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Abstract

Cell and nucleus segmentation is critical for quantitative bioimage analysis, particularly

in whole slide imaging (WSI), which has transformed digital pathology by enabling the

study of entire tissue sections. Despite recent advancements, scalable and efficient seg-

mentation methods are still needed to handle complex, real-world datasets. This thesis

presents a systematic review and comparative analysis of state-of-the-art cell segmenta-

tion techniques, focusing on their application to Fluorescence, Hematoxylin, and Eosin

(H&E) stained WSIs. Five prominent methods—Cellpose, StarDist, Mesmer, HoverNet,

and InstaSeg—were evaluated using standardized, publicly available datasets: TissueNet

and MoNuSeG. Performance was assessed using accuracy, precision, recall, F1-score, and

Intersection over Union (IoU). Results indicate that StarDist consistently outperforms the

other models regarding precision across both imaging modalities, while Cellpose tends to

over-segment, often predicting a higher number of nuclei. These contrasting behaviors sug-

gest that combining the strengths of different models could be a promising direction for

improving segmentation accuracy. While not directly evaluated in this study, integrating

a composite loss function would be a compelling area for future exploration. A sensitivity

analysis employing StainGANs quantified the influence of stain variations on model robust-

ness, providing significant insights into how deviations from standardized staining impact

segmentation performance. The outcomes of this study are to guide researchers in selecting

optimal segmentation approaches for WSI analysis and highlight potential directions for

future improvements in digital pathology workflows.
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1 Introduction

1.1 Background

Before the advent of computers and digital image analysis, cell segmentation—identifying

and separating individual cells or nuclei in biological tissues—was performed manually us-

ing microscopes and physical tools, with results interpreted primarily by human observers.

Pathologists examined stained tissue samples under microscopes, using visual indicators

such as cell boundaries, coloration, morphology, and contrast to distinguish and delineate

cellular structures. The process was highly labor-intensive and time-consuming, often re-

quiring the manual counting of large numbers of cells, and was inherently susceptible to

variability between observers. With the emergence of digital microscopy and early image

processing techniques in the pre-AI era, software tools began to assist with basic segmen-

tation tasks, offering limited levels of automation and reproducibility. Recent advances in

computational imaging and artificial intelligence have significantly transformed the field,

enabling highly scalable, fully automated, and more accurate approaches to cell segmenta-

tion—thereby reshaping modern workflows in digital pathology.

Detection and segmentation of nuclei are fundamental to pathology-based diagnoses, includ-

ing carcinoma detection, grading, and quantitative analysis, all of which contribute to the

reliability of clinical decisions [1]. These techniques are essential in both academic research

and medical applications, serving as the foundation for developing advanced diagnostic

tools [2].

In recent years, bioimage analysis has garnered significant attention in medical research,

driving advancements in cellular analysis and understanding. A major factor behind this

progress is the improvement in computational efficiency and power, as modern GPUs can

scale up to process vast amounts of image data with ease [3].

Cell segmentation approaches can be broadly categorized into two groups: traditional meth-

ods and deep learning-based techniques. Traditional segmentation methods, such as thresh-

olding, edge-based techniques, region-based approaches, clustering, and graph-based seg-

mentation, are generally computationally efficient and interpretable. However, they often

struggle in complex scenarios, particularly when handling noisy images or overlapping nuclei

and cells [4].

In contrast, deep learning-based methods have demonstrated remarkable effectiveness in ad-

dressing these challenges by learning intricate, high-dimensional representations of cellular

structures through convolutional frameworks. This paper focuses on comparing segmen-

tation models developed using deep learning and convolutional neural networks, assessing

their capabilities in improving accuracy and robustness in cellular image analysis.

The range of methods developed for nuclei detection and segmentation is extensive. How-

ever, this research focuses on a selection of state-of-the-art models that are well-documented

and widely recognized in the field, including Mesmer, Cellpose, StarDist, HoverNet, and

InstaSeg [5, 6, 7, 8, 9].
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While reviewing existing literature, it became evident that although numerous studies com-

pare deep learning-based segmentation models, truly comprehensive and independent eval-

uations are relatively scarce. Many of the available assessments appear to be conducted

by the model developers themselves, which raises potential concerns regarding impartiality.

Furthermore, many evaluations do not utilize standardized and diverse datasets like Tis-

sueNet, making it difficult to objectively compare model performance across various tissue

types and imaging conditions. This project aims to bridge that gap by systematically com-

paring state-of-the-art deep learning segmentation models using the TissueNet benchmark

dataset, providing researchers with clearer insights into the strengths and limitations of

different approaches.

In this project, we deploy StainGANs to perform a sensitivity analysis aimed at evaluating

the robustness of segmentation models under varying staining conditions. This approach

helps identify models that demonstrate greater stability and generalizability across hetero-

geneous histopathological datasets.

1.2 Research Objectives

The primary aim of this research is to evaluate and compare the performance of state-of-the-

art cell and nuclei segmentation models applied to histopathological images. Specifically:

• To conduct a comparative performance analysis of leading segmentation models—Cellpose,

StarDist, Mesmer and InstaSeg—based on standard evaluation metrics including ac-

curacy, precision, recall, F1-score, and Intersection over Union (IoU).

• To assess the robustness of these models when applied to datasets with varying stain-

ing characteristics, using stainGANs for stain normalization.

2 Materials and Methods

This section outlines both the material and methodological framework employed in this

study, focusing on the application of five state-of-the-art deep learning-based cell segmen-

tation methods built upon the U-Net architecture Figure 1. This section is structured into

four main components. The first and second parts (Sections 2.1.1 and 2.1.2) provide an

overview of the datasets used. The subsequent section presents a detailed overview of im-

age analysis using fluorescence microscopy images from the TissueNet dataset, including

descriptions of the deployed models: StarDist, Cellpose, InstaSeg, and Mesmer.To assess

the generalizability of segmentation methods across different staining modalities, we apply

the same segmentation techniques to H&E-stained images. We also perform a sensitivity

analysis using stain translation via generative adversarial networks to evaluate the robust-

ness of segmentation under varying stain appearances. Without ground truth masks, we use
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Bland–Altman plots and multidimensional scaling as statistical tools to assess agreement

and visualize differences between segmentation outputs [10].

Two widely used imaging techniques in histology are Hematoxylin and Eosin (H&E) stain-

ing and fluorescence-based imaging. Hematoxylin and Eosin staining uses two dyes: hema-

toxylin, which stains nuclei blue-purple, and eosin, which stains the cytoplasm and other

structures pink. This method provides a general overview of tissue architecture and cell

morphology and is the most commonly used technique in routine pathology for examining

tissue structure and detecting abnormalities. Fluorescence imaging employs fluorescent dyes

or tags that bind to specific molecules within tissues. When exposed to certain wavelengths

of light, these dyes fluoresce at different wavelengths, allowing for multi-target labeling and

precise molecular visualization. Fluorescence techniques work across diverse tissue types,

providing high-contrast imaging of cytoplasmic, nuclear, and extracellular matrix structures

[11, 12, 13]. This study focuses primarily on these two techniques.

A significant challenge in bioimage analysis is staining variability, particularly in histopatho-

logical images stained with Hematoxylin and Eosin.Variations in staining protocols, reagent

concentrations, scanner types, and even tissue preparation practices can lead to substantial

differences in color, contrast, and intensity across images. These inconsistencies directly

affect the performance and generalizability of segmentation models, which are often sensi-

tive to the visual characteristics of the training data. As a result, a model trained on one

dataset may perform poorly when applied to another with different staining conditions,

thereby limiting its robustness in real-world clinical settings[14].

In this study, we analyze both the Tissuenet dataset for fluorescence images and the

Monuseg dataset for H&E-stained images, using four state-of-the-art models specifically

designed for the segmentation of cell nuclei.

All deep learning models examined in this study, except for Mesmer, are based on the U-Net

architecture, which combines encoder and decoder networks.

Figure 1 illustrates the architecture for U-Net. The framework is a symmetric encoder-

decoder network designed for image segmentation. The encoder extracts spatial features

through repeated blocks of two 3×3 convolutions followed by 2×2 max pooling, doubling

the number of filters at each level. The decoder mirrors this structure, using 2×2 transposed

convolutions to upsample and halve the number of filters, followed by two 3×3 convolu-

tions. A final 1×1 convolution produces the segmentation map. ReLU is used in all layers

except the last, which uses a Sigmoid activation. A key innovation is skip connections,

where feature maps from the encoder are concatenated with decoder outputs at each level,

preserving spatial information lost during downsampling.
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Figure 1: U-Net architecture with encoder-decoder structure for cellular image segmenta-

tion.

Some of the key software tools extensively used in this study include Deepnote notebooks,

Google Colab and Drive, GitHub repositories, the TIA Toolbox[15], and reproducible code-

bases from StarDist[16, 7, 6], InstaSeg[17], Cellpose[8], and DeepCell[9]. The programming

environment was based on Python 3.11, with deep learning models implemented using both

TensorFlow and PyTorch frameworks.

2.1 Data Description

This study utilizes two publicly available GDPR-compliant datasets for nuclei and whole-cell

segmentation. The first is the TissueNet dataset, which contains fluorescence-stained tissue

images. The second is the MoNuSeg dataset, which focuses on H&E-stained histopathology

images.

2.1.1 TissueNet Dataset

TissueNet dataset, contains fluorescence tissue images. It comprises approximately 2,600

training images (512×512 pixels), from which random 256×256 crops are extracted for data

augmentation. The validation set includes around 300 images resized to 256×256 and ex-

panded to approximately 3,000 images using resolution variants. The test set consists of

about 300 images, also resized to 256×256, resulting in over 1,200 evaluation samples,the im-

ages were acquired with a resolution of 0.61 µm/pixel [9] .All the images have corresponding

round truth masks with integer labels. Figure 2 presents a preview of the Tissunet dataset.

The dataset includes two imaging channels: the nuclei and cell membrane channels, both

stored in compressed array files. The nuclei data is stored in the first channel, while the

cell membrane data occupies the second. Similarly, the corresponding labeled masks are

provided in compressed arrays, with cell membrane annotations in the first channel and

nuclei annotations in the second. This study primarily focused on the nuclei channel of the

dataset.
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Figure 2: TissueNet Image sample with fluorescence staining and ground truth nuclei masks.

2.1.2 MoNuSeg Dataset

The second dataset used in this study is MoNuSeg (Multi-Organ Nuclei Segmentation).

MoNuSeg provides annotated histopathological images focused on H&E-stained tissue. It

consists of a training set of 30 H&E-stained images with approximately 22,000 manually an-

notated nuclear boundaries, originally published in IEEE Transactions on Medical Imaging

(2017), and a test set with around 7,000 additional nuclear boundary annotations, released

as part of the MoNuSeg 2018, Challenge , the images were obtained at a high resolution

of 0.25 µm/pixel [18]. In this study, we used the dataset to evaluate nuclei segmentation

performance across different types of staining. Figure 3 shows a preview of both the image

and the corresponding annotation from the Monuseg dataset.

Figure 3: Sample image and corresponding segmentation mask from the Monuseg dataset

8
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2.2 Models

2.2.1 StarDist

Instead of using bounding boxes, StarDist represents objects as star-convex polygons, mak-

ing it particularly well-suited for round or elliptical structures such as cell nuclei. The

method was originally developed with fluorescence microscopy images in mind[5]. For this

particular analysis, we utilized the Versatile (fluorescent nuclei) model that was trained on

a subset of the DSB 2018 nuclei segmentation challenge dataset.The training data consists

of both images and masks, where each pixel is assigned either a unique object identifier or

a background label (typically 0). The general approach for 2D image segmentation using

StarDist is illustrated in Figure 4, which shows how the model processes images to predict

radial distances and object probabilities. The model is trained to predict, for each pixel, the

distances to the object boundary along a predefined set of radial directions, as well as the

object probability. These predictions generate an overcomplete set of candidate polygons.

The final segmented objects are then selected using non-maximum suppression (NMS) to

eliminate redundant or overlapping candidates.

Figure 4: Stardist Framework (adapted from Schmidt et al., 2018).

Radial Distances (r): For each pixel, the model predicts distances from the pixel to the

object’s boundary along a fixed number of rays . This means that the model learns not

directly the full contour of an object but a set of distances that define a star-convex polygon

centered at that pixel[16, 6] .

Object Probability (d): Alongside the radial distances, the model predicts how likely

it is that the given pixel is at the center of an object (nucleus), filtering out background

pixels or non-object centers.

Non-Maximum Suppression (NMS): Since many pixels may predict overlapping or

similar polygons, NMS is applied to retain only the most confident (highest probability)

polygon predictions while discarding redundant ones, ensuring that each object is detected

only, avoiding over-segmentation.

The ’2D versatile fluo’ model was trained using default values: prob thresh = 0.479071

(Object probability threshold) and nms thresh = 0.3 (Non-Maximum Suppression thresh-

old) with radial rays of 32 evenly spaced directions.

The combined loss function minimized in the Stardist model is a weighted sum of the

distance map loss and the object probability loss:

9
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Ltotal = λ1 · Ldist + λ2 · Lprob

• Ldist is the loss for the radial distances (MSE).

• Lprob is the binary cross-entropy loss for the object probability map.

• λ1 and λ2 are hyperparameters that control the relative importance of each loss term.

The object probabilities are minimized using standard binary cross-entropy loss. For the

polygon distances, a Mean Absolute Error (MAE) loss is used, where the pixel-wise er-

rors are weighted by the ground truth object probabilities before averaging. This ensures

that the model prioritizes the object regions during the optimization process, improving

segmentation accuracy in areas where nuclei are present[16].

Figure 5: StarDist Input image alongside the ground truth and predicted segmentation

masks

2.2.2 Cellpose

Cellpose is a deep learning-based segmentation method designed to address the limitations

of traditional segmentation approaches, which often struggle with overlapping nuclei. Cell-

pose introduced a novel intermediate representation that enforces a smooth topological

structure for each object, enabling more robust segmentation across a variety of cellular

morphologies[8].

10
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Figure 6: Cellpose framework.Neural network predicts horizontal and vertical vector flows

and binary masks from topological maps. Pixels are grouped by gradient tracking. (adapted

from [8]).

The method begins by simulating diffusion from human-annotated ground truth masks to

generate topological maps where each object forms a single, smooth intensity basin.A neural

network is trained to predict both the spatial gradients (horizontal and vertical) of these

maps and a binary mask indicating object presence[8].During inference, the model predicts

vector fields from which each pixel is traced via gradient tracking to its corresponding object

center. Pixels that converge to the same location are grouped together to form a segmented

cell. Predicted binary masks are used to refine the boundaries and eliminate false positives.

The Cellpose model is anchored on a modified U-Net framework with residual blocks instead

of standard convolutional units, direct summation rather than feature concatenation to

reduce parameters, and increased depth for improved feature extraction. Additionally, the

network incorporates global average pooling at the bottleneck to capture an image’s overall

”style.” This style vector is injected into the upsampling pathway to adapt predictions

based on image-specific characteristics[8].

To enhance segmentation quality during inference, Cellpose employs several test-time aug-

11
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mentations, including model ensembling, test-time resizing, region-of-interest (ROI) quality

estimation, and image tiling. These enhancements collectively contribute to improved ro-

bustness and accuracy across diverse datasets.

The model uses a composite loss function that combines both the accuracy of object seg-

mentation and the correctness of spatial vector flows used for pixel routing. The total loss

minimized during training is expressed as:

Ltotal = λ1 · Lmask + λ2 · Lflow

• Lmask is the binary cross-entropy loss applied for foreground/ background prediction.

• Lflow is the mean squared error (MSE) loss between the predicted vector flows (hor-

izontal and vertical gradients) and the ground truth flows derived from simulated

diffusion across cell masks.

• λ1 and λ2 are scalar weights used to balance the contributions of the two losses. In

most training configurations, these are set to equal values.

This dual-objective approach enables the model to delineate cell boundaries while learning

a vector field that routes pixels to object centers[8].

Figure 7: Cellpose input image with corresponding ground truth and predicted segmenta-

tion masks

2.2.3 Instaseg

Deep learning models such as CellPose, Mesmer, and StarDist have shown reasonable per-

formance on specific datasets; however, they face limitations, especially when applied to

multiplexed imaging [19]. While models like CellPose and Mesmer can technically be re-

trained with additional imaging channels, they often require users to merge or subset mul-

tiple biomarkers. This can result in the loss of biologically relevant information that might

be useful for downstream analysis[20]. Furthermore, retraining these models typically de-

mands careful tuning to specific biomarker compositions, which limits their generalizability

across diverse datasets [21].
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Other approaches, such as nuclear mask expansion or pixel classification using tools like

Ilastik[22] and CellProfiler, introduce additional challenges, including user-dependent vari-

ability and reduced performance on complex or heterogeneous datasets.

Figure 8: InstanSeg framework: segments both cell and nuclei in multiplexed microscopy

and uses ChannelNet to learn informative three-channel representations without direct

supervision (adapted from [17]).

InstanSeg overcomes these challenges by offering a fast, relatively accurate, and flexible deep

learning-based pipeline for both cell and nuclear segmentation in fluorescence and brightfield

microscopy[17]. Built in PyTorch, InstanSeg is optimized to handle highly multiplexed

images (more than three channels) without requiring retraining or manual preprocessing,

enabling researchers to analyze novel biomarker panels with minimal effort[17].

Its speed advantage stems from an efficient model architecture, integrated postprocessing

via TorchScript, and full GPU acceleration. By compiling both the segmentation and

postprocessing pipelines into TorchScript, InstanSeg supports seamless use in Python and

can also be deployed independently via LibTorch, facilitating integration with tools like

QuPath[17].

During training, segmentation losses are computed only for the labels available in the

ground truth. Let ŷnucleus and ŷcell denote the predicted masks, and ynucleus and ycell the

corresponding ground truth masks. Binary Cross-Entropy (BCE) loss for each prediction,

is applied conditionally as follows:
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Ltotal =


BCE(ŷnucleus, ynucleus), if only nucleus labels exist

BCE(ŷcell, ycell), if only cell labels exist

BCE(ŷnucleus, ynucleus) + BCE(ŷcell, ycell), if both labels exist

This conditional training enables the model to learn effectively from partially labeled

datasets.

This approach works with partially labeled datasets, without needing fully paired anno-

tations. ChannelNet, trained jointly with InstanSeg, converts high-dimensional multiplexed

inputs into a three-channel representation. It receives no separate loss; instead, it learns

through the segmentation loss alone. This allows it to discover the most informative channel

combinations for accurate segmentation, even if they don’t correspond to specific biological

markers.

Figure 9: Instaseg input image with ground truth and predicted segmentation masks

2.2.4 Mesmer

Mesmer is a deep learning algorithm designed to segment cell nuclei and entire cells in

tissue images. It utilizes a ResNet50 backbone integrated with a Feature Pyramid Network

(FPN) to extract and process image features efficiently[9]. While FPNs are traditionally

used in object detection [23], in this context, the FPN enhances segmentation performance

by combining high-resolution, low-level features with low-resolution, high-level semantic

features. This multi-scale representation enables the model to accurately delineate cells

and nuclei of varying sizes and shapes, while preserving fine structural details such as

boundaries and contours—crucial for precise instance segmentation in tissue images. The

model has four prediction heads: two dedicated to nuclear segmentation and two for whole-

cell segmentation.

14
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Figure 10: Mesmer Framework (Adopted from [9])

The model takes in a pair of images: a nuclear stain to identify nuclei and a membrane or

cytoplasmic marker to outline whole cells. The images are then normalized and tiled for

efficient processing [9, 24].The model then predicts the centers and boundaries of each nu-

cleus and cell,the reconstructs the full-image predictions by untangling the tiled outputs[9].

Finally, a watershed algorithm is applied to the center and boundary maps to refine the

segmentation masks for individual nuclei and whole cells [9].

Figure 11: Mesmer input image with ground truth and predicted segmentation results

2.2.5 HoverNet

Hover-net is a deep-learning method that performs nuclear instance segmentation and clas-

sification simultaneously. It distinguishes clustered nuclei by using the horizontal and ver-

tical distances of nuclear pixels to their centers of mass. Each segmented nucleus is then

assigned a type through a dedicated classification process. HoverNet is trained on differ-

ent datasets, each with its unique advantage: CoNSeP, PanNuke, MoNuSAC, Kumar, and

CPM17. ConSeP, PanNuke, and MonuSAC are designed to handle both segmentation and

classification, while Kumar and CPM17 are designed for segmentation only[25]. HoverNet

model was only trained on Hematoxylin and Eosin(HE) images.In this study, we utilized the

PanNuKe checkpoint weights trained on the PanNuke dataset and only used the segmenta-

tion head, PanNuke was preferred since it contains images from multiple organs (19 tissue

types) and covers a broader range of pathological conditions [26]. In figure 12, the Hovernet

model is shown,which comprises both encoder and decoder components and is designed to

perform nuclear instance segmentation and classification through multi-task learning [26].
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The Nuclear Pixel Segmentation (NP) branch distinguishes nuclear regions from the back-

ground using binary classification. In parallel, the Horizontal and Vertical Distance Maps

(H, V) branch predicts the displacement of each nuclear pixel from the center of mass of

its respective nucleus—this spatial encoding is critical for accurately separating clustered

or overlapping nuclei.

To train these outputs jointly, HoVer-Net minimizes a composite loss function that combines

pixel-wise Binary Cross-Entropy (BCE) for the NP output and Mean Squared Error (MSE)

for the H and V maps. The total loss is defined by:

Ltotal = λnp · LNP
BCE + λhv · LH

MSE + λhv · LV
MSE + Lcls (1)

where λnp and λhv are weighting coefficients for the segmentation and displacement

map losses, respectively, and Lcls is an optional classification loss applied when nuclear

type classification is included. This multi-task loss encourages the network to learn spatial,

morphological, and categorical features of nuclei simultaneously.

Figure 12: Hovernet framework (adapted from [25])

2.3 Model Evaluation

This subsection outlines the key metrics utilized in assessing the performance of the models

presented in sections 2.2.1, 2.2.3,2.2.2,2.2.4 and 2.2.5. Initially, all models were bench-

marked against annotated ground truth objects, as described in section 2. Subsequently,

their performance was evaluated independently of ground truth objects.

2.3.1 Classical Segmentation Metrics

In segmentation tasks such as this, the loss function minimized is often binary cross-entropy

(BCE), especially in binary segmentation where the objective is to distinguish foreground
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from background pixels. BCE, however, does not measure the spatial quality of predictions;

as such, during evaluation, region-based performance metrics are used to capture how well

the predicted segmentation masks align with the ground truth.

In this study we concentrated on specific evaluation methods such as:

• True Positives (TP): Foreground pixels correctly classified as foreground.

• False Positives (FP): Background pixels incorrectly predicted as foreground.

• False Negatives (FN): Foreground pixels incorrectly predicted as background.

• Precision:

Precision =
TP

TP + FP
Precision measures the proportion of predicted foreground pixels that are indeed

correct, and is especially important when false positives is costly[27].

• Recall :

Recall =
TP

TP + FN
Recall assesses the proportion of actual foreground pixels that were successfully

predicted[27]. High recall is critical when missing objects (false negatives) is more

detrimental than false alarms.

• F1 Score:

F1 = 2 · Precision · Recall
Precision + Recall

The F1 score balances precision and recall, providing a single metric to evaluate

models, particularly when dealing with class imbalance.

• Intersection over Union (IoU):

IoU =
TP

TP + FP + FN

Figure 13: A score of 1 means that the predicted segments precisely matches the ground

truth. A score of 0 implies that the predicted and true segments do not overlap at all.
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Intersection over Union (IoU) measures the overlap between predicted and ground truth

masks, penalizing false positives and false negatives [28]. We selected IoU over metrics such

as the Dice score because it provides a more stringent evaluation of segmentation quality.

We aimed to identify an optimal model with strong performance across varying overlap

thresholds. To this end, we examined the relationship between F1-score, Precision, Recall,

False Positives (FP), False Negatives (FN), and True Positives (TP) across IoU thresholds

ranging from 0.1 to 0.9.

2.3.2 Multidimensional Scaling

Multidimensional Scaling(MDS) is a dimensionality reduction technique used to visualize

the similarity or dissimilarity between high-dimensional data points.

Given a squared distance matrix DX ∈ Rn×n, which represents the dissimilarities among n

observations, MDS aims to find a configuration of points in a k-dimensional space (where

k ≪ n) such that the distances between the points in this space closely reflect the structure

of DX .

MDS first centers the data using the centering matrix

H = I − 1

n
11T ,

I is n× n identity matrix, n is number of data points, and 1 is an n-dimensional vector of

ones. The centered Gram matrix GX , which contains the inner products between points,

is computed from the squared distance matrix DX ∈ Rn×n as

GX = −1

2
HDXH.

DX consists of squared pairwise distances d2ij between data points i and j. The eigende-

composition of GX .

GX = UΛUT ,

U ∈ Rn×n is a matrix whose columns are the eigenvectors of GX , and Λ ∈ Rn×n is a

diagonal matrix of corresponding eigenvalues.

The low-dimensional embedding Z ∈ Rn×k is obtained by selecting the top k eigenvectors

Uk ∈ Rn×k and their eigenvalues Λk ∈ Rk×k, where k is the target embedding dimension:

Z = UkΛ
1/2
k .

Each row of Z represents the coordinates of a data point in the reduced k-dimensional

space, preserving the original pairwise distances as closely as possible.

In this study, MDS was applied to compare segmentation models by analyzing the dissimi-

larities in predicted cell areas and cell counts. This enabled a qualitative assessment of how

closely related different models are in terms of their segmentation behavior. The method is
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used to reduce the number of model-pair comparisons by focusing on models that exhibit

similar segmentation characteristics, as well as on those that show marked dissimilarities.

We calculated per-image foreground segmentation areas and cell counts for each of the

four segmentation models— 2.2.1,2.2.2,2.2.3, and 2.2.4. Using these metrics, a dissimilarity

matrix was constructed employing the correlation distance metric, emphasizing agreement

in trends and variation between models rather than absolute difference

2.3.3 Pair -Wise Bland-Altman plots

As a successor to the MDS method introduced in Section 2.3.2, the Bland–Altman plot was

used to assess the magnitude of agreement or disagreement between pairs of segmentation

methods [10]. This method refines the analysis by focusing not on association or predictive

correlation but on how closely the two methods agree in their outputs.

Given paired measurements Ai and Bi from two segmentation models on the same instance,

the Bland–Altman method begins by computing the mean and difference for each pair:

Meani =
Ai +Bi

2
, Differencei = Ai −Bi.

The average of the differences across all n samples yields the bias between the two methods:

Bias =
1

n

n∑
i=1

(Ai −Bi).

To understand the variability, the standard deviation (SD) of these differences is calculated

as:

SD =

√√√√ 1

n− 1

n∑
i=1

((Ai −Bi)− Bias)2.

Using this, the 95% limits of agreement are defined as:

Lower Limit = Bias− 1.96× SD, Upper Limit = Bias + 1.96× SD.

These limits and the bias line are plotted to produce the Bland–Altman diagram, which

visualizes the differences on the vertical axis against the average values on the horizontal

axis. This visual and statistical interpretation helps detect systematic biases and the extent

of agreement or disagreement between segmentation models [10, 29].

2.3.4 HiStauGAN- Sensitivity To Stain Variation Analysis

Histopathology, especially H&E images, predominantly suffers from variations in stain in-

tensity and application resulting from laboratory procedures, different scanners, and stain-

ing variations[30, 31]. One way of combating this is standard normalization; however, it

may oversimplify this variation or distort structural information[32]. While deep learning
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models are generally expected to be robust to variations in H&E staining due to their abil-

ity to learn complex data distributions, their performance may still depend on the training

data’s diversity and the model’s architectural focus. Architectural designs that emphasize

structural features over color information may improve robustness to stain variation but

could slightly compromise overall generalizability across diverse staining styles. It is for

this reason that we implemented HiStauGAN—generative adversarial networks designed to

disentangle style (stain/color) from content (structure) using two separate encoders while

maintaining the tissue’s morphological features[33].The model was trained on the CAME-

LYON17 dataset, which consists of 1,000 whole-slide images (WSIs) of sentinel lymph node

biopsies collected from five distinct domains (medical centers). The dataset is split into

train and test sets, each containing data from 100 patients—20 from each center—with five

WSIs per patient. This study generated domain-specific synthetic images from each origi-

nal image, resulting in five variations per input, each corresponding to a different domain.

These synthetic images were subsequently evaluated using four instance segmentation mod-

els:2.2.1, 2.2.3,2.2.2 and 2.2.5. Figure 14 shows synthetic variations of the original image

generated by HiStauGAN from the MoNuSeg dataset.

Figure 14: Original and domain-specific images generated by HiStauGAN.

In order to assess if there are differences between the domains, we quantitatively assessed the

similarity of stain styles across different histopathological image domains using Macenko’s

method for stain matrix extraction combined with cosine similarity analysis[34, 35]. For

each image within a domain, the Macenko algorithm was applied to extract a 2×3 matrix

representing the hematoxylin and eosin (H&E) stain basis vectors. These matrices were then

flattened into 6-dimensional stain vectors, and all vectors within a domain were averaged to

produce a mean stain representation per domain. Cosine similarity was computed between

all pairs of mean vectors to compare these domain-level stain profiles. We chose Cosine

similarity because it measures vectors’ orientation (relative composition) independently

of their magnitude, making it robust to variations in image brightness and staining [35].

The method helps directly compare stain composition across domains, providing insight

into whether different institutions or synthetic augmentation processes introduce significant

staining variations. We thus evaluated IoU metrics on the most dissimilar domains (UMCU

and CWZ) to check if there are differences in model performance.
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3 Results

This section is divided into three key subsections: Section 3.1 presents results on fluores-

cence images using the TissueNet dataset; Section 3.2 focuses on Hematoxylin and Eosin

stained images from the MoNuSeg dataset; and Section 3.3 explores sensitivity analysis

using StainGANs.

3.1 Fluorescence Image Analysis

3.1.1 Analysis with Ground Truth Masks

Figure 15 shows how each segmentation model—, StarDist 2.2.1, Cellpose 2.2.2,InstaSeg 2.2.3,

and Mesmer 2.2.4—compares to the ground truth labeled masks. The evaluation was per-

formed using various metrics across a range of Intersection over Union (IoU) thresholds,

from 0.1 to 0.9.

StarDist demonstrated the most robust performance overall, keeping the highest precision

and F1 scores across nearly all thresholds, along with strong recall and the fewest false

positives. Cellpose closely follows, performing well in both recall and F1 score, though it

slightly trails StarDist in precision and panoptic quality. In contrast, Mesmer and InstaSeg

exhibit weaker performance, with noticeably lower precision and recall that diminish further

for stricter IoU thresholds. Furthermore, these two models reported a higher number of

false positives, particularly Mesmer, as IoU thresholds increase.

It was also noted that across all these models the number of true positives decreased with

increasing IoU thresholds, reflecting the greater stringency in match criteria. In contrast,

false positives tend to increase under these conditions, illustrating the challenge of main-

taining specificity at higher overlap requirements. In general, StarDist and Cellpose show

superior balance in precision and recall, making them more reliable for nuclei segmentation

tasks under varying overlap tolerances, whereas Mesmer and InstaSeg may require further

tuning or refinement for comparable effectiveness.
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Figure 15: Performance of segmentation models on fluoresence images across varying IoU

thresholds based nn Ground truth.

3.1.2 Multidimensional Scaling Analysis

Figure 16 presents the results of multidimensional scaling, applied to assess similarity be-

tween segmentation methods based on their per-image nucleus count and segmentation area

distributions. The MDS plots summarize the pairwise correlation distances between meth-

ods, providing insight into how similarly each model behaves across the dataset in terms of

area and count variability.

In the left panel (MDS based on the segmentation area), Cellpose is positioned farthest

from the other methods. It indicates that its segmentation area patterns across the images

are least correlated, likely reflecting a distinct or inconsistent trend. StarDist and InstaSeg

appear close together, suggesting that they follow a similar pattern in area variation across

images (both tend to detect larger segmented regions in the same images). Mesmer lies at

an intermediate distance, implying that its area variation pattern is partially similar but

not strongly correlated with the others.
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In the right panel (MDS based on nucleus count), StarDist and Mesmer are closely posi-

tioned, showing strong agreement in how their nucleus counts vary across images; both tend

to detect more nuclei in denser images and fewer in sparser ones. In contrast, InstaSeg and

Cellpose are situated further apart, reflecting distinct count variation patterns that differ

from each other and those of StarDist and Mesmer. Notably, Cellpose again exhibits a

unique variation profile, highlighting its divergence in consistency relative to the different

segmentation methods.

Figure 16: Multidimensional Scaling

3.1.3 Pair -Wise Bland-Altman plots Analysis

Figure 17 and 18 presents pairwise Bland–Altman comparisons for model combinations

described in Section 2.3.2, focusing on total segmentation area (in pixels) and nuclei count

per image.

Table 1 summarises results from the Bland-Altman plots. Across all comparisons, the pres-

ence of proportional bias—where differences between methods grow larger as the average

segmented area or nuclei count increases—indicates that segmentation discrepancies are

not constant but scale with image density and area, suggesting that models may behave

similarly on simpler or smaller images but diverge significantly on more complex or dense

samples. Additionally, funnel-shaped heteroscedasticity in the Bland–Altman plots reflects

a pattern where variance increases with image complexity. In practical terms, this means

that segmentation performance becomes less reliable as the structural density of tissue

increases—likely due to challenges such as overlapping nuclei, irregular shapes, and poor

contrast. These patterns highlight that segmentation consistency deteriorates under more

demanding conditions, with each algorithm reacting differently based on its design. For ex-

ample, StarDist, which assumes star-convex shapes, may underperform in highly clustered

or irregular morphologies. At the same time, Cellpose, which uses a vector flow approach,

may over-segment to capture all spatial gradients. Models like Mesmer and InstaSeg may

also err on conservative delineation, missing finer structures or densely packed nuclei.
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Table 1: Bland–Altman analysis comparing segmentation methods on total area (pixels)

and nuclei count for fluorescence images
Comparison Metric Mean Difference SD (Variability) Interpretation

Cellpose vs StarDist Total Area −10,101.10 px 15,874.85 Cellpose segments larger regions; strong heteroscedasticity in complex images

Nuclei Count −8.64 nuclei 57.57 StarDist undercounts in dense regions images

InstaSeg vs StarDist Total Area −4,124.37 px 8,114.22 InstaSeg under-segments; variance increases with object size

Nuclei Count −2.90 nuclei ∼ 75−100 range Small average bias; inconsistent in dense areas

StarDist vs Mesmer Total Area −6,765.30 px 10,625.13 Mesmer segments more conservatively; increasing disagreement in large areas

Nuclei Count −15.96 nuclei 46.41 Mesmer detects fewer nuclei; heteroscedasticity in crowded images

Figure 17: Bland–Altman plots comparing InstaSeg,StarDist and Mesmer for segmented

area and nuclei count.
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Figure 18: Bland–Altman plots comparing Stardist vs Cellpose Comparison for segmented

area and nuclei count.
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3.2 Analysis Of Hematoxylin And Eosin Images

In this section, the focus of the analysis shifts to H&E-stained images, with primary bench-

marking conducted on the MoNuSeg dataset. Among the five methods, only four—StarDist,

Cellpose, InstaSeg, and HoverNet—provide pretrained models specifically tailored for H&E-

stained images. Consequently, the analysis in this section primarily concentrates on these

three methods. We used all the methods in Sections 2.3.1, 2.3.2 and 2.3.3 to analyze

H&E-stained images.

3.2.1 Analysis With Ground Truth Masks

The models were evaluated using key metrics: Recall, Precision, True Positives, True Neg-

atives, False Positives, and IoU. A summary of the results is presented in Figure 19. The

recall analysis indicated higher sensitivity for Cellpose, maintaining values above 0.9 up to

τ = 0.5 and gradually decreasing thereafter. HoverNet closely follows this trend, though

slightly lower in magnitude. Both models slightly outperform StarDist, but all three perform

better than InstaSeg, which shows a rapid decline in recall, indicating a higher tendency to

miss ground truth instances as τ increases. StarDist, Cellpose, and HoverNet consistently

achieved the highest F1 scores across IoU thresholds, reflecting a strong balance between

precision and recall. In contrast, InstaSeg demonstrated limited effectiveness, with its F1

score dropping sharply at stricter thresholds (τ > 0.5). In terms of accuracy, StarDist,

Cellpose, and HoverNet performed comparably well, reaching values up to 80% at lower

IoU thresholds and maintaining accuracy above 65% around τ = 0.5. InstaSeg, however,

exhibited significantly lower accuracy across the entire range, indicating less reliable seg-

mentation performance.

True positive counts were highest for Cellpose ,StarDist and HoverNet, with both models

achieving peak performance at τ = 0.1 and maintaining gradual declines as τ for stricter

IoU.InstaSeg showed significantly lower TP counts, especially beyond τ = 0.5.

False positive analysis confirmed that InstaSeg consistently produces the highest number

of spurious detections, which aligns with its poor precision. In contrast, StarDist, Cellpose,

and HoverNet maintain low FP counts, indicating strong discriminatory capability.

False negatives are lowest for Cellpose. Both StarDist and Hovernet produce almost similar

results, followed by StarDist, corroborating their superior recall. InstaSeg recorded notably

higher FN counts, with increasing severity at higher IoU thresholds.

Overall, each model showed strengths in different areas: StarDist excels in precision and

minimizing false detections, Cellpose offers high recall , while HoverNet strikes a strong bal-

ance between the two, making it a well-rounded performer across varying IoU thresholds.

In contrast, InstaSeg consistently underperforms across all evaluated metrics—precision, re-

call, F1 score, accuracy, and error rates—indicating limited reliability for accurate instance

segmentation under stricter matching criteria.
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Figure 19: Performance of segmentation models on H&E-stained images across varying IoU

thresholds based on ground truth.

3.2.2 Multidimensional Scaling Analysis

Multidimensional analysis was conducted based on the total segmented area and nuclei

count to gain deeper insights into the dissimilarities between segmentation methods. The

resulting 2D embeddings are illustrated in Figure 20.

The left panel of Figure 20 indicates that HoverNet exhibits the most remarkable dissim-

ilarity in terms of total segmented area, being spatially distant from the cluster formed

by Cellpose, StarDist, and InstaSeg—an indication that HoverNet’s segmentation behavior

differs significantly from the rest. Cellpose and StarDist are positioned closely together,

implying close similarity in their area measurements, whereas InstaSeg lies slightly apart

but still within reasonable proximity.

The right panel shows MDS based on the number of segmented nuclei.HoverNet is again

an outlier, suggesting it segments a drastically different number of nuclei compared to the

other methods. Cellpose, StarDist, and InstaSeg cluster tightly, indicating high agreement

in nuclei count estimation, with minimal variation between them.
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Figure 20: Model comparison with MDS

3.2.3 Pair-Wise Bland-Altman Plots Analysis

Pair-Wise Bland– Altman analyses further compared Total segmentation area and nuclei

count to evaluate the magnitude of agreement or disagreement between models. Figure 21

summarizes the analysis results. Table 2 provides a summary of mean difference, limits of

agreements, nuclei count and standard deviation between model pairs.

Table 2: Summary of Bland–Altman analysis comparing segmentation methods on total

area (pixels) and nuclei count.

Comparison Metric Mean Difference Agreement / SD Observation

Cellpose vs StarDist Total Area +13,230.50 px ±45,582.18 px Cellpose predicts larger areas

Nuclei Count +73.00 nuclei SD = 31.27 Higher counts, tight agreement

StarDist vs HoverNet Total Area −25,756.29 px ±90,454.62 px High variability in area

Nuclei Count −36.07 nuclei SD = 149.82 Substantial inconsistency

InstaSeg vs Cellpose Total Area −63,941.64 px SD = 43,429.47 Large underestimation by InstaSeg

Nuclei Count −38.64 nuclei SD = 79.85 Moderate variability

Cellpose consistently produced the largest segmentation areas and nuclei counts, while

InstaSeg yielded the smallest, indicating differing segmentation behavior. Cellpose and

StarDist showed the closest agreement in nuclei count, suggesting strong consistency. Com-

parisons involving HoverNet and InstaSeg showed the highest variability, reflecting differ-

ences in segmentation precision across models.This observation synchronizes with results

from 20.
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Figure 21: Bland-Altman plots

3.3 Sensitivity Analysis

Figure 22 presents a heatmap of cosine similarities between stain vectors of HistauGAN-

generated images from five domains introduced in section3.3: Radboud, CWZ, UMCU,

Rijnstate, and Oost-Nederland. Cosine similarity values close to 1.0 indicate very high

similarity in stain composition. Most domain pairs have similarities above 0.98, suggesting

that HistauGAN-generated outputs are largely consistent across domains regarding stain-

ing. However, UMCU exhibits slightly lower similarity scores ( 0.981 with CWZ, 0.983

with Radboud, and 0.987 with Rijnstate), indicating it may have more distinct staining

characteristics. In contrast, Rijnstate and Radboud share one of the highest off-diagonal

similarities (0.999), suggesting nearly identical stain styles. While there is high inter-domain

consistency in generated stain appearances, subtle differences remain, particularly involving

UMCU.
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Figure 22: Cosine similarity heatmap of HistauGAN stain vectors across five domains

Figures 24 ,23 and Table 3show results for sensitivity analysis conducted to determine how

variability in stains affects four segmentation models—StarDist, Cellpose, HoverNet, and

InstaSeg—across CWZ and UMCU domains, selected based on their relative divergence in

the HistauGAN-generated domain similarity heatmap Figure 22. At an IoU threshold of 0.5,

StarDist achieved the best overall performance with high precision (0.74), recall (0.96), and

F1-score (0.83), maintaining low false positives (2400) and false negatives (1200), suggesting

strong robustness to domain shifts. Cellpose and HoverNet followed closely with slightly

lower precision (0.72 and 0.70) and F1-scores (0.82 and 0.80), exhibiting moderate domain

sensitivity. InstaSeg, however, performed poorly across both domains with a precision of

0.58, F1-score of 0.70, and the highest FP (4700) and FN (2300), indicating substantial

degradation in heterogeneous domains like UMCU. These indicate StarDist’s suitability

for cross-domain generalization, while InstaSeg may require domain-specific fine-tuning to

improve reliability across clinical sites.
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Figure 23: Performance of segmentation models on the CWZ domain across varying IoU

thresholds
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Figure 24: Performance of segmentation models on the UMCU domain across varying IoU

thresholds

3.3.1 Pair-Wise Bland-Altman Plots Sensitivity Analysis (CWZ vs UMCU

Domain)

Table 3: Summary of Bland–Altman analysis comparing segmentation models across CWZ

and UMCU domains.
Comparison Metric Mean Difference Agreement / SD Observation

Cellpose vs StarDist Total Area −1660 px ±7692 px Small diff in CWZ; positive bias in UMCU

Nuclei Count +81 nuclei SD = 57 Cellpose detects more Nuclei in both

StarDist vs HoverNet Total Area −29854 px ±61945 px StarDist underperforms more in UMCU

Nuclei Count −43 nuclei SD = 78 StarDist detects fewer Nuclei, worse in UMCU

InstaSeg vs Cellpose Total Area −1695 px SD = 11048 px Smaller disagreement in CWZ

Nuclei Count +126 nuclei SD = 149 InstaSeg detects more Nuclei, especially in UMCU

From figures 25,26, and Table 3, across both domains, a consistent trend emerged: Cell-

pose detects more nuclei than StarDist, though the magnitude of this difference is slightly

smaller in UMCU compared to CWZ. Similarly, InstaSeg consistently identifies more nuclei

than Cellpose, with a slightly greater difference in UMCU. Key disparities appear in total

area estimations—while Cellpose and StarDist show relatively minor differences in CWZ,

Cellpose predicts significantly larger areas in UMCU. StarDist notably underestimates the
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segmentation area in both domains, but the extent is more pronounced in UMCU. Hover-

Net keeps a more stable detection pattern relative to StarDist, but StarDist’s performance

deteriorates significantly in UMCU, suggesting domain-specific variability. Nuclei count

consistently ranks across domains, while total area exhibits greater domain-dependent fluc-

tuations.

Figure 25: Comparative analysis of segmentation area and detected Nuclei count in the

CWZ domain across multiple models
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Figure 26: Comparative analysis of segmentation area and detected cell count in the UMCU

domain across multiple models.

4 Discussion

Previous comparative studies of segmentation models have been mainly conducted by the

model developers, a recipe for potential bias in evaluation[5, 6, 7, 8, 9]. Moreover, these stud-

ies often emphasize performance against ground truth annotations, overlooking broader,

real-world variability. In contrast, our study extended beyond conventional evaluation by

assessing model performance through segmentation area, cell count, and a targeted sensi-

tivity analysis under varying stain conditions. While many existing models are based on

proven architectures like U-Net and Mask R-CNN—renowned for their robustness—they

may fall short in leveraging the advancements offered by newer models trained on larger,

more diverse datasets that better represent the full spectrum of cellular and nuclear vari-

ability.

To robustly assess segmentation performance, we evaluated five models—StarDist, Cell-

pose, HoverNet, Mesmer, and InstaSeg—against ground truth annotations using a range

of Intersection-over-Union (IoU) thresholds (τ = 0.1 to 0.9). This analysis spanned both
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H&E and fluorescence microscopy images, providing a comparative view of model behav-

ior across modalities and how metrics like accuracy, false positives, precision, and false

negatives change with different thresholds.

In H&E-stained images, HoverNet, Cellpose, and StarDist showed higher performance

across multiple metrics. Cellpose maintained high recall values (> 0.9) up to τ = 0.5,

reflecting strong sensitivity, with HoverNet closely following. StarDist stood out for its

high precision and lowest false positive rate, indicating reliable instance discrimination.

InstaSeg, however, consistently underperformed, exhibiting sharp declines in F1 score and

recall at stricter IoU thresholds, along with high false positive and false negative counts.

True positives were most consistently identified by Cellpose, HoverNet, and StarDist, with

InstaSeg missing many ground truth instances, especially as overlap requirements increased.

For fluorescence images, comparing Mesmer, StarDist, InstaSeg, and Cellpose revealed

parallel trends. StarDist again emerged as the strongest overall performer, achieving the

highest precision and F1 scores across most IoU thresholds and the fewest false positives.

Cellpose followed closely, excelling particularly in recall and balancing precision adequately.

Mesmer and InstaSeg underperformed, particularly at higher IoU thresholds, where both

models produced increasing false positives and decreasing recall. The sharp drop in true

positives and rise in false positives with increasing τ across all models underscores the

growing difficulty of accurate segmentation under stricter overlap constraints.

Based on ground truth comparison, StarDist consistently offers the best trade-off between

precision and recall across both imaging modalities, making it highly reliable for instance

segmentation. Cellpose is particularly strong in recall and sensitivity, suitable for applica-

tions requiring maximal detection. HoverNet, evaluated only in the H&E context, strikes

a balanced performance profile, while InstaSeg shows limitations in both precision and

consistency across modalities.

Analysis of segmentation behavior without ground truth annotations, based on total seg-

mented area and nuclei count, indicated distinct model-specific patterns across both fluores-

cence and H&E images. Multidimensional scaling analyses highlighted major differences in

how models segment nuclei and estimate areas. For fluorescence images, Cellpose stood out

with markedly divergent area and count patterns compared to other models, reflecting its

tendency toward larger, more variable segmentation regions. StarDist and InstaSeg showed

close similarity in area variation, while StarDist and Mesmer aligned strongly in nucleus

count estimates, underscoring methodological affinities in handling dense or sparse regions.

Bland–Altman analyses further confirmed proportional biases and heteroscedasticity across

model pairs, with Cellpose generally predicting larger areas and higher nucleus counts than

StarDist, and Mesmer showing more conservative segmentation than StarDist. In H&E im-

age segmentation, a parallel pattern emerged. HoverNet consistently deviated most strongly

from the other models in both segmentation area and nucleus count, indicating a fundamen-
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tally different approach or criteria for instance delineation. Cellpose and StarDist clustered

tightly in terms of nucleus count, with Cellpose producing consistently larger segmented

areas and higher object counts than StarDist, echoing the fluorescence findings. InstaSeg

tended toward smaller segmentation areas and fewer nuclei than Cellpose, aligning with its

fluorescence image behavior. The wide limits of agreement in Bland–Altman comparisons

involving HoverNet and InstaSeg suggest higher variability and less consistency in their seg-

mentations, possibly due to distinct strategies for boundary definition or object separation.

Across both modalities, Cellpose typically generated the most extensive segmentations,

while InstaSeg was more conservative, and StarDist exhibited intermediate behavior but

struggled somewhat in complex, dense regions—likely a consequence of its star-convex shape

assumptions. These results emphasize that segmentation model performance and behavior

are highly context-dependent, varying by imaging modality and dataset complexity. The

observed heteroscedasticity and biases highlight that segmentation disagreements tend to

amplify with increasing image complexity and density.

Sensitivity analysis (Figures 23 and 24) highlights insights into how well segmentation mod-

els generalize under domain shifts induced by stain variability. These experiments focused

on the CWZ and UMCU domains, selected due to their relatively divergent stain charac-

teristics as identified in the HistauGAN-generated stain similarity heatmap (Figure 22).

Although all domains demonstrated high inter-domain stain consistency (cosine similarity

0.98), UMCU consistently exhibited slightly lower similarity scores with other domains.

At an IoU threshold of 0.5, StarDist demonstrated the highest robustness and domain

invariance, outperforming other models across all key metrics—achieving a precision of 0.74,

recall of 0.96, and an F1-score of 0.83—while also recording the lowest false positive (2400)

and false negative (1200) counts. Its consistent performance, even in a challenging and

heterogeneous domain such as UMCU, highlights StarDist’s resilience to stain variability

and its suitability for cross-domain generalization.

Cellpose and HoverNet also performed well, though slightly below StarDist, with F1 scores

of 0.82 and 0.80, respectively. Their moderate drops in precision and slightly elevated error

rates indicate some sensitivity to domain-specific stain variations but still within acceptable

generalization margins.

InstaSeg showed the weakest performance under stain variability, with low precision (0.58),

lower F1-score (0.70), and the highest error rates (FP = 4700, FN = 2300). The results

suggest that InstaSeg is more vulnerable to domain shifts and may benefit from additional

domain-specific fine-tuning or augmentation strategies to improve its robustness.

Single-modality or single-metric evaluations can obscure critical differences in model be-

havior, particularly regarding generalization and robustness. Our findings emphasize the

importance of ground-truth-free evaluations for real-world applicability, especially when

annotations are limited or unavailable. Among the models assessed, StarDist consistently

demonstrated the most reliable performance across diverse settings, positioning it as a
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strong default choice, for instance, segmentation—though it may require fine-tuning in

densely clustered environments. Cellpose showed high sensitivity and excelled in Recall,

making it viable for applications requiring robust detection. These findings align with re-

sults from the Bland-Altman analysis and sensitivity testing using HistoGAN, which con-

firmed Cellpose’s tendency to identify more nuclei across modalities. However, its tendency

toward over-segmentation necessitates careful interpretation. InstaSeg showed limited do-

main generalization and would benefit from domain-specific retraining or augmentation

strategies. HoverNet performed well under consistent imaging conditions, but its perfor-

mance varied with changes in image type, indicating it is best suited for uniform, controlled

datasets.

5 Societal Relevance,Ethical Considerations and Key Stake-

holders

This study utilized fully anonymized datasets, particularly publicly available MoNuSeg [18]

and Tissuenet datasets[9]. Both datasets are standardized and compliant with the General

Data Protection Regulation (GDPR). By relying on these ethically sourced datasets, we

uphold data privacy and security standards, particularly critical in medical and biomedi-

cal research involving patient-related data. This study’s societal contribution is anchored

in its value proposition to contribute to digital pathology and biomedical image analysis

developments. Precise and accurate cell segmentation is critical in various medical diagnos-

tics and research, including carcinoma grading, disease progression monitoring, and tissue

analysis. Highly generalizable models can support clinicians and researchers in delivering

faster, more accurate diagnoses and insights.

Deep learning models perform remarkably in biomedical image analysis and generally ex-

hibit good generalizability. However, their level of precision may still vary when applied

to unseen data, which could pose limitations in clinical or diagnostic contexts. Therefore,

it is ethical that any model integrated into real-world applications be subject to continu-

ous performance monitoring, regular retraining with updated and representative data, and

thorough cross-validation. Moreover, to mitigate the risk of misdiagnosis, outputs from

these models should be reviewed by qualified pathologists. Human oversight remains es-

sential to ensure diagnostic reliability and to uphold patient safety and ethical standards

in medical decision-making.

Key stakeholders in this research include academic and research institutions, which can ben-

efit from validating robust and reproducible methodologies. Medical institutions, too, stand

to gain as improved segmentation tools streamline diagnostic workflows and enhance patient

care. Finally, data scientists and developers in biomedical imaging and artificial intelligence

will find value in these findings as a benchmark for building and refining domain-adaptive,

high-performing models. This study thus stresses the importance of ethically sound prac-
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tices and interdisciplinary collaboration in driving meaningful technological progress in

healthcare and life sciences.

6 Conclusion

While this study focused primarily on segmentation quality—a critical first step in cell clas-

sification and other downstream analyses—there are several promising directions for future

research. Our findings demonstrated that StarDist consistently outperforms other models

in precision, demonstrating robust performance in accurately delineating cell boundaries

across diverse imaging modalities, including Hematoxylin and Eosin,fluorescence and even

images generated synthetically using stain GANs. However,it is worth noting that even

though HoverNet lacks an off-the-shelf version trained for fluorescence images, it has shown

significant performance in H&E data. Furthermore, HoverNet showed robustness during

sensitivity analysis under varying staining conditions, suggesting potential for broader ap-

plicability with domain-specific adaptation. Cellpose, on the other hand, tended to over-

segment nuclei in both fluorescence and H&E images. Despite this, its architecture shows

strong potential for handling complex and crowded cellular environments, where StarDist

may underperform by undersegmenting overlapping cells. A promising avenue for future

work would be developing a hybrid model that combines the strengths of StarDist and

Cellpose. Specifically, such a model could employ a composite loss function that integrates

the StarDist loss—which includes star-convex polygon representations, distance maps, and

centroid probability maps—with the vector flow-based loss functions used in Cellpose. This

fusion could leverage the precision of StarDist in accurately outlining nuclei with the adapt-

ability of Cellpose in managing densely packed or irregular cellular arrangements.
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[30] J. C. Gutiérrez Pérez, D. Otero Baguer, and P. Maass, “Staincut: Stain normalization

with contrastive learning,” Journal of Imaging, vol. 8, no. 7, 2022.

[31] F. G. Zanjani, S. Zinger, B. E. Bejnordi, J. A. W. M. van der Laak, and P. H. N.

de With, “Stain normalization of histopathology images using generative adversarial

networks,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI

2018), pp. 573–577, 2018.

[32] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M.

Schlitter, I. Esposito, and N. Navab, “Structure-preserving color normalization and

sparse stain separation for histological images,” IEEE transactions on medical imaging,

vol. 35, no. 8, pp. 1962–1971, 2016.

[33] K. N. S. R. B. M. M. C. d. B. W. P. T. Wagner, S. J., “Structure-preserving multi-

domain stain color augmentation using style-transfer with disentangled representa-

tions,” in Medical Image Computing and Computer Assisted Intervention – MICCAI

2021, 2021.

[34] A. Anghel, M. Stanisavljevic, S. Andani, N. Papandreou, J. H. Rüschoff, P. Wild,
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Appendix:

Appendix

The code used for this project is publicly available on GitHub:

• Repository: https://github.com/isamwata/Cell-Segmentation project

• The repository includes all Jupyter notebooks (.ipynb), scripts, and evaluation tools

used in this thesis.

Table 4: F1 values across IoU thresholds

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 0.88 0.88 0.87 0.85 0.80 0.75 0.63 0.32 0.02

Cellpose 0.88 0.88 0.87 0.85 0.79 0.73 0.60 0.30 0.02

HoverNet 0.87 0.87 0.86 0.84 0.79 0.74 0.64 0.36 0.03

InstaSeg 0.78 0.77 0.74 0.70 0.64 0.58 0.47 0.23 0.01

Table 5: ACCURACY values across IoU thresholds

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 0.78 0.78 0.77 0.74 0.67 0.60 0.46 0.19 0.01

Cellpose 0.78 0.78 0.77 0.74 0.66 0.58 0.43 0.18 0.01

HoverNet 0.77 0.76 0.75 0.72 0.65 0.59 0.47 0.22 0.01

InstaSeg 0.63 0.62 0.59 0.54 0.47 0.41 0.31 0.13 0.01

Table 6: PRECISION values across IoU thresholds

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 0.86 0.86 0.85 0.83 0.78 0.73 0.62 0.31 0.02

Cellpose 0.80 0.80 0.79 0.77 0.72 0.66 0.55 0.27 0.02

HoverNet 0.83 0.82 0.82 0.80 0.75 0.70 0.61 0.34 0.02

InstaSeg 0.74 0.73 0.71 0.67 0.61 0.55 0.44 0.22 0.01

https://github.com/isamwata/Cell-Segmentation_project
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Table 7: RECALL values across IoU thresholds

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 0.90 0.90 0.89 0.87 0.82 0.77 0.65 0.33 0.02

Cellpose 0.98 0.97 0.96 0.94 0.88 0.81 0.67 0.33 0.02

HoverNet 0.92 0.92 0.91 0.89 0.83 0.78 0.68 0.38 0.03

InstaSeg 0.82 0.81 0.78 0.74 0.68 0.61 0.49 0.24 0.01

Table 8: FP values across IoU thresholds
Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 891.00 905.00 957.00 1087.00 1363.00 1691.00 2399.00 4330.00 6183.00

Cellpose 1462.00 1476.00 1534.00 1676.00 2041.00 2453.00 3298.00 5316.00 7212.00

HoverNet 1185.00 1211.00 1255.00 1381.00 1703.00 2019.00 2675.00 4461.00 6646.00

InstaSeg 1774.00 1843.00 1986.00 2238.00 2634.00 3055.00 3765.00 5289.00 6702.00

Table 9: FN values across IoU thresholds
Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 594.00 608.00 660.00 790.00 1066.00 1394.00 2102.00 4033.00 5886.00

Cellpose 143.00 157.00 215.00 357.00 722.00 1134.00 1979.00 3997.00 5893.00

HoverNet 491.00 517.00 561.00 687.00 1009.00 1325.00 1981.00 3767.00 5952.00

InstaSeg 1107.00 1176.00 1319.00 1571.00 1967.00 2388.00 3098.00 4622.00 6035.00

Table 10: TP values across IoU thresholds
Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

StarDist 5409.00 5395.00 5343.00 5213.00 4937.00 4609.00 3901.00 1970.00 117.00

Cellpose 5860.00 5846.00 5788.00 5646.00 5281.00 4869.00 4024.00 2006.00 110.00

HoverNet 5623.00 5597.00 5553.00 5427.00 5105.00 4789.00 4133.00 2347.00 162.00

InstaSeg 5007.00 4938.00 4795.00 4543.00 4147.00 3726.00 3016.00 1492.00 79.00

44


	Introduction
	Background
	Research Objectives

	Materials and Methods
	Data Description
	TissueNet Dataset
	MoNuSeg Dataset

	Models
	StarDist
	Cellpose
	Instaseg 
	Mesmer 
	HoverNet

	Model Evaluation
	Classical Segmentation Metrics
	Multidimensional Scaling 
	Pair -Wise Bland-Altman plots
	HiStauGAN- Sensitivity To Stain Variation Analysis


	Results
	Fluorescence Image Analysis
	Analysis with Ground Truth Masks
	Multidimensional Scaling Analysis
	Pair -Wise Bland-Altman plots Analysis

	Analysis Of Hematoxylin And Eosin Images
	Analysis With Ground Truth Masks
	 Multidimensional Scaling Analysis
	Pair-Wise Bland-Altman Plots Analysis

	Sensitivity Analysis
	Pair-Wise Bland-Altman Plots Sensitivity Analysis (CWZ vs UMCU Domain)


	Discussion
	Societal Relevance,Ethical Considerations and Key Stakeholders
	Conclusion
	Appendix

