eight cancer datasets grouped by follow-up duration.

The top plot displays medium-term follow-up datasets (follow-up < 5 years) which demonstrate

varying plateau patterns. The plot below shows long-term follow-up datasets (follow-up > 5 years)

exhibiting more pronounced plateau regions. These plateau regions visible across multiple datasets,

provide the rationale for using them in the analysis.

The datasets used include:

1. Ipilimumab Monotherapy Dataset (OS Ipilimumab): This dataset represents the over-

all survival data for patients treated with ipilimumab monotherapy, reconstructed from pub-

lished Kaplan-Meier curves using established digitization techniques (Guyot et al. 2012). The

data originates from the Dutch Melanoma Treatment Registry, a prospective nationwide co-

hort study that demonstrated plateau formation in survival curves, indicating potential for

long-term survival and cure fractions in real-world clinical practice (van Not et al. 2024).

2. Anti-PD-1 Therapy Dataset (OS AntiPD1): Data from an anti-PD-1 immunotherapy

trial in melanoma, with a substantial survival plateau. The data from the Dutch Melanoma
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Treatment Registry study showed that anti-PD-1 antibodies achieve durable responses with

characteristic plateau formation in survival curves outside clinical trial settings (van Not et al.

2024).

3. Combination Immunotherapy Dataset (OS IpiNivo): This dataset represents patients

with advanced melanoma treated with a first-line combination of ipilimumab and nivolumab

therapy. The data, also derived from the Dutch Melanoma Treatment Registry, demonstrated

that combination checkpoint inhibition achieves superior long-term survival outcomes com-

pared to monotherapy, with enhanced plateau formation suggesting higher cure rate potential

in real-world clinical practice (van Not et al. 2024).

4. NSCLC without chemo: This dataset was digitized from the Kaplan-Meier overall survival

(OS) curve from Figure 1A of (Peters et al. 2025) for cure model analysis. This figure

presents long-term OS outcomes for patients with metastatic NSCLC (non-small cell lung

cancer) and tumor PD-L1 expression less than 1%, treated with first-line nivolumab plus

ipilimumab–based regimens, pooled from the CheckMate 227 and CheckMate 9LA trials.

This is the immunotherapy arm of the dataset with a sample size of n=322. It demonstrated

significant survival improvements with plateau-forming survival curves.

5. NSCLC Chemotherapy Dataset (NSCLC chemo): This dataset represents the con-

trol group from the CheckMate 227 trial, containing survival data from advanced NSCLC

(non-small cell lung cancer). These patients received up to four cycles of platinum-based

chemotherapy without any immunotherapy (Peters et al. 2025). The sample size was n=315.

While traditional chemotherapy rarely achieves a cure in advanced NSCLC, some patients

experience unexpectedly prolonged survival, making mixture cure model analysis relevant for

understanding treatment heterogeneity and identifying potential long-term survivors.

6. SEER Breast Cancer Dataset (SEER Breast Cancer): This is observational data

from the Surveillance, Epidemiology, and End Results (SEER) registry filtered for breast

cancer (National Cancer Institute 2023). The SEER database provides high-quality, long-

term follow-up data essential for cure model analysis. With over 30,000 records, this dataset

exhibits a long follow-up time (over 500 months), a plateau after 31 months, and a good tail

representation.

7. Ovarian Cancer Dataset: This dataset has survival information from ovarian cancer pa-

tients. The data has a long follow-up period of approximately 5480 months. Ovarian cancer

presents unique survival characteristics with the potential for long-term disease-free survival

in a subset of patients (Edmunson et al. 1979).

8. German Breast Cancer Study Group Dataset (GBSG): This dataset is from a prospec-

tive clinical trial led by the German Breast Cancer Study Group, which focuses on ”recurrence-

free survival” among patients with node-positive breast cancer. Due to its comprehensive data

collection and extended follow-up, the GBSG dataset is widely regarded as a benchmark for

evaluating survival analysis methods (Royston and Altman 2013).
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Each dataset was pre-processed to remove zero-time records, and we ensured the event indicators

were valid. We also verified the time-to-event variables for positive values and the survival status

coded as binary indicators (0 = censored, 1 = event).

4 Methodology

4.1 Mixture Cure Model Framework

This section addresses the research question: How does k-fold cross-validation impact the selection

and extrapolation accuracy of mixture cure models (MCM) in datasets characterized by long-term

survival plateaus? The goal is to evaluate whether cross-validation can improve model selection

over traditional criteria (AIC/BIC) on the entire dataset in the context of cure models, leading to

better extrapolation performance as measured by RMST accuracy and cure fraction estimation.

In this study, we utilized mixture cure models due to the clinical characteristics of the datasets, all

of which show evidence of potential cure fractions based on the presence of plateaus and supported

by clinical literature. Data maturity is crucial when using MCM, so the datasets have adequate

follow-up durations.

The selection of mixture cure models is justified by the clinical characteristics of the included

datasets, all of which exhibit evidence of potential cure fractions based on plateau formation in

survival curves and clinical literature (Peng and Dear 2000). However, the application of cure

models requires careful consideration of data maturity, as recent evidence suggests that immature

data can lead to substantial overestimation of cure fractions and unreliable extrapolation (Grant et

al. 2019). In order to address this concern, we are using datasets with sufficient follow-up duration

and using artificial censoring to evaluate performance under conditions of limited data maturity.

4.1.1 Theoretical Foundation

Mixture cure models were initially introduced by (Boag 1949) and later formalized by (Berkson

and Gage 1952). These models are designed for survival data in which a portion of the population

is considered “cured,” that is, they are no longer at risk of the event of interest. In such cases,

the survival curve typically shows a plateau. Under a mixture cure model, the population survival

function can be expressed as:

S(t) = π + (1− π)Su(t) (1)

Where π represents the cure fraction (proportion of cured individuals), and Su(t) denotes the

survival function for uncured individuals (Peng and Dear 2000).

Parameter estimation in mixture cure models is typically performed using maximum likelihood

estimation (MLE). This approach involves constructing a likelihood function that accounts for both
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the cured and uncured components of the population. For uncensored observations, the contribution

to the likelihood includes the density of the survival distribution among uncured individuals. In

contrast, for censored observations, it includes a combination of the survival probability for uncured

individuals and the cure fraction (Patilea and Keilegom 2017).

The cure fraction parameter captures the long-term survivors who are assumed to no longer be at

risk, while the distribution describes the time-to-event pattern for those who remain susceptible.

By estimating both components jointly, the model can accommodate survival curves that exhibit

plateaus, a feature commonly seen in cancer immunotherapy trials (Othus et al. 2012).

This study uses the flexsurvcure package in R to implement the estimation(Amdahl 2022). The

flexibility of this package allows for fitting a range of parametric forms to the uncured population

while simultaneously modeling the cure fraction.

4.1.2 Parametric Distributions

In this study, we used five different parametric distributions to model the survival of patients who

are not cured. The choice of parametric distributions for the baseline hazard follows established

guidance for survival extrapolation studies, which recommends fitting multiple standard paramet-

ric models to evaluate how results may vary under different modeling assumptions (N. R. Latimer

2013). Standard parametric models are predominantly used in regulatory submissions and health

technology assessments, particularly for mixture cure model applications where parameter inter-

pretation is important. (Grant et al. 2019).

The following distributions were chosen because they are commonly used in cancer survival analysis

and can represent different shapes of survival curves. Choosing the right distribution is important

because it affects how well we can predict long-term survival beyond the time observed in the

clinical data.

• Weibull Distribution: This distribution is among the most commonly used in survival

analysis. It is flexible enough to model increasing or decreasing risk over time, which makes

it a good default option for cure models (NICE Decision Support Unit 2013).

• Log-normal Distribution: This distribution is useful when the risk of the event (e.g., death

or relapse) first increases and then decreases. It is beneficial in cancer studies where treatment

effects take time to appear (NICE Decision Support Unit 2013).

• Log-logistic Distribution: Like the log-normal, this distribution can handle survival curves

that rise and fall. It also has the advantage of being easy to interpret in clinical terms and

is often used in comparisons of extrapolation methods (Gray, Hernandez, and N. Latimer

2020).

• Exponential Distribution: This is the simplest model and assumes that the risk of the

event stays constant over time. Although it is not very flexible, it serves as a baseline and can
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be useful when data are limited or follow-up is short (NICE Decision Support Unit 2013).

• Gompertz Distribution: This model is often used in cancer research because it can repre-

sent risks that increase over time, such as those related to aging. It has been found useful in

cure models as well. (NICE Decision Support Unit 2013).

4.1.3 Flexible Parametric Survival Models (Spline-Based)

In situations where conventional parametric distributions may fail to capture complex hazard dy-

namics, we used spline-based survival models which gives a more flexible representation of the

baseline hazard. The models were fitted using the flexsurvspline function in R, which allows

adjusting both the number of spline knots (typically k = 0–4) and a chosen scale that transforms

the survival function S(t). This single choice of scale determines how the spline models the data

and influences both interpretability and flexibility.

Specifically, the scale parameter defines the transformation g(S(t)) to which the spline is applied

(Jackson 2025). The three available scales are:

• Hazard scale (scale = "hazard"): Models the log cumulative hazard, i.e., g(S(t)) =

log(H(t)) where H(t) = − log(S(t)). When k = 0, the model simplifies to a Weibull dis-

tribution (Jackson 2025).

• Odds scale (scale = "odds"): Models the log cumulative odds of failure, i.e., g(S(t)) =

log
(
F (t)/(1 − F (t))

)
, where F (t) = 1 − S(t). With k = 0, it reduces to the log-logistic

distribution(Jackson 2025).

• Normal (Probit) scale (scale = "normal"): Models the inverse-normal transformation of

survival, i.e., g(S(t)) = −Φ−1(S(t)), where Φ−1(·) is the standard normal inverse cumulative

distribution function. At k = 0, the model simplifies to a log-normal distribution(Jackson

2025).

In each case, using multiple knots (k > 0) allows the model to move from the base parametric

forms, accommodating more complex time-dependent hazard or survival patterns, while maintain-

ing interpretability and statistical rigor.
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Knot Placement

In spline-based models, knots are the points where separate polynomial pieces of the spline are

joined. Between knots, the hazard function is modeled as a smooth curve, and the placement of

knots determines the model’s ability to capture changes in the shape of the hazard or survival

curve. Few knots (e.g., k = 1) produce smoother curves that resemble simpler parametric models,

while more knots allow greater flexibility to capture complex or non-monotonic hazard patterns.

(Royston and Parmar 2002).

In this analysis, we used 1 to 4 internal knots to evaluate whether increased model flexibility im-

proves predictive performance. The knots were positioned at equally spaced quantiles of the log

survival times, with boundary knots placed at the minimum and maximum observed log survival

times, following standard recommendations (Royston and Parmar 2002). This systematic evalua-

tion from simple to complex models allows for assessment of the trade-off between model complexity

and prediction accuracy.

Model Space

For our analysis, 17 models were evaluated, consisting of 5 parametric cure models and 12 spline

configurations. The spline models combined 4 knot choices (k = 1, 2, 3, 4) with three scale types

(hazard, odds, normal), which results in the following configurations:

• k=1: Spline k=1 hazard, Spline k=1 odds, Spline k=1 normal

• k=2: Spline k=2 hazard, Spline k=2 odds, Spline k=2 normal

• k=3: Spline k=3 hazard, Spline k=3 odds, Spline k=3 normal

• k=4: Spline k=4 hazard, Spline k=4 odds, Spline k=4 normal

This comprehensive ”model space” allowed us to compare simpler, interpretable parametric forms

against more flexible spline-based alternatives, and assess how flexibility (via knot count) and choice

of scale impacted model performance across datasets.

4.1.4 Model Selection Criteria

The model selection criteria used in this analysis are:

Akaike Information Criterion (AIC): Defined as AIC = −2ℓ + 2p, where ℓ represents the

log-likelihood and p denotes the number of parameters. The Akaike Information Criterion (AIC)

evaluates model quality by balancing fit against complexity, prioritizing predictive accuracy over

identification of the “true” underlying model (Burnham and Anderson 2002).

Bayesian Information Criterion (BIC): Defined as BIC = −2ℓ+ p log(n), where n represents

the sample size. BIC applies a stronger penalty for model complexity than AIC, particularly in

larger samples, and is designed to identify the “correct” model when it exists among the candidates
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(Burnham and Anderson 2002). The distinction between AIC and BIC reflects different modeling

philosophies: BIC is more conservative and tends to select simpler models, while AIC prioritizes

predictive accuracy and is more tolerant of model complexity (Aho, Derryberry, and Peterson

2014).

Cross-Validation Approach

Cross-validation provides an alternative model selection strategy that estimates out-of-sample pre-

dictive performance (Arlot and Celisse 2010). This study implements k-fold cross-validation with

the following procedure:

1. Data Partitioning: The dataset is randomly divided into k = 10 equal-sized folds

2. Model Training: For each fold i, mixture cure models are fitted using data from the re-

maining k − 1 folds(i.e the training set)

3. Validation: Model performance is evaluated on the held-out fold i using out-of-sample log-

likelihood

4. Per-Fold Information Criteria Calculation: For each model and fold, AIC and BIC are

computed using the validation log-likelihood and the number of estimated parameters.

5. Aggregation Across Folds: The per-fold AIC and BIC values are averaged across all k

folds to obtain cross-validated AIC and BIC scores for each model.

6. Model Selection: The model with the lowest average cross-validated AIC (or BIC) is se-

lected as the better model for extrapolation.

The choice of k = 10 folds balances computational efficiency with reliable performance estimation,

following recommendations for moderate sample sizes (Hastie, Tibshirani, and Friedman 2009).

4.1.5 Experiments

The following steps outline the simulation-based procedure used to evaluate the model performance

across multiple datasets. It describes the code execution sequence, from preparing the data to fitting

models and evaluating outcomes.

1. Sample Size Standardization: A random sample of 250 observations is drawn from each

full dataset to ensure consistent statistical power across simulations. This sample size ap-

proximates that of moderate-sized oncological clinical trials, which offers a realistic setting

for model comparison (Grant et al. 2019).

2. Artificial Censoring: To mimic clinical trial follow-up limitations, we subject each dataset

to artificial censoring at the 50th percentile of its empirical Kaplan–Meier survival distribu-

tion. This approach is consistent with methodological guidance for survival extrapolation

studies, which emphasizes the importance of evaluating model performance under conditions
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of limited data maturity. (Grant et al. 2019). The choice of 50% survival as the censoring

point simulates a scenario of moderate data maturity, balancing the need for sufficient events

with realistic clinical trial follow-up constraints.

3. Replication Strategy: Each analysis (sample-and-censor cycle is repeated 100 times per

dataset to assess method stability and provide uncertainty quantification and ensure robust-

ness. This repetition approach follows established practices in survival method validation

studies and allows for assessment of the consistency of model selection performance across

different random samples (Gray, Hernandez, and N. Latimer 2020).

4. Model Fitting and Selection: In each simulation, both the Parametric and spline-based

cure models are fit to each sample. Two model selection strategies are evaluated:

• Traditional Information Criteria (AIC/BIC): Each model is fit on the entire sam-

ple, and AIC/BIC are computed from that single fit.

• Cross-Validated AIC/BIC: Each sample is split into 10 folds. Models are trained on

nine folds and validated on the one remaining fold. This is repeated across all folds. The

average validation log-likelihood across folds is used to compute cross-validated AIC and

BIC. The model with the best cross-validated score is selected.

4.1.6 Evaluation Metrics

Restricted Mean Survival Time (RMST): RMST is the primary metric for assessing survival

prediction accuracy in this study. RMST provides a robust and clinically interpretable summary

of the survival curve, even when a cured subgroup exists. It integrates the area under the survival

curve up to a specified time horizon, offering a more complete view of expected survival (Royston

and Altman 2013) .

In this experiment, the reference standard RMST is calculated using the Kaplan-Meier estimator

fitted to the complete original dataset. This benchmark represents the target value against which

we compare the extrapolated RMST with the predictions from fitted models.

Absolute RMST Error: For each fitted model, the predicted RMST is computed up to the same

time horizon (maximum observed time in the full dataset), and the absolute errors relative to the

gold standard are calculated. This allows for comparison between models selected using traditional

(AIC/BIC) and cross-validation-based approaches. The emphasis on RMST aligns with its growing

use in health technology assessment, especially in contexts requiring survival extrapolation beyond

clinical trial follow-up. (N. R. Latimer 2013).

Relative RMST Error: In addition to reporting the absolute RMST error, this study computes

the relative RMST error to facilitate interpretation across datasets with different survival scales.

Relative error expresses the deviation from the reference RMST as a proportion, making the model

accuracy more interpretable, especially when RMST values vary substantially between populations.
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It can be defined as the absolute difference between the predicted RMST and the reference RMST

(estimated using the Kaplan–Meier curve from the uncensored dataset), divided by the reference

RMST:

Relative RMST Error (%) =
|Estimated RMST− Reference RMST|

Reference RMST
× 100

This measure supports more balanced comparisons of extrapolation accuracy and is consistent

with best practices in model evaluation, where scale-independent metrics are desirable (Royston

and Parmar, 2013; Latimer, 2013).

By applying this evaluation framework across the repeated simulations the study examines how

model selection strategies, particularly cross-validation versus traditional AIC/BIC, affect the re-

liability of cure fraction estimation under varying degrees of data maturity. The number of times

each distribution was selected under AIC/BIC versus CV was recorded to identify selection trends.

4.1.7 Statistical Implementation

The analyses were conducted in R version 4.5.0 using the following packages:

• flexsurvcure: For mixture cure model fitting

• survival and survminer: Used for non-parametric survival analysis, Kaplan–Meier estima-

tion, and visualization.

• flexsurv: For flexible parametric survival models
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4.2 Inverse Probability of Censoring Weighting

This section answers the secondary research question, which investigates whether inverse probability

of censoring weighting (IPCW) improves the accuracy of survival extrapolation from datasets with

high levels of censoring.

4.2.1 Theoretical foundation

Inverse Probability of Censoring Weighting (IPCW) is a statistical correction technique used to

address the bias introduced by right-censoring in survival data. In right-censored datasets, the

survival time of some individuals is unknown beyond a certain point, either because they were lost

to follow-up or the study ended before they experienced the event of interest. This can distort

model estimation, especially when censoring is substantial.

The idea behind IPCW is to add weights to the observed (uncensored) events to make them more

representative of the full population. Specifically, each event is weighted by the inverse probability

of remaining uncensored up to that time. These probabilities are estimated from the data using

the Kaplan–Meier estimator of the censoring distribution (Hernán and Robins 2020). As a result,

events that occur in time intervals with higher censoring are given more weight, balancing the bias

introduced by the censored observations.

High censoring levels are common in clinical studies with limited follow-up durations. When cen-

soring is unevenly distributed over time, standard survival models may underestimate the survival

probabilities and misrepresent long-term outcomes.

IPCW provides a method to address this issue by accurately reconstructing the survival experience

of censored individuals.

Cure models, and flexible survival models more broadly, are sensitive to such censoring-induced

bias, especially in situations of extrapolation where the model predictions extend beyond the range

of observed events. By applying IPCW, the estimation procedure accounts for the incomplete

information and allows for more accurate curve fitting and RMST estimation.

Implementation in the Experiment:

In this study, IPCW is implemented at the level of each bootstrapped sample. For every iteration,

we derive inverse probability weights from the Kaplan–Meier estimate of the censoring distribu-

tion. These weights are used to compensate for information lost as a result of right-censoring by

reweighting the observed events. Both parametric and spline-based survival models are fitted with

and without IPCW weights, and their extrapolation accuracy is assessed. Performance is evaluated

using the absolute error in restricted mean survival time (RMST), calculated against a reference

standard RMST, obtained from the whole, original dataset with low censoring. This approach

enables a direct comparison of IPCW versus traditional methods in settings characterized by high

levels of censoring.
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4.2.2 Experiments

The analysis follows a structured simulation framework that includes data preparation, controlled

censoring, bootstrap resampling, dual model fitting (with and without IPCW), and evaluation us-

ing RMST error.

Step 1: Dataset Preparation and Selection

The following three individual patient-level datasets were selected for their low censoring rates and

long follow-up periods to allow reliable estimation of long-term survival:

• SEER Pancreatic Cancer Cohort: This dataset was derived from the Surveillance, Epi-

demiology, and End Results (SEER) Program, a cancer registry maintained by the U.S.

National Cancer Institute. It includes N = 35,225 patients diagnosed with pancreatic can-

cer. The observed censoring rate is relatively low (approximately 6.5%), with follow-up times

ranging from 1.0 to 510.0 months. This long-term registry dataset provides a highly ma-

ture survival curve, making it a strong candidate for use as a ”ground truth” reference in

evaluating extrapolation methods.(National Cancer Institute 2023)

• SEER Small-Cell Lung Cancer (SCLC) Cohort: This dataset was also sourced from

the SEER database and it comprises N = 25,855 patients diagnosed with small-cell lung

cancer. Like the pancreatic cohort, it exhibits a low censoring rate (around 7%), providing

a relatively complete survival profile suitable for simulating artificially censored scenarios.

The use of large, population-based SEER cohorts allows the modeling of real-world survival

patterns in oncology.(National Cancer Institute 2023)

• NSCLC Immunotherapy Trial Dataset: This dataset was reconstructed from the Ka-

plan–Meier overall survival curve published in (Peters et al. 2025), based on pooled patient-

level data from the CheckMate 227 and CheckMate 9LA trials. It includes N = 322 patients

with metastatic non-small cell lung cancer (NSCLC) and low PD-L1 expression, treated with

immune checkpoint inhibitors. The dataset exhibits a low censoring rate (21.7%) and follow-

up ranging from 0.6 to 85.7 months.

Each dataset goes through standard cleaning procedures, including the removal of missing or zero

follow-up times. Variables were standardized to time (survival duration) and status (1 = event,

0 = censored). The immunotherapy dataset was handled with the possibility of a cured patient

subgroup in mind. The low censoring in these datasets supports the generation of credible reference

benchmarks before artificial censoring.

Step 2: Reference RMST Calculation

For each original dataset, we estimate the RMST using the Kaplan-Meier method up to the 90th per-

centile of observed survival times. These RMST values served as reference standards for evaluating
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extrapolation accuracy. This approach follows recommendations for setting clinically meaningful

follow-up horizons (Royston and Altman 2013).

Step 3: Increasing Censoring in the Original Datasets

To simulate higher censoring scenarios, each dataset was modified to produce three new versions

with target censoring rates of approximately 40%, 60%, and 80%. The censoring cutoff was defined

using the Kaplan–Meier survival curve of the original dataset. Observations beyond the cutoff time

were administratively censored, and their status was updated accordingly. This method provides

consistent censoring conditions for simulation across all datasets (Grant et al. 2019).

Step 4: Bootstrap Sampling and IPCW Weighting

For each version of the dataset with increased censoring, 100 bootstrap samples (n = 300, with

replacement) were drawn. IPCW weights were computed for each sample using the Kaplan–Meier

estimator of the censoring distribution. The weights for the uncensored events were set as the

inverse of the probability of remaining uncensored just before the event time (Robins, Rotnitzky,

and Zhao 1994). Censored observations received zero weight. To prevent instability from large

weights, a 95th percentile cap was applied (Cole and Hernán 2004).

Step 5: Survival Model Fitting

Each bootstrap sample was analyzed using both unweighted and IPCW-weighted methods. The

survival models used included:

• Weibull and log-normal accelerated failure time (AFT) models (survreg),

• Weibull proportional hazards models (flexsurvreg),

• Royston–Parmar spline models (flexsurvspline),

• Weibull mixture cure models (flexsurvcure) for the immunotherapy dataset.

The spline models were initially configured with one or two internal knots, and when convergence

failed, simpler settings or alternate scale functions (e.g., hazard, odds, or normal) were used. The

model configuration and convergence outcome were recorded. This model set supports the evalua-

tion of IPCW’s effect across standard and flexible modeling approaches.

Spline Model Convergence Strategy: In this experiment, Spline models were initially fit with

one or two internal knots. When convergence failed, a fallback strategy was triggered, sequen-

tially trying simpler configurations and alternate scale types (hazard, odds, normal) until a model

converged. This callback approach ensured flexible models were included in the IPCW evaluation

while maintaining computational stability. This design supports a robust assessment of IPCW’s

performance across both traditional parametric and flexible spline-based modeling frameworks, in

line with good practices in survival analysis (Gray, Hernandez, and N. Latimer 2020)(Gray et al.,

2020).
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Step 6: RMST and Error Calculation

The RMST for each fitted model was estimated using the same time horizon defined in Step 2. For

supported models, RMST was extracted using summary functions; for others, numerical integration

was used. The absolute RMST error was calculated as:

Error = |RMSTmodel − RMSTreference| (2)

The improvement from IPCW was defined as the reduction in absolute error compared to the

traditional model:

Improvement = ErrorTraditional − ErrorIPCW (3)

Positive values indicated that IPCW led to more accurate extrapolation.

Step 7: Aggregating Simulation Results

For each iteration, the model results were stored, including RMST estimates, errors, AIC val-

ues, convergence status, and IPCW weight statistics. These results were aggregated by dataset,

censoring level, and model type.

4.2.3 Statistical Implementation

All analyses were conducted in R (version 4.5.0). Among the primary packages utilized were:

• survival (for basic survival functions like survreg and Surv objects),

• flexsurv (for flexible parametric survival models including flexsurvspline and flexsurvreg),

• flexsurvcure (for fitting mixture and non-mixture cure models).
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5 Results

5.1 Model Selection in Cure Fraction Models using k-fold Cross Validation

This section presents the findings from the primary research question, which is an investigation

into whether k-fold cross-validation (CV) enhances model selection for survival extrapolation, with

a particular focus on its performance with mixture cure models in datasets potentially exhibiting

long-term survival plateaus.

5.1.1 RMST Interpretation

In order to understand the comparative analyses better, we first clarify our primary outcome

measure, the Restricted Mean Survival Time (RMST). The RMST up to a specific time point

τ (tau) quantifies the average time a patient remains alive (or event-free) within that defined

observation window from time 0 to τ . For example, if time is measured in months and we calculate

RMST up to τ = 60 months, an RMST value of 45 months signifies that, on average, patients in the

group survived for 45 months out of that initial 60 month period. This metric provides an easily

interpretable summary of the survival experience over a chosen, clinically relevant time frame and

is calculated as the area under the survival curve up to τ .

We compared model selection guided by traditional information criteria (AIC and BIC) with a CV-

based approach, evaluating performance by absolute error in RMST and relative RMST relative to

a reference standard RMST from minimally censored data.

5.1.2 Absolute RMST Error

Table 1: Comparison of Model Selection Methods on RMST Absolute Error

Dataset Reference RMST AIC-based Selection BIC-based Selection

Traditional CV Improvement Traditional CV Improvement

OS Ipilimumab 25.88 4.08 4.05 0.8 3.54 3.73 –5.4

OS AntiPD1 35.46 1.81 1.82 –0.2 1.77 1.79 –0.7

OS IpiNivo 35.90 1.47 1.49 –1.4 1.45 1.47 –1.4

NSCLC Immunotherapy 29.92 5.22 4.97 4.9 1.16 2.65 –128.1

NSCLC Chemotherapy 19.30 2.88 2.91 –0.8 4.23 3.70 12.6

SEER Breast 100.39 38.28 37.61 1.8 48.38 38.64 20.1

Ovarian 1374.49 664.47 652.91 1.7 745.22 687.28 7.8

GBSG 1659.74 47.58 47.95 –0.8 48.21 48.05 0.3

Table 1 presents the mean absolute RMST errors (in months) for models selected via traditional

(AIC/BIC) and cross-validated (CV) information criteria. The ‘Improvement (%)’ column indicates

the percentage reduction in absolute RMST error when using CV. Positive values favor CV.

AIC-based Selection: When using AIC as the underlying criterion, CV-guided selection led to a

reduction in absolute RMST error in four of the eight datasets: OS Ipilimumab (0.8% improvement),

NSCLC Immunotherapy (4.9% improvement), SEER Breast (1.8% improvement), and Ovarian
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(1.7% improvement). For the remaining datasets, traditional AIC performed marginally better or

equally.

BIC-based Selection: When comparing CV BIC to traditional BIC, CV resulted in lower ab-

solute RMST error in three datasets: NSCLC Chemotherapy (12.6% improvement), SEER Breast

(20.1% improvement), and Ovarian (7.8% improvement). However, for OS Ipilimumab and notably

NSCLC Immunotherapy (−128.1% improvement, meaning traditional BIC was substantially bet-

ter), traditional BIC selection led to more accurate RMST estimates. Performance was similar for

the other datasets.

Overall, the impact of CV on reducing absolute RMST error was inconsistent; while some improve-

ments were noted, CV did not universally outperform traditional information criteria in this regard.

Figure 2 presents the comparative performance.

Figure 2: Cross-validation versus traditional model selection improvement analysis. The lol-

lipop chart displays the percentage improvement in RMST prediction accuracy when using cross-

validation compared to traditional AIC and BIC selection methods. Positive values indicate su-

perior CV performance, while negative values favor traditional approaches. The mixed pattern of

improvements across datasets demonstrates the context-dependent nature of cross-validation ben-

efits in survival model selection.
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Table 2: Relative RMST Prediction Error (%) by Model Selection Method

Dataset AIC (Trad) AIC (CV) BIC (Trad) BIC (CV)

OS Ipilimumab 15.8 15.6 13.7 14.4

OS AntiPD1 5.1 5.1 5.0 5.0

OS IpiNivo 4.1 4.2 4.0 4.1

NSCLC Immunotherapy 17.5 16.6 3.9 8.9

NSCLC Chemotherapy 14.9 15.1 21.9 19.2

SEER Breast 38.1 37.5 48.2 38.5

Ovarian 48.3 47.5 54.2 50.0

GBSG 2.9 2.9 2.9 2.9

5.1.3 Relative RMST Error:

The relative RMST error is a performance measure that adjusts for differences in time scale, making

it possible to compare results across diseases with varying follow-up periods. Table 2 shows the

relative RMST prediction errors for each dataset.

The lowest relative errors (under 5%) were observed in the OS AntiPD1 and OS IpiNivo datasets,

suggesting that the predicted RMSTs closely matched the reference values. By contrast, the SEER

Breast and Ovarian datasets showed high relative errors ( 35%), reflecting the greater difficulty

of extrapolating survival over long follow-up periods. In most datasets, cross-validation (CV)

improved or maintained prediction accuracy; however, it occasionally led to overfitting, as seen in

the NSCLC Immunotherapy data under BIC selection, where relative error increased notably from

3.9% to 8.9%. The relative error analysis presented in Figure 3 demonstrates significant variation

in model prediction accuracy across the eight cancer datasets.

AIC-based Selection: CV-guided AIC selection resulted in lower relative RMST error compared

to traditional AIC in OS Ipilimumab (15.6% vs. 15.8%), NSCLC Immunotherapy (16.6% vs.

17.5%), SEER Breast (37.5% vs. 38.1%), and Ovarian (47.5% vs. 48.3%). In other datasets,

performance was similar or marginally favored traditional AIC.

BIC-based Selection: For BIC-based selection, CV led to lower relative error in NSCLC Chemother-

apy (19.2% vs. 21.9%) and SEER Breast (38.5% vs. 48.2%), and Ovarian (50.0% vs. 54.2%).

However, traditional BIC produced substantially lower relative error for NSCLC Immunotherapy

(3.9% vs. 8.9%) and slightly better or similar performance in the remaining datasets.

Overall Observation: The relative error perspective confirms the mixed impact of CV. For

example, while CV-BIC showed a large percentage improvement in absolute error for SEER Breast,

its relative error (38.5%) was still substantial, though better than traditional BIC (48.2%). For

NSCLC Immunotherapy, traditional BIC achieved a very low relative error of 3.9%, which was

considerably better than CV-BIC (8.9%).

For the NSCLC Immunotherapy dataset, cross-validation helped AIC slightly but hurt BIC. The

best prediction came from the traditional BIC-selected model, which was off by less than 4%

compared to the actual average survival estimate. This tells us that sometimes more straightforward
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selection rules (like traditional BIC) can outperform more complex strategies like CV, depending

on the dataset.

Figure 3: Relative RMST prediction error comparison across datasets and model selection methods.

The grouped bar chart displays the relative error percentages for traditional AIC, cross-validation

AIC, traditional BIC, and cross-validation BIC selection approaches across all eight cancer datasets.

Lower values indicate higher prediction accuracy.

Model Selection Patterns

To understand which types of models were being selected, we analyzed the frequency of model

selection across simulations for each dataset.

Table 3: Model Selection Patterns: Most Frequently Selected Models (n = 100)

Dataset Traditional Model Frequency (%) CV Model Frequency (%)

OS Ipilimumab Spline k=1 normal 69 Spline k=1 normal 71

OS AntiPD1 Spline k=4 hazard 35 Spline k=4 hazard 35

OS IpiNivo Spline k=1 normal 57 Spline k=1 normal 61

NSCLC Immunotherapy Spline k=4 odds 30 Spline k=4 odds 37

NSCLC Chemotherapy Spline k=3 normal 53 Spline k=3 normal 56

SEER Breast Spline k=4 normal 31 Spline k=2 normal 29

Ovarian Spline k=2 hazard 35 Spline k=2 hazard 31

GBSG Spline k=1 hazard 37 Spline k=1 hazard 37
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• A notable observation was the consistent preference for flexible spline models by traditional

(AIC/BIC) and CV-guided selection methods across all eight datasets. As shown in Table 3,

spline models were the most frequently selected model type in 100% of datasets for both

approaches.

• Notably, despite the inclusion of mixture cure models in the candidate set and the presence

of datasets where long-term survival plateaus might be expected (e.g., OS Ipilimumab, OS

AntiPD1, OS IpiNivo, NSCLC Immunotherapy)—mixture cure models were not selected as

the most frequent best-fitting model by either traditional criteria or CV in any of the eight

datasets.

• There was also a high level of agreement between the model families chosen by traditional and

CV-guided methods. In all datasets, both approaches selected spline-based models. In many

cases, the same spline configuration was selected (e.g., Spline k=1 normal in OS Ipilimumab

and OS IpiNivo, and Spline k=1 hazard in GBSG), indicating strong consistency in model

preference.
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5.2 RMST estimation with IPCW

This section presents the findings from the secondary research question, which investigates how

IPCW improves long-term survival extrapolation when working with highly censored data. The

model accuracy was evaluated by comparing estimated RMST values to a reference RMST derived

from the complete, minimally censored datasets.

Overall Effectiveness of IPCW

On average, IPCW reduced RMST error by 1.062 units. When interpreted in time units, it corre-

sponds to an average improvement of approximately 1.06 months in RMST prediction compared

to traditional (unweighted) models. IPCW resulted in improved extrapolation accuracy in 91.0%

of all comparisons, demonstrating a consistent benefit across a wide range of settings.

Artificial Censoring and Achieved Censoring Rates

To simulate higher censoring scenarios, we modified the dataset to produce three new versions

with target censoring rates of approximately 40%, 60%, and 80%. Observations beyond the cutoff

time—determined from the Kaplan–Meier survival curve of the original dataset—were adminis-

tratively censored, and their status was updated accordingly, as described in the Methods section

(Step 3 of Section 4.2.2) (Grant et al. 2019).

Across all datasets, the achieved censoring rates were generally close to the target values, with

mean deviations ranging from 1% to 3.4% and a maximum deviation of 8% (Table 4). The highest

deviations were observed in the 60% SEER Pancreas and 80% SEER SCLC datasets.

Although exact target censoring levels were not always achieved, deviations were minor and the

overall pattern of censoring was consistent across datasets, thus preserving the validity of subsequent

analyses.

Table 4: Achieved censoring rates across datasets.

Master Dataset Target % Achieved % Error %

SEER Pancreas Censored 40pct 40 38.5 1.5
SEER Pancreas Censored 60pct 60 52.0 8.0
SEER Pancreas Censored 80pct 80 77.5 2.5
NSCLC Immunotherapy Censored 40pct 40 38.8 1.2
NSCLC Immunotherapy Censored 60pct 60 59.0 1.0
NSCLC Immunotherapy Censored 80pct 80 79.5 0.5
SEER SCLC Censored 40pct 40 37.6 2.4
SEER SCLC Censored 60pct 60 58.7 1.3
SEER SCLC Censored 80pct 80 74.6 5.4

Effect at different Censoring levels

We further analyzed IPCW performance across varying levels of artificial censoring to assess how

the benefit changes with censoring intensity:
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• 40% Censoring: IPCW reduced RMST error by 0.342 units, equivalent to approximately

.34 months. It was beneficial in 6% of comparisons.

• 60% Censoring: The largest benefit was observed at this level, with an average RMST error

reduction of 2.02 units or 2.02 months, improving accuracy in 91.6% of comparisons.

• 80% Censoring: Even with very high censoring, IPCW improved RMST accuracy by 0.933

units (about .93 months in 84.2% of cases.

These findings indicate that IPCW is especially helpful in moderate to high censoring scenarios,

where traditional models often lack sufficient event information to extrapolate survival accurately.

Performance by Censoring Level

Table 5 summarizes IPCW’s effectiveness across different artificial censoring scenarios. The greatest

improvement in RMST accuracy occurred at 60% censoring.

Table 5: Performance by Censoring Level

Target Censoring (%) Number of Comparisons Mean RMST Improvement Beneficial Comparisons (%)

40 1,000 0.342 units 96.0

60 856 2.020 units 91.6

80 800 0.933 units 84.2

These results indicate that IPCW is helpful across a range of high censoring levels, with powerful

benefits observed when approximately 60% of patient data is censored. Notably, the performance

drops slightly at 80% censoring, possibly due to fewer available events and increased uncertainty.

This can be viewed in the Figure 4 below.
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Figure 4: IPCW performance across different censoring levels. The dual-axis plot displays mean

RMST improvement (blue bars) and percentage of beneficial comparisons (red line with points) for

target censoring levels of 40%, 60%, and 80%. Peak IPCW effectiveness occurs at 60% censoring

with a mean improvement of 2.02 units and 91.6% beneficial cases. Performance declines at higher

censoring levels (80%) where mean improvement drops to 0.93 units, though 84.2% of comparisons

still show benefits. The consistent high success rates across all censoring levels (84-96%) demon-

strate the effectiveness of IPCW adjustment.

The number of comparisons differs slightly across censoring levels due to occasional model con-

vergence failures. These failures were more frequent at higher censoring levels, where the limited

number of observed events made it difficult for some complex models (e.g., splines or cure mod-

els) to estimate parameters reliably. Only successfully converged models were included in each

evaluation.

These results indicate that IPCW is helpful across a range of high censoring levels, with powerful

benefits observed when approximately 60% of patient data is censored. Notably, the performance

drops slightly at 80% censoring, possibly due to fewer available events and increased uncertainty.

Performance by Survival Model Type

Table 6 shows IPCW’s impact across different survival model types. RMST improvements are

reported in both raw units and interpreted as approximate time in months.

IPCW demonstrated the most significant benefit when applied to cure models and parametric

Weibull models. Log-normal models exhibited more variability and lower overall benefit, likely

due to their heavier-tailed survival shape, which may interact less predictably with the weighting
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Table 6: Performance by Model Type

Model Type Number of Comparisons Mean RMST Improvement (units) Success Rate (%) Best Worst

Cure Weibull 300 1.590 99.0 7.39 -0.52

Spline 556 1.300 97.3 7.76 -0.52

Weibull 900 1.290 99.4 4.36 -2.35

Log-normal 900 0.512 76.1 5.43 -4.28

scheme. The model-specific IPCW performance illustrated in Figure 5 reveals the various respon-

siveness to censoring adjustment across survival model types.

Figure 5: IPCW effectiveness by model type showing mean RMST improvement across all censor-

ing levels. The bar chart displays the average improvement in RMST prediction accuracy achieved

through inverse probability of censoring weighting for different survival model types. Cure Weibull

models demonstrated the highest mean improvement (1.59 units), followed by Spline models (1.30

units) and standard Weibull models (1.29 units). Log-normal models showed the lowest improve-

ment (0.51 units) but benefited from IPCW adjustment. Sample sizes (n) represent the total

number of model comparisons across all censoring scenarios. Results demonstrate that IPCW pro-

vides consistent benefits across diverse model types, with parametric cure models and flexible spline

approaches showing the greatest responsiveness to censoring adjustment.

The number of comparisons varies by model type because not all models were applicable to every

dataset. For instance, cure models were only fitted to the immunotherapy dataset. Standard

parametric and spline models were applied across all datasets.
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Dataset Level Insights

To better understand IPCW’s impact, we examined results by dataset. Full detailed results are

included in Appendix 7, stratified by dataset, model type, and censoring level. Below are highlights

for each dataset:

• NSCLC Immunotherapy (Clinical Trial): IPCW consistently improved RMST accuracy

across all model types and censoring levels. For instance, the Weibull cure model at 60%

censoring showed a mean RMST improvement of 3.73 units ( 3.73 months), with a 95% CI of

[0.46, 6.62]. Similarly, spline models at 60% censoring improved by 3.86 units ( 3.86 months),

95% CI: [0.49, 6.50].

• SEER Pancreatic Cancer (Registry): This real-world dataset showed significant IPCW

benefit for the Weibull model, especially at 80% censoring (mean improvement = 3.23 units;

95% CI: [0.01, 4.20]). Spline models were moderately helpful (e.g., 0.70 units at 40% cen-

soring), although some confidence intervals included zero, suggesting potential uncertainty.

Log-normal models showed mixed results, with some scenarios like 80% censoring resulting

in worse performance (mean improvement = -2.14 units; 95% CI: [-3.44, 0.29]).

• SEER Small-Cell Lung Cancer (SCLC): IPCW was particularly beneficial at higher

censoring levels. For the Weibull model at 80% censoring, the RMST improvement averaged

2.86 units ( 2.86 months), 95% CI: [1.91, 3.58]. Spline models also showed benefit, such as

at 60% censoring (mean improvement = 2.34 units; 95% CI: [-0.02, 3.80]). However, spline

model convergence failures were common at 80% censoring, limiting their evaluation under

extreme censoring conditions.
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6 Discussion and Interpretation of the results

6.1 Summary of findings

This study explored advanced survival modeling techniques for improving models’ selection and

extrapolation accuracy in the context of health economic evaluations, particularly when faced with

complex data characteristics such as long-term survival plateaus or high levels of censoring. Two

key research questions guided the investigation.

The first research question aimed to determine whether k-fold cross-validation(CV) could improve

model selection and long-term survival extrapolation in mixture cure models, especially for datasets

with survival plateaus. The analysis revealed that CV led to marginal improvements in RMST

prediction accuracy compared to traditional information criteria (AIC and BIC), though the benefit

was not uniform across all datasets. Specifically, cross-validation based on AIC selected a more

accurate model (in terms of RMST error) in 4 out of 8 datasets, while cross-validation based on

BIC showed improved accuracy in 3 out of 8 datasets. This indicates a mixed but meaningful

impact, whereby in some settings, CV helped identify models with better generalizability, while in

others, traditional methods were equally effective or slightly better.

An important pattern observed across all eight datasets was the dominant selection of spline-based

models by both traditional criteria and CV approaches. In every case, flexible splines emerged as

the most frequently chosen model type, reflecting their adaptability in capturing complex hazard

shapes and long-term survival behavior. However, despite the inclusion of mixture cure models

in the candidate model set and the presence of datasets where long-term survival plateaus were

plausible, none of the selection methods identified cure models as the best fit in any dataset.

The second research question focused on the effect of inverse probability of censoring weighting

(IPCW) on extrapolation accuracy when datasets are highly censored. Simulation experiments

conducted on three datasets (two population registries and one clinical trial) demonstrated that

IPCW consistently improved RMST accuracy, particularly under moderate to high censoring con-

ditions. On average, IPCW improved extrapolation by approximately 1.06 RMST units and was

beneficial in over 91% of model comparisons. The greatest improvements were observed at 60%

censoring, with the Weibull and spline models benefiting the most. Cure models, where applicable,

also benefited from IPCW adjustment.

In general, the findings indicate that while traditional model selection techniques remain robust,

cross-validation and IPCW offer tangible improvements in specific contexts — particularly when

survival data is incomplete or contains a mixture of cured and uncured patients.
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6.2 Implications of Findings

The results of this study has several implications for researchers and practitioners involved in

survival modeling, particularly in informing health economic evaluations.

First, the mixed performance of cross-validation-based selection methods highlights the impor-

tance of context when applying model selection techniques. This suggests that cross-validation

may provide advantages over traditional criteria in certain settings. The assumption that more so-

phisticated selection methods always outperform traditional approaches is challenged in this study,

highlighting the context-dependent nature of model selection performance.

Secondly, the consistent selection of flexible spline-based models by CV and traditional methods

across the datasets suggests a preference for models that offer sufficient flexibility to capture varying

hazard shapes. This suggests that, in the absence of strong parametric assumptions, splines serve

as a reliable default modeling strategy.

Furthermore, the fact that cure models were not selected, even in datasets suggesting long-term

survival plateaus based on biological or clinical evidence, demsontrates a limitation in current model

selection techniques. It suggests that standard information criteria and cross-validation approaches

may not be suited for cure model detection. This points to a need for alternative selection criteria

specifically designed for cure models.

IPCW and Extrapolation: The IPCW analysis demonstrated that weighting to adjust for

censoring can greatly improve extrapolation accuracy across a range of models and datasets. On

average, IPCW improved RMST extrapolation by approximately 1.06 units (interpreted as months),

and in over 91% of model comparisons, it outperformed unweighted approaches. This reinforces

the idea that high censoring rates, common in oncology and real-world datasets, can meaningfully

distort survival estimates if not appropriately addressed.

IPCW demonstrated the most benefit at moderate-to-high censoring levels (e.g., 60%), with a slight

attenuation at 80%. This might indicate a threshold beyond which the data becomes so sparse that

even IPCW, despite weight stabilization, struggles to compensate fully. It was especially effective

for cure andWeibull models, which are widely used in health technology assessments, which suggests

that IPCW can strengthen their utility in these evaluations.

This has important implications for analysts working with immature or early-phase data, as it

provides a statistically grounded method to mitigate information loss due to censoring.
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6.3 Possible Drawbacks of the Used Methods

While the study outlines a useful framework for survival model selection and extrapolation under

censoring, a number of limitations should be considered:

1. Lack of covariate adjustment: The models in this study were fitted without covariates, in

order to focus on extrapolation performance and ensure comparability across datasets. However, in

real-world settings, covariates such as age, stage, and treatment arm are often critical for accurate

survival prediction.

2. Use of low-censoring data as reference: The reference RMST values were calculated

using the original datasets, which had relatively low levels of censoring (typically under 25%).

Though this provided a practical benchmark, it is not equivalent to having fully observed survival

times. The presence of even moderate censoring in the reference data introduces some degree of

approximation in evaluating extrapolation accuracy.

3. Nature of Artificial Censoring: The artificial censoring applied was not based on covariates.

As a result, the performance of IPCW might differ in scenarios with significant covariate-dependent

informative censoring. The covariate-free IPCW application primarily used in this study tested

adjustment for the amount of censoring.

4. Digitization of clinical trial KM curves: Due to the limited availability of individual

patient data (IPD) from immunotherapy trials, some of the datasets were reconstructed from

published Kaplan–Meier survival curves. Although digitization methods are widely used, they

may introduce a few inaccuracies in event times or censoring status. Such errors could affect both

model fitting and the evaluation of extrapolation accuracy.

6.4 Future research

1. Explore cure model identification methods: Future research could focus on improving

the detection and validation of cure models within survival datasets. This includes developing

advanced strategies for identifying when a cure model is appropriate, especially in complex or noisy

datasets.

2. Use of covariates in survival and censoring models: All models in this study were

univariate to isolate extrapolation behavior, but future studies can include patient-level covari-

ates. This may enable personalized survival predictions, especially important in real world clinical

settings.

3. Improved ground truth estimation in the presence of censoring: Although the ground

truth in this study used low-censoring datasets as a proxy for the reference survival distribution,
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future research could leverage fully observed synthetic datasets or apply multiple imputation strate-

gies to more rigorously assess extrapolation accuracy when no gold standard is available.

5. Extension to diverse clinical datasets: The study can be extended to include a wider range

of diseases datasets, treatment approaches, and trial structures. This will increase the robustness

of the findings and broaden their application in health economic evaluations.

7 Ethical Thinking, Societal Relevance, and Stakeholder Aware-

ness

The findings and methodological advancements presented in this thesis are intended to support

survival model selection in health economic evaluations, particularly in the context of oncology and

immunotherapy. As such, their use may inform decisions that have direct implications for patient

care, treatment funding, and public health policy.

Transparency and Reproducibility: Given the potential real-world impact of this work, the

models, code, and analytical decisions remain fully transparent and reproducible. All survival

analyses in this study were implemented using open-source statistical software (R) and are supported

by well documented code. The data used were obtained from publicly available datasets, including

registry-based cohorts and digitized clinical trial data, ensuring transparency.

Fairness and Interpretation: The results from the experiments were interpreted fairly and

responsibly, particularly in cases where model selection showed instability. Performance metrics

such as RMST were chosen for their clinical relevance and interpretability, and results were reported

in a way that acknowledges both their potential benefits and limitations.

With regards to Data Privacy and Compliance, all datasets used in this study were either pub-

licly available or reconstructed from published Kaplan-Meier curves. No personally identifiable

information was accessed in the analysis.

Societal Relevance: This research aligns with the goals of improving health outcomes and cost-

effectiveness in healthcare decision making. These have an overall effect on public health funding,

reimbursement decisions, and access to care.

In terms of stakeholder awareness, the research holds relevance for a range of groups including

HTA (Health Technology Assessment) bodies, regulatory agencies, clinical researchers, insurance

companies and pharmaceutical companies. For HTA agencies, the insights discovered may support

the refinement of survival modeling guidelines. For clinicians and trial designers, the findings stress

the importance of considering data maturity when planning follow-up durations or interpreting

interim results.
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8 Conclusion

This study investigated whether advanced statistical techniques, specifically k-fold cross-validation

and inverse probability of censoring weighting (IPCW), could enhance survival model selection and

improve long-term survival extrapolation accuracy in health economic evaluations.

We used a comprehensive simulation framework across eight diverse cancer datasets to assess the

performance of cross-validation-enhanced model selection compared to traditional AIC and BIC

criteria. Our candidate models included parametric distributions, flexible splines, and mixture cure

models. The results indicated that cross-validation yielded mixed benefits, with improvements seen

in approximately half of the tested datasets. When improvements did occur, they were meaningful

but modest, suggesting that cross-validation provides selective rather than universal advantages

over established selection methods.

Although mixture cure models were incorporated into the analysis and several datasets exhibited

distinct survival plateaus, flexible spline models were consistently chosen across all datasets and

selection approaches. This was a surprising discovery, which may indicate that conventional cure

model formulations might not fully capture the complexity of real-world survival patterns, or that

existing model selection criteria may be insufficient to identify situations where cure models are

most appropriate.

The evaluation of inverse probability of censoring weighting yielded more encouraging results.

IPCW improved RMST-based extrapolation accuracy in over 90% of comparisons, particularly

when applied to datasets with moderate to high censoring levels. The technique showed peak

effectiveness at approximately 60% censoring and demonstrated particular strength with Weibull

and spline-based models. These consistent improvements across diverse scenarios suggest that

IPCW represents a valuable and practical enhancement to standard survival modeling approaches.

Several study limitations were observed. Our reference RMST values were derived from datasets

with existing censoring rather than completely uncensored data, potentially affecting the accuracy

of our benchmarks. In addition, the use of digitized Kaplan-Meier curves for some immunotherapy

datasets may have introduced measurement imprecision.

Despite these limitations, this work provides practical guidance for researchers and decision-makers

in health technology assessment. Cross-validation appears most valuable in specific contexts rather

than as a universal replacement for traditional methods, while IPCW shows promise for routine

implementation in analyses involving heavy censoring.

Future research should focus on developing cure-specific model selection criteria that can better

identify when mixture cure models are appropriate, and investigating alternative cure model for-

mulations that may better capture the survival patterns observed in cancer datasets.

The findings suggest that while traditional survival modeling approaches remain robust, advanced

techniques can provide meaningful improvements when appropriately applied.
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A Appendix

A.1 Detailed RMST Analysis by Model and Censoring

Table 7 below presents a detailed, stratified comparison of restricted mean survival time (RMST)

estimates—both traditional and IPCW-adjusted—across datasets (NSCLC Immunotherapy, SEER

Pancreas, SCLC), varying censoring percentages (40%, 60%, 80%), and model types (Cure Weibull,

Log-normal, Spline, Weibull). The “Improvement” column shows the absolute RMST gain con-

tributed by IPCW, with associated 95% confidence intervals.

Table 7: Aggregated Results by Dataset, Censoring Level, and Model Type

Dataset Model Censoring (%) RMST Traditional RMST IPCW Improvement (95% CI)

4*NSCLC Immunotherapy Cure Weibull 40 31.6 31.1 0.44 (0.08, 0.86)

Log-normal 40 31.0 30.5 0.39 (−0.31, 0.84)

Spline 40 31.9 31.5 0.42 (0.07, 0.83)

Weibull 40 39.1 38.8 0.31 (0.11, 0.59)

Cure Weibull 60 41.3 37.6 3.73 (0.46, 6.62)

Log-normal 60 36.6 33.9 2.70 (0.52, 4.50)

Spline 60 39.7 35.8 3.86 (0.49, 6.50)

Weibull 60 43.3 41.4 1.90 (0.35, 3.17)

Cure Weibull 80 53.8 53.2 0.60 (0.08, 3.89)

Log-normal 80 47.4 46.7 0.65 (0.11, 3.54)

Spline 80 51.2 50.6 0.68 (0.10, 4.25)

Weibull 80 51.3 50.9 0.45 (0.07, 2.41)

3*SEER Pancreas Log-normal 40 5.81 5.50 0.26 (−0.14, 0.60)

Spline 40 6.20 5.32 0.70 (−0.35, 1.34)

Weibull 40 8.55 8.25 0.30 (0.14, 0.50)

Log-normal 60 5.68 4.29 −0.36 (−1.27, 1.42)

Weibull 60 8.81 7.76 1.05 (0.78, 1.36)

Log-normal 80 5.80 1.98 −2.14 (−3.44, 0.29)

Weibull 80 9.98 6.02 3.23 (0.01, 4.20)

3*SEER SCLC Log-normal 40 9.93 9.77 0.16 (−0.05, 0.37)

Spline 40 9.76 9.48 0.28 (0.04, 0.58)

Weibull 40 12.40 12.30 0.16 (0.05, 0.29)

Log-normal 60 11.10 9.10 1.79 (0.31, 2.52)

Spline 60 11.60 8.29 2.34 (−0.02, 3.80)

Weibull 60 13.40 12.10 1.33 (0.96, 1.81)

Log-normal 80 11.60 6.81 1.16 (−3.40, 4.45)

Weibull 80 14.20 11.40 2.86 (1.91, 3.58)

A.2 Project Code Repository

The code used for the analyses in this dissertation is publicly available on GitHub at:

https://github.com/Fidelsia/Masters-Theses-analysis-code

The repository contains two main folders corresponding to the two research questions:

• Cure model Analysis: Contains the scripts and data, related to the primary research

question, which focuses on model selection with cross validation.

• IPCW Analysis: Contains the scripts and data related to the secondary research question,

which focuses on inverse probability of censoring weighting (IPCW).
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