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Abstract

In pharmaceutical supply chains, inaccurate estimate of lead time can lead to stock
shortages, overstocking, and service-level failures, risks that are particularly critical in
health-sensitive environments. Febelco, Belgium’s largest pharmaceutical wholesaler,
faces such challenges due to the variability in both external supplier delivery and in-
ternal warehouse processing times. Traditional planning methods, which often rely
on static average lead times, fall short in capturing the operational complexity and
uncertainty inherent in real-world logistics.

This study pursues two main objectives: (1) to perform an analysis of Febelco’s histor-
ical data to uncover patterns and inefficiencies in historical lead-time behavior and (2)
to develop predictive models that estimate both supplier delivery lead time and ware-
house cover time using machine learning. The goal is to improve the accuracy of the
planning while also identifying areas of uncertainty and risk that affect the warehouse
planning.

The analysis of the data revealed a substantial deviation between theoretical expecta-
tions and actual outcomes. Although most orders were delivered within 5-10 working
days of the total leadtime, outliers extended beyond 20 days for suppliers and more than
10 days for warehouse processing, underscoring the limitations of assumptions based
on average. These findings justified the shift to data-driven predictive approaches.
Tree-based machine learning models—Random Forest, XGBoost, and Light GBM—were
developed using historical order-level features such as supplier ID, order volume, ur-
gency indicators, and order timing. Among these, Random Forest delivered the most
balanced and interpretable performance. For the supplier lead time model, it achieved
a Root Mean Square Error (RMSE) of 6.410, a mean absolute error (MAE) of 1.963
working days and a mean absolute percentage error (MAPE) of 20. 068%. For the
warehouse lead time model, performance was stronger, with an RMSE of 0.972, MAE
of 0.204 working days, and MAPE of 8.529% , reflecting greater consistency of internal
operations.

This study combines machine learning and uncertainty quantification to improve lead
time prediction in pharmaceutical supply chains. Using Random Forest models, we
found that the accuracy and uncertainty of the prediction vary significantly between
suppliers. Some suppliers exhibited high uncertainty, and this could be due to in-
consistent delivery patterns, while others showed stable, well-predicted behavior. In
particular, there were also some suppliers for whom fluctuations in prediction levels

were observed according to the different suppliers.
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1 Introduction

In an increasingly interconnected and dynamic global market, the effectiveness of supply
chain operations plays a vital role in determining the competitiveness and long-term via-
bility of an organization. To meet the demands of today’s volatile business environment,
supply chains must strike a balance between cost effectiveness and flexibility to adapt to
changing market conditions and consumer needs. A key barrier to achieving such adapt-
ability is the reliability of deliveries, with particular emphasis on the management of lead
times, the interval between when a purchase order is made and when those items are avail-
able for sale or use[l]. This duration may include multiple stages such as order processing,
supplier production or picking, transportation, customs handling, warehouse receiving, and
internal operations like inspection or put-away. The ability to forecast and control lead
times accurately is essential to ensure operational continuity, minimize excess inventory,

and meet customer expectations [2].

Even minor fluctuations in delivery performance can impact the supply chain, disrupt pro-
duction schedules, cause inventory shortages or surpluses, and degrade service quality. As
companies increasingly adopt lean inventory strategies and Just-In-Time (JIT) systems, the
consequences of lead-time variability become even more pronounced[1]. These challenges
are amplified in the pharmaceutical sector, where the stakes of disruption are especially
high. Pharmaceutical supply chains are marked by strict regulatory requirements, prod-
uct shelf-life constraints, and the critical nature of demand. In this setting, stockouts can
affect supply, while overstocking can lead to product expiration and financial loss. Ensur-
ing that medicines and medical supplies arrive consistently and on time is essential not
only for maintaining service levels but also for safeguarding public health. Pharmaceutical
wholesalers, as intermediaries between manufacturers and pharmacies or hospitals, bear
the operational burden of managing inbound variability while ensuring timely deliveries.
As service expectations increase and demand patterns shift, the reliability of replenishment

lead times becomes central to operational performance.

Lead-time variability occurs when the actual time taken fluctuates from the expected or

average duration. This unpredictability makes inventory management more complex and
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increases the risk of overstocking or stock shortages. Therefore, accurate forecasting and
understanding of its patterns are essential to reduce rational disruptions and improve ware-
house planning. According to [3], fluctuations in delivery performance erode supply chain
agility and increase operational costs by requiring emergency orders or maintaining ex-
cess safety stock. This highlights the importance of improving supply chain visibility and
adopting proactive supplier management practices to counteract these inefficiencies. Sup-
ply chains operate under rigid Just-In-Time frameworks that are particularly susceptible
to disruptions caused by lead-time uncertainty. Even small deviations in delivery timing

can adversely affect inventory planning and diminish service level performance.

Warehouses play a pivotal role in absorbing supply-side variability and ensuring that cus-
tomer orders are fulfilled accurately and on time. Warehouse operations encompass func-
tions such as receiving, reserve storage, picking, sorting, and dispatch [4]. Among these,
the receiving function is especially vulnerable to unpredictable lead times. If deliveries
arrive earlier or later than planned, downstream operations, such as take-away, replenish-
ment, and order picking, are disrupted. Irregular delivery flows can overwhelm warehouse
labor on certain days and leave it underutilized on others. Early arrivals may also cause
storage congestion and disrupt scheduled receiving plans, while late deliveries risk product

unavailability and missed dispatch windows.

These challenges are particularly pronounced in the case of Febelco, Belgium’s leading
pharmaceutical wholesaler. Operating a nationwide distribution network comprising eight
warehouses and supplying more than 2,500 pharmacies and hospitals, the company holds
an estimated 43% share of the country’s pharmaceutical wholesale market, making it the
largest holder of market share [5]. To support continuous product availability, Febelco
follows a structured replenishment strategy, placing biweekly or monthly orders with a

diverse range of suppliers.

However, despite the structured nature of this ordering system, variability in lead times
persists as a major operational issue. Deliveries often deviate from scheduled timelines,
arriving prematurely or with significant delays, creating unpredictability in inbound flows.
This inconsistency complicates labor scheduling, inventory management, and warehouse

receiving activities, ultimately affecting the company’s ability to consistently meet the high
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service level demands of the healthcare sector. The problem addressed in this research is
the unpredictability of lead times in Febelco’s warehouses. This unpredictability negatively
affects warehouse operations, inventory control, and order fulfillment capabilities. Although
the company adheres to fixed reorder schedules, it lacks a predictive mechanism to anticipate
when stock will actually arrive and be available for sale.

To address these challenges, this study focuses on analyzing and predicting lead time
variability within Febelco’s warehouse operations. The specific objectives of the study are

as follows.

o Analyze historical lead time data across different supplier-item combinations to iden-

tify patterns and anomalies.

e Develop a predictive model to estimate the time between order placement and stock

availability, accounting for both delivery performance and internal processing times.

The insights generated by this research are intended to support more accurate inventory
planning, improve warehouse efficiency, and enhance service levels within the pharmaceu-

tical supply chain.
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2 Methodology

2.1 Data Description and Preprocessing

The dataset used for this research originates from Febelco’s procurement and warehouse op-
erations and contains detailed historical records of purchase orders and product receptions
for a period of one year (from January 2024 to January 2025). It comprises 37 columns
and 45,476 rows which capture various dimensions of inbound logistics, including supplier

information, product details, order quantities, and delivery timelines.

As evident from Table 9, the dataset includes operational timestamps, product metadata,
order information, and process-related flags used for prioritization and planning. Each
reception is modeled as a technical delivery event, uniquely identified by a reception num-
ber. The header-level fields describe attributes that apply to the entire delivery, such as
the reception creation date, delivery timestamps, warehouse identification, and flags like
urgency(products given higher priority on reception) or processing times(from the point of
delivery of products up to when they are available for sale) at the warehouse. Line-level
data, on the other hand, correspond to individual item types within a reception. It in-
cludes fields such as product identifiers, order quantities, scanned quantities, delivery lead
times, storage conditions, and flags for product categorization (e.g., refrigerated, narcotic,
or quota products). No missing or invalid values were present in the dataset, eliminating
the need for data cleaning or imputation steps. All variables are consistent and within ex-
pected ranges. The timestamps were used in their original format, and time intervals;order
to delivered time(supplier lead time) and delivered to product available for sale time (cover
time) were computed directly from these raw dates. Since the data covers only a single

warehouse, no warehouse-specific indicator features are used.

A key variable in our analysis is the lead time of an order, which we define as the total
duration from placing a replenishment order to the point where the items are available as
stock in the warehouse. For clarity, this total lead time is conceptually decomposed into two
sequential stages: (1) Supplier Lead Time — the time from order placement until delivery
at the warehouse, and (2) Cover Time — the time from delivery at the warehouse until the

goods are available in the inventory and ready to be sold. This decomposition aligns with
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how operational delays can occur in different segments of the supply chain. Separating
lead time into these components provided additional insight into where delays might occur

(external supplier delays vs. internal processing delays).

TOTAL LEADTIME
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at warehouse by
by, Eebeleo supplier for sale

[ ' T

: ier Lead Time Cover Lead Time

(Warehouse Lead time)

Figure 1: Lead Time Components: From Order Placement to Warehouse Availability

2.2 Predictive Modelling Approach

To accurately predict lead times at different stages of the supply chain—specifically supplier
lead time (order to delivery) and warehouse cover time (delivery to availability), we employ
three tree-based ensemble regression models: Random Forest, Extreme Gradient Boosting
(XGBoost), and Light GBM with the use of Python libraries. These models are well-suited
for lead time prediction in a multilayer supply chain because they can model complex
interactions between features and have demonstrated superior predictive performance in
similar contexts [6].Tree-based ensemble methods are widely used in predictive analytics
due to their high accuracy and relative interpretability; they can map nonlinear associations
that simpler linear models miss, an important capability given that supply chain lead times

depend on numerous interrelated factors ( supplier behavior, logistics, demand fluctuations).

The implementation of these models utilized several well-established Python libraries such
as Scikit-learn and other libraries that are tailored for XGBoost and Light GBM models. To
fine-tune model performance, Optuna was employed as the hyperparameter optimization

framework. Optuna uses Bayesian optimization with a Tree-structured Parzen Estimator
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to efficiently search the hyperparameter space[7]. For each model, an objective function was
defined to minimize the Root Mean Squared Error (RMSE) using 5-fold cross-validation. A
total of 100 optimization trials were conducted per model, targeting key hyperparameters
such as the number of estimators, maximum tree depth, learning rate, and others. This
approach enabled systematic and efficient tuning, resulting in improved predictive accuracy

and model robustness.

2.2.1 Modelling Approaches
(i) Random Forest Regression

Random Forest (RF) is an ensemble learning method that constructs a “forest” of decision
trees using bootstrap samples and random feature selection, then averages their predic-
tions for regression tasks [6]. This bagging approach improves generalization by reducing
variance, enabling Random Forests to handle large datasets and high-dimensional feature
spaces without severe overfitting, and to model complex nonlinear relationships in both
classification and regression problems. These properties make Random Forests particularly
suitable for lead time forecasting, where outcomes are influenced by multiple interacting
features. According to [8] Random Forest models were applied to predict lead times as
part of an inventory optimization framework, demonstrating the model’s effectiveness in

improving operational decision-making in supply chain contexts.

(ii) Light GBM (Light Gradient Boosting Machine)

LightGBM is a gradient boosting framework that, like XGBoost, builds an ensemble of
decision trees in sequence. However, Light GBM was specifically engineered to be highly
efficient and scalable on large, high-dimensional data sets [9]. Light GBM employs Gradient-
Based One-Side Sampling to retain informative instances with large gradients while down-
sampling those with small gradients, improving the accuracy of information gain estimation
for splits. It also uses Exclusive Feature Bundling to combine sparse, mutually exclusive
features, thereby reducing the number of features and accelerating tree-building. From
a supply chain perspective, such efficiency is valuable: lead time prediction models often
must be retrained or updated as new data arrives, and Light GBM can handle this rapidly,

even with millions of records or dozens of features. We include LightGBM not only for
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its computational benefits but also for its proven effectiveness in supply chain risk and
lead time prediction [9][10]. Given these advantages, Light GBM is an appropriate choice
to model lead times, as it can quickly learn complex patterns from large supply chain
datasets and potentially yield more accurate predictions without prohibitive computational
cost. Like other tree-based models, it also provides feature importance metrics, helping
analysts interpret which factors contribute most to lead time variability. By leveraging
Light GBM alongside Random Forest and XGBoost, we aim to harness the strengths of

advanced ensemble methods for lead time prediction.
(iii) XGBoost (Extreme Gradient Boosting)

In contrast to the Random Forest parallel ensemble approach, XGBoost builds trees se-
quentially: each new tree corrects the residual errors of the previous group using a gradient
descent optimization process. By iteratively “boosting” weak learners, XGBoost builds
trees sequentially, with each tree correcting the mistakes of its predecessor. Specifically,
it employs gradient descent optimization to reduce a chosen loss function, such as mean
squared error, by fitting new trees to the residuals of previous ones. In the words of an
AnalyticsVidhya guide, the algorithm 'minimizes a loss function by adding weak learners
using gradient descent’, thus refining the ensemble stage by stage [11]. We selected XG-
Boost for our lead time prediction task to leverage these strengths: It can capture complex
non-linear interactions among supply chain characteristics (e.g., interactions between order
size and product flag) more finely than a single-stage model [12]. While XGBoost models
are somewhat less interpretable than a standalone decision tree, they still allow for ex-
traction of feature importance and partial dependence plots, giving analysts insights into
which factors most strongly influence lead time predictions. Their consistent performance
in related forecasting scenarios and the ability to reduce prediction error through iterative
refinement make them a compelling choice for improving lead time predictions in a complex

system [13].

2.2.2 Model Evaluation Metrics

To evaluate the accuracy of lead time predictions, we employ three error metrics: Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square
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Error (RMSE). These metrics are widely used in the forecasting literature, including supply
chain demand and lead time studies[8] to assess model performance. Each metric captures
a different aspect of prediction error, and together they provide a comprehensive view of
forecast quality. In the context of supply chain forecasts, it is common to report multiple
error measures to ensure robust evaluation of models. The formulas for the chosen metrics
are given below, where y; is the actual lead time, g; is the predicted lead time, and n is the

number of predictions.

1 & R
MAE = EZ 1yi — il
i=1

1 n .
MAPE = 100% Y L
[ —— Yi
1 & N2
RMSE = | —~ Z (yi — 9i)
i=1

MAE is the average of the absolute errors between predicted and actual values. Measures
the typical magnitude of prediction errors in the same units as the target variable (in
this case, working days of lead time). MAE is straightforward to interpret: it tells us,
on average, How many working days do the forecasted lead times deviate from the actual
values. One advantage of MAE is that it treats all errors equally (linearly), making it less
sensitive to outliers than squared error metrics. For example, an MAE of 2 days means
that, on average, the model’s lead time predictions differ from actual outcomes by 2 days.
MAE is a standard metric for evaluating prediction models. By minimizing MAE, we aim
to ensure that the model performs well in terms of overall day-to-day prediction accuracy.
MAPE represents the mean absolute error as a percentage of the actual values. It is scale-
independent, allowing us to gauge the error relative to the size of the actual lead time. This
is particularly meaningful for practitioners: a 5% forecasting error has intuitive significance
regardless of whether the lead time is 10 days or 100 days. MAPE is widely used in supply
chain forecasting studies as a key performance indicator for accuracy. Many organizations
and researchers prefer MAPE because it directly answers the question, ’On average, what
is the percentage error present in our predictions?’ In our context, a low MAPE indicates
that the predicted lead times are very close to the actual lead times in relative terms.

However, MAPE can be sensitive when the actual values y; are very small (since it involves
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|yi—0i|/v:). In general, MAPE provides an intuitive measure of forecast precision in relative
terms, complementing absolute error metrics. A smaller MAPE implies higher predictive
precision, which is crucial for demand planning and inventory control decisions in the supply
chain.

The root mean square error (RMSE) is a widely used metric to evaluate predictive
accuracy, particularly in regression problems. RMSE measures the average magnitude
of the prediction errors, capturing how closely the predictions match the observed data.
Specifically, RMSE calculates the square root of the average of squared differences between
the actual observed values and their corresponding predicted values.

The squaring of errors emphasizes larger discrepancies, making RMSE particularly sen-
sitive to substantial errors compared to metrics like Mean Absolute Error (MAE). This
characteristic makes RMSE especially suitable for situations where large prediction errors
are particularly undesirable and should be heavily penalized. For example, an RMSE value
can be interpreted as the typical magnitude by which the predicted values deviate from the
actual values on average, measured in the same units as the data.

RMSE is widely regarded as the most appropriate metric when the goal is to penalize
large prediction errors more severely. Unlike MAE or MAPE, which treat all deviations
equally or proportionally, RMSE squares each error term before averaging. This math-
ematical property makes it more sensitive to larger deviations, which are typically the
most disruptive in real-world supply chain contexts[14].Additionally, RMSE retains the
same unit as the predicted variable (in this case, lead time), which allows for more intuitive
interpretation by planners and stakeholders. It is highly sensitive to outliers, which can dis-
proportionately inflate its value, potentially misrepresenting the performance of the model.
Furthermore, RMSE does not provide an indication of the direction of errors, which means
that it does not differentiate between under-predictions and over-predictions. Given its in-
tuitive nature and practical utility, RMSE is commonly applied in various fields, including
forecasting, econometrics, machine learning, and environmental modeling[15]. It provides
a straightforward measure of predictive accuracy, allowing researchers and practitioners to
evaluate and refine their predictive models effectively. This explains the need to compare

it with other metrics.
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2.2.3 Feature Engineering

The final dataset used for both exploratory data analysis and predictive modeling is com-
posed of engineered variables derived from raw inbound delivery records. These variables
capture key aspects of operational performance, such as lead times, quantity discrepan-
cies, urgency flags, and product-specific classifications. The data set integrates temporal
and categorical features, enabling a comprehensive understanding of factors that influence

inventory flow and delivery effectiveness.

Table 1: Summary of Variables per purchase order in the dataset

Column Data Type Description

ReceptionNbr Integer Reception identifier

DimProductKey Categorical Product identifier

OrderNbr Integer Purchase order number

DimVendorKey Categorical Vendor identifier

OrderDateTime Integer Order date and time

DeliveredDateTime Integer Timestamp on which the products are delivered

DellnStockDateTime Integer Timestamp at which the products are made available for
sale

DelProcStartDateTime Integer Processing start timestamp at the warehouse

OrderQuantity Integer Quantity ordered

ReceptionQuantity Integer Quantity received

Quantity difference Integer Difference between ordered and received quantity

TheoreticalLead Time Integer Theoretical /agreed delivery lead time

Order to available wkdays Integer Working days between order placement and availability of

products for sale

Order to delivered wkdays Integer Working days from order placement to products delivered
at warehouse

Cover time Integer Working days between order delivery and availability of
products for sale

Delivered to processing wkdays Integer Working days from delivery time to start of processing at
the warehouse

Processing to available wkdays Integer Working days from processing to products availability at

the warehouse

UrgentPreReceptionFlg Binary Urgency flag at reception level
UrgentLineFlg Binary Urgency flag at line level
Refrigerated Binary Cold chain flag

Narcotic Binary Narcotics classification
Productcategory Categorical Product category
QuotaProduct Binary Limited supply product flag

10
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Feature engineering is performed to enhance the predictive capabilities of the lead time
models by transforming raw operational data into meaningful inputs. Several time-based
attributes were derived from the original timestamp fields. From the order timestamps,
features such as order hour, day, day of the week, month, and year were extracted to
capture temporal dynamics and potential seasonality in order patterns. Similarly, delivery
timestamps were used to derive the hour and weekday of delivery, which can influence
delivery timelines due to operational cycles.

Multiple columns containing text representations of binary attributes—such as refrigerated,
narcotic, or quota-restricted—were standardized and converted into binary format. This
conversion accounts for a wide range of inconsistent string formats, including abbreviations,
mixed-case entries, and missing values. Additionally, the product category column was
processed to distinguish between critical pharmaceutical categories and others, contributing
further to the classification process.

To model interactions between operational conditions, several composite features were cre-
ated. These include the product of order quantity and theoretical lead time, interactions
between urgency flags and refrigeration requirements, and combinations of urgency and
quantity. Such interaction terms were introduced to allow the models to learn from com-
pound operational factors that may jointly influence lead times. Categorical keys repre-
senting suppliers were encoded numerically using one hot encoding, enabling them to be
used effectively with tree-based models without implying any ordinal relationships.
Regarding outlier handling, no data points were removed from the dataset. Although
the dataset exhibited some extreme values, the decision was made to preserve the data’s
integrity and reflect real-world operational variability. Overall, the feature engineering
process incorporated temporal, categorical, and interaction-based transformations rooted
in both domain knowledge and statistical insight. This approach was essential in providing
the machine learning models with a rich and informative feature set capable of capturing

complex real-world behaviors.

2.2.4 Hyperparameter Tuning

To find optimal predictive accuracy, hyperparameter tuning was performed for all machine

learning models using Optuna, an automatic hyperparameter optimization framework based

11
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on Bayesian optimization [16]. The tuning process employed the Tree-structured Parzen
Estimator (TPE) as the search algorithm to efficiently navigate the high-dimensional hy-
perparameter space. For each model—Random Forest, XGBoost, and Light GBM—100 op-
timization trials were conducted to identify configurations that minimized the Root Mean
Squared Error (RMSE) during 5-fold cross-validation.Key hyperparameters tuned included
the number of estimators, maximum depth, learning rate, subsample ratios, and regulariza-
tion parameters. The use of Optuna allowed for dynamic trial pruning, which significantly
reduced computational overhead by terminating underperforming trials early. This effi-
ciency is particularly valuable in industrial-scale supply chain datasets, where training and
validation can be resource-intensive.

Integrating Optuna into the modeling pipeline contributed directly to performance improve-
ments, particularly for boosting models where tuning has a pronounced impact on conver-
gence and generalization. The automated tuning framework enhanced model robustness
and mitigated the risk of manual bias in hyperparameter selection, aligning with best prac-
tices in machine learning-based supply chain applications [17].Each model was optimized
separately for both the supplier and warehouse lead time prediction tasks. The objective
function used in tuning was the minimization of the Root Mean Squared Error (RMSE)
via k-fold cross-validation (with k=5 ) on the training set. For Random Forest, parameters
such as n_estimators, max depth, min _samples_split, min samples_leaf, max features,
and bootstrap were tuned. Light GBM and XGBoost involved additional control over reg-
ularization (reg_alpha, reg_lambda), learning rate, number of leaves or maximum depth,

and sampling ratios (colsample bytree, subsample).

2.2.5 Uncertainity Estimation

Uncertainty estimation plays a critical role in machine learning, particularly in domains
where decision making depends not only on predictive accuracy but also on the reliability
of predictions. In the context of Random Forest models, uncertainty is typically quantified
by examining the variation in predictions produced by individual trees within the ensemble.
Random forests aggregate the outputs of multiple decision trees trained on bootstrapped
data samples, offering a natural mechanism to capture uncertainty[18]. In regression prob-

lems, the standard deviation of the predictions across trees can be used to estimate the

12
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degree of uncertainty associated with a given prediction. In classification, uncertainty can
be derived from the distribution of class probabilities, often measured through entropy or
confidence in the predicted class. Two key forms of uncertainty are relevant here: aleatoric
uncertainty, which reflects noise inherent in the data (e.g., randomness in outcomes), and
epistemic uncertainty, which arises due to limited knowledge or data scarcity. Random
forests are particularly well-suited to capturing epistemic uncertainty, since their ensem-
ble nature inherently reflects disagreement among learners, a useful proxy for where the
model lacks confidence[19]. Deep learning models often require Bayesian approximations
or ensemble techniques to capture uncertainty, Random Forests offer a more computation-
ally accessible path to the same goal. Incorporating uncertainty helps move beyond simple
point predictions, offering a richer understanding of where models perform reliably and
where caution is warranted [20]. This is especially valuable in operations and planning,
where inaccurate predictions can lead to costly errors. Random forests strike a balance
between predictive power and interpretability, making them a practical choice for scenarios

where understanding both the outcome and its reliability is essential

13
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3 Results

3.1 Exploratory Data Analysis

The analysis focuses on the two main components of Febelco’s replenishment order lead
time, shown in Figure 10. In the Slim4 inventory system, each component has a target
value — a theoretical lead time for supplier delivery (specific to each product type) and
a default processing time (3 working days) for the warehouse, which together define the
expected coverage period. These target values directly influence the calculations of safety
stock: a longer actual coverage period requires more safety stock to maintain the desired
cycle service level. The central question in this exploratory analysis is whether these targets
are met in reality and how the actual lead times vary between different combinations of

supplier — item.

Distribution of Total Lead Time (Order to Available) Percentile Working Days
’ 5% 3.00
25% 5.00
3 50% 7.00
3 5% 10.00
: 95% 18.00
| }dhm%ml 100% 60.00

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Order to Available Time (Working days)

Table 2: Empirical percentiles of Total

Figure 2: Distribution of Total Lead Time Lead Time

Figure 2 shows the distribution of total lead time in working days, measured from the time
an order is made to the time when the products are available for sale.The distribution is
asymmetric, with a clear concentration of orders between 5 and 10 working days, peaking
near day 7. Beyond 15 working days, the frequency of orders steadily declines, though
a small number of orders take considerably longer, extending to more than 60 working
days.This pattern indicates that some of the orders are fulfilled promptly, with experiencing
longer fulfillment durations. These extended lead times may be associated with specific

operational constraints or external factors.

14
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Table 2 summarizes key empirical percentiles that provide further insight into the distri-
bution of lead times. The 5th percentile indicates that 5% of orders are fulfilled within 3
working days, while the 25th percentile corresponds to a lead time of 5 days. These per-
centile values highlight that the majority of orders are processed efficiently within a 10-day

period, although a small portion experience significantly longer fulfillment times.

Distribution of Cover Time Percentile Working Days
-l 5% 2.00
. 25% 4.00
. 50% 6.00
. 75% 8.00
95% 12.00
: 100% 21.00

0123450676 01011121314 151617 181920 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42
Cover Time (working days)

Table 3: Empirical percentiles of Cover
Figure 3: Distribution of Cover Time

Time

Figure 3 displays the distribution of cover time in working days, defined as the number
of working days between when a product is delivered and when it becomes available. The
histogram shows the percentage of orders that fall into each one-day interval, across a range
of 0 to 42 days. The majority of the cover times fall within a relatively narrow window,
with the highest concentration of orders occurring between 4 and 8 working days, indicating
that a good number of the products are processed within the 3-day planned period. There
is an observed gradual decline in frequency beyond 10 days, and only a few instances
extend to the 40-day period. This pattern suggests that most deliveries are made available
for use within a predictable time frame, although there are occasional longer delays that
may be influenced by storage, inspection, or administrative procedures. According to 3,
only a small proportion of orders, fewer than 10% are made available within 3 working
days. This is evident from the 5th percentile (2 days) and the 25th percentile (4 days).
Since the 25th percentile exceeds the planned timeframe, this implies that at least 75%
of orders do not meet the 3-day target. The median cover time is 6 days, implying that
half of all orders take twice as long as the planned standard. This substantial deviation

from the planned benchmark suggests a gap between operational expectations and actual
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system performance. The above observations provide a clear, data-driven assessment of this
misalignment. Addressing the causes of delay—whether they stem from internal processes,
resource constraints, or external dependencies, could help improve compliance with the

planned 3-day window and improve overall supply chain responsiveness.

Distribution of Supplier Delivery Lead Time

M Percentile Working Days

5% 3
i 25% 4
50% 5
g 75% 6
M 95% 23
e 100% 132

Lead Time (working days)

Figure 4: Distribution of Supplier Delivery Table 4: Empirical Percentiles of Sup-
Lead Time plier Delivery Lead Time

Figure 4 illustrates the distribution of supplier delivery lead time, calculated in working
days. The histogram shows the percentage of orders across one-day intervals. Most deliv-
eries are made in a short time frame, with a clear concentration of orders around 4 to 6
working days, reaching a peak of 5 days, where more than 35% of all orders are fulfilled.
The distribution also exhibits a long rightward extension, indicating the presence of out-
liers. These less frequent but significantly longer lead times stretch beyond 20 days. Table
??ab:supplier;eadtimeyercentilesshowsthatatleasthal fo fallordersaredeliveredinbworkingdays.TheT5thperc

quartersofdeliveriesoccurwithina f airlynarrowrange(between3andbdays). However, the95thpercentilejump

Figure 5 compares two key dimensions of supplier delivery performance: the median per-
centage of late orders (x-axis) and the percentage of late orders (y-axis). The median
percentage of late delivery refers to the typical severity of the delay caused by late deliv-
eries by a supplier, expressed as a percentage of the original delivery time. For example, a
value of 50% means that the delivery occurred 50% later than expected. The percentage
of late orders, on the other hand, indicates how often a supplier fails to meet the expected
delivery date. Each point in the plot represents a supplier. Suppliers positioned in the

upper left area tend to deliver a high proportion of orders late (24.662.5665), but delays
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are generally modest in duration. Suppliers such as 700 and 427 stand out due to their
extreme median lateness values, above 75%, despite having a lower proportion of late de-
liveries. This suggests that while they are not frequently late, the delays they do incur
are substantial and potentially disruptive. Meanwhile, suppliers located in the lower left
quadrant ( 4296, 4312) demonstrate both a low frequency of lateness and relatively small
delays, indicating consistently reliable performance. Overall, this graph provides a nuanced
view of supplier reliability, highlighting the importance of considering not just how often

deliveries are late but also how late they are.
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Figure 6: Order to delivery time distribution by supplier

Figure 6 displays the distribution of order-to-delivery times in working days, for individual
suppliers. Majority of suppliers demonstrate a highly concentrated delivery pattern, with
most orders being fulfilled in fewer than 10 working days. This is evident from the sharp
peaks near the lower end of the x-axis in most panels for suppliers 243, 1154, 3042, and 6528.
These distributions suggest consistent and predictable delivery performance. In contrast,
some suppliers, like 2565 and 5665, show a broader spread of delivery times, indicating
greater variability and a longer average lead time. Suppliers— 5665,2565 and 6528 show
some outliers, with delivery times. Although these long delays are rare, they could represent
risks to supply continuity if not managed proactively. Compared side-by-side, this graph
provides a clear and granular view of supplier performance, enabling the identification of

high-performing and potentially problematic vendors .

19



Racheal Natumanya Master Thesis
(2024-2025)

Supplier Delivery Lead Time vs. Theoretical Expectations
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Figure 7: Distribution of Products by Frequency of Late Supplier Deliveries (Exceeding
Theoretical Lead Time)

Figure 7 compares the supplier delivery lead time and the theoretical lead time,only about
20% of product types (773 out of 3690 products) have no late deliveries at all, consistently
meeting their theoretical lead time on every order.These punctual items were excluded
from the plot, allowing us to focus on the remaining 80% of products that experienced
at least occasional delays.A significant cluster of products are late on nearly every order:
the histogram shows a pronounced peak in the 90-100% bin, indicating there are numerous
products(almost 800 products) for which almost every delivery arrives later than promised.
This finding clearly indicates that the theoretical lead times recorded in Slim4 are overly
optimistic for most products. In most cases, suppliers do not adhere to the contracted

delivery lead times, resulting in actual delivery times that regularly exceed the targets.
Warehouse Cover Time vs. Standard 3-Day Target

Figure 8 shows the internal processing interval, from the receipt of the goods to when they
are available for sale, is evaluated against a standard target of 3 working days. A similar

pattern of widespread target violation emerged: only about 15% of the product types (558
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Figure 8: Probability that the real cover time exceeds the standard 3 days

products of 3690 products) had all their orders processed within the 3-day standard, which
means they never exceeded the target. These items that were consistently on time were
removed from the histogram and further analysis focused on those that did not meet the

target.

Among the remaining 85% products, many show substantial probabilities of delay in the
warehouse stage. The plot indicates that a large number of product types exceed the 3-
day target in more than 30% . For many items, delays in internal handling are not rare
exceptions, but rather a frequent occurrence. Some product types exceed the 3-day cover
time for almost every order they undergo. This means that almost all deliveries of these
products take longer than the supposed 3-day processing period once in the warehouse.
The implication is again clear: the fixed 3-day cover-time assumption in the system is not

realistic for a large portion of the product types.
Total Lead Time vs. Expected Coverage Period

Combining the supplier and warehouse stages, the total coverage period (from order place-
ment to goods sellable) against the sum of the theoretical lead time plus 3 days is evaluated

as shown in Figure 9. This gives a full view of whether the overall replenishment process
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Figure 9: Probability that the true total lead time exceeds (theoretical delivery lead time
+ 3 days)

meets the expected timeline. The results show an even more pronounced deviation from
the plan. Only 8% of the types of products (301 in total) always had their actual total lead
time within or equal to the expected time frame (theoretical leadtime and 3 days plan).
Only a small fraction of products consistently achieve the combined target without delay
in any order. Most of the products (over 90% of product types) encountered some orders
in which the total lead time was longer than expected.

The distribution of these probabilities shows that exceeding the total coverage target is
the norm, rather than the exception. Many products have a high likelihood of delay: a
considerable number of product types show a higher probability than 30% that an order’s
total lead time will exceed the theoretical + 3-day benchmark. There are spikes in the 90
to 100% range, reflecting that there is a set of products for which every order takes longer
than the nominal total lead time. This aligns with the earlier findings: since delays can
originate from either the supplier or the warehouse (or both), the combined process is even

more likely to suffer delays.

Analysis of Supplier and Warehouse Delays

To explore whether supplier and warehouse delays show systematic patterns across prod-
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Figure 10: Supplier Vs Cover time delays

ucts, we created a bivariate plot to assess the distribution of product types across the four
quadrants of delay behavior as seen in figure Figure 10. Specifically, our goal was to identify
whether most products clustered in one quadrant (e.g., supplier delay only, warehouse delay
only), whether certain quadrants were sparsely populated, or whether there was evidence of
a clear linear relationship (positive or negative) between the two types of delays. However,

no such dominant patterns or alignments were observed in the data.

This observation is further supported by an analysis of product types that fall into ex-
treme delay categories across both supplier and warehouse performance. In the extreme
point (0%, 0%) of the plot, representing product types that are consistently on time in
both supplier delivery and warehouse processing, there are more than 200 product types
associated with a diverse set of suppliers, including 243, 662, 700, 1154, and 2565. These
combinations suggest a strong reliability of end-to-end supply. On the opposite end, the
types of products located on extreme point (100%, 100%),indicating consistent delays from
both the supplier and the warehouse, also involve suppliers such as 243, 662, 1154, 2099,
and 2565, highlighting that some suppliers appear in the best and worst categories. This
suggests that delay performance may be influenced not only by the supplier, but also by

product-specific characteristics or internal handling complexity. Furthermore, some prod-
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uct types show delays in only one component: those near (100%, 0%) experience consistent
supplier delays but timely warehouse processing, often associated with suppliers like 3876,
4271, and 5665; while those near (0%, 100%) face the reverse pattern, timely supplier deliv-
ery but frequent warehouse delays, with suppliers like 243, 1154, and 2565 again recurring.
These observations suggest that the variability in lead time arises from both external and

internal factors.

However, most products are between these extremes, indicating that delays are due to both
supplier and internal factors. The bulk of the points are dispersed in the middle of the
plot rather than hugging the axes, which means that, for most types of products, neither
the supplier nor the warehouse is solely responsible for delays. Instead, a product that
occasionally sees late deliveries from the supplier often also experiences some protracted
handling times in the warehouse, and vice versa. It is also worth noting that some points
may lie near the horizontal or vertical edges (e.g., a high supplier delay percentage but low
warehouse delay, or the reverse), indicating cases where one component is consistently on
schedule while the other is frequently delayed. These cases are less common than the mixed
delay cases, but they do exist (for instance, some products have nearly 0% warehouse delays
despite substantial supplier lateness, and a few vice versa). In general, the joint analysis
reinforces that both sources of delay contribute to extended coverage periods in the supply
chain. Identifying products in extreme categories (always on time, always late in either or
both dimensions) helps to flag specific supplier-product relationships that either perform
exceptionally well or may require urgent attention. Meanwhile, the broad middle cloud
of points underscores that improvement efforts cannot focus on just one facet (supplier or
warehouse) in isolation; both aspects have inherent variability that needs to be accounted

for.

3.2 Model Results

To evaluate the performance of different machine learning models in predicting lead times
for suppliers and warehouses, the Random Forest, XGBoost, and Light GBM algorithms are
used. Each model is assessed using 5-fold cross-validation on the training dataset(80% of
the data) and subsequently evaluated on a temporally segregated holdout test set (20% of

the data). Performance was measured using the root mean squared error (RMSE), mean
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absolute error (MAE), and mean absolute percentage error (MAPE), which collectively

capture the magnitude, consistency, and scale-independent accuracy of the error.
Supplier Model Results

The evaluation of the supplier lead time prediction models revealed distinct differences
in performance across the three algorithms. As shown in Table 6, the Light GBM model
achieved the lowest Root Mean Squared Error (RMSE) of 6.142 on the test set, suggesting
its superior ability to minimize large prediction errors. However, in terms of Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE), the Random Forest model
outperformed the others, with values of 1.963 and 20.068%, respectively. These lower
error values indicate that Random Forest was more accurate consistently and less prone
to large percentage deviations. Although LightGBM performed best in RMSE, Random
Forest demonstrated more balanced performance across all three metrics. Therefore, when
considering robustness and overall accuracy in test data, Random Forest is identified as the

most effective model for predicting supplier lead time in this context.

Table 5: Supplier Model Performance — Training Set Results

Model RMSE MAE MAPE (%)

Random Forest 6.0831 1.8803 20.3720
XGBoost 5.9639  2.1407 26.8645
Light GBM 5.7873 2.1492 26.8393

Table 6: Supplier Model Performance — Test Set Results

Model RMSE MAE MAPE (%)

Random Forest 6.410 1.963 20.068
XGBoost 6.455 2.196 25.761
Light GBM 6.142 2.199 25.780

Interpreting model performance metrics provides valuable insight into the practical relia-

bility of supplier lead-time predictions. A Mean Absolute Error (MAE) of approximately
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1.96 working days indicates that, on average, the predicted delivery times deviate from
the actual delivery dates by about two days. This level of deviation offers a concrete and
interpretable estimate of the uncertainty of the forecast, helping supply chain planners to
set reasonable expectations for the precision of delivery.

The Mean Absolute Percentage Error (MAPE) complements this by expressing the average
error as a proportion of the actual value. With an MAPE of 20%, the model’s lead time
predictions are, on average, 20% above or below the true delivery durations. The root mean
squared error (RMSE), recorded at 6.41 working days, reflects the average magnitude of
the larger prediction errors made by the model, with a stronger penalty applied to extreme
deviations. Given that the target variable is the target variable, this value suggests that
while the model generally performs well, there are occasional instances where the predicted
lead times deviate significantly, by more than six working days, from the actual delivery
durations. Such discrepancies may not be frequent but can have substantial operational

implications.
Warehouse Model Results

From the evaluated models for warehouse lead time prediction, the Random Forest model
demonstrated the most balanced and superior performance across all key evaluation metrics
in the test set. From Table 8, the Random Forest model achieved the best performance
across all error metrics. With a Root Mean Squared Error (RMSE) of 0.972 working days, a
Mean Absolute Error (MAE) of 0.204 working days, and a mean absolute percentage error
(MAPE) of 8.53%, it outperformed both XGBoost and LightGBM in terms of predictive

precision and consistency.

Table 7: Warehouse Model Performance — Training Set Results

Model RMSE MAE MAPE (%)

Random Forest 0.8256 0.2402 10.6591
XGBoost 1.0513  0.4942 20.5353
LightGBM 1.2695  0.7214 27.8454
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Table 8: Warehouse Model Performance — Test Set Results

Model RMSE MAE MAPE (%)
Random Forest 0.972 0.204 8.529
XGBoost 0.963 0.383 16.511
Light GBM 1.216 0.652 25.480

The MAE value indicates that predictions deviate from actual cover times by approximately
0.2 working days on average, which translates to around 4.8 to 5 hours. The MAPE of 8.53%
shows that the prediction error remains proportionally small, even as the cover times vary
between different scenarios. The root mean square error (RMSE) of 0.972 working days
indicates that, on average, the prediction errors tend to vary around one weekday, with

larger errors penalized more heavily due to the squaring of differences.

Supplier Lead Time: Predictions vs Actual for the model Random Forest Warehouse Lead Time: Predictions vs Actual for the model Random Forest

Figure 11: Supplier leadtime (Prediction vs  Figure 12: Warehouse leadtime (Prediction
Actual) vs Actual)

The two scatter plots compare the predicted versus actual lead times for the supplier and
warehouse models using Random Forest. The supplier lead time plot shows a concentration
of points at lower values but with noticeable under-prediction for longer lead times, reflect-
ing the variability and unpredictability of supplier performance. In contrast, the warehouse
lead time plot shows tighter alignment along the diagonal, indicating higher predictive
accuracy and more consistent performance. In general, the model performs better in pre-
dicting warehouse lead times than supplier lead times. This improved performance may be

attributed to the better signal available for prediction of characteristics, such as urgency
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signs, delivery time, or refrigeration requirements.

Feature Importance

Feature Importances - Supplier Model
05

0.34

Figure 13: Feature Importance (Supplier)

From Figure 13, the supplier model’s feature importance distribution reveals that Or-
derQuantity is by far the most significant predictor of the lead time of the supplier. This
suggests that larger order volumes may be more prone to delays or require more time
for procurement, possibly due to batching, supplier capacity constraints, or negotiation
overhead. Temporal features such as order day, order month, and order day of week also
ranked highly, indicating the presence of temporal patterns in supplier responsiveness, for
instance, slower fulfillment near month-ends or on specific weekdays. TheoreticalLead-
Time, while included as a baseline indicator, was moderately important, suggesting that
the model learned from it but did not rely exclusively on it. Other relevant features include
DimVendorKey encoded, Urgent X OrderQuantity, and QuotaProduct, although their in-
fluence is relatively lower. Interestingly, product-level flags such as Food Supplements and
Pharmaceutical Human had minimal influence, implying that supplier lead times are more

responsive to operational and temporal characteristics than to broad product categories.

As shown in Figure 14, the warehouse model placed the greatest importance on Urgent-

PreReceptionFlg, indicating that warehouse lead times are highly sensitive to the urgency
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Figure 14: Feature Importance (Warehouse)

classification of incoming orders. This is mainly due to the fact that orders flagged as
urgent follow prioritized internal workflows, leading to faster or more variable processing
times. Temporal features such as order month, order day, and delivery hour also featured
prominently, revealing time-based fluctuations in warehouse throughput, possibly due to
labor shifts, batching windows, or peak load periods. Product categories such as food
supplements and refrigeration products appeared in the top five characteristics, suggesting
that warehouse handling time varies based on the requirements and sensitivity of product
storage. Features such as delivery day of the week and interaction between urgent flag and
Refrigerated reinforce this idea, showing that product handling characteristics interact with

temporal factors to influence actual lead time performance.
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Model Performance Across Suppliers

Prediction Outcome Percentage by Supplier

804 mmm Under-predicted
mmm Over-predicted
EEm Exact match

Prediction Outcome (%)

supplier

Figure 15: Prediction Percentage (Supplier Model)

From Figure 15, model performance across different suppliers was assessed, and the pre-
diction outcomes were categorized into three groups: under-predicted, over-predicted, and
exact match, expressed as percentages. The plot below illustrates the distribution of these
outcomes for each supplier in the test set. It reveals a substantial variation in prediction
accuracy between suppliers. Some suppliers, such as 243, 5161, and 6528, exhibit a high
rate of exact matches, with over 60% of their lead time predictions. This indicates that the
model has effectively learned and generalized their lead time for those suppliers.

In contrast, suppliers like 4271 and 4298 show a predominance of over-predicted outcomes,
exceeding 70% and 50% respectively. Over-prediction in this context suggests that the
model anticipated longer lead times than actually occurred. Although this may not lead
to stockouts, it could result in excess safety stock or conservative planning, potentially

increasing holding costs.

Suppliers such as 5665 and 2565 display a higher rate of underprediction, indicating that
the model systematically underestimated actual lead times. This is a more concerning
scenario, as underestimation can lead to stock shortages or late replenishment, especially
if predictions are used directly for reorder timing. The variation in predictive performance

likely stems from differences in supplier behavior or orders. Suppliers with more stable
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and frequent interactions (e.g. Suppliers 243 and 6528) are better modeled, while those
with irregular patterns or fewer data points may lead to higher prediction error, especially

under- or overestimation.

Uncertainity Estimation Results

Supplier Model - Prediction Uncertainty by Supplier (Random Forest)
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Figure 16: Supplier Model — Prediction Uncertainty by Supplier (Random Forest)

Figure 16 illustrates the prediction uncertainty associated with the Random Forest models
related to supplier model characteristics. Each bar represents a supplier, with the height
corresponding to the mean prediction uncertainty expressed in working days. The random
forest model estimates uncertainty based on the standard deviation of the predictions in
all trees in the set, reflecting the confidence of the model in its output for each supplier.

The supplier model shows the trend of uncertainty across the suppliers. Supplier 2565 ranks
highest in terms of uncertainty, with an average of nearly 8 working days. Suppliers 5665
and 4271 also rank high, while 5161, 700, and 696 show low prediction variance, indicating
stable and learnable delivery patterns. The higher overall magnitude of uncertainty in
this model suggests that supplier-level features may introduce more variability or that
suppliers themselves may behave less consistently over time. These uncertainties provide
valuable operational information on the level of confidence of the model between different
suppliers, especially those with high levels of uncertainty, and this could be evidenced by
the distributions of these suppliers having outliers, which could be the cause of the high

variability.
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4 Discussion

The discussion focuses on insights derived from Febelco’s lead time data through exploratory
analysis, including trends, supplier variability, and deviations from planning expectations.
The performance and interpretability of machine learning models applied to predict lead
times, assess the importance of features, and discuss the role of uncertainty estimation in
improving operational visibility. Together, these analyses offer a multifaceted understanding
of lead time dynamics and support the development of data-driven approaches to improve

supply chain responsiveness and reliability.

The exploratory analysis revealed substantial variability in both the supplier and internal
warehouse lead times, challenging the assumption that average lead times are sufficient for
effective inventory planning. Although most orders were fulfilled within 5 to 10 working
days in relation to the total lead time, significant outliers, some extending beyond 60 days,
highlight inconsistencies that static planning systems may overlook. Approximately 25%
of the warehouse orders exceeded the internal 3 day processing standard, and supplier lead
times reached 23 days at the 95th percentile. These results point to external and internal
sources of unreliability that can erode service levels, disrupt replenishment schedules, and
compromise patient-facing availability. According to [1], supply chains must be designed
to account for variability and uncertainty, as deterministic models often do not reflect the
operational realities of modern logistics. These findings support the shift toward adaptive,
data-driven planning methods that incorporate variability into lead time forecasting and

inventory control strategies.

Tree-based machine learning models particularly Random Forest, XGBoost, and Light GBM
proved to be effective in predicting both supplier and warehouse lead times. Among these,
Random Forest delivered the most balanced and interpretable performance, making it the
most suitable model for operational implementation. For supplier lead time prediction,
the Random Forest model achieved an RMSE of 6.410, an MAE of 1.963 working days,
and an MAPE of 20.068% on the test set. In the case of the prediction of the warehouse
lead time (cover time), the model yielded an RMSE of 0.972, an MAE of 0.204, and an
MAPE of 8.529 %. These results indicate that, on average, supplier delivery times were
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predicted with an error of around two working days, while warehouse processing times were
predicted with much greater precision, within a fraction of a working day. The results of
these models are counterintuitive in comparison to the performance of the training set. The
better performance on the test data set could be attributed to the disproportionate repre-
sentation of a well-predicted variable (e.g., supplier) that can potentially skew aggregate
evaluation metrics, leading to unexpected interpretations of model generalization. Accord-
ing to these findings, Random Forest consistently achieved the lowest MAPE compared to

other methods in a chemical industry case study [10].

Feature importance analysis provided further insight into the key drivers of lead time vari-
ability. Operational factors, particularly the order quantity and urgency classification, were
found to be much more influential than fixed product attributes such as category or storage
requirements. In the supplier model, the number of orders emerged as the most signifi-
cant predictor, likely reflecting batching effects or capacity limitations on the supplier side.
For the warehouse model, urgency flags were the dominant factor, indicating that internal
prioritization protocols greatly influence processing times. Temporal variables such as day
of the week and month also ranked highly, suggesting the presence of seasonality or cycli-
cal workload patterns. Surprisingly, product-level classifications such as “Refrigerated” or
“Narcotic” played a relatively minor role in determining lead time. This challenges the
traditional inventory planning assumption that product characteristics primarily drive ful-
fillment timelines and emphasizes the need for a more dynamic, context-aware approach to

lead time management[18]

The supplier-level prediction analysis revealed considerable variability in model perfor-
mance across different suppliers. Certain suppliers ( 243, 6528, 5161) exhibited high exact
match rates, indicating stable and predictable delivery behavior. In contrast, others ( 4271,
4298) showed significant over-prediction tendencies, which may reflect more erratic deliv-
ery patterns or other supplier-related factors. This variability shows the diverse operational
characteristics present within the supplier network and highlights the complexity involved

in achieving uniformly accurate lead time predictions.

The uncertainty plots provide a detailed view of the supplier-level variability in the supplier

model. Suppliers such as 2565 and 5665 demonstrated high uncertainty prediction, indi-
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cating irregular or inconsistent external delivery behavior. In contrast, suppliers such as
700 and 6528 showed low variance, suggesting stable supply patterns that the model could

predict with confidence.

In conclusion, the integration of machine learning models into supply chain forecasting
represents a significant advance over static planning systems. The findings demonstrate
that predictive analytics can capture real-world complexity and variability more effectively
than theoretical assumptions alone. This approach enables organizations to move from
reactive to proactive inventory management, improving service levels, reducing waste, and
enhancing overall operational resilience. Given the high-stakes nature of pharmaceutical
supply chains, such data-driven forecasting tools offer both economic and societal value by

supporting timely and reliable product availability.

34



Racheal Natumanya Master Thesis
(2024-2025)

5 Limitations

Despite the promising results obtained from the application of machine learning models to
the prediction of lead time in the pharmaceutical supply chain, several limitations should be
acknowledged. The models developed in this study did not incorporate external or macro-
level variables that may influence lead times. Factors such as supplier capacity disruptions,
transportation delays, regulatory interventions, or macroeconomic events were not repre-
sented in the structured data used for model training. In addition, there is an absence of
detailed information related to the warehouse workload. Variables such as staffing levels or
shift schedules, which are known to influence internal lead times, were not available in the
data set.

Another important limitation is the temporal scope of the data used for model training
and evaluation. The study relied on a single year of historical lead-time data, which may
not be sufficient to capture seasonal effects, year-to-year variability, or infrequent but oper-
ationally significant events. A longer data horizon could have improved model robustness
and allowed for a deeper understanding of trends and anomalies in both supplier and ware-
house processes. The restricted time frame may, therefore, limit the generalizability of the

findings and the reliability of the predictions under changing operational conditions.

6 Ethical Thinking, Societal Relevance, and Stakeholder Aware-

ness

6.1 Ethical Thinking

The analysis and modeling of order lead times involve the collection, processing, and in-
terpretation of operational data. Ethical thinking in this context requires ensuring that all
data used for analysis are handled responsibly and confidentially. Although the data set
used does not contain personal information, it involves sensitive business intelligence such
as supplier performance and internal warehouse processing efficiency. As such, ethical data
usage mandates securing data, preventing unauthorized access, and avoiding any misuse

that could lead to reputational or contractual risks to suppliers or the company.
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In addition, the development of a predictive model must adhere to the principles of trans-
parency and fairness. Model output should not lead to unjustified penalization of specific
suppliers or internal teams without contextual understanding. Ethical forecasting involves
clearly communicating model limitations, avoiding overreliance on predictions without hu-
man oversight, and ensuring that the model serves to support, not replace, responsible

decision making by supply chain professionals.

6.2 Societal Relevance

Efficient inventory management has broader societal relevance, especially in sectors such
as healthcare, pharmaceuticals, and essential goods, areas in which companies like Febelco
operate. Timely replenishment and accurate stock availability are critical to ensuring the
continuous supply of essential products to pharmacies and hospitals. Lead time variability
that results in stockouts or delivery delays can directly affect public health and patient

outcomes.

By identifying systemic inefficiencies and proposing data-driven improvements, this research
contributes to building more resilient supply chains. A reliable and empirically informed
forecasting model not only enhances service levels but also reduces waste, avoids over-
stocking, and supports more sustainable logistics. In a wider context, such improvements
contribute to economic efficiency and resource conservation, both of which are vital to

societal well-being.

6.3 Stakeholder Awareness

This research is directly relevant to multiple stakeholder groups within and beyond Febelco.
Internally, supply chain managers, inventory planners and IT teams benefit from improved
visibility into lead time behavior and the opportunity to recalibrate Slim4 parameters with
empirical support. Understanding where and why delays occur allows these stakeholders to
make targeted process improvements, renegotiate supplier contracts, or review warehouse

procedures.

Externally, suppliers are important stakeholders whose performance is scrutinized. Ethi-

cal stakeholder participation requires that such insights be communicated constructively,
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focusing on collaborative improvement. Furthermore, end customers (e.g., pharmacies and
patients) are indirect but critical stakeholders. Their expectations of consistent product
availability depend on the system’s ability to anticipate and adapt to variability in supply

chain operations.

In summary, the research maintains awareness of the multi-stakeholder environment in
which inventory management operates and seeks to provide actionable insights that support

transparency, accountability, and continuous improvement across the supply chain.
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7 Conclusions and Future Research

This study was aimed at improving lead time visibility and prediction accuracy in Febelco’s
pharmaceutical supply chain by leveraging machine learning techniques. Exploratory data
analysis confirmed a critical issue: The theoretical lead times used in Febelco planning
systems (e.g. Slim4) were frequently inaccurate. A significant portion of supplier and
warehouse lead times deviated from their expected values, especially for product categories
such as refrigerated items, narcotics, and those with quota restrictions. These inconsisten-

cies have direct implications for service levels, stockouts, and excess inventory.

To address this gap, separate predictive models were developed for supplier and warehouse
lead times. The modeling results revealed meaningful patterns in lead-time variability. For
suppliers, key influencing factors included order quantity and order timing, particularly the
day and month of ordering. These findings suggest that supplier performance at Febelco is
shaped by ordering behaviors and temporal cycles, indicating that targeted adjustments to

procurement timing or batch sizing could reduce delays.

Warehouse lead times, on the other hand, were found to be driven primarily by urgency
classifications and product handling requirements, such as refrigeration. This highlights the
role of internal operational processes in shaping delivery speed and reinforces the impor-
tance of efficient warehouse workflow management. The insights suggest that prioritization
protocols and resource allocation for urgent or sensitive products could be further optimized

to improve turnaround times.

Future research should explore the integration of additional operational data, including
staffing levels, shift patterns, and transport schedules, to improve the accuracy and inter-
pretability of the model. A longer historical data window would enable seasonal modeling
and provide a more robust validation base. Segmenting suppliers based on behavioral
traits or reliability profiles may also support the development of more specialized forecast-
ing models. Finally, deploying predictive models into Febelco’s planning systems would
allow dynamic lead time management and real-time decision support, ultimately improving

inventory control, order planning, and customer service outcomes.
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Appendix

A Inbound Delivery Table Description

ColumnName Header/Line Description

ReceptionNbr Header A reception is a technical concept in our module where we
register inbound shipments. It models mostly as a ’delivery’.
This is the number that indicates a unique reception.

OrderNbr Line This is the Purchase Order number. A purchase order is a
unique purchase done at one vendor for one warehouse.

OrderLineNbr Line This is the number that indicates a unique line on a purchase
order.

DimProductKey Line This is the key that references to the product.

DimVendorKey Line This is the key that references to the vendor.

DimwarehouseKey Header This is the key that references to the warehouse.

Type Line This is a parameter that categorizes the inbound delivery line
in 2 categories, which should have significantly different lead
times.

OrderQuantity Line The original ordered quantity from the purchase order header.
As this is info from the PO header, that means that the same
quantity will be added to different inbound delivery lines. Do
not sum these up!

ReceptionQuantity Line The reception (scanned) quantity for this inbound delivery
quantity. These quantities need to be summed to know how
much was delivered/receptioned in total.

OrderDate Line Order date PO (=OrderDate).

RequestedDate Line This is the requested delivery date at the time of order cre-
ation.

DeliveredDate Header DateTimestamp of the delivery (=DeliveredDateTime). This
field is preset at the creation time of a reception. This field
can be corrected by a worker if necessary.

DeliveredTime Header DateTimestamp of the delivery (=DeliveredDateTime). This
field is preset at the creation time of a reception. This field
can be corrected by a worker if necessary.

RecCreatedDate Header The timestamp when the reception (header) was creat-
ed/saved.

RecCreatedTime Header The timestamp when the reception (header) was creat-
ed/saved.

DelProcDate (start) Header The timestamp when a worker started processing this specific

reception, after it was in a queue between the delivery and the

unpacking.
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DelProcTime (start) Header The timestamp when a worker started processing this specific
reception, after it was in a queue between the delivery and the
unpacking.

ReceptionDate (line) Line The timestamp when a worker scanned the detailed line and
entered the information like productNbr, Quantity, etc.

ReceptionTime (line) Line The timestamp when a worker scanned the detailed line and
entered the information like productNbr, Quantity, etc.

DelClosedDate Header The timestamp when an administrative worker closed the re-
ception.

DelClosedTime Header The timestamp when an administrative worker closed the re-
ception.

DellnStockDate Line The timestamp when the quantity on the line was made sell-
able.

DellnStockTime Line The timestamp when the quantity on the line was made sell-
able.

UrgentPreReceptionFlg Header A flag that indicates if the reception is a mixed pallet, with
a lot of small orders. We flag this as urgent, because it has a
higher priority in the reception. This flag is entered manually
by a worker.

UrgentLineFlg Line A flag that indicates if the reception line is urgent.

TheoreticalLead Time Line Theoretical or agreed lead time.

RequestedDeliveryDateDifference Line

Difference between theoretical and effective lead time.

EffectiveLead Time Line Calculated time between ’Order confirmation’ and ’in stock’.
(Should be the same as the ActualDeliveryPeriod calculation).

Refrigerated Line This parameter indicates if the product is in the cold chain or
not. This parameter impacts our prioritization process.

storageconditionCode Line This parameter is broader than refrigerated and indicates the
storage conditions. However, this is of less importance.

QuotaProduct Line Indicates if the product has a difficult supply. These are high-
priority products with limited delivery.

productcategory Line A categorization of the product. This impacts our prioritiza-
tion process.

Narcotic Line Indicates if the product is a narcotics product. This impacts
our prioritization process.

buyerGroup Line A planning parameter that groups products on a Purchase
Order. It has no other function than grouping products.

CoverageGroupCode Line A planning parameter that groups products with similar order

planning. It dictates the planning date based on frequency,

week, day, and buyer.

Table 9: Inbound Delivery: Column Description

43




Racheal Natumanya Master Thesis
(2024-2025)

R code

FE o o e e e e o o e e e e e e o o o e e e oo o o e e e e oo ok ok K e ok ok Load'Lng Data  Fkokokokok sk sk ko o o ok ok o o e o o o o ok o e e e o o o ok o e e e o ok ok oK

# Step 1: Read only headers to get column names

col_names <- names(read_excel(file_path, n_max = O,sheet = 2))

# Step 2: Set all to "guess" by default
col_types <- rep("guess", length(col_names))

# Step 3: Force specific columns to be "text"”

col_types[col_names == "OrderNbr"] <- "text"

# Step 4: Read the full data with column types
df <- read_excel(file_path, col_types = col_types, sheet = 2)

## Data preprocessing
# Rename columns for clarity
df _convert3 <- df %>} rename(DelProcStartDate = “DelProcDate (start) , DelProcStartTime = “DelProcTime (start)

df_convert3 <- df_convert3 %>%

group_by (DimProductKey, OrderNbr) %>%

summarize (
OrderDate = first(OrderDate), # Take the first occurrence
DeliveredDate = first(DeliveredDate),
DelInStockDate = first(DelInStockDate),
DelProcStartDate = first(DelProcStartDate),
DeliveredTime = first(DeliveredTime),
DelInStockTime = first(DelInStockTime),
DelProcStartTime = first(DelProcStartTime),
TheoreticallLeadTime = first(TheoreticalLeadTime),
EffectivelLeadTime = first(EffectiveleadTime),
ReceptionQuantity = sum(ReceptionQuantity), # Sum reception quantity
OrderQuantity = first(unique(OrderQuantity)), # Take the first unique order quantity
DimVendorKey = first(DimVendorKey),
ReceptionNbr = first(ReceptionNbr),
DimwarehouseKey = first(DimwarehouseKey),
UrgentPreReceptionFlg = first(UrgentPreReceptionFlg),
UrgentLineFlg = first(UrgentLineFlg),
Refrigerated = first(Refrigerated),
Narcotic = first(Narcotic),

productcategory = first(productcategory),
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QuotaProduct = first(QuotaProduct)

) %%
ungroup ()

# Convert date and time columns to character format

df _convert3 <- df_convert3 %>%
mutate (
OrderDate = as.character(OrderDate),
DeliveredDate = as.character(DeliveredDate),
DelInStockDate = as.character(DelInStockDate),
DelProcStartDate = as.character(DelProcStartDate),
DeliveredTime = as.character(DeliveredTime),
DelInStockTime = as.character(DelInStockTime),
DelProcStartTime = as.character(DelProcStartTime)
)
# Remove fractional seconds from time columns if present

df _convert3 <- df_convert3 %>%

mutate (
DeliveredTime = sub("\\.\\d+$", "", DeliveredTime),
DelInStockTime = sub("\\.\\d+$", "", DelInStockTime),
DelProcStartTime = sub("\\.\\d+$", "", DelProcStartTime)
)

df_convert3 <- df_convert3 %>%
mutate (
unique_product_order = paste(DimProductKey,OrderNbr)
)
print (df_convert3)

# Check the format of the date columns before merging
print ("Unique values in DelProcStartDate:")

print (unique (df_convert3$DelProcStartDate))

print("Unique values in DelProcStartTime:")

print (unique (df_convert3$DelProcStartTime))

# Merge date and time columns into single datetime columns

df_convert3 <- df_convert3 %>%

mutate(
OrderDateTime = as.P0SIXct(paste(OrderDate, " ","00:00:00"), format="%Y-%m-%d %H:%M:%S"),
DeliveredDateTime = as.POSIXct(paste(DeliveredDate," ", DeliveredTime), format="%Y-Ym-%d %H:%M:%S"),
DelInStockDateTime = as.POSIXct(paste(DelInStockDate," ", DelInStockTime), format="%Y-Y%m-%d %H:%M:%S"),
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DelProcStartDateTime = as.POSIXct(paste(DelProcStartDate," ", DelProcStartTime), format="%Y-Ym-%d %H:%M:%S
TheoreticalLeadTime = (as.numeric(TheoreticalleadTime)+1), # Convert days to hours

EffectiveleadTime = (as.numeric(EffectiveLeadTime)+1) # Convert days to hours

print (df_convert3)

calculate_weekday <- function(start_time, end_time) {
# Handle incorrect input

if (start_time > end_time) return(1)

# Generate sequence of all days between start and end time

days_seq <- seq(as.Date(start_time), as.Date(end_time), by = "day")

# Remove weekends
weekdays_seq <- days_seq[!weekdays(days_seq) %in’, c("Saturday", "Sunday")]
return(length(weekdays_seq))

# Compute time differences
df _convert3 <- df_convert3 %>%

mutate (
order_to_available = as.numeric(difftime(DelInStockDateTime, OrderDateTime, units = "days")),
order_to_delivered = as.numeric(difftime( DeliveredDateTime,OrderDateTime, units = "days")),
delivered_to_processing = as.numeric(difftime(DelProcStartDateTime, DeliveredDateTime, units = "days")),
processing_to_available = as.numeric(difftime(DelInStockDateTime, DelProcStartDateTime, units = "days")),

quantity_difference = ReceptionQuantity - OrderQuantity,

delivered_available_wkdays = mapply(calculate_weekday, DeliveredDateTime, DelInStockDateTime),
order_available_wkdays = mapply(calculate_weekday, OrderDateTime, DelInStockDateTime),
order_to_delivered_wkdays = mapply(calculate_weekday, OrderDateTime,DeliveredDateTime),
delivered_to_processing_wkdays = mapply(calculate_weekday,DeliveredDateTime, DelProcStartDateTime),
processing_to_available_wkdays = mapply(calculate_weekday,DelProcStartDateTime, DelInStockDateTime),

cover_time = mapply(calculate_weekday,DeliveredDateTime,DelInStockDateTime)

# Select only the columns of interest
df _convert3 <- df_convert3 %>%
select (ReceptionNbr,DimProductKey,DimwarehouseKey,OrderNbr,DimVendorKey, OrderDateTime, DeliveredDateTime, D

OrderQuantity,ReceptionQuantity,quantity_difference,TheoreticallLeadTime, EffectiveleadTime, order_to_:
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delivered_to_processing, processing_to_available,unique_product_order,order_available_wkdays,order_to
,UrgentPreReceptionFlg,

UrgentLineFlg,Refrigerated,Narcotic,productcategory,

QuotaProduct)

print (df_convert3)

## Exploratory data analysis

# total lead time by percentage

lead_time_plot <- ggplot(df_convert3, aes(x = order_to_available)) +
geom_histogram(
aes(y = after_stat((count / sum(count)) * 100)), # Convert to percentage
binwidth = 1,
£fill = "#£fc8d62",
color = "black",
alpha = 0.85,
boundary = 0

) +
scale_x_continuous(
limits = c(0, 100),
breaks = seq(0, 100, by = 5),
expand = expansion(mult = c(0, 0.01))

) +
scale_y_continuous(
breaks = seq(0, 18, by = 2), # Even number tick marks in percentage
expand = expansion(mult = c(0, 0.05))
)+
labs(
title = "Distribution of Total Lead Time (Order to Available)",
x = "Order to Available Time (Working days)",

y = "Percentage of Orders"
) +
theme_minimal (base_size = 14) +
theme (

plot.title = element_text(hjust = 0.5, face = "bold", size = 16),

axis.title.x = element_text(margin = margin(t = 10)),

axis.title.y = element_text(margin = margin(r = 10)),

panel.grid.minor = element_blank()

print(lead_time_plot)

## distribution of supplier lead time
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supplier_leadtime_plot <- ggplot(df_convert3, aes(x
geom_histogram(
aes(y = after_stat(count / sum(count) * 100)),
binwidth = 1,
£il1l = "#£c8d62",

color = "black",

alpha = 0.85,
boundary = 0
)+

scale_x_continuous(

limits = c(0, 50), # Adjust based on your data
seq(0, 50, by = 5),

expand = expansion(mult = c(0, 0.02))
)+

scale_y_continuous(

breaks

= order_to_delivered_wkdays)) +

# Convert count to percentage

range

breaks = seq(0, 40, by = 5), # Adjust as needed based on maz 7

expand = expansion(mult = c(0, 0.05))
)+

labs(
title = "Distribution of Supplier Delivery Lead Time",
x = "Lead Time (working days)",
y = "Percentage of Orders"

) +

theme_minimal (base_size = 14) +

theme (

plot.title = element_text(hjust = 0.5, face = "bold", size = 16),

axis.title.x = element_text(margin = margin(t =

axis.title.y = element_text(margin = margin(r =

panel.grid.minor = element_blank()

plot(supplier_leadtime_plot)

## distribution of cover time

10)),
10)),

cover_time_plot <- ggplot(df_convert3, aes(x = delivered_available_wkdays)) +

geom_histogram(
aes(y = after_stat(count / sum(count) * 100)),
binwidth = 1,
fill = "#£c8d62",

color = "black",
alpha = 0.85,
boundary = 0

) +

scale_x_continuous(
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limits = c(0, 42),
seq(0, 50, by = 1),

expand = expansion(mult = c(0, 0.02))
)+

scale_y_continuous(

breaks

breaks = seq(0, 30, by = 2), # adjust as needed
expand = expansion(mult = c(0, 0.05))

) +

labs(
title = "Distribution of Cover Time",
x = "Cover Time (working days)",
y = "Percentage of Orders"

) +

theme_minimal (base_size = 14) +

theme (

plot.title = element_text(hjust = 0.5, face = "bold", size = 16),
axis.title.x = element_text(margin = margin(t = 10)),
axis.title.y = element_text(margin = margin(r = 10)),

panel.grid.minor = element_blank()

plot(cover_time_plot)

## distribution of order to delivered time(supplier-product combination)

order_delivery_plot <- ggplot(df_convert3, aes(x = order_to_delivered_wkdays)) +
geom_histogram(binwidth = 1, fill = "black", color = "blue", alpha = 0.7) +

facet_wrap(~ DimVendorKey, scales = "free_y", ncol = 4) +
labs(
title = "Order-to-Delivery Time Distribution by Supplier",
x = "Order-to-Delivery Time (Working days)",

y = "Count"
) +
theme_minimal (base_size = 14) +
theme (

strip.text = element_text(size = 12, face = "bold"),
axis.text.x = element_text(angle = 45, hjust = 1),
panel.spacing = unit(1.2, "lines"),

plot.title = element_text(hjust = 0.5, face = "bold")

# View the plot
order_delivery_plot

## Distribution of late orders on suplier side
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# Create late flag based on supplier delay
df_late2 <- df_convert3 %>%

mutate(late_flag = order_to_delivered_wkdays > TheoreticalLeadTime)

# Summarise by Product
product_late_pct <- df_late2 ¥>%
group_by (DimProductKey) %>%
summarise (
total = n(),
late = sum(late_flag, na.rm = TRUE),
late_pct = (late / total) * 100

# Plot Late Deliveries per Product
ggplot (product_late_pct, aes(x = late_pct)) +
geom_histogram(binwidth = 10,boundary = 0, fill = "#£fc8d62", color =

"white") +

scale_x_continuous(breaks = seq(0, 100, by = 10)) + # Optional: Clean z-azis ticks

labs(
#title = "Distribution of Late Orders (Supplier side)"”,
x = ") of orders with delivery lead time > theoretical lead time",
y = "Number of Products"

) +

theme_minimal ()

## Supplier vs. Cover Time Delay per Product

# Step 1: Mark Late Flag for Supplier Delay
df _late2 <- df_convert3 %>%
mutate(late_flag = order_to_delivered_wkdays > TheoreticalLeadTime)

# Step 2: Summarize Supplier lateness per Product
product_late_pct <- df_late2 %>%
group_by (DimProductKey, DimVendorKey) %>%
summarise (
total = n(),
late = sum(late_flag, na.rm = TRUE),
late_pct = (late / total) * 100,

.groups = 'drop'

# Step 3: Mark Late Flag for Cover Time Delay
df _late <- df_convert3 %>Y%

mutate(late_flag = cover_time > 3)
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# Step 4: Summarize Cover Time lateness per Product
product_covertime_late_pct <- df_late %>%
group_by (DimProductKey) %>%
summarise (
total = n(),
late = sum(late_flag, na.rm = TRUE),
late_pct = (late / total) * 100,

.groups = 'drop'

# Step 5: Combine Both Datasets
product_combined <- product_late_pct %>%
select (DimProductKey, DimVendorKey, late_pct) %>%
rename (late_pct_supplier = late_pct) %>%
inner_join(
product_covertime_late_pct %>%
select (DimProductKey, late_pct) %>%
rename (late_pct_covertime = late_pct),

by = "DimProductKey"

# Check

print (product_combined)

# Define your custom color palette

my_colors <- c(
"red", "blue", "green", "yellow", "purple", "orange",
"brown", "pink", "cyan", "black", "navy", "gold",

"darkgreen", "maroon", "gray", "turquoise"

# Check ©f enough colors are available

num_suppliers <- length(unique(product_combined$DimVendorKey))

if (num_suppliers > length(my_colors)) {
stop(pasteO(
"You have ", num_suppliers,
" suppliers but only ", length(my_colors),
" colors defined! Add more colors to 'my_colors'."

)

# Plot
ggplot (product_combined, aes(x = late_pct_supplier, y = late_pct_covertime, color = as.factor(DimVendorKey)))

geom_point(size = 1) +
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scale_color_manual(values = my_colors) +

labs(
#title = "Supplier vs. Cover Time Delay per Product”,
x = "% Late Deliveries (Supplier Delay)",
y = "% Orders with Cover Time > 3 Days",

color = "Supplier",
caption = "Each point represents a product, colored by Supplier"
) +

theme_minimal ()

## Percentage of Late Orders (Total Lead Time > Theoretical + 3 Days

# Step 1: Flag orders where total lead time exceeds theoretical + 3
df _lead_excess <- df_convert3 %>%

mutate(late_leadtime_flag = order_to_available > (TheoreticallLeadTime + 3))

# Step 2: Summarize per product
product_leadtime_late_pct <- df_lead_excess %>%
group_by (DimProductKey) %>%
summarise (
total = n(),
late = sum(late_leadtime_flag, na.rm = TRUE),
late_pct = (late / total) * 100,

.groups = 'drop'

ggplot (product_leadtime_late_pct, aes(x = late_pct)) +
0, £fill = "#£fc8d62", color

scale_x_continuous(breaks = seq(0, 100, 10)) +

geom_histogram(binwidth = 10,boundary

"black", alpha = 0.7) +

labs(
title = "Percentage of Late Orders (Total Lead Time > Theoretical + 3 Days)",
x = "Percentage of Late Orders",
y = "Number of Products"

)+

theme_minimal ()

## Distribution of Late Orders

# Create late flag based on supplier delay
df _late2 <- df_convert3 %>%

mutate(late_flag = order_to_delivered_wkdays > TheoreticallLeadTime)
# Summarise by Product

product_late_pct <- df_late2 %>%
group_by (DimProductKey) %>%
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summarise (

total = n(),
late = sum(late_flag, na.rm = TRUE),
late_pct = (late / total) * 100

) %>

filter(late_pct > 0)

# Plot Late Deliveries per Product

gegplot (product_late_pct, aes(x =

scale_x_continuous(breaks =
labs(

# <-- Ezclude 0/ late deliveries

late_pct)) +
geom_histogram(binwidth = 10, boundary = 0, fill = "#fc8d62", color =
seq(0, 100, by = 10)) +

"white") +

#title = "Distribution of Late Orders (Supplier Delay, Ezcluding 07)",

X =
y = "Number of Products"
) +

theme_minimal ()

"% of orders with delivery lead time > theoretical lead time",

## Total lead time versus the Planned time

# Step 1: Flag orders where total lead time exceeds theoretical + 3

df_lead_excess <- df_convert3 %>%

mutate(late_leadtime_flag = order_to_available > (TheoreticalLeadTime + 3))

# Step 2: Summarize per product

product_leadtime_late_pct <- df_lead_excess %>%

group_by (DimProductKey) %>%

summarise (

total = n(),
late = sum(late_leadtime_flag, na.rm = TRUE),
late_pct = (late / total) * 100,

.groups = 'drop'

ggplot (product_leadtime_late_pct, aes(x
geom_histogram(binwidth = 10,boundary

scale_x_continuous(breaks =

labs(
title =
x = "Percentage of Late Orders",
y = "Number of Products"

)+

theme_minimal ()

late_pct)) +
0, fill = "#£fc8d62", color = "black", alpha

seq(0, 100, 10)) +

"Percentage of Late Orders (Total Lead Time > Theoretical + 3 Days)",
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### PYTHON CODE

# Custom evaluation metrics

def mean_absolute_percentage_error(y_true, y_pred):
"""Calculate MAPE"""
mask = y_true != 0

return np.mean(np.abs((y_true[mask] - y_pred[mask]) / y_truel[mask])) * 100

def evaluate_model(y_true, y_pred, model_name):
"""Evaluate model performance"""
mae = mean_absolute_error(y_true, y_pred)
mape = mean_absolute_percentage_error(y_true, y_pred)

rmse = np.sqrt(mean_squared_error(y_true, y_pred))

print (f"\n{model_name} Performance:")
print (f"MAE: {mae:.3f}")

print (f"MAPE: {mape:.3f}%")

print (£"RMSE: {rmse:.3f}")

return {'MAE': mae, 'MAPE': mape, 'RMSE': rmse}

class ModelType (Enum) :
RANDOM_FOREST = 'Random Forest'
LIGHTGBM = 'LightGBM'
XGBOOST = 'XGBoost'

class WarehouselLeadTimePredictor:
def __init__(self, data_path):

"""Initialize the predictor with data"""
self.df = pd.read_csv(data_path)
self .supplier_features = []
self.warehouse_features = []
self.categorical_columns = ['DimProductKey', 'DimwarehouseKey', 'DimVendorKey']
self.label_encoders = {}
self.handle_outliers = True
self.remove_outliers = False
self.outlier_threshold = 40

self .use_optuna = True
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self.n_trials 50
self.cv_folds = 5
self.plot_grouped_analysis = False

self.round_results = True

self.models_to_use = [
ModelType.RANDOM_FOREST,
ModelType . LIGHTGBM,
ModelType.XGBOOST

convert_to_binary(self, value, column_name=None) :
"""Convert various string representations to binary values"""
if pd.isna(value):

return O

value_str = str(value).strip().lower()

# Spectial handling for 'Narcotic' column
if column_name == 'Narcotic':
# Positive values for marcotic products
narcotic_positive = ['narcotic', 'yes', 'y', 'true', '1', 't']

# Negative wvalues for mon-narcotic products

narcotic_negative = ['non narcotic', 'mon-narcotic', 'non_narcotic', 'no', 'n', 'O', '_n/a', 'n/a'

if value_str in narcotic_positive:
return 1
elif value_str in narcotic_negative:
return O
else:
print (f"Warning: Unknown value '{value}' in Narcotic column. Converting to 0.")

return O

# Spectial handling for 'Refrigerated’ column

elif column_name == 'Refrigerated':
# Positive values for refrigerated products
refrigerated_positive = ['refrigerated', 'yes', 'y', 'true', '1', 't', 'cold', 'frozen']
# Negative wvalues for non-refrigerated products

refrigerated_negative = ['non refrigerated', 'non-refrigerated', 'non_refrigerated', 'no', 'n',

if value_str in refrigerated_positive:
return 1

elif value_str in refrigerated_negative:
return 0

else:
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print(f"Warning: Unknown value '{valuel}' in Refrigerated column. Converting to 0.")

return O

# Spectial handling for 'QuotaProduct' column
elif column_name == 'QuotaProduct':
# Postitive wvalues for quota products
QuotaProduct_positive = ['quota'l
# Negative wvalues for mon—quota products

QuotaProduct_negative = ['non quota', '_n/a'l]

if value_str in QuotaProduct_positive:
return 1
elif value_str in QuotaProduct_negative:
return 0O
else:
print(f£"Warning: Unknown value '{valuel}' in QuotaProduct column. Converting to 0.")

return 0O

# Spectial handling for 'productcategory' column
elif column_name == 'productcategory':
pharmaceutical_human_categories = [
'Pharmaceutical Human',
'Pharmaceutical Human Narcotics'

]

if value_str in pharmaceutical_human_categories:
return 1
else:

return 0O

# General case for other columns

else:
# Check for positive walues
positive_values = ['yes', 'y', 'true', '1', 't', 'on', 'active', 'enabled']
if value_str in positive_values:

return 1

# Check for megative walues
negative_values = ['no', 'n', 'false', 'O', 'f', 'off', 'inactive', 'disabled', '', '_n/a', 'n/a',
if value_str in negative_values:

return O

# If value doesn't match known patterns, print warning and return 0
print (f"Warning: Unknown value '{value}' encountered. Converting to 0.")

return 0O
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def preprocess_data(self):
"""Preprocess the data and create features"""
# Convert datetime columns
datetime_columns = ['OrderDateTime', 'DeliveredDateTime', 'DelInStockDateTime', 'DelProcStartDateTime'.
for col in datetime_columns:
if col in self.df.columns:

self.df [col] = pd.to_datetime(self.df[col], errors='coerce')

# Create time-based features

if 'OrderDateTime' in self.df.columns:
self.df['order_hour'] = self.df['OrderDateTime'].dt.hour
self.df ['order_dayofweek'] = self.df['OrderDateTime'].dt.dayofweek
self.df ['order_month'] = self.df['OrderDateTime'].dt.month
self.df['order_day'] = self.df['OrderDateTime'].dt.day
self.df ['order_year'] = self.df['OrderDateTime'].dt.year

if 'DeliveredDateTime' in self.df.columns:
self.df ['delivered_hour'] = self.df['DeliveredDateTime'].dt.hour
self .df ['delivered_dayofweek'] = self.df['DeliveredDateTime'].dt.dayofweek

# Handle string categorical columns (Refrigerated, Narcotic)
if 'Refrigerated' in self.df.columns:
# Convert Refrigerated to binary using the helper function

self .df ['Refrigerated_binary'] = self.df['Refrigerated'].apply(lambda x: self.convert_to_binary(x,

if 'Narcotic' in self.df.columns:
# Convert Narcotic to binary using the helper function

self .df ['Narcotic_binary'] = self.df['Narcotic'].apply(lambda x: self.convert_to_binary(x, 'Narcot

if 'QuotaProduct' in self.df.columns:
# Convert QuotaProduct to binary using the helper function

self .df ['QuotaProduct_binary'] = self.df['QuotaProduct'].apply(lambda x: self.convert_to_binary(x,

if 'productcategory' in self.df.columns:
# Convert productcategory to binary using the helper function
# self.df['productcategory_binary'] = self.df['productcategory'].apply(lambda z: self.convert_to_b
self.df = pd.get_dummies(self.df, columns=['productcategory'], prefix='pdt_cat')

if self.handle_outliers:

self.treat_outliers()
# Encode categorical wvariables

for col in self.categorical_columns:

if col in self.df.columns:
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self.label_encoders[col] = LabelEncoder ()
self.df [£'{col}_encoded'] = self.label_encoders[col] .fit_transform(self.df[col].astype(str).fi

# Interaction Features

self.df['Qty_x_LeadTime'] = self.df['OrderQuantity'] * self.df['TheoreticalleadTime']

self .df ['Urgent_x_LeadTime'] = self.df['UrgentPreReceptionFlg'] * self.df['TheoreticalleadTime']

self .df ['Refrigerated_x_LeadTime'] = self.df['Refrigerated_binary'] * self.df['TheoreticallLeadTime']
self.df ['Urgent_x_Qty'] = self.df['UrgentPreReceptionFlg'] * self.df['OrderQuantity']

self.df ['Urgent_x_Refrigerated_binary'] = self.df['UrgentPreReceptionFlg'] * self.df['Refrigerated_bin

# Define features for each model

self .supplier_features = [
'DimVendorKey_encoded',
'UrgentPreReceptionFlg',
'Refrigerated_binary',
'order_dayofweek', 'order_month', 'order_day',
'QuotaProduct_binary',
'OrderQuantity’',
'TheoreticallLeadTime',
'Urgent_x_Qty',

'Urgent_x_Refrigerated_binary',

self .warehouse_features = [
'DimVendorKey_encoded',
'UrgentPreReceptionFlg', 'UrgentLineFlg',
'Refrigerated_binary',
'order_dayofweek', 'order_month', 'order_day',
'delivered_hour', 'delivered_dayofweek',
'QuotaProduct_binary',
'ReceptionQuantity', 'quantity_difference',

'Urgent_x_Refrigerated_binary'

# Adding the product categories 1-hot encoded
for col in self.df.columns:
if col.startswith('pdt_cat_'):
self .warehouse_features.append(col)

self.supplier_features.append(col)

# Remove features that don't exist in the dataset

self.supplier_features = [f for f in self.supplier_features if f in self.df.columns]
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self.warehouse_features = [f for f in self.warehouse_features if f in self.df.columns]

# Define target wariables
self.supplier_target = 'order_to_delivered_wkdays'

self.warehouse_target = 'cover_time'

# Handle missing wvalues for numeric columns
numeric_columns = self.df.select_dtypes(include=[np.number]) .columns
for col in numeric_columns:

self.df [col] = self.df([col].fillna(self.df [col] .mean())

# Print unique values to check string formats (helpful for debugging)
if 'Refrigerated' in self.df.columns:

print ("Unique values in Refrigerated column:", self.df['Refrigerated'].unique())
if 'Narcotic' in self.df.columns:

print("Unique values in Narcotic column:", self.df['Narcotic'].unique())
return self.df

def split_data(self, test_size=0.2):
"""Split data into train and test sets (validation handled by CV)"""
# For supplier model
X_supplier = self.df[self.supplier_features]
y_supplier = self.df [self.supplier_target]

# For warehouse model
X_warehouse = self.df[self.warehouse_features]

y_warehouse = self.df [self.warehouse_target]

# Split: train and test (validation handled by cross-validation)

X_supplier_train, X_supplier_test, y_supplier_train, y_supplier_test = train_test_split(
X_supplier, y_supplier, test_size=test_size, random_state=42

)

X_warehouse_train, X_warehouse_test, y_warehouse_train, y_warehouse_test = train_test_split(

X_warehouse, y_warehouse, test_size=test_size, random_state=42

return {
'supplier': {
'X_train': X_supplier_train, 'X_test': X_supplier_test,
'y_train': y_supplier_train, 'y_test': y_supplier_test
Fo
'warehouse': {
'X_train': X_warehouse_train, 'X_test': X_warehouse_test,

'y_train': y_warehouse_train, 'y_test': y_warehouse_test
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def

objective_random_forest(self, trial, X_train, y_train, model_type='supplier'):
"""Optuna objective function for Random Forest"""

# Suggest hyperparameters

n_estimators = trial.suggest_int('n_estimators', 50, 300, step=50)

max_depth = trial.suggest_categorical('max_depth', [5, 10, 15, 20, Nonel)
min_samples_split = trial.suggest_int('min_samples_split', 2, 10)
min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 5)

max_features = trial.suggest_categorical('max_features', ['sqrt', 'log2', Nonel)

bootstrap = trial.suggest_categorical('bootstrap', [True, False])

# Create model

model = RandomForestRegressor (
n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
max_features=max_features,
bootstrap=bootstrap,
random_state=42,

n_jobs=-1

# Cross-validation

cv_scores = cross_val_score(
model, X_train, y_train,
cv=self.cv_folds,
scoring='neg_root_mean_squared_error',

n_jobs=-1

return -cv_scores.mean() # Return positive RMSE

objective_xgboost(self, trial, X_train, y_train, model_type='supplier'):
"""Optuna objective function for XGBoost"""

# Suggest hyperparameters

n_estimators = trial.suggest_int('n_estimators', 50, 300, step=50)
max_depth = trial.suggest_int('max_depth', 3, 10)

learning_rate = trial.suggest_float('learning rate', 0.01, 0.3, log=True)
subsample = trial.suggest_float('subsample', 0.6, 1.0)

colsample_bytree = trial.suggest_float('colsample_bytree', 0.6, 1.0)
reg_alpha = trial.suggest_float('reg_alpha', 1e-8, 1.0, log=True)
reg_lambda = trial.suggest_float('reg_lambda', 1e-8, 1.0, log=True)

60



Racheal Natumanya Master Thesis
(2024-2025)

# Create model

model = xgb.XGBRegressor(
n_estimators=n_estimators,
max_depth=max_depth,
learning_rate=learning_rate,
subsample=subsample,
colsample_bytree=colsample_bytree,
reg_alpha=reg_alpha,
reg_lambda=reg_lambda,
random_state=42,
verbosity=0,

enable_categorical=True

# Cross-validation

cv_scores = cross_val_score(
model, X_train, y_train,
cv=self.cv_folds,
scoring='neg_root_mean_squared_error',

n_jobs=-1

return -cv_scores.mean()

def objective_lightgbm(self, trial, X_train, y_train, model_type='supplier'):
"""Optuna objective function for LightGBM"""
# Suggest hyperparameters
n_estimators = trial.suggest_int('n_estimators', 50, 300, step=50)
max_depth = trial.suggest_int('max_depth', 3, 15)
learning_rate = trial.suggest_float('learning rate', 0.01, 0.3, log=True)
num_leaves = trial.suggest_int('num_leaves', 10, 300)
subsample = trial.suggest_float('subsample', 0.6, 1.0)
colsample_bytree = trial.suggest_float('colsample_bytree', 0.6, 1.0)
reg_alpha = trial.suggest_float('reg_alpha', 1e-8, 1.0, log=True)
reg_lambda = trial.suggest_float('reg_lambda', 1e-8, 1.0, log=True)

# Create model

model = 1gb.LGBMRegressor(
n_estimators=n_estimators,
max_depth=max_depth,
learning_rate=learning_rate,
num_leaves=num_leaves,
subsample=subsample,

colsample_bytree=colsample_bytree,
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reg_alpha=reg_alpha,
reg_lambda=reg_lambda,
random_state=42,

verbose=-1

# Cross-validation

cv_scores = cross_val_score(
model, X_train, y_train,
cv=self.cv_folds,
scoring='neg_root_mean_squared_error',

n_jobs=-1

return -cv_scores.mean()

def optimize_hyperparameters(self, X_train, y_train, model_type, target_name):
"""Optimize hyperparameters using Optuna"""
best_models = {}

best_params = {}

for model_name in self.models_to_use:

print (£"\nOptimizing {model_name.value} for {target_namel}...")

# Create study

study = optuna.create_study(direction='minimize', study_name=f"{model_name.value}_{target_namel}")

# Define and optimize based on model type
if model_name == ModelType.RANDOM_FOREST:
def objective(trial):
return self.objective_random_forest(trial, X_train, y_train, model_type)
study.optimize(objective, n_trials=self.n_trials, show_progress_bar=True)
elif model_name == ModelType.XGBOOST:
def objective(trial):
return self.objective_xgboost(trial, X_train, y_train, model_type)
study.optimize(objective, n_trials=self.n_trials, show_progress_bar=True)
elif model_name == ModelType.LIGHTGBM:
def objective(trial):
return self.objective_lightgbm(trial, X_train, y_train, model_type)

study.optimize(objective, n_trials=self.n_trials, show_progress_bar=True)

# Get best parameters

best_params[model_name] = study.best_params

print(f"Best parameters for {model_name.value}: {study.best_paramsl}")
print(f"Best CV RMSE: {study.best_value:.4f}")
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# Train final model with best parameters
if model_name == ModelType.RANDOM_FOREST:
best_model = RandomForestRegressor (¥*study.best_params, random_state=42, n_jobs=-1)
elif model_name == ModelType.XGBOOST:
best_model = xgb.XGBRegressor (**study.best_params, random_state=42, verbosity=0, enable_catego:
elif model_name == ModelType.LIGHTGBM:

best_model = 1lgb.LGBMRegressor (**study.best_params, random_state=42, verbose=-1)

best_model.fit(X_train, y_train)

best_models[model_name] = best_model

return best_models, best_params

train_supplier_models(self, data_splits):

"""Train models for supplier lead time prediction with Optuna optimization"""
X_train = data_splits['supplier']['X_train']

y_train = data_splits['supplier']['y_train']

if self.use_optuna:
models, best_params = self.optimize_hyperparameters(X_train, y_train, 'supplier', 'supplier_leadtir
else:
# Fallback to default parameters
models = {}
if ModelType.RANDOM_FOREST in self.models_to_use:
models [ModelType.RANDOM_FOREST] = RandomForestRegressor(n_estimators=100, random_state=42, n_j
models [ModelType.RANDOM_FOREST] .fit (X_train, y_train)
if ModelType.XGBOOST in self.models_to_use:
models [ModelType.XGBOOST] = xgb.XGBRegressor (n_estimators=100, random_state=42, verbosity=0)
models [ModelType.XGBOOST] .fit(X_train, y_train)
if ModelType.LIGHTGBM in self.models_to_use:
models [ModelType.LIGHTGBM] = lgb.LGBMRegressor(n_estimators=100, random_state=42, verbose=-1)
models [ModelType.LIGHTGBM] .fit (X_train, y_train)

# Evaluate models using cross—validation

from sklearn.model_selection import cross_validate
results = {}

print ("\n=== Supplier Model Cross-Validation Results ===")

# Custom MAPE scorer
from sklearn.metrics import make_scorer

mape_scorer = make_scorer(lambda y_true, y_pred: mean_absolute_percentage_error(y_true, y_pred), great

for model_name, model in models.items():

cv_results = cross_validate(
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model, X_train, y_train,

cv=self.cv_folds,

scoring={
'rmse': 'meg_root_mean_squared_error',
'mae': 'neg_mean_absolute_error',
'mape': mape_scorer

To

return_train_score=False

results [model_name] = {

'CV_RMSE_mean': -cv_results['test_rmse'].mean(),
'CV_RMSE_std': cv_results['test_rmse'].std(),
'CV_MAE_mean': -cv_results['test_mae'].mean(),
'CV_MAE_std': cv_results['test_mae'].std(),
"CV_MAPE_mean': -cv_results['test_mape'].mean(),

'"CV_MAPE_std': cv_results['test_mape'].std()

print (£"{model_name.value}:")

print(f" RMSE: {-cv_results['test_rmse'].mean():.4f} (+/- {cv_results['test_rmse'].std() * 2:.4f
print(f" MAE: {-cv_results['test_mae'].mean():.4f} (+/- {cv_results['test_mae'].std() * 2:.4f})"
print(f" MAPE: {-cv_results['test_mape'].mean():.4f}) (+/- {cv_results['test_mape'].std() * 2:.4

return models, results

train_warehouse_models(self, data_splits):
"""Train models for warehouse lead time prediction with Optuna optimization"""
X_train = data_splits['warehouse']['X_train']

y_train = data_splits['warehouse']['y_train']

if self.use_optuna:

models, best_params = self.optimize_hyperparameters(X_train, y_train, 'warehouse', 'warehouse_lead
else:

# Fallback to default parameters

models = {}

if ModelType.RANDOM_FOREST in self.models_to_use:
models [ModelType.RANDOM_FOREST] = RandomForestRegressor(n_estimators=100, random_state=42, n_j
models [ModelType.RANDOM_FOREST] .fit (X_train, y_train)

if ModelType.XGBOOST in self.models_to_use:
models [ModelType.XGBOOST] = xgb.XGBRegressor (n_estimators=100, random_state=42, verbosity=0)
models [ModelType.XGBOOST] .fit(X_train, y_train)

if ModelType.LIGHTGBM in self.models_to_use:
models [ModelType.LIGHTGBM] = lgb.LGBMRegressor(n_estimators=100, random_state=42, verbose=-1)
models [ModelType.LIGHTGBM] .fit (X_train, y_train)
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# Evaluate models using cross—validation
from sklearn.model_selection import cross_validate
results = {}

print ("\n=== Warehouse Model Cross-Validation Results ==="

# Custom MAPE scorer
from sklearn.metrics import make_scorer
mape_scorer = make_scorer(lambda y_true, y_pred: mean_absolute_percentage_error(y_true, y_pred), great

for model_name, model in models.items():
cv_results = cross_validate(

model, X_train, y_train,

cv=self.cv_folds,

scoring={
'rmse': 'neg_root_mean_squared_error',
'mae': 'neg_mean_absolute_error',
'mape': mape_scorer

To

return_train_score=False

results[model_name] = {

'CV_RMSE_mean': -cv_results['test_rmse'].mean(),
'CV_RMSE_std': cv_results['test_rmse'].std(),
'CV_MAE_mean': -cv_results['test_mae'].mean(),
'CV_MAE_std': cv_results['test_mae'].std(),
'CV_MAPE_mean': -cv_results['test_mape'].mean(),

'"CV_MAPE_std': cv_results['test_mape'].std()

print (£"{model_name.value}:")

print(f" RMSE: {-cv_results['test_rmse'].mean():.4f} (+/- {cv_results['test_rmse'].std() * 2:.4f]
print(f" MAE: {-cv_results['test_mae'].mean():.4f} (+/- {cv_results['test_mae'].std() * 2:.4f})"
print(£f" MAPE: {-cv_results['test_mape'].mean():.4f}} (+/- {cv_results['test_mape'].std() * 2:.4

return models, results

def feature_importance_analysis(self, model, feature_names, model_type='supplier'):
"""Analyze feature importance"""
if hasattr(model, 'feature_importances_'):

importances = model.feature_importances_

# Normalize importances to 0-1 scale for consistent comparison
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normalized_importances = importances / importances.sum()

indices = np.argsort(normalized_importances) [::-1]

plt.figure(figsize=(10, 6))

plt.title(f'Feature Importances - {model_type.capitalize()} Model')
plt.bar(range(len(normalized_importances)), normalized_importances[indices])
plt.xticks(range(len(normalized_importances)), [feature_names[i] for i in indices], rotation=45, h
plt.ylabel('Normalized Importance (0-1)')

plt.ylim(0, max(0.5, normalized_importances.max() * 1.1))

plt.tight_layout ()

plt.show()

# Print feature importances (both original and mormalized)
print (£"\nTop 5 important features for {model_type} model:")
for i in range(min(5, len(indices))):

original_imp = importances([indices[i]]

normalized_imp = normalized_importances[indices[i]]

print (f"{feature_names[indices[i]]}: {normalized_imp:.4f} (original: {original_imp:.4f})")

plot_predictions_vs_actual(self, y_true, y_pred, title="Predictions vs Actual"):
"""Plot predictions against actual values"""

plt.figure(figsize=(10, 6))

plt.scatter(y_true, y_pred, alpha=0.5)

plt.plot([y_true.min(), y_true.max()], [y_true.min(), y_true.max()], 'r--', lw=2)
plt.xlabel('Actual Values')

plt.ylabel('Predicted Values')

plt.title(title)

plt.tight_layout()

plt.show()

plot_prediction_outcome_percentage_by_supplier(self, y_true, y_pred, supplier_ids, top_n=16):
# Determine outcome type
outcome = np.where(y_pred > y_true, 'Over-predicted',

np.where(y_pred < y_true, 'Under-predicted', 'Exact match'))

# Create DataFrame

df = pd.DataFrame ({
'supplier': supplier_ids,
'outcome': outcome

D)
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# Count predictions per supplier and outcome

grouped = df.groupby(['supplier', 'outcome']).size() .unstack(fill_value=0)

# Calculate percentage distribution

grouped_percent = grouped.div(grouped.sum(axis=1), axis=0) * 100

# Sort by % over-predicted (if it exists) and select top N
#if 'Over-predicted' in grouped_percent.columns:

#top_suppliers = grouped_percent.sort_values(by='Over-predicted’, ascending=False).head(top_n)
# else:

# top_suppliers = grouped_percent.head(top_n)

top_suppliers = grouped_percent.head(top_n)

# Plot
fig, ax = plt.subplots(figsize=(max(12, len(top_suppliers) * 0.6), 6))

# Get available columns and set up bar positions
available_columns = [col for col in ['Under-predicted', 'Over-predicted', 'Exact match']

if col in top_suppliers.columns]

colors = {'Under-predicted': 'green', 'Over-predicted': 'red', 'Exact match': 'blue'}

n_bars = len(available_columns)
width = 0.8 / n_bars if n_bars > 0 else 0.8

x = np.arange(len(top_suppliers))

# Plot each available column
for i, col in enumerate(available_columns):
offset = (i - (n_bars - 1) / 2) * width

ax.bar(x + offset, top_suppliers[col], width, label=col, color=colors[col])

ax.set_xlabel("Supplier")

ax.set_ylabel("Prediction Outcome (%)")
ax.set_title("Prediction Outcome Percentage by Supplier")
ax.set_xticks(x)

ax.set_xticklabels(top_suppliers.index, rotation=45, ha='right')
ax.legend()

ax.grid(axis='y', linestyle='--', alpha=0.5)

plt.tight_layout ()
plt.show()
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def run_full_pipeline(self):
"""Run the complete pipeline"""
# Preprocess data
print ("Preprocessing data...")

self.preprocess_data()

if self.plot_grouped_analysis:
self .grouped_analysis()

# Split data
print("Splitting data...")
data_splits = self.split_data()

# Train models
print("\n=== Training Supplier Models ===")

supplier_models, supplier_results = self.train_supplier_models(data_splits)

print ("\n=== Training Warehouse Models ===")

warehouse_models, warehouse_results = self.train_warehouse_models(data_splits)

# Find best models based on CV RMSE
best_supplier_model_name = min(supplier_results.items(), key=lambda x: x[1]['CV_RMSE_mean']) [0]

best_warehouse_model_name = min(warehouse_results.items(), key=lambda x: x[1]['CV_RMSE_mean']) [0]

print (£"\nBest supplier model: {best_supplier_model_name.value}")

print (f"Best warehouse model: {best_warehouse_model_name.value}")

# Feature tmportance analysis
if best_supplier_model_name in self.models_to_use:
self.feature_importance_analysis(
supplier_models[best_supplier_model_name],
self.supplier_features,

'supplier'

if best_warehouse_model_name in self.models_to_use:
self .feature_importance_analysis(
warehouse_models[best_warehouse_model_name],
self.warehouse_features,

'warehouse'

# Final evaluation on test set
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print("\n=== Final Test Set Evaluation ==="

# Supplier model
X_test_supplier = data_splits['supplier']['X_test']
y_test_supplier = data_splits['supplier']['y_test']

# Printing results for other supplier models except best model
for supplier_model_name, supplier_model in supplier_models.items():
if supplier_model_name.value == best_supplier_model_name.value:

continue

predictions = self.predict(supplier_models[supplier_model_name], X_test_supplier)

print (£"\nSupplier Test Results for model: {supplier_model_name.value}")

plot_title = f"Supplier Lead Time: Predictions vs Actual for the model {supplier_model_name.value}

self.evaluate_model_prediction(supplier_model_name.value, y_test_supplier, predictions, plot_title
# Printing results for best supplier model
supplier_pred = self.predict(supplier_models[best_supplier_model_name], X_test_supplier)
print (f"\nTest Results for BEST Supplier model: {best_supplier_model_name.value}")
plot_title = f"Supplier Lead Time: Predictions vs Actual {best_supplier_model_name.valuel}"
self.evaluate_model_prediction(best_supplier_model_name.value, y_test_supplier, supplier_pred, plot_ti
# Use the test set indices to get original vendor keys

test_indices = X_test_supplier.index

# Retrieve the actual vendor keys using test indices

vendor_ids = self.df.loc[test_indices, 'DimVendorKey']

# Since we don't have vendor names, use the vendor keys as identifiers
# Convert to string for better display in the plot

vendor_identifiers = vendor_ids.astype(str)

self .plot_prediction_outcome_percentage_by_supplier(
y_test_supplier.to_numpy(),
supplier_pred,
vendor_identifiers.to_numpy(),

top_n=16
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# Compute and plot uncertainty if best model is Random Forest

if best_supplier_model_name == ModelType.RANDOM_FOREST:
rf_model = supplier_models[ModelType.RANDOM_FOREST]
pred_matrix = get_rf_prediction_distribution(rf_model, X_test_supplier)
uncertainty = compute_prediction_uncertainty(pred_matrix)

plot_uncertainty_by_supplier(uncertainty, vendor_ids)

# Warehouse model
X_test_warehouse = data_splits['warehouse']['X_test']

y_test_warehouse = data_splits['warehouse']['y_test']

# Printing results for other warehouse models except best model
for warehouse_model_name,warehouse_model in warehouse_models.items():
if warehouse_model_name.value == best_warehouse_model_name.value:

continue

predictions = self.predict(warehouse_models[warehouse_model_name], X_test_warehouse)

print (f"\nWarehouse Test Results for model: {warehouse_model_name.value}")
plot_title = f"Warehouse Lead Time: Predictions vs Actual for the model {warehouse_model_name.valu

self.evaluate_model_prediction(warehouse_model_name.value, y_test_warehouse, predictions, plot_tit!

# Printing results for best warehouse model
print (£"\Test Results for BEST Warehouse model: {best_warehouse_model_name.valuel}")

warehouse_pred = self.predict(warehouse_models[best_warehouse_model_name], X_test_warehouse)

print (f"\nWarehouse Test Results for BEST model: {best_warehouse_model_name.value}")
plot_title = f"Warehouse Lead Time: Predictions vs Actual for the model {best_warehouse_model_name.val

self.evaluate_model_prediction(best_warehouse_model_name.value, y_test_warehouse, warehouse_pred, plot

# Plot comparisons

supplier_planned_leadtime = X_test_supplier['TheoreticallLeadTime']

warehouse_planned_leadtime = [3.0] * y_test_warehouse.shape[0]
self.plot_target_comparison(y_test_supplier, supplier_planned_leadtime, supplier_pred, plot_name="Supp

self.plot_target_comparison(y_test_warehouse, warehouse_planned_leadtime, warehouse_pred, plot_name="W.

return {
'supplier_models': supplier_models,
'warehouse_models': warehouse_models,
'supplier_results': supplier_results,
'warehouse_results': warehouse_results,
'best_models': {

'supplier': best_supplier_model_name,
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'warehouse': best_warehouse_model_name
Fo
'supplier_test_data': {
'features': X_test_supplier,
'target': y_test_supplier
To
'warehouse_test_data': {
'features': X_test_warehouse,

'target': y_test_warehouse

def predict(self, model, X_test):
if self.round_results:
predictions = np.round(model.predict(X_test)).astype(int)
else:

predictions = model.predict(X_test)

return predictions

def evaluate_model_prediction(self, model_name, y_test, predictions, plot_title):
evaluate_model (y_test, predictions, model_name)

self .plot_predictions_vs_actual(y_test, predictions, plot_title)

def remove_outliers_with_threshold(self):

Master Thesis

self.df = self.df[self.df['order_to_delivered_wkdays'] <= self.outlier_threshold]

def cap_outliers(self, column):
Q1 = self.df[column].quantile(0.25)
Q3 = self.df[column].quantile(0.75)
IQR = Q3 - Q1
upper_bound = Q3 + 1.5 * IQR

self.df [column] = self.df [column].clip(upper=upper_bound)

def treat_outliers(self):
if self.remove_outliers and ('order_to_delivered_wkdays' in self.df.columns):
self.remove_outliers_with_threshold()
else:
variables_to_cap = [
"EffectiveLeadTime",

"order_to_available",
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"order_to_delivered",
"processing_to_available",
"order_available_wkdays",
"order_to_delivered_wkdays",

"processing_to_available_wkdays"

for col in variables_to_cap:
if col in self.df.columns:

self.cap_outliers(col)

def identify_outlier_candidates(self, df):

"""Systematically identify which variables need outlier checking"""

# Get only numerical columns

numerical_cols = df.select_dtypes(include=[np.number]) .columns

outlier_candidates = {}

for col in numerical_cols:
# Calculate basic stats
gl = df[col] .quantile(0.25)
g3 = df[col] .quantile(0.75)
iqr = g3 - qil

# Outlier bounds
lower_bound = ql1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr

# Count outliers
outliers = df [(df [col] < lower_bound) | (df[col] > upper_bound)]
outlier_count = len(outliers)

outlier_percentage = (outlier_count / len(df)) * 100

# Check for extreme skewness

skewness = df[col].skew()

# Store results

outlier_candidates[col] = {
'outlier_count': outlier_count,
'outlier_percentage': outlier_percentage,
'skewness': skewness,
'min': df[col] .min(),
'max': df [col] .max(),

'mean’': df [col] .mean(),
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'median': df[col] .median(),
'std': df[col].std()

return outlier_candidates

print_candidates_that_need_attention(self):
# Usage

candidates = self.identify_outlier_candidates(self.df)

# Print candidates that need attention
for col, stats in candidates.items():
if stats['outlier_percentage'] > 5 or abs(stats['skewness']) > 2:
print (£"\n{col}:")
print(f" Outliers: {stats['outlier_count']} ({stats['outlier_percentage']:.1£f}})")
print(f" Skewness: {stats['skewness']:.2f}")
print(f" Range: {stats['min']:.2f} to {stats['max']:.2f}")

self.visualize_outliers(self.df, col)

visualize_outliers(self, df, column, log_scale=True):
# Basic stats

ql = df [column] .quantile(0.25)

g3 = df [column] .quantile(0.75)

igr = g3 - q1

lower_bound = q1 - 1.5 * iqr

upper_bound = g3 + 1.5 * iqr

print (f"\n{column} stats:")

print(£f" Q1: {q1:.2f}, Q3: {qg3:.2f}")

print(£f" IQR: {iqr:.2f}")

print(f" Lower Bound: {lower_bound:.2f}, Upper Bound: {upper_bound:.2f}")
print(f" Skewness: {df[column].skew():.2f}")

fig, axes = plt.subplots(figsize=(8, 3))

# Histogram

sns.histplot(df [column], bins=100, ax=axes)

axes.set_title("Histogram")

axes.axvline(upper_bound, color='red', linestyle='--', label='Upper Bound')
axes.axvline(lower_bound, color='green', linestyle='--', label='Lower Bound')

axes.legend()

plt.tight_layout ()
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plt.show()

def grouped_analysis(self):
self.simple_box_plot(self.df, 'order_dayofweek', 'cover_time')
self.simple_box_plot(self.df, 'order_month', 'cover_time')

self.simple_box_plot(self.df, 'order_day', 'cover_time')

def simple_box_plot(self, df, x_col, y_col):
plt.figure(figsize=(10, 6))
sns.boxplot (data=df, x=x_col, y=y_col)
plt.title(f"{y_col} by {x_col}")
plt.xlabel(x_col)
plt.ylabel(y_col)
plt.show()

def plot_target_comparison(self, y_true, y_planned, y_pred, plot_name="Cover time"):
#self.plot_target_comparison_line(y_true, y_planned, y_pred, plot_name)
#self.plot_target_comparison_scatter(y_true, y_planned, y_pred, plot_name)
self .plot_target_comparison_bar(y_true, y_planned, y_pred, plot_name)
#self.plot_target_comparison_strip(y_true, y_planned, y_pred, plot_name)
#self.plot_prediction_outcome_counts(y_true, y_planned, y_pred, plot_name)
#self.plot_prediction_error_by_vendor(y_true, y_planned, y_pred, plot_name)
#self.plot_prediction_outcome_by_supplier_grouped(y_true, y_pred, y_planned)
if plot_name == "Cover time":

self .plot_prediction_outcome_percentage_by_supplier(y_true, y_pred, y_planned)

def plot_target_comparison_line(self, y_true, y_planned, y_pred, plot_name="Cover time"):
plt.figure(figsize=(12, 6))
plt.plot(y_true, label=f"True {plot_namel}", marker='o')
plt.plot(y_planned, label=f"Planned {plot_name}", linestyle='--')
plt.plot(y_pred, label=f"Predicted {plot_namel}", marker='x')
plt.title(f"{plot_name} Comparison")
plt.xlabel('Test set')
plt.ylabel('Days')
plt.legend()
plt.grid(True)
plt.tight_layout ()
plt.show()

def plot_target_comparison_scatter(self, y_true, y_planned, y_pred, plot_name="Cover time"):

n = y_true.shape[0]
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X = np.arange(n)

plt.figure(figsize=(14, 6))

# Add scatter points

plt.scatter(x - 0.2, y_true, label=f"True {plot_name}", alpha=0.7)
plt.scatter(x, y_planned, label=f"Planned {plot_name}", alpha=0.7)
plt.scatter(x + 0.2, y_pred, label=f"Predicted {plot_namel}", alpha=0.7)

# Formatting
plt.title(f"{plot_name} Comparison")
plt.xlabel('Test set')
plt.ylabel('Days"')

plt.legend()

plt.grid(True)

plt.tight_layout ()

plt.show()

plot_prediction_outcome_counts(self, y_true, y_planned, y_pred, plot_name="Cover time"):

Plots the number of under-, over-, and exactly predicted values as a bar chart.

Parameters:

- y_true: array-like of true values

- y_pred: array-like of predicted values
nnn

# Compute prediction error

error = np.array(y_pred) - np.array(y_true)

# Count outcomes
over_pred_count = np.sum(error > 0)
under_pred_count = np.sum(error < 0)

exact_match_count = np.sum(error == 0)

# Prepare data
labels = ['Under-predicted', 'Over-predicted', 'Exact match']

counts = [under_pred_count, over_pred_count, exact_match_count]

colors = ['green', 'red', 'blue'l]

# Plot
plt.figure(figsize=(8, 5))
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plt.bar(labels, counts, color=colors)
plt.ylabel("Number of Orders")
plt.title(f"{plot_name}Prediction Outcome Comparison")

plt.grid(axis='y', linestyle='--', alpha=0.5)
plt.tight_layout ()
plt.show()

# Optionally return the counts

return {
'under_predicted': under_pred_count,
'over_predicted': over_pred_count,

'exact_match': exact_match_count

def plot_target_comparison_bar(self, y_true, y_planned, y_pred, plot_name="Cover time"):

# Use first 10 samples (to avoid overcrowding)

n = min(10, y_true.shape[0])

x = np.arange(n) # positions for each sample

# Prepare bar widths and positions
width = 0.25

# True, predicted, planned
true_vals = y_true[:n]

pred_vals = y_pred[:n]

plan_vals = y_planned[:n]
# Create plot
plt.figure(figsize=(12, 6))

plt.bar(x - width, true_vals, width=width, label='True', color='steelblue')
plt.bar(x, plan_vals, width=width, label='Planned', color='gray')
plt.bar(x + width, pred_vals, width=width, label='Predicted', color='seagreen')

# Labels

plt.xlabel('Test set')

plt.ylabel("Days")

plt.title(f"{plot_name} Comparison (First 10 samples)")
plt.xticks(x, [£"#{i}" for i in range(n)])

plt.legend()

plt.grid(axis='y")

plt.tight_layout ()

plt.show()
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def plot_prediction_error_by_vendor(self, y_true, y_planned, y_pred, plot_name="Cover time"):

Plots average absolute prediction error (|predicted - truel|) grouped by vendor.

A1l bars are shown above zero (no distinction between over- and under-prediction).

# Prepare DataFrame
results_df = pd.DataFrame ({
'vendor': y_planned,
'true': y_true,
'pred': y_pred
b
results_df['error'] = results_df['pred'] - results_df['true']

results_df['abs_error'] = results_df['error'].abs()

# Group by wvendor (mean absolute error)

vendor_summary = results_df.groupby('vendor') ['abs_error'].mean() .reset_index()

# Sort vendors by magnitude of error (descending)

vendor_summary = vendor_summary.sort_values('abs_error', ascending=False)

# Plot

plt.figure(figsize=(14, 6))

plt.bar(
x=vendor_summary['vendor'].astype(str),
height=vendor_summary['abs_error'],

color='orange'

plt.xlabel("Vendor")

plt.ylabel("Mean Absolute Prediction Error")
plt.title(f"Mean Absolute Error by Vendor - {plot_namel}")
plt.xticks(rotation=90)

plt.grid(axis='y', linestyle='--', alpha=0.5)
plt.tight_layout ()
plt.show()

def plot_target_comparison_strip(self, y_true, y_planned, y_pred, plot_name="Cover time"):
# Limit to first 20 samples for clarity
n = min(20, y_true.shapel[0])

# Create a tidy dataframe
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df_plot = pd.DataFrame ({
'"True': y_true[:n],
'"Predicted': y_pred[:n],
'Planned': y_plannedl[:n]

b

df_plot['Sample'] = range(n)

df_melted = df_plot.melt(id_vars='Sample', var_name='Type', value_name=plot_name)

# Plot as strip

plt.figure(figsize=(12, 6))

sns.stripplot(data=df_melted, x='Sample', y=plot_name, hue='Type', jitter=True, dodge=True)
plt.title(f"{plot_name} Comparison (First {n} samples)")

plt.xlabel('Test set')

plt.ylabel('Days')

plt.legend()

plt.tight_layout ()

plt.show()

# === Helper Functions for Uncertainty Analysis ===

def get_rf_prediction_distribution(model, X):
"""Return a matrix of shape (n_samples, n_trees) with predictions from all trees."""
X_np = X.values

return np.stack([tree.predict(X_np) for tree in model.estimators_], axis=1)

def compute_prediction_uncertainty(pred_matrix):
"""Compute uncertainty as 90th percentile - 10th percentile for each row."""

return np.percentile(pred_matrix, 90, axis=1) - np.percentile(pred_matrix, 10, axis=1)

def plot_uncertainty_by_supplier(uncertainties, supplier_ids, top_n=20, title="Prediction Uncertainty by Suppl
df _uncertainty = pd.DataFrame ({
'Supplier': supplier_ids,
'Uncertainty': uncertainties

b

# Group by supplier, take the mean

grouped = df_uncertainty.groupby('Supplier') ['Uncertainty'].mean().sort_values(ascending=False) .head(top_n

# Plot

plt.figure(figsize=(14, 6))

bars = plt.bar(grouped.index.astype(str), grouped.values)

sm = plt.cm.ScalarMappable(cmap='viridis', norm=plt.Normalize(grouped.min(), grouped.max()))

colors = plt.cm.viridis((grouped.values - grouped.min()) / (grouped.max() - grouped.min()))
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for bar, color in zip(bars, colors):

bar.set_color(color)

plt.xticks(rotation=90)

plt.ylabel("Mean Uncertainty (Working Days)")
plt.xlabel("Supplier")

plt.title(title)

plt.tight_layout()

plt.show()

# Initialize predictor
predictor = WarehouseLeadTimePredictor('df_convert3.csv')
predictor.models_to_use = [ModelType.RANDOM_FOREST, ModelType.LIGHTGBM, ModelType.XGBOOST]

# New Optuna parameters (replace the old grid search parameters)
predictor.use_optuna = True

predictor.n_trials = 100

predictor.cv_folds = 5

predictor.round_results = True

# Your existing parameters

predictor.handle_outliers = False

# Run the pipeline

results = predictor.run_full_pipeline()

# —-—— Supplier Model: Random Forest Prediction Uncertainty ——-
supplier_rf_model = results['supplier_models'] [ModelType.RANDOM_FOREST]

X_supplier_test = results['supplier_test_data']['features']

# Retrieve the original supplier IDs for test data
supplier_ids = predictor.df.loc[X_supplier_test.index, 'DimVendorKey']

# Get predictions from all trees

supplier_pred_matrix = get_rf_prediction_distribution(supplier_rf_model, X_supplier_test)

# Compute prediction uncertainty (90th - 10th percentile)

supplier_uncertainty = compute_prediction_uncertainty(supplier_pred_matrix)
# Plot uncertainty per supplier

plot_uncertainty_by_supplier(

uncertainties=supplier_uncertainty,
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supplier_ids=supplier_ids,
top_n=20,
title="Supplier Model - Prediction Uncertainty by Supplier (Random Forest)"

# —--- Warehouse Model: Random Forest Prediction Uncertainty ——-—
warehouse_rf_model = results['warehouse_models'] [ModelType.RANDOM_FOREST]

X_warehouse_test = results['warehouse_test_data']['features']

# Retrieve the original supplier IDs (still 'DimVendorKey') for warehouse test data

warehouse_ids = predictor.df.loc[X_warehouse_test.index, 'DimVendorKey']

# Get predictions from all trees

warehouse_pred_matrix = get_rf_prediction_distribution(warehouse_rf_model, X_warehouse_test)

# Compute prediction uncertainty

warehouse_uncertainty = compute_prediction_uncertainty(warehouse_pred_matrix)

# Plot uncertainiy per supplier
plot_uncertainty_by_supplier(
uncertainties=warehouse_uncertainty,
supplier_ids=warehouse_ids,
top_n=20,
title="Warehouse Model - Prediction Uncertainty by Supplier (Random Forest)"

# Save the best models
import joblib

# Save supplier model

best_supplier_model = results['supplier_models'] [results['best_models']['supplier']]
joblib.dump(best_supplier_model, 'best_supplier_model.joblib')

# Save warehouse model

best_warehouse_model = results['warehouse_models'] [results['best_models']['warehouse']]

joblib.dump (best_warehouse_model, 'best_warehouse_model.joblib')

# Save the predictor object for future use

joblib.dump(predictor, 'warehouse_predictor.joblib')
print("\nModels saved successfully!")
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