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Abstract

Background: Social contact patterns are central to the spread of respiratory infectious
diseases. While age is a well-established determinant, variations in symptom severity and
vaccination status may also shape how individuals interact with others, thereby influencing
transmission dynamics.

Objective: This study examines the impact of symptom severity and vaccination status
on the number of reported contacts and the likelihood of interaction with individuals in
fragile health. It further evaluates how such behavioral differences affect epidemic outcomes
through stochastic simulation.

Methods: Contact data from 778 participants (1363 observations) were collected during the
2024/25 winter season via the Infectieradar.be platform. Generalized Linear Mixed Models
(Poisson and Negative Binomial) were applied to assess determinants of contact counts,
while a Generalized Estimating Equation model was used to evaluate predictors of contact
with fragile individuals. These statistical estimates informed an individual-based simulation
model.

Results: Participants with moderate or severe symptoms reported fewer contacts com-
pared to those with no or mild symptoms. Vaccinated individuals reported slightly higher
contact levels, but vaccination status was not significantly associated with contact with
fragile individuals. In the simulations, assumptions about behavioural adjustments such as
symptom-related contact reduction or vaccination effects influenced epidemic outcomes, with
higher extinction probabilities observed when such adjustments were included compared to
scenarios without them.

Conclusion: Symptom severity, age, and vaccination status influence contact patterns
in measurable ways. Accounting for these behavioral differences in epidemic models is
critical, as neglecting them may bias projections of outbreak dynamics. Combining statistical
modeling with stochastic simulation provides a robust framework for evaluating intervention
strategies and improving epidemic preparedness.

Keywords: Infectieradar.be, Social contacts, Symptom severity, Vaccination, Fragile health,
GLMM, GEE, Epidemic modeling

—————————
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1 INTRODUCTION

1 Introduction

1.1 Background of the Study

Social contact patterns are a key factor in the transmission of respiratory infectious diseases[1].
Like influenza and COVID-19 continue to cause substantial global health burdens, with studies
estimating that 10–20% of symptomatic cases may require medical attention or hospitalization
[2]. While age is a well-established determinant, variations in symptom severity and vaccination
status may also influence how individuals engage with others, impacting disease dynamics.

Previous research has already begun to explore this direction. For instance, [3] found that
influenza-like illness can lead to a measurable reduction in non-household contacts, potentially
decreasing transmission. More recently, [4] used CoMix data from 16 European countries to show
that individuals perceiving a disease as more severe reduced their number of social contacts,
whereas vaccinated individuals tended to report more contacts.

The type, duration, and number of social interactions are very important for the spread of res-
piratory infectious illnesses. To precisely simulate how diseases spread and put in place effective
control measures, it is necessary to understand these interaction patterns.Studies have shown
that not everyone interacts with others in the same way. Instead, it varies on their age, work,
health, and cultural standards.[1, 5]. For example, school, work, and social activities tend to
bring youth and working-age individuals into frequent contact, which can accelerate transmis-
sion, whereas older adults typically have fewer social interactions but are more susceptible to
severe outcomes when infected.

Fixed demographic characteristics, such as age and sex, are not the only factors influencing
how people interact; dynamic conditions, such as current health status and vaccination, can
also substantially alter contact behavior. Recent study have revealed that dynamic factors
like the severity of symptoms and vaccination status can also have a large effect. People who
develop symptoms often reduce their social contacts, either because they feel unwell or as a
result of public health measures such as isolation or quarantine, which aim to lower the risk of
transmission [6, 7]. People who do not develop symptoms, on the other hand, may continue
their usual activities, which can facilitate transmission without being detected. Such variation
in behavior complicates both the modeling of disease spread and the monitoring of outbreaks.

Vaccination generally provides substantial protection against infection and disease. However,
in the case of leaky vaccines where protection is partial rather than complete the number of
contacts remains an important factor in transmission. If vaccinated individuals have different
contact patterns compared to unvaccinated ones, this behavioral difference can introduce bias
when estimating the effectiveness of vaccine-based interventions [8, 9].

During the COVID-19 epidemic, it became evident that reducing social contacts through mea-
sures such as lockdowns, school closures, and remote working policies could substantially de-
crease transmission events [10, 11]. These things worked for a while, but we don’t know how

1



1.1 Background of the Study 1 INTRODUCTION

they will affect behavior in the long run. Infectieradar.be is a participatory monitoring platform
in Belgium that collects repeated self reported information on symptoms, social contacts, and
vaccination status. In this study, we use these data to investigate two key questions: first,
whether individuals adjust their contact behavior based on symptom onset or vaccination sta-
tus; and second, whether these factors influence the probability of visiting frail individuals those
more vulnerable to severe symptoms.

Addressing these questions helps fill an important gap in understanding how behavioral changes
interact with epidemiological risk, thereby improving the accuracy of disease spread models and
informing targeted public health strategies. In addition,our study examines how assumptions
about contact behavior particularly those related to symptom onset and vaccination status can
influence the outputs of epidemiological models. While it is not possible to fully capture or
predict actual human behavior, our analysis allows us to explore how differences in contact
patterns could shape epidemic dynamics. We provide insight people understand how diseases
spread in a more complicated way by informing epidemiological model real-world data to deter-
mine age-specific contact rates and seeing how these rates fluctuate with vaccination status and
symptoms. The results of this study are of primary interest to public health officers and policy
makers, who can use these insights to improve preparedness, and to develop policies aimed at
containing and mitigating epidemic threats.

The World Health Organization (WHO) usually puts symptoms into several groups based on
how bad they are, such mild, moderate, and severe. However, this study used a simpler binary
classification. We put the symptoms into two groups based on how likely they were to affect
how people interacted. The first group, called "None or Mild," was made up of those who said
they had no symptoms or just mild ones, such sneezing, a runny or plugged nose, or watery
eyes. These symptoms usually don’t get in the way of normal everyday activities and are less
likely to impair social interactions.

The second group, "Moderate or Severe," included symptoms that showed a more serious disease,
such as cough, sore throat, headache, chills, nausea, muscle or joint pain (moderate), and fever,
shortness of breath, chest discomfort, disorientation, and vomiting (severe). This two-part
method shows that we need clearer differences in how people behave and how easy it is to
understand the model, while still following the WHO’s standards for how severe a disease is
based on clinical patterns [12].

Despite increasing evidence that symptom severity and vaccination status can influence social
contact behavior, there is limited quantitative understanding of how these factors jointly shape
age-specific contact patterns and the probability of interacting with frail individuals. Few
studies have combined participatory surveillance data with statistical modeling to estimate
such behavior-driven differences, and even fewer have incorporated these empirical estimates
into epidemic simulations. Addressing this gap is crucial for refining epidemic models and for
informing more realistic public health preparedness plans.

2



1.2 Study Design 1 INTRODUCTION

1.2 Study Design

The data for this study were collected through Infectieradar.be, the Belgian arm of the inter-
national Influenzanet network of participatory surveillance platforms. Infectieradar.be invites
volunteers from the general population to register online and provide repeated self-reported
information on their health status, symptoms, social contacts, and vaccination history. Partici-
pants receive short surveys at regular intervals, allowing near real-time monitoring of respiratory
illness trends and contact patterns in the community. In this study, a contact was defined as
any face-to-face interaction within 3 meters, reported by participants for the 24-hour period
from 5:00 AM on the survey day to 5:00 AM the previous day.

For this investigation, we specifically analyzed data gathered during the Belgian winter res-
piratory season of 2024/25. A total of 778 participants provided detailed information about
their daily social contacts, symptom experiences, and vaccination records. This rich, longitu-
dinal dataset offers a unique opportunity to explore how individual characteristics and health
status influence contact behavior in a real-world setting. To collect contact information, a ro-
tating 13-group strategy was adopted, ensuring that each participant reported contact data
approximately every 12 weeks while distributing the data collection evenly over time.

Infectieradar.be collects symptom information on a weekly basis, while social contact data are
collected less frequently approximately every 13 weeks through the rotating 13 group strategy.
For this study, we merged the contact data,symptom data, the intake dataset containing de-
mographic characteristics. Records were matched using participant ID and survey date. For
each contact survey, we paired the corresponding symptom status reported for the same survey
period, ensuring that health status reflected the day the contact data were collected.

1.3 Objective of the Study

The main goal of this study is to find out how the presence of symptoms and the vaccination
status affect how people interact with others during the winter respiratory season. The study’s
main goal is to use important indicators such symptom level, age group, sex, and vaccination
status to model the number of reported daily interactions.

1.4 Variable Description

The final analysis dataset was created by linking weekly symptom survey responses with the
nearest social contact diary entries, supplemented with demographic and vaccination informa-
tion from intake and vaccination records. The questionnaire used for collecting social contact
information is provided in the Appendix for reference. Table 1 provides an overview of all
variables used in the analysis.

3



2 STATISTICAL MODELING

Table 1: Description of Variables Used in the Analysis

Variable Type Description

contact_number Count Number of reported social contacts in the
24-hour reference period.

symptom_severity Binary No/Mild (1) vs. Moderate/Severe (0)
symptoms.

AgeG Categorical Age group (18–59, 60+).
SEX Categorical Sex of participant (Male/Female).
vac_status_binary Binary Vaccinated (1) or not vaccinated (0).
contact_with_fragile Binary Reported contact with a fragile individual

(1) or not (0).
participantId Identifier Unique participant identifier (random ef-

fect in models).
week Time Survey week of participation.

2 Statistical Modeling

We used a full statistical framework based on Generalized Linear Mixed Models(GLMM) and
Generalized Estimating Equations(GEE) to properly analyze the longitudinal and partially
repeated measures data collected in this study [13, 14].

2.1 Poisson GLMM

For outcomes measured as non-negative integer counts, the Poisson GLMM is a commonly used
modeling approach [15]. Since our outcome variable, the number of social contacts, is a count,
this framework was a natural starting point for the analysis. The Poisson distribution says that
the mean and variance of the count variable are the same. In this framework, we describe the
number of social contact that person i reported at time j, which we call Yij , follows a Poisson
distribution with a conditional mean of µij :

Yij ∼ Poisson(µij), log(µij) = β0+β1Severityij +β2AgeGroupi+β3Sexi+β4V accStatusi+ui

In this case, β0 is the intercept, while β1 through β4 are fixed-effect coefficients that show
how symptom severity, age group, sex, and vaccination status affect the outcome. We added
the participant-specific random intercept ui ∼ N (0, σ2) to account for the fact that repeated
measures can cause correlation between individuals. When using a Generalized Linear Mixed
Model (GLMM) with a log link and a single random intercept b ∼ N (0, σ2), the marginal mean
of the response variable is not just exp(β0 + Xβ), but also exp(β0 + 1

2σ2 + Xβ). This happens

4



2.2 Negative Binomial GLMM 2 STATISTICAL MODELING

when you take the average of the random effect. We can find E[eb] = exp
(

1
2σ2

)
by using the

moment-generating function of the normal distribution at t = 1 [13]. So, the random effect
raises the intercept by a consistent amount, which is 1

2σ2. On the log scale, fixed effects like
symptom severity and vaccination status are usually understood. However, this constant offset
changes how they affect the marginal mean. This shows how useful GLMMs are for looking at
these impacts because they take into account both the differences in contact counts between
individuals and within individuals.

2.2 Negative Binomial GLMM

Initial model diagnostics showed that the variance in contact counts was much greater than the
mean, which went against the Poisson distribution’s assumption of equal dispersion [16]. We
used the Negative Binomial GLMM to fix this. It adds another dispersion parameter, θ, so
that the variance might be greater than the mean. This extra flexibility is especially helpful
for modeling real-world epidemiological count data, which often shows a lot of variation across
people.

The Negative Binomial model used the same linear predictor structure as the Poisson GLMM,
but it changed the conditional distribution:

Yij ∼ NegativeBinomial(µij , θ),
log(µij) = β0 + β1Severityij + β2AgeGroupi + β3Sexi + β4V accStatusi + ui

We used the data to directly estimate the dispersion parameter θ to adjust for overdispersion in
the count outcome. The Negative Binomial model allows for more variation than the Poisson
model because it adds an extra parameter to account for extra volatility beyond the mean. The
Negative Binomial model fit the observed contact data better than the other models, according
to model fit indices and residual diagnostics. This supports its choice for the final analysis [17].

2.3 GEE for Contact with Fragile Individuals

We also looked at how likely it was for people to come into contact with someone who are
Vulnerable individuals, in addition to modeling contact rates. This outcome is binary and
shows if a participant said they had at least one encounter with a fragile person on the day of
the survey. We used Generalized Estimating Equations (GEE) with a logistic link function to
deal with the fact that the same people made repeated observations that were related to each
other [18, 19].

Let Cij be a binary variable that equals 1 if person i says they had contact with a vulnerable
person at time j, and 0 otherwise. The GEE model makes the following assumptions:

5



2.4 Handling Missing Data 2 STATISTICAL MODELING

Cij ∼ Bernoulli(πij), logit(πij) = β0+β1Severityij+ beta2AgeGroupi+β3Sexi+β4V accStatusi

The expected chance πij of coming into contact with a fragile person is written as:

πij = 1
1 + exp

(
−(β0 + β1Severityij + β2AgeGroupi + β3Sexi + β4V accStatusi)

)

We assume that the working correlation structure was exchangeable, which means that all pairs
of observations within a subject are equally correlated. We employed strong sandwich standard
errors to make sure that our conclusions were still valid even if the correlation structure wasn’t
set up correctly. This method gives population-averaged estimates of how factors affect the
chances of meeting vulnerable people in social situations.

2.4 Handling Missing Data

Missing values, including in key covariates, were present in the dataset. To avoid the loss
of statistical power and potential bias introduced by listwise deletion, we applied multiple
imputation, which allowed us to retain all available information while appropriately accounting
for uncertainty due to missingness. This method works on the idea that data is missing at
random (MAR) and makes several possible datasets by filling in missing values with information
that is already known. After that, we looked at each of the imputed datasets one at a time
and then put the results together to deal with the uncertainty induced by the missing data [20].
This method let us keep more observations, which made our regression analysis more accurate
and dependable.

2.5 Data description

Table 2 presents a summary of the characteristics of the study population included in the anal-
ysis. A total of 778 unique participants were observed through the Infectieradar.be platform.
Among them, 561 participants (72.1%) had repeated measurements over time, indicating multi-
ple weekly responses. This longitudinal structure is important for modeling individual variation
and temporal trends in reported symptoms and contact behavior.

The majority of participants were aged 60 years and above (63.1%), while 36.1% were in the
18–59 age group. Female participants made up 57.8% of the sample, with male participants
accounting for 41.9%. A small proportion of respondents had undefined sex due to missing or
ambiguous data.Vaccination coverage was relatively high, with 61.4% of participants reporting
either COVID-19 or influenza vaccination. However, vaccination status data were missing for
34.6% of participants. On average, participants reported 12.5 social contacts per observation,
with a wide range from 0 to 155 contacts.

6
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Table 2: Descriptive statistics of study participants (collapsed at individual level)

Variable Summary
Total participants 778
Participants with repeated measures 561 (72.1%)
Participants with only one measurement 217 (27.9%)
Mean number of contacts 12.5 (Range: 0 – 155)
Symptom severity (unique-level) Moderate/Severe: 170 (21.9%), No/Mild: 608 (78.1%)
Age group 18–59: 281 (36.1%), 60+: 491 (63.1%), Missing: 6

(0.8%)
Sex Female: 450 (57.8%), Male: 326 (41.9%), Undefined:

2 (0.3%)
Vaccination status Vaccinated: 478 (61.4%), Not vaccinated: 31 (4.0%),

Missing: 269 (34.6%)
Contact with Fragile person Yes: 703 (90.4%), No: 75 (9.6%)

2.6 Simulation Study

An individual-based stochastic SIR-type model was developed to explore the impact of symptom-
driven behavioural changes and vaccination status on epidemic dynamics. In this framework,
each individual could be in one of three states: susceptible (S), infected (I), or recovered (R).
Age-specific contact rates determined daily interactions, and transmission occurred when a
susceptible individual contacted an infected individual, with probability q. The transmission
probability was calibrated such that the basic reproduction number was R0 = 1.5 in a fully
susceptible population.

The simulated population consisted of 1000 individuals, equally distributed across four age
groups (0–12, 13–17, 18–59, and 60+ years). The epidemic was seeded with one initial infection
and simulated for a maximum of 365 days, or until no infectious individuals remained. The
stochastic design meant that outcomes varied across runs due to the random nature of contacts
and transmissions.

Behavioural parameters were derived from the statistical models, including contact reduction
during symptomatic periods and vaccination-related effects. For each scenario, 100 indepen-
dent simulations were performed. Key outcomes included the final epidemic size, extinction
probability, peak incidence, and timing of the epidemic peak.

Several scenarios were defined to evaluate how behavioural and vaccination-related factors in-
fluence epidemic dynamics. In the baseline scenario, no behavioural adjustments were intro-
duced and contact rates remained unchanged regardless of symptoms or vaccination status. In
the statistical model scenario, contact reductions during symptomatic periods and vaccination-
related effects were incorporated using estimates from the GLMM analyses. To capture possible
risk-compensating behaviour, a “double vaccination” scenario assumed that vaccinated individ-

7



3 RESULTS

uals increased their contacts twice. In another set of scenarios, vaccination effects were fixed
adapted from the statistical model, while symptom-related contact reductions were varied: a
low-reduction case assumed contact rates scaled up to 1.5(no reduction/increase), whereas a
high-reduction case assumed contact rates is 0.1 (near isolation). Each of these scenarios was
simulated under three vaccination coverage levels (30%, 60%, and 90%), with vaccine effective-
ness fixed at 50%. This design allowed us to disentangle the relative impact of vaccination
coverage, behavioural adaptation, and symptom-related contact reductions on epidemic out-
comes.

3 Results

3.1 Exploratory Data analysis

Figure 1 indicate the overall incidence of flu-like symptoms during the 2024/25 Belgian winter
respiratory season started high at around 250 per 1,000 in week 2024W38, fluctuated with peaks
near 225 and 200 per 1,000 in weeks 2024W49 and 2025W04, and then declined sharply to below
150 per 1,000 by week 2025W10, with a slight rise by week 2025W12.

Incidenceweek =
(

Symptomaticweek

ActiveReportsweek

)
× 1000

Figure 1: Overall weekly symptom trend (2024–2025)

Figure 2 indicate Women have a higher incidence of symptom due to differences in reporting,
exposure levels, or health-seeking behaviors.Individuals in education, full-time work, and self
employment show higher and more volatile symptom trends, potentially due to increased expo-
sure and groups like the retired or part-time employed display lower and more stable incidence,
possibly reflecting reduced contact rates or consistent routines (Figure 9).

8
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Figure 2: Symptom trend by gender

Figure 3: Individual Profile of 20 random samples

In Figure 3, individual contact trajectories for a random sample of 20 participants (one diary
wave roughly every 12 weeks) show substantial heterogeneity both at baseline and over time.
Several participants start at markedly different contact levels, and their paths subsequently
diverge some increasing, others decreasing or fluctuating. This pattern naturally motivates a
mixed-effects specification with subject-specific random intercepts to capture stable differences
in average contact propensity, and random slopes in time to allow participant specific trends
across week.

9
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Figure 4: Mean structure(average number of Contact) over time

The weekly average number of social contacts that participants reported during the study
period is shown in Figure 4. With values typically falling between 8 and 16 contacts per week,
the plot shows clear variations in the average contact number over time and the number of
individual filled in specific week presented in Table 6. It is possible to spot periodic peaks
that signify times when social interaction is higher. Notwithstanding this fluctuation, the mean
contact trend does not exhibit a consistent upward or downward trajectory, indicating that the
average social mixing behavior was fairly constant throughout the study weeks.

10
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Figure 5: Variance structure of Contact

Figure 5 displays the variance of social contact numbers across weeks. The variance fluctuates
considerably over time, indicating notable heterogeneity in individual contact behaviors also
the number of individual filled in each week presented in Table 6. Some weeks, such as week
2025-W06 and 2025-W10, show extremely high variability . Other weeks, like 2025-W13, show
relatively low variance, indicating more homogeneous contact behavior among participants.
These patterns reinforce the presence of overdispersion in contact data and justify the use of
models like the negative binomial distribution, which can accommodate such variability better
than the Poisson model. Additionally, spikes in variance may coincide with holidays, policy
changes, or public health messaging, warranting further contextual investigation.

3.2 Modeling Results

Both random intercept only and random intercept and slope GLMM specifications were fitted,
but the model with only a random intercept was preferred and used as the initial parameteri-
sation in the simulation, as the variance of the random slope for week was almost zero (Table
7) and the data exhibited overdispersion (Table 3), for which a negative binomial distribution
was employed.

11



3.2 Modeling Results 3 RESULTS

Table 3: Negative Binomial GLMM results comparing Complete Case and Multiple Imputation (MI)
analyses.

Covariate Complete Case Multiple Imputation
Estimate Std. Error p-value Estimate Std. Error p-value

Intercept 2.7881 0.1827 <0.001 2.6660 0.1833 <0.001
No/Mild symptoms 0.0536 0.1005 0.590 0.0817 0.0863 0.344
Age 60+ -0.4573 0.0836 <0.001 -0.4602 0.0718 <0.001
Male -0.1170 0.0772 0.130 -0.0868 0.0696 0.212
Vaccinated -0.0652 0.1612 0.690 -0.1215 0.1715 0.479

Random effect (ID) Variance = 0.160, SD = 0.400 Variance = 0.368, SD = 0.607
Dispersion (nbinom1) 17.5 14.1

The results in Table 3 show that the patterns are the same in both the complete case and
the multiple imputation (MI) datasets. People aged 60 and older reported significantly fewer
contacts than people aged 18 to 59 (p < 0.001) in both approaches. There were no statistically
significant differences in the number of contacts between participants with no or mild symptoms
(n = 608) and those with moderate or severe symptoms (n = 170).

The much smaller sample size in the moderate/severe group means the analysis may lack suf-
ficient statistical power to detect small differences, so the absence of significance should be
interpreted with care. This could mean that mild symptoms do not lead to substantial changes
in behaviour, or that individuals remain socially active even when experiencing sever symptoms.
The effects of sex and vaccination status were also not statistically significant, but males had
less contact in both models. The fact that the complete case and MI analyses agree with each
other makes these results even stronger. This means that the interpretation wasn’t changed
much by filling in missing data.

Directly to express as mean contact, the predicted mean contact count for the reference group
(female, unvaccinated, 18–59 years, moderate/severe symptoms) was approximately 14.4 (exp(2.666)).
Relative to this baseline, individuals aged 60+ reported about 37% fewer contacts (mean ≈ 9),
while males and vaccinated individuals reported slightly fewer contacts (means ≈ 14 and 13,
respectively). Those with no or mild symptoms reported a slightly higher mean (16), though
the difference was not statistically significant.

12
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Table 4: GEE logistic regression results for Fragile status (Complete Case vs Multiple Imputation).

Covariate Complete Case Multiple Imputation
Estimate Std. Error p-value Estimate Std. Error p-value

Intercept 2.799 0.637 <0.001 2.318 0.547 <0.001
No/Mild symptoms -0.185 0.319 0.560 0.138 0.248 0.580
Age group: 60+ -0.030 0.229 0.900 -0.034 0.188 0.850
Sex: Male 0.157 0.222 0.480 0.232 0.186 0.210
Vaccinated -0.640 0.607 0.290 -0.346 0.536 0.520

In the multiple imputation (MI) GEE model, none of the covariates were statistically significant
predictors of reporting contact with fragile persons. The coefficient for symptom severity (β =
0.138, p = 0.58) suggests that individuals with no or mild symptoms had slightly higher log-
odds of contacting a fragile person compared to those with moderate or severe symptoms, but
the effect was negligible. Similarly, the effect of age (β = −0.034, p = 0.85) and sex (β = 0.232,
p = 0.21) were close to zero, indicating little to no difference in log-odds across age groups or
between males and females. Vaccination status also did not meaningfully influence contact with
fragile individuals (β = −0.346, p = 0.52).

When expressed in terms of probabilities, the estimated likelihood of reporting a fragile contact
was consistently high across all groups: about 92% for individuals with no or mild symptoms
versus 91% for those with moderate or severe symptoms; approximately 91–92% for males and
females; and around 89% for vaccinated individuals compared with 91% for unvaccinated ones.
These findings indicate that the probability of fragile contacts remained stable and did not differ
substantially across demographic or clinical characteristics.

3.3 Simulation Result

We informed the simulation-based model using the estimates obtained from the statistical anal-
ysis, and supplemented it with additional publicly available estimates for the categories not
observed in our dataset. For children aged 0–12 years, the mean number of contacts was set
to 10, while adolescents aged 13–17 years were assumed to have an average of 14 contacts,
both based on the SoCRATES social contact online tool(https://lwillem.shinyapps.io/

socrates_rshiny/).Estimates for adults were derived from our generalized linear mixed model
(GLMM): adults aged 18–59 reported on average 16 contacts, whereas older adults aged 60 and
above reported about 10. These contact rates demonstrate how people of different ages gener-
ally interact with each other, and they were used as input parameters in the individual-based
simulation model to depict how the virus actually spreads.

Figures 6 and 7 present the simulated final epidemic sizes across multiple intervention scenarios,
comparing a Baseline (blue), a Statistical Model-based adaptive contact reduction (green), and a
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Vaccination intensification scenario (Vac_2x, red). The scenarios vary by vaccination coverage
(30%, 60%, 90%) and combinations of symptom-driven contact reduction and vaccination-based
contact reduction.

Figure 6: Over all Epidemic Final Size

Figure 6, which includes all outbreaks (including those that quickly die out), shows more
variability and a larger number of small epidemic sizes across scenarios with higher contact
reductions. Both the Baseline and StatModel approaches at higher coverage levels (60% and
90%) produce a significant number of early extinctions, as indicated by the large proportion of
small final sizes near zero. By contrast, the Vac_2x scenario shows consistently high epidemic
sizes with minimal early extinctions, again pointing to the importance of integrating behavioral
interventions with vaccination programs.
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Figure 7: Final Epidemic Size (Non-Extinct Outbreaks Only)

In Figure 7, which includes only non-extinct outbreaks (final epidemic size exceeding 10% of
the population), the StatModel consistently yields smaller epidemic sizes than the Baseline for
all coverage levels, indicating that targeted reductions in contact rates informed by statistical
modelling can slow transmission. For the scenario contact rate is double for vaccinated group
results in substantially larger epidemic sizes, likely due to the absence of strong contact reduc-
tions despite higher vaccination efforts, highlighting that vaccination alone without significant
behavioral modifications may be insufficient to suppress large outbreaks, especially in scenarios
with partial vaccine effectiveness.

Overall, these results emphasize that while increasing vaccination coverage is beneficial, combin-
ing vaccination with targeted contact reductions especially for symptomatic individuals yields
the most pronounced reductions in epidemic size and increases the probability of outbreak
extinction. This outcome reflects the dynamics of a leaky vaccine: although susceptibility is
reduced by half, increased contact frequency among vaccinated individuals offsets this benefit,
sustaining or even amplifying transmission.

Table 5 presents extinction probabilities across vaccination coverage levels (30%, 60%, 90%) and
behavioral scenarios, where "extinct" is defined as the epidemic prevalence dropping to ≤10%
of the population (≤100 individuals) within 100 days, based on 100 simulations per scenario.
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Table 5: Extinction rates (The value in the table under the Condition of Each Column)

Coverage Baseline Statistical Model Double (Vac) Symp Contact rate(VacFixed)

30% 0.63 0.78 0.46 high= 0.41, low = 1.00
60% 0.95 0.96 0.46 high= 0.61, low= 1.00
90% 1.00 1.00 0.55 high = 1.00, low = 1.00

Extinction rates for different vaccination coverages and contact rate adjustment scenarios are
presented in Table 5. As expected, higher vaccination coverage consistently increases the prob-
ability of outbreak extinction across all scenarios. The baseline scenario, where no contact
rate adjustments are applied, shows lower extinction rates compared to the statistical model
scenario, which incorporates contact reductions from the fitted model. In the “Double” sce-
nario, where vaccinated individuals have twice as many contacts as unvaccinated individuals,
extinction rates are substantially lower, especially at intermediate coverage (e.g., 0.46 at 60%
coverage), indicating the potential negative effect of increased contact behavior among vacci-
nated individuals.

When vaccination effects on contact rates are fixed to those from the statistical model, symptom-
related contact reductions strongly influence extinction probabilities. Strong reductions (contact
rate = 0.1(low), near isolation) lead to extinction being almost certain across all coverage levels.
In contrast,if we allow higher contact for symptomatic (contact rate = 1.5(high)) result in much
lower extinction probabilities, showing that limited behavioural change when symptomatic can
sustain transmission even at higher vaccination coverage.

These results highlight that both vaccination coverage and behavioral adaptations play a critical
role in determining epidemic extinction.

Figure 8: prevalence across 5 simulations

The evolution of infections over time for five stochastic simulations under the Statistical Model
scenario is shown in Figure 8. Despite identical parameters, the epidemic curves differ in peak
size and timing, illustrating the role of chance in early transmission. All runs display a single
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wave with peaks between days 60 and 90, but maximum prevalence varies (about 90–135 cases).
This highlights the importance of stochastic simulation for capturing variability, while overall
outcomes are summarized in the boxplots.

4 Discussion

This study combined statistical modeling and individual-based simulations to investigate how
social contact behaviour, symptom onset, and vaccination status shape the spread of respiratory
infections. At the statistical modeling stage, generalized linear mixed models (GLMM) and
generalized estimating equations (GEE) were applied to evaluate factors of number of social
contact and the probability of interacting with fragile individuals. The simulation stage then
used these data-driven parameters to explore epidemic outcomes under alternative behavioural
and vaccination scenarios.

At the descriptive level, the mean structure of social contacts revealed moderate week-to-week
fluctuations with identifiable peaks and troughs. These variations may reflect seasonal or be-
havioural changes, such as holidays, policy shifts, or school and work schedules, consistent with
previous evidence showing that contact activity is not constant across time [21]. The individual
profile plots further demonstrated heterogeneity in contact behaviour, with some individuals
consistently reporting higher numbers of contacts than others. Such variability motivates the
use of random intercept and slope models, since both baseline levels and changes over time
differ across individuals.

Symptom reporting showed clear gender differences: females reported higher symptom incidence
than males. A mix of biological and behavioural factors may explain this finding. For exam-
ple, fluctuations in sex hormones during the menstrual cycle are known to influence immune
response [22], and prior studies have suggested that women are generally more likely to perceive
and report symptoms compared to men [23]. These observations underscore the importance of
considering gender in both behavioural surveys and epidemic models. In contrast, the GLMM
analysis found no strong statistical evidence that the number of contacts was significantly re-
duced among individuals with moderate or severe symptoms compared to those with mild or
no symptoms.

However, the direction of the effect was consistent with the hypothesis that symptomatic indi-
viduals reduce mixing, a behavioural adjustment highlighted in other social contact studies [24].
The limited power of this analysis, particularly due to the smaller sample of participants with
severe symptoms, may partly explain the lack of significance. Age also emerged as a consistent
determinant, with older adults (60+) reporting fewer contacts, consistent with findings from
pre-pandemic social contact data too such as SoCRATES [25].For example, in the SOCRATES
contact rate data tool, the mean contact rate for older people is 8, while our findings show a
mean contact rate of 9, which are almost the same.
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The GEE analysis on contact with fragile person further indicated that demographic and
symptom-related determinants had only weak or non-significant effects. Multiple imputation
was essential in this context, as complete-case analysis alone would have reduced power and
potentially biased estimates, given the non-random pattern of missingness [26]. While multiple
imputation improved the robustness of results, the lack of strong associations suggests that con-
tact with fragile individuals may be driven by contextual or situational factors not captured in
our dataset in addition to the sample (the number of individual in each category of the factor).

Simulation results reinforced the importance of behavioural assumptions made in epidemiolog-
ical models. In baseline scenarios without behavioural adjustment, outbreaks were larger and
extinction rates were lower. Incorporating contact reductions due to symptom onset and vacci-
nation (as informed by the statistical model) increased extinction probabilities, demonstrating
that failing to account for adaptive behaviours leads to biased epidemic projections. For in-
stance, at 30% vaccination coverage, extinction rates increased from 0.63 under the baseline to
0.78 under the statistical model assumptions. Notably, scenarios assuming that vaccinated indi-
viduals doubled their contact rates produced both larger final epidemic sizes and substantially
lower extinction probabilities (e.g., 0.46 at 60% coverage). This counterintuitive result illus-
trates the concept of a “leaky vaccine”: although vaccination reduces susceptibility, its benefits
can be offset if behavioural risk compensation occurs, where vaccinated individuals engage in
higher levels of social mixing [27]. In such cases, the epidemiological protection of vaccines may
be undermined by behavioural responses.

Taken together, these findings emphasize that both biological and behavioural mechanisms
must be integrated into epidemic models. Models assuming homogeneous mixing or static
behaviour risk overestimating or underestimating epidemic potential. Our study shows that
realistic behavioural corrections particularly reductions in contact during symptomatic periods
and vaccination-related behavioural changes are essential to capture epidemic dynamics.

However, several limitations must be acknowledged. First, the contact data were collected dur-
ing a specific period of the winter season and may not capture seasonal variability in mixing
patterns, which are known to affect respiratory disease transmission. Second, the study popula-
tion was self-selected through the Infectieradar.be platform and may not be fully representative
of the general population in terms of age, health status, or social behaviour, potentially limiting
the generalizability of our findings. Third, symptom reports and contact numbers were self-
reported and thus subject to recall bias and reporting bias, which could differ systematically
between groups (e.g., across gender or vaccination status). Finally, the simulations simplified
several aspects of epidemic dynamics by assuming fixed vaccine effectiveness, no waning immu-
nity, and homogeneous transmission probability within age groups. These assumptions may not
reflect real-world heterogeneity and could affect the projected epidemic trajectories.

Overall, this study demonstrates the value of combining empirical data, statistical models, and
simulations to understand epidemic processes. Gender differences in symptom reporting, be-
havioral adjustments during symptoms, and risk compensation among vaccinated individuals
were explored; however, we did not achieve sufficient statistical power to establish significance,
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and the true adjustments could differ. These findings show that vaccination programs should
include clear messages to discourage people from increasing their social interactions after get-
ting vaccinated. They also suggest that epidemic models need to account for differences in how
people behave to provide accurate and useful predictions for policymakers.Overall, our find-
ings demonstrate the importance of integrating empirical contact data into epidemic models.
Symptom onset and vaccination status influence behavior in small but important ways, and
accounting for these dynamics can substantially improve estimates of epidemic potential and
intervention impact.

5 Conclusion and Future Work

This study combined social contact data, statistical modeling, and individual-based simulations
to assess how symptom onset and vaccination status may influence transmission dynamics of
respiratory infections. Using generalized linear mixed models and generalized estimating equa-
tions, we found that contact behaviour was shaped by age and symptom reporting. Although
women reported symptoms more frequently than men at the descriptive level, gender was not
a significant predictor in the statistical models. Older adults consistently reported fewer con-
tacts, in line with prior evidence. Reductions in contacts during symptomatic periods were
modest and not statistically significant, but the direction of the effect aligned with behavioural
expectations described in earlier studies.

The simulation analysis illustrated how different behavioural assumptions lead to different epi-
demic outcomes. Scenarios assuming no behavioural change produced larger epidemic sizes and
lower extinction probabilities compared with scenarios incorporating contact reductions derived
from the statistical models. Increasing vaccination coverage generally led to higher extinction
probabilities, while a theoretical scenario where vaccinated individuals doubled their contact
rates showed how behavioural compensation could counteract vaccine benefits. Although this
doubling assumption is unlikely in practice, it provides insight into how sensitive epidemic out-
comes are to behavioural changes following vaccination. Taken together, these findings highlight
the importance of exploring a range of plausible behavioural assumptions when using simulation
models to inform epidemic preparedness.

In conclusion, behavioural heterogeneity, particularly changes in social mixing during symp-
tomatic periods and following vaccination, plays a central role in epidemic dynamics. Future
epidemic models should explicitly incorporate such adaptive processes, as failing to do so risks
overlooking important variability in epidemic trajectories. For public health, the findings em-
phasize the value of communication strategies that discourage risk-compensating behaviours
after vaccination and encourage timely contact reduction when symptoms occur.

A natural next step is to extend the simulations to reflect a broader set of behavioural and
epidemiological mechanisms. This could include waning immunity, reinfections, seasonality,
and heterogeneity in vaccine effectiveness. Another avenue is to use models such as generalized
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estimating equations to simulate not only overall contact counts but also the probability of
interaction with fragile individuals, thereby providing a more nuanced picture of transmission
risk. Future work should also validate the results against data collected in other regions or time
periods to assess generalizability. Developing more adaptive simulation frameworks that inte-
grate empirical findings with flexible behavioural assumptions will improve the policy relevance
of epidemic forecasts.

Ethical Considerations

The data used in this study were not publicly available but were accessed through formal per-
mission granted by the data provider for academic research purposes. All data were fully
anonymized prior to access, and no personally identifiable information was included. The
dataset was stored securely and handled in compliance with data protection and confidentiality
standards. As the study involved secondary analysis of de-identified data and did not involve
direct interaction with participants, no additional ethical approval was required. The research
was conducted with full respect for participant privacy and in accordance with ethical research
practices.

Stakeholder Awareness

The data for this study were obtained through the participatory surveillance platform Infectier-
adar.be, which engages citizens in real-time reporting of symptoms and social contacts. Such
participatory systems not only provide timely data but also encourage community involvement
in public health monitoring. The results of this study carry important implications for stake-
holders: by showing how symptom severity and vaccination status shape contact behaviour,
they highlight opportunities for more adaptive and targeted epidemic control strategies. For
example, public health authorities can use these insights to refine risk communication, en-
couraging individuals to reduce contacts when symptomatic and discouraging compensatory
increases in mixing after vaccination. Moreover, the findings underscore the value of integrat-
ing behavioural data into epidemic preparedness planning, allowing policymakers to anticipate
realistic patterns of disease spread rather than relying on static or homogeneous assumptions.
Ultimately, strengthening stakeholder awareness of these behavioural mechanisms can support
the design of more effective, evidence-based interventions during future respiratory epidemics.
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Appendix

Symptom Trend by Occupation

Figure 9: Symptom trend by occupational status

Symptom Trend by Flu Vaccination Status

Figure 10: Symptom trend by flu vaccination status
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Figure 11: Social Contact Rates (SOCRATES) Data Tool :Belgium2006(Mossong 2008)
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Table 6: Mean contacts and number of observations by week

Week Date Mean Contact Number of Observations

2024-10-14 15.10 94
2024-10-21 12.20 96
2024-10-28 14.37 78
2024-11-04 12.87 61
2024-11-11 8.49 67
2024-11-18 16.16 57
2024-11-25 14.47 62
2024-12-02 13.05 56
2024-12-09 16.25 63
2024-12-16 9.23 39
2024-12-23 10.47 57
2024-12-30 9.23 44
2025-01-06 6.57 53
2025-01-13 10.91 32
2025-01-20 14.80 61
2025-01-27 11.94 48
2025-02-03 9.89 45
2025-02-10 12.47 45
2025-02-17 9.49 53
2025-02-24 10.92 48
2025-03-03 14.69 45
2025-03-10 13.84 51
2025-03-17 8.05 21
2025-03-24 10.66 50
2025-03-31 13.08 37

Table 7: Poisson GLMM results (Complete Case vs Multiple Imputation)

Covariate Complete Case (CC) Multiple Imputation (MI)

Estimate SE p-value Estimate SE p-value

Intercept 2.402 0.237 <0.001 2.345 0.150 <0.001
No/Mild symptoms 0.175 0.046 <0.001 -0.075 0.036 0.035
Age group: 60+ -0.704 0.122 <0.001 -0.675 0.099 <0.001
Sex: Male -0.185 0.115 0.108 -0.144 0.105 0.170
Sex: Undefined 1.536 1.216 0.207 -0.352 0.976 0.718
Vaccinated -0.199 0.243 0.414 -0.043 0.135 0.751

25



REFERENCES REFERENCES

Table 8: Negative Binomial GLMM with Random intercept and slope

Complete Case Multiple Imputation

Term Estimate Std. Error p-value Estimate Std. Error p-value

(Intercept) 2.369 0.226 < 0.001 2.304 0.220 < 0.001
symptom_severity_binaryNo/Mild symptoms 0.057 0.127 0.653 0.091 0.101 0.371
AgeG60+ -0.599 0.107 < 0.001 -0.560 0.088 < 0.001
SEXMale -0.174 0.101 0.083 -0.113 0.084 0.181
SEXUndefined 1.271 0.948 0.180 0.051 0.828 0.951
vac_status_binaryVaccinated -0.078 0.213 0.713 -0.144 0.209 0.491

Random intercept variance (participantId) 1.385 – – 1.333 – –
Random slope variance (week) 0.000912 – – 0.000760 – –
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R-code

cont <- readRDS ("C:/Users/ademu/ Desktop / Uhasselt /SYSS/ Thesis / updated
dataset /MT_CON.rds")

cont2 <- readRDS ("C:/Users/ademu/ Desktop / Uhasselt /SYSS/ Thesis / updated
dataset /MT_CON2.rds")

intake <- readRDS ("C:/Users/ademu/ Desktop / Uhasselt /SYSS/ Thesis / updated
dataset /MT_ intake .rds")

vac <- readRDS ("C:/Users/ademu/ Desktop / Uhasselt /SYSS/ Thesis / updated
dataset /MT_VAC.rds")

symp <- readRDS ("C:/Users/ademu/ Desktop / Uhasselt /SYSS/ Thesis / updated
dataset /MT_ weekly .rds")

# Prepare contact counts
contact _count <- cont2 %>%

mutate (ADT = as.Date(ADTM), week = isoweek (ADT), value_num = as.
numeric (value)) %>%

filter (!is.na(value_num)) %>%
group_by( participantId , week) %>%
summarise ( contact _ number = sum(value_num , na.rm = TRUE), . groups = "

drop")

# Base contact dataset
cont_base <- cont %>%

mutate (ADT = as.Date(ADTM), week = isoweek (ADT), participantId =
participantID ) %>%

select ( participantId , ADT , week , Contacts , Fragile _NONE)

# Merge and clean
cont_with_ contacts <- cont_base %>%

left_join( contact _count , by = c(" participantId ", "week")) %>%
mutate ( contact _ number = if_else( Contacts == "No", 0, contact _ number ))

symp_clean <- symp %>%
mutate (ADT = as.Date(ADTM), week = isoweek (ADT)) %>%
group_by( participantID , week) %>% slice (1) %>% ungroup ()

intake _clean <- intake %>% group_by( participantID ) %>% slice (1) %>%
ungroup ()

vac_clean <- vac %>% group_by( participantID ) %>% slice (1) %>%
ungroup ()

# Merge datasets
merged _data <- cont_with_ contacts %>%

left_join(symp_clean , by = c(" participantId " = " participantID ", "week
")) %>%

left_join( intake _clean , by = c(" participantId " = " participantID "))
%>%

left_join(vac_clean , by = c(" participantId " = " participantID "))
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# Symptom severity
names( merged _data)[names( merged _data) == "No symptoms "] <- "no_ symptoms

"
mild_ symptoms <- c(" Sneezing ", "Runny or blocked nose", " Watery

bloodshot eyes")
modsev _ symptoms <- c("Cough", "Sore throat ", " Headache ", " Chills ", "

Nausea ",
" Muscle /joint pain", " Shortness of breath ", "Chest

pain",
"Fever", " Confusion ", " Vomiting ")

merged _data <- merged _data %>%
rowwise () %>%
mutate (

mild_count = sum(c_ across (all_of(mild_ symptoms )) == "True", na.rm =
TRUE),

modsev _count = sum(c_ across (all_of( modsev _ symptoms )) == "True", na.
rm = TRUE),

symptom _ severity _ binary = case_when(
no_ symptoms == "True" & mild_count == 0 & modsev _count == 0 ~ "No

/Mild symptoms ",
modsev _count > 0 ~ " Moderate / Severe symptoms ",
mild_count > 0 ~ "No/Mild symptoms ",
TRUE ~ NA_ character _

)
) %>%
ungroup ()

# Recode
merged _data <- merged _data %>%

mutate (
vac_ status _ binary = case_when(

FLU_ VACCINE _2425 == "Yes" | VACCINATION _ STATUS _ COV2425 == "Yes" ~
" Vaccinated ",

FLU_ VACCINE _2425 %in% c("No", "I don ’t know") &
VACCINATION _ STATUS _ COV2425 %in% c("No plan to receive

vaccination ", "No will not get vaccinated ", "I don ’t know")
~ "Not vaccinated ",

TRUE ~ NA_ character _
),
AgeG = case_when(

AGE >= 18 & AGE <= 59 ~ "18 -59",
AGE >= 60 ~ "60+",
TRUE ~ NA_ character _

),
Fragilestatus = ifelse ( Fragile _NONE == "True", 1, 0)

)
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# Final model data
model_data <- merged _data %>%

select ( participantId , contact _number , symptom _ severity _binary , AgeG ,
SEX , vac_ status _binary , Fragilestatus ) %>%

mutate ( participantId = as. factor ( participantId ))

# Impute missing
imputed _data <- mice(model_data , m = 5, method = "pmm", seed = 123)
completed _data <- complete ( imputed _data , 1) %>%

mutate ( across (c( symptom _ severity _binary , AgeG , vac_ status _binary , SEX
, participantId , Fragilestatus ), as. factor ))

# Poisson model
poisson _glmm <- glmer(

contact _ number ~ symptom _ severity _ binary + AgeG + SEX + vac_ status _
binary + (1 | participantId ),

data = completed _data ,
family = poisson ()

)
summary ( poisson _glmm)

# NegBin model
nb_glmm <- glmmTMB (

contact _ number ~ symptom _ severity _ binary + AgeG + SEX + vac_ status _
binary + (1 | participantId ),

data = completed _data ,
family = nbinom2 ()

)
summary (nb_glmm)

# GEE
gee_data <- completed _data %>%

filter (SEX %in% c("Male", " Female ")) %>%
mutate ( Fragilestatus = as. numeric (as. character ( Fragilestatus )))

gee_ fragile <- geeglm (
Fragilestatus ~ symptom _ severity _ binary + AgeG + SEX + vac_ status _

binary ,
data = gee_data ,
id = participantId ,
family = binomial (link = "logit"),
corstr = " exchangeable "

)
summary (gee_ fragile )
###
Code For simulation \\
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# #####################
# Set shared simulation parameters

n <- 1000
age.distr <- c(0.25 , 0.25 , 0.25 , 0.25)
ct.rates <- c(10, 14, 16, 10)
nSeeds <- 1
R0 <- 1.5
inf.param <- R0 / (sum(ct.rates * age.distr))
pathogen <- "FLU" #or "COVID -19"
bc <- 1
veff <- 0.5
vaccov <- 0.3
t.stop <- 100
nSim <- 100
nSeed <- 1062021
set.seed(nSeed)
# ###########
# Load simulation function
source (" SimFunctions .R")

# Shared parameters

coverages <-c(0.3 ,0.6 ,0.9)
bc_stat <-rep (0.9 ,4)
vac_stat <-rep (0.9 ,4)

# 4. Vaccination coverage & effectiveness scenarios
for (cov in coverages ) {

# Baseline coverage
scenarios [[ paste0 (" Coverage ", cov , "_ Baseline ")]] <- list(bc = rep (1,

4), vac = rep (1, 4), vaccov = cov)

# Statistical model coverage
scenarios [[ paste0 (" Coverage ", cov , "_ StatModel ")]] <- list(bc = bc_

stat , vac = vac_stat , vaccov = cov)

# Additional : vaccinated twice as many contacts as unvaccinated
scenarios [[ paste0 (" Coverage ", cov , "_Vac2x")]] <- list(bc = rep (0.9 ,

4), vac = rep (1.9 , 4), vaccov = cov)

# Low and high symptom contact reduction , vaccination fixed
scenarios [[ paste0 (" Coverage ", cov , "_ SympLow _ VacFixed ")]] <- list(

bc = rep (1.5 , 4), # Low reduction due to symptoms
vac = vac_stat , # Fixed from statistical model
vaccov = cov

)
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scenarios [[ paste0 (" Coverage ", cov , "_ SympHigh _ VacFixed ")]] <- list(
bc = rep (0.1 , 4), # High reduction due to symptoms
vac = vac_stat , # Fixed from statistical model
vaccov = cov

)

}

# Run all scenarios
results <- list ()
extinction _rates <- data.frame( Scenario = character (), ExtinctionRate =

numeric ())

for (sc_name in names( scenarios )) {
cat(" Running :", sc_name , "\n")
scen <- scenarios [[sc_name ]]

epi.list <- replicate (nSim , sim.epi(
n = n,
ct.rates = ct.rates ,
age.distr = age.distr ,
nSeeds = nSeeds ,
inf.param = inf.param ,
pathogen = pathogen ,
contact . reduction .bc = scen$bc ,
contact . reduction .vac = scen$vac ,
t.stop = t.stop ,
bc = 1,
veff = veff ,
vaccov = scen$ vaccov

), simplify = FALSE)

# Final sizes
final_sizes <- sapply (epi.list , function (x) x$ FinalSize $ FinalSize1 )
results [[sc_name ]] <- final_sizes

# Extinction rate ( 10 % infected )
ext_rate <- mean(final_sizes <= 0.1 * n)
extinction _rates <- rbind( extinction _rates ,

data. frame( Scenario = sc_name ,
ExtinctionRate = round(ext_rate , 3)))

}

# Combine results for plotting
plot_data <- data.frame(

FinalSize = unlist ( results ),
Scenario = rep(names( results ), each = nSim)
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)

# Plot
boxplot ( FinalSize ~ Scenario , data = plot_data ,

las = 2, col = rainbow ( length ( results )),
main = "Final Epidemic Sizes by Scenario ",
ylab = "Final size ( number infected )")

par(mar = c(12, 5, 4, 2) + 0.1) # increase bottom margin for labels

boxplot ( FinalSize ~ Scenario , data = plot_data ,
las = 2, # rotate labels to vertical
cex.axis = 0.7, # smaller axis text
col = rainbow ( length ( results )),
main = "Final Epidemic Sizes by Scenario ",
ylab = "Final size ( number infected )")

# Extinction table
print( extinction _rates)

# Save extinction table for Overleaf
library ( xtable )
xtable ( extinction _rates , caption = " Extinction rates for all simulation

scenarios ")

>´
library ( ggplot2 )plot_data <- subset (plot_data ,

!( Scenario %in% c(" Baseline ", " StatModel "," VacFixed _
SympVarHigh "," VacFixed _ SympVarLow ")))

# Assign grouping category for coloring
plot_data$Group <- ifelse (grepl(" Baseline ", plot_data$ Scenario ), "

Baseline ",
ifelse (grepl("Vac2x", plot_data$ Scenario ), "

Vac_2x",
ifelse (grepl("Vac0 .95", plot_data$

Scenario ), "Vac_0.95",
ifelse (grepl("BC0 .9", plot_data

$ Scenario ), "BC_0.9", "
StatModel "))))

# Custom colors for groups
group_ colors <- c(" Baseline " = "blue",

"BC_0.9" = " orange ",
"Vac_0.95" = "black",
"Vac_2x" = "red",
" StatModel " = "green")
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ggplot (plot_data , aes(x = Scenario , y = FinalSize , fill = Group)) +
geom_ boxplot () +
scale_fill_ manual ( values = group_ colors ) +
theme_ minimal () +
theme(axis.text.x = element _text(angle = 45, hjust = 1))

>´
# ################## NoNE# Filter only non - extinct outbreaks
non_ extinct _df <- subset (plot_data , FinalSize > 0.10 * n)

# Assign grouping category for coloring
non_ extinct _df$Group <- ifelse (grepl(" Baseline ", non_ extinct _df$

Scenario ), " Baseline ",
ifelse (grepl("Vac2x", non_ extinct _df$

Scenario ), "Vac_2x",
ifelse (grepl("Vac0 .95", non_

extinct _df$ Scenario ), "Vac_
0.95",

ifelse (grepl("BC0 .9", non_
extinct _df$ Scenario ), "
BC_0.9", " StatModel ")))
)

# Custom colors for groups
group_ colors <- c(" Baseline " = "blue",

"BC_0.9" = " orange ",
"Vac_0.95" = "black",
"Vac_2x" = "red",
" StatModel " = "green")

# Plot
library ( ggplot2 )
ggplot (non_ extinct _df , aes(x = Scenario , y = FinalSize , fill = Group))

+
geom_ boxplot () +
scale_fill_ manual ( values = group_ colors ) +
theme_ minimal (base_size = 14) +
labs(title = "",

y = "Final Size ( Number of Infected )",
x = " Scenario ") +

theme(axis.text.x = element _text(angle = 45, hjust = 1))

>´
# Filter non - extinct outbreaks and remove " Baseline " and " StatModel "

alone non_ extinct _df <- subset (plot_data ,
FinalSize > 0.10 * n &
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!( Scenario %in% c(" Baseline ", " StatModel ")))

# Assign grouping category for coloring
non_ extinct _df$Group <- ifelse (grepl(" Baseline ", non_ extinct _df$

Scenario ), " Baseline ",
ifelse (grepl("Vac2x", non_ extinct _df$

Scenario ), "Vac_2x",
ifelse (grepl("Vac0 .95", non_

extinct _df$ Scenario ), "Vac_
0.95",

ifelse (grepl("BC0 .9", non_
extinct _df$ Scenario ), "
BC_0.9", " StatModel ")))
)

# Custom colors for groups
group_ colors <- c(" Baseline " = "blue",

"BC_0.9" = " orange ",
"Vac_0.95" = "black",
"Vac_2x" = "red",
" StatModel " = "green")

# Plot
ggplot (non_ extinct _df , aes(x = Scenario , y = FinalSize , fill = Group))

+
geom_ boxplot () +
scale_fill_ manual ( values = group_ colors ) +
theme_ minimal (base_size = 14) +
labs(title = "",

y = "Final Size ( Number of Infected )",
x = " Scenario ") +

theme(axis.text.x = element _text(angle = 45, hjust = 1))

>´
The source For the above Code( simFunction )\\ #

#########################################################################

# Set of function for the co - infection script
#

#########################################################################

# function used to define the epidemiological progression
incubation . period <-function ( pathogen ){

if ( pathogen =="COVID -19"){
return ( rlnorm (1, meanlog = 1.54 , sdlog = 0.47)) # Zhang et al. 2020

DOI: 10.1016 /S1473 -3099(20) 30230 -9
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}
if ( pathogen =="FLU"){

return ( rlnorm (1, meanlog = log (1.4) , sdlog = log (1.51) )) # Lessler
et al. 2009 DOI: 10.1016 /S1473 -3099(09) 70069 -6

}
}

infection . period . length <-function ( pathogen ){
if ( pathogen =="COVID -19"){

return (12) # 10 days of infecious period + 2 days of latent period
}
if ( pathogen =="FLU"){

return (8) # Carrat et al. 2008
}

}

infectiousness . measure <-function (pathogen ,t){
if ( pathogen =="COVID -19"){

if (t <2){ # Latent period - https://doi.org/ 10.1016 /j.ijid
.2020.06.036

return (0)
}else{

return (1/10)
}

>´
} if ( pathogen =="FLU"){

if (t <1.6){ # Latent period - https://doi.org/ 10.1016 /j. epidem
.2012.06.001

return (0)
}else{

return (1/6.4)
}

>´
}

}

>´
prob. symptinf <-function ( pathogen ){ if ( pathogen =="COVID -19"){

return (0.69) #
}
if ( pathogen =="FLU"){

return (0.67) # Carrat et al. 2008
}
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}

# Computing Rt - started but haven ’t look at this anymore
# Rt
comp.RT <-function ( status .matrix ,individual ,Rt){

infectees <-which( status . matrix $ infector == individual ) # people infected
by individual

Rt.temp <-0
if ( length ( infectees ) >0){

for (i1 in 1: length ( infectees )){
if ( status . matrix $time.of. infection [ infectees [i1]]> status . matrix $

time.of. infection [ individual ]){
Rt.temp <-Rt.temp +1

}
}

}
Rt <-rbind(Rt ,c( status . matrix $time.of. infection [ individual ],Rt.temp))
return (Rt)

}

>´
# Creating a synthetic population #input: age.distr -> frequency /total

pop per class
pop. matrix <-function (n, age.distr){

age.group <-sample (c("C","T","A","E"),n, prob = age.distr , replace =
TRUE)

status . matrix <- data.frame( infected = rep (0,n), # 1
time.of. infection = NA , # 2
infector = NA , # 3
severity = 0, # 4 1

Symptomatic 2 Asymptomatic
TimeSymptomOnset = Inf , # 5
Vaccinated = 0, # 6 no

immunity , 1 vaccinated
AgeGroup = age.group , # 7 "C"

: 0-11 / "T" : 12 -17 / "A" : 18 -65 /
"E": 65+

Recovery = Inf) # 8
return ( status . matrix )

}

sim.epi <-function (n,ct.rates , age.distr , nSeeds , inf.param , pathogen ,
contact . reduction .bc , contact . reduction .vac ,t.stop ,bc , veff , vaccov ){

status . matrix <-pop. matrix (n, age.distr)
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#type of the events that can happen in this simulator
events <-data.frame(" NextCtc "=Inf , " BehavChange "=Inf , " Recovery "=Inf)

infectives <-rep (0,n) # vector that indicates who is infectious at the
current time: 1 infectious 0 non infectious

current .time <-0
index. contact <-rep (0,n) # vector that selects the individuals that

have to propose a new social contact - 1 yes 0 no
time. events <-matrix (NA ,1 ,3)

# transmission parameter dataframe : each line is an individual , the
first colum is the ID , the second and third the transmission
parameter given household or global contacts for pathogen 1, and
fourth and fifth for pathogen 2

transmission . parameters <-data.frame("id"=1:n,"q"=rep(inf.param ,n),"
contact _rate"=rep(NA ,n)) # matrix containing the proposed time of

the next contact (first column ) and the contact individual (
second column )

# Vaccination - we assume individual are vaccinated at the start of
the outbreak , and vaccine effectiveness is constant

nvacc <-round(n* vaccov )
if (nvacc >0){
status . matrix $ Vaccinated [ sample (1:n,nvacc)]<-1
}

# setting contact rate according to the age group
for (i in 1:n){

if ( status . matrix $ Vaccinated [i]==0){
transmission . parameters $ contact _rate[i]<-ct.rates[which(c("C","T"

,"A","E")== status . matrix $ AgeGroup [i])]*inf.param
}else{

transmission . parameters $ contact _rate[i]<-ct.rates[which(c("C","T"
,"A","E")== status . matrix $ AgeGroup [i])] *inf.param* contact .
reduction .vac[which(c("C","T","A","E")== status . matrix $ AgeGroup
[i])]

}
}

#fixed epi parameters
rho <-prob. symptinf ( pathogen )

#Keep track at the moment individuals make contacts
contact .time <-data.frame("id"=1:n,"pr.ctc"=rep(NA ,n))

# first infected : randomly chosen in the population
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first.cases <-sample (n, nSeeds )

# Day at which individuals change their contact behavior
bc.day <-rep(Inf ,n)

for (j in first.cases){
first <-j
status . matrix $ infected [first] <- 1
status . matrix $time.of. infection [first] <- 0
status . matrix $ Recovery [first]<-current .time+ infection . period . length

( pathogen = pathogen )
if (runif (1) <rho){ #if symptomatic #index cases are always

symptomatic individuals
status . matrix $ TimeSymptomOnset [first]<-current .time+ incubation .

period ( pathogen = pathogen )
if(runif (1) <bc){

bc.day[first]<-status . matrix $ TimeSymptomOnset [first]
}
status . matrix $ severity [first]<-1
time. events <-rbind(time.events ,c( current .time ,1.1 , first))
}
else{
status . matrix $ severity [first]<-2
time. events <-rbind(time.events ,c( current .time ,1.2 , first))
}
infectives [first]<-1
contact .time$pr.ctc[first]<-rexp (1, transmission . parameters $ contact _

rate[first ])+ current .time # I generate the next interarrival
time for individual i

}

proposed . individual <-0
temp. contact .time <-0
indiv.prop.ctc <-0
recovered <-0
Rt1 <-matrix (data = NA , nrow = 1, ncol = 2)

while(sum( infectives ) >0 & current .time <t.stop){ #while there are
still infectives , we are within the t.stop

#Phase 1: individuals that has to , propose a new social contact
for (i in which(index. contact ==1) ){ # for all the individuals that

has to propose a global contact
contact .time$pr.ctc[i]<-rexp (1, transmission . parameters $ contact _

rate[i])+ current .time# I generate the next interarrival time
for individual i

index. contact [i]<-0
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}

#Phase 2: identify the next event: select the minimum time among
the events that can occur

ifelse ( length (which(is.na( contact .time$pr.ctc)== FALSE)) >0, events $
NextCtc <-min( contact .time$pr.ctc , na.rm = T),events $ NextCtc <-Inf
) # among all the proposed social contact between houeholds we
select the minimum

ifelse ( length (which(!is. infinite (bc.day))) >0, events $ BehavChange <-
min(bc.day),events $ BehavChange <-Inf ) # minimum quarantine
pathogen 1

ifelse ( length (which(is.na( status . matrix $ Recovery )== FALSE)) >0, events
$ Recovery <-min( status . matrix $Recovery , na.rm = T),events $
Recovery <-Inf) # among all the proposed social contact between
houeholds we select the minimum

next.evts <-colnames ( events )[which(min( events )== events )] # if more
than one event is occuring at a specific time , just sample one

if ( length (next.evts) >1){
next.evts <-sample ( colnames ( events )[which(min( events )== events )],1)

}

if (next.evts ==" NextCtc "){

# identify the infector
current .time <-events $ NextCtc
if ( length (which( contact .time$pr.ctc == events $ NextCtc )) >1){ #

when two contacts happen at the same time select one of the
two

infector <-sample (which( contact .time$pr.ctc == events $ NextCtc )
,1)

}else{
infector <-which( contact .time$pr.ctc == events $ NextCtc )

}
infectee .pool <- setdiff (1:n, infector ) # individuals not in the

same class
infectee <-sample ( infectee .pool ,1) #pick a random individual not

in the class (and not a teacher )
index. contact [ infector ]<-1
contact .time$pr.ctc[ infector ]<-NA

#Loop to check whether an infection event takes place

if ( status . matrix $ infected [ infector ]==1 & status . matrix $ infected [
infectee ]==0){

ifelse ( status . matrix $ Vaccinated [ infectee ]==1 , tempVE <-veff ,
tempVE <-0)
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acc.rate <-(1- tempVE )* infectiousness . measure ( pathogen = pathogen
, t=( current .time - status . matrix $time.of. infection [ infector
]))

if (runif (1) <acc.rate){ # bernoulli experiment to characterize
infection

status . matrix $ infected [ infectee ] <- 1
status . matrix $time.of. infection [ infectee ] <- current .time
status . matrix $ infector [ infectee ] <- infector
status . matrix $ Recovery [ infectee ]<-current .time+ infection .

period . length ( pathogen = pathogen )
if ( runif (1) <rho){ #if symptomatic #index cases are always

symptomatic individuals
status . matrix $ TimeSymptomOnset [ infectee ]<-current .time+

incubation . period ( pathogen = pathogen )
status . matrix $ severity [ infectee ]<-1
if( runif (1) <bc){

bc.day[ infectee ]<-status . matrix $ TimeSymptomOnset [ infectee
]

}
time. events <-rbind(time.events ,c( current .time ,1.1 , infectee )

)
}else{

status . matrix $ severity [ infectee ]<-2
time. events <-rbind(time.events ,c( current .time ,1.2 , infectee )

)
}
infectives [ infectee ]<-1
contact .time$pr.ctc[ infectee ]<-rexp (1, transmission . parameters

$ contact _rate[ infectee ])+ current .time # I generate the
next interarrival time for individual i

}
}

}

if (next.evts ==" BehavChange "){ #next event is changing the contact
rate

current .time <-events $ BehavChange
bc. individuals <-which(bc.day == current .time)
for (k in bc. individuals ){

transmission . parameters $ contact _rate[k]<-transmission .
parameters $ contact _rate[k]* contact . reduction .bc[which(c("C",
"T","A","E")== status . matrix $ AgeGroup [k])]

contact .time$pr.ctc[k]<-rexp (1, transmission . parameters $ contact _
rate[k])+ current .time # I generate the next interarrival
time for individual i

}
bc.day[bc. individuals ]<-Inf
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}

if (next.evts ==" Recovery "){ # recovery from infection
current .time <-events $ Recovery
temp. recovered <-which( status . matrix $ Recovery == events $ Recovery )
for ( recovered in temp. recovered ){

Rt1 <-comp.RT( status . matrix = status .matrix , individual =
recovered ,Rt=Rt1)

status . matrix $ infected [ recovered ]<- -1
status . matrix $ Recovery [ recovered ]<-Inf
infectives [ recovered ]<-0
contact .time$pr.ctc[ recovered ]<-NA
index. contact [ recovered ]<-0
time. events <-rbind(time.events ,c( current .time ,-1, recovered )

)
}

}

}

#When also the other pathogen is present .
time. events <-time. events [-1,]
timev.name <-c("time","event","who")
dimnames (time. events )<-list(NULL ,timev.name)

# compute some summary measures that will be given as output

C1 <-nSeeds
Y1 <-nSeeds
last.day <-round(max(time. events [,1], na.rm = T))

for (i in 1: last.day){
temp.time <-setdiff (which(time. events [,1]>i),which(time. events [,1]>i

+1))
temp.inf .1 <-c(which(time. events [temp.time ,2]==1.1) ,which(time.

events [temp.time ,2]==1.2) )
temp.time .1 <-setdiff (1: length (time. events [ ,1]) ,which(time. events

[,1]>i+1))
C1 <- c(C1 , length (( which(time. events [temp.time .1 ,2]==1.1) ))+ length ((

which(time. events [temp.time .1 ,2]==1.2) ))-length (( which(time.
events [temp.time .1 ,2]== -1))))

Y1 <- c(Y1 , length (temp.inf .1))
}

Fs1 <-length (which(time. events [ ,2]==1.1))+ length (which(time. events
[ ,2]==1.2))
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epi. details <-data.frame("Days"=0: last.day , " Incidence1 "=Y1 , "
Prevalence1 "=C1)

FinalSize <-data.frame(" FinalSize1 "=Fs1)
PeakIncidence <-data.frame(" PeakIncidence "=max(epi. details $ Incidence1 )

," TimePeakIncidence1 "=which(epi. details $ Incidence1 == max(epi.
details $ Incidence1 ))[1])

PeakPrevalence <-data.frame(" PeakPrevalence1 "=max(epi. details $
Prevalence1 )," TimePeakPrevalence1 "=which(epi. details $ Prevalence1 ==
max(epi. details $ Prevalence1 ))[1])

return (list(time. events =time.events , status . matrix = status .matrix ,epi.
details =epi.details , FinalSize =FinalSize , PeakIncidence =
PeakIncidence , PeakPrevalence = PeakPrevalence ,Rt1=Rt1))

}

Survey Questions about the Contact

1. Social contact between yesterday 5 a.m. and today 5 a.m.

• Yes

• No

• I don’t want to say

2. Settings of contacts

Please select all the settings that apply:

• Home

• Work

• School

• Leisure

• Other

3. Number of contacts per age category and gender

Indicate the number of contacts at:

• Home
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• Work

• School

• Leisure

• Other activities

Table template:

Age range Female Male
0–3
3–6
7–12
13–18
19–29
30–39
40–49
50–59
60–69
70–79
80–89
90+

4. Visits to facilities with fragile people

Between yesterday 5 a.m. and today 5 a.m., did you visit an institute with (many) fragile
people?

• No

• Yes, a care home

• Yes, a facility for assisted living

• Yes, a healthcare center other than a hospital (e.g., general practitioner, physiotherapist,
vaccination clinic)

• Yes, a hospital

• Yes, the palliative care unit of a hospital (hospice)

• Other:
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