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Abstract

Given the role of phytoplankton in marine ecosystems, it is crucial to be able to

accurately estimate their population both in their natural habitat and in experimental

situations where the effects of different agents or conditions would want to be studied.

Part of this process is to successfully identify the correct species and strain to which a

phytoplankton cell cultivated in organic multi-cultures, i.e., different strains or species

grown together, belongs. In this study, we intended to allocate the total population es-

timates of organic multi-strain cultures to each individual strain present in the culture.

This was done using the light-intercepting capabilities of phytoplankton cells measured

using a cytometer as primary predictors. Several base models were trained on syn-

thetic multi-cultures, i.e., concatenated mono-cultures, using supervised learning; and

the results of these models were further combined in various strategies as a form of

ensembling. The resulting models were shown to be more accurate in distinguishing

strains of different species than strains of the same species. Although differentiating

strains of species V (2375 and 2524) and strains of species VIII (2383, 2434) require

most cytometer outputs primarily FSC, and RED.R respectively, when differentiating

strains of different species, the models mainly depended on YEL.B. Although the mod-

els were able to accurately assign phytoplankton cells to their true strains, with an

accuracy ranging from 92.81% to 95.78%, the models presented need to be used with

caution on organic multi-culture data given that they differ from synthetic multi-culture

data, primarily for lack of inter-strain or inter-species interactions.

1 Introduction

Phytoplankton are photosynthetic marine microorganisms capable of capturing light en-

ergy that thrive in open waters such as lakes, rivers and oceans, and are displaced passively

through water currents or actively using their locomotory organs known as flagella [1] [2].

Picoplankton is a kind of phytoplankton whose size ranges from 0.2 to 2µm. Although con-

sidered one of the smallest phytoplankton due to its size, the picoplanktonic genera of Syne-

chococcus, with Prochlorococcus and Synechocystis, comprises 30-50% of phytoplankton

biomass [2]. Furthermore, it has been shown that, along with nano- and micro-planktons,

they maintain the primary productivity in the oceans [2]. In particular, cyanobacteria

represent approximately 10% of the total primary production on a global scale for the

period 1998–2011 [3]. Therefore, it is important to study and understand how these mi-

croorganisms thrive, grow, and interact with their environment. And part of this involves

successfully identifying the exact species or strain of phytoplankton in order to correctly

attribute a phenomenon or a process to the right species or strain of phytoplankton.

Several techniques and methodologies have already been developed in order to perform such

tasks. One of the most basic is through microscopic identification. However, because this

is an expensive and time-consuming process, not to mention limited to only phytoplank-
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ton larger than 8-10µm [4], this approach is inefficient. An alternative faster approach is

pigment analysis. Analyzing pigment composition and coupling with genetic diversity or

morphological variations, for example, has been helpful in categorizing picoplanktons [2].

However, this approach is not capable of distinguishing different phytoplankton strains.

Thus, pigment analysis has been used increasingly with molecular methods to understand

picoplankton populations [2]. However, although DNA sequencing techniques and real-time

amplification methodologies are very reliable in taxonomical endeavors, they can be expen-

sive and require highly trained personnel [5].

Another alternative is to classify phytoplankton into meaningful functional groups based

on their morphology. This was shown to be a sufficient technique that captures a lot of

the functional properties of phytoplankton and does not require taxonomic affiliations and

can be used even for species with unknown physiological traits [6]. An example of this is

using a cytometer to assess the light interception capabilities of phytoplankton cells. Given

a sample culture, the machine works by sucking cells one by one and exposing them to

different laser frequencies. Then the machine measures how the light refracts on the cells.

And for this research, these cytometer readings or measurements are of primary interest.

1.1 Relevance and Stakeholders

Biodiversity plays a crucial role in the maintenance of healthy ecosystems [7]. It is there-

fore important to be able to measure the population of different flora and fauna existing in

nature. In particular, this research focuses on phytoplankton, which can be found at the

base of the aquatic food web [8]. This means that any perturbations in the population of

these aquatic organisms have a direct implication on the ecosystem as a whole.

This research is relevant because it focuses on estimating the population of phytoplankton.

Although this research is not concerned with directly measuring the population of phyto-

plankton as they naturally occur in marine environments and focuses on the phytoplankton

population in controlled environments, this research will allow empiricists and biodiversity

scientists to gain understanding of their behavior and how different environmental factors

and situations might affect the growth or decline of their population.

1.2 Ethical consideration

For the experiments carried out in this study, the starting cultures were collected directly

from their natural habitat or sampled from existing cultures grown in the laboratory. In

the former case, given the phytoplankton population, which systematically doubles in mass

daily [9], collecting a small quantity needed to start the experiment does not pose any threat

nor endanger the phytoplankton community in any way. In the latter case, the samples
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used did not directly affect phytoplankton in the oceans.

The cultures used in the experiments were exposed to different conditions determined by

varying temperatures and possibly exposure to a certain type of herbicide, atrazine. Al-

though the different temperatures with which the cultures were kept fall within the tem-

perature range where phytoplankton, specifically for Synechococcus, thrives in nature, at

least above 14° [10], exposure of some phytoplankton to atrazine might be unnatural and

harmful. However, studying the possible effects of this herbicide on how phytoplankton

thrives in such environment is of interest.

In addition, provided that the experiments are conducted in the laboratory, they did not

directly influence the marine ecosystem, thus avoiding the risk of causing any harm to the

environment. Lastly, the experiment was carried out by competent and credible scientists.

The setup of the experiment and the data were well documented, ensuring the authenticity

of the experiment and the data collected, and making the experiment reproducible.

1.3 Problem Description

For this research, we examine how to allocate the population of a given organic multi-

strain culture in to the different strains that are present in that culture. In order to do

this, we explore different ways of classifying individual cells into their respective strains

primarily using their light-interception abilities quantified using a cytometer. We create

various models trained on synthetic multi-strain cultures, that is, on concatenated data

of mono-strain cultures, that could be used as tools in the given experimental set-up and

provide a methodology on how future experimental data can be analyzed.

2 Experiment Design

For this particular study, four different strains of synechococcus bacteria were selected:

strains 2375 and 2524, which both belonged to species V, and strains 2383 and 2434, which

belonged to species VIII.

Each synechococcus strain was grown in isolation, referred to as mono-culture, to know its

light-refracting characteristics. And to replicate the co-occurrence of various strains in na-

ture, several strains were grown together. This resulted in six duo-cultures, four tri-cultures

and one tetra-culture. These will be referred to as organic multi-cultures. Classifying the

cells of samples of these organic multi-cultures is one of the main objectives of this study.

These cultures were exposed to different conditions as defined by temperature (22°C and

24°C) and atrazine concentrations (0 mg/L and 0.1 mg/L). And each experiment set-up
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has been replicated three times, thus producing 180 cultures (15 strain combinations x 4

conditions x 3 replicates) in total. Each of these cultures was sampled over the course of 21

days. Each sample was fed to the cytometer, which exposes individual cells to 8 different

light frequencies and measures how they intercept light. This in turn creates 8 different

possibly correlated output measurements.

Strain Species Condition
Replicate

Combination Combination Temperature Atrazine Concentration

Mono-culture
2375, 2383, 2434, 2524 V, VIII 22°C, 24°C 0 mg/L, 0.1 mg/L 1, 2, 3

Duo-culture
2375 2383, 2375 2434, V VIII 22°C, 24°C 0 mg/L, 0.1 mg/L 1, 2, 3
2375 2524, 2383 2434, V V, VIII VIII
2383 2524, 2434 2524 VIII V

Tri-culture
2375 2383 2434, V VIII VIII 22°C, 24°C 0 mg/L, 0.1 mg/L 1, 2, 3
2375 2383 2524, V VIII V
2375 2434 2524, V VIII V
2383 2434 2524 VIII VIII V

Tetra-culture
2375 2383 2434 2524 V VIII VIII V 22°C, 24°C 0 mg/L, 0.1 mg/L 1, 2, 3

Table 1: Different experiment set-ups

3 Data Exploration and Handling

3.1 Missing and Invalid Data

Although we have a balanced experiment design, where each stratum, as identified by a

strain combination, environmental conditions, and replication, should produce 252 cultures,

in table 2 we notice that not all cultures were sampled during the 21-day experiment period.

This is particularly apparent in figure 1, which shows the aggregated population, that is,

the estimated number of cells in the culture, of each strain-combination, regardless of the

environmental condition. In the figure, we clearly see some drop in the population of some

strain combinations, particularly on the 13th day of measurement in the duo-culture exper-

iments, and the 11th day in the tri-culture and tetra-culture experiments. However, further

data exploration revealed that these drops are not indications of a decline in population,

but rather of missing population measurements for some cultures.

In each sample, there could be hundreds and even thousands of cells remaining after it is

diluted to allow the cytometer to do its readings. However, not all measurements provided

were as expected, and thus the data needed to be cleaned, that is, removed of these erroneous

readings. This part of the data preparation has been dealt with by the scientist who
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Culture type Number of Samples Number of Cells Population Size
Actual Expected

Mono-culture 1008 1008 600 - 5633 108.5905 - 175150.5097
Duo-culture 1482 1512 525 - 8830 2258.5884 - 789144.1235
Tri-culture 971 1008 629 - 2432 1582.2040 - 196252.2118

Tetra-culture 243 252 680 - 2032 2216.1155 - 171255.3544

Table 2: Number of actual samples obtained and the range of number of cells clearly identified in
each sample. The expected number of samples is calculated as the product of the number of

strain-combinations, number of days, number of treatment, and number of replicates.

Figure 1: Aggregated population trend of each strain combinations during the 21-day experiment
period in mono-cultures (upper-left), duo-cultures (upper-right), tri-cultures (lower-left), and
tetra-culture (lower-right). The legend indicates the strains present in the multi-cultures.

performed the experiment, since he knows the possible range of expected values that the

cytometer should output. These erroneous measurements could be caused by a debris or

by two or more cells being exposed to the selected light frequencies at the same time.

3.2 Cytometer Output

Recall that each cell in each sample was exposed to eight different light frequencies, result-

ing in eight different measurements. In tables 3 and 4, we can see some summary statistics

of cytometer outputs in all cultures, and it seems that the measurements at any given fre-

quency for all cultures are close to each other. Note that the summaries were calculated

after having concatenated all the data for each culture type. For instance, in the mono

culture data, we have calculated the mean and the standard deviation of all four strains

combined. Similarly, for the duo-culture, we have combined the data of all pairwise strain
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combination. This is to say that all summary statistics provided contained all four strains.

As such, to see that the values are similar, even after taking into consideration the standard

deviations, is comforting since this insinuates that combining the mono-strain cultures to

make synthetic multi-culture data assimilates the organic multi-culture data. However, this

hypothesis needs to be formally tested.

FSC SSC GRN.B YEL.B
mean sd mean sd mean sd mean sd

mono-culture 3.6496 0.9835 5.4343 0.7562 2.8203 0.5074 3.7881 2.0669
duo-culture 3.4322 0.8511 5.2863 0.7274 2.7567 0.5033 3.4686 2.0806
tri-culture 3.3888 0.8348 5.2746 0.7378 2.7710 0.4677 3.4391 2.0880

tetra-culture 3.3840 0.8251 5.2756 0.7386 2.7851 0.4486 3.5058 2.1005

Table 3: Summary statistics of the first four cytometer outputs

RED.B NIR.B RED.R NIR.R
mean sd mean sd mean sd mean sd

mono-culture 4.9090 1.1954 3.9657 1.0750 5.8822 0.8627 4.2902 0.7848
duo-culture 4.7139 1.2299 3.8061 1.1039 5.9273 0.9455 4.3187 0.8609
tri-culture 4.7674 1.2200 3.8546 1.0912 6.1303 0.8714 4.4950 0.7893

tetra-culture 4.8319 1.2258 3.9158 1.0904 6.2295 0.8163 4.5827 0.7354

Table 4: Summary statistics of the last four cytometer outputs

It is also worth noting that these cytometer outputs are correlated. In figure 2, we can

clearly see how YEL.B is very correlated to NIR.B (0.88) and RED.B (0.90). While RED.B

and NIR.B (0.94), and RED.R and NIR.R (0.99) are almost perfectly correlated. This cor-

relation should be factored in somehow in any proceeding statistical modeling. In addition,

the fact that some of these outputs are very closely correlated might have an impact among

which cytometer outputs could be useful in predicting strain membership of the cells. In-

cluding, for example, both RED.R and NIR.R as predictors might be redundant since they

are almost providing the same information to the predicting model.

In fact, after performing a principal component analysis, the first three principal compo-

nents explain 85.65% of the variability in the data. And as seen in figure 3, the last three

components explain very little of this variability.

3.2.1 Synthetic and Organic Multi-cultures

The main objective of this research is to classify the cells of the multi-culture samples to

their respective strains in order to allocate the sample population proportional to the num-

ber of cell strains in each sample. Since this is going to be performed by making models

trained in synthetic multi-culture data, that is, concatenating data from mono-culture sam-
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Figure 2: Pairwise correlation plot of the cytometer outputs of the mono-strain cultures

Figure 3: Explained variability of each principal component after PCA on the scaled cytometer
outputs.

ples, we would want to see how different or similar these synthetic multi-cultures data are

from those of the organic multi-cultures.

In figure 4, ignoring the sudden drop in the organic multi-culture data due to missing

sample records, we can clearly see that the population curves of both multi-culture data,

whether from organic multi-culture samples or synthetically created from mono-cultures,

follow the same trend. The only visible difference between them is how the population

of the synechococcus strains in the synthetic data seems to be larger than the population

of the strains in the organic multi-cultures. This apparent difference in population could

be attributed to the interaction among the different synechococcus strains in the organic
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multi-cultures, which clearly does not exist in the synthetic multi-cultures. It is only in the

duo-culture of strains 2375 (V) and 2434 (VIII), and 2434 (VIII) and 2524 (V) where the

population of both synthetic and organic multi-cultures seem to be coinciding.

Figure 4: Population trend of synthetic multi-culture (orange) and organic multi-culture (blue)
samples

In figure 5, we can see the cytometer outputs of cells from both organic and synthetic

duo-cultures, where each plot represents the cytometer outputs when cells are exposed to

a particular light frequency. Ideally, if there is little or no difference between the way cells

from either duo-culture refract light, then in any plot, any boxplot pairs inside the rectangle

should be the same. Although this seems to be true in the second (SSC) and third (GRN.B)

plots for all duo-cultures, this does not seem to generalize in the remaining plots. In some

cases, each pair seems relatively similar (NIR.R), in some cases, they are not (RED.R).

And in some occasions, although the first pairs seem to resemble one another, the last two

pairs are rather dissimilar (RED.B and NIR.B).
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Figure 5: Cytometer outputs using different light frequencies, where each plot is for a specific
frequency, of the organic duo-culture data (odd numbers on the x-axis) and of the synthetic

duo-culture data (even numbers on the x-axis)

3.2.2 Outlier Detection

Although the data have been pre-cleaned, we still performed an outlier detection method

for the possible existence of outliers in the mono-strain culture data. Given that we have

a stratified experiment design, we have scanned for outliers for each strata by calculating

the z-scores for each cytometer output. To remove the correlation that is present in the

cytometer outputs, we first performed a pca transformation on the scaled cytometer out-

puts. We considered outliers those observations whose pca-transformed cytometer outputs
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are above the threshold. After using a threshold of 2.5, we only detected 17 observations

out of the 1048906 observations, while this number drops to 3 when the threshold is 3.

3.3 Unsupervised Machine Learning

Aside from knowing the set of strains in cultivating the multi-strain cultures, we are in

no possession of the exact strain membership of any individual cell. As such, if we focus

on only the organic multi-culture data, and still try to distinguish or identify strain mem-

bership, a number of unsupervised machine learning can be explored. However, one big

challenge in using such technique is interpreting what the resulting clusters mean. This

means that being able to, for instance, successfully group the cells into four clusters, is no

guarantee that these clusters will refer to the strain membership as this could mean other

things as well. In our experiment in fact, this could refer to the condition in which the

cultures have been grown, unless we apply unsupervised machine learning on data already

separated by condition. However, this approach of applying unsupervised machine learning

per condition, or to an extension, per strata, is inefficient since this produces various models.

To motivate our use of supervised learning on synthetic multi-cultures and using that to

predict strain membership of organic multi-cultures, we will slightly look into two unsu-

pervised machine learning techniques, namely principal component analysis and k-means

clustering, and show how these might not be sufficient for our problem.

3.3.1 PCA

In figures 6 and 8, we can see how the cells from mono-strain cultures and cells from the

tetra-culture are plotted in the first two principal dimensions after performing a pca reduc-

tion on the scaled predictors and unscaled predictors respectively. In the first set of plots

in figure 6, we can notice how individual clusters of each strain seem to overlap and provide

no clear separation between them. Although the first plot offers slight segregation between

cells of different species, the second and third plots show that the clusters of cells of the

same species are almost completely overlapping. This can also be visualized in figure 7.

Furthermore, we can observe from the plot for the second principal component how strain

2434 seems to overlap with all three other strains. In terms of the multi-cultures, specifically

the tetra-culture as shown in the fourth plot, we can say that it has the same shape as in

the first plot, where the cells of all strains are plotted. This could suggest that if the task of

separating the cells of synthetic multi-culture data into different clusters just by doing a di-

mension reduction seems impossible, then the same could be said for organic multi-cultures.

In the unscaled version of the pca reduction in figure 8, we can see clusters that are com-

pletely isolated. However, these clusters refer to the days of measurement and not to the

four strains since there are a total of 21 clusters formed and that in each cluster, all four
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strains are present. Although pca could possibly be applied to a subset of the data with a

specific measurement day, this would have produced 21 models in total.

Figure 6: Separation in synthetic tetra-culture (first three images) and organic tetra-culture (last
image) on the first two principal components after PCA on scaled features (cytometer outputs and

dates) and encoded categorical feature (condition).

Figure 7: Density plot of the first (left) and the second (right) principal components

Figure 8: Separation in synthetic tetra-culture (first three images) and organic tetra-culture (last
image) on the first two principal components after PCA on unscaled features (cytometer outputs

and dates) and encoded categorical feature (condition).

3.3.2 K-Means

When using k-means, we need to indicate the number of expected clusters k in the data.

The k-means procedure initially assigns a random cluster to each observation. Then at each

iteration, it calculates the centroid of all observations assigned to the same cluster. Each

observation is then reassigned to the cluster whose centroid it is the closest. The procedure

terminates once no observation is reassigned to a different cluster.

For this study, since the goal is to group in terms of strain membership, we set k = 4, and

we group the cells in the synthetic tetra-culture data in four clusters. After that, we cal-

culate the distances of each observation from the centroids of the first and second clusters.
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This data transformation allows us to plot the observations in two dimensions.

In figures 9 and 10, we see the plots after applying k-means to scaled and unscaled predic-

tors of the synthetic tetra-culture respectively. The left-most and middle plots are the same

but with different coloring schemes. The left-most plots are colored based on their assigned

groups as suggested by the k-means algorithm, while the middle plots are colored based on

the strains of each observation. This clearly shows that the groups assigned using k-means

do not correspond to the four strains present in the experiment. Furthermore, in the right-

most plot of figure 10, we seem to observe a separation for the 21 days of measurement,

and that the assigned groups correspond rather to the period of measurement, e.g., first

5 days, and not to the strains. This could be evidence of the inadequacy of unsupervised

learning in identifying the strain of the cells in organic multi-cultures.

Figure 9: Clustering formed in synthetic tetra-culture as labeled by the predictions of a k-means
classifier with four components (left) vs actual strain (center) and clustering formed in the organic
tetra-culture (right) using scaled features (cytometer outputs and dates) and encoded categorical

feature (condition).

Figure 10: Clustering formed in sythetic tetra-culture as labeled by the predictions of a k-means
classifier with four components (left) vs actual strain (center) and clustering formed in the organic

tetra-culture (right) using unscaled features (cytometer outputs and dates) and encoded
categorical feature (condition).

4 Multi-class classification

In contrast to binary classification problems where an observation is assigned to either of

two existing classes, a multi-class classification involves assigning an observation into one of
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more than two classes. In this research, the classes are the different strains used in the ex-

periments, and we would like to assign each cell in the samples to their corresponding strain.

There are two widespread approaches on these kinds of problems: the one-vs-rest and the

one-vs-one.

4.1 One-vs-rest vs One-vs-one Models

In the one-vs-rest approach, if there are k classes, we would create k binary classifier models.

Each model asks the question whether or not an observation belongs to class i, 1 < i < k.

If the output is one-hot coded, that is, the output is encoded into k columns, where the ith

column is set to 1 if the observation belongs to class i, and all the other columns j ̸= i are

set to 0, then each column i would be the corresponding output for model i. During class

prediction, an observation is assigned the class with the highest predicted probability.

In the one-vs-one approach, we would create a total of k(k−1)
2 binary classifier models.

Each classifier corresponds to each pair of classes and models the probability of belonging

to either one of the pair. Unlike in the first approach where it suffices to just encode the

output to make the corresponding output columns for each model, in this approach, several

datasets need to be created, each containing only the observations that belong to the pair

of classes being modeled. During class prediction, the predicted probabilities for each class

of all models are then averaged and an observation is assigned the class with the highest

averaged predicted probability.

4.2 Base Classifiers and Models

4.2.1 Random Forests and Gradient-Boosted Trees

In theory, any existing binary classifiers can be used to build a multi-class classifier. How-

ever, we would only survey the performance of random forest classifiers and gradient-

boosted trees because of their computing efficacy and their increased popularity in the

past years. Among these two classifiers, we would select the one that results in higher

classification accuracies.

A random forest classifier is a type of model ensembling and is composed of several decision

trees. Each decision tree is built on bootstrapped training samples, wherein only p < m

predictors, which is a random sample of all m predictors, are taken into account should a

split be necessary [11].

Gradient-boosted classifiers are also an ensemble of several decision trees. However, unlike

random forest classifiers, where the trees are built separately and independent of one an-
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other, the trees in gradient-boosted classifiers are built sequentially, where at each iteration,

a tree models the remaining information that the previous trees were not able to capture.

This way, the trees learn the patterns slowly and avoids overfitting [11].

4.2.2 N-way models

In the experiments performed, several multi-cultures were grown: duo-culture, tri-culture

and tetra-culture. Each of this multi-strain culture could be treated in isolation and be

modeled separately and independently of the other strain-combinations using the informa-

tion from the mono-strain cultures.

Following this approach, we would have 6 pairwise models, 4 three-way model, and one

four-way model. These models were created using the one-vs-rest approach, with the scaled

cytometer outputs, day of measurement, and condition as predictors, and will be referred

to as the base models. Each base model can provide predicted probabilities of strain

membership to the strains that were used in training the model. For instance, a model

capable of distinguishing strain 2375 from strain 2383 was trained on concatenated data

from the mono-strain cultures of 2375 and of 2383. This model is capable of giving the

probability of belonging to 2375 and to 2383 given a set of predictors. Although these

models can already address the classification problem we are trying to solve, we will try

several strategies that make use of these models to create a single model that hopefully will

yield higher accuracy.

4.3 Classification Strategies

Although the base models could already be used on their own, we will create various models

that use the predicted probabilities of belonging to a strain of these base models as new

predictors in several ways. In some cases, all the predicted probabilities will be used, in

some cases, only some of them will be utilized. In the event where the four-way and the two-

way models are used, this could be seen as a way to combine the two different approaches

in multi-class classification since it uses the one-vs-rest four-way model and the pairwise

models used to build the predictions in the one-vs-one approach. Thus, instead of simply

assigning an observation, in our case, a cell to a strain with the highest average predicted

probability, we will let the model learn how to use each model’s predicted probabilities in

a more clever way. This could be considered as model ensembling, that is, we put together

various models to create a final and definite model.

4.3.1 Strategy 0

To know how well the several strategies improve or deteriorate the classification perfor-

mance, we will use the four-way model as our baseline.
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4.3.2 Strategy I

In this strategy, all seven datasets used in building the base models will be used. This

means that each strain of mono-culture data will be duplicated seven times - 3 times from

training three pairwise models, another 3 times from the three-way models, and one time

from the four-way model. However, each dataset has been scaled differently, that is, taking

into account only the strains included in that particular dataset. Furthermore, aside from

the predictors used in making the base models, four additional predictors are added which

pertains to the predicted probability of belonging to each of the class. The predicted

probabilities for each dataset will be provided by the base model which were trained using

that dataset. And since not all strains were necessarily present in a particular dataset, the

predicted probability for those strains will be set to zero. We can see how these datasets

were concatenated to form the dataset used to train the classifier model for this strategy

in figure 11.

Figure 11: Strat I: Visual representation of how the data from the mono-strain cultures were con-
catenated and how the predicted probabilities from the base models (gray) were appended to the
original predictors, which are treatment/condition, cytometer outputs, and day of measurements
(colored) to form the new set of predictors.
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4.3.3 Strategy II

Whereas the scaled datasets for building the base models were directly used to make the

training data set for the first strategy, in this strategy the cytometer outputs of the concate-

nated mono-strain cultures were scaled taking into account all the strains. These formed

the predictors for this strategy, including the day of measurement and environment con-

ditions with the predicted probabilities from all the base models as additional predictors.

Thus, there are 28 more predictors (6 pairwise models x 2, plus 4 three-way models x 3,

plus 1 four-way model x 4) compared to the base models’ predictors. This can be visualized

in figure 12.

Figure 12: Strat II: Visual representation of how the data from the mono-strain cultures were
concatenated and how the predicted probabilities from the base models (gray) were appended to
the original predictors, which are treatment/condition, cytometer outputs, and day of measurements
(colored) to form the new set of predictors.

4.3.4 Strategy III

In the previous strategies, we can use any kind of multi-class classifier, however, for this

particular strategy we will make use of neural networks and will only make use of the

predicted probabilities as predictors. In figure 13, we can see how each set of predicted

probabilities produced by each base model are fed separately in an input layer, and then

passed on to a block consisting of alternating normalization and dense layers. The resulting

outputs of these independent blocks are then concatenated and fed to a classifier.

4.3.5 Strategy IV

The fourth strategy includes the cell species as part of the predictors and only uses the

predicted probabilities of the two pairwise models that were trained with strains from the

same species. In particular, these are the models trained with mono-strain cultures of 2375

and 2524, and 2383 and 2524. The idea is to leverage the fact that we know the specific

species of a cell and that will help the model to decide which predicted probabilities it

needs to give more bearing to. Now, although this is known in mono-strain cultures, this

is also part of the problem in the organic multi-strain cultures. So to identify the species
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Figure 13: Strat III: Visual representation of how the predicted probabilities from the base models
(gray) were concatenated to form the new set of predictors.

Figure 14: The block layer used in the neural network in strategy III.

to which a cell belongs in such cases, we will also make a binary classifier that determines

the species of a particular cell using the concatenated mono-strain cultures, with the days

of measurement, the conditions, and the scaled cytometer outputs as predictors. This can

be visualized in figure 15.

4.3.6 Strategy V

In the last strategy, only the predicted probabilities of the pairwise models are included

as new predictors, together with six semi-indicator variables, allowing values 0, 1, and 0.5.

Each indicator variable represents each pairwise model, such that if a cell could make use

of the predicted probabilities of a given model, then the indicator is set to 1, otherwise, if
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Figure 15: Strat IV: Visual representation of how the predicted probabilities from the two pairwise
models (gray) were concatenated to form the new set of predictors including the species (colored,
or true species for the mono-strain cultures, and gray, or predicted for the organic multi-strain
cultures).

only a part of it is useful, it is 0.5, and 0 otherwise. For instance, a cell that could belong to

strains 2375 and 2383 would have ones in the semi-indicator variable 2375-2383, and 0.5 for

any other indicator variable that contains either 2375 or 2383, e.g., 2375-2434, 2375-2524,

2383-2434, and 2383-2524, and 0 for the remaining indicator variable 2434-2524.

4.4 Feature Selection

To investigate how each feature affects the base models’ predictions, we will look into how

important each feature is in building the model. In the case of random forest classifiers,

the importance of each feature will be calculated based on what is known as permutation

importance, that is, the difference between the prediction errors of trees created with the

training dataset and trees created with the same dataset but with the feature randomly

permuted among all observations [12]. In the case of gradient-boosted trees, the importance

of each feature is calculated based on the average gain, that is, the reduction of training

error, across all splits when a certain feature is used. Thus, the most important features

are the most influential features that lead to more accurate predictions [13].

Such insights can help us eventually improve the base models’ performance and, in turn,

those of the various strategies presented earlier and gain understanding on which cytometer

outputs, for instance, matter most and which do not or least affect the classification and

the strain membership probability prediction.

4.5 Metrics and Validation Set

In order to assess the performance of the models, the accuracy of correctly classifying the

strains will be calculated. Since we would be performing a supervised machine learning due

to the fact that we know the strains to which the cells in the synthetic multi-culture data
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belong, accuracy can be easily calculated for the training, validation, and test datasets.

However, this cannot be performed in the organic multi-culture datasets. Instead, we will

measure the ’correctness’ of the different strategies by getting the percentage of misclassi-

fied cells, that is, cells assigned to strains that were not grown in a given multi-culture. For

instance, given that we are classifying the cells that were cultivated using strains 2375 and

2383, a misclassification in this case would be assigning any cell from this sample to strains

other than those two, e.g., 2434 or 2524.

Now to ensure that there is no data leakage, especially since we are training new models to

build our various strategies using the output from previously trained base models, we have

divided each mono-strain culture into three separate sets using stratified random sampling:

training set (60%), validation set (20%) and test set (20%). All trainings, be it for the base

models or for the latter models, are only performed using the selected training set, and so

on. The validation set is used to improve the performance of the models on unseen data by

adjusting the parameters of the models accordingly. This ensures that the models do not

learn patterns specific only to the training data set. Lastly, the test set will give us an idea

of how the models behave on unseen data that have not been used in any sense in building

or refining the model. Note that since we are only training using the mono-culture data,

and not the data from the multi-culture, the latter need not be divided into different sets

and are treated as test sets as a whole, to which the true strains are unavailable.

5 Statistical Analysis

5.1 Modeling the Cytometer Outputs

The premise of using cytometer outputs as the main predictors of strain membership as-

sumes that cells from different strains differ in the way they refract various light frequencies,

resulting in different readings provided by the cytometer.

In the experiment, whenever this was measured, each cell was exposed to eight different

light frequencies, and the resulting cytometer readings were correlated. Thus, to capture

this correlation, we shall use a multivariate approach to understand how cell strain, en-

vironmental condition or treatment, and the number of days the culture has been kept

influence the cytometer readings. Furthermore, it is worth mentioning that cells from the

same sample could also be correlated and should be taken into account. However, due to

the large number of data and difficulty of fitting a model that incorporates sample random

effects, this is unfortunately dropped.

Equation 1 gives the model formulation of the cytometer outputs that contains only the

main fixed effects. However, models will be attempted to incorporate the effects of the
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two-way interaction of the different frequency on the day of measurement, population size,

strains, and treatment.

fcsijk = β0 + β1daysk + β2popk + β31replk=2 + β41replk=3

+ β51treatk=A + β61treatk=T + β71treatk=AT

+ β81straink=2383 + β91straink=2434 + β101straink=2524

+ β111freqijk=SSC + β121freqijk=GRN.B + β131freqijk=Y EL.B + β141freqijk=RED.B

+ β151freqijk=NIR.B + β161freqijk=RED.R + β171freqijk=NIR.R + ϵijk

(1)

where:

– fcsjk is an 8-element vector containing the cytometer outputs of cell j of sample k

– daysk is the day when sample k is sampled and measured

– popk is the estimated number of cells in the culture

– 1replk={2,3} indicates whether the sample is obtained in from the second or third

replication

– 1treatk={A,T,AT} indicates whether the environment contains atrazine (A), maintained

on a temperature of 24°C (T), or both (AT)

– 1straink={2383,2434,2524} indicates the strain cultivated where sample j is acquired

– 1freqijk={SSC,GRN.B,Y EL.B,RED.B,NIR.B,RED.R,NIR.R} indicates with which frequency

the cell j of sample k was exposed

– ϵjk ∼ MVN(0,Σ)

The β’s are the parameter estimates of the fixed effects and the vector of error terms follows

a multivariate normal distribution, with mean 0, and an unstructured variance-covariance

matrix. Lastly, we control the the false discovery rate (fdr) for multiple hypotheses testing

using the Benjamini-Hochberg method of adjusting of p-values.

5.2 Synthetic Multi-culture vs Organic Multi-culture

Since we will be creating models trained on concatenated mono-culture data, and we will be

using these models to predict strain membership in actual multi-culture data, it is impor-

tant to know whether the cytometer outputs of these two different cultures are comparable.

Should the analysis show that there is no significant difference between the cytometer out-

puts of the synthetic and the organic multi-culture, or should this difference be relatively

small, then we will gain confidence in predictions to be made by the model. Otherwise,

these predictions should be considered with caution.
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The model formulation given in equation 2 is similar to the model formulation in the first

statistical analysis, except for a small change. Instead of strains, we will use an indicator

variable that indicates whether a cell is from a synthetic dataset or not.

fcsijk = β0 + β1daysk + β2popk + β31replk=2 + β41replk=3

+ β51treatk=A + β61treatk=T + β71treatk=AT + β81culturek=synth

+ β91freqijk=SSC + β101freqijk=GRN.B + β111freqijk=Y EL.B + β121freqijk=RED.B

+ β131freqijk=NIR.B + β141freqijk=RED.R + β151freqijk=NIR.R + ϵijk

(2)

where:

– 1culturek=synth indicates whether sample k is from a synthetic multi-culture

We also use the Benjamini-Hochberg procedure to adjust the p-values of the aforementioned

indicator variable.

5.3 True Strains vs Predicted Strains

Although we can assess the accuracy of the models trained using synthetic multi-culture

data, we would not be able to know how the models perform in the organic multi-culture

data. This is because the true strain memberships of the cells are only known up to the

strains cultivated together in a particular culture, but could never be reduced to any single

strain. For this reason, to emulate the assessment whether the model correctly classifies a

cell into its true strain, the cytometer outputs of all cells in the organic multi-culture data

predicted to belong to a particular strain are compared with the cytometer outputs of cells

belonging to the mono-culture of that strain. If indeed a model can discriminate cells and

correctly predict their strain membership, then we should not see any significant difference

from these cytometer outputs, or that such difference is relatively small.

We can see how the model is formulated in equation 3. This is similar to the first two

model formulations, but instead includes a variable to indicate whether the sample is from

a mono-strain culture or a multi-strain culture.

fcsijk = β0 + β1daysk + β2popk + β31replk=2 + β41replk=3

+ β51treatk=A + β61treatk=T + β71treatk=AT + β81culti=multi culture

+ β91freqijk=SSC + β101freqijk=GRN.B + β111freqijk=Y EL.B + β121freqijk=RED.B

+ β131freqijk=NIR.B + β141freqijk=RED.R + β151freqijk=NIR.R + ϵijk

(3)

where:
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– 1cultk=multiculture indicates whether sample is from a multi-strain culture

Similarly to the previous analyses, fdr will be controlled using the Benjamini-Hochberg

procedure.

5.4 Probability Prediction of One-vs-one Models

In some strategies, in particular the second and the third, the predicted probabilities of all

the models were used as new features naively. Although these models are especially trained

to predict strain membership of only a subset of all the strains, except for the four-way

model, which clearly predicts all four, these models are used even for cells which we are

certain to not belong to the strains with which these models were trained and are capable

of giving probability predictions. For instance, we used the model for strains 2375 (V) and

2383 (VIII) on strains 2434 (VIII) and 2524 (V), which would then probably predict the

2434 strains to be 2383 and 2524 to be 2375 just because they are of the same species.

This analysis aims to know whether the predicted probabilities of a strain using a model

that was trained with it will have the same predicted probabilities when a model that was

trained with another strain but of the same species is used instead. This will allow us

to gain insight on why certain strategies might work, and some might not. This analysis,

which will be of the form of a paired t-test, will only be performed with the four pairwise

models that were trained with strains of different species. A paired-t test is sufficient and

ideal in this scenario, since the predicted probabilities for any two models will have the

same covariates.

6 Results and Discussion

6.1 Base Models

We have summarized the accuracies of the three sets of base models trained using synthetic

multi-culture data in table 5. All base models used the cytometer outputs, as well as the

stratification variables, condition as defined by temperature and the presence or absence of

atrazine, and the measurement days, as predictors. In the third set of models however, the

culture population was also included as predictor.

A striking observation is how the training accuracies of the base models using random

forests yield almost perfect scores of 100%. Nonetheless this does not translate well to test

accuracies where, although still high, some dropped to around 91-92% as in the case of

models used for the duo-culture (2383, 2434) and the tetra-culture. This suggests overfit-

ting, that is, the random forests tried so hard to fit the training data set that they do not
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generalize well in other datasets.

Comparing random forests’ training accuracies with those of the models built with gradient

boosting, we clearly see how only the models for the duo-cultures (2375, 2383), (2375, 2434),

(2383, 2524) and (2434, 2524) obtained accuracies near 100%. These models are trained

on duo-culture data with strains belonging to different species. However, in cases where

the training data set contained two strains of the same species, the gradient boosting trees

seemed to have a little bit of difficulty. For instance, we see an accuracy of only 93% for the

duo-culture (2383, 2434), strains belonging to species VIII. In addition, in contrast to the

random forests, the models built with gradient boosting trees seem to generalize way bet-

ter, as evidenced by the test accuracies being only slightly inferior to the training accuracies.

Lastly, we obtain models whose performance in both the training set and the test set is al-

most 100% after adding the culture population as a predictor. This suggests that we can be

sure of the predictions made by this set of models. However, after further investigation and

as illustrated in figure 18, the trend of the resulting population allocation to various strains

of three selected organic multi-culture does not follow the trend of the strain population in

the synthetic multi-cultures. Furthermore, the curves are rather zigzagged and overlapping,

which can be considered indications of having wrongly allocated the multi-culture’s total

population. Although these models have very promising test accuracies, they did not seem

to have performed well in the organic multi-culture data. This could be partly explained by

the fact that a strain’s population in a mono-culture is quite different from its population

in a multi-culture set-up, where competition for resources among other factors could affect

population growth. We have observed this earlier in section 3.2.1, figure 4.

Strain Random Forest XGBoost XGBoost with population
Combination Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

2375, 2383 1.0000 0.9985 0.9998 0.9984 1.0000 0.9996
2375, 2434 1.0000 0.9968 0.9990 0.9972 1.0000 0.9998
2375, 2524 1.0000 0.9337 0.9469 0.9398 0.9999 0.9995
2383, 2434 1.0000 0.9185 0.9302 0.9215 0.9983 0.9980
2383, 2524 1.0000 0.9983 0.9998 0.9985 1.0000 0.9995
2434, 2524 1.0000 0.9967 0.9986 0.9970 1.0000 0.9999

2375, 2383, 2434 1.0000 0.9411 0.9506 0.9448 0.9974 0.9964
2375, 2383, 2524 1.0000 0.9532 0.9631 0.9578 0.9999 0.9996
2375, 2434, 2524 1.0000 0.9570 0.9658 0.9612 1.0000 0.9998
2383, 2434, 2524 1.0000 0.9400 0.9494 0.9437 0.9982 0.9975

2375, 2383, 1.0000 0.9220 0.9344 0.9281 0.9975 0.9967
2434, 2524

Table 5: Training and test accuracy of the base models trained and tested using synthetic
multi-strain cultures.
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We also investigated which strains are predicted more accurately for the sets of base models

using random forests and gradient boosting. The results are summarized in Tables 6 - 9,

where the rows indicate the true strains and the columns indicate the strains to which a

cell is predicted. For example, in the first confusion matrix in table 6, 50943 cells of strain

2375 were correctly identified as 2375, while 66 cells were incorrectly identified as 2383.

The results agree with previous observations that the models were able to discriminate

cells very accurately, provided they belong to different species. However, once cells belong

to the same species, discrimination becomes more difficult. For instance, in the case of the

random forest model for duo-strain cultures containing 2375 (V), the model only misclassi-

fied 66 and 326 cells when it was trained alongside 2383 (VIII) and 2434 (VIII) respectively.

This is in contrast to 2676 cells when discriminated against cells of strain 2524 (V). It is

also worth noting that it seems that there is a higher chance of misclassifying a cell of strain

2375 or 2524 to strain 2434 than to strain 2383. For example, in the first two confusion

matrices in table 8 for gradient boosting, 244 cells of strain 2375 have been mislabeled as

strain 2434 in contrast to 68 cells as strain 2383. This suggests that the models seem to

identify the features of strain 2434 as more similar to those of strain 2375 and 2383. This

is not surprising given that we have observed how the density plot of strain 2343 intersects

more with the density plots of 2375 and 2524 in subsection 3.3.1, figure 7.

This is also observed when cells of strain 2383 or 2434 are misclassified to strains of the other

species. However, unlike in the former case, the disparity between having misclassified to

strain 2375 or to 2524 is smaller. This is portrayed better in tables 7 and 9. In particular,

in the bottom left confusion matrix of both tables, in the case of random forests, 40 cells

of strain 2434 were misclassified to 2375 and 39 cells to 2524, and in the case of gradient

boosting, these numbers were 53 and 77 respectively. This suggests that when the models

fail to correctly classify a cell belonging to species VIII, they almost indiscriminately assign

them to either strain of species V.

2375 2383

2375 50943 66
2383 82 44601

2375 2434

2375 50683 326
2434 53 66302

2375 2524

2375 48333 2676
2524 3896 44247

2383 2434

2383 40938 3745
2434 5301 61054

2383 2524

2383 44604 79
2524 76 48067

2434 2524

2434 66302 53
2524 320 47823

Table 6: Confusion matrices of random forest models trained using synthetic duo-cultures on the
test data.
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2375 2383 2434

2375 50647 8 354
2383 54 40867 3762
2434 47 5324 60984

2375 2383 2524

2375 48325 57 2627
2383 70 44575 38
2524 3886 56 44201

2375 2434 2524

2375 48142 332 2535
2434 40 66276 39
2524 3869 304 43970

2383 2434 2524

2383 40841 3792 50
2434 5333 60983 39
2524 17 314 47812

Table 7: Confusion matrices of random forest models trained using synthetic tri-cultures on the
test data.

2375 2383

2375 50941 68
2383 88 44595

2375 2434

2375 50765 244
2434 79 66276

2375 2524

2375 48553 2456
2524 3517 44626

2383 2434

2383 40849 3834
2434 4877 61478

2383 2524

2383 44611 72
2524 68 48075

2434 2524

2434 66254 101
2524 246 47897

Table 8: Confusion matrices of xgboost models trained using synthetic duo-cultures on the test
data.

2375 2383 2434

2375 50742 21 246
2383 62 40885 3736
2434 64 4821 61470

2375 2383 2524

2375 48553 58 2398
2383 72 44576 35
2524 3457 46 44640

2375 2434 2524

2375 48380 240 2389
2434 53 66225 77
2524 3444 218 44481

2383 2434 2524

2383 40909 3722 52
2434 4842 61428 85
2524 20 243 47880

Table 9: Confusion matrices of xgboost models trained using synthetic tri-cultures on the test data.

In figures 16 and 17 we see a comparison of the population trends of various strains in

selected synthetic multi-cultures, and the trend of the allocated populations in the corre-

sponding organic multi-cultures. It is quite evident that the trends observed in the synthetic

data have been propagated to the organic data, where they mostly only differ in the mag-

nitude of the population, as there are relatively fewer cells in the organic multi-cultures.

The almost absence of the zigzag pattern and curves crossing each other observed when
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the population was included as a predictor is reassuring, as this shows inconsistencies with

allocating the culture population to various strains, and by extension, inconsistencies in the

strain membership prediction. In addition, we also gain confidence in our base models, both

with random forests and gradient-boosted trees, as the trends of the allocated populations

are generally similar and seemingly identical.

We also looked at the importance of the different predictors in each base model. This is

illustrated in the rightmost plots of the given figures. It can be observed that in situa-

tions where we only consider cells of different species, for instance, strains 2375 (V) and

2434 (VIII), the most important and very dominating predictor is the YEL.B cytometer

measurements. However, once we start training models on data that contain strains of the

same species, the other cytometer measurements gain importance. It is worth noting that

in the random forest models for strains 2375 and 2524, and strains 2383 and 2434, the per-

mutation importance scores of FSC and RED.R, and RED.R respectively, were the highest.

This is in contrast with the xgboost models whose accuracy is greatly influenced by FSC

and RED.R respectively. Nevertheless, in both cases the YEL.B cytometer measurements

are deemed less important.

Looking deeper at the importance of the cytometer outputs as predictors for the random

forest models in tri-cultures and tetra-cultures, we notice that GRN.B, NIR.B and NIR.R

seem to be relatively irrelevant. Although this is not surprising for NIR.B, which is highly

correlated with RED.B (0.94) and for NIR.R, which is highly correlated to RED.R (0.96),

GRN.B does not have any other frequency with which it is highly correlated. However,

since the models considered RED.B and RED.R, both of which GRN.B has a correlation of

0.42, very important, GRN.B bears very little importance in the models. However, these

observations do not hold for the xgboost models where YEL.B still dominated and is the

most important predictor that lead to more accurate predictions.

Lastly, while we have included the measurement days and the growth environment condi-

tions of the cultures, these seems to have little importance in both sets of base models,

except for the models for duo-culture strains with the same species.

6.2 Strategies’ Performance

From the previous section, we have seen how the performance of the base models con-

structed using xgboost classifiers are superior than those constructed using random forests.

For this reason, we have created the models for our five strategies using the xgboost base

models.

After generating the predicted probabilities of the training, validation, and as well as the
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organic multi-culture datasets using the base models, we have created several datasets in

order to build the models for the various strategies. The resulting accuracies of these new

models are listed in table 10. In this table, we notice how the validation and the test accu-

racies are not far off from the training accuracy, which indicates that the model generalize

well, that is, they did not learn patterns only specific to the training datasets. This is in

addition to the fact that the models perform quite well, with training accuracies ranging

from 93.44% to 96.70% and test accuracies ranging from 92.81% to 95.78%. However, these

values are inferior to the average accuracies of the set of base models, which are 96.71%

and 96.25%, respectively.

It can also be stated that the base strategy, strategy 0, has accuracies comparable to those

of strategies II, III and IV. These strategies, however, are a little less accurate than strate-

gies I and V, with a difference ranging from 1.38% to 3.26%. The reason for this slightly

better performance is how these two strategies used information on which possible strains

the cells could belong. In strategy I, for instance, we put a predicted probability of 0.00 to

strains that were clearly not part of a given multi-culture. A cell coming from a duo-culture

of strains 2375 and 2343 would have predicted probabilities for 2375 and 2343 generated

by the base model for those two strains, while the predicted probabilities of 2383 and 2524

will be 0.00. In so doing, we leak useful information that helps the model predict strain

membership more accurately, but not totally leaking the exact strain to which such cell

belongs. And in strategy V, where only the generated predicted probabilities of the six

duo-culture models are use, this information on possible strain membership is leaked by

the additional six semi-indicator predictors, indicating whether a base model’s predicted

probabilities should be used fully (1), partially (0.5) or not at all (0). These pieces of in-

formation are not available to strategies II, III, and IV, where the predicted probabilities

from all base models are used naively, albeit with equal bearing.

Strategy Train Accuracy Validation Accuracy Test Accuracy

Strategy 0 0.9344 0.9272 0.9281
Strategy I 0.9605 0.9548 0.9551
Strategy II 0.9467 0.9277 0.9287
Strategy III 0.9374 0.9270 0.9279
Strategy IV 0.9437 0.9294 0.9305
Strategy V 0.9670 0.9573 0.9578

Table 10: Accuracy of different data sets during the different phases of building the models of
various proposed strategies.

Aside from looking at the accuracies obtained on the synthetic multi-cultures, we also looked

into how to assess the strategies’ performance on the actual multi-strain cultures. Since

these models actually classify a cell to any of the four strains, as opposed to the base mod-

els, we can quantify how these models missclassify an individual cell’s strain membership,
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that is, the models predicting that the cell is of a strain not present in the multi-culture

from which it is sampled.

In tables 11 and 12, we list the proportion of misclassified population in each organic multi-

culture data. It should be noted that strategies 0, II, III and IV, and strategies I and V,

still yielded comparable results, with the latter group having much less misclassified cells.

This is expected since these last two strategies have an advantage over the strategies in

the former group. Of the 10 multi-strain cultures, strategy I outperformed strategy V in 7

of them, with an average misclassification of 0.2710% versus 0.3720% of strategy V. This

contrasts with the misclassification errors in strategies 0, II, III and IV, which are 7.34%,

7.40%, 7.43%, and 7.24% respectively. Note that for strategy IV, there is no misclassi-

fication in the duo-culture data when the strains involved are of different species, which

suggests that the model was able to discriminate cells into their corresponding species.

Strategy
Strain Combination

2375, 2383 2375, 2434 2375, 2524 2383, 2434 2383, 2524 2434, 2524

Strategy 0 0.1172 0.1509 0.0047 0.0133 0.1122 0.1756
Strategy I 0.0028 0.0094 0.0015 0.0010 0.0030 0.0018
Strategy II 0.1190 0.1506 0.0045 0.0148 0.1137 0.1776
Strategy III 0.1077 0.1582 0.0044 0.0179 0.0995 0.1961
Strategy IV 0.1207 0.1510 0.0000 0.0000 0.1143 0.1776
Strategy V 0.0059 0.0037 0.0027 0.0029 0.0018 0.0019

Table 11: Proportion of organic duo-culture populations allocated into strains not part of the
given duo-culture after predicting strain membership of cells.

Strategy
Strain Combination

2375, 2383, 2434 2375, 2383, 2524 2375, 2434, 2524 2383, 2434, 2524

Strategy 0 0.0351 0.0523 0.0565 0.0160
Strategy I 0.0032 0.0016 0.0008 0.0020
Strategy II 0.0352 0.0538 0.0552 0.0157
Strategy III 0.0349 0.0445 0.0630 0.0163
Strategy IV 0.0353 0.0538 0.0554 0.0158
Strategy V 0.0113 0.0021 0.0034 0.0015

Table 12: Proportion of organic tri-culture populations allocated into strains not part of the given
tri-culture after predicting strain membership of cells.

The misclassification rates can be visualized in the rightmost plots of figure 19. We can also

see in this figure how the population trends of the allocated population to each strain are

similar to those of the base models and that all strategies follow the same pattern. This is

anticipated since the strategies made use of the predicted probabilities of the base models

and that the slight variations in the strategies’ population allocation are due to how these

new predictors are incorporated in the models.
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Similar to what was previously done in the base models, we also looked at the strains that

are often misclassified using the proposed strategies. The confusion matrix for each strategy

was combined in table 13. Like in the base models, we notice that when the models do not

correctly identify a cell of strain 2375 (V) or 2524 (V), they assign them more to strain

2434 (VIII) than to 2383 (VIII). However, unlike in the base models where a cell of strain

2383 or 2434 could be almost indiscriminately misclassified to either 2375 or 2524, in all

strategies except the third, if the actual strain is 2383, a cell is more likely to be identified

as 2375 rather than 2524, while it is the exact opposite for a cell whose actual strain is

2434. For instance, in strategy 0, there are 58 cells assigned to strain 2375 and 14 cells to

strain 2524 when the actual strain is 2383. This is 37 cells against 74 cells when the actual

strain is 2434. Note that this tendency was actually also slightly observed in some of the

base models. Lastly, while there is almost a concensus as to which strain is more accurately

predicted than the rest, which is strain 2375, there is no strain that was singled out to have

been more frequently misidentified as other strains. In fact, in most cases, their accuracy

is comparable.

Strategy True Predicted Strains Accuracy
Strains 2375 2383 2434 2524

Strategy 0

2375 48357 14 257 2381 0.9480
2383 58 40932 3679 14 0.9161
2434 37 4879 61365 74 0.9248
2524 3470 15 236 44422 0.9227

Strategy I

2375 339369 112 878 16704 0.9504
2383 374 299254 12918 235 0.9568
2434 334 22831 440052 1268 0.9474
2524 9541 121 732 326607 0.9692

Strategy II

2375 48373 25 209 2402 0.9483
2383 55 40768 3839 21 0.9124
2434 67 4806 61389 93 0.9252
2524 3252 18 199 44674 0.9279

Strategy III

2375 48645 16 182 2166 0.9537
2383 52 41579 3027 25 0.9305
2434 89 5633 60545 88 0.9124
2524 3665 21 192 44265 0.9194

Strategy IV

2375 48539 0 0 2470 0.9516
2383 0 40835 3848 0 0.9139
2434 0 4881 61474 0 0.9264
2524 3404 0 0 44739 0.9293

Strategy V

2375 345904 176 991 9992 0.9687
2383 337 296810 15425 209 0.9489
2434 313 19699 444039 434 0.9560
2524 13403 173 940 322485 0.9569

Table 13: Combined confusion matrices of the proposed strategies
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6.3 Statistical Analysis Results

We wanted to check whether the cytometer outputs of a cell are partially determined by

its strain. If there are significant differences in the cytometer outputs depending on the

strain of a particular cell, then using these outputs as predictors to determine the strain

membership of a cell is sensible.

The final model that we were able to fit included the interaction effects of the different fre-

quencies with the strain, population, day of measurement and the environmental condition

or treatment where the culture was grown or exposed to. Thus, in order to assess whether

there is enough evidence to believe that there is a difference between the cytometer output

of a certain frequency between two strain, we needed to consider not only the parameter

estimates for strain but also those of frequency and those of their interactions. Thus, we

have used several contrast statements to estimate the differences and have performed a

Wald-test to check if they are significant. The p-values are also corrected for the 48 hy-

potheses (8 frequencies x 6 pairs) simultaneously tested using Benjamini-Hocher procedure.

The results in 14 suggest that for almost all scenarios, we can reasonably believe that there

is a difference between the cytometer outputs of the different strains. The only scenarios

where this does not hold is when comparing the NIR.R cytometer output of strains 2375 and

2434 and the RED.B cytometer output of strains 2383 and 2434. Furthermore, we notice

that the absolute values of the parameter estimates for YEL.B when comparing strains of

different species (2375 vs 2383, 2375 vs 2434, 2383 vs 2524, 2434 vs 2424) were larger than

the other frequency differences. This explains why the most important feature or predictor

when creating the base models was YEL.B for those cases. Similarly, RED.R, which was

the most important predictor for the base model for 2383 and 2434, has the highest average

difference when comparing the cytometer outputs for these strains. Although the estimate

for NIR.R is also high, and almost of the same magnitude with RED.R, this was no longer

considered an important feature for the model because of its high correlation with RED.R.

This correlation could also explain the close estimated difference. However, the estimated

average difference for FSC when comparing 2375 and 2524, which was supposedly the most

important predictor, was not the largest.

However, although the results seem to be ideal, we must be careful with only taking into

account the calculated p-values. Since we have hundreds of thousands of observations, it is

not surprising to see very significant results. However, comparing the resulting differences,

for instance, to the parameter estimate of the intercept of the model, which is 3.8312, we

can vaguely say that these differences matter.

We also fit a similar model on concatenated data from organic multi-cultures and synthetic
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2375 vs 2383 2375 vs 2434 2375 vs 2524
Est. Std. Err. p-value* Est. Std. Err. p-value* Est. Std. Err. p-value*

FSC 0.9089 0.0196 < 0.0001 0.6995 0.0177 < 0.0001 -0.8609 0.0178 < 0.0001
SSC 1.5306 0.0337 < 0.0001 1.2578 0.0321 < 0.0001 0.9664 0.0335 < 0.0001

GRN.B -0.9247 0.0264 < 0.0001 -0.8268 0.0256 < 0.0001 -1.3303 0.0262 < 0.0001
YEL.B 5.5222 0.0381 < 0.0001 5.6078 0.0361 < 0.0001 1.4463 0.0377 < 0.0001
RED.B 3.8975 0.0266 < 0.0001 3.8744 0.0252 < 0.0001 1.8175 0.0259 < 0.0001
NIR.B 2.5346 0.0278 < 0.0001 2.6144 0.0270 < 0.0001 0.6839 0.0275 < 0.0001
RED.R 0.3485 0.0320 < 0.0001 1.3206 0.0305 < 0.0001 1.0565 0.0313 < 0.0001
NIR.R -0.7635 0.0306 < 0.0001 0.0671 0.0291 0.0634 -0.3433 0.0300 < 0.0001

2383 vs 2434 2383 vs 2524 2434 vs 2524
Est. Std. Err. p-value* Est. Std. Err. p-value* Est. Std. Err. p-value*

FSC -0.2094 0.0173 < 0.0001 -1.7698 0.0203 < 0.0001 -1.5604 0.0184 < 0.0001
SSC -0.2728 0.0186 < 0.0001 -0.5642 0.0223 < 0.0001 -0.2914 0.0200 < 0.0001

GRN.B 0.0979 0.0122 < 0.0001 -0.4056 0.0144 < 0.0001 -0.5035 0.0132 < 0.0001
YEL.B 0.0856 0.0206 < 0.0001 -4.0759 0.0240 < 0.0001 -4.1615 0.0213 < 0.0001
RED.B -0.0231 0.0160 0.4465 -2.0800 0.0187 < 0.0001 -2.0569 0.0164 < 0.0001
NIR.B 0.0798 0.0150 < 0.0001 -1.8507 0.0177 < 0.0001 -1.9305 0.0163 < 0.0001
RED.R 0.9721 0.0184 < 0.0001 0.7080 0.0212 < 0.0001 -0.2641 0.0192 < 0.0001
NIR.R 0.8306 0.0177 < 0.0001 0.4202 0.0203 < 0.0001 -0.4104 0.0184 < 0.0001

Table 14: Pairwise difference of the average cytometer outputs among the four strains. The
p-values were adjusted using Benjamini-Hochberg to correct for multiple-hypotheses (48) testing.

multi-cultures to investigate whether these cultures significantly differ in their cytometer

outputs. Recall that although we know that there are factors present in organic multi-

cultures that are not present in the synthetic multi-cultures that could affect the behavior

of the cells, and in turn, affect the cytometer readings, we are banking on the assumption

that such difference is minimal and can be ignored.

Similarly to the first statistical analysis, we were able to include the interaction effects of the

frequencies with date, population, condition, and the culture type (organic vs synthetic).

As such, we have also calculated the differences in the cytometer outputs per frequency

between organic and synthetic multi-cultures in all strain combinations. The results are

summarized in table 15 and show that there is enough evidence to reject the null hypoth-

esis, that is, the cytometer outputs of cells from a synthetic multi-culture are significantly

different from those of cells from an organic multi-culture. Among the 88 comparisons,

there were only 6 cases in which the analysis did not show evidence of such a difference.

These are for FSC in the multi-cultures (2383, 2434), (2375, 2383, 2434), (2375, 2434,

2524), and (2375, 2383, 2434, 2524), YEL.B in (2383, 2524) and NIR.B in (2434, 2524).

This is quite alarming because looking at the corrected p-values and even at the calculated

differences themselves, the synthetic multi-culture is quite different from the organic multi-

culture. This difference could be attributed to the interactions among the strains present

in the organic multi-cultures. Some strains interact more than others, and some interact

less. However, given the circumstances, we cannot do any better. Thus, although we have
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trained the classifiers using data that is arguably different from the data for which it is

intended, we can still use the classifier models but with great caution.

2375, 2383 2375, 2434 2375, 2524
Est. Std. Err. p-value* Est. Std. Err. p-value* Est. Std. Err. p-value*

FSC 0.1318 0.0182 < 0.0001 -0.1221 0.0166 < 0.0001 0.1253 0.0185 < 0.0001
SSC -1.7786 0.0359 < 0.0001 -1.4367 0.0411 < 0.0001 -1.2866 0.0388 < 0.0001

GRN.B 0.5890 0.0314 < 0.0001 0.7348 0.0329 < 0.0001 1.2732 0.0307 < 0.0001
YEL.B -0.8470 0.0880 < 0.0001 -2.1266 0.0959 < 0.0001 -1.4429 0.0503 < 0.0001
RED.B -1.7725 0.0431 < 0.0001 -2.5789 0.0448 < 0.0001 -1.7205 0.0325 < 0.0001
NIR.B -0.7871 0.0395 < 0.0001 -1.3902 0.0444 < 0.0001 -0.6216 0.0318 < 0.0001
RED.R -2.5367 0.0526 < 0.0001 -2.6158 0.0455 < 0.0001 -1.3211 0.0294 < 0.0001
NIR.R -0.9783 0.0462 < 0.0001 -1.0708 0.0410 < 0.0001 0.0983 0.0296 0.0049

2383, 2434 2383, 2524 2434, 2524
Est. Std. Err. p-value* Est. Std. Err. p-value* Est. Std. Err. p-value*

FSC 0.0034 0.0139 1.0000 0.3083 0.0246 < 0.0001 0.3095 0.0209 < 0.0001
SSC -2.0160 0.0375 < 0.0001 -1.1336 0.0409 < 0.0001 -1.3170 0.0397 < 0.0001

GRN.B 0.3455 0.0328 < 0.0001 1.1664 0.0342 < 0.0001 0.9927 0.0319 < 0.0001
YEL.B 0.9903 0.0348 < 0.0001 -0.0080 0.0831 1.0000 0.4057 0.0759 < 0.0001
RED.B -1.2462 0.0266 < 0.0001 -1.1824 0.0391 < 0.0001 -1.0065 0.0351 < 0.0001
NIR.B -0.3254 0.0322 < 0.0001 -0.1547 0.0371 0.0002 -0.0482 0.0355 0.9601
RED.R -4.0544 0.0456 < 0.0001 -2.5020 0.0530 < 0.0001 -2.6625 0.0428 < 0.0001
NIR.R -2.2491 0.0423 < 0.0001 -0.8917 0.0477 < 0.0001 -0.9816 0.0392 < 0.0001

2375, 2383,2434 2375, 2383, 2524 2375, 2434, 2524
Est. Std. Err. p-value* Est. Std. Err. p-value* Est. Std. Err. p-value*

FSC -0.0415 0.0162 0.0573 0.0801 0.0223 0.0018 0.0411 0.0189 0.16313
SSC -1.5416 0.0362 < 0.0001 -1.2624 0.0379 < 0.0001 -1.1963 0.0376 < 0.0001

GRN.B 0.7074 0.0303 < 0.0001 1.1133 0.0308 < 0.0001 1.2004 0.0293 < 0.0001
YEL.B -1.0667 0.0818 < 0.0001 -1.3175 0.0846 < 0.0001 -1.7354 0.0808 < 0.0001
RED.B -2.1042 0.0395 < 0.0001 -2.0221 0.0413 < 0.0001 -1.9813 0.0383 < 0.0001
NIR.B -1.0202 0.0389 < 0.0001 -0.8549 0.0379 < 0.0001 -0.8410 0.0372 < 0.0001
RED.R -2.8973 0.0491 < 0.0001 -2.0642 0.0503 < 0.0001 -1.9659 0.0383 < 0.0001
NIR.R -1.3019 0.0435 < 0.0001 -0.5869 0.0446 < 0.0001 -0.4517 0.0347 < 0.0001

2383, 2434, 2524 2375, 2383, 2434, 2524
Est. Std. Err. p-value* Est. Std. Err. p-value*

FSC 0.2162 0.0200 < 0.0001 -0.0121 0.0200 1.0000
SSC -1.3182 0.0372 < 0.0001 -1.3389 0.0364 < 0.0001

GRN.B 1.0137 0.0308 < 0.0001 1.0355 0.0291 < 0.0001
YEL.B 0.2852 0.0702 0.0003 -1.3301 0.0821 < 0.0001
RED.B -1.2428 0.0332 < 0.0001 -2.0595 0.0389 < 0.0001
NIR.B -0.2117 0.0338 < 0.0001 -0.9090 0.0373 < 0.0001
RED.R -3.2160 0.0467 < 0.0001 -2.5893 0.0461 < 0.0001
NIR.R -1.4853 0.0422 < 0.0001 -1.0133 0.0412 < 0.0001

Table 15: Difference of the average cytometer outputs between synthetic and organic
multi-cultures in each strain combination. The p-values were adjusted using Benjamini-Hochberg

to correct for multiple-hypotheses (88) testing

In section 6.2, tables 11 and 12, we redefined the notion of misclassification in the context of
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using the models in organic multi-cultures to assess the validity of the models. For similar

reason, we have compared the cytometer outputs of the mono-strain cultures and those of

the cells from the organic multi-culture predicted to belong to the same strain using strat-

egy V since along with the first strategy, it resulted in a better model. The results of the

model for each strain are given in table 16, where the parameters are indicator variables,

indicating whether or not the cell is from the multi-culture sample of a particular strain

combination. For each strain, there are a total of seven organic multi-strain cultures where

that strain is present; thus, we have a total of seven groups of cells predicted to belong

to that strain. Furthermore, the fitted model did not contain the interaction between the

frequencies and the indicator variable for the culture type.

In almost all scenarios, the analysis showed that there is enough evidence to reject the

hypotheses that the cytometer outputs of the predicted cells are indistinguishable from

those of the mono-strain cultures. Only for cells predicted to belong to strain 2383 in

the duo-culture (2383, 2434), 2434 in the multi-cultures (2375, 2434), (2434, 2524), and

(2375, 2383, 2434), and 2524 in the duo-culture (2375, 2524) was there insufficient evidence

to state that the cytometer outputs are different. These results suggest that if we firmly

believe that cells of, for instance, strain 2375 behave the same way whether cultivated in

a mono-strain environment or not, then clearly the model has failed. However, similar to

the initial warning, focusing mainly on p-values when there is a sufficiently large number

of observations in the dataset could be problematic. In fact, it could be argued that the

parameter estimates of the indicator variables in all strains are relatively small to consti-

tute a difference. In addition, the model is not accurate 100%, and so we expect that some

cells labeled as a particular strain are not really of that strain. This could also cause the

difference between the cytometer outputs.

For the last analysis, we tried to understand why strategies II and III did not perform

better than the base strategy. Recall that both of these strategies ensemble the predicted

probabilities of the base models, including those of the base strategy, albeit not in a clever

manner. It seems that the predicted probabilities obtained from the base models for the

duo-cultures are not helpful in getting better results and are just confusing the predicted

probabilities of the tetra-culture model. This could explain why the accuracies obtained are

not higher than those of strategy 0. Note that for strategies II and III, although we know,

for instance, that a culture only contains strains of 2375 (V) and 2383 (VIII), because of

the way the model is built, we will include predicted probabilities from the base model for

2434 (VIII) and 2524 (V). Pragmatically, what these predicted probabilities are trying to

do is assign a cell that is actually 2375 to 2524, and similarly a cell that is 2383 to 2434.

This is what might have caused the models for these strategies to perform poorly.

In table 17 are the results of the paired t-test performed. The first observation we make is
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Strain Parameter Estimate Std. Error p-value*

2375

2375 2383 β8 0.0627 0.0044 < 0.0001
2375 2434 β8 0.0556 0.0045 < 0.0001
2375 2524 β8 -0.0100 0.0033 0.0025

2375 2383 2434 β8 0.0708 0.0052 < 0.0001
2375 2383 2524 β8 0.0571 0.0050 < 0.0001
2375 2434 2524 β8 0.0744 0.0044 < 0.0001

2375 2383 2434 2524 β8 0.0824 0.0054 < 0.0001

2383

2375 2383 β8 -0.0216 0.0030 < 0.0001
2383 2434 β8 -0.0039 0.0028 0.1573
2383 2524 β8 0.0070 0.0026 0.0091

2375 2383 2434 β8 0.0092 0.0033 0.0074
2375 2383 2524 β8 0.0184 0.0030 < 0.0001
2383 2434 2524 β8 0.0204 0.0029 < 0.0001

2375 2383 2434 2524 β8 0.0232 0.0034 < 0.0001

2434

2375 2434 β8 0.0021 0.0033 0.5286
2383 2434 β8 -0.0227 0.0034 < 0.0001
2434 2524 β8 -0.0045 0.0027 0.1201

2375 2383 2434 β8 0.0081 0.0041 0.0643
2375 2434 2524 β8 -0.0186 0.0033 < 0.0001
2383 2434 2524 β8 0.0114 0.0037 0.0037

2375 2383 2434 2524 β8 0.0468 0.0044 < 0.0001

2524

2375 2524 β8 0.0065 0.0060 0.2821
2383 2524 β8 0.0273 0.0066 < 0.0001
2434 2524 β8 -0.0282 0.0056 < 0.0001

2375 2383 2524 β8 0.0467 0.0082 < 0.0001
2375 2434 2524 β8 0.0449 0.0076 < 0.0001
2383 2434 2524 β8 0.0464 0.0078 < 0.0001

2375 2383 2434 2524 β8 0.0724 0.0087 < 0.0001

Table 16: Results of comparing the cytometer outputs of the mono-strain cultures to those of cells
predicted to belong to a given strain that were cultivated in a multi-strain set-up. The p-values

were adjusted using Benjamini-Hochberg to correct for multiple-hypotheses (7) testing

how similar the average predicted probabilities are whether we have used the appropriate

models or not, and they are almost equal to 1.00. This is generally true except for 2434,

where the inappropriate models yielded a much inferior value. This only means that instead

of classifying some cells of strain 2434 to its co-species 2383, they are being classified to the

strains of other species. The second observation is that for all strains, the paired t-tests

resulted in having rejected the null hypothesis that the average predicted probabilities are

the same. Although this is not what was expected, perhaps the models in strategies II and

III do not discriminate these predicted probabilities, thus resulting in inferior accuracies.
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Strain
Average of predicted probabilities

p-value
Appropriate models Inappropriate models Mean Difference

2375 0.9965 0.9802 0.0163 < 0.0001
2383 0.9977 0.9964 0.0013 < 0.0001
2434 0.9966 0.6469 0.3497 < 0.0001
2524 0.9965 0.9919 0.0045 < 0.0001

Table 17: Paired t-test results of comparing the predicted probabilities of appropriate models and
inappropriate models on duo-culture data.

7 Conclusion and Future Studies

In order to discriminate the cells in samples of multi-strain cultures, we have created var-

ious base models and implemented various strategies to combine the results of these base

models. The base models are quite accurate, and the accuracies increase by up to almost

100% when classifying cells belonging to different species, in which case the most important

predictor is YEL.B. However, these accuracies drop to around 92-94%, which are still high,

when classifying strains from the same species. In these cases, the indicator variables for

the culture environment conditions and the days of measurement seem to have an impact on

the model, suggesting that it is harder to discriminate cells belonging to the same species.

In addition, when classifying cells of species V (2375, 2524), FSC is the most important

predictor, while this is RED.R for species VIII (2383, 2434). Lastly, when building base

models for tri-strain and tetra-strain cultures using random forests, for pairs of almost per-

fectly correlated cytometer outputs like RED.R and NIR.R, and RED.B and NIR.B, only

one cytometer output of each pair is important. This is not the case for the xgboost base

models, where the most important features are YEL.B, FSC, and RED.R.

We ensemble the xgboost base models to combine the patterns learned in each multi-culture

model. Ensembling naively leads to inferior models, as in the case with strategies II and

III, while ensembling with hints of which strain a cell could belong to is better, as in the

case with strategies I and V. Nevertheless, these remain inferior to just using the base

models individually, and even assign cells to strains not present in the multi-culture. This

kind of misclassification is non-existent in the base models. However, this misclassification

could be seen as a positive feature of ensembling. It could be argued that removing the

misclassified cells could be seen as removing uncertainties since the ensembled model does

not confidently classify them to any strains present in the multi-culture from which the cell

is sampled.

All these models have been built under the principles of supervised machine learning and

were trained on synthetic multi-cultures, working on the assumption that the cells’ char-

acteristics remain unchanged, or at least are insignificant, whether they are cultivated

separately, that is, one strain per culture, or are cultivated in the presence of other strains.
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The statistical analysis performed showed that in most cases, we have found significant

evidence to reject our assumption. Thus, the models to predict strain memberships of cells

in organic multi-cultures must be used cautiously.

Given this, we do not have any mechanisms to assess whether the models correctly dis-

criminate cells and assign them to their correct strains. In order to gauge the correctness

of the models, we have compared the cytometer outputs of cells from mono-strain cultures

and cells from organic multi-strain cultures predicted to belong to a given strain. Our

statistical analysis was performed on the assumption that they are similar, and thus we

expect no significance difference. However, as our results showed, this is not mainly the

case. However, the parameter estimates for the observed differences are relatively small.

The difficulty encountered in classification and the uncertainties with the statistical analy-

sis could be both attributed to the inter-strain interaction in organic multi-culture setups

that were not captured in the synthetic multi-cultures with which the models were trained.

For future studies, instead of using all predictors, we might just want to use the most

important features identified above. Accordingly, instead of modeling all cytometer out-

puts to determine whether synthetic multi-cultures are significantly different from organic

multi-cultures, it should be enough to only model the cytometer outputs which were re-

tained as predictors. Furthermore, it might be wise to train the models only on synthetic

multi-cultures that are shown to have no significant difference to the organic multi-cultures.

In addition, we have seen how base models for multi-cultures containing strains of the same

species have lower accuracies. Adjusting the model parameters could help to improve

model performance. Thus, hyper-tuning the model parameters is recommended. Alterna-

tive strategies in combining the base models could also be explored, for instance, combining

4 one-vs-rest models and 6 pairwise models.

Lastly, to incorporate inter-strain interactions, we could set up a smaller experiment of

multi-strain cultures, where we employ various techniques to know the actual strains of

cells of a small sample, for example, using molecular techniques only on around a hundred

or so cells. This would allow us to use supervised machine learning directly on organic

multi-strain cultures.

36



Figure 16: Population evolution strains in synthetic multi-cultures (left) and in organic
multi-cultures (middle) after using the random forest classifiers, and the feature scores of the

predictors used in each classifier (right).

37



Figure 17: Population evolution strains in synthetic multi-cultures (left) and in organic
multi-cultures (middle) after using the xgboost classifiers, and the feature scores of the predictors

used in each classifier (right).
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Figure 18: Population evolution strains in synthetic multi-cultures (left) and in organic
multi-cultures (middle) after using xgboost classifiers, and the feature scores of the predictors,

which includes the population, used in each classifier (right).
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Figure 19: Population evolution of strains in organic multi-cultures (left) after using the various
proposed strategies, and the proportion of population assigned to strains not part of the organic

multi-culture (right).
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A Appendices

A.1 Complete Base Model Population Plots

Figure 20: Population evolution of synthetic duo-cultures (left) and organic duo-cultures (middle)
resulting from allocating the actual duo-culture population using strain membership predictions

using random forest classifiers, and the feature scores of the predictors used (right).
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Figure 21: Population evolution of synthetic duo-cultures (left) and organic duo-cultures (middle)
resulting from allocating the actual duo-culture population using strain membership predictions of
cells using xgboost classifiers, and the feature scores of the predictors used in each classifier (right).
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Figure 22: Population evolution of synthetic duo-cultures (left) and organic duo-cultures (middle)
resulting from allocating the actual duo-culture population using strain membership predictions of
cells using xgboost classifiers, and the feature scores of the predictors, including population, used

in each classifier (right).
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Figure 23: Population evolution of synthetic tri-cultures and tetra-culture (left) and organic
tri-cultures and tetra-culture (middle) resulting from allocating the actual tri-culture and
tetra-culture population using strain membership predictions of cells using random forest

classifiers, and the feature scores of the predictors used in each classifier (right).
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Figure 24: Population evolution of synthetic tri-cultures and tetra-culture (left) and organic
tri-cultures and tetra-culture (middle) resulting from allocating the actual tri-culture and

tetra-culture population using strain membership predictions of cells using xgboost classifiers, and
the feature scores of the predictors used in each classifier (right).

47



Figure 25: Population evolution of synthetic tri-cultures and tetra-culture (left) and organic
tri-cultures and tetra-culture (middle) resulting from allocating the actual tri-culture and

tetra-culture population using strain membership predictions of cells using xgboost classifiers, and
the feature scores of the predictors, including population, used in each classifier (right).
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A.2 Selected Population Plots of Proposed Strategies

Figure 26: Population evolution of synthetic multi-cultures (left) and organic multi-cultures
(middle) resulting from allocating the actual multi-culture population using strain membership

predictions of cells using strategy o, and the proportion of population assigned to strains not part
of the organic multi-culture (right).
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Figure 27: Population evolution of synthetic multi-cultures (left) and organic multi-cultures
(middle) resulting from allocating the actual multi-culture population using strain membership

predictions of cells using strategy I, and the proportion of population assigned to strains not part
of the organic multi-culture (right).
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Figure 28: Population evolution of synthetic multi-cultures (left) and organic multi-cultures
(middle) resulting from allocating the actual multi-culture population using strain membership

predictions of cells using strategy II, and the proportion of population assigned to strains not part
of the organic multi-culture (right).
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Figure 29: Population evolution of synthetic multi-cultures (left) and organic multi-cultures
(middle) resulting from allocating the actual multi-culture population using strain membership

predictions of cells using strategy III, and the proportion of population assigned to strains not part
of the organic multi-culture (right).
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Figure 30: Population evolution of synthetic multi-cultures (left) and organic multi-cultures
(middle) resulting from allocating the actual multi-culture population using strain membership

predictions of cells using strategy IV, and the proportion of population assigned to strains not part
of the organic multi-culture (right).
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Figure 31: Population evolution of synthetic multi-cultures (left) and organic multi-cultures
(middle) resulting from allocating the actual multi-culture population using strain membership

predictions of cells using strategy V, and the proportion of population assigned to strains not part
of the organic multi-culture (right).
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A.3 Relevant Python Codes

def run_trial(df_dict, mono_strains, combi_strains, combi_type,

clf, inc_pop=False, show_bplots=False,

encode_output=False, input_columns=None):

if inc_pop:

scale_cols = laser_columns + [’pop’]

else:

scale_cols = laser_columns

strain_map = {strain:i for i, strain in

enumerate(mono_strains)}

encoder, scaler = (None, None)

new_encoded_cols, new_scaled_cols = ([], [])

for type_ in df_dict.keys():

strain_filters = (’strains’, combi_strains) if type_ ==

’combi’ else (’strain’, mono_strains)

df_dict[type_], encoder, scaler, new_encoded_cols,

new_scaled_cols = aux.preprocess_data(

df_dict[type_], encoder=encoder, scaler=scaler,

encode_cols=categorical_columns,

scale_cols=scale_cols,

strain_filters=strain_filters)

df_dict[type_] = pd.concat([df_dict[type_],

pd.DataFrame(np.zeros((df_dict[type_].shape[0],

len(all_strains))), columns=all_strains)], axis=1)

if encode_output and type_ in [’train’, ’val’, ’test’]:

df_dict[type_][’strain_alt’] = df_dict[type_]

[’strain’].map(strain_map)

input_columns = new_encoded_cols + new_scaled_cols +

[’date’] if input_columns is None else input_columns

output_column = ’strain_alt’ if encode_output else ’strain’

acc_dict = {}

clf, acc_dict[’train’] = aux.train(clf, df_dict[’train’]

[input_columns], df_dict[’train’]
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[[output_column]].iloc[:, 0], v=False)

for type_ in [’train’, ’val’, ’test’]:

acc_dict[type_] = aux.evaluate(clf, df_dict[type_]

[input_columns], df_dict[type_]

[[output_column]].iloc[:, 0], t=type_)

print(type_)

for strain in mono_strains:

cur_acc = aux.evaluate(clf,

df_dict[type_].loc[df_dict[type_]

["strain"].isin([strain])][input_columns],

df_dict[type_].loc[df_dict[type_]["strain"]

.isin([strain])][[output_column]].iloc[:, 0],

t=type_)

print(f’{strain}: {cur_acc}’)

preds_ = pd.Series(clf.predict(df_dict[type_]

.loc[df_dict[type_]["strain"].isin([strain])][input_columns]))

if encode_output:

preds_ = preds_.apply(lambda x: mono_strains[x])

print(preds_.value_counts().sort_index())

df_dict[’combi’][output_column] = clf.predict(df_dict[’combi’][input_columns])

if encode_output:

df_dict[’combi’][’strain’] = df_dict[’combi’][output_column]

.map(lambda x: mono_strains[x])

for type_ in df_dict.keys():

temp_pred_proba = np.transpose(clf.predict_proba

(df_dict[type_][input_columns]))

for i, strain in enumerate(mono_strains):

df_dict[type_][strain] = temp_pred_proba[i]

if show_bplots:

df_dict[’train’][’exp_type’] = np.repeat

(’mono’, df_dict[’train’].shape[0])

df_dict[’combi’][’exp_type’] = np.repeat

(df_dict[’combi’], df_dict[’combi’].shape[0])

aux.show_boxplots(3, 3, laser_columns, pd.concat

([df_dict[’train’], df_dict[’combie’]], axis=0),
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[’strain’, ’exp_type’], [(strain, exp_type) for

strain in mono_strains for exp_type in [’mono’,

combi_type]])

feature_importances = pd.DataFrame()

input_columns_alt = [input_column.replace(’.HLin_ss’, ’’)

for input_column in input_columns]

if isinstance(clf, XGBClassifier):

feature_importances[’mean’] =

pd.Series(clf.feature_importances_, index=input_columns_alt)

elif isinstance(clf, RandomForestClassifier):

result = permutation_importance(

clf, df_dict[’test’][input_columns], df_dict[’test’]

[[output_column]].iloc[:, 0],

n_repeats=10, random_state=1010, n_jobs=4

)

feature_importances[’mean’] =

pd.Series(result.importances_mean, index=input_columns_alt)

feature_importances[’std’] =

pd.Series(result.importances_std, index=input_columns_alt)

return clf, encoder, scaler, df_dict, acc_dict, feature_importances

def get_clf(clf_opt=’knn’):

if clf_opt == ’xgbc’:

return XGBClassifier(n_jobs=4, random_state=1010)

elif clf_opt == ’rfc’:

return RandomForestClassifier(n_jobs=4, random_state=1010)

else:

return KNeighborsClassifier(n_jobs=4)

def run_trial_for_exp(exp_type, clf_opt=’knn’, inc_pop=False,

save_dfs=False, save_models=False, encode_output=False):

acc_dict_list = {’strains’:strain_combi[exp_type], ’train’:[],

’val’:[], ’test’:[]}

for strains in strain_combi[exp_type]:

strain_list = aux.strain_to_list(strains)
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clf = get_clf(clf_opt)

model, encoder, scaler, df_dict, acc_dict, feature_importances

= run_trial({’train’:df_mono_train,

’val’:df_mono_val, ’test’:df_mono_test,

’combi’:df_exp[exp_type]}, strain_list, [strains],

exp_type, clf, show_bplots=False, inc_pop=inc_pop,

encode_output=encode_output)

fig, ax = plt.subplots(1, 3, figsize=(15*1.5, 3*1.5))

df_temp_1, pop_col_1, _ = aux.calculate_pop(df_dict[’train’],

mono_data=True, strain_col=’strain’)

df_temp_2, pop_col_2, _ = aux.calculate_pop(df_dict[’combi’],

mono_data=False, strain_col=’strain’)

aux.time_series_plot(df_temp_1, ax=ax[0], pop_col=pop_col_1)

aux.time_series_plot(df_temp_2, ax=ax[1], pop_col=pop_col_2,

dates_to_exclude=aux.dates_to_exclude[strains])

ax[0].set_title(f’synthetic {exp_type}-culture’)

ax[1].set_title(f’organic {exp_type}-culture’)

ax[0].set_ylim(0, 1e6)

ax[1].set_ylim(0, 1e6)

#print(feature_importances)

feature_importances[’mean’].plot.bar(yerr=feature_importances[’std’]

if clf_opt == ’rfc’ else None, ax=ax[2])

ax[2].set_title("Feature importance")

ax[2].set_ylabel("Score")

#fig.tight_layout()

#plt.show()

for key in acc_dict.keys():

acc_dict_list[key].append(acc_dict[key])

if save_dfs:

dirname = ’data/base_model/’

for key, df_ in df_dict.items():

df_.to_csv(f’{dirname}{key}_{strains}

58



{"_with_pop" if inc_pop else ""}.csv’, index=False)

if save_models:

aux.save_model(model,

f’base_models/{type(clf)}_{exp_type}_{strains}.pkl’)

aux.save_model(scaler,

f’scalers/scaler_{exp_type}_{strains}.pkl’)

aux.save_model(encoder,

f’encoders/encoder_{exp_type}_{strains}.pkl’)

print(pd.DataFrame(acc_dict_list))

#Base models

run_trial_for_exp(’duo’, clf_opt=’rfc’)

run_trial_for_exp(’duo’, clf_opt=’xgbc’, encode_output=True)

run_trial_for_exp(’tri’, clf_opt=’rfc’)

run_trial_for_exp(’tri’, clf_opt=’xgbc’, encode_output=True)

run_trial_for_exp(’tetra’, clf_opt=’rfc’)

run_trial_for_exp(’tetra’, clf_opt=’xgbc’, encode_output=True)

#Strat 0

exp_type = ’tetra’

strat_o_model, encoder, scaler, df_dict, acc_dict, feature_importances =

run_trial({’train’:df_mono_train, ’val’:df_mono_val, ’test’:df_mono_test,

’combi’:df_exp[exp_type]}, all_strains, strain_combi[exp_type], exp_type,

clf=XGBClassifier(n_jobs=4, random_state=1010), show_bplots=False,

encode_output=True, inc_pop=False)

for type_ in [’train’, ’val’, ’test’]:

for strain in all_strains:

df_temp = df_dict[type_].loc[df_dict[type_][’strain’].isin([strain])]

aux.evaluate(strat_o_model, df_temp[inp])

df_combi = pd.concat([df_exp[exp_type] for exp_type in strain_combi.keys()],

axis=0).reset_index().iloc[:,1:]

df_combi, encoder, scaler, new_encoded_cols, new_scaled_cols =

aux.preprocess_data(df_combi, encoder=encoder, scaler=scaler,

encode_cols=categorical_columns, scale_cols=laser_columns)

input_columns = new_encoded_cols + new_scaled_cols + [’date’]
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output_columns = [’strain’]

predictions = pd.Series(strat_o_model.predict(

df_combi[input_columns]), name=’strain’)

predictions = predictions.map(lambda x: all_strains[x])

strat_o_plot_data = aux.assess_discrimination(

predictions, df_mono_train, df_combi, strain_combi)

#Strat I

inputs = keras.Input(shape=(len(input_columns),))

x = layers.Dense(units=32, activation=’relu’)(inputs)

x = layers.Dense(units=64, activation=’relu’)(x)

outputs = layers.Dense(units=len(all_strains), activation=’softmax’)(x)

model = keras.Model(inputs, outputs)

output_encoder = layers.IntegerLookup(vocabulary=all_strains,

num_oov_indices=0)

model.compile(optimizer=’rmsprop’,

loss=’sparse_categorical_crossentropy’, metrics=[’accuracy’])

callbacks = [keras.callbacks.ModelCheckpoint(

filepath=’strat_1_model.keras’,

save_best_only=True,

monitor=’val_loss’

)]

model.fit(

df_dict[’train’][input_columns],

output_encoder(df_dict[’train’][output_columns]),

epochs=20,

validation_data=(df_dict[’val’][input_columns],

output_encoder(df_dict[’val’][output_columns])),

callbacks=callbacks,

verbose=True)

callback_model = keras.models.load_model(’strat_1_model.keras’)

for type_ in [’train’, ’val’, ’test’]:

print(type_)
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print(callback_model.evaluate(df_dict[type_][input_columns],

output_encoder(df_dict[type_][output_columns])))

combi_predictions = callback_model.predict(df_dict[’combi’][input_columns])

combi_predictions = pd.Series([all_strains[combi_prediction.argmax()]

for combi_prediction in combi_predictions], name=’strain’)

strat_1_plot_data = aux.assess_discrimination(combi_predictions,

df_mono_train, df_dict[’combi’], strain_combi)

#Strat II

def extract_features(df):

new_features = []

for exp_type, strains_list in strain_combi.items():

for strains in strains_list:

e_ = aux.load_model(f’encoders/encoder_{exp_type}_{strains}.pkl’)

s_ = aux.load_model(f’scalers/scaler_{exp_type}_{strains}.pkl’)

model_ = aux.load_model(f"base_models/<class

’xgboost.sklearn.XGBClassifier’>_{exp_type}_{strains}.pkl")

df_, _, _, new_encoded_cols, new_scaled_cols =

aux.preprocess_data(df, encoder=e_, scaler=s_,

encode_cols=categorical_columns, scale_cols=laser_columns)

new_features.append(pd.DataFrame(model_.

predict_proba(df_[new_encoded_cols + new_scaled_cols

+ [’date’]]), columns=[f’{strains}.{strain}’

for strain in aux.strain_to_list(strains)]))

return pd.concat(new_features, axis=1)

strain_dict = {strain:i for i, strain in enumerate(all_strains)}

encoder, scaler = (None, None)

new_encoded_cols, new_scaled_cols = ([], [])

for type_ in df_dict.keys():

df_temp = pd.DataFrame()

df_temp[laser_columns + categorical_columns +

[’date’, ’repl’, ’pop’]] = df_dict[type_][laser_columns

+ categorical_columns + [’date’, ’repl’, ’pop’]]

if type_ in [’train’, ’val’, ’test’]:

df_temp[’strain’] = df_dict[type_][’strain’]
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df_temp[’strain_sparse’] = df_dict[type_][’strain’].

map(lambda x: strain_dict[x])

else:

df_temp[’strains’] = df_dict[type_][’strains’]

df_temp, encoder, scaler, new_encoded_cols, new_scaled_cols =

aux.preprocess_data(

df_temp, encoder=encoder, scaler=scaler,

encode_cols=categorical_columns, scale_cols=laser_columns)

df_new_features = extract_features(df_dict[type_])

df_dict[type_] = pd.concat([df_temp, df_new_features], axis=1)

aux.save_model_(df_dict, ’data/strat_ii/strat_ii_df_dict.pkl’)

acc_dict = {}

output_columns = [’strain_sparse’]

clf_xgbc, acc_dict[’train’] = aux.train(XGBClassifier(n_jobs=4,

random_state=1010), df_dict[’train’][input_columns],

df_dict[’train’][output_columns].iloc[:, 0], v=False)

for type_ in [’val’, ’test’]:

acc_dict[type_] = aux.evaluate(clf_xgbc, df_dict[type_]

[input_columns], df_dict[type_][output_columns].

iloc[:, 0], v=False, t=type_)

xgbc_predictions = pd.Series(clf_xgbc.

predict(df_dict[’combi’][input_columns]), name=’strain’)

xgbc_predictions = xgbc_predictions.map(lambda x: all_strains[x])

strat_ii_xgbc_plot_dat = aux.assess_discrimination(xgbc_predictions,

df_mono_train, df_dict[’combi’], strain_combi)

#Strat III

all_new_features = []

for exp_type, strains_list in strain_combi.items():

for strains in strains_list:

new_features = []

for strain in aux.strain_to_list(strains):

new_features.append(f’{strains}.{strain}’)

all_new_features.append(new_features)
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all_new_features

inputs = []

xs = []

for new_features in all_new_features:

input = Input(shape=(len(new_features),))

x = input

for size in [32, 32]:

x = keras.layers.BatchNormalization()(x)

x = keras.layers.Dense(units=size, activation=’relu’)(x)

inputs.append(input)

xs.append(x)

x = keras.layers.concatenate(xs)

outputs = keras.layers.Dense(units=4, activation=’softmax’)(x)

strat_3_model = keras.Model(inputs, outputs)

strat_3_model.compile(optimizer=keras.optimizers.

RMSprop(learning_rate=0.0005), loss=’sparse_categorical_crossentropy’, metrics=[’accuracy’])

callbacks = [keras.callbacks.ModelCheckpoint(

filepath=’strat_3_model.keras’,

save_best_only=True,

monitor=’val_loss’

)]

strat_3_model.fit(

[df_dict[’train’][new_features] for new_features in all_new_features],

df_dict[’train’][’strain_sparse’],

epochs=10,

validation_data=([df_dict[’val’][new_features]

for new_features in all_new_features], df_dict[’val’][’strain_sparse’]),

callbacks=callbacks,

verbose=True)

callback_model = load_model(’strat_3_model.keras’)

for type_ in [’train’, ’val’, ’test’]:

print(type_)
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print(callback_model.evaluate([df_dict[type_][new_features]

for new_features in all_new_features], df_dict[type_][’strain_sparse’]))

predictions = callback_model.predict([df_dict[’combi’][new_features]

for new_features in all_new_features])

predictions = pd.Series([all_strains[prediction.argmax()]

for prediction in predictions], name=’strain’)

strat_iii_nn_plot_data = aux.assess_discrimination(predictions,

df_mono_train, df_dict[’combi’], strain_combi)

#Strat IV

acc_dict = {}

output_columns = ’species’

clf_xgbc_spec, acc_dict[’train’] = aux.train(XGBClassifier(n_jobs=4,

random_state=4), df_dict[’train’][input_columns],

df_dict[’train’][output_columns], v=False)

for type_ in [’val’, ’test’]:

acc_dict[type_] = aux.evaluate(clf_xgbc_spec,

df_dict[type_][input_columns],

df_dict[type_][output_columns], v=False, t=type_)

print(f’{acc_dict}’)

acc_dict = {}

output_columns = ’strain’

output_encoder = IntegerLookup(vocabulary=all_strains, num_oov_indices=0)

clf_xgbc_strain, acc_dict[’train’] = aux.train(

XGBClassifier(n_jobs=4, random_state=1010),

df_dict[’train’][input_columns + input_columns_extra

+ [’species’]], output_encoder(df_dict[’train’][output_columns]), v=False)

for type_ in [’val’, ’test’]:

acc_dict[type_] = aux.evaluate(clf_xgbc_strain,

df_dict[type_][input_columns + input_columns_extra + [’species’]],

output_encoder(df_dict[type_][output_columns]), v=False, t=type_)

print(f’{acc_dict}’)
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def get_species(row, strains, species_dict, special_strains, clf_spec):

if strains in special_strains:

return species_dict[aux.strain_to_list(strains)[0]]

return clf_spec.predict(row)

df_dict[’combi’][’species’] = clf_xgbc_spec.

predict(df_dict[’combi’][input_columns])

special_strains = {’2375_2524’, ’2383_2434’}

list_of_df = []

for exp_type, strain_list in strain_combi.items():

for strains in strain_list:

if strains in special_strains:

df_dict[’combi’].loc[df_dict[’combi’][’strains’]

.isin([strains]), ’species’] =

np.repeat(species_dict[aux.strain_to_list(strains)[0]],

df_dict[’combi’].loc[df_dict[’combi’][’strains’]

.isin([strains])].shape[0])

else:

df_dict[’combi’].loc[df_dict[’combi’][’strains’]

.isin([strains]), ’species’] = clf_xgbc_spec

.predict(df_dict[’combi’].loc[df_dict[’combi’][’strains’]

.isin([strains])][input_columns])

predictions = pd.Series(clf_xgbc_strain

.predict(df_dict[’combi’][input_columns + input_columns_extra

+ [’species’]]), name=’strain’)

predictions = predictions.map(lambda x: all_strains[x])

strat_iv_plot_data = aux.assess_discrimination(predictions,

df_mono_train, df_dict[’combi’], strain_combi)

#Strat V

new_columns = [’2375_2383’, ’2375_2434’, ’2375_2524’,

’2383_2434’, ’2383_2524’, ’2434_2524’]

for type_ in [’train’, ’val’, ’test’]:

list_new_df = []

for strain in all_strains:
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for exp_type, strain_list in strain_combi.items():

for strains in strain_list:

if str(strain) not in strains:

continue

temp_df = df_dict[type_].loc[df_dict[type_][’strain’]

.isin([strain])].copy()

temp_df.loc[:, [’strains’]] = strains

strain_set = set(aux.strain_to_list(strains))

for new_column in new_columns:

new_col_set = set(aux.strain_to_list(new_column))

temp_df.loc[:, [new_column]] = len(strain_set

.intersection(new_col_set)) / 2

list_new_df.append(temp_df)

df_dict[type_] = pd.concat(list_new_df).reset_index().iloc[:,1:]

for exp_type, strain_list in strain_combi.items():

for strains in strain_list:

strain_set = set(aux.strain_to_list(strains))

for new_column in new_columns:

new_col_set = set(aux.strain_to_list(new_column))

df_dict[’combi’].loc[df_dict[’combi’][’strains’]

.isin([strains]), [new_column]]

= len(strain_set.intersection(new_col_set)) / 2

acc_dict = {}

output_columns = [’strain_sparse’]

new_input_columns = input_columns + pred_columns + new_columns

clf_xgbc, acc_dict[’train’] = aux.train(XGBClassifier(n_jobs=4,

random_state=1010),

df_dict[’train’][new_input_columns], df_dict[’train’][output_columns]

.iloc[:, 0], v=False)

for type_ in [’val’, ’test’]:

acc_dict[type_] = aux.evaluate(clf_xgbc,

df_dict[type_][new_input_columns], df_dict[type_][output_columns]

.iloc[:, 0], v=False, t=type_)

acc_dict

xgbc_predictions = pd.Series(clf_xgbc.predict
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(df_dict[’combi’][new_input_columns]), name=’strain’)

xgbc_predictions = xgbc_predictions.map(lambda x: all_strains[x])

strat_v_xgbc_plot_dat = aux.assess_discrimination(xgbc_predictions,

df_mono_train, df_dict[’combi’], strain_combi)

aux.save_model_(strat_v_xgbc_plot_dat, ’data/plot/strat_v_xgbc_plot_data.pkl’)
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A.4 Relevant SAS Codes

PROC MIXED DATA=WORK.IMPORT METHOD=ML;

CLASS id sample_id repl(ref=’1’) strain(ref=’2375’)

treat_alt freq(ref=’FSC.HLin’);

MODEL cytout = date pop repl treat_alt strain freq

freq*date freq*pop freq*treat_alt freq*strain / SOLUTION COVB;

REPEATED freq / SUBJECT=id type=un rcorr;

ODS OUTPUT COVPARMS=covparms;

RUN;

PROC MIXED DATA=WORK.IMPORT METHOD=ML;

CLASS id sample_id repl(ref=’1’) cult_type(ref=’organic’)

treat_alt freq(ref=’FSC.HLin’);

MODEL cytout = date pop repl treat_alt cult_type freq

freq*date freq*cult_type freq*pop freq*treat_alt / SOLUTION COVB;

PARMS / PARMSDATA=work.covparms;

REPEATED freq / SUBJECT=id type=un rcorr;

ODS OUTPUT SolutionF=stat_anal_2;

RUN;

PROC MIXED DATA=WORK.IMPORT METHOD=ML;

CLASS id sample_id repl(ref=’1’) membership(ref=’actual’)

treat_alt repl freq(ref=’FSC.HLin’);

MODEL cytout = date pop repl treat_alt membership freq

freq*date freq*pop / SOLUTION;

REPEATED freq / SUBJECT=id type=un rcorr;

PARMS / PARMSDATA=work.cov_parms_in;

ODS OUTPUT SolutionF=stat_anal_3_date_mem_pop;

ODS OUTPUT COVPARMS=cov_parms_out;

RUN;
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A.5 Relevant R Codes

check_contrast <- function(beta_, var_cov_mat_, cont_, p_, n_){

idx <- c(3, 6, 8, 5, 7, 2, 4, 1)

beta_ <- matrix(beta_, p_, 1)

var_cov_mat_ <- matrix(var_cov_mat_, p_, p_)

cont_ <- t(matrix(cont_, p_, 8))

estimate <- cont_ %*% beta_

stderr <- diag(sqrt(cont_ %*% var_cov_mat_ %*% t(cont_)))

df <- round(data.frame(idx, estimate, stderr), 4)

df$tval <- round(df$estimate/df$stderr, 4)

df$pval <- 1-pnorm(abs(df$tval))

df$pval_adj <- round(p.adjust(df$pval, method=’BH’, n=n_), 5)

df$pval <- round(df$pval, 5)

df <- df[order(df$idx),]

df

}
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