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Abstract

Background: Humans are constantly exposed to various chemicals. The impact of these
pollutants on human health is often unknown or poorly characterised. This has led to a
growing interest in the field of environmental epidemiology. This master’s thesis investigates
statistical methods for correlated environmental exposures, with a particular emphasis on
per- and polyfluoroalkyl substances (PFAS) in human biomonitoring studies. We address
two main questions: (1) how to identify individual pollutants associated with a health out-
come and (2) how to estimate the joint effect of a pollutant mixture.

Methods: The statistical methods considered include frequentist shrinkage approaches
(Ridge, LASSO, Elastic Net), Bayesian shrinkage models using different priors (Laplace,
spike and slab, horseshoe), Bayesian model averaging with Bayesian adaptive sampling and
G-computation. Additionally, we considered methods specifically developed for mixture
analysis, such as weighted quantile sum (WQS) regression and Bayesian kernel machine
regression (BKMR). The methods are evaluated through a literature review, along with
simulation studies and a case study.

Results: For individual effect estimation, we found that multicollinearity poses the main
challenge. Ridge regression was best suited in terms of power due to its grouping prop-
erty and ability to handle multicollinearity. Bayesian shrinkage regression offered improved
interpretability via posterior distributions and reduced bias, though at the cost of wider
credible intervals. For WQS regression, we found that using standardised continuous ex-
posures improves statistical power without compromising robustness. We demonstrated
that highly collinear exposures have a reduced impact on joint effect standard errors from
ordinary least squares (OLS) due to variance cancellation.

Conclusion: For individual effect estimation, Bayesian shrinkage methods have shown
promise due to their ability to quantify uncertainty, minimal shrinkage of relevant coeffi-
cients and interpretability. Additionally, these methods provide a flexible framework that
can be extended to accommodate different outcome distributions, clustering, spatial depen-
dencies and non-linear associations. For joint effect estimation, traditional OLS regression
performed well. The more flexible models may demonstrate improved performance in larger
sample sizes and indicate potential areas for future research.

Keywords: human biomonitoring, PFAS exposure, multi-pollutant methods, shrinkage
methods, weighted quantile sum regression, Bayesian kernel machine regression, individ-
ual and joint effect estimation
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Chapter 1

Introduction

1.1 Background

Our environment has been severely polluted by many chemicals, creating a lasting legacy
of contamination in our air, water and soil. Furthermore, many of these pollutants are also
used in personal care products or household consumer items. As a result, these chemicals
can enter the human body via inhalation, dermal absorption or ingestion (HBM4EU, 2021).
The effects of these chemicals on human health are often unknown or poorly characterised.
As a result, there has been a growing interest in the field of environmental epidemiol-
ogy, dealing with these chemicals. This shift has led to changes in statistical methodology
to address the complexities of chemical pollutants and answering specific research questions.

In the past, researchers have typically focused on studying the effects of a single chemical
in relation to a specific health outcome. They conducted statistical analyses using clas-
sical methods with one exposure. This approach is often referred to as a single-pollutant
method. Silva et al. (2002) argued that this approach can lead to significant underestima-
tion of risk. They demonstrated that estrogenic agents can interact together to generate
significant effects even when combined at concentrations below their NOEC (no observed
effect concentration). Many researchers argue for switching to the analysis of chemical
mixtures, also called multi-pollutant methods (Dominici et al., 2010). This refers to multi-
ple chemicals or exposures that may interact additively, synergistically or antagonistically
(Braun et al., 2016). In contrast to single-pollutant models, these methodologies also take
into account the potential confounding effects posed by other chemicals included in the
mixture. Therefore, this approach provides a richer understanding of how different pollu-
tants affect a health outcome.

A chemical mixture presents various challenges. The main statistical issue is the potential of
multicollinearity due to high correlations among chemicals in the mixture. Many traditional
statistical methods suffer from this, as high correlation between exposures leads to inflated
standard errors. Therefore, it is essential to design a statistical method that effectively
addresses this problem. Apart from dealing with multicollinearity, epidemiologists want to
use these models to answer specific research questions. Braun et al. (2016) described three
broad questions related to chemical mixtures:

- What are the health effects of individual chemicals within a mixture?

- What are the interactions between chemicals within a mixture?



- What is the health effect of cumulative chemical exposure?

Given the challenges associated with multicollinearity, along with the presence of three
key questions, statisticians and epidemiologists have developed various novel statistical
methodologies. This thesis will describe some of the most commonly used multi-pollutant
methods found in the literature. The objective is to evaluate the assumptions, robustness,
and interpretability associated with the specified methods. This evaluation will be based on
a particular case study provided by VITO (Flemish Institute for Technological Research).

1.2 Societal relevance and stakeholder awareness

As a science-to-technology partner, VITO supports companies, governments and society in
their sustainability transition. VITO Health conducts research to understand the harm-
ful effects of environmental factors on human health. By analysing data, VITO provides
insights into these impacts at both individual and population levels. Moreover, they offer
targeted policy advice on substances of concern (VITO, 2025).

VITO Health is a crucial partner in the PARC (Partnership for the Assessment of Risks from
Chemicals) seven-year initiative under Horizon Europe, FLEHS (Flemish Environment and
Health Study) and has previously served as co-coordinator for HMB4EU (Human Biomon-
itoring for Europe) (Marx-Stoelting et al., 2023; Gilles et al., 2022). Significant efforts have
been made during these projects to develop statistical guidelines addressing general issues
related to human biomonitoring data. The application of multi-pollutant methods within
HBMA4EU has been limited. The objective is that these methods become the standard ap-
proach for exposure—effect analyses in future human biomonitoring studies within PARC.
VITO Health acknowledges that a deeper exploration is needed to fully understand their
implications and effectiveness. As a result of their keen interest and active involvement,
VITO has emerged as the principal requesting party for this master’s thesis. Their in-
volvement reinforces the importance of collaboration, highlighting VITO’s commitment to
advancing knowledge and innovation within the field.

Further insights into these methodologies are crucial for VITO, given their implications
for public health. A better understanding of these methods will yield more robust findings
and facilitate clearer communication with the general population. The findings should guide
safer chemical policies and increase public awareness. The methods presented are applicable
to a diverse range of pollutants, including per- and polyfluoroalkyl substances (PFAS),
phthalates, atmospheric contaminants (air pollutants), heavy metals and pesticides. In
this manner, a better understanding of advanced statistical techniques benefits research
institutes as VITO, companies, governments and society as a whole.



1.3 Research question

This master thesis will address the following questions:

- How do different statistical methods estimate the overall (joint) effect of PFAS mix-
tures on immune-related health outcomes?

- How do these methods identify key PFAS compounds within the mixture and estimate
their individual contributions to the health outcome?

- What are the assumptions, strengths and limitations of these statistical methods when
applied to PFAS mixture data and how do they compare in terms of performance and
interpretability?

The questions will be addressed through a literature review, a simulation study and a case
study provided by VITO. Moreover, we are encouraged to adopt a broader perspective than
the methodology employed by VITO and to critically evaluate certain assumptions that are
frequently presented in the literature.

1.4 Ethical considerations

This master’s thesis did not involve any human participation, nor did it address clinical
issues or involve the collection of personal data. Internal data provided by VITO was
utilised as a case study throughout this thesis. This case study titled “Teenager study HBM
- 3M site” was approved by the Committee for Medical Ethics at UZA/UAntwerpen. The
personal data acquired from the human biomonitoring study was received in an anonymous
format. It should be noted that in a statistical context, case studies are not intended
to yield generalisable results. They aim to demonstrate how a given approach can be
implemented, interpreted and adapted to address similar problems, rather than providing
answers to specific research questions with certainty. Furthermore, this thesis underscores
the scientific integrity and transparency, in alignment with the principles set forth by Hasselt
University and VITO. In accordance with these principles, Al-based tools were employed
for specific tasks. Details of the specific Al tools and tasks are provided in Appendix A.

1.5 Structure of the thesis

The remainder of this thesis is organised as follows. Chapter 2 introduces human biomon-
itoring studies and describes the dataset. Chapter 3 addresses the challenge of multi-
collinearity and introduces both frequentist and Bayesian shrinkage methods. In Chap-
ter 4, we explore methods particularly used for mixture analysis, such as weighted quantile
sum (WQS) regression and Bayesian kernel machine regression (BKMR). Additionally, we
explore more flexible techniques for estimating mixture effects using G-computation. Chap-
ter 5 presents a simulation study comparing these methods in terms of individual and joint
effect estimation. It also addresses the WQS quantile choice and joint effect estimation
using ordinary least squares (OLS). Finally, Chapter 6 details the results of the case study,
while the overall findings of this thesis are discussed in Chapter 7 and a conclusion is given
in Chapter 8.



Chapter 2

Data

2.1 Human biomonitoring studies

In our daily lives, individuals are exposed to a variety of chemicals. Furthermore, our envi-
ronment has been severely polluted by these contaminants. Consequently, these chemicals
can enter the human body through inhalation, dermal absorption or ingestion (HBM4EU,
2021). To evaluate potential risks, it is crucial to gain a deep understanding of the various
forms of exposure and the adverse effects they may pose to our health. Human biomoni-
toring (HBM) is a methodology utilised to assess the concentrations of chemicals present
within the human body. This is accomplished through the collection of biological specimens
such as blood, urine or breast milk. These specimens reflect the multiple pathways that
individuals are exposed to, such as diet, consumer products or environment (Gilles et al.,
2022). The collected specimens are analysed in a laboratory to determine the exact concen-
trations of various pollutants. These results are then studied using statistical techniques
to uncover the complex relationships between these pollutants and effect biomarkers (e.g.,
immune parameters) or potential health outcomes (e.g., asthma or allergies).

2.2 Case study

This master’s thesis is based on VITO’s research regarding human biomonitoring studies.
Specifically, it focuses on the exposure of humans to PFAS (per- and polyfluoroalkyl sub-
stances) and the associated immunometabolic health effects in teenagers. PFAS refers to a
large group (> 6 000) of human-made chemicals, encompassing a wide range of molecular
sizes from small to very large. The substances are defined by their strong bonds between
carbon and fluorine atoms. These bonds make PFAS highly resistant to degradation, which
has resulted in their classification as “forever chemicals”. Since the 1950s, PFAS have been
used worldwide to make consumer products resistant to water, oil, grease and prevent stain-
ing (HBM4EU, 2021).

VITO has conducted multiple human biomonitoring (HBM) studies in the last 20 years.
This thesis will use the data from the “Teenager HBM Study - 3M site” (Consortium
UAntwerpen, VITO, PIH, UHasselt and VUB, 2023). 3M has been a major producer of
PFAS in the past. As PFAS is persistent, over the years, the environment surrounding the
factory has become significantly contaminated. One of the main objectives of this study
was to investigate the environmental health implications for young people living near the



3M production site. The dataset consists of a sample size of 303 teenagers living within a
radius of 5km from the 3M site. A full description of the study population, collection of
samples, questionnaires and measurements of PFAS in blood can be found in Consortium
UAntwerpen, VITO, PTH, UHasselt and VUB (2023). The original dataset includes diverse
information, but this thesis will primarily focus on the measured concentrations of PFAS
in relation to immune-related effect biomarkers.

Figure 2.1 gives an overview of all PFAS compounds that were measured in the participants’
blood serum and the percentage that was above the limit of quantification (LOQ). This limit
refers to the lowest concentration at which the exposure can be reliably quantified. This is
often referred to as left-censoring of the exposure, which is a statistical research field on its
own. Since this thesis does not focus on complex methods for handling the LOQ), a single
random imputation from a censored log-normal distribution was applied by VITO Health to
variables with a detection rate of at least 60%. For exposure-effect analysis, variables below
60% are often dichotomised (< LOQ versus >LOQ). These recommendations were specified
in the statistical analysis plan for the PARC project (Hassen et al., 2023). The dichotomised
exposures were excluded in this thesis, allowing for a focus on continuous exposures as re-
quired by some of the multi-pollutant methods. The following exposures are used in the case
study in Chapter 6: linear perfluorobutanoic acid (PFBA), linear 4+ branched perfluorooc-
tanoic acid (PFOA total), linear perfluorononanoic acid (PFNA), linear perfluorodecanoic
acid (PFDA), linear + branched perfluorohexanesulfonic acid (PFHXS total), linear perfluo-
rooctanesulfonic acid (PFOS) and branched perfluorooctanesulfonic acid (PFOS branched).

PFTrDA 0.0%

PFTeDA 0.0%

PFPeA 0.0%

PFHXDA 0.0%

PFBSA 0.0%
EtPFOSAA (total) 0.0%
EtPFOSAA 0.0%

6:2 diPAP 0.0%

6:2 FTS 10.3%
MePFOSAA (total) 10.7%

MePFOSAA 10.7%
PFBS 01.0%
PFHXA H1.3%
PFDoDA H1.7%
PFUNDA [ 10.3%
PFHpS N 12.0%
PFHpA . 21.3%
PFBA TR T A%
PFDA R 72.1%
PFNA - = [E:3A
PFOA (total) IR 99.1%
PFOA R 99.1%
PFOS (total) L 100.0%
PFOS (branched) I 100.0%
PFOS I 100.0%
PFHXS (total) I 100.0%
PFHXS I 100.0%

PFAS Compound

Percentage above LOQ

Figure 2.1: Percentage of participants (excluding missing values) with values above the LOQ
for various PFAS compounds. Total refers to the combined sum of linear and branched PFAS
variants. If there are no specific indications in brackets, it refers to the linear variant.

Table E.1 gives the relevant descriptive statistics for the exposures expressed in ug/L serum.
To address the right-skewness typically observed in environmental exposure data, we ap-
plied log transformations to the exposure variables before analysis. Chemical compounds,



such as PFAS, are often highly correlated, as discussed in the introduction. In the upcoming
chapters, we will delve into this topic further. Figure 2.2 illustrates the Spearman correla-
tion across the various compounds, providing insight into the complexity and strength of
these correlations. This will serve as a guide for the discussions in the subsequent chapters.
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Figure 2.2: Pairwise Spearman correlations between PFAS concentrations (after single im-
putation and log-transformation on the exposure). Total refers to the combined sum of
linear and branched PFAS variants. If there are no specific indications in brackets, it refers
to the linear variant.

The health outcome of interest related to PFAS exposure is the number of immune cells in
the blood. An effective immune response relies on balanced coordination between the innate
and adaptive immune systems. Suppression of the immune system can increase the risk
of infections, while over-activation may lead to allergic reactions or autoimmune diseases.
Leukocytes (white blood cells) are key components of the immune system and play a cru-
cial role in defence against infections and cancer development (Consortium UAntwerpen,
VITO, PIH, UHasselt and VUB, 2023). Therefore, it serves as an important biomarker
of immune system activity. Research conducted in animal studies has demonstrated that
elevated exposure to PFAS leads to a reduction in leukocyte counts (Ehrlich et al., 2023).

The second outcome of interest is the ratio of CD4+ (helper T cells) to CD8+ (cytotoxic T
cells). This ratio reflects immune balance and can serve as a sensitive biomarker for immune
dysregulation. The majority of epidemiological studies indicate that there is no significant
association between PFAS exposure and the CD4+/CD8+ T-cell ratio (Ehrlich et al., 2023).
Appendix E contains visualisations of the log-transformed outcome distribution and the
standardised log-transformed exposure distributions, as well as a summary table of the
exposures, covariates and outcomes used in the case study presented later. The complete
analysis will be presented in Chapter 6, as the methodology must first be introduced to
answer the research question of interest.



Chapter 3

Shrinkage methods

This initial chapter on methodology outlines statistical shrinkage methods that are widely
recognised and utilised, grounded in a robust theoretical framework. These methods are
often considered as a baseline for comparison with new approaches that (sometimes) lack
this theoretical foundation. Within this chapter, both frequentist and Bayesian shrinkage
methods will be discussed. The goal is to use these models to deal with multicollinearity
and assess the effect of individual chemicals within a mixture on a health outcome.

Let n denote the number of observations, ¢ the number of exposure variables in the exposure
matrix A, z the number of additional covariates in the matrix Z and define p = c+ z as the
total number of predictors. In the upcoming sections, we will, for simplicity and without
loss of generality, treat exposures and additional covariates together in the notation as an
(n x p) design matrix X = [A Z] of rank p. In practice, these are often separated in the
analysis, as for shrinkage methods, we typically do not penalise the additional covariates.

The issue of multicollinearity is best understood in a linear model context. Hoerl and
Kennard (1970) considered a standard model for multiple linear regression

Y=XB+e€ (3.1)

where it is assumed that Y is a (n x 1) random outcome vector, 3 is the (p x 1) dimensional
unknown parameter vector, € is a (n x 1) random error vector, E[e] = 0 and E[ee ] = ¢21I,,.
The ordinary least squares (OLS) estimator is given by

B=XTX)'XTY with Var(8) = o?(X"X)™! (3.2)

which represents the individual effects in a chemical mixture. Multicollinearity has to
do with the ill-conditioning of the Gram matrix X "X. This can be best understood by
examining the total variance of 3:

1
Li

Total Var(8) = Tr(Var(,é’)) =0 Tr((X'X) ™) = o? i (3.3)
i=1

where U0 = 11 > 1o > ... > 1, = ljin > 0 are the eigenvalues of X TX. This follows from
the fact that the Gram matrix X X is semi-positive definite. When two columns in X have
an approximate linear relationship and are thus highly correlated, I; will be small. This will

lead to an inflation of the total variance as indicated in equation (3.3). This phenomenon
is known as multicollinearity (Hoerl and Kennard, 1970; Thas, 2023).



The OLS estimator is affected by potentially high correlations among predictors. While it
can still provide unbiased estimates, the standard errors of the regression parameters may
be inflated. This inflation makes it difficult to identify which chemical within a mixture
has a significant effect on a health outcome. For these particular settings, researchers have
developed shrinkage methods. These techniques introduce minimal bias while effectively
decreasing standard errors, leading to improvements in mean square error (MSE). The
following sections will shortly introduce various shrinkage methods that are well-known.

3.1 Frequentist shrinkage methods

3.1.1 Ridge regression

In the context of non-orthogonal regression problems, Hoerl and Kennard (1970) introduced
a biased estimator known as the ridge regression estimator, defined as:

Brigge = (X X + kL)' XY (3.4)

This estimator is the solution of minimising the residual sum of squares (RSS), subject to
a constraint on the L2 or Euclidean norm of the coefficient vector. This approach is equiv-
alent to penalising the RSS, where £ > 0 can be interpreted as the Lagrange multiplier or
penalty parameter.

If & = 0, the OLS estimator (3.2) is obtained. As k increases, the variance of Bndge de-
creases because the influence of small eigenvalues is suppressed. At the same time, a larger
k results in a stronger penalty, causing the coefficients to shrink towards zero. Hoerl and
Kennard (1970) showed that the MSE of Bm-dge, decomposes into the total variance of the
ridge estimator and squared bias introduced by the ridge penalty. This illustrates the fun-
damental bias-variance trade-off in ridge regression. Hoerl and Kennard (1970) present
an explicit formulation for the standard error of the ridge coefficient. Nevertheless, it is
common practice to employ bootstrapping as an alternative method. Bootstrap percentile-
based confidence intervals will be utilised in this thesis.

In conclusion, ridge regression can be effectively applied to chemical mixtures to prevent
the inflation of standard errors. Although the shrinkage introduced by ridge regression adds
some bias, it often leads to a reduction in the MSE of the individual components within
the mixture. Consequently, the selection of the ridge penalty parameter k is crucial, as it
determines the balance between bias and variance. In this thesis, 5-fold cross-validation
will be utilised for all frequentist shrinkage methods to choose the largest k whose MSE is
within one standard error of the minimum.

3.1.2 LASSO regression

Ridge regression, as previously described, addresses the issues associated with the OLS es-
timator by shrinking the coefficients towards zero. Tibshirani (1996) highlighted a second
issue with OLS, which has not been discussed yet: the interpretation. When dealing with a
large number of predictors, it is often the goal to identify a smaller subset of those predic-
tors that have the strongest effects. This is not the case for Ridge regression. In contrast,
it does not set coefficients to zero and may not yield an easily interpretable model. To ac-



commodate for this, Tibshirani (1996) proposed a method called LASSO or “least absolute
shrinkage and selection operator”. The coefficients Blasso are obtained by minimising the
RSS, subject to a non-differentiable constraint expressed by the L1 or Manhattan norm
of the coefficient vector. Due to the continuous shrinking operation of this norm, it can
produce coeflicients that are exactly zero. This leads to variable selection, which was not
the case in Ridge regression.

In contrast to Ridge regression, LASSO does not have an explicit formula for calculating
the standard error due to the non-differentiable characteristics of the L1 penalty. Therefore,
Tibshirani (1996) proposed the use of bootstrapping for calculating the standard error (SE)
and percentile-based confidence intervals. Alternatively, various standard error estimators
have been proposed in the literature. Kyung et al. (2010) give a comprehensive overview
of the available methodologies. However, Kyung et al. (2010) argue that Bayesian methods
are often more accessible and practical. This topic will be discussed in detail in Section 3.2.

LASSO can thus be useful in a situation where there are many chemical pollutants and
people believe that only a few of these chemicals have significant effects. However, this
is not the case in our study presented in Chapter 2, in which n > p and the predictors
tend to be highly correlated. Tibshirani (1996) demonstrated that in these cases, ridge
regression often outperforms LASSO in terms of prediction performance. Moreover, in the
context of mixture analysis, the use of LASSO may result in problematic variable selection
as well. If there is a group of pollutants among which the pairwise correlations are high,
then the LASSO tends to select only one variable from that group (Zou and Hastie, 2005).
There are several alternative versions of LASSO available that offer slight improvements.
A discussion of these variations is beyond the scope of this context.

3.1.3 Elastic Net regression

Considering the limitations outlined in the previous paragraph, Zou and Hastie (2005) pro-
posed Elastic Net regression. Similar to Ridge and LASSO regression, Elastic Net is a
penalised regression technique. It can be seen as a penalised least squares method where
the penalty is a convex combination of the LASSO and ridge penalty ((1—a)||3||1 +«||B]|3)
(Zou and Hastie, 2005). The Elastic Net faces the same standard error challenges as the
LASSO. When a = 1, Ridge regression is obtained, whereas when o = 0, LASSO regression
is achieved. Within VITO, it is common practice to select a value of @ = 0.5 to balance
sparsity and shrinkage, particularly in the presence of correlated predictors. While tuning
« via cross-validation can offer improved model performance and more stable variable se-
lection in some settings, we follow the internal convention and fix a = 0.5.

The primary reason for using Elastic Net in the context of chemical mixtures is its grouping
effect, which means that identical predictors receive the same coefficients (Zou and Hastie,
2005). While this holds for both Ridge and Elastic Net, it does not hold for LASSO. For
LASSO, the sum of the two coefficients can be arbitrarily split between the two and does not
even have a unique solution. Carrico et al. (2015) argue that this grouping effect can also
be problematic. The grouping effect would assign similar coefficients to highly correlated
predictors even when one of the predictors does not necessarily have an association with the
health outcome. Nevertheless, the Elastic Net approach is often seen as a baseline method
for mixture analysis and will serve as a comparison point.
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3.2 Bayesian shrinkage methods

Techniques such as Ridge, LASSO and Elastic Net are mainly used for prediction, selection
and shrinkage. However, our main objective is to identify a specific chemical within a mix-
ture and to conduct statistical inference as well. Since there are challenges in calculating
standard errors or bootstrap approximation are required for the frequentist shrinkage meth-
ods, Bayesian shrinkage methods could be a suitable alternative. The Bayesian approach
utilises priors as a replacement for the previously imposed penalties. A detailed discussion
of this methodology will be provided in the subsequent paragraphs.

3.2.1 Bayesian LASSO regression

Consider a linear model where the outcome follows a normal distribution using previous
notation.

Y‘XnﬁaO-Q ~ N(X,@,O‘QIn) (35)

Tibshirani (1996) noted that LASSO estimates can be interpreted as posterior mode esti-
mates under the assumption that the regression parameters follow independent identically
distributed Laplace priors. Park and Casella (2008) suggest a hierarchical representation
of the full Gaussian model where the Laplace distribution is represented as a scale mixture
of normals with an exponential mixing density.

Bi | TZZ, o? ~N (0,027'1-2)

)\2
2

c~ E —
7; Xp<2>

(o) %

M\ ~ Gamma(0.1,0.1)

(3.6)

with i = 1,..., ¢ the index for each chemical in the mixture. For o Park and Casella (2008)
recommend an improper prior or an inverse-gamma prior as it would also maintain conju-
gacy. For choosing the LASSO parameter )\ they proposed a class of gamma priors on A2

In conclusion, Bayesian LASSO can serve as an alternative to construct credible intervals
for the parameters. The name Bayesian LASSO may be misleading. Park and Casella
(2008) showed in an example that Bayesian LASSO appears to be a compromise between
frequentist LASSO and Ridge regression. It tends to pull weak signals faster to zero than
frequentist ridge regression. In contrast to the frequentist LASSO, it will not set coefficients
exactly to zero as it allows posterior mass near zero. This aspect is frequently regarded
as a critique of the Bayesian LASSO approach. The subsequent methods introduced will
further address this concern.

3.2.2 Bayesian spike and slab regression

The spike and slab prior is a very popular shrinkage and variable selection prior. Piironen
and Vehtari (2017) referred to it as the “golden standard” for sparse Bayesian estimation. It
was first introduced by Lempers (1971); Mitchell and Beauchamp (1988); George and Mc-
Culloch (1993). The spike and slab prior is defined as a mixture of two normal distributions
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with different variances. It can be defined for (3.5) using previous notations as

Bi ’ i,y €O, €0 ~ A - N(O, 6(2)) + (1 - )\z) . N(O, 63)
i ~ Ber(7) (3.7)
m ~ Beta(l,1)

with €y < ¢g. The “spike” variance is defined as ¢y ~ 0, which ensures that when \; = 0 the
coefficient 3; will be close to zero. Alternatively, the “slab” variance is defined as ¢y > 0
such that when A\; = 1, the coefficient §; will be away from zero. The selection of these
hyperparameters can often be challenging. George and McCulloch (1993) argue that from a
subjective Bayesian perspective, ¢g should be sufficiently large to support the strong signals
as seen in Figure 3.1. The hyperparameter tuning is commonly regarded as a limitation of
the spike and slab prior.

--- Slab N(0, c3)
--- Spike N(0, €3)
—— Mixture prior

Density

Figure 3.1: Spike and slab prior with m = 0.5, ¢g = 0.1, ¢y = 0.005.

3.2.3 Bayesian horseshoe regression

The Bayesian LASSO has difficulties with adapting to situations with both strong and weak
signals. On the other hand, the spike and slab often suffers from sensitivity to hyperparam-
eter tuning. To address these limitations, Carvalho et al. (2009, 2010) introduced a novel
approach to sparsity, in which the parameter 3 is believed to be sparse. They called this
the horseshoe prior. The horseshoe prior is defined as a scale mixture of normals:
Bi| Xiy T ~ N(0,\}7?)

A~ CH0,1) (3.8)

T ~ CT(0,1)
with CT(0,1) the half-Cauchy distribution. Carvalho et al. (2009, 2010) refer to \; as the
local shrinkage parameter and 7 the global shrinkage parameter.
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To better understand the Horseshoe prior, Carvalho et al. (2009, 2010) introduced the
shrinkage coefficient k; = ﬁ, using fixed values for ¢ and 7 set to 1. The shrinkage coef-
ficient quantifies the extent to which the observed data influences the posterior mean of j;.
When k & 1, the posterior mean is heavily influenced and pulled towards zero, indicating
strong shrinkage. Conversely, when k = 0, the posterior mean remains largely unshrunken.
The right panel in Figure 3.2 illustrates the horseshoe-shaped shrinkage profile. This char-
acteristic arises because the half-Cauchy prior on A; results in a Beta (%, %) distribution for
k;. This shows that the Horseshoe prior favours weak or strong signals as it has a high peak
near 0 and 1. The flat density in the middle reflects that moderate shrinkage is discouraged.
In contrast, the left panel on Figure 3.2 representing the LASSO prior shrinkage profile,
has high density in the middle. This reflects the tendency of LASSO to result in the over-
shrinkage of large values, while simultaneously under-shrinking observations characterised

by noise (Carvalho et al., 2009).

Density

0 02 04 06 038 1 0 02 04 06 038 1
k k

Laplace (LASSO) Horseshoe

Figure 3.2: Density functions of k; for selected shrinkage priors (up to constants) based on
Table 1 and Figure 2 in Carvalho et al. (2010).

Extensions such as the regularised horseshoe have been proposed by Piironen and Vehtari
(2017). These are particularly advantageous for data with moderate signals, as the regu-
larised horseshoe prior is less aggressive. This is an important topic to consider for future
research. In conclusion, the horseshoe prior is particularly well-suited for chemical mixture
modelling, as it effectively shrinks the impact of irrelevant exposures to near-zero levels
while preserving the truly important chemicals.
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Chapter 4

Multi-pollutant methods

The methods outlined in Chapter 3 are frequently utilised in a variety of contexts be-
yond chemical mixtures. Recent advancements have introduced new techniques specifically
designed to address the unique complexities and questions associated with chemical mix-
tures. A literature review conducted by Yu et al. (2022) indicated that between 2018 and
2022, methods as weighted quantile sum (WQS) regression and Bayesian kernel machine
regression (BKMR) have gained significant popularity. In addition to the aforementioned
methods, this discussion will also encompass Bayesian model averaging (BMA) and G-
computation. These techniques have been frequently cited in the literature and have been
employed in multi-pollutant analysis by VITO in prior studies.

4.1 Weighted quantile sum regression

Recently, innovative methodologies have been proposed to tackle the complexities associated
with chemical mixtures. One notable strategy involves the empirical development of a
weighted sum. This idea is better known as weighted quantile sum (WQS) regression.
First, the exposure values are quantised and combined into a unidirectional weighted sum,
reducing dimensionality and avoiding multicollinearity. Secondly, the significance of the
WQS is determined, providing a single overall effect estimate of the mixture and the weights
are interpreted as the relative importance (Carrico et al., 2015; Tanner et al., 2019). The
discussion will first focus on the (bootstrap) WQS regression, followed by improvements
aimed at stabilising weight estimation.

4.1.1 'WAQS regression

Let ¢ represent the number of correlated components or exposures, which are scored into
quantiles denoted by q = (q1, ..., ¢c) (e.g., for quartiles ¢; = 0,1,2 or 3), where i = 1, ..., c.
This quantisation helps mitigate the influence of extreme exposure values, accounts for
potential non-linear relationships and allows for straightforward interpretation as the effect
of a one-quantile increase in exposure. Nonetheless, this assumption has faced criticism,
which is examined further in the simulation study presented in Section 5.1.
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The original weighted index model by Christensen et al. (2013) is defined as

(&
9(E[Y|q,z]) = fo + 51 (Z wi%‘) +z'p (4.1)
i=1

where g is a monotonic, differentiable link function as in a generalised linear model (GLM),
Bo is the intercept, By is the regression coefficient for the weighted quantile sum, w; is the
weight associated with the i*® component, z is the vector of additional covariates and ¢ is
the vector of parameters associated with the covariates. For estimation of the parameters,
the dataset is first divided into a training and validation set. Next, the weights w; are
estimated using the training set with constraints

(&
> wi=1 and 0<w; <1 Vie{l, .. c} (4.2)
=1
The estimation is performed by maximising the likelihood of the (non-)linear regression

model (4.1) while enforcing the constraints (4.2). The estimated weights w; are now used
to define the WQS

wqs = Z wiq; - (4.3)
i=1

In the final step model (4.4) is used to estimate the effect, 81, of the WQS on the outcome
using maximum likelihood estimation (MLE) on the validation set.

9(E[Y |wgs,z]) = Bo + Brwgs + 2z ¢ (4.4)

The parameter (51 is interpreted as the joint effect if all exposures simultaneously increase
by one quantile. If this effect is found to be significant, the weights w; can be interpreted
as the relative importance of a specific individual chemical.

4.1.2 Bootstrap WQS regression

To stabilise the weight estimates, Carrico et al. (2015) proposed a bootstrap step. A fixed
number B of bootstrap samples from the training dataset is used to estimate the unknown
weights w; that maximise the likelihood for the model (4.1), as previously described. Af-
ter estimation, a post hoc constraint is applied to retain only the weights associated with
bootstrap samples in which the estimated coefficient 1 has the same sign. This constraint
enforces directional homogeneity, meaning all exposures in the index are assumed to influ-
ence the outcome in the same direction (either positive or negative). As a result, a set of
B* estimated directional weights is obtained and the weighted quantile sum index is then
calculated as

c B*
_ . _ 1 . 5
WqSps = Z w;q;  with  w; = B Zwi(b)f(ﬁl(b)) (4.5)
i=1 b=1
with f(-) a pre-specified “signal function”. The signal function is specifically designed to

assign greater weight to samples with higher signals. The wgs in model (4.4) is then re-
placed by wgsps and the estimation of 51 is done in the same way.
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4.1.3 Random subset WQS regression

In high-dimensional mixtures with highly collinear predictors or when the number of predic-
tors exceed the number of subjects, bootstrap WQS regression may fail. Therefore, Curtin
et al. (2019) proposed a novel implementation, random subset WQS (WQS,s) regression.
The idea is to select a random subset of the total predictor set. These subsets of predictors
are more decorrelated and thus the ill-conditioning in the variable selection algorithm is
improved.

Let d be the fixed number of randomly selected predictors and S the total number of sub-
sets. For each subset s = 1,...,.5, randomly select d exposures out of the total c. Next,
the weights for each subset will be estimated using the same constraints as in (4.2) and
the model previously applied in (4.1). After estimation, a post hoc constraint is applied to
retain only the weights associated with subsets in which the estimated coefficient 5, has
the same sign. Afterwards, the unique weights are averaged across all subsets to determine
the final variable weights used in the calculation of the W @S, s index. This is then similarly
employed in a model on the validation data, as done previously.

Curtin et al. (2019) showed in their simulation study the behaviour of this method for
34,59 or 472 exposures. They concluded that for smaller mixtures, there are relatively few
combinations of random subsets, making WQ Sy, potentially advantageous. However, in
cases with larger predictor sets or when the number of predictors exceeds the number of
subjects, WQS,s should be implemented instead of W (Q.S;.

4.1.4 Repeated holdout validation WQS regression

The previously discussed bootstrap WQS regression applications divided the data into a
single training set and a validation set. In finite study samples, this reduces statistical
power and may result in unrepresentative partitions and unstable estimates (Tanner et al.,
2019). Therefore, Tanner et al. (2019) proposed a repeated holdout validation. First, the
dataset is R times randomly partitioned (with replacement) into a training and validation
set. Next, bootstrap WQS regression is done on each set. Across the R sets, the mean is
used as the final estimate

. 1
Bon =5 ;ﬁlr (4.6)

For coefficient inference, the 95% confidence intervals are based on the standard deviation
of the simulated sampling distribution.

The study conducted by Tanner et al. (2019) did not present any simulation results; in-
stead, it focused solely on an empirical case study with 26 predictors. This strengthens their
belief that WQ.S,;, can produce more stable WQS index estimates compared to WQ.S;.
The reason for this is that in smaller sample sizes, extreme individual weights are averaged
out, unlike in single partitions. However, it should be noted that this comes at a large
computational cost. A repeated holdout with 100 partitions will take 100 times longer to
run as compared to bootstrap WQS regression.
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The final advantage of repeated holdout validation is that it allows for the characterisation
of weight uncertainty. As the WQS weights are constrained to be non-negative and sum to
one, classical statistical inference (e.g., hypothesis tests for individual weights Hy : w; = 0)
is not applicable. Carrico et al. (2015) proposed a specific cut-off point: when the weights
fall below this threshold, these components are identified as “bad actors” or not selected. It
is important to note that this cut-off point should be smaller when there are many predictors
and larger when there are only a few. This choice of their cut-off point is arbitrary. Given
that inference based on WQS weights lacks a formal theoretical foundation, we focus on
interpreting the overall mixture effect and examining the relative magnitudes of weights to
explore which exposures may be more influential.

4.2 G-computation for joint effect estimation

WQS regression requires strong assumptions about directional homogeneity and the linear,
additive effects of individual exposures. Additionally, little theoretical statistical evidence
exists about internal validity, such as bias, consistency and confidence interval coverage.
Therefore, Keil et al. (2020) introduced a novel method called quantile g-computation, with-
out such strong assumptions. It relies on the G-computation principle from causal inference
and allows for flexible techniques to estimate the joint effect. In contrast to the work of
Keil et al. (2020), which concentrated on both joint and individual effect estimation, we
will focus only on joint effect estimation through the application of G-computation. This
approach aims to effectively address the potential synergistic effects associated with PFAS
exposures. The specific terminology related to causal inference and identifiability assump-
tions are introduced in Appendix B.

Historically, the parametric G-formula or G-computation was introduced in a series of arti-
cles by Robins (1986). It is sometimes also referred to as “standardisation”. Vansteelandt
and Keiding (2011) argued that this term is more familiar to epidemiologists and bet-
ter captures the essence of G-computation for point exposures. The idea is to model the
outcome Y and use that model to predict counterfactual outcomes across the entire popu-
lation. Snowden et al. (2011) provide guidelines for implementing this idea. It involves the
following steps:

1. Select a model for the outcome Y on the exposure a and covariates z. This model
is commonly referred to as the @-model and is typically a regression-type model,
expressed as E[Y|a,z]. However, G-computation also allows for the use of more
flexible methods, such as non-parametric and machine learning techniques, to estimate
the Q-model. These methods relax the parametric assumptions of the Q-model, which
can help reduce bias from model misspecification.

2. Use the model fit in step 1 to predict outcomes Y“, reflecting counterfactuals, for
each observation under two hypothetical scenarios while covariates remain at their
observed values.

3. Finally, average the predictions under the two hypothetical scenarios and take the dif-
ference. A reasonable hypothetical scenario in the context of chemical mixtures could
involve making predictions at the first and third quartile values. The average differ-
ence between these predictions would represent the marginal effect of an interquartile
range increase in all predictors.
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Under the identifiability assumptions, and additionally assuming no model misspecification
or measurement error, the estimates are considered unbiased for the causal effect. In prac-
tice, some degree of mismeasurement of most variables, mismeasured models or potential
confounding is unavoidable. (Hernan and Robins, 2025; Snowden et al., 2011)

4.3 Bayesian adaptive sampling for variable selection and
model averaging

Previously described models typically assume linear additive relationships among exposures,
although some can be easily modified to incorporate non-linear or interaction effects. It
is essential to evaluate whether the inclusion of an interaction effect or predictor improves
the model’s fit. This evaluation process, which involves examining various combinations of
predictors, is referred to as model selection. A limitation of this process is that the final
estimates derived from the selected model do not account for the uncertainty inherent in
the selection process. To address this concern, Hoeting et al. (1999) proposed the method
of Bayesian model averaging (BMA).

4.3.1 Bayesian model averaging

The key idea of model averaging is to make weighted predictions based on the model’s fit
for a specific quantity A of interest, in our case, the regression coefficient. In the context
of Bayesian model averaging, the weights are chosen to be the posterior model probability.
Consider a model M., with v = (y1,...,7.) € {0,1}° =T, the elements in ~ are indicators
representing whether or not a specific predictor is included in the design matrix X,. The
Gaussian linear model can now be defined as

Y | Bo, By, 0%, My ~ N(I,Bo + X+ , In0?) (4.7)

using previous notation. Based on this formulation, each model is assigned a posterior
model probability. This defines the fit to the data and prior model probability. The
posterior probability of a model M./ is computed by Bayes’ theorem

PY|My)P(My)
2er P(Y|M5)P(My)

with P(M.) the prior model probability and P(Y |M.,) proportional to the marginal like-
lihood of M., obtained by integrating the joint likelihood with respect to the prior dis-
tribution over all parameters. The last step involves calculating the quantity of interest
as a weighted average, weighted by the posterior model probabilities (Hoeting et al., 1999;
Clyde et al., 2011).

P(My|Y) = (48)

P(AY) = Y P(AIM,, Y)P(M,[Y) (4.9)
~el

As implemented by Clyde et al. (2011), each Bayesian linear model will include a different
combination of exposure variables. When only main effects were considered, the total
model space consists of 2¢ possible models, where ¢ is the number of exposures. In this
framework, regression coefficients for the exposures are interpreted as weighted averages
across all considered models, with weights given by the posterior model probabilities. This
does not resolve the issue of multicollinearity.
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The different combinations of exposure variables in each model allow us to interpret the
posterior inclusion probability (PIP). The PIP serves as a measure of variable importance,
defined as the sum of posterior model probabilities for all models that include a specific
variable. A high PIP indicates strong evidence that the variable is important for explaining
the outcome, while a low PIP suggests limited support for its inclusion.

4.3.2 Bayesian adaptive sampling

In situations where the number of predictors is substantial, the space of models I' may
become excessively large to analyse. For instance, in a scenario involving 25 predictors,
considering only the main effects would result in 225 = 33 554 432 potential combinations
of predictors that could be incorporated into the model. Therefore, Clyde et al. (2011) pro-
posed a Bayesian adaptive sampling (BAS) without replacement algorithm. Unlike other
algorithms, this method guarantees that it will enumerate the complete space of models if
computational resources permit. When this is not possible, BAS uses a stochastic sampling
algorithm.

The model space I' is structured as a binary tree. In this framework, each level of the
tree reflects a decision to either include (vy; = 1) or exclude (v; = 0) the j-th predictor.
Consequently, every model corresponds to a distinct path within the binary tree, resulting
in a total of 2¢ paths. For a binary tree, the distribution can be expressed as
C (&
FAle) =TT FOilv<i) = [ [(pi1<i) 7 (1 = pjye)' = (4.10)
j=1

J=1

where v<; indicates the subset of inclusion indicators, pj<; = f(7; = 1|v<;) and p the
collection of all {p;j<;}. When a model is sampled using formula (4.10), the equation will
first be updated with a new value of p. This update guarantees that all previously sampled
models will have a probability of zero. Once this update is done, a new model can be sam-
pled. Clyde et al. (2011) proposed updating Pj|<; using mj, the marginal posterior inclusion
probability for predictor j. They recommend starting with an estimate and iteratively
updating it using sampled models:

I Z‘YESt p(Y‘M"Y>
with Sy the set of models that have been sampled at step t. To ensure all models can be
sampled, they advise bounding p away from 0 and 1 (Clyde et al., 2011). In conclusion,
Bayesian adaptive sampling is often employed when the model space is extensive.

4.4 Bayesian kernel machine regression

The previous models rely on parametric functional forms. Therefore, in settings with com-
plex mixtures, which are often the case in reality, these models are easily misspecified.
Therefore, Bobb et al. (2014) proposed a novel, flexible technique called Bayesian kernel
machine regression (BKMR). This approach models the health outcome as a smooth kernel
function while adjusting for confounding variables.
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The focus in this section will be on semi-parametric models, denoted as
Y =h(a)+z p+e (4.12)

with a a vector of ¢ continuous exposures, h : R® — R a high-dimensional exposure response
function and € assumed independent and follows N(0, 02). The remaining notation is similar
to WQS regression model (4.1). In particular, the exposure-response function h(-) will be
of interest. First, the connection with kernels will be made. Afterwards, the focus will shift
to Bayesian variable selection within the exposure-response function.

4.4.1 Kernel function

The function h(a) is expressed in terms of a kernel function K (-,-) that defines similarity
between input vectors such that

h(a) =) a;K(a;,a) (4.13)
=1

with {a;}?_; the corresponding set of weights. The number of weights «; is related to the
number of data points n. As a result, the dimension of the feature space does not affect the
computational complexity (Cristianini and Shawe-Taylor, 2000). Commonly used kernels
include the dth polynomial kernel and the Gaussian kernel. This chapter will primarily
focus on the Gaussian kernel, which is defined as

2
K(a1,as) = exp <—”al_pa?”> (4.14)
with p a tuning parameter and || - || the L2 norm or Euclidean norm. From now on, a
Gaussian kernel function will be used to represent h(-) in model (4.12). Liu et al. (2007)
showed the Bayesian representation of model (4.12), they treat h(a) as a random vector
with a Gaussian process prior with mean 0 and covariance cov(h(a1), h(az)) = 7K(a1, az).
Thus the Bayesian formulation is

Y | ¢,2,h(a),0® ~ N(z'p + h(a) , %) with h(-)~GP(0, 7K(-,-)) and ¢ < 1 (4.15)

4.4.2 Bayesian kernel machine regression

Bobb et al. (2014) expanded the ideas of Liu et al. (2007) to a Bayesian semi-parametric
framework that also allows for variable selection. They proposed component-wise variable
selection and hierarchical variable selection. In this thesis, only the first option will be
of interest, as our motivating example makes it difficult to partition the components into
groups. To allow for component-wise variable selection Bobb et al. (2014) proposed an
augmented Gaussian kernel function defined as

C
K(al, as; ’I") = exp < Z ri(au — a2i)2> (416)
i=1
The component-wise selection is now introduced by using a spike and slab prior on r
T ‘ 0; ~ (Szfl(m) + (1 — 52)P0 with i =1,...,c and §; ~ Ber(7r) (4.17)

where f1(+) is a pdf with support on R and Py density with point mass at 0. The posterior
mean of §; can be interpreted as the inclusion probability for a specific component 3.
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Chapter 5

Simulation results

Simulation studies are experiments that generate data through pseudo-random sampling
from known distributions. A key strength of these studies is the ability to understand the
behaviour of methods since the “truth” can be derived from the data-generating process.
This allows for the investigation of properties such as bias or robustness against model mis-
specifications. Morris et al. (2019) provide guidelines on how these experiments should be
best set up. Their “ADEMP” structure will be closely followed in the Appendix D, which
includes all additional details on the simulation procedures. In Appendix A, we introduce
the software and packages used for each method.

All simulation studies are inspired by “Teenager HBM Study - 3M site”, presented in
Chapter 2. The models introduced in Chapter 3 and Chapter 4 will be compared in a
moderate sample size within an epidemiological framework. First, we will study the impact
of quantiles instead of continuous exposure values using WQS. The second simulation study
studies the effect of the exposure correlation structure on joint effect estimation using OLS.
Finally, a realistic exposure response setting will be considered where all methods will
be compared based on 4 performance measures. In addition, a simulation study on the
grouping property will also be considered.

5.1 Continuous vs quantised exposures in WQS

Carrico et al. (2015) were the first to propose the implementation of quantiles in WQS re-
gression. They argued that this approach provides a clear interpretation of the joint effect.
Additionally, they pointed out that estimating weights without bounds on the components
can lead to extreme values having influence that grows with the weights. Nonetheless, they
acknowledge that adopting quantiles may result in a loss of information. While quartiles
are often used, one may be interested in understanding the differences in bias associated
with weights between quartile exposure, decile exposure or standardised continuous expo-
sures. Since Carrico et al. (2015) did not explore this topic in their paper, we will conduct
a simulation study based on three different data-generating mechanisms.

The simulation study evaluates how continuous versus quantised (quartiles or deciles) expo-
sures affect the stability of weight estimation and the power of the joint effect in a repeated
holdout WQS regression model. A detailed description of the rationale behind the method-
ological choices and simulation procedure can be found in Appendix D.1. Data for 300
individuals are simulated under three scenarios:
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(a) Exposures drawn from a multivariate t-distribution with two degrees of freedom,
characterised by heavy tails with either no correlation or high correlation among the
exposures.

(b) Exposures from a multivariate normal distribution with added exposure-driven out-
liers by multiplicative inflation on 5 randomly selected values with either no correla-
tion or high correlation among the exposures.

(c) Log-transformed exposure profiles (rows) resampled from the case study dataset to
preserve joint distributions and including confounders.

Outcomes are simulated using an additive linear continuous WQS formulation with stan-
dardised exposures, which includes known weights and noise. Confounders are incorporated
only in scenario (c¢). The estimand of interest is the average exposure weight and joint effect
calculated from the repeated holdout splits. Performance is evaluated by measuring the
absolute bias in estimated weights and the power of the joint effect for both continuous and
quantised exposures.

Figure 5.1 presents the results obtained from the three distinct exposure scenarios. The
exposures were standardised prior to conducting the analysis. This is important because
the weights in WQS regression sum to 1 and would otherwise adjust for the scale of the
exposure. In all three scenarios analysed, X3 or PFBA demonstrates the highest level of
systematic bias, resulting in a consistent underestimation of its true effect, independent of
how the exposure was simulated. A similar pattern is observed with X5 or PFOA (total).
It should be noted that these two components collectively contribute to 65% of the overall
effect in the simulation procedure. The opposite effect is observed for Xo, X¢ and X4 where
there is a consistent overestimation of the true effect. These three chemicals accounted for
8% of the joint effect in the simulation procedure. For the first two scenarios, we also distin-
guished between simulations with approximately no correlation or high correlation among
the exposures. The bias on the components is similar, but there is more variability when
the correlation is higher. In conclusion, the findings seem to suggest that strong effects
are underestimated and small effects overestimated. Similar results were found in terms of
relative bias or when using a single repeated holdout split (results not shown).

When comparing quartiles, deciles and continuous exposures, there is little difference in
biases across the scenarios. The weights based on continuous exposures in a repeated hold-
out WQS model seem to be robust against exposures with heavy tails. This is in contrast
with Carrico et al. (2015), as they emphasised that having no bounds on the weights could
result in extreme values. They discussed this in relation to a WQS regression model with
a single repeated holdout split, as originally proposed in their first paper. In contrast, we
used 100 repeated holdout splits as recommended by Tanner et al. (2019), which improves
the stability of the weight estimates. As a result, we may not see differences in the weight
estimation between quantised exposures and continuous exposures.

The right panel of Figure 5.1 shows the power of the joint effect estimate across the three
exposure scenarios. In scenarios (a) and (c), continuous exposures tend to have greater
statistical power. In scenario (b), the three exposure types have similar behaviour. When
examining the correlation, WQS regression demonstrates greater power for the joint effect
when the correlation among the exposures is strong. This difference in power will therefore
be the topic of interest in the next simulation study.
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Figure 5.1: The results are derived from repeated holdout WQS regression, which employed
100 holdout splits, with 20 bootstrap steps for each split. This entire process was repeated
50 times for each scenario; more details can be found in Appendix D.1. The left panel: The
boxplot displays the estimated absolute bias of the weights for the various exposures. The
right panel: The bar plot illustrates the empirical power of the joint effect with 95% CI.
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5.2 Joint effect estimation using OLS

In the previous simulation study using WQS, we identified a pattern suggesting that the
statistical power associated with the joint mixture effect tends to be greater in the presence
of high correlation. This simulation study investigates how high correlations among expo-
sures affect the standard errors, power and Type I error of joint effects in multiple linear
regression. The individual effects will also be presented for the purpose of comparison.
Exposure data are generated from a multivariate normal distribution with equal pairwise
correlation p = 0,...,0.9. The outcome is simulated with a linear additive relationship to
the predictors. Three effect scenarios are considered: (a) one active exposure effect of —0.2,
(b) multiple large/small effects summing to —0.2 and (c) no exposure effect. A correctly
specified linear model is fitted in each simulation and the joint effect is computed as the
sum of the coefficients. Performance is evaluated using the mean SE, empirical power and
Type I error rate over 1 000 simulations. Exact details can be found in Appendix D.2.

The left panels shown in Figure 5.2 present the average SE as a function of the pairwise
correlations. The SE for individual exposure effects remain small at low correlation levels
but increases rapidly as correlations become higher. This is the well-known phenomenon
of multicollinearity. In contrast, the SE of the joint effect decreases as the correlation in-
creases. This trend is consistent across the three effect scenarios considered. The right
panels in Figure 5.2 for cases (a) and (b) demonstrate the relationship between power
and increasing pairwise correlations. The observed pattern is, as expected, consistent with
the SE findings. Specifically, as the correlation increases, the power of the joint effect in-
creases, while the power of the individual effects decreases. Empirical Type I error rates for
both the sum of exposures and individual exposures are consistently close to the nominal
level of approximately 0.05 and demonstrate stability across varying correlation levels. This
observation indicates effective control of error rates, irrespective of the degree of correlation.

In conclusion, the joint effect estimation does not seem to suffer as much as the individual
exposures from high correlations. This phenomenon was also observed by Carrico et al.
(2015) and Keil et al. (2020) in the context of WQS regression and G-computation. Keil
(2020) gave an intuitive explanation for this. Consider the simple example of two highly
correlated predictors in Figure C.1. When Exposure A increases by one unit, Exposure B
often increases as well due to their high correlation. As a result, there are few instances
where A increases while B does not, making it challenging to estimate the effect of A while
keeping B constant. In contrast, when considering the joint effect, we observe a diagonal
movement along the data cloud. Increasing both A and B together is supported by the
data, allowing the model to estimate their joint effect with more certainty.

The intuition above was given by Keil (2020). However, no theoretical explanation was
given. In the introduction of Chapter 3, we showed why individual effects suffer from high
correlation. In Appendix C.2, a theoretical approach is given to understand this in the
context of joint effects. The key point is that in the context of two predictors with positive
correlations, the covariance becomes highly negative. As a result, even if the sum of the
individual standard errors is large, the standard error of the joint effect can be small due
to the negative covariance.



Effect scenario (a): single exposure effect

5 &5 1.00
o [} ° ® . e
fumy ; ® 24
D516 8 * +—
o ®woq E' &
© © 0.75 4 'y
o O ¢
[ =
© o
™ 012 Q & *
o ®oe € 0.0
® L + [
: by
= 0.08 + woe 0.25 ¢ ¢
[} %Q(
(©] JURL, + + +
¢
8)  undhuinahu + oG —® g€ —§——0— >
© 0.00
o I S TS S T S T P - T - R S T
< Pairwise correlation between all exposures Pairwise correlation between all exposures

¢ Sum of coefficients (-0.2) ¢ Exposure 2 (beta = 0) ¢ Exposure 4 (beta =0) ¢ Exposure 6 (beta = 0)

Variable ¢ Exposure 1 (beta =-0.2) Exposure 3 (beta =0) © Exposure 5 (beta=0)  Exposure 7 (beta = 0)

Effect scenario (b): Large and small exposure effects

= = 1.00
g g ° *
) 5 o ®
oo @aod Q i L]
© 075
o + Qo ®
S @
3 o ¢
» 0.12 + € 050
© wee .
® w ¢
9
g + + wo¢ +
008 + woe 0.25
N
3 %ea
wod +
) i e ) ¢ '\ M ® ® @
D i B ¢ © o & ®& £ & P » @
© 0.00
o I - TS A I B - T g S
< Pairwise correlation between all exposures Pairwise correlation between all exposures
Variable ¢ Sum of coefficients (-0.2) ¢ Exposure 2 (beta =-0.01) ¢ Exposure 4 (beta = 0.000) ¢ Exposure 6 (beta = 0.00)

¢ Exposure 1 (beta =-0.04) © Exposure 3 (beta =-0.08) * Exposure 5 (beta = -0.05) Exposure 7 (beta = -0.02)

Effect scenario (c): No exposure effect

© 008

= ° ® e o
2 45 0.02 ¢ e 0o ° o
e b
g 50'08 ® ® ® °® °
Do.16 ®oe £002 * LA R S8 e
3 o
c = 0.08
L ® (] ® ® ®
S 8_0'02 ° ® ® °
o >
ke o0.08
Doz 002
g [T O
— .= 0.08 @ ® ® ® ® o ® @ ®
7] g-o.oz .
o wod¢ w
() 0.08
Do.08 + woe 0.02
o +u
> woe + 008 g Yy T e & o © o e o @
< [ T 0.02
woe woe PP + +
0.08
N 0.02 N A
I RPN RPN TN PN BN TN PN BN P N S IS A S SN WP S
Pairwise correlation between all exposures Pairwise correlation between all exposures

¢ Sum of coefficients (0) ¢ Exposure 2 (beta =0) ¢ Exposure 4 (beta =0) ¢ Exposure 6 (beta = 0)

Variable Exposure 1 (beta=0) ¢ Exposure 3 (beta =0) * Exposure 5 (beta=0)  Exposure 7 (beta = 0)

Figure 5.2: Standard errors, power and Type I error rates for individual exposures and their
joint effect across increasing pairwise correlation levels. Fach point represents results from
1 000 simulations. See Appendix Appendix D.2 for full methodological details. Left panels:
Mean standard errors with 95% simulation intervals. Right panels: Empirical power (for
scenarios a and b) and Type I error rates (for scenario c), shown with 95% CI.
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5.3 Evaluating methods on realistic exposure mixtures

The goal is to evaluate the behaviour of the methods introduced in Chapter 3 and Chap-
ter 4. Evaluation will be done based on different performance measures for estimating both
joint and individual mixture effects, utilising realistic exposure data from the case study
described in Chapter 2. The full description and all simulation setup details are given in
Appendix D.3.1. We give here the intuition behind the simulation study. We generate 7 ex-
posures by sampling n = 300 complete log-transformed exposure profiles with replacement
from the case study dataset. This is done to preserve the original joint distribution and
associated covariates. The strength of the correlations is shown in Figure 2.2, excluding the
two components that have a correlation close to 1 and PFOS (branched). The outcomes
are simulated using a weighted sum model (D.14) with standardised continuous exposures
and a Gaussian outcome. The weighted sum coefficient and error variance are chosen such
that we have a moderate signal-to-noise scenario, which reflects typical conditions in envi-
ronmental health research. We assume directional homogeneity. Two formulations of the
weighted sum are discussed:

- Linear additive effect: All exposures have an assigned weight greater than zero, with
components having large, moderate or small effect weights. Weights were informed by
the case study. This scenario represents rather a dense setting than a sparse setting.

- Synergistic effect: Secondly, the weighted sum is selected to incorporate certain in-
teractions representing synergistic effects. In the literature, this is often regarded as
more realistic. The interactions represent 35% of the total effect.

This setup evaluates method performance under both additive and synergistic exposure
scenarios common in environmental health research.

5.3.1 Linear additive exposures

Let us begin by comparing the joint effect estimates in Figure C.2. As mentioned in the
previous section, a multiple pollutant linear model used for joint effect estimation does
not necessarily suffer from multicollinearity. This can be observed in terms of confidence
interval (CI) width, OLS performs well in comparison to other methods. We note that the
frequentist shrinkage methods exhibit high bias and result in the largest CI width. As these
methods are developed for stabilising individual effect estimates, they perform very poorly
in the context of joint effects. In contrast, the Bayesian shrinkage methods are less biased
and demonstrate smaller widths for the Cls.

The G-computation linear model is unbiased and essentially identical to the multiple lin-
ear model, given that the underlying true mechanisms are linear and additive. For the CI
width, bootstrapping was employed, resulting in a slightly larger CI width compared to
the multiple pollutant linear model. In contrast, the G-computation methods using ran-
dom forest and BKMR are more biased. The random forest G-computation produces a
small CI. Conversely, BKMR yields a larger CI due to its flexibility. The various types of
weighted index models are slightly biased but have the smallest confidence interval width.
In weighted index models, a notable difference exists between using one repeated holdout
(rh) versus using 100 repeated holdouts. The models that incorporate 100 repeated hold-
outs provide more stable estimates, leading to smaller Cls. This stability arises because the
Cls are based on simulations from the 100 repeated holdouts.
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Secondly, the individual effects are worth examining. Figure C.3 presents inclusion prob-
abilities that allow us to compare the relative importance of the different effects. For all
methods, the strongest effect (PFBA) shows the highest poster inclusion probability (PIP)
or bootstrap inclusion probability (BIP). However, the relative importance of the other
effects is less clearly defined. This uncertainty may stem from high pairwise correlations,
making it challenging to accurately assign the correct effects to their respective components.
This issue will be further investigated in subsection 5.3.3.

The performance measures for the exposures related to the individual effect of PFOA (total)
are shown in Figure 5.3. This effect was selected due to its strong correlation and moderate
influence on the outcome. First, note that the single pollutant linear model is biased due to
high correlation with other components. Additionally, the multiple pollutant linear model
reveals a high relative CI width, indicating potential issues with multicollinearity. In fre-
quentist shrinkage approaches, the effects tend to be biased downwards, which is a common
characteristic of these methods. This results in the smallest overall Cls. Specifically, Ridge
regression performs best in terms of achieving the smallest CI width and, consequently, the
highest power. On the other hand, Bayesian shrinkage methods exhibit less bias. Bayesian
model averaging yields similar results to a multiple linear model, indicating it potentially
suffers as well from multicollinearity. Lastly, the repeated holdout weighted index models
perform well in terms of CI width. The bias across the three variants (single holdout, ran-
dom subset, repeated holdout) was similar, but less variability was observed for repeated
holdout. As noted earlier, these models are only comparable in relation to other compo-
nents in the weighted sum, and thus statistical power is not reported. In conclusion, these
findings are observed in settings with dense effects. Therefore, methods like BMA, and
spike and slab regression may perform better in sparser settings. This will be investigated
in subsection 5.3.3.

5.3.2 Linear synergistic exposures

In the case of a linear additive effect, a multiple pollutant linear model is the most effective
for estimating joint effects. However, we need to consider how realistic this scenario is in
practice. Therefore, we also compare methods under a linear synergistic scenario. It is
important to note that a significant contribution from interaction effects should favour the
performance of random forest and BKMR models, as other methods are misspecified in
this context. Given our belief that a moderately weak interaction effect is realistic, we also
present the results for this scenario. In Figure C.4, we observe that the multiple pollutant
linear model and BMA are clearly biased due to their misspecifications. The random forest
and BKMR now demonstrate comparable levels of bias when compared to other methods.
However, we refrain from offering further interpretations, as the conclusions drawn heavily
depend on the simulation procedures used.
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5.3.3 Evaluating grouping behaviour

In Chapter 3, the grouping effect was discussed in the context of Ridge, LASSO and Elastic
Net regression. Here, we further investigate the ability of various methods to exhibit the
grouping property, defined as the tendency to assign similar coefficients to highly correlated
predictors. In light of the critique by Carrico et al. (2015), who questioned the appropri-
ateness of this property in certain settings, we also examine a scenario in which only one
of the two highly correlated predictors has a true effect on the outcome.

To reflect the real-world structure of the case study data, we preserve the joint distribution
of the two highly correlated exposures, PFNA, PFDA and the additional covariates by
sampling entire exposure profiles (rows) with replacement. In contrast, the additional five
exposures are sampled independently, breaking any correlation among them and added as
uncorrelated nuisance parameters. We simulate outcomes using standardised exposures and
a weighted continuous sum formulation, considering two scenarios:

- Equal effects, where PFNA and PFDA each contribute equally to the outcome

- Unequal effects, where only PFDA is assigned an effect while PFNA acts as a highly
correlated nuisance variable

This design provides a framework to evaluate the capacity of each method to appropriately
attribute individual effect sizes to correlated exposures, depending on whether their true
contributions are equal or unequal. Moreover, this can be seen as a sparse setting in which
there are only two true effects (equal effects) or one true effect (unequal effects). All simu-
lation details can be found in Appendix D.3.2.

Correlated predictors of equal effect

Let us start by comparing the BIP for LASSO and Elastic Net in Figure C.5. Both methods
exhibit high BIPs (close to 1) for the two correlated predictors (PFDA & PFNA). However,
inclusion probability alone does not fully reflect the strength or stability of the estimated
effects. In contrast, when we look at the associated power in Figure C.6, we do see a differ-
ence. Ridge and FElastic Net have similar power and bias for both components, indicating
that they assign similar coefficient values. LASSO shows lower power overall and notably a
larger discrepancy in power between PFDA and PFNA. This difference can be attributed
to LASSO’s tendency to select only one variable from a set of highly correlated predictors.

Based on the relative bias and power in Figure C.6, the Bayesian shrinkage methods seem
to assign similar coefficients to both effects. This also holds for the PIP of the spike and
slab regression in Figure C.5, which is close to 1 for both components. Similarly, multiple
pollutant linear regression assigns equal coefficients to both predictors. This is also true
for WQS regression. However, the true effect is clearly underestimated in this case. This
underestimation arises from the constraint that the weights must be non-negative and sum
to one, which forces the model to assign small weights to the nuisance components, thereby
biasing down the true large effect.
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BMA seems to have instability shown by the large variability in estimates in the top left
plot in Figure C.6. This was also observed by the PIP in Figure C.5. For PFNA, this
is almost one, while for PFDA, there is clearly more variability. In the case of BKMR,
the PIP in Figure C.5 shows large variability. The model may alternate between assigning
moderate PIP to one variable or to its correlated neighbour. This leads to PIPs that fluc-
tuate between simulations. Finally, as expected, the single-pollutant method exhibits bias
because it estimates an indirect effect for both components.

In conclusion, Ridge, Elastic Net and Bayesian shrinkage methods performed well, consis-
tently assigning biased stable effect estimates to both correlated predictors. In contrast,
BMA and BKMR showed poorer performance. Large uncertainty was observed in the esti-
mated effects, suggesting difficulties in reliably attributing effects to both predictors.

Correlated predictors of unequal effect

We can start by comparing the PIP and BIP shown in Figure C.7 for the various variable
selection methods. For PFDA, all the inclusion probabilities are close to 1, which aligns
with the true underlying process. However, the component PFNA, which is highly corre-
lated with PFDA but does not have an effect on the outcome, is particularly interesting.
For PFNA, Elastic Net regression behaves quite differently, showing a median inclusion
probability of around 0.5. This can be explained by the grouping effect mentioned earlier.
In contrast, the other methods tend to have low inclusion probabilities, indicating their ef-
fectiveness in handling this specific situation. When we compare the nuisance parameters,
we find that they also exhibit low probabilities.

Figure C.8 presents all estimates and allows for comparison with methods that do not ex-
plicitly perform variable selection. First, it is important to note that absolute bias was
assessed since PFNA has no effect. Therefore, we should be cautious when comparing this
to the weighted index methods, as they operate on a different scale. As expected, the single
pollutant estimate for PFNA is highly biased due to the strong correlations among the two
components, which resulted in high power for both components. In contrast, the shrinkage
methods demonstrate high power for PFDA, with only ridge regression showing high power
for PFNA. This issue arises from the grouping property, which is problematic in this case.
Model averaging does not encounter this issue. Weighted index models, on the other hand,
appear to underestimate the true effect of PFDA while incorrectly assigning an effect to
PFNA that does not exist. The model may spread the weight across correlated predictors,
leading to an underestimation of truly important variables. This was also observed by Car-
rico et al. (2015).

In conclusion, the methods that performed poorly in the previous setting (equal effects)
show improved performance here. In particular, BMA and BKMR yield more stable results.
The Bayesian shrinkage methods performed well in both settings. Therefore, in the next
chapter, Bayesian horseshoe regression will be applied for individual effect estimation along
with Ridge regression due to its high statistical power. In addition, repeated holdout WQS
regression and BKMR will be included for illustrative purposes. To estimate joint effects,
OLS regression will be used, as it demonstrated good performance for linear additive or weak
interaction effects. A random forest-based G-computation approach will also be explored,
as it performed well in the synergistic simulation study.
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Chapter 6

A case study: PFAS exposure and
immunometabolic health

The “Teenager HBM Study - 3M site” was introduced in Chapter 2. In this chapter, we pri-
marily focused on the characteristics of the exposures to inform our discussion on shrinkage
and multi-pollutant methods. Our current objective is to analyse two immune biomarkers
using some of the models introduced earlier and translate the results into interpretable and
meaningful effects.

The guidelines from the original study conducted on this dataset will be followed. The orig-
inal dataset included 303 adolescents aged 12 to 17 years living within 5 kilometres of the
3M site in Zwijndrecht. Consortium UAntwerpen, VITO, PIH, UHasselt and VUB (2023)
gave an overview of exclusion parameters. Adolescents taking growth hormones (n = 7),
medication for thyroid disease (n = 1), diabetes medication (n = 2), kidney disease medi-
cation (n = 1) or intake of a high dose of cortisone (n = 1) were excluded. This resulted
in a sample size of 289. Among the remaining 289 adolescents, a complete case analysis
was performed due to missing values in PFAS exposures (n = 2), confounding variables
(n = 29) or outcome (n = 2 or 3). Exposure values below the LOQ were not considered
missing as they were imputed (see Section 2.2). This resulted in a final sample size for
analysis of 259 for the CD4+/CD8+ T-cell ratio and 260 for the leukocyte counts.

The study conducted by Consortium UAntwerpen, VITO, PIH, UHasselt and VUB (2023)
provides a comprehensive list of confounding variables to be included in the analysis. These
variables are: gender (binary), age (trichotomous), financial stability with the income (tri-
chotomous), BMI (trichotomous), birth weight (binary) and exposure to tobacco smoke at
home, elsewhere or through own smoking (binary). The exact levels and distribution are
given in Table E.1. The two outcomes, CD44/CD8+ T-cell ratio and leukocyte counts,
introduced in Section 2.2 were log-transformed to ensure approximate normality (see Fig-
ure E.2 for the distribution). Scatter plots of the log-transformed outcome versus each
exposure, stratified by intervals of a second exposure, reveal no substantial deviations from
parallel trends, suggesting limited evidence of potential interaction effects. Additionally, a
LASSO regression model was employed that included all two-way interactions. We calcu-
lated the bootstrap inclusion probabilities (BIP) to determine which two-way interactions
could enhance the model’s fit. All BIP values were below 0.5, indicating that any potential
interaction effects may be weak or obscured by noise (see Table E.2). This suggests that
interactions between exposures are minimal and can be ignored when estimating individual
exposure effects.
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First, we will begin by identifying the components that significantly influence the outcome
using Ridge regression and Bayesian horseshoe regression. The general structure for these
models is defined as follows:

log(a;;) — p .
log(y;) = Bo + Zﬁj < i) log(aj)> +z ot (6.1)

Olog(a; )

where y; is the outcome for adolescent ¢ = 1,...,259 or 260, [y is the intercept, j3; is the
effect for each exposure j =1,...,7, fijog(a;) and O'log( 1) represent respectively the mean and
standard deviation of the log transformed exposure j, z; represents additional covariates
with coefficients ¢ and ¢; ~ N(0, 02) is the error term. The evaluation of model assumptions
and the convergence of MCMC, when applicable, were conducted initially. For a detailed
account of the procedures utilised, we refer to Appendix E. Next, effect sizes were expressed
as the average multiplicative change in the outcome Y per interquartile fold change in
exposure concentration. This means the ratio of the expected outcome (see (E.1)) when
the exposure is at the 75th percentile (Q3) compared to the 25th percentile (Q1). All
exposures and joint effects will be described with their 95% confidence or credible intervals.
Next, exposure effects will be interpreted using PIP from BKMR and by interpreting relative
weights from repeated holdout WQS regression. Following this, to assess the joint effect, we
will employ a multiple pollutant linear model and a random forest G-computation approach.

6.1 Leukocyte count

Figure 6.1 visualises the influence of various exposures on leukocyte counts based on Ridge
and Bayesian horseshoe regression. Their counterparts that do not perform shrinkage, OLS
or a flat prior, have also been added to facilitate interpretation. PFOS, PFDA, PFHXS
(total) and branched PFOS do not have a significant impact on the outcome, as their 95%
confidence or credible intervals include one. In contrast, PFNA, PFBA and PFOA (total)
exhibit borderline significance, showing weak evidence of an effect. An increase in PFBA
from 0.1 pg/L (Q1) to 0.19 ug/L (Q3) is associated with an average leukocyte count de-
crease of 3.0% ([0.0 : 5.7]; 95%CI) for ridge regression and 2.2% ([-0.4 : 7.5]; 95%CI) for
horseshoe regression. Note that the effect sizes are biased downwards and therefore should
be interpreted with caution. These findings, based on a model with an R? of approximately
0.3, suggest cautious interpretation due to modest explanatory power and the potential
presence of unmodelled factors.

Next, two repeated holdout WQS regression models were fit, one with a negative associ-
ation with the outcome and one with a positive. Carrico et al. (2015) advise first testing
the joint effect, as weights cannot be interpreted otherwise. Fitting both a positive and
a negative WQS model to the same data involves conducting two hypothesis tests. To
address this issue, a Bonferroni adjustment was applied, resulting in an insignificant test
outcome. Finally, a BKMR model with variable selection was employed. All PIPs were
found to be (close to) zero. Therefore, as an illustration, we refitted the model without
variable selection, which will increase the risk of overfitting. We added Figure E.4 to visu-
alise the multiplicative effect on the leukocyte count for three exposures, identified by Ridge
regression. These plots provide a view of the direction, but show significant uncertainty
and cannot be used to draw conclusions from.
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Leukocyte count

Joint effect
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Meth d" Ridge regression Multiple pollutant linear model (OLS)®- Bayesian horseshoe regression
efhod: Bayesian regression (flat prior) ® Random forest g-computation
Figure 6.1: Average interquartile fold change effect for each PFAS exposure on the number
of leukocytes. Confidence intervals were calculated as percentiles of 2000 bootstrap samples

and equal-tailed credible intervals were constructed based on the posterior distributions.

Finally, G-computation with random forest was used to estimate the population-averaged
multiplicative effect of a shift in all exposures simultaneously from low to high concentra-
tions. This was quantified as the multiplicative effect of whether an adolescent had PFAS
exposure levels at the 25th percentile against the 75th percentile. This corresponds to an
increase in PFOS (branched) from 2.6 pg/L to 6.8 pug/L, PFHXS (total) 0.38 ug/L to 0.88
ug/L, PFOA (total) 0.92 ug/L to 1.5 ug/L, PFBA 0.095 ug/L to 0.19 pg/L, PFDA 0.096
ug/L to 0.20 pg/L, PFNA 0.19 ug/L to 0.33 ug/L and PFOS 1.4 pg/L to 5.4 ug/L.

Increasing all exposures from Q1 to Q3 resulted in an average population-specific decrease
in leukocyte count of 8.3% with corresponding 95%CI [1.8% : 14.2%)] based on percentiles
from 2000 bootstrap samples. G-computation has the objective of obtaining causal effects
instead of associations. Therefore, in Appendix B we checked the validity of the different
assumptions. It is clear that some of these assumptions cannot be fully verified. Fur-
thermore, the cross-sectional design raises concerns about temporal ordering, complicating
causal attribution. As a result, we interpret the findings as associations, recognising that
unverified assumptions and study design limitations may prevent definitive causal inference.

The joint effect was also calculated using a multiple pollutant additive linear model (OLS).
An increase in all exposures from Q1 to Q3 resulted in an average decrease of 4.5% in
leukocyte count with 95%CI [-0.7% : 9.8%]| based on percentiles from 2 000 bootstrap
samples. It is important to note that G-computation estimates the effect conditional on
the study population’s covariate distribution. In contrast, the joint effect of a multiple
pollutant additive linear model does not depend on the covariate distribution in the sense
that it describes the effect of an exposure at any fixed level of a covariate. Therefore, we
should be careful with comparing these two effect estimates.
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6.2 CD4+/CD8+ T-cell ratio

Figure 6.2 visualises the influence of various exposures on CD4-+/CD8+ ratio based on
Ridge and Bayesian horseshoe regression. Their counterparts that do not perform shrinkage,
OLS or a flat prior, have also been added to facilitate interpretation. The analysis was done
analogously to the leukocyte counts. None of the exposures have a significant impact on
the outcome, as their 95% confidence or credible intervals include one. Next, two repeated
holdout WQS regression models were fit, one with a negative association with the outcome
and one with a positive. Both effects were found to be insignificant. Therefore, the weights
are not interpreted. Finally, a BKMR model with variable selection was employed to balance
model flexibility and prevent overfitting. All PIPs were below 0.1, suggesting that none of
the exposures are strong predictors.

CD4+/CD8+ T-cell ratio

Joint effect

PFOS

PFNA

PFDA

PFBA

PFOA (total)

PFHXS (total)

PFOS (branched)

1.1 12

0.9 1.0
Average interquartile fold change with 95% confidence or credible interval

Method @ Ridge regression Multiple pollutant linear model (OLS)®- Bayesian horseshoe regression
ethod:
Bayesian regression (flat prior) @ Random forest g-computation

Figure 6.2: Awerage interquartile fold change effect for each PFAS exposure on the
CD4+/CD8+ T-cell ratio. Confidence intervals were calculated as percentiles of 2000 boot-
strap samples and equal-tailed credible intervals were constructed based on the posterior
distributions.

A random forest-based G-computation approach was used, similar to the analysis conducted
on leukocytes. When all PFAS exposure levels were simultaneously increased from their
25th to 75th percentiles, there was an average population-specific decrease of 6.4% in the
CD4+/CD8+ T-cell ratio. However, this estimate came with a high degree of uncertainty,
as indicated by a 95% confidence interval ranging from -2.9% to 14.6%, based on 2 000
bootstrap samples. In contrast, a traditional additive linear multiple pollutant regression
model showed an average increase of 3.7%, with a 95% bootstrap-confidence interval of
-5.7% to 13.2%. Overall, both approaches yielded imprecise and directionally inconsistent
estimates, suggesting no clear evidence of an association.
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Chapter 7

Discussion

This master’s thesis began by addressing the problem of multicollinearity, a common issue
in environmental health research. This problem was not observed in the past as analy-
ses typically relied on single-pollutant models. However, as the field is shifting toward
multi-pollutant approaches, the issue of multicollinearity has become a key challenge. We
discussed this specifically in the context of human biomonitoring studies, where multiple
chemicals, such as PFAS, tend to be moderately to strongly correlated. In this context, we
want to distinguish between two types of questions. The first type involves assessing the
effect of a single chemical on a particular health outcome while controlling for confounding
variables and other pollutants. The second type focuses on estimating the overall impact
of all pollutants on a specific health outcome. We started by concentrating on statistical
models that isolate individual effects. Traditionally, penalised regression techniques have
been employed in these contexts, such as Ridge, LASSO and Elastic Net regression.

LASSO is known to perform well in a sparse setting or if the number of predictors is large
relative to the sample size (n =~ p or n < p) (Tibshirani, 1996). This is not the case in
human biomonitoring studies as they typically have 5, ...,25 exposures and a sample size
of about 250, ...,1000. Moreover, LASSO does not have the grouping property (Zou and
Hastie, 2005). In contrast, Ridge regression does have the grouping property and is designed
to specifically address the problem of multicollinearity (Hoerl and Kennard, 1970). How-
ever, this comes at the cost of bias. Due to the strong correlation structure, we observed
that the bias was relatively large in our simulation studies. Therefore, the interpretation of
the coefficients may not be straightforward. In our case study, we addressed this issue by
examining the coefficient paths across a range of penalty values. This allowed us to select
models with only moderate shrinkage. In this way, we accepted a small amount of bias in
exchange for greater stability and better interpretation.

The use of bootstrap inclusion probabilities (BIPs) in Elastic Net models can provide an
alternative measure of variable importance to classical coefficients. In a simulation study
involving two highly correlated predictors with equal effects on the outcome, both variables
consistently received BIPs close to 1. In contrast, when only one of the two predictors had
a true effect, the variable without an effect often received different BIPs across simulations.
This was not the case for LASSO regression, as it does not have the grouping property.
This illustrates the fundamental problem of two highly correlated predictors. From a sta-
tistical perspective, there is no model that can distinguish between such predictors, as they
have nearly identical information. In the context of human biomonitoring studies, it seems
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more plausible that both exposures have the same effects on the outcome, as many of these
chemicals share the same molecular properties. Therefore, models that exhibit the grouping
property, such as Ridge regression, are more appropriate in our context.

The second type of models discussed were Bayesian shrinkage methods, which use a prior
distribution to allow estimates to shrink toward zero. One of the advantages over frequen-
tist shrinkage techniques is the posterior distribution for each parameter. This allows us
to reflect on the uncertainty in the form of credible intervals. This is less straightforward
when using LASSO or Elastic Net, where bootstrap confidence intervals may fail. Three
different shrinkage priors were discussed: the Laplace (LASSO) prior, the spike & slab prior
and the horseshoe prior. In comparison with frequentist shrinkage methods, we observed
less bias, which facilitates interpretation but at the cost of wider credible intervals. The
specific prior choice was less important in our simulation studies. We observed only minor
differences between them in terms of power, bias, CI coverage and width.

From a theoretical perspective, each prior has its advantage. In our context, the Horseshoe
prior seems most appropriate. It applies adaptive shrinkage, allowing strong signals to re-
main unshrunk while heavily shrinking noise. Beyond the specific choice of the prior, the
main advantage lies in the flexibility of the Bayesian framework. It is particularly valuable
for future research, as it allows for extensions. These include modifying the outcome dis-
tribution, incorporating random or spatial effects, or using spline-based models.

Thirdly, a highly popular method known as weighted quantile sum (WQS) regression has
been introduced. This method has gained significant popularity over the past five years
(Yu et al., 2022). Our focus was mainly on repeated holdout validation WQS regression,
which has demonstrated more stability from a theoretical perspective, but also based on
the simulation study. One of the main questions that often remains unanswered is the im-
pact of using quantiles. The argument previously given in single partition WQS regression
is that quantiles stabilise the influence of outliers or heavy-tailed skewed exposure distri-
butions. Our simulation study looked at three potential exposure distributions. In terms
of estimated weights, we observed little difference between quartiles, deciles or continuous
exposures across the three distributions. However, with respect to power for detecting an
overall effect, there was a small improvement when using continuous exposures. Thus, the
repeated holdout validation procedure in WQS regression appears to be relatively robust to
outliers and heavy-tailed distributions. Therefore, we argue in favour of using standardised
log-transformed continuous exposures, as this simplifies comparison with other methods
and yields a small gain in statistical power.

A second important remark concerns the constraint imposed on the weights in WQS re-
gression. While the primary goal of WQS is to identify key pollutants that contribute
most to the overall mixture effect, the estimated weights can only be interpreted relative
to one another. No formal statistical inference is available for individual weights. Carrico
et al. (2015) recommended applying a threshold to determine whether a weight is consid-
ered influential. However, this cutoff point or threshold is arbitrarily chosen and lacks a
strong theoretical foundation. Moreover, the simulation study revealed an underestimation
of large effects and an overestimation of small effects. This discrepancy can be attributed
to the constraints imposed on the weights.
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Fourthly, the idea of Bayesian model averaging with Bayesian adaptive sampling was intro-
duced. The Bayesian adaptive sampling algorithm is a powerful tool when the model space
is rather large. In our context, the model space was computationally tractable and thus
there is no need for such an algorithm. Moreover, in our simulation study, Bayesian model
averaging based on Bayesian linear models performed poorly in terms of credible interval
width. We also observed substantial uncertainty in PIPs, particularly in the scenario with
two highly correlated predictors of equal effect. This increased uncertainty likely comes
from the model uncertainty in BMA, which averages over models that include or exclude
each predictor. Given our aim to retain all predictors in the model and the limited number
of exposures considered, BMA as presented by Clyde et al. (2011) is not well-suited for this
setting.

The final model used for estimating individual effects was Bayesian kernel machine regres-
sion (BKMR). This method has gained popularity due to its ability to account for non-
linearities and interactions. However, our relatively small sample size limited our ability
to fully benefit from these advantages, increasing the risk of overfitting. As a consequence,
BKMR showed large uncertainty in PIPs. Although its high flexibility is a strength, it also
reduces interpretability. In our case study, we tried to analyse exposure effects using graph-
ical tools. While these plots offered a general sense of direction, the substantial uncertainty
around the estimates hindered our ability to draw conclusions.

The second question concerns estimating the overall effect of a mixture. This means the
effect on the outcome if all exposures increase simultaneously. We began by demonstrating
that the joint effect is less affected by multicollinearity than the individual effect estimates.
This occurs due to variance cancellation, supported both by a simple theoretical illustration
and by simulation results. In our simulations, the multiple pollutant linear model (OLS)
was shown to be unbiased and had narrower confidence intervals than many alternative
methods. Based on this, penalised methods appear unnecessary in this context, as they
often produce similar or even wider intervals with large bias.

The method of greater interest was the G-computation approach, a technique from causal
inference used to estimate causal effects under hypothetical interventions. Its main ad-
vantage lies in the ability to use flexible modelling techniques that naturally account for
non-linearities and interactions, thus capturing potential synergistic effects. However, this
flexibility comes at the cost of possible overfitting. In our simulation study, random forest
G-computation showed substantial bias. Random forest produced narrow confidence inter-
vals, while BKMR yielded wide intervals, reflecting considerable uncertainty. Although the
goal of G-computation is to estimate causal effects, this was not achieved in our case study.
Several causal assumptions could not be fully verified. Therefore, we refrain from making
causal claims and instead interpret the results as associational estimates.

Finally, a case study was conducted to reveal associations between PFAS exposures and two
immune biomarkers. For leukocyte counts, both Ridge and Horseshoe regression identified
PFBA as borderline significant. Based on Ridge regression, an increase in PFBA from 0.1
ug/L (Q1) to 0.19 pug/L (Q3) is associated with an average leukocyte count decrease of 3.0%
([0.0 : 5.7]; 95%CI). The joint effect, estimated using G-computation, was found to be sig-
nificant. Increasing all exposures from Q1 to Q3 resulted in an average population-specific
decrease in leukocyte count of 8.3% with corresponding 95%CI [1.8% : 14.2%]. However,
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as the individual exposure effects varied in positive and negative directions, these may par-
tially cancel each other out. Therefore, the joint effect should be interpreted with caution
but highlights an important direction for future research. No associations were found for
the CD4+/CD8+ T-cell ratio, possibly due to the limited sample size and the substantial
unexplained variability.

In conclusion, Table 7.1 provides a comprehensive overview of all the methods discussed
in this master’s thesis. It outlines the type of method and indicates which questions each
method is particularly suited for, distinguishing between individual and joint effects. The
advantages and disadvantages presented are drawn from theoretical arguments outlined in
the literature review in Chapter 3 and Chapter 4, as well as from the results of simulation
studies discussed in Chapter 5.

Limitations

Let us begin by discussing the limitations of the simulation study. First, the simulation
design was closely aligned with the case study in terms of sample size and the number of ex-
posures. While this alignment increased the relevance of the findings, it also restricted the
generalisability of the results. In larger sample size settings, more flexible methods, such as
Bayesian kernel machine regression (BKMR), may perform better and provide more stable
estimates. Additionally, some human biomonitoring studies involve a greater number of
exposures, which could affect the relative performance of the methods, particularly those
designed for high-dimensional settings.

We limited the data-generating mechanism to a linear additive effect with the assumption
of directional homogeneity. While this choice benefits less flexible methods and allows for
straightforward interpretation, it does not capture the complexity often seen in real-world
exposure scenarios. Finally, each simulation scenario was repeated only a limited number
of times due to the high computational cost of Bayesian methods and bootstrapping. We
were also unable to conduct full convergence diagnostics for all Bayesian methods in every
run. Although we manually inspected the convergence in a subset of runs, we cannot ensure
that all Bayesian models converged adequately across all iterations.

Several methodological limitations of the case study should be acknowledged. First, expo-
sure values below the limit of quantification were imputed without considering the correla-
tion structure between exposures. Second, single imputation was used rather than multiple
imputation, limiting our ability to reflect uncertainty in the imputed values. We also limited
ourselves to exposures with sufficient data (60% > LOQ) and ignored all other measured
PFAS exposures. Third, missing data in covariates were handled using a complete case
analysis, which assumes data are missing completely at random. Fourth, some adolescents
lived in the same household (n = 41), introducing potential clustering effects that were
not accounted for in the analysis. Finally, the cross-sectional design of the study restricts
causal interpretation, as exposures and outcomes were measured simultaneously.



Table 7.1: Ouverview of statistical methods for mixture analysis

Type of method

Method

Pros

Cons

Interpretation

Ordinary least
squares

Single pollutant linear model

Multi pollutant linear model

Easy to interpret
effect estimates if
implemented linear
additively

Highly biased due to omission
of correlated causal pollutants

Large uncertainty due to
highly correlated pollutants

Unadjusted associations
for other pollutants

Associations conditional
on other pollutants

Shrinkage methods

Ridge regression

Spike and slab prior

Handles multicollinearity well
and has the grouping property

Handles sparse settings
and performs variable selection

Variable selection
and grouping property

Uncertainty quantification
via posterior

Uncertainty quantification
via posterior, performs
adaptive shrinkage

Uncertainty quantification
via posterior, works
well in sparse settings

Careful penalty tuning
to avoid over-shrinkage

Does not have grouping
property and no uncertainty

Computationally slower and
risk of over/under-shrinkage

Computationally slower and
sensitive to hyperpriors

Biased downwards associations
conditional on other pollutants

Biased downwards associations
conditional on other pollutants,
BIP as a measure
of variable importance

Biased downwards associations
conditional on other pollutants

Biased downwards associations
conditional on other pollutants, PIP
as measure of variable importance

G-computation

Linear model

Random forest

Performs well in small
sample sizes

Captures complex interactions
and non-linearities

Requires manual inclusion of
interactions or non-linearities

Risk of overfitting
in smaller sample sizes

Population-specific average
causal effect under two
exposure scenarios

Model averaging

Bayesian model averaging with
Bayesian adaptive sampling

Computationally efficient for
many pollutants (> 25)

Large uncertainty due to
highly correlated predictors

Model-averaged associations

across subsets of pollutants,

PIP expresses how likely a
pollutant is to be included in a model

Weighted index
models

Bootstrap WQS regression

Repeated holdout WQS regression

Computationally efficient

Computationally efficient
for large number of predictors

Provides weights uncertainty
and performs well in
smaller sample sizes

No theoretical framework for
weight inference, assumes
directional homogeneity

Computationally demanding, assumes
directional homogeneity, no
theoretical framework for weight inference

Joint exposure effect
as a weighted sum
in a particular direction,
with weights indicating
each chemical’s relative
importance

Kernel regression

Bayesian kernel machine regression

Captures complex interactions
and non-linearities

Computationally demanding
and large uncertainty in
small sample sizes

PIPs indicate variable
importance, effects visualised
trough plots
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Future research

The previously discussed limitations offer several directions for future research. First, the
current simulation study could be extended to more exposures (p ~ 25), a larger sample
size (n =~ 1000) and more complex exposure-response structures. In order to achieve this,
we will need to utilise high-performance computing resources. The case study could be im-
proved by adopting a more rigorous approach to account for censoring in the exposure data.
A more robust strategy would involve multiple imputation, incorporating both the correla-
tion structure among exposures and the relationship with covariates. Alternatively, a fully
Bayesian approach could be implemented, treating censored exposure values as unknown
parameters and assigning them informative priors to appropriately reflect the uncertainty
below the LOQ. A sensitivity analysis evaluating extreme scenarios where censored values
are imputed as either zero or at the LOQ may help define a plausible range for effect esti-
mates. The same issue applies to missingness in the covariates, where imputation methods
are more appropriate than relying on complete case analysis. As within-household correla-
tion was ignored, we could easily account for it in a Bayesian context by adding a random
effect. However, in the case of the other methodologies, it is less clear how to extend the
methods.

The previously discussed extensions are most naturally implemented within a Bayesian
framework and relate closely to the case study. Looking ahead, key priorities include
adapting models to accommodate other outcome distributions and incorporating binary
exposures. This is particularly relevant when a substantial proportion of exposure mea-
surements fall below the LOQ. Furthermore, given the substantial amount of unexplained
variability observed, accounting for spatial clustering or intra-household correlation could
enhance model fit. A spatial component may capture the influence of unmeasured envi-
ronmental factors, such as industrial pollution, water quality or air pollution. However,
implementing such spatial models typically requires a sufficient sample size to support re-
liable inference. Finally, alternative methods such as Bayesian additive regression trees
(BART), regularised horseshoe regression or partial least squares (PLS) could be explored
in this context (Chipman et al., 2010; Wold et al., 1984; Piironen and Vehtari, 2017).

This thesis presented a case study concentrating on immune-related biomarkers as outcome.
However, the ultimate aim is to perform a full mediation analysis. At VITO Health and
PARC, the focus is to explore how immune and inflammation parameters mediate the rela-
tionship between PFAS and various health outcomes. Achieving this objective necessitates
the development of methodologies capable of accommodating multiple pollutants and mul-
tiple mediators in order to investigate these complex causal pathways. This master’s thesis
marks the initial phase of this research, as it explores statistical methods for characterising
the relationship between multiple PFAS exposures and immune biomarkers.
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Chapter 8

Conclusion

This master’s thesis explored statistical methods for estimating both individual and joint
effects of correlated environmental exposures, with a particular focus on PFAS in human
biomonitoring studies. We addressed two main questions: (1) how to identify individual
pollutants in a mixture and (2) how to estimate the overall effect of a pollutant mixture on
a health outcome.

For individual effect estimation, we found that multicollinearity poses the main challenge.
Among frequentist shrinkage methods, Ridge regression was best suited for this context due
to its grouping property and ability to handle multicollinearity. Bayesian shrinkage methods
offered improved interpretability via posterior distributions and reduced bias, though at the
cost of wider credible intervals. Among the priors considered, the horseshoe prior was most
appropriate in our setting due to its adaptive shrinkage properties. We also assessed spe-
cific methods designed for analysing chemical mixtures. The two most popular methods are
weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR).
WQS was originally designed for quantile-transformed exposures. In contrast, our results
suggest that using continuous exposures improves statistical power without compromising
robustness. However, WQS is not optimal for individual effect estimation as it lacks formal
inferential support. BKMR did not perform well in our setting, potentially due to the small
sample size.

Regarding joint effect estimation, we demonstrated that multicollinearity has a reduced im-
pact on joint standard errors due to variance cancellation. G-computation in combination
with a flexible method offers the potential to capture synergistic effects within mixtures.
Our simulation results indicated that G-computation with flexible learners like random for-
est may suffer from overfitting, especially in small samples. Additionally, in the case study,
the necessary assumptions for causal interpretation of the G-computation results were not
met.

In summary, this thesis offers an overview of modern methods for environmental mixture
analysis, highlighting the trade-offs between interpretability, flexibility and statistical per-
formance.
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Appendix A

Software details & Al tools

The software used for data analysis, simulation results and data visualisation was R version
4.4.2 for Windows (R Core Team, 2024). Table A.1 provides an overview of the different
packages utilised in this thesis apart from the base functions in R. All R code used in this
thesis is available on GitHub at this link. I acknowledge using Grammarly (Grammarly
Inc., 2025) for grammar and rephrasing suggestions, as well as ChatGPT (OpenAlI, 2023) for
assistance in rephrasing and troubleshooting coding. All outputs were critically evaluated,
reviewed and edited by me.

Table A.1: An overview of the various packages utilised in this thesis.

Package (version) Citation
Data manipulation readx] (1.4.3) Wickham and Bryan (2023)
dplyr (1.1.4) Wickham et al. (2023)
tidyverse (2.0.0) Wickham et al. (2019)
reshape2 (1.4.4) Wickham (2007)
caret (7.0-1) Kuhn and Max (2008)
Data visualisation ggplot2 (3.5.1) Wickham (2016)
hrbrthemes (0.8.7) Rudis (2024)
viridis (0.6.5) Garnier et al. (2024)
patchwork (1.30) Pedersen (2025)
ggpubr (0.6.0) Kassambara (2025)
Simulation study
Parallel computing foreach (1.5.2) Microsoft and Weston (2022b)
doParallel (1.0.17) Microsoft and Weston (2022a)
Data-generating mechanism  MASS (7.3-64) Venables and Ripley (2002)
mvtnorm (1.3-3) Genz and Bretz (2009)
Multi-pollutant methods gWQS (3.0.5) Renzetti et al. (2023)
BAS (1.7.5) Clyde (2024)
nimble (1.3.0) de Valpine et al. (2017)
coda (0.19-4.1) Plummer et al. (2006)
MCMCyvis (0.16.3) Youngflesh (2018)
glmnet (4.1-8) Friedman et al. (2010); Tay et al. (2023)
bkmr (0.2.2) Bobb et al. (2018)

randomForest (4.7-1.2) Breiman et al. (2022)



https://github.com/Jonas-student/pfas-multipollutant-masterthesis.git
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Appendix B

Causal assumptions

B.1 Counterfactuals and causal inference

Let us start by introducing some essential concepts of causal inference based on the text-
book of Hernan and Robins (2025). Causal inference represents a special case of the more
general process of scientific reasoning, one in which we try to separate causation from as-
sociation. To make our understanding of causality suitable for statistical analysis, we will
first introduce some specific notation.

Consider the following setting where we have, for simplicity, a binary single exposure A
(1: exposed, 0: unexposed) and a continuous outcome variable Y. A key question that a
researcher might ask is: What is the causal effect of exposure A on the outcome Y7 To
answer this question using causal inference, it is necessary to reconstruct a hypothetical
framework in which each individual could have been either exposed (1) or not exposed (0).
Let Y*=! be the outcome that would have been observed if an individual was exposed and
Y *=0 if the individual was not exposed. These variables are known as potential outcomes
or counterfactual outcomes. We can now provide a formal definition of a causal effect for
an individual: the exposure A has a causal effect on an individual’s outcome Y if

yo=t £ ye=0 (B.1)

for that individual. This is known as the sharp causal null hypothesis (Hernan and Robins,
2025).

An individual cannot be both exposed and unexposed simultaneously. This issue is often
referred to as the fundamental problem of causal inference: we can never observe both Y¢=1
and Y*=0 for the same individual. Therefore, it is too ambitious to draw any conclusions
about causal effects at the individual level. A more realistic goal is to concentrate on the
population-level or average causal effect. This hypothesis is defined as

E[Y*=!] £ B[y*?] . (B.2)

Note that the average causal effect is always equal to the average of the individual causal
effects, as it holds that

E[Y*=1] - E[Y* = E[y*=! — y*=0] | (B.3)

For clarity, we will henceforth refer to “average causal effects” simply as “causal effects”.
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However, the task remains to select quantities from the observed data that serve as reason-
able estimates for the hypothetical quantities E[Y?=!] and E[Y*=7].

Let us first simplify this question to a randomised experiment, later on to an observational
study. In this case, it can be shown by design (randomised experiment) that the following
statement holds.

o1 — yo-0] Byl By (3.4)
Wy =14 = 1] - E[y*=0|4 = 0] (B.5)
ORlyi4A=1]-E[Y]|A =0 (B.6)

Step (a), known as mean exchangeability or Y* Il A, states that the exposed group and
unexposed group would have experienced the same average counterfactual outcome if they
were (not) exposed (either ¢ = 0 or @ = 1). Randomisation is expected to produce ez-
changeability. This means that the exposure allocation is not associated with the mean of
the counterfactual outcomes. Step (b), known as consistency, states that an individual who
was (not) exposed has observed outcome Y equal to his counterfactual outcome Y = Yo=1
(Y = YY), In conclusion, this means that under these assumptions, the causal effect can
be estimated as the difference of the conditional means. (Hernan and Robins, 2025; Thas,
2023)

However, as mentioned before, we are dealing with an observational study and thus the
exposure is not randomised among the individuals. The ideal randomised scenario above
does not hold, so what do we do? When randomisation is not possible, we need to mimic the
conditions of a randomised trial. We call these identifiability assumptions in observational
studies:

e Conditional exchangeability or Y* Il A | Z: This means that, within levels of mea-
sured covariates Z, the exposed and unexposed are exchangeable, just as they would
be in a randomised trial. The key question is whether Z is the only predictor that is
distributed unevenly between the exposed and unexposed groups. Unfortunately, that
question must remain unanswered, so we must hope that our expert knowledge guides
us correctly to collect enough data so that the assumption is at least approximately
true.

e Positivity or 0 < P(A = a | Z) < 1: Conditional on covariates Z, there is a proba-
bility greater than zero of being assigned to each of the exposure levels. We did not
emphasise positivity in experimental studies as it is often assumed in those studies.

e (Consistency or Y = Y: The definition remains the same as what was previously
outlined for experimental studies. To assess consistency, we need two things: a clear
definition of the counterfactual Y* and a clear link between counterfactuals and ob-
served outcomes. We must ensure that individuals classified as exposed actually were
exposed and likewise for the unexposed. A more detailed discussion can be found in
Hernan and Robins (2025).

These assumptions are used to produce causal effects for observational studies using G-
computation.
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B.2 Assessing assumptions

The findings in Chapter 6 using G-computation should be interpreted cautiously if inter-
preted in a causal way. This is due to several key assumptions inherent to this approach.
This discussion is inspired by Pelgrims et al. (2024). First, temporal ordering assumes
that the PFAS exposure precedes the immune-related outcome and that confounders pre-
cede both. In cross-sectional studies, exposure, outcomes and additional covariates are
measured simultaneously, which complicates the determination of whether PFAS exposure
occurred before immune dysregulation or if immune conditions influenced PFAS levels (re-
verse causality).

Secondly, the assumption of conditional exchangeability is crucial. This was addressed by
adjusting for confounders identified by experts, including gender, age, BMI, financial sta-
bility, birth weight and smoking status. However, there may still be several unmeasured
confounding factors, such as genetic influences or dietary habits, which could significantly
impact the association. Thirdly, the no-interference assumption states that the outcome
of an individual is not affected by the exposures or outcomes of other individuals. This
is plausible as immune dysregulation does not spread between individuals. For some ado-
lescents living in the same household, shared PFAS exposure sources (eg, contaminated
water) may correlate exposures among family members and (slightly) violate this assump-
tion. The fourth assumption, positivity, states that for all combinations of covariates, there
must be a non-zero probability of observing PFAS concentrations at both Q1 and Q3. This
assumption is generally satisfied, although positivity may not hold in subgroups (e.g., birth
weight and BMI).

The fifth assumption is the principle of consistency. In a medical context involving an
intervention, adjusting treatment status is relatively straightforward. However, maintain-
ing consistency can pose challenges when the exposure is attributable to an environmental
pollutant (Pelgrims et al., 2024). Efforts to increase or decrease exposure to PFAS are less
practical and may raise ethical concerns. Therefore, the hypothetical scenario is unlikely
to occur as a real-world intervention. The sixth assumption is that there is no model mis-
specification. Random forest addresses misspecification by effectively capturing non-linear
relationships and interactions without relying on specific functional forms. Lastly, we have
the assumption of measurement error. Measurement error in PFAS levels is possible, even
with precise lab methods like UPLC-MS/MS (ultra-performance liquid chromatography
coupled to tandem mass spectrometry) (Consortium UAntwerpen, VITO, PIH, UHasselt
and VUB, 2023). However, self-reported covariates (e.g., smoking) are potentially more
subject to measurement error.
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Appendix C

Additional simulation results and
insights

C.1 Graphical visualisation of the individual and joint expo-
sure effect
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Figure C.1: Scatterplot of two highly correlated exposures A and B with arrows illustrating a
1-unit increase in Exposure A (blue), Exposure B (green) and their joint increase (orange).

C.2 Theoretical approach for the joint effect standard error

In the simulation study presented in Section 5.2, it was found that the joint effect appears
unaffected by high correlations among the predictors. This observation can also be sup-
ported from a theoretical perspective. To simplify the discussion, let us focus on a scenario
with two highly correlated predictors

Yy = Po+ Bix1 + foxa + € (C.1)
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with z; and xy centered, E[e] = 0, Elee'] = 02112 and Cor(x;,z2) = p € (0,1). We aim
to show that the variance of the joint effect 51 + s is less than the sum of the individual
effects using OLS.

Var(By + B2) < Var(f1) + Var() (C.2)
Therefore, we need to prove that the covariance between the two parameters is negative.
It is known from (3.2) that the covariance can be written as

Cov(h, Bo) = *{(X'X) '} (C3)

12

with the subscript referring to the off-diagonal element and X = (z; @2) the design matrix.
The inverse of the Gramm matrix X’X has the following from

—1

/ / / /

_ xixr, TjT 1 Tox —xiT

(X,X) 1 — ( /1 1 ,1 2) — - ; ; 5 <_ 2/ 2 /1 2) (04)
xhr, xhx, iz xhr, — (x)x,) rhr, i,

Given the assumption that the vectors &1 and xs are centered, the Pearson correlation can
be written as

Cov(x1, x2) Lz, iz,
p= = =
v/ Var(z1)/Var(a2) \/ﬁw’lwl\/ﬁazéa@ VT /ThE,
By integrating (C.3) with (C.4) and implementing the substitution of (C.5), one can derive
the following result:

Covibr,fo) = —— L Z1T) /@i, V2w ©6)

wllxlw,QwQ_(wllwz)Q T\ T THT — (1171932)

(C.5)

o' (c.7)
g
)
= 7P , (C.8)
VLTV Ty — P Ty
)
op (C.9)

VaixJxhe, (1 — p?)

This now means that for p € (0,1) the covariance is negative which implies that (C.2) is
true. In conclusion, multicollinearity increases the standard errors of individual parameters,
but decreases the standard errors of joint effects. Nonetheless, the inequality presented in
(C.2) raises questions regarding its practical implications. First, a negative covariance does
help reduce the variance of the joint effect, but it does not guarantee that the sum has low
variance. While it helps reduce the variance, the individual variances and the strength of
correlation will still play a crucial role.

C.3 Evaluating methods on realistic exposure mixtures

This section includes additional graphs referred to in the simulation discussion in Sec-
tion 5.3.

C.3.1 Linear additive exposures
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Figure C.2: Linear additive exposure effects on the outcome were simulated to compare methods for estimating joint
effects. Performance was evaluated based on absolute bias, confidence/credible interval (CI) width, CI coverage and
power. Simulations used n = 300 observations and were repeated Ng;m = 100 times; see Appendix D.3.1 for additional
details. “One” is the simple average of weights and “abst” uses the absolute t-statistic as a weight for averaging.
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Figure C.3: Posterior inclusion and bootstrap inclusion probabilities are shown for all variable selection methods.
Brackets (%) indicate the contribution of each individual effect to the total effect, which was considered linear
additive. Simulations were based on a sample size of n = 300 and repeated ng;, = 100 times; more details can
be found in Appendiz D.5.1.

C.3.2 Synergistic effects
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Figure C.4: Synergistic and linear exposure effects on the outcome were simulated to compare methods for estimating joint effects.
Performance was evaluated based on absolute bias, confidence/credible interval (CI) width, CI coverage and power. Simulations
used n = 300 observations and were repeated Ny, = 100 times; see Appendix D.3.1 for additional details. “One” is the simple
average of weights and “abst” uses the absolute t-statistic as a weight for averaging.



C.4 Evaluating grouping behaviour

This section includes additional graphs referred to in the simulation discussion in subsection 5.3.3.

C.4.1 Correlated predictors of equal effect

Inclusion probabilities for two correlated equal effects and 5 additional nuisance parameters
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Figure C.5: Posterior inclusion and bootstrap inclusion probabilities are shown for all variable selection methods.
PFDA and PFNA were highly correlated, with both having the same effect on the outcome. All five additional
parameters were not correlated and had no effect on the outcome; therefore, they were considered nuisances.
Simulations were based on a sample size of n = 300 and repeated ng;m = 100 times; more details can be found

in Appendixz D.3.2.



Simulation results for correlated predictors PFDA & PFNA (50% & 50% of total joint effect) — Individual effect estimation
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Figure C.6: Comparison of different methods based on absolute bias, CI width, CI coverage and power for two individual
effects that were highly correlated, with both correlated predictors having a true effect on the outcome. Simulations are
based on a sample size of n = 300 repeated ng;m = 100 times; more details can be found in Appendiz D.3.2. “One” is the
simple average of weights and “abst” uses the absolute t-statistic as a weight for averaging.
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Inclusion probabilities for two correlated unequal effects and 5 additional nuisance parameters
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Figure C.7: Posterior inclusion and bootstrap inclusion probabilities are shown for all variable selection methods.
PFDA and PFNA were highly correlated, with only PFDA having a true effect on the outcome. All five additional
parameters were not correlated and had no effect on the outcome; therefore, they were considered nuisances.
Simulations were based on a sample size of n = 300 and repeated ng;, = 100 times; more details can be found in
Appendiz D.3.2.
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Simulation results for correlated predictors PFDA & PFNA (100% & 0% of total joint effect) — Individual effect estimation
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Appendix D

Details on simulation procedure

D.1 Continuous vs quantised exposures

We will now provide a detailed description of the simulation study presented in Section 5.1.

Aims: This simulation study aims to evaluate the effects of continuous versus quantised
exposures (Q = 4,10) on the stability of weight estimation and statistical power across
various exposure distributions. The analysis employs repeated holdout WQS regression to
achieve this objective.

Data-generating mechanisms: We consider three data-generating mechanisms. In all
cases, data are simulated on n = 300 individuals, representing a typical sample size in
a human biomonitoring study as described in Chapter 2. Consider the following three
distributions for 7 exposures, notated in the exposure matrix A:

(a)

It is well established that the distribution of PFAS is typically right-skewed, char-
acterised by long, high tails. While this right-skewness is often addressed through
various transformation methods, the presence of high tails within the exposure may
still introduce instability into the analysis (see Figure E.1). To account for this, we
will sample the exposure from a multivariate t-distribution with 2 degrees of freedom:

A~ ty(p, X) (D.1)

The mean p of the distribution is zero, representing centred exposures. The scale
matrix X is a unit matrix where the off-diagonal elements are set to 0 or 0.8 to
simulate the extreme case of no correlation or high correlation.

In addition to high tails, human biomonitoring studies often include exposure-driven
outliers. To begin, we will simulate the exposure A’ using a multivariate normal
distribution

A’ ~N(p,X) (D.2)

using previously described p, X. Next, 5 outliers will be added to A’ at random. This
is done by replacing the original exposure matrix A’ by A. For each selected index
(7, k), the values in the exposure matrix will be increased multiplicatively by inflating
the previous value with a factor that is uniformly distributed between 1.5 and 2.5.
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This can mathematically be described as

A’ (1.5 k) if jeZ

A= { et (15 + e with e; 5 ~ U0, 1] (D.3)

’ A/ I
Jk

with Z a set of 5 indices randomly sampled (without replacement) and k = 1,...,7.

The matrix A will be used as the exposure matrix. Figure D.1 visualises the outliers

in a typical exposure distribution for this scenario.

Histogram with Z-score outliers highlighted
50

0 [ —

Exposure type: [_] Normal [lll Outlier

Figure D.1: Histogram of exposure values with outliers identified using the Z-score method
(1Z] > 3). Red bars indicate extreme values flagged as statistical outliers, while gray bars
represent values within the normal range.

(c) In the final data-generating process, our goal is to preserve the original distribution of
the exposures in the case study. The exposure matrix A is constructed by sampling
entire log-transformed exposure profiles (rows) with replacement from the original
dataset. By selecting complete exposure vectors instead of individual exposure val-
ues, we retain the joint distribution and dependence structure of the mixture while
introducing variability due to sampling. As we sample complete individual profiles,
we also obtain the corresponding confounding variables, which will be stored in the
Z matrix.

We simulate the outcome Y using the WQS formulation with the matrix A = [X; Xs...X7],
containing the exposures, being standardised. The simulation procedure is defined as
wqs =0.1863 - X7 + 0.0515 - Xo + 0.4213 - X3 + 0.0207 - X4+
0.2326 - X5 + 0.0024 - Xg + 0.0851 - X7 (D.4)
Y =-14714-02-wqs (+ Z'p ) + €
with € ~ N(0 , 0.8466) and the brackets indicate that only in the data-generating mecha-

nism (c), confounding variables are included. All parameters are inspired by the case study,
with an effect size of —0.2, approximately doubled from what was observed.

Estimands: The estimands of interest are the weights w and joint effect 1 from the WQS
formulation calculated by the mean across the repeated holdout splits for each exposure.

Methods: Each simulated dataset is analysed using repeated holdout WQS regression
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with 100 repeated holdouts, each with 20 bootstraps, with continuous, quartile or decile
exposures. The exact model formulation corresponds to (D.4). This means that the model
is correctly specified. Implementation was done through the R package ¢ WQS with the con-
straint of directional homogeneity (negative direction) and without signal function (Renzetti
et al., 2023).

Performance measures: The absolute bias will be evaluated for each exposure, and
the power of the joint effect will be assessed across various models utilising 74, = 50
simulations. The absolute bias is defined as follows

Absolute bias = W;; — Wryye, j (D.5)
for each simulation where ¢ = 1, ..., ng;y, and each predictor where j = 1,...,7. The power
is approximated by

1 Nsim
P(reject Hyo|Hy) ~ Z I(p; < @) (D.6)
Nsim i1

where a = 0.05, I is an indicator function and p; denotes the corresponding p-value for the
two-sided null hypothesis Hy : 81 = 0 against Hy : 81 # 0. In the context of the repeated
holdout WQS model, this is based on a Wald test statistic. A Clopper-Pearson interval will
be employed to provide a 95% confidence interval around the estimated power.

D.2 Joint effect standard error

We will now provide a detailed description of the simulation study presented in Section 5.2.

Aims: The objective of this simulation study is to evaluate whether a traditional linear re-
gression model (coefficients estimated through OLS) is affected by high correlations across
the predictors when estimating the joint effect of a mixture.

Data-generating mechanisms: In order to assess the impact of high correlation on the
SE, we will not use the exact exposure values derived from the case study. Instead, we
will adopt a multivariate normal distribution with n = 300 observations, which enables us
to maintain precise control over the correlation by means of the covariance matrix. The
means of the exposures are zero, representing centred exposures. The covariance matrix 3
is created by using a compound symmetry correlation structure, where there is an equal
correlation p between all exposures. The correlation p varies from 0 to 0.9 in increments of
0.1. This configuration does not entirely reflect the observed data, as we employ a uniform
correlation among all predictors. The effect on the outcome is chosen to be linear and
additive, as this simplifies the calculations of the joint effect SE. We consider three settings
for the parameter 3:

(a) Only the first exposure has an effect, with all others set to zero. The sum of the
coefficients equals the effect of the first exposure: In this scenario, 3 is considered to
be:

B=[-02,0,0,0,0,0, 0 (D.7)

(b) Multiple exposures contribute to the outcome, with varying effect sizes. The total
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joint effect remains -0.2. The vector 3 is considered to be approximately equal to:

B8 =1]-0.04, —0.01, —0.08, 0.00, —0.05, 0.00, —0.02] (D.8)

(¢) None of the exposures affect the outcome. This null scenario is used to examine the
empirical Type I error rate. Thus, 3 is considered to be:

B=[0,0,0,0,0,0,0] (D.9)

Using 3 as defined in the respective cases, with standardised exposure matrix X, the
outcome will be generated as follows:

Y =-14714+ XB+ € (D.10)
with € ~ N(0 , 0.8466) .

Estimands: The estimand of interest is the SE of the individual exposure and joint expo-
sure effect to contrast how these change over increasing correlation.

Methods: A multiple linear model is used to estimate the individual exposure estimates
and their standard errors with the base stats package in R. The model is correctly specified
according to (D.10). The joint effect of the mixture is then computed as the sum of the
individual exposure estimates

7
Bjoint = ZB] (Dll)
j=1

with Bj the individual exposure effect. The SE of the joint effect Bjm-nt is calculated using
the covariance matrix from the fitted linear model. Note that there is no model specification.

Performance measures: The mean standard error and its empirical 95% interval (based
on simulation quantiles) are computed for both individual and joint effects, based on ng;,, =
1000 simulations. In cases (a) and (b), the power is approximated by

Nsim

D I(pi < a) (D.12)

=1

P(reject Hyo|Hy) ~

S1m
where a = 0.05, I is an indicator function and p; denotes the corresponding p-value for the
two-sided null hypothesis Hy : 3; = 0 against H; : §; # 0 (equivalent for the joint effect).
The p-value is based on a Wald test statistic. For case (c), the empirical Type I error rate
is approximated by

Nsim

Y I(pi < a) (D.13)

sim
=1

P(reject Hy|Hp) ~

with previously defined significance level and hypothesis. A Clopper-Pearson interval will
be employed to provide a 95% confidence interval around the estimated power or Type I
error rate.
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D.3 Evaluating methods on realistic exposure mixtures

D.3.1 Linear additive or synergistic exposure effect

We will now present a comprehensive description of the simulation study outlined in Sec-
tion 5.3. Furthermore, a detailed explanation of the precise implementation of all method-
ologies discussed in Chapter 3 and Chapter 4 will be provided.

Aims: The objective is to compare the methods discussed in Chapter 3 and Chapter 4 for
handling the complexity of estimating joint mixture effects or individual effects within a
mixture. The comparison will focus on absolute or relative bias, power and the (relative)
width or coverage of confidence/credible intervals in a realistic setting.

Data-generating mechanisms: The objective is to conduct a comparison of various
methods in a setting that accurately reflects real-world conditions. We aim to preserve
the original distribution of exposures within the case study context presented in Chap-
ter 2. To facilitate this, the exposure matrix A is constructed by sampling n = 300
entire log-transformed exposure profiles (rows) from the original dataset with replacement.
By selecting complete exposure vectors rather than isolated exposure values, we maintain
the joint distribution and dependence structure of the mixture while introducing variabil-
ity through the sampling process. Additionally, as we sample these complete individual
profiles, we simultaneously obtain the corresponding confounding variables, which will be
stored as columns in the Z matrix.

We simulate the outcome Y using the WQS formulation with the matrix A, containing the
PFAS exposures, being standardised. The simulation procedure is defined as

Y =-14714-03-wqs + Z'p +e€ (D.14)

with € ~ N(0 , 0.21165). The intercept and coefficients for covariates such as age, gender
and education were based on estimates from a real case study. It is defined as

¢ =[—0.016248 , 0.168078 , 0.103059 , 0.023381] (D.15)

where the first value is a continuous confounder and the last three values correspond to bi-
nary confounders. The coefficient for the weighted continuous sum, still referred to as WQS,
was set to —0.3, approximately triple the magnitude of the effect observed in the empirical
data, in order to simulate a more pronounced signal. The error variance was chosen such
that the resulting coefficient of determination is approximately R? ~ 0.185, representing
a moderate signal-to-noise ratio that is typical in environmental health research. The as-
sumption of directional homogeneity is made throughout this entire simulation study. The
weighted sum is defined in two different ways:

- Linear additive effect: First, we will examine the simplest case, where the WQS is
defined as the linear additive sum of all exposures in the mixture. It is important to
note that the sum of the seven parameters equals one. The weights chosen below are
based on the specific case study.

wqs =0.1863 - PFOS (total) 4+ 0.0515 - PFDA + 0.4213 - PFBA + 0.0207 - PFOS+

0.2326 - PFOA (total) +0.0024 - PFNA + 0.0851 - PFHXS (total)
(D.16)
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- Linear synergistic effect: Secondly, the weighted sum is selected to incorporate certain
interactions. While this may result in misspecification of various parametric models
discussed later, it generates a synergistic effect. In the literature, this is often regarded
as more realistic for chemical mixtures in contrast to previous additive effects.

wqs =0 - PFOS (total) + 0 - PFDA + 0.4213 - PFBA + 0 - PFOS+
0.2326 - PFOA (total) + 0 - PENA + 0 - PFHXS (total)+ (D.17)
0.173026 - PFDA - PFNA + 0.173026 - PFHXS (total) - PFOS - PFNA

Estimands: The estimand of interest is the estimated coefficient with its confidence/credible
interval for both individual and joint exposure effects.

Methods: An overview is given of the exact implementation of all methods to estimate
the individual exposure or joint exposure effects. Each time it is indicated in brackets if
the model is used for individual or joint effect estimation. The choices made here are in
line with Chapter 3 and Chapter 4. The models are implemented as follows:

Single pollutant linear model (individual): Seven separate linear regression models,
each including one chemical exposure along with covariates age, gender and education
level, are fitted. The functional form included additive linear exposures and covari-
ates. For each model, the estimated effects of chemical exposure and their confidence
intervals are extracted. Calculations were performed using OLS, with standard errors
derived from OLS and Wald-type confidence intervals utilising the base stats package
in R.

Multiple pollutant linear model (individual/joint): A multiple linear regression model
including all seven chemical exposures, along with covariates age, gender and edu-
cation level, was fitted. The functional form included additive linear exposures and
covariates. The estimated effect for each chemical exposure was extracted, as well as
the joint effect calculated by summing the individual coefficients. Calculations were
conducted using OLS regression. Standard errors and Wald-type confidence intervals
were obtained from the base stats package in R. To assess the joint effect, the OLS
covariance matrix was utilised to calculate the standard errors and to compute the
Wald-type confidence intervals.

Ridge regression (individual/joint): A ridge regression model including all seven chem-
ical exposures along with covariates for age, gender, and education level was fitted
using the glmnet package in R. The functional form included additive linear expo-
sures and covariates. The analysis was conducted using 200 non-parametric boot-
strap samples. For each bootstrap replicate, a ridge regression model was applied
with the regularisation parameter (\) selected via 5-fold cross-validation using the
default grid in glmnet. Specifically, the A value chosen was the largest value for which
the cross-validated MSE was within one standard error of the minimum MSE. The
confounding covariates were not penalised. The estimated coefficients for the seven
chemical exposures were extracted and their joint effect was calculated as the sum of
the individual exposure coefficients. Across the bootstrap replicates, percentile-based
95% confidence intervals were constructed for both individual and joint effects. The
mean across the bootstrap samples was used as the final estimate.
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LASSO regression (individual/joint): A LASSO regression model including all seven
chemical exposures and covariates for age, gender and education level was fitted us-
ing the glmnet package in R. The functional form included additive linear exposures
and covariates. The analysis was performed via non-parametric bootstrap resam-
pling, repeated 200 times. For each bootstrap sample, LASSO regression was applied
with the regularisation parameter (\) selected via 5-fold cross-validation using the
default grid in glmnet. Specifically, the A value chosen was the largest value for which
the cross-validated MSE was within one standard error of the minimum MSE. The
confounding covariates were not penalised. The estimated coefficients for the seven
chemical exposures were extracted from each fitted model and the joint effect was
defined as the sum of the seven exposure-specific coefficients. For both the joint and
individual effects, percentile-based 95% confidence intervals were computed from the
bootstrap distribution. The mean across the bootstrap samples was used as the final
estimate. The bootstrap inclusion probability (BIP) for each variable are determined
by the bootstrap samples in which the variable is given a non-zero coefficient.

FElastic Net regression (individual/joint): An Elastic Net regression model including
all seven chemical exposures and covariates for age, gender and education level was
fitted using the glmnet package in R. The functional form included additive linear
exposures and covariates. The analysis was performed via non-parametric bootstrap
resampling, repeated 200 times. For each bootstrap sample, Elastic Net regression
was applied with the regularisation parameter a = 0.5 fixed and A selected via 5-fold
cross-validation using the default grid in glmnet. Specifically, the A value chosen was
the largest value for which the cross-validated MSE was within one standard error of
the minimum MSE. The confounding covariates were not penalised. The estimated
coefficients for the seven chemical exposures were extracted from each fitted model and
the joint effect was defined as the sum of the seven exposure-specific coefficients. For
both the joint and individual effects, percentile-based 95% confidence intervals were
computed from the bootstrap distribution. The mean across the bootstrap samples
was used as the final estimate. The bootstrap inclusion probabilities (BIP) for each
variable are determined by the bootstrap samples in which the variable is given a
non-zero coefficient.

Bayesian LASSO regression (individual/joint): A Bayesian regression model was fit-
ted, incorporating all seven chemical exposures while adjusting for age, gender and
education level. The model was implemented in R using the nimble package. The
likelihood was assumed normal with the mean specified by a linear predictor including
all exposures and covariates. All variables were modelled as additive and linear. The
model used a Bayesian LASSO prior on the exposure coefficients, implemented as a
scale mixture of normals with an exponential prior on local shrinkage parameters (see
(3.6)). Covariate coefficients (age, gender and education level) were assigned weakly
informative normal priors and were not subject to shrinkage. The residual standard
deviation was assigned an improper Jeffreys prior via a normal prior on log(c). Two
Markov chain Monte Carlo (MCMC) chains were run for 100 000 iterations with a
burn-in of 5 000 and a thinning interval of 10, yielding 9 500 posterior samples per
chain. Posterior summaries were computed for all model parameters. The joint effect
of the chemical mixture was defined as the sum of the seven exposure-specific coef-
ficients in each posterior sample. Final point estimates for both joint and individual
effects were taken as the posterior means and 95% credible intervals were computed
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using the equal-tail quantiles of the posterior distributions. A sensitivity analysis
using four different hyperpriors for A% showed robust results with minor differences
(results not shown).

Bayesian spike and slab regression (individual/joint): A Bayesian regression model
was fitted, incorporating all seven chemical exposures while adjusting for age, gender
and education level. The model was implemented in R using the nimble package.
The likelihood assumed normally distributed outcomes with the mean specified by a
linear predictor including all exposures and covariates. All variables were modelled
as additive and linear. The model employed a Bayesian spike and slab prior on the
exposure coefficients to enable variable selection (see (3.7)). The spike variance €
was given a Gamma (5, 1000) prior (mean 0.005), concentrating probability mass
near zero to encourage strong shrinkage of negligible effects. The slab variance cg
was assigned a Gamma (2, 20) prior (mean 0.1), providing sufficient flexibility to
accommodate moderate effect sizes. This configuration was selected based on the
expected range of true effects, which varied from approximately —0.126 (largest)
to —0.0006 (smallest) and was verified by examining the support of the resulting
prior distribution for ;. The inclusion probability = was assigned a Uniform(0, 1)
prior to reflect uncertainty in the number of active exposures. Covariate coefficients
(age, gender and education level) were assigned weakly informative normal priors and
were not subject to variable selection. The residual standard deviation was assigned
an improper Jeffreys prior via a normal prior on log(c). Two MCMC chains were
run for 100 000 iterations with a burn-in of 5 000 and a thinning interval of 10,
yielding 9 500 posterior samples per chain. Posterior summaries were computed for
all model parameters. The joint effect of the chemical mixture was defined as the sum
of the seven exposure-specific coefficients. Final point estimates for both joint and
individual effects were taken as the posterior means and 95% credible intervals were
computed using the equal-tail quantiles of the posterior distributions. The posterior
inclusion probability (PIP) is defined as the proportion of posterior samples in which
the variable’s inclusion indicator, denoted as A;, is 1 (see (3.7)). In other words, it
represents the probability that the coefficient is drawn from the “slab” component of
the prior distribution instead of the spike around zero. Sensitivity analyses indicated
that posterior estimates and posterior inclusion probabilities (PIP) for strong effects
were stable across a range of spike ¢y and slab ¢y hyperpriors. In contrast, variables
with weaker effects (PIP < 0.6) showed moderate sensitivity to the slab variance, with
PIP decreasing as the slab hyperprior was made more diffuse. The spike variance
hyperprior had little impact on results within the tested range (results not shown).

Bayesian horseshoe regression (individual/joint): A Bayesian regression model was
constructed to analyse all seven chemical exposures, while controlling for variables
such as age, gender and education level. The model was implemented in R using
the nimble package. The likelihood assumed normally distributed outcomes with
the mean specified by a linear predictor including all exposures and covariates. All
variables were modelled as additive and linear. The model employed a Bayesian
horseshoe prior on the exposure coefficients (see (3.8)). Covariate coefficients (age,
gender and education level) were assigned weakly informative normal priors and were
not subject to shrinkage. The residual standard deviation was assigned an improper
Jeffreys prior via a normal prior on log(c). Two MCMC chains were run for 100 000
iterations, with a burn-in of 5 000 and thinning interval of 10, yielding 9 500 posterior
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samples per chain. Posterior summaries were computed for all model parameters.
The joint effect of the chemical mixture was defined as the sum of the seven exposure-
specific coefficients. Final point estimates for both joint and individual effects were
taken as the posterior means and 95% credible intervals were computed using equal-
tail quantiles of the posterior distributions. A sensitivity analysis using four different
hyperpriors for \; showed robust results, completely unaffected (results not shown).

Linear model G-computation (joint): A linear regression model was fitted with the
base stats package in R to estimate the joint effect of multiple chemical exposures
on the outcome, adjusting for relevant covariates such as age, gender and education
level. The model assumed an additive linear relationship with the continuous outcome.
G-computation was used to estimate the joint effect of simultaneously increasing all
exposures by one unit. This involved predicting outcomes under the observed exposure
values and under a hypothetical scenario where all exposures were shifted upward by
one unit, then averaging the difference in predicted outcomes. Uncertainty in the joint
effect estimate was quantified using a non-parametric bootstrap procedure with 200
resamples. For each bootstrap sample, the G-computation procedure was repeated
to generate a distribution of joint effect estimates. The 95% confidence interval was
constructed from the empirical quantiles of this bootstrap distribution.

Random forest G-computation (joint): A random forest regression model was used to
estimate the joint effect of simultaneously increasing all chemical exposures by one
unit on the outcome, while adjusting for covariates including age, gender and educa-
tion level. The model was fit using the randomForest package in R with 500 trees.
G-computation was implemented by first predicting the outcome under the observed
exposure values, then under a scenario where all exposures were shifted upward by
one unit. The average difference between these predicted outcomes provided an es-
timate of the joint effect. To quantify uncertainty, a non-parametric bootstrap with
200 resamples was performed. For each bootstrap sample, the entire G-computation
procedure was repeated to generate a distribution of joint effect estimates. The 95%
confidence interval was derived from the empirical quantiles of this distribution.

Bayesian model averaging (individual/joint): Bayesian model averaging was applied
to estimate the joint and individual effects of seven chemical exposures while adjusting
for covariates including age, gender and education level. The analysis was conducted
using the bas package in R with a Zellner—-Siow Cauchy prior on the exposures. The
model included all possible subsets of the seven exposures with covariates (age, gender
and education indicators) forced into every model. Posterior model-averaged coeffi-
cients and their standard deviations were extracted. The joint effect of the mixture
was calculated as the sum of the seven coefficients. For each exposure, approximate
95% credible intervals were computed assuming normality of the posterior distribu-
tion. Due to the construction of the package, it was not possible to obtain the posterior
distribution of the sum; therefore, no credible intervals will be discussed. Posterior
inclusion probability (PIP) is computed by summing the posterior probabilities of all
models in the model space that include the variable of interest.
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Bootstrap WQS regression (individual/joint): WQS regression was used to estimate
the joint effect and weights, adjusting for covariates including age, gender and edu-
cation level. The functional form is always additive and linear. In contrast to the
literature, we used continuous exposures for the weighted sum to facilitate compar-
ison with other methods. The model was implemented using the ¢WQS R package,
assuming a Gaussian outcome. First, the data was split into a training set of 40%
and a validation set of 60%. Bootstrapping was used to estimate the WQS weights,
with the number of bootstrap samples set to 100. The joint effect was defined as
the coefficient of the weighted sum in the final model and 95% Wald-type confidence
intervals were computed based on the fitted model using OLS.

Random subset WQS regression (individual/joint): Random subset WQS regression
was used to estimate the joint effect and weights, adjusting for covariates including
age, gender and education level. The functional form is always additive and linear.
In contrast to the literature, we used continuous exposures for the weighted sum to
facilitate comparison with other methods. The model was implemented using the
gWQS R package, assuming a Gaussian outcome. First, the data was split into
a training set of 40% and a validation set of 60%. Bootstrapping was utilised to
estimate WQS weights using different subsets of 3 out of 7 exposures, with the number
of bootstrap samples set at 100. The joint effect was defined as the coefficient of
the weighted sum in the final model and 95% Wald-type confidence intervals were
computed based on the fitted model using OLS.

Repeated holdout WQS regression (individual/joint): Repeated holdout WQS regres-
sion was used to estimate the joint effect and weights, adjusting for covariates includ-
ing age, gender and education level. The functional form is assumed to be additive and
linear. In contrast to the literature, we used continuous exposures for the weighted
sum to facilitate comparison with other methods. The model was implemented us-
ing the gWQS R package with a Gaussian outcome. The analysis used 100 repeated
holdouts, where in each iteration the data were randomly split into training (40%)
and validation (60%) sets. Within each training set, weights were estimated using 10
bootstrap samples and the joint effect was evaluated in the corresponding validation
set. The final estimate of the joint effect and weights were defined as the average of
coefficients across all holdout repetitions and 95% confidence intervals were computed
based on the empirical distribution of these estimates.

Bayesian kernel machine regression (individual/joint): Bayesian kernel machine re-
gression (BKMR) was applied to estimate the joint effect of the exposure mixture and
to assess the relative importance of individual exposures, while adjusting for covari-
ates including age, gender and education level. The model was implemented using
the bkmr package in R, which provides a user-friendly interface using the MCMC
algorithm with 10 000 iterations. It did not apply thinning and used a burn-in of
50%. The default settings from the bkmr packages are followed for the prior choices.
A Gaussian likelihood for the outcome was assumed with normal, weakly informative
priors for the confounding variables. For the residual variance modelled as precision
072, both the shape and rate of the Gamma prior are set to 0.001. The notation
used here refers to subsection 4.4.1. Component-wise variable selection (spike and
slab prior) was used for the smoothness parameter r with a uniform prior on the
inclusion probability d;, reflecting no strong prior belief about which variables are in-
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cluded. The slab fi(r) was defined as an inverse uniform prior with boundaries 0 and
100. For the kernel scale parameter A = 702, a Gamma prior is used with a mean
of 10 and a standard deviation of 10. The posterior mean of § will be interpreted
to assess the relative importance and the concept of G-computation will be used for
the joint effect. Posterior predictive distributions were obtained for each individual
under both the observed exposure levels and a counterfactual scenario with increased
exposures by one unit. For prediction counterfactuals, the first 50% of the posterior
samples are dropped and only every 10 iterations are kept, resulting in 500 posterior
samples. For each posterior draw, we computed the difference in predicted outcomes
and averaged across individuals to obtain a draw from the posterior distribution of
the average causal effect. The resulting distribution was summarised by its posterior
mean and 95% equal-tail credible interval. The posterior inclusion probability (PIP)
for each variable is computed as the proportion of posterior samples in which the
corresponding indicator § equals one.

Performance measures: The estimates were compared using several key metrics, such
as the bias with ng;, = 100 simulations. For the joint effect, we considered the absolute
bias defined as

Absolute bias = Aij — ATW& j (D.18)

for each simulation where ¢ = 1,...,ng, and each predictor where j = 1,...,7 with A
estimand of interest for a specific model. To evaluate individual effects, we assessed the
relative bias since the scales of the estimates differ across the models. It is defined as
A — A A
Relative biag = —2 ——Tm¢:J (D.19)

True, j
using previous notation. Next, the confidence/credible interval width was calculated for

the joint effect and the relative confidence/credible width for the individual effects. This
was simply defined as

Relative CI width — C1Wiath (D.20)

True, j

using previous notation. The third performance measure was the coverage of the different
types of intervals for their true effect. A Clopper-Pearson interval was employed to provide a
95% confidence interval around the estimated coverage. Finally, the power was assessed and
defined based on the inclusion of zero in the CI. A Clopper-Pearson interval was employed
to provide a 95% confidence interval around the estimated power. It should be noted
that not all performance measures could be calculated in the case of individual effect. For
variable selection methods such as LASSO, Elastic Net, BMA, Spike and slab regression
and BKMR, the posterior inclusion or bootstrap inclusion probabilities (PIP & BIP) are
compared based on their ranking of the different individual effects.

D.3.2 Evaluating grouping behaviour
We will now provide a detailed description of the simulation study outlined in subsec-

tion 5.3.3.

Aims: The goal is to study the grouping effect described in Chapter 3 for all applicable
methods introduced in Chapter 3 and Chapter 4.
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Data-generating mechanisms: First, it should be noted that the previous simulation
study Section 5.3 considered high correlations across all predictors. This makes it more
difficult to study the grouping effect. We will now examine a specific scenario in which only
two predictors have a high correlation, while the remaining predictors have correlations
that are around zero. In line with our previous simulations, we will utilise a sample size of
n = 300. As illustrated in Figure 2.2, we have decided to maintain the original distributions
of PFNA and PFDA, given that these two variables have the highest pairwise correlation
(p = 0.83). To facilitate this, the exposure matrix A is constructed by sampling entire
log-transformed exposure profiles (rows) from the original dataset with replacement. Note
that this is only done for the PFNA, PFDA and the additional covariates (Z). In contrast,
the remaining five exposures were sampled independently, with replacement. This means
that the correlation structure among these exposures was not preserved, which resulted in
pairwise correlations around zero.

We simulate the outcome Y using the WQS formulation with the matrix A, containing the
PFAS exposures, being standardised (see (D.14) for the choices and argumentation). Next,
the WQS is defined with equal effect or unequal effects for the two correlated predictors.
Consider the following two cases:

- Equal effect: First, the grouping property will be examined for the two highly cor-
related predictors PFNA and PFDA, both of which are assigned equal effects on the
outcome. All other parameters are included as nuisance variables.

wgs = 0-PFOS (total) + 0.5 - PFDA + 0 - PFBA + 0 - PFOS+

D.21
0-PFOA (total) + 0.5 - PENA + 0 - PFHXS (total) ( )

- Unequal effect: Secondly, the grouping property is evaluated in a scenario where
only one of the two highly correlated predictors, PFDA, is assigned an effect on the
outcome, while PFNA is given no effect. All other variables are included as nuisance
variables.

wqs = 0-PFOS (total) + 1 - PFDA + 0- PFBA + 0 - PFOS+

D.22
0-PFOA (total) + 0 - PFNA + 0 - PFHXS (total) ( )

Estimands: The estimand of interest is the estimated coefficient with its confidence/credible
interval for the individual exposure effects.

Methods: We refer to the Methods in Appendix D.3.1 for a complete description of the
methodologies used. Note that the focus is only on models estimating individual effects, as
indicated in parentheses following each method.

Performance measures: Similar, for the performance measures we refer to Appendix D.3.1
which introduces all key metrics to compare the individual exposure effects based on
Ngim = 100 simulations.
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Appendix E

Case study: Descriptive statistics,
results and implementation details

E.1 Descriptive statistics

Descriptive statistics in Table E.1 were computed after the exclusion of all individuals who
met one or more of the specified exclusion criteria defined in Chapter 6.
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Table E.1: Characteristics of the study population, exposure to PFAS and outcomes.
Ezposure values are expressed in pig/L.

Variable name N (%) > LOQ (%) Min Q1 Median Q3 Max
PFOS 287 100% 0.30 1.40 2.50 5.40 230.00
PFOS (branched) 287 100% 0.42 2.60 4.20 6.80  23.00
PFHXS (total) 287 100% 0.11 0.38 054 088 930
Exposures ~__ -~ """ """ T T T T oo ST T T T T T
P PFOA (total) 287 100% <LOQ  0.92 120 150 640
PFBA 287 2% <LOQ < LOQ 0.15 0.19 0.89
PFDA 287 73% <LOQ <LOQ 014 020 1.00
PFNA 287 99% < LOQ 0.19 0.26 0.33 0.89
Gender 289
Male 143 (50%)
Female 146 (51%)
Age (years) 289
[12.5, 14.5] 117 (41%)
(14.5, 15.5] 101 (35%)
> 15.5 71 (25%)
Financial stability
. . 282
with the income
Struggling 7 (3%)
Getting by 89 (32%)
Comfortable living 186 (66%)
Confounders 7]35\/17177777777777777775878 7777777777777777777777777777777777777777777
(severe) Underweight 26 (9%)
Normal weight 218 (76%)
(severe) Overweight 44 (15%)
Birth weight 269
< 2.5kg 19 (7%)
> 2.5kg 250 (93%)
Exposure to tobacco smoke
at home, elsewhere or 289
through own smoking
No 234 (81%)
Yes 55 (19%)
Ratio CD4+ count 286 100% 022  1.33 1.64 200 580
Outcome over CD8+ count
Leukocyte count 287 100% 3230 4985 5850 7000 19760

N: refers to the total number of observations after applying the exclusion criteria and accounting
for any missing values.
LOQ: lowest concentration of a substance that can be quantitatively measured
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Histogram of log-transformed chemical distributions with density curve by LOQ
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Figure E.1: Log-transformed and standardised distributions of PFAS compounds were anal-
ysed after applying exclusion criteria and excluding adolescents with missing values for
exposures or confounding variables. Histograms illustrate the standardised distributions of
log-transformed concentrations for each PFAS compound. The overlaid density curves com-
pare imputed observations that fall below the LOQ (represented by red dashed lines) with
those that were observed above the LOQ (represented by blue solid lines).
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Figure E.2: Histograms and density curve of (left) the log-transformed CDj+/CD8+ T-
cell ratio (n=259) and (right) the log-transformed leukocyte count (n=260) based on all
adolescents in the final complete case datasets.

E.2 Results

Table E.2: Bootstrap inclusion probabilities for pair-wise interactions, calculated as the pro-
portion of 2000 bootstrap samples where each feature’s coefficient is non-zero in a LASSO re-
gression model with confounding covariates, with lambda selected via 5-fold cross-validation.

Outcome Outcome

Interactions Leukocyte CD4+/CD8+ ‘ Interactions Leukocyte CD4+/CD8+
PFOS (branched) * PFHXS (total) 0.4345 0.2050 PFOA (total) * PFBA 0.0825 0.1780
PFOS (branched) * PFOA (total) 0.1335 0.3195 PFOA (total) *PFDA 0.1190 0.1230
PFOS (branched) * PFBA 0.2470 0.3190 PFOA (total) * PFNA  0.1305 0.2285
PFOS (branched) * PFDA 0.2245 0.3730 PFOA (total) * PFOS 0.0920 0.2610
PFOS (branched) * PFNA 0.4135 0.0760 PFBA * PFDA 0.0965 0.2950
PFOS (branched) * PFOS 0.0380 0.1545 PFBA * PFNA 0.1340 0.0740
PFHXS (total) * PFOA (total) 0.1540 0.0780 PFBA * PFOS 0.1385 0.4980
PFHXS (total) * PFBA 0.2890 0.1250 PFDA * PFNA 0.1140 0.1735
PFHXS (total) * PFDA 0.0145 0.2965 PFDA * PFOS 0.1220 0.0785
PFHXS (total) * PFNA 0.0200 0.2560 PFNA * PFOS 0.0720 0.0985
PFHXS (total) * PFOS 0.0910 0.1880
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Ridge coefficients
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Figure E.3: Fach line presents the estimated coefficients from Ridge regression using the
log-transformed leukocyte outcome, dependent on the regularisation parameter log(A). As A
increases, the coefficients are progressively shrunk toward zero. The grid within the vertical
dashed lines will be used to select the optimal lambda value through cross-validation.

Multiplicative effect on leukocyte count relative to median exposure values
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Figure E.4: The estimated multiplicative effects on leukocyte counts using BKMR are pre-
sented for an increase/decrease in a single exposure from its median value, with all other
exposures maintained at their median levels. The shaded areas indicate approximate 95%
confidence intervals, assuming asymptotic normality. Vertical dashed lines mark the 25th
(Q1), 50th (Q2), and 75th (Q3) percentiles of the exposure distribution.
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Figure E.5: Fach line presents the estimated coefficients from Ridge regression using the
log-transformed CD/+/CD8+ ratio, dependent on the regularisation parameter log(\). As
A increases (moving to the right), the coefficients are progressively shrunk toward zero. The
grid within the vertical dashed lines will be used to select the optimal lambda value through
cross-validation.

E.3 Implementation details
Interquartile fold change in exposure concentration
The coefficients B]- from Ridge regression, multiple pollutant linear regression (OLS) and
Bayesian (horseshoe) regression were transformed to represent the average interquartile (Q1
to Q3) fold effect on the untransformed outcome Y. Given the general model formulation
in (6.1), without loss of generality, for a joint exposure, the multiplicative effect was defined
as
exp ¢ Bo + 3271 B +2' ¢+
EY|Q3,2] _ =
ElY|Q1,z] A 5 (108(Q1)~iog(a,) . s
L R P Y TR pe

lOg(ng)f.LLlog(aj )

Ulog(aj)

M‘QV

Tlog(a,)
: 1og(Q3j)—1og(Q1j)>

— ﬁ

o ; J( Tlog(a, ) (B.1)

.

nfEadn ()

“rp j;alog(aj) o7 Qlj

7 Bj/T10g(a)
_ Qg]) 3 g(a;

jHl(Qlj

using the same notation as in (6.1) and %2 is the adjustment for the log-normal distribution
of the outcome Y. In the case of an individual’s exposure effect, the remaining 6 terms in
the product will cancel out.
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Ridge regression

A ridge regression model including all seven standardised log-transformed chemical ex-
posures, along with all the confounders, was fitted using the glmnet package in R. The
log-transformed outcome was considered Gaussian. The functional form included additive
linear exposures and covariates. A QQ-plot is used to assess normality. Residuals and
squared residuals are plotted against each predictor to assess linearity and homoskedastic-
ity. The analysis was conducted using 2000 non-parametric bootstrap samples. For each
bootstrap replicate, a ridge regression model was applied with the regularisation parameter
(k) selected via 5-fold cross-validation. Given our interest in accurately interpreting the
size and direction of effects, a range of possible k was chosen based on Figure E.3. The
grid considered was k = 1E — 4 to 1E-2. Specifically, the k value chosen was the largest
value for which the cross-validated MSE was within one standard error of the minimum
MSE. The confounding covariates were not penalised. Across the bootstrap replicates,
percentile-based 95% confidence intervals were constructed for the interquartile fold change
effect using (E.1). The mean across the bootstrap samples was used as the final estimate.

Horseshoe regression

A Bayesian regression model was constructed to analyse all seven standardised log-transformed
chemical exposures, along with all the confounders. The model was fitted using the nimble
package. The likelihood assumed normally distributed outcomes with the mean specified
by a linear predictor including all exposures and covariates. All variables were modelled
as additive and linear. The model employed a Bayesian horseshoe prior on the exposure
coefficients (see (3.8)). Additional covariates were assigned flat normal priors and were not
subject to shrinkage. The residual standard deviation was assigned an improper Jeflreys
prior via a normal prior on log(o).

Two MCMC chains were run for 100 000 iterations, with a burn-in of 5 000 and a thinning
interval of 10, yielding 9 500 posterior samples per chain. Trace plots, Gelman-Rubin
statistic (]?) and effective sample size will be used to confirm convergence. A QQ-plot is
used to assess normality. Residuals and squared residuals are plotted against each predictor
to assess linearity and homoskedasticity. Posterior predictive check was done using a density
overlay plot comparing the observed outcome distribution with the posterior predictive
distribution. The predictive mean bias was evaluated using a posterior predictive p-value,
defined as
N

p= ¥ z; I(Yposterior,j > mean(log(Y'))) (E.2)
J:

where N = 19,000 represents the total number of MCMC iterations, ¥posterior,j is the mean

of the 260 predictive replicates for the j-th iteration and I(-) is an indicator function. A

p-value close to 0.5 suggests no bias. The posterior samples were used to calculate the pos-

terior mean of the interquartile fold change, along with its 95% equal-tailed credible interval.
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Repeated holdout WQS regression

Repeated holdout WQS regression was used to estimate the joint effect and weights, adjust-
ing for additional covariates. The functional form is assumed to be additive and linear. In
contrast to the literature, we utilised standardised log-transformed continuous exposures,
which demonstrated enhanced power, as shown in Chapter 5. The model was implemented
using the gWQS R package with a Gaussian outcome. The analysis used 100 repeated
holdouts, where in each iteration the data were randomly split into training (40%) and val-
idation (60%) sets. Within each training set, weights were estimated using 100 bootstrap
samples and the joint effect was evaluated in the corresponding validation set. Linearity
of the WQS index was assessed by inspecting scatter plots of the observed outcome versus
the WQS index, as well as a plot of the residual versus fitted values. The residuals versus
fitted values plot was also used to assess homoskedasticity. The final estimate of the joint
effect and weights was defined as the average of coefficients across all holdout repetitions
and 95% confidence intervals were computed based on the empirical distribution of these
estimates. The analysis was conducted twice to assess the homogeneity assumption in both
the positive and negative directions.

Bayesian kernel machine regression

Bayesian kernel machine regression (BKMR) was applied to estimate the joint effect of
the exposure mixture and to assess the relative importance of individual exposures, while
adjusting for additional covariates. Exposures were standardised after log-transformation.
The model was implemented using the bkmr package in R, which provides a user-friendly
interface using the Markov chain Monte Carlo (MCMC) algorithm with 10 000 iterations.
It did not apply thinning and used a burn-in of 50%. The default settings from the bkmr
packages are followed for the prior choices. A Gaussian likelihood for the outcome was
assumed with normal, weakly informative priors for the confounding variables. For the
residual variance modelled as precision =2, both the shape and rate of the Gamma prior
are set to 0.001. The notation used here refers to subsection 4.4.1. Component-wise variable
selection (spike and slab prior) was used for the smoothness parameter r with a uniform
prior on the inclusion probability J, reflecting no strong prior belief about which variables
are included. The slab f;(r) was defined as an inverse uniform prior with boundaries 0 and
100. For the kernel scale parameter A = 702, a Gamma prior is used with a mean of 10
and a standard deviation of 10. The posterior mean of § will be interpreted to assess the
relative importance. Trace plots will be used to confirm convergence. The posterior inclu-
sion probability (PIP) for each variable is computed as the proportion of posterior samples
in which the corresponding indicator 0 equals one. For some of the selected exposures,
univariate response curves will be shown. These are calculated using a grid of 500 points
across the exposure range of interest while fixing all other exposures at their median value.
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G-computation with random forest

A random forest regression model was used to estimate the joint effect of simultaneously
increasing all chemical exposures from the 25th percentile (Q1) to the 75th percentile (Q3)
on the outcome, while including additional covariates. Exposures were standardised after
log-transformation. First, a repeated k-fold cross-validation was used to tune the random
forest hyperparameters. Specifically, we evaluated combinations of the number of variables
considered at each split (2-6) and the number of trees (ranging from 10 to 500 in increments
of 10) using 20 repetitions of 5-fold cross-validation. For each combination, we calculated
the mean squared error (MSE) on the held-out folds and summarised the average perfor-
mance and its standard error across repetitions to select an optimal model. This model was
fit using the randomForest package in R with 500 trees and 2 variables at each split. Using
this model, G-computation was implemented by predicting the outcome under Q1 and Q3.
The ratio of the average predictions was used as the final estimate. To quantify uncertainty,
a non-parametric bootstrap with 2000 resamples was performed. For each bootstrap sam-
ple, the entire G-computation procedure was repeated to generate a distribution of joint
effect estimates. The 95% confidence interval was derived from the empirical quantiles of
this distribution.

Joint effect using OLS

We first fit a linear additive regression model including all PFAS exposures and covari-
ates using ordinary least squares (OLS). To evaluate the appropriateness of the linearity
assumption, we examined plots of residuals versus each exposure. Loess smoothers were
overlaid to detect systematic patterns. Additionally, we assessed the distribution of resid-
uals using histograms and QQ plots to evaluate the normality assumption. The residuals
versus fitted values plot was used to check homoskedasticity. To quantify the joint effect of
the PFAS exposures, we extracted the estimated regression coefficients and filled these in
(E.1) to represent an interquartile range fold change in exposures. To quantify uncertainty,
a non-parametric bootstrap with 2000 resamples was performed. For each bootstrap sam-
ple, the interquartile range fold change was calculated to generate a distribution of joint
effect estimates. The 95% confidence interval was derived from the empirical quantiles of
this distribution.
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