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Abstract

Feature extraction from Electronic Health Records (EHR) data is one of the crucial
steps in observational studies. This requires translating high-level clinical concepts into
queries compatible with standard terminologies. Observational health data are often
standardised to the commonly used OMOP-CDM standards. This enables us to carry
out efficient analyses that can generate reliable evidence. However, understanding these
standards and vocabulary terms requires medical knowledge, particularly for users
without domain expertise. Defining and extracting relevant features from structured
EHRs remains a key challenge. This thesis proposes an RAG-enhanced LLM pipeline to
extract required features from the OMOP-CDM concepts of SNOMED CT vocabulary.
When the user inputs the query or the feature, the input is encoded and compared
against pre-generated embeddings - OMOP concepts stored in a vector database. The
top-k most semantically similar matches are retrieved and passed to the LLM using a
structured prompt. The LLM generates context-aware concept IDs as suggestions. This
workflow has been successfully validated in the context of the REALM project, where
it supports the generation of standardised AI feature sets from natural language cohort
definitions. This framework enables the semantic mapping of natural language cohort
definitions to standardise queries compliant with the OMOP-CDM, thus improving
the accuracy of feature mapping. The end-to-end automation of this process makes
it accessible to users, even those without expertise in the medical field. In the future
stage, this workflow will be integrated into the REALM testing environment, where
the AI model developer can directly get the recommendations of the concept names
while submitting the cohort requirements. The proposed RAG-LLM pipeline focuses
on helping AI model developers map cohort features to OMOP-CDM standards, to
evaluate their software with a focus on safety, efficacy, and usability, for the direct
benefit of patients and healthcare professionals.



Acronyms

API Application Programming Interface

COPD Chronic Obstructive Pulmonary Disease

GPU Graphics Processing Unit

HPC High-Performance Computing

JSON Java Script Object Notation

Llama Large Language Model Meta AI

LLM Large Language Model

MIMIC Medical Information Mart for Intensive Care

NLP Natural language processing

OMOP-CDM Observational Medical Outcomes Partnership- Common Data Model

OHDSI Observational Health Data Sciences and Informatics

PostgreSQL Relational database management system for Structured Query Language (SQL)

RAG Retrieval Augmented Generation

REALM Real-world-data Enabled Assessment for heaLth regulatory

RIANA REALM Intelligent Analytics Dashboard

RWD Real World Data

SNOMED Systematized Nomenclature of Medicine

SBERT Sentence-Bidirectional Encoder Representations from Transformers

VITO Vlaamse Instelling voor Technologisch Onderzoek



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Description 6
2.1 OHDSI Standardized Vocabularies . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Extracted features from Model Cards . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 8
3.1 Retrieval Augmented Generation . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Large Language Model (LLM) . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Prompt Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Zero-Shot Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Project Pipeline: Architecture Overview . . . . . . . . . . . . . . . . . . . 11
3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results 16
4.1 Initial Prototype with Domain: CONDITION . . . . . . . . . . . . . . . . 16
4.2 Separate pipeline for each domain . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Single RAG-LLM pipeline with all six domains . . . . . . . . . . . . . . . 21
4.4 Advanced RAG with Query Routing . . . . . . . . . . . . . . . . . . . . . 23

5 Discussion 24

6 Conclusion 27

Appendices 30

A OHDSI Symposium Europe 2025 30
A.1 OHDSI Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.2 OHDSI Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B OMOP Common Data Model (CDM) 35

C OHDSI Tools 36
C.1 Athena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C.2 Usagi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

D RIANA Dashboard 37

E Model Cards 38



1 Introduction

1.1 Background

Real-world data (RWD) in healthcare includes routinely collected records from various
sources, including electronic health records (EHR), wearable devices, claims, registries, etc.
The advancement in digital data-driven technologies has widely attracted researchers to use
RWD for different analyses. One of the biggest challenges for people working in health data
science is data standardization Ziletti and D’Ambrosi (2024). Across the world, different
hospitals, registries, etc., use different standards or medical coding dictionaries for data
capture. Using a unified data model is extremely difficult or impossible.

The Observational Medical Outcome Partnership Clinical Data Model (OMOP-CDM)
transforms the diverse structure of these data into a common data model, making it globally
interoperable OHDSI OMOP-CDM (2025). This allows researchers or data users to make
use of healthcare data seamlessly Wilkinson et al. (2016). Data scientists or statisticians
can utilize the vast amount of real-world data to make predictions and inferences that can
generate reliable evidence. This often requires high-quality data that is representative of
a broader distribution or population. Thereby translating high-level clinical concepts into
queries compatible with the OMOP-CDM standard terminologies. However, understanding
these standards and vocabulary terms requires medical knowledge, along with OMOP-CDM
expertise. This makes feature extraction crucial, particularly for users without domain exper-
tise Yang et al. (2022). Defining and extracting relevant features from structured Electronic
Health Records (EHRs) that adhere to OMOP-CDM standards remains a key challenge. Cur-
rently, Observational Health Data Sciences and Informatics (OHDSI) tools such as Athena
and Usagi are used to search and help users map vocabulary following OMOP concepts
OHDSI Tools (2025). However, these tools come with their own limitations and do not meet
the exact contextual requirements.

This thesis proposes a concept mapping pipeline using strategies different from the
traditional NLP (Natural Language Processing) techniques and searching algorithms used by
the OHDSI tooling (e.g. Fuzzy and Lucene search). The Retrieval Augmented Generation -
Large Language Model (RAG-LLM) pipeline is proposed to create an automated vocabulary
mapping for required features. To ensure real-world applicability, the proposed pipeline
was applied to the use cases of the Real-world-data Enabled Assessment reguLatory
decision-Making (REALM) Realm-EU (2025) project. REALM aims to provide a powerful
sandbox environment for the future evaluation of AI as a medical device that goes on the EU
market. REALM brings together EU regulatory authorities, data-driven software developers,
healthcare professionals, and policy makers to create and evaluate Artificial Intelligence (AI)
models for the direct benefit of patients and healthcare professionals. This, in turn, is adopted
in clinical practices to ensure accurate diagnosis and personalized treatment pathways. This
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thesis focuses on mapping the REALM use-case features to the OMOP vocabulary, which is
based on an extended AI model description or model cards. Beyond the use cases of REALM,
this solution holds strong potential for a wide range of real-world standardisation challenges
where efficient, accurate vocabulary mapping is essential.

Research context: "This thesis explores how LLMs can enhance or automate the seman-
tic mapping of natural language cohort definitions to standardise queries, compliant with
the OMOP-CDM, thus improving the accuracy of feature mapping. The goal is to develop a
RAG enhanced LLM pipeline that efficiently processes medical concepts, accurately maps
them to standard vocabularies, and optimises retrieval for improved feature extraction."

Contributions: This thesis aims to provide an end-to-end pipeline that makes it ac-
cessible to users, even those without expertise in the medical field, to directly get the
recommendations of concept names while submitting the cohort requirements. The proposed
tool mainly focuses on aiding the AI model developers to evaluate their software with a focus
on safety, efficacy and usability for the direct benefit of patients and healthcare practitioners.

1.2 State of the art

Extracting features from standardized health care data from commonly used standards
such as OMOP-CDM remains a key challenge. This will require a clear understanding of
the data structure and standards followed by the OMOP common data models. The OHDSI
community is responsible for OMOP-CDM and its associated standardised vocabularies.
Athena and Usagi are a searchable engine or databases maintained by the OHDSI community
(see Annexe C). Athena is a web application for browsing and downloading the Standardized
Vocabularies used in OMOP-CDM. Using Athena, a researcher can search for the feature
of interest and their corresponding standard concepts. Usagi is the OHDSI tool, which was
designed to aid code mapping between local coding systems and OMOP standard concepts;
however, these tools are more beneficial for someone who wants to map their source data to
OMOP-CDM. Moreover, these tools are developed with string matching algorithms such
as fuzzy match and lucene search, cannot capture the semantic meaning of the searching
terms, thereby requiring manual input from the users and fail to meet the exact contextual
requirements Mitchell-White et al. (2024). Even though Athena contains an extensive range
of vocabulary lists within OMOP CDM, users often get overwhelmed with the volume of
search results being generated with a single search term. In addition to this, users are required
to review the search results manually to identify the exact matching terms they are interested
in. Usagi, on the other hand, is a semi-automated mapping tool; someone who wants to
benefit from it must have a clear idea about the source data. In the context of REALM use
cases, when an AI model developer or regulatory authorities are trying to obtain the required
data to evaluate and benchmark the AI models, we do not expect them to have information
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on the source data; hence, Usagi may not be a suitable option for them.

With the application of LLM, semantic mapping has become much more efficient and re-
liable Tekumalla and Banda (2024). Hence, by incorporating LLM into the mapping pipeline
between the users and the vocabulary terms, the process can be automated by excluding
manual intervention, almost entirely omitted. LLMs are pretrained on massive and diverse
terminologies across different domains, which enables them to capture the semantic meaning
of the natural language text and map it to the required concepts. However, it sometimes gen-
erates hallucinated or falsified responses when the model is not trained on the required data,
in this case, the OMOP-CDM vocabularies. To overcome this challenge, this thesis proposes
an RAG-LLM pipeline using OMOP-CDM standards. This will enable us to feed the LLM
with relevant information to be generated, thereby limiting the LLM from generating false
results. This approach will allow LLM to focus on fine-tuning the results retrieved through
RAG with the context-relevant information Lewis et al. (2020).

REALM Use cases and Demonstrators, this thesis focuses on evaluating five REALM
use-cases, developed by different demonstrators. These demonstrators include AI models
from different European partners covering various healthcare domains. They provide crit-
ical insights into usability, functionality, and requirements for capturing AI model claims
effectively. The use cases include ASCOPD, STAR, COPowereD, DuneAI and PGx2P.

• ASCOPD - Traqbeat: AI model that detects the inpatient risk stratification of patients
suffering from asthma and chronic obstructive pulmonary disease (COPD).

• COPowereD - Comunicare: They aim to predict hospitalisation or acute exacerbations
in patients with COPD by using medical AI algorithms that include patient-reported
outcomes.

• STAR - University of Liege: Project aims to develop an AI model-based decision-
support system to enable precise regulation of blood glucose levels in intensive care
unit (ICU) patients.

• DuneAI - Maastricht University DuneAI is a use case that involves evaluating an
automated segmentation software for detecting and segmenting non-small-cell lung
cancer tumours in CT scans.

• PGx2P - Vito: Pharmacogenomics Passports to Practice (PGx2P) is a use case that
aims to implement preventive pharmacogenetics testing of a panel of genetic variants
approved for clinical.

Model cards explain the intended use cases, targeted population and evaluation metrics
of the AI model, hence the model can be benchmarked and evaluated accordingly ( Mitchell
et al. (2019)). The evaluation section of the model card refers to the data or the cohort group

3



for which the model’s needs can be evaluated. The required inclusion-exclusion criteria
can be defined from this section, so the cohort can be identified and used to extract the
features. The example model card for one of the use cases, ACOPD, including the detailed
descriptions, can be seen in the Fig. 1. For detailed description and model cards for all the
other use cases, refer to Appendix E.

Figure 1: Model card for REALM use case: AI model ASCOPD from Traqbeat, for COPD and Asthma inpatient
risk stratification

REALM OMOP Data Catalogue is a PostgreSQL database repository where patient
data is stored, which can be utilised for research purposes. These include open-source or
synthetic data generated within the REALM framework. The structure of the data follows
the OMOP-CDM standardisations.

RIANA: REALM Intelligent Analytics Dashboard is a framework for defining com-
plex patient groups or cohort definitions, specifically designed to capture the intent of the AI
model while leveraging OHDSI methodologies and OMOP-CDM standards. RIANA is a
user-friendly dashboard that enables the user to create the target patient group required to
evaluate the AI model. It can also be used to check the availability of relevant patient data in
the REALM data catalogue, ensuring that AI models can be evaluated against real-world
datasets. RIANA can be used to retrieve a high-level summary of statistics of the available pa-
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tient population. Despite these usability the dashboard provides OMOP-CDM auto-complete
fields streamlining the selection of standardised concepts and ensuring interoperability with
OMOP-based datasets. The automation of this usability through an RAG-enhanced LLM
pipeline, which is the main focus of this project, will be explained in the methodology section
of this report. Fig. 2. The integration of the pipeline to the RIANA dashboard will not be
implemented as part of this thesis; however, it is explained in detail with a workflow diagram
in the later section for readers to understand the use cases and the complete integration and
impacts.

Figure 2: RIANA dashboard interface, where AI model developers can search for the required features in the
search tab by specifying the domain from the drop-down list, and the suggestions will appear as the output,
which are allowed to be saved

This thesis focuses on the REALM use cases, which use plain structured text files (CSV,
TSV, TXT, etc.) as input/features. Some of the use cases use imaging data or genomic data;
they do have OMOP-CDM standards, but this project excluded features from those use cases.
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2 Data Description

This section provides a detailed description of the data used throughout the pipeline. The
data included in the whole pipeline comes from OHDSI’s standard vocabularies, which are
open source and downloaded from OHDSI’s vocabulary page OHDSI Vocabulary (2025)
and stored in-house as SQL tables.

2.1 OHDSI Standardized Vocabularies

An OHDSI standardised vocabulary serves as the central component of OMOP-CDM.
The vocabulary contains different concepts and terminologies from multiple standards The
Book Of OHDSI, 2025. Each standard is referred to as vocabulary with its corresponding
vocabulary_id’s, for example, SNOMED, ICD-10, RxNorm Extension, LOINC and OSM,
which are stored in standardised vocabulary tables of OMOP-CDM OHDSI Vocabulary,
2025. The ontologies, such as ICD, SNOMED or LOINC, follow their standard codes and
descriptions. OMOP-CDM unified all those identification systems into unique concept IDs
that allow for identifying all the terms regardless of the ontology they come from. The
OMOP-CDM follows a complex hierarchical structure that allows the user to keep track of
the source ontology they are derived. Whenever concepts overlap between ontologies, the
standard one is allowed to be used by default (Appendix A.2). Each of these terms is assigned
a unique concept ID within the OMOP-CDM, which is used as the unique identifier for
each concept. This analysis uses the Systematic Nomenclature of Medicine - Clinical Terms
(SNOMED-CT Version: 2024-02-01 International Edition) vocabulary from OMOP-CDM
of v5.4 (see Annexe A.2). SNOMED-CT is a collection of medical terms with its standard
codes, terms, synonyms, and definitions used in clinical documentation and reporting. The
standard terms covered in it include clinical findings, symptoms, diagnoses, procedures,
body structures, organisms and other etiologies, substances, pharmaceuticals, devices, and
specimens OHDSI Vocab. SNOMED-CT (2025).

Figure 3: The table contains the number of concepts available in each of the six domains with SNOMED-CT
vocabulary. These concepts serve as the input data to the RAG pipeline.
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Each clinical entities or term are categorised into different domains, which define the
ontology of that specific concept within the standardized vocabulary. This analysis takes into
account the six major domains within OMOP-CDM, including CONDITION, PROCEDURE,
OBSERVATION, MEASUREMENT, DRUG and DEVICE.

• CONDITION: Major diagnosis or diseases and clinical findings.

• PROCEDURE: Any manual or robotic manipulation on a patient.

• OBSERVATION: Observational finding or assessment, and observable entity.

• MEASUREMENT: Measure of an analyte or entity, including the assessment scale.

• DRUG: Drug product or Vaccines.

• DEVICE: Includes medical device, contrast media, blood product, dietary supplement

Figure 4: The figure demonstrates an example of concept or terminology included in six major domains of
OMOP-CDM with an example use case of COPD.

In Fig. 3 summarizes the number of concepts available within the SNOMED vocabulary
of six major domains. In Fig. 4 illustrate an example use case COPD, with condition as
COPD, procedure done for COPD as bronchoscopy, smoking as one of the observations
reported for COPD patient, FEV1 as measurement clinically taken, Theophylline common
drug for treating COPD and spirometer as a device which is commonly used to measure lung
capacity.

2.2 Extracted features from Model Cards

The extracted features define the population/cohort of the six REALM use-cases. These
are variables or data points required for evaluating the AI models, which are then categorized
into six OMOP-CDM domains: conditions, measurements, observations, devices, procedures
and drugs. Figure 5 includes the extracted features, used in evaluating the proposed pipeline.
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Figure 5: The extracted features from the model card separated into six main OMOP-CDM domains

3 Methodology

3.1 Retrieval Augmented Generation

RAG was first introduced in 2020 by Lewis et al. (2020). A classical RAG workflow
involves Indexing, Retrieval, Augmentation, and Generation Gao et al. (2023). RAG com-
bines the pre-trained retriever with a pre-trained seq2seq model for generating the output in
Natural Language Processing (NLP) contexts. RAG is primarily useful for tasks that involve
the generation of output from a defined data source. RAG get its prominence due to the
limitations of LLM, such as generating hallucinated outputs. RAG can enhance the LLMs by
finding the relevant and most plausible responses through the similarity search, and then the
LLM can use this to generate the context-relevant response as the user output.

Indexing: In the initial indexing stage, the data index for the source data, which is
SNOMED-CT vocabulary concepts, is generated and stored in a vector database for obtain-
ing quick and easy search results in the further steps.

8



Vector Storage and Embeddings Generation: A Vector database, which is often re-
ferred to as a knowledge base, contains and stores the vectors. For the text format of input
concept_name, embeddings are generated by transforming to numerical values called vectors.
These embeddings capture the exact semantic meaning of the text. In this analysis, dense
vector embeddings are generated with two models, one with ’all-MiniLM-L6-v2’ from
Sentence Transformers and bge-large-en-v1.5 from Hugging Face Wolf et al. (2020) as in
Fig. 6 .

Retrieval Step: The retriever can access the embeddings stored in the Chroma database
and retrieve the relevant matching concepts as per the user query through similarity search.
The user query is encoded as a vector through the same embedding process that is used to
generate vectors of the concept names. The query vector is compared to the concept vector
to identify the top-k similar or matching concepts to the query.

For a given query ’q’, to retrieve a top k relevant concept ’C’ from a large corpus V Gai
et al. (2024)

c = c1,c2,c3, .............,ck

The similarity or the distance metrics is computed with cosine similarity using the equation,

cosine_similarity(q,c) =
q · c

∥q∥∥c∥

sim(q,c) = ⟨Encoderq(q),Encoderc(c)⟩

Retrieve the top k matching concepts,

C = topkd∈C(sim(q,c))

Hence, this ensures only the matching results are retrieved and passed to the next step
Lewis et al. (2020).

Figure 6: The embeddings for the OMOP-CDM standard concepts from SNOMED-CT vocabulary are generated
using ’all-MiniLM-L6-v2’ or ’bge-large-en-v1.5’ models and then stored in the Chroma vector database.
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Augmentation Step: In the augmentation step, the input query is concatenated with the
retrieved concepts and passed to the generation step to produce the contextually relevant
output with the help of LLM.

xi = concat(q,ci)

for i=1,. . . ,k
Generation Step: In the generation step, the context-relevant output is generated with

the help of LLM. In addition to the top k concept names and IDs, the external relevant
information is added to the output.

For the input query q, the probability of retrieving the response which is y is computed
by marginalising over the relevant retrieved concepts k,

P(y | q) =
k

∑
n=1

P(y | q,ci) ·P(ci | q)

P(y|q) is the probability of retrieving relevant concepts k, given query q computed with
cosine similarity.
P(y|q,d1) is the probability of retrieving relevant concepts k, given query q and the con-
cepts Lewis et al. (2020).

Loss Function: RAG can simultaneously train the retrieval process and output generation
by marginal likelihood objective, backpropagation updates both components together in the
workflow.

L = ∑
(x,y)

log∑
q

P(q | c) ·P(y | q,c)

3.2 Large Language Model (LLM)

Large language models are trained on a large amount of data, marking a significant
advancement in the natural language processing field. LLM has the ability of deeper semantic
search, which can enhance the quality of the concept mapping pipeline Yan et al. (2024).

Large Language Model Meta AI: LlaMa

This thesis utilize the capability of a widely used large language model from Meta AI,
’llama3.3:70b -instruct-q4_K_M’ Touvron et al. (2023). Llama is an open-source model, and
can be self-hosted by the project owners without the need for a third-party interface, making
it well-suited for health care applications by retaining data privacy. LlaMa outperforms other
open source state-of-the-art models in terms of scalability and cost effectiveness, along
with its high performance Huang et al. (2024). Like any other LLM, LlaMa is built on
transformer-based architecture. The attention mechanism within transformers enables them
to generate human-like responses by understanding the contextual meaning in the text. Even
though LLMs are trained on a vast amount of data, they still struggle with factual corrections
of the response being generated.
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3.3 Prompt Engineering

Prompting is a very crucial step in crafting well-specified inputs for generating the
desired output. There are different ways of prompting, including zero-shot prompting with-
out including any instructions or examples, few-shot prompting with fewer instructions,
instruction-based prompting with well-defined instructions, contextual prompting by provid-
ing relevant context, and bias mitigation prompting commonly used for debugging purposes
Marvin et al. (2023). Since the source data from which the response is expected will already
be fed to LLM through the RAG pipeline, zero-shot prompting will be utilised in this analysis
at the beginning Wang et al. (2019). Depending on the retrieved results, few-shot prompting
or instruction-based prompting can be introduced further in the workflow.

3.3.1 Zero-Shot Prompt

A simple prompt starting with ’What is the concept ID for’ as in Fig. 7 is used as input
to the RAG pipeline. The extra explanations and suggestions are retained as is at this stage.
Further fine-tuning of the LLM response can be performed when the pipeline is fully con-
nected to the RIANA dashboard, which is outside the scope of this thesis.

Figure 7: The figure represents the example of zero-shot prompt used in the pipeline for retrieving the relevant
OMOP-CDM concepts

3.4 Project Pipeline: Architecture Overview

The proposed tool utilises the RAG pipeline to create an automated vocabulary mapping
for OMOP-CDM concepts. The pipeline is implemented using the Python programming
language version 3.16. The features that are required to be mapped are expected to be
extracted through the RIANA dashboard. The output of this application will be a list of
features that describe the patient target group. This is the same as what is available in the
evaluation data section of the model card. Once the AI model developer inputs the required
features, it is fed as input to the pipeline through an API call. The concept name for each
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corresponding concept id, concept name and domain id were extracted. The RAG pipeline
was generated by creating embeddings for text-based concept names and storing them in
a vector database. The RAG was then connected to the LLM through the direct prompt
injection method. When a user inputs a query, embeddings will be generated for the input
query with the same method, through the similarity search between the query embeddings
and vocabulary embeddings. Then, top ’k’ matches are created for the concept name with
its corresponding concept ID. This information is then sent to the LLM and is retrieved as
an output, which provides suggestions for concept names and their corresponding IDs. A
well-defined, structured prompt was designed to give a clear, standardised query as input and
to retrieve meaningful responses from the pipeline.

Figure 8 provides an overview of the RAG-LLM Semantic Mapping Pipeline. This
end-to-end pipeline integrates a Retrieval-Augmented Generation (RAG) architecture with
a Large Language Model (LLM) to support the semantic mapping of clinical features to
OMOP-CDM concepts. There are three main sections in this pipeline:

Figure 8: The overall pipeline for mapping features to OMOP-CDM

Section 1: User inputs cohort features as natural text in the RIANA dashboard, which is
transmitted through an API in JSON format (Appendix D). As in Fig. 9, the user can select
the required domain through the drop-down section of the RIANA dashboard and type the
feature or the concept to be mapped in the search box. At the backend, this searched concept
is converted into a query to the LLM prompt.

Section 2: Input is encoded and compared against pre-generated embeddings (OMOP con-
cepts stored in a vector database). This is the main section where the features are semantically
mapped to the standard OMOP-CDM concept. The top-k most semantically similar matches
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Figure 9: Input of the pipeline generated through the RIANA dashboard

are retrieved and passed to the LLM using a structured prompt.

Section 3: The LLM generates context relevant concept_ids as suggestions at the RIANA
user interface. As in Fig. 10, the mapped features according to the input search term appear
as suggestions. The user will be allowed to select the required terms from the available list
and save.

Figure 10: Output of the pipeline fed to the RIANA dashboard.

3.5 Evaluation Metrics

Once the responses have been received from the pipeline, the output is compared with
the concepts generated using the Athena OHDSI tool and evaluated against the concepts
derived by an OMOP-CDM expert, which is considered the ground truth. The ground truth
includes the concepts derived from the six REALM use-cases, mapped to the concept IDs
of OMOP-CDM standard terminologies of SNOMED vocabulary by a domain expert. This
was time-consuming and required knowledge of medical terminology along with OMOP
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expertise. The same terms that serve as the input to the pipeline will be used in Athena
as the search term by applying filters, relevant domain, concept standard, vocabulary as
’SNOMED’, and validity as ’valid’. The top k:(5, 10) results of vector search and Athena are
compared. The evaluation metrics, such as precision, accuracy, recall and F1 scores, were
used to validate the retrieved result Sawarkar et al. (2024).

• Accuracy: Measures the accuracy of the retrieved result among all searched concepts.

Accuracy =
Number of correctly mapped concepts

Total number of concepts

• Precision: Measures the proportion of relevant concepts among the retrieved concepts.

Precision =
Number of correctly mapped concepts

Total number of mapped concepts in predicted and ground truth

• Recall: Measures the proportion of relevant concepts which are successfully retrieved

Recall =
Number of correctly mapped concepts

Total number of mapped concepts in ground truth

• F1 Score: Measures the harmonic mean between precision and recall, which provides
a balance between precision and recall.

F1 Score = 2.
Precision X Recall
Precision + Recall

Furthermore, the results obtained from the RAG and that from the LLM will be compared
to investigate the usefulness. The human evaluation will also serve as a crucial metric to
evaluate the contextual appropriateness for a qualitative assessment. The computation time
and cost will be evaluated to assess the feasibility of using the proposed pipeline over the
existing one.

3.6 Experimental Setup

The entire setup for the integration and testing of the pipeline is achieved through the
Vlaamse Instelling voor Technologisch Onderzoek (VITO) infrastructure Vito, BE 2025.
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VITO is a large contributor to the REALM project and has a crucial role in data standardisa-
tion and regulatory methodologies Vito-REALM, BE 2025.

The RAG-LLM pipeline code was implemented and tested within the VITO infrastructure
as shown in Fig. 11, using the VITO hardware (VITO HPC) and software (Code written on
JupyterLab notebooks and version-controlled on Bitbucket) with the following specifications:

• Hardware Specification: A GPU platform, for high-performance computing (HPC),
is used to connect the LLM interface. Testing environment with 2 CPU, and 4 GB of
memory facilitated the pipeline integration with LLM, which was running in a separate
machine within the Thunder server of 256 GiB of System memory.

• Software Specifications: The software setups with the Python frameworks were used.
Sentence transformers from the SBERT with the Python module were used to generate
embeddings. Chroma DB for storing vectors. The source dataset stored in a separate
machine of a PostgreSQL database, which includes OMOP 5.4 Database together with
Athena SNOMED Vocabulary (v20240830), was retrieved to the HPC interface.

Figure 11: Experimental setup within VITO infrastructure
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4 Results

The analysis of the experimental pipeline was conducted in three steps. During the initial
stage, a separate pipeline was introduced for each domain. The results were then compared
using different parameters and methods to proceed with the next stage. In the second set of
evaluation, a single pipeline is built by creating a vector of concepts from all six domains
into one single vector database and thereby querying one single RAG pipeline for retrieving
concepts irrespective of the specific domain. This was mainly to compare the quality of
embeddings generated during both steps and their impact on the retrieval process. In the
later stage, a more advanced RAG is implemented by introducing query routing within the
pipeline before the retrieval process. Finally, this was chosen as the optimal approach out of
three. These will be discussed separately in each section.

To ensure the generalizability and broader application Gabín and Parapar (2025), the
pipeline is evaluated for search terms including synonyms, acronyms, abbreviations, false
terms and even with natural language terms without proving the actual medical terminology
alone. This involved ’diabetes: blood sugar disease’, ’thermometer: temperature measuring
device’, etc. On average, 15 to 20 test cases were evaluated for each domain.

Evaluation metrics such as accuracy, precision, recall and F1 score were assessed at each
stage of the evaluation. The retrieved results were evaluated against the ground truth concepts
generated by an OMOP-CDM expert for the five use cases of the REALM project. The same
search terms are used to search in Athena with applied filters, and top-k results are compared
to the pipeline.

4.1 Initial Prototype with Domain: CONDITION

As an initial step, a simple pipeline was created with the standard OMOP-CDM concepts
from the domain CONDITION. The embeddings were generated using two models, Model
1: ’all-MiniLM-L6-v2’ and Model 2: ’bge-large-en-v1.5’. The top-k retrieved results were
compared for k = 5 and 10. The results were compared against the results generated with the
OHDSI tool Athena. The concepts mapped by the domain expert served as the ground truth.
The detailed evaluation metrics for this pipeline are added to the tab. 1.
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Top-5 Top-10
Metrics Model 1 Model 2 Athena Model 1 Model 2 Athena
Accuracy 0.75 0.54 0.45 0.78 0.66 0.45

Precision 0.85 0.62 0.45 0.86 0.68 0.45

Recall 0.80 0.58 0.48 0.89 0.70 0.48

F1-Score 0.82 0.60 0.46 0.88 0.69 0.46

Table 1: Evaluation metrics comparison for Top-5 and Top-10 retrievals.

The experimental pipeline showed a significantly better result for mapping the cohort
features to OMOP-CDM concepts compared to the mapping generated by Athena. The
pipeline generated using vector embeddings of Model 1 showed promising results compared
to Model 2. There is also a gradual improvement in the evaluation metrics when moving
from k=5 to k=10. The Model 1 with top k = 10 achieved an accuracy of 78%, Precision of
86%, a recall of 89% and an F1 score of 88%. Hence, the pipeline with Model 1 and top k =
10 was chosen for further analysis.

Figure 12: Retrieval accuracy for k = 5 Figure 13: Retrieval accuracy for k = 10

Fig. 14 shows the result generated by the LLM prompt for the search term ’pneumonia
with laterality’. The pipeline correctly maps the concepts for each laterality, left or right,
along with each zone, upper and lower. It also provides a clear explanation on choosing
the relevant concept ID, which is highly useful for someone who lacks medical expertise.
These additional explanations or context-relevant guidance provided by the LLM avoid the
additional research required while performing the concept mapping for a non-domain expert.
As the focus of this thesis is to suggest the concepts rather than providing the exact matching
terms alone, these extra explanations can be useful.

In Fig. 15, the mapped concepts of Athena for the same keyword did not show even a
single relevant concept in the results k = 10. This ensured the reliability of the pipeline to
continue with the next steps in a more intricate approach.
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Figure 14: Output from LLM prompt: the concepts mapped by the RAG-LLM pipeline (domain:CONDITION)
for the search term ’Pneumonia with laterality’

Figure 15: Concept search result example on Athena - the concepts search results mapped by Athena’s built-
in search algorithm for the term ’Pneumonia with laterality’ and filtered by SNOMED terms, for domain
CONDITION and valid standard concepts.

4.2 Separate pipeline for each domain

Based on the significant and relevant results generated using the initial pipeline, separate
models for each remaining five domains, which include OBSERVATION, MEASURE-
MENT, PROCEDURE, DRUG and DEVICE, were implemented with the same setup. The
embeddings were generated using ’all-MiniLM-L6-v2’ from Sentence Transformers and
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’llama3.3:70b -instruct-q4_K_M’ as LLM; the top k = 10 results were evaluated against the
ground truth and compared with the concepts mapped using Athena. The detailed evaluation
metrics are summarised in the tables below.

Table 2: Performance metrics comparison between RAG-LLM and Athena

Domain: Measurements
Metrics Model 1 Athena
Accuracy 0.63 0.50

Precision 0.77 0.61

Recall 0.70 0.55

F1-Score 0.73 0.57

Domain: Procedure
Metrics Model 1 Athena
Accuracy 0.91 0.37

Precision 0.90 0.30

Recall 0.95 0.45

F1-Score 0.92 0.36

Domain: Observation
Metrics Model 1 Athena
Accuracy 0.86 0.73

Precision 0.84 0.69

Recall 0.91 0.75

F1-Score 0.88 0.72

Domain: Drug
Metrics Model 1 Athena
Accuracy 0.92 0.50

Precision 0.91 0.58

Recall 0.92 0.54

F1-Score 0.93 0.50

Domain: Condition
Metrics Model 1 Athena
Accuracy 0.78 0.45

Precision 0.86 0.45

Recall 0.89 0.48

F1-Score 0.88 0.46

Domain: Device
Metrics Model 1 Athena
Accuracy 0.93 0.87

Precision 0.92 0.85

Recall 0.86 0.79

F1-Score 0.89 0.81

From the results, it is evident that the proposed pipeline was able to achieve a compa-
rable or higher precision and accuracy compared to the commonly used tool, Athena. Of
the six domains, the highest accuracy is achieved for the domains PROCEDURE (91%),
DRUG (92%), and DEVICE (93%). This can be inferred as these domains consist of more
standardised terms compared to the other three domains. The high diversity of terms in the
CONDITION domain and OBSERVATION domain increases the complexity of the mapping
process. Another major findings were noted from the domain MEASUREMENT. Although
the number of concepts was comparatively lower in the measurement domain, it was unable
to achieve higher accuracy. This could be due to the acronyms or similar terms present in
the source data. The pipeline failed to correctly map the concepts such as ’HAD scale’ with
’Hospital anxiety and depression scale’ or ’SGRQ score’ with ’Saint George’s respiratory
questionnaire score’. However, these were correctly recognised by the LLM, but no matching
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embeddings were generated in the top-10 results of the retrieval step.

Figure 16: Comparison of retrieval accuracy between RAG-LLM and Athena on six vocabulary domains:
CONDITION, PROCEDURE, OBSERVATION, MEASUREMENT, DEVICE, DRUG

As in Fig. 16, the retrieval accuracy of both methods is somewhat similar for the domains
OBSERVATION, MEASUREMENT, and DEVICE. However, there is a significant difference
in the accuracy between the two methods for domains CONDITION, PROCEDURE and
DRUG

Figure 17: Output from LLM prompt: Retrieved result for search term ’theophylline’ from the model with the
separate pipeline for the domain DRUG

One of the significant advantages of the pipeline is that relevant terms for the medication
with varying dosages are retrieved with proper suggestions to choose from. For instance,
with a single keyword search for the term ’theophylline’, all the relevant medications with
varying dosages are retrieved, as in Fig. 17. This is beneficial when we are unaware of all the
possible options to choose from.
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4.3 Single RAG-LLM pipeline with all six domains

Using a separate RAG-LLM pipeline for each different domain is not usually advisable.
Apart from the six main domains, there are other domains like visit, geography, currency,
cost, specimen, etc. This will, in turn, lead to scalability issues when we start implement-
ing the pipeline for multiple domains across multiple vocabularies. Maintaining a separate
connection with LLM for each domain will also increase the computation cost and time.
However, the separate pipeline can be advantageous in situations where each domain needs
to be segregated without having any interconnection between the retrieving information.
In this case scenario, at the end, once the pipeline is fully functional by incorporating it
with the RIANA dashboard, we would require all domains to be added as a single pipeline.
Fortuitously, the setup of the RIANA dashboard we can filter on the right domain along
the search term or the feature to be mapped. This will allow the user to select the domain
first and then search for the required concepts. Hence, maintaining a single pipeline for all
domains is more advantageous and maintainable here.

In the second stage of this thesis, vector embeddings were generated for the concept
names from SNOMED vocabulary, this time by including a total of 521976 concepts into
a single vector database. The embeddings were generated using ’all-MiniLM-L6-v2’ from
Sentence Transformers and ’llama3.3:70b -instruct-q4_K_M’ as LLM. The concepts were
mapped using the same parameters as before (top k=10). The keywords used for the evalua-
tion of separate pipelines were still used here to generate the mappings against the natural
language like terms to concept_ids and concept_names of OMOP-CDM standards. The
results generated were compared against the previous results generated by the pipeline.

Figure 18: Output from LLM prompt: Model with separate pipeline for CONDITION domain for the search
term COPD.

Figure 18 contains the retrieved result from the pipeline with a single domain (condition)
as the input embeddings in the vector database. The search term ’COPD’ correctly maps to
the relevant ground truth with top k=10 retrieved terms. Fig. 19 contains the retrieved result
from the second pipeline with all six domains in a single vector database. The same search
term as ’COPD’ is used for mapping and without specifying the domain in the input query.
The pipeline failed to match the exact or relevant terms with the ground truth. Rather, it is
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mapped to the concept from the OBSERVATION domain.

Figure 19: Output from LLM prompt: Model single pipeline for all six domains without specifying the domain
in the query for COPD use case.

The search term ’COPD’ was queried again in the same pipeline by specifying the
domain (CONDITION) in the query as in Fig. 20. This time, none of the terms were retrieved.
LLM respond to the query with an explanation that the top-10 matched terms are from the
Observation domain, which is irrelevant for the requested query and semantically do not
match the condition of ’COPD’ directly.

Figure 20: Output from LLM prompt: Single pipeline for all six domains mapped terms by specifying the
domain in the query for COPD use cases.

This indicates that using a single vector database is only useful when searching for an
exact term. There are more chances of semantic overlap between the concepts when the
number of terms increases. Adding more terms to the vector database can lead to embedding
space saturation, failing to identify the differences between more similar concepts. Even
though it returns similar concepts, it is not necessarily semantically correct or relevant to the
input query. This also leads to increased search time due to the density of the vector created.
Due to this low-quality performance of the pipeline, no further fine-tuning was performed on
this setup.
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4.4 Advanced RAG with Query Routing

During the third and final stage of the analysis, a more advanced but very simple imple-
mentation of the pipeline was adopted. This includes using six separate vector databases for
each different domains and adding a static query routing between the user query and the
retrieval step. This will allow to use of a single pipeline but with multiple context-specific
vector databases altogether.

Figure 21: RAG-LLM pipeline with query routing by including all domains into a single setup

As in the Fig. 21, once the user enters the query for example ’What is the concept_id
for COPD from domain condition?’, the keyword ’condition’ is identified from the query
and the searching is routed to the vector database which stores embeddings of concepts
from domain CONDITION. A predefined rule-based query routing is implemented here. The
semantically similar concepts are identified for the corresponding search term. This set-up
works similarly to the separate pipeline created for each domain, as in the initial step. This
will avoid the higher ambiguity generated from the second approach, also by avoiding calling
LLM multiple times for each different domain.

Figure 22: Output from LLM prompt: Query routing pipeline with example use case for specifying the domain
in the query
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Figure 23: Output from LLM prompt: Query routing pipeline, for COPD use case with specifying the domain in
the query

Figure 23 shows that the COPD use case is now queried by specifying the domain, which
resulted in a similar response received with the separate pipeline for the condition domain.
The results generated through this query routing approach are the same as those produced
through the single pipeline. Hence, the evaluation metrics and the benchmarking process
remain the same as the initial one. The only difference is in the way it is implemented and
queried.

5 Discussion

This thesis utilises a RAG-enhanced LLM framework to enable the semantic mapping
of natural language cohort definitions to standardise queries compliant with OMOP-CDM,
to improve the accuracy of feature mapping. The analysis was carried out in three stages,
iteratively, and the final one by incorporating query routing to the RAG-LLM seems to be
more efficient, compared to the first two. The sentence-transformed based embedding model
outperformed the other benchmarking OHDSI’s tool, Athena. However, it is important to
note that the intention here is not to build a method that outperforms available tools; rather,
we are trying to implement a pipeline that can be integrated into the REALM framework
by providing suggestions for concept mapping, which is beyond the scope of standalone
OHDSI tools. The pipeline achieved improved performance over the OHDSI tool Athena.
Especially with the proposed approach, in addition to the suggestions on matching concepts,
we get an explanation on which concepts are more appropriate as per the input query. This is
advantageous over the available state-of-the-art methods, which focus merely on the concepts
Zhou et al. (2025). The usage of RAG and query routing makes the pipeline more practical
for use in real-world use cases. It allows us to choose among the vocabulary or domain as per
our requirement, which can be easily implemented within the pipeline. Beyond REALM, the
pipeline has broad applicability for real-world semantic mapping tasks, allowing non-expert
users to get assistance in the semantic mapping process. This project contributes to the
ongoing research of integrating AI in automating the semantic mapping process, specifically
by using RAG and LLM.
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This project is a small step towards a rather big goal: OMOP-CDM mapping is one of
the biggest challenges within the OHDSI community. While Athena is available, it is highly
complicated and has limited flexibility. The proposed tool has the potential to overcome these
issues through AI-based semantic mapping. The same is well appreciated by the OHDSI
community and hence has been accepted as a poster presentation and lightning talk in the
upcoming OHDSI symposium.

Implications of the pipeline within REALM

REALM aims to develop a powerful sandbox environment for the future evaluation of
AI as a medical device that goes on the EU market. In this context, we initiated a large
effort for the mapping of the REALM use-case features to the OMOP vocabulary, which
is initially based on an extended AI model card. Using these well-documented use cases,
we can provide context-based features as a search query to the LLM and get suggestions
of OMOP-CDM standard concepts. Figure 24 illustrates the high-level workflow where the
interconnection between the model card, RIANA dashboard, and RAG LLM pipeline occurs
to achieve efficient mapping. The mapping of the concepts happens at step (2). RIANA helps
users to define patient cohorts, map input features and report performance metrics using
standardised vocabularies and clinical concepts from the OMOP Common Data Model. This
thesis plays an important role in mapping the input features to OMOP-CDM concepts. By
mapping correctly to OMOP-CDM concepts, it not only allows for the identification of the
standard concept, but it can also be applied to the data structure to extract the source data
and then use it for evaluating the AI models. This structured approach ensures that each AI
model is linked to a well-defined and varied target population, streamlining preparation for
CE marking and compliance with emerging EU regulatory frameworks.
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Figure 24: High-level user workflow in the REALM sandbox environment: (1) the user entering key information
and usefulness of the AI model. (2) The user is guided through selecting appropriate standardised concept
codes, including the definition of a clear patient target group using OMOP vocabularies. Based on this input, the
user can (3) generate a cohort definition. A (4) high-level summary of the results is returned to the dashboard
following Heracles analysis. These outputs are then (5) compiled into a structured JSON model card, which is
(6) finally published to the blockchain, ensuring transparency, traceability, and long-term reproducibility of the
model evaluation.

Limitations and Future Research

The major limitation of the proposed methods is that it is only focused on the SNOMED
vocabulary with six commonly used domains. In the real world scenario, researchers use
vocabularies such as ICD-10, LOINC, etc., with extended domains such as gender, visits, etc.
However, this can be easily achieved by extending the pipeline with the required domain and
vocabularies. Another limitation, which could be considered as future work, includes fine-
tuning the embeddings to improve the accuracy, mainly in the condition and measurement
domains. Additionally, it may also be possible to experiment with other LLMs; however,
it may not impact the results much, as the pipeline primarily relies on embeddings. At
this stage of the thesis, the RAG-LLM pipeline is not fully integrated into the RIANA
dashboard, which is out of the scope of this thesis. Achieving this goal will occur over
the coming months, allowing users seamless access through an intuitive interface. The
current implementation of our RAG-enhanced LLM pipeline is operational within the VITO
infrastructure, allowing interactive testing and refinement through prompt-based queries. The
future work would include the complete integration of the pipeline to the RIANA dashboard,
making it fully functional within the REALM environment. A proper investigation on the
impact of computational cost and time will also be required to answer the open questions
over the feasibility of the proposed approach.
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6 Conclusion

This project presents a practical OMOP-CDM concepts mapping framework utilising
recent technologies: RAG and LLM. This framework enables the semantic mapping of
natural language cohort definitions to standardise queries with the help of LLM prompts,
thus improving the accuracy of feature mapping. This was achieved in three stages: first by
mapping the concepts from a single domain and then by combining all domains into one
framework. The final design, by incorporating query routing to the RAG-LLM, was found
to be more efficient compared to the first two. The sentence-transformed-based embedding
model outperformed the OHDSI’s tool, Athena. The end-to-end automation of this process
makes it accessible to users, even those without expertise in the medical field. The proposed
tool mainly focuses on aiding the AI model developers to evaluate their software with a focus
on safety, efficacy, and usability, for the direct benefit of patients and healthcare practitioners.
Core components, such as the embedding model, vector database, and LLM, can be easily
changed to accommodate different model setups. The workflow has already been validated
against the requirements of the REALM project and will soon be integrated into the RIANA
dashboard, offering a user-friendly interface for AI model developers. Beyond REALM, this
solution holds strong potential for a wide range of real-world standardisation challenges
where efficient, accurate vocabulary mapping is essential.

Ethical Considerations

This study is fully in line with the standards and principles of Vito infrastructure. No
Protected health information or Electronic health records are utilised in this analysis.

Project Code

The code used in this project is available at: https://github.com/Sarigakakkamani/
RAG-LLM-Pipeline.git
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Appendices

A OHDSI Symposium Europe 2025

An abstract submitted to the OHDSI Europe Symposium 2025, based on the work in
this project, was accepted for both a poster presentation and a lightning talk. The accepted
abstract and the work-in-progress poster are included below.

A.1 OHDSI Abstract
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Background 

Feature extraction from Electronic Health Records (EHR) data is crucial in real-world evidence 

analysis1. This requires translating high-level clinical concepts into queries compatible with the 

standard terminologies. Observational health data are often standardized to the OMOP Common Data 

Models (CDM) which are widely used standards. This enables us to carry out efficient analyses that 

can generate reliable evidence. However, understanding these standards and vocabulary terms 

requires medical knowledge, particularly for users without domain expertise. Defining and extracting 

relevant features from structured EHRs remains a key challenge2.  At the moment, OHDSI tools such 

as Athena and Usagi are used to search and assist user to map vocabulary following OMOP concepts. 

However, these tools come with their own limitations and fail to meet the exact contextual 

requirements (Figure 1).  

 

 

Figure 1: Limitations of Concept Search in OHDSI ATHENA - This screenshot illustrates the search results in the ATHENA 
vocabulary browser for the term "COPD" with filters applied for SNOMED vocabulary, Condition domain, and Standard 
concepts. Despite these filters, the most relevant concept appears only as the fourth result and gives a full list of over 900 
suggestions. This highlights the challenge in identifying the correct mapping when using non-standard terminology (e.g. 
SNOMED, LOINC), and when using acronyms 

We have investigated innovative techniques to propose better concept mapping and using different 

strategies than the traditional NLP (Natural Language Process) techniques and searching algorithms 

used by the OHDSI tooling3 (e.g. Fuzzy, Lucene search). The Retrieval Augmented Generation- Large 

Language Model (RAG-LLM) pipeline we propose in this abstract is based on our latest research in 

identifying technologies for assisting the concept mapping process. To give it a bit more of real-world 
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context, we applied this method to the use cases of the Real-world-data Enabled Assessment 

reguLatory decision-Making (REALM) project (EU-funded project 101095435)4. This project aims to 

provide a powerful sandbox environment for the future evaluation of AI as a medical device that goes 

on the EU market. In this context, we initiated a large effort for the mapping of the REALM use-cases 

features to the OMOP vocabulary which is initially based on an extended AI model description. Using 

these well documented use cases, can provide some context to the LLM and get encouraging results. 

 

Methods 

The proposed tool uses the RAG pipeline for creating an automated vocabulary mapping for OMOP 

CDM concepts5. The vocabularies, including SNOMED (2024-02-01 SNOMED CT International Edition), 

ICD-10(2021), RxNorm Extension (20240701), LOINC (2.77) and OSM (Release 2019-02-21), which are 

stored in standardized vocabulary tables of OMOP CDM V 5.46 are used in this analysis. The concept 

name for each corresponding concept id, concept name and domain id were extracted. The RAG 

pipeline (Figure 2) was generated by creating embeddings for text-based concept names and stored 

in a vector database. The RAG was then connected to the LLM through the Direct Prompt Injection 

method.  

 

Figure 2: Overview of the RAG-LLM Semantic Mapping Pipeline - This end-to-end pipeline integrates a Retrieval-Augmented 
Generation (RAG) architecture with a Large Language Model (LLM) to support semantic mapping of clinical features to 
OMOP-CDM concepts. (1) user inputs vocabulary in our RIANA dashboard and transmitted through an API. (2) input is encoded 
and compared against pre-generated embeddings (OMOP concepts stored in a vector database). (3) The top-k most 
semantically similar matches are retrieved and passed to the LLM using a structured prompt. The LLM generates context-
aware concept_ids suggestions. 

The features that we want to map to the OMOP CDM were extracted through a web application called 

the (REALM Intelligent Analytics) RIANA dashboard. The output of this application gives us a well-

documented list of described features that comes with a large and extended description of the patient 

target group. We are getting this list using an API call. The embeddings will be generated for the input 

query with the same method, through the similarity search between the query embeddings and 

vocabulary embeddings top 'k' matches are created for concept name and concept id. This relevant 

information is then sent to the LLM and is retrieved as an output, which provides suggestions for 

concept names and their corresponding ids. A well-defined structured prompt was designed to give a 
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clear, standardized query as the input and to retrieve meaningful responses from the pipeline. An 

open-source LLM 'llama3.3:70b -instruct-q4_K_M' was chosen for this analysis. The vector 

embeddings are generated using 'all-MiniLM-L6-v2' from 'Sentence Transformers' specifically 

optimized for semantic mapping. 

Results 

The current implementation of our RAG-enhanced LLM pipeline is operational within the VITO 

infrastructure, allowing interactive testing and refinement through prompt-based queries (Figure 3). 

This setup enabled us to iteratively improve the workflow and achieve high-quality results in semantic 

mapping tasks. We were able to guide the LLM toward accurate vocabulary suggestions based on user-

defined feature descriptions called model cards. Our pipeline demonstrated strong performance in 

mapping natural language clinical features to standardized OMOP-CDM concepts. In the use case of 

Chronic Obstructive Pulmonary Disease (COPD) severity classification, a common categorical feature 

of our AI models that we successfully mapped. Finally, we managed to get comparable mapping results 

using our pipeline rather than the concept identified manually. 

This workflow has been successfully validated in the context of the REALM project, where it supports 

the generation of standardized AI feature sets from natural language cohort definitions. Integration 

into the RIANA dashboard is currently ongoing, enabling seamless access for users through an intuitive 

interface. Beyond REALM, the pipeline has broad applicability for real-world semantic mapping tasks, 

allowing non-expert users to get assistance in the semantic mapping process. 

 

Figure 3: Prompt-Based Semantic Mapping of COPD Concepts Using the RAG-LLM Pipeline - This figure shows an example 
of the interactive prompt and the corresponding output generated by the RAG-LLM pipeline for the use case of identifying 
COPD-related concept IDs. The input prompt describes the clinical feature (COPD and its severity levels), and the model returns 
a list of standardized SNOMED concept codes within the Condition domain.  

Table 1: Concept Mapping of COPD severity used as AI features - This table illustrates the manual mapping of COPD severity 
levels. This example was taken based on COPD use case where the feature COPD_severity was used as a categorical variable, 
and each modality needs to be mapped to one concept. This manual mapping was supervised by data analysts and required 
expertise from the model developers and clinicians who originally captured the data used as a training set. 

Code Domain Condition 

255573 Condition Chronic obstructive lung disease 

4196712 Condition Mild chronic obstructive pulmonary disease 

4193588 Condition Moderate chronic obstructive pulmonary disease 

4209097 Condition Severe chronic obstructive pulmonary disease 

44791725 Condition Very severe chronic obstructive pulmonary disease 
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Conclusion 

We designed an innovative automated framework that utilizes RAG enhanced LLM. This framework 

enables the semantic mapping of natural language cohort definitions to standardize queries compliant 

with the OMOP CDM, thus improving the accuracy of feature mapping. The end-to-end automation of 

this process makes it accessible to users, even those without expertise in the medical field. In the 

future stage, this workflow will be integrated into the REALM testing environment, where the AI model 

developer can directly get the recommendations of concept names while submitting the cohort 

requirements. The approach will be benchmarked for five different use cases of REALM. The proposed 

tool mainly focuses on aiding the AI model developers to evaluate their software with a focus on 

safety, efficacy, and usability, for the direct benefit of patients and healthcare practitioners. 

Importantly, our pipeline is highly modular and adaptable. Core components, such as the embedding 

model, vector database, and LLM, can be easily changed or fine-tuned to accommodate different 

technical setups. The workflow has already been validated against the requirements of the REALM 

project and will soon be integrated into the RIANA dashboard, offering a user-friendly interface for AI 

model developers. Beyond REALM, this solution holds strong potential for a wide range of real-world 

standardization challenges where efficient, accurate vocabulary mapping is essential. 
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A.2 OHDSI Poster
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B OMOP Common Data Model (CDM)

Figure 25: Database structure of the OMOP Common Data Model (CDM) version 5.4. The tables are grouped by domain and source, illustrating the standardized data schema adopted
by the OHDSI community. Picture credit: Martijn Schuemie and Renske Los.
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C OHDSI Tools

C.1 Athena

Fig. 26 shows the default homepage for Athena. The users can choose their domain
of choice and add the search term in the search box. Additional filters, such as VOCAB,
VALIDITY, CLASS, etc., can be chosen at the following steps.

Figure 26: Default interface of the OHDSI tool Athena

C.2 Usagi

Usagi generates the OMOP-CDM mappings for the source codes, which are imported
into the system. Suggestions can be either approved or unchecked, as shown in the figure. 27
OHDSI Tools (2025)

Figure 27: Mapping of source concepts to OMOP-CDM standards through a similarity approach
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D RIANA Dashboard

The format of the input and output JSON code in the RIANA dashboard.

Figure 28: A simplified example of the expected JSON structure for specific sections of the model card.
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E Model Cards

The example model cards for the REALM use cases.

Figure 29: Model card for REALM use-case COPowereD

Figure 30: Model card for REALM use-case STAR
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Figure 31: Model card for REALM use-case DuneAI

Figure 32: Model card for REALM use-case PGx2P
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