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Abstract

As the landscape of media streaming evolves, emerging protocols such as Media over QUIC
(MoQ) present new opportunities to address challenges inherent to existing solutions like
WebRTC and HTTP Adaptive Streaming. While these traditional methods either deliver low
latency at the cost of scalability or offer scalability with increased latency, MoQ aims to provide
a balanced approach, leveraging QUIC’s multiplexed and reliable transport features combined
with publish-subscribe models and prioritisation.

However, the adoption of MoQ faces hurdles, notably the complexity in debugging and mon-
itoring due to its dynamic structure and asynchronous control messaging. To overcome these
challenges, this thesis introduces a scalable, web-based logging and visualisation framework
explicitly designed for MoQ. Built upon the structured qlog format, initially developed for
QUIC and HTTP/3, this system is extended to support MoQ-specific semantics, significantly
enhancing observability and operational insight into protocol behaviours.

This thesis presents a comprehensive approach to enhancing observability for MoQ by designing
and implementing a structured logging and analysis system. A key contribution is the definition
of a qlog extension schema tailored to capture the semantics of MoQ. This extension enriches
standard qlog data by introducing structured representations of protocol-specific events, in-
cluding parsing and creation metadata, which enables consistent and meaningful analysis of
MoQ sessions across client and relay contexts. Building on this foundation, the thesis proposes
a modular, scalable system architecture comprising a client-side instrumentation interface, a
high-throughput backend for log ingestion and storage, and an interactive visualisation fron-
tend. This system supports real-time feedback and extensibility, making it suitable for both
development and experimental analysis. Functional and architectural evaluations demonstrate
that the proposed system significantly improves debugging capabilities, facilitates protocol val-
idation, and enhances the overall comprehension of MoQ dynamics. By enabling visibility into
previously opaque behaviours, the system lays the groundwork for standardised observability
in next-generation media transport protocols.
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Samenvatting

Dit werk onderzoekt het ontwerp en de implementatie van een observability systeem, specifiek
ontwikkeld voor het Media over QUIC (MoQ) protocol. MoQ is een relatie nieuw streamingpro-
tocol dat voordelen combineert van traditionele HTTP Adaptive Streaming (HAS) en WebRTC.
Hoewel HAS bekend staat om schaalbaarheid via content delivery networks (CDN’s), is de la-
tency te hoog voor interactieve toepassingen. WebRTC biedt lage latency, maar is dan weer
moeilijk schaalbaar voor grote aantallen gebruikers. MoQ tracht een balans te vinden tussen
lage latency en hoge schaalbaarheid door gebruik te maken van het QUIC-transportprotocol,
aangevuld met een flexibele publish-subscribe architectuur.

Het observability systeem, ontworpen in dit werk, is bedoeld voor ontwikkelaars en onderzoekers
meer inzicht te geven in het gedrag van MoQ-sessies. Hiervoor is gebruik gemaakt van qlog,
een gestructureerd en uitbreidbaar logformaat dat oorspronkelijk ontwikkeld is voor QUIC
en HTTP/3, maar in deze thesis uitgebreid wordt om MoQ-specifieke gebeurtenissen vast te
leggen.

Het Media over QUIC protocol

MoQ is een transport protocol dat ontworpen in om mediagegevens op een schaalbare en ef-
ficiënte manier te verspreiden via QUIC en gebruik te maken van de voordelen die QUIC te
bieden heeft. Het grootste voordeel van QUIC, wat ook bijdraagt tot het verkrijgen van deze lage
latency, is het stream multiplexen. Dankzij deze eigenschap kunnen meerdere onafhankelijke
datastromen gelijktijdig over één enkele verbinding verlopen zonder dat vertragingen in de ene
stroom impact hebben op de andere, iets wat bij TCP wel het geval is.

Op dit onderliggende QUIC-transport bouwt MoQ een eigen hiërarchisch gegevensmodel op.
De fundamentele bouwsteen is het object: een afgebakend blok mediadata zoals een videoframe
of een stukje audio. Objecten worden gegroepeerd in subgroepen, die op hun beurt worden
samengebracht in grotere groepen. Deze structuur maakt het mogelijk om mediagegevens lo-
gisch te organiseren en op efficiënte wijze te verzenden. Een reeks gerelateerde objecten vormt
een track, bijvoorbeeld een audiotrack of videotrack, dat uniek gëıdentificeerd wordt binnen een
namespace.

MoQ gebruikt een publish-subscribe-architectuur waarin producenten tracks kunnen aankondi-
gen en publiceren, terwijl abonnees kunnen aangeven welke tracks zij willen ontvangen. Dit
mechanisme wordt geregeld via de MOQT-laag (Media Over QUIC Transport), die verantwo-
ordelijk is voor sessieopbouw, protocolonderhandelingen, en het versturen van controleberichten
zoals CLIENT SETUP, SUBSCRIBE, FETCH, en ANNOUNCE. Hiermee kunnen zowel live als on-demand
mediastreams ondersteund worden, wat het protocol flexibel inzetbaar maakt.

Een typische MoQ setup wordt uitgebeeld in Figuur 1. Dit proces begint met het vastleggen
van een QUIC connectie. Hierna zal de client een setup bericht uitsturen met alle nodige pro-
tocolinformatie, zoals bijvoorbeeld het versienummer dat kan gebruikt worden. De pusblisher
zal hier op antwoorden en de MoQ connectie hiermee vast leggen. Vervolgens abboneert de
client op de announce berichten van de publisher. Deze bevatten de streams die de publisher
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Figure 1: Typische MoQ sessie startup. Dit begint met de QUIC connectie vast te
leggen, gevolgd door enkele setup berichten. Hierna zal de client subscriben op de an-
nounce track die informatie bevat over de beschikbare streams van de publisher. Dit
wordt opgevolgd door het subscriben op een bepaalde stream waarna de publisher begint
met het sturen van media objecten naar de client.

aanbiedt waarmee de client dan aan de slag kan gaan om te kiezen welke hij wil ontvangen.
Wanneer deze gekozen heeft stuurt hij een subscribe bericht naar de publisher met de nodige
informatie waarna hij een bevestiging terug krijgt, kort gevolgd door het begin van de media
berichten.

Om mediadata consistent te structureren en interoperabiliteit te verbeteren maakt MoQ ge-
bruik van het WARP-formaat. Dit formaat definieert hoe objecten verpakt worden, inclusief
metadata zoals tijdsaanduidingen, codec-informatie en afhanekelijkheden tussen tracks. Via
deze informatie kan een subscriber client dan beslissen welke video kwaliteit deze nodig heeft
en op die manier aan Adaptive Bitrate Streaming (ABR) doen.

Tot slot voorziet MoQ relays wat tussenliggende knooppunten zijn die fungeren als distribu-
tiepunten tussen publishers en subscribers. Deze relays verbeteren de schaalbaarheid en veerkracht
van het protocol, en kunnen extra funcionaliteit bieden zoals caching, filtering of prioriteit-
safhandeling.

Het qlog logformaat

qlog is een gestandaardiseerd, gestructureerd logformaat dat ontworpen is voor het loggen van
nerwerkprotocollen zoals QUIC en HTTP/3. Het biedt een uniforme manier om protocolge-
beurtenissen vast te leggen met als doel debugging analyse en visualisatie eenvoudiger en con-
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sistenter te maken. Een belangrijk voordeel van qlog is dat het toelaat om inzicht te verkrijgen
in de interne werking van protocollen waarvan de zichtbaarheid in het netwerk door encryptie
grotendeels onzichtbaar is geworden.

Om structuur te realiseren definieert qlog een gemeenschappelijk, uitbreidbaar schema voor
events. Deze bevatten metadata zoals tijdstempels, betrokken streams, pakketnummers, errors
en contextuele informatie over de sessie. Hierdoor kunnen logs eenvoudig gedeeld en eanalyseerd
worden met generieke tooling.

Een kernconcept in qlog is de opdeling in traces die één specifieke netwerkverbinding repre-
senteren. Elke trace bestaat uit een reeks eventen waarbij elke event een welgedefinieerde
gebeurtenis beschrijft volgens een bepaald schema. Als standaard serialisatieformaat maakt
qlog gebruik van JSON, wat het gemakkelijk leesbaar en verwerkbaar maakt voor zowel mensen
als machines. Dit bevordert interoperabiliteit en maakt het mogelijk om visuele tooling zoals
qvis of zelfgemaakte dashboard te gebruiken voor real-time analyse.

Het qlog formaat laat expliciet toe uitgebreidt te worden via het toevoegen van namespaces.
Voor MoQ breiden we dit formaat uit met de ”moq” en ”moq-custom” namespace. Respec-
tievelijk staan deze in voor de huidige MoQ event types te beschrijven en eventuele nieuwe
events types. Dit laatste is van groot belang aangezien MoQ een snel vorderend protocol is en
we op deze manier visuele tools voorzien van de mogelijkheid om steeds voorwaards compatibel
te blijven wanneer er nieuwe event types zouden bijkomen.

Het observability systeem

Deze thesis stelt voor het probleem omtrent het waarnemen van MoQ events een schaalbaar
gedistribueerd logging systeem voor. Het systeem is opgebouwd uit meerdere componenten
zoals zichtbaar in Figuur 2: een instrumentation laag die de developers toelaat in hun eigen
code log aanroepingen te maken, een broker die als tussencomponent dient om het systeem
schaalbaar te maken, een backend die alle logs gaat ontvangen, verwerken en opslaan en tot
slot een visualisatie tool die toelaat de gemaakte logs live te tonen alsook te exporteren en
importeren.

Figure 2: Deze figuur toont de voorgestelde systeemarchitectuur, die bestaat uit vier
onderdelen die gecombineerd worden met de reeds bestaande MoQ-implementatie. Deze
onderdelen zijn, in volgorde vanaf waar de logging start: de instrumentation-interface,
de logger-broker, de log-serialisatie en opslag, en de visualisatie-frontend.

Het systeem is vervolgens ook uitgebouwd in de vorm van een proof-of-concept om te bekijken
of het waarde oplevert. Uit deze implementatie is gebleken dat een dergelijk observability
systeem toelaat om onderandere inzichten te krijgen in subscribe initialisaties, connectie fouten
en latency waardes, waarbij elk van deze situaties zouden aanzienlijk moeilijker zijn moest het
systeem er niet zijn.
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Chapter 1

Introduction

As media streaming continues to evolve toward real-time, low-latency, and high-scalability
scenarios, new transport paradigms are emerging to address the shortcomings of existing pro-
tocols [BLA+23]. Media over QUIC (MoQ), currently under development within the IETF,
proposes a flexible and modern approach to media delivery that draws on the strengths of
QUIC’s multiplexed, reliable transport while introducing concepts such as publish-subscribe
models, prioritisation, and relays for scalable distribution.

Structured observability becomes increasingly important in supporting and validating these
ideas. Debugging and analysing real-time media flows, especially in the presence of congestion,
prioritisation logic, and asynchronous control messages, demands a robust, extensible logging
and visualisation framework.

However, as a young and evolving protocol, MoQ still faces significant challenges. Its dynamic
publish-subscribe model, prioritisation logic, and reliance on asynchronous control messages
complicate implementation and debugging. The lack of standardised tooling makes it difficult
to observe protocol behaviour, especially under realistic network conditions, posing a risk of
inefficiencies or missed specification issues during standardisation.

To address these challenges, this thesis presents the design and implementation of a scalable,
web-based logging and analytics system tailored specifically to MoQ. The system aims to give
developers and researchers deeper insight into the behaviour of MoQ sessions, with a strong
emphasis on modularity, extensibility, and real-time feedback.

The system is composed of several core components. These include a lightweight client-side
logger that can be integrated with MoQ implementations, a backend pipeline capable of high-
throughput ingestion, parsing, and storage of structured logs, and a frontend visualisation
interface that allows users to explore session behaviour over time. Particular attention is given
to managing bursty traffic, high log volume, real-time streaming, and the integration of protocol-
specific logging schemas.

In support of this infrastructure, the system builds upon the qlog format, which provides a
structured and extensible approach to logging originally developed for QUIC and HTTP/3.
A central contribution of this thesis is the development of an extension to qlog that captures
MoQ-specific semantics. This extension focuses on control messages, which play a crucial
role in session setup, track announcements, subscriptions, and fetching. These messages are
essential for understanding the protocol’s operation across time and varying network conditions.
By providing a structured means to observe such interactions, the extension enables effective
debugging, supports experimentation, and facilitates performance analysis. It also establishes
a foundation for standardised tooling across MoQ implementations.

9



10 CHAPTER 1. INTRODUCTION

The primary focus of this work is the development of a scalable infrastructure that facilitates
the practical deployment and evaluation of MoQ. It introduces a system that functions both as a
proof-of-concept for analysing MoQ sessions and as a step towards the standardisation of observ-
ability tooling in next-generation media protocols. To place this contribution within a broader
context, the protocol landscape is also examined. Existing approaches, such as WebRTC and
HTTP Adaptive Streaming, are discussed to contextualise the need for MoQ.

Ultimately, this thesis demonstrates the value of dedicated observability infrastructure for
emerging media protocols. By providing structured insight into protocol behaviour, devel-
opers and researchers are empowered to better understand, evaluate, and refine systems built
atop MoQ.

The core research question explored throughout this work is how a scalable, web-based logging
and visualisation system, built on enriched qlog data, can enhance observability and operational
insight for Media over QUIC sessions. This central inquiry is further examined through the
following subquestions:

• What are the technical and architectural requirements necessary to implement a scalable,
distributed logging and visualisation system for MoQ streams?

• Is the designed system architecture able to support scalable, live collection and visualisa-
tion of MoQ stream events?

• Does visualising MoQ protocol events using enriched qlog data significantly improve the
user’s understanding of MoQ’s behaviour and dynamics?

• Can the proposed system provide actionable insights for protocol developers and operators
that would otherwise remain hidden when using traditional logging methods?

To answer the research questions, a solid understanding of multiple domains is required, includ-
ing transport protocols, structured logging and real-time media streaming. These concepts are
brought together in a proof-of-concept observability system, which is subsequently evaluated
through a series of functional and architectural tests. The remainder of this thesis is structured
as follows:

• Chapter 2 explores existing media streaming protocols and outlines the motivation for
MoQ as a next-generation alternative.

• Chapter 3 introduces the MoQ protocol in detail, including its key mechanisms, such as
object delivery, track prioritisation and session control.

• Chapter 4 presents the qlog structured logging format and defines how it can be extended
to support MoQ-specific events.

• Chapter 5 examines how the logging system can be scaled to handle high-throughput
scenarios, including design trade-offs and technical considerations.

• Chapter 6 describes the system architecture, focusing on log ingestion, serialisation and
visualisation components.

• Chapter 7 describes a proof-of-concept implementation of the described system and its
practical constraints.

• Chapter 8 evaluates the system in various scenarios to assess its effectiveness and the
gaps it fills in the limited MoQ observability landscape.

• Chapter 9 concludes the thesis with a summary of the findings and a critical reflection
on the process, highlighting lessons learned and directions for future work.



Chapter 2

Popular Video Streaming
Protocols

Video streaming protocols focus on delivering video and audio over the Internet. As global
internet traffic consists primarily of video data, with video streaming alone accounting for
73.74% of internet traffic in America in 2023 according to Sandvine’s 2023 Global Internet
Phenomena Report [San23], efficient delivery of this content becomes increasingly important.
To achieve high efficiency, compromises have to be made. For example, Video On Demand
(VOD) can have a high video quality but cannot reach a low latency. Low latency is more critical
for live video streaming, where the viewer watches the video at the same time it is recorded. In
this chapter, we will look at two popular alternatives for a video streaming protocol: WebRTC
and HTTP Live Streaming (HLS). We will look at their architecture, transport protocol and
how they handle scalability. We will also look at the problems that arise with these protocols
and how they try to solve them. This will give a good overview of the current video streaming
landscape and provide a solid foundation for understanding the choices made for MoQ.

2.1 WebRTC

WebRTC [Alv21] is an open-source project that provides real-time communication between
browsers and mobile applications through a straightforward API. It was created to be used
in web conferencing applications. While often referred to as a protocol, it’s more accurately
described as a collection of features and protocols working together [SSP15]. Initially designed
with components from Global IP Solutions (GIPS), WebRTC gained momentum after Google
acquired GIPS in 2010 and subsequently open-sourced the technology. This move fostered col-
laboration with industry standards bodies like IETF and W3C, ensuring widespread consensus
and adoption.

At its core, WebRTC facilitates the transport of video, audio, and other data over peer-to-peer
connections. However, its functionality extends beyond simple data transfer. WebRTC adeptly
handles various aspects of real-time communication, including:

• NAT Traversal: Overcoming challenges posed by Network Address Translation (NAT)
to establish direct connections between clients.

• Congestion Control: Efficiently managing network congestion to maintain smooth and
uninterrupted streams.

• Security: Implementing robust security measures to protect the integrity and confiden-
tiality of transmitted data.

11
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These key aspects, along with its open-source nature and extensive support, make WebRTC a
cornerstone in the realm of real-time communication, powering various applications like video
conferencing, live streaming, and more.

2.1.1 Transport

WebRTC, as mentioned before, actually leverages a combination of protocols to achieve real-
time communication. At its core, WebRTC utilises the Real-time Transport Protocol (RTP)
[SCFJ03] over UDP for the efficient delivery of video and audio data. RTP’s use of UDP allows
for low-latency transmission (around 150-500ms of latency [GLFGG16]), crucial for real-time ap-
plications such as conferencing calls. However, UDP lacks certain features like quality-of-service
guarantees and in-order delivery. To address these shortcomings, the Real-time Transport Con-
trol Protocol (RTCP) [SCFJ03] works in conjunction with RTP. RTCP provides feedback on
network conditions, such as round-trip times and packet loss, enabling applications to dynam-
ically adjust encoding parameters and sending rates for optimal transport. This allows for a
degree of adaptability and monitoring not inherently present in UDP.

The real challenge arises when trying to establish peer-to-peer connections that cross routers
that perform Network Address Translation (NAT). Many clients reside behind these types of
routers, which mask their internal IP addresses and make direct connections difficult. To
overcome this, WebRTC employs the Interactive Connectivity Establishment (ICE) proto-
col [Ros10]. ICE handles NAT traversal by identifying all possible communication paths be-
tween two peers. This involves gathering candidate pairs, which combine local and remote
transport addresses. Two key components of ICE are STUN (Session Traversal Utilities for
NAT) [MRWM08] and TURN (Traversal Using Relays around NAT) [MRM10]. STUN servers
help clients discover their public IP address and port mapping performed by the NAT. How-
ever, some NATs, like symmetric NATs, can’t be traversed with STUN alone because a different
public IP and port are assigned for each unique destination. In these cases, TURN servers act
as relays, forwarding traffic between the peers. A client first attempts to connect directly, then
uses STUN, and if that fails, it falls back to using a TURN server. These three options are
displayed in Figure 2.1.

Beyond video and audio, WebRTC also supports the transmission of arbitrary data using the
Stream Control Transmission Protocol (SCTP) [IBM24]. SCTP provides features like partial
ordering (full ordering within the same stream) and reliable message delivery, making WebRTC
more versatile than just a media streaming protocol. This allows for applications to send
metadata, control signals, or other data alongside the media stream.

2.1.2 Transport-wide Congestion Control

Congestion control is crucial for efficient media transmission over networks. Given that WebRTC
utilises UDP, a protocol without inherent congestion management capabilities, it implements
a transport-wide congestion control (TWCC) algorithm [Goo25]. This algorithm functions by
having the receiver measure packet arrival times and transmit these measurements to the sender.
The sender subsequently uses this data to adapt its transmission rate, mitigating network con-
gestion. However, while this approach helps maintain low latency, it comes with a trade-off:
reducing buffering time increases the risk of playback interruptions if network conditions fluc-
tuate. Unlike HTTP-based streaming protocols that rely on pre-buffering to ensure smooth
playback, WebRTC prioritises real-time transmission, which can result in visible stutters or
quality drops in unstable network environments.

This way of handling congestion control works well for real-time video streaming because it
operates at the transport layer, giving it visibility across all streams (audio, video, and data) in
a session. It can allocate bandwidth more efficiently between streams, ensuring critical streams
like audio maintain quality while scaling video streams dynamically based on available band-
width. TWCC leverages precise feedback mechanisms using transport-wide sequence numbers
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Figure 2.1: This figure illustrates how STUN and TURN servers help establish a con-
nection between PC 1 and PC 2, where both are behind a NAT. A direct connection, the
ideal scenario, is shown in the infographic on the left. The middle infographic represents
the use of a STUN server to identify clients behind NATs. Here, the clients first send a
request to a STUN server (depicted by the striped arrows) to gather their own public IP
and port. Finally, the right infographic shows how a TURN server relays traffic between
clients when a direct connection is not possible.

and acknowledgements, providing detailed information on packet delays, loss, and arrival times.
This allows for more responsive and accurate congestion adjustments.

2.1.3 Problems with WebRTC

While WebRTC has revolutionised real-time communication on the web, it faces several sig-
nificant challenges that impact its implementation and adoption. These challenges range from
technical complexities to deployment issues that developers and organisations must carefully
consider.

NAT Traversal Complexity

As mentioned before in Section 2.1.1, the establishment of reliable peer-to-peer connections
through NATs represents one of the most significant hurdles in WebRTC implementations [Syl25].
This process demands sophisticated infrastructure, including STUN/TURN servers and com-
plex ICE protocols. Organisations must also account for various firewall configurations and
bear additional infrastructure costs for TURN relay servers. These requirements significantly
increase deployment complexity and create potential points of failure, particularly within cor-
porate environments that maintain strict security policies.
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Browser Implementation Inconsistencies

Despite ongoing standardisation efforts, different browsers implement varying subsets of the
WebRTC specification [Tea25]. This variation extends to codec support across platforms and
devices, subtle differences in API implementations, and disparate approaches to screen sharing
and device access permissions. Media handling capabilities also differ between platforms, forcing
developers to implement complex fallback mechanisms and browser-specific optimisations. This
necessity for multiple implementation paths significantly increases both development time and
maintenance complexity.

Scalability Limitations

Scalability represents a fundamental challenge in WebRTC implementations, particularly when
dealing with multi-party communications. The inherent peer-to-peer architecture of WebRTC
creates significant technical burdens as the number of participants grows. In a basic mesh
topology, each participant must maintain separate peer connections with every other partici-

pant, resulting in a N(N−1)
2 connection model. This exponential growth in connections creates

substantial demands on both client resources and network infrastructure.

The resource requirements become particularly demanding with increased participation. Each
peer must encode their media stream separately for every other participant, leading to inten-
sive CPU utilisation and memory overhead. Bandwidth consumption presents another critical
challenge, as upstream bandwidth requirements multiply with each additional participant. For
instance, a 1 Mbps video stream in a ten-person conference would require 9 Mbps of upload
bandwidth from each participant.

To address these scalability limitations, many WebRTC implementations employ Selective For-
warding Units (SFUs) [Gro19]. These intermediate routing servers receive media streams from
participants and selectively forward them to other participants, significantly reducing the re-
source requirements on client devices. SFUs can implement sophisticated stream management
strategies, such as selective forwarding based on active speakers and dynamic quality adjustment
for individual receivers. However, this centralised architecture introduces additional latency and
infrastructure costs that organisations must carefully consider.

2.2 HTTP Adaptive Streaming

HTTP Adaptive Streaming (HAS), leveraging Adaptive Bitrate (ABR) Streaming [Clo], has
become the dominant technology for delivering video content over the internet. ABR Streaming
is the core mechanism that adapts the video bitrate to the user’s network conditions, ensuring a
smooth and uninterrupted viewing experience. This is achieved by encoding video into multiple
streams of varying bitrates and resolutions. The HAS system then dynamically switches between
these streams based on real-time network measurements, selecting the highest possible quality
that the current network conditions can support. By utilising standard HTTP infrastructure,
HAS is highly scalable and compatible with existing web servers and Content Delivery Networks
(CDNs), making it a versatile solution for delivering video to a wide range of devices and network
environments.

2.2.1 HTTP Live Streaming

HTTP Live Streaming (HLS) [PM17], initially developed by Apple, is a widely adopted HAS
protocol used for both live and on-demand video streaming. Its popularity stems from its use
of HTTP, its adaptive bitrate capabilities, and Apple’s strong support. HLS encodes video
using H.264 [Int24a] or HEVC/H.265 [Int24b] codecs, creating multiple streams with different
quality levels. Each stream is divided into fixed-duration segments, typically 2-10 seconds,
aligned by keyframes for seamless switching. A primary manifest file lists available streams,
their metadata, and links to individual media playlist files. Media playlist files contain URLs to
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segment files and segment metadata. The client requests the primary manifest, selects a bitrate
based on network conditions, and requests segments from the corresponding media playlist.
Client-driven adaptation allows the client to periodically measure network speed (e.g. the time
to download the last segment) and switch bitrates if needed. HTTP range requests [Wie23]
can be used to download portions of a segment. To address latency issues, especially in live
streaming, the community developed Low-Latency HLS (LHLS), which uses chunked transfer
encoding to deliver segments in smaller parts as they are encoded. This reduces the time a
client waits for a full segment. Apple also introduced their own Low-Latency HLS (LL-HLS),
initially using HTTP/2 server push but later adopting a similar chunked encoding approach as
LHLS to achieve lower end-to-end latency.

2.2.2 Dynamic Adaptive Streaming over HTTP

Dynamic Adaptive Streaming over HTTP (MPEG-DASH) is an international standard for
HAS, offering a flexible and codec-agnostic approach. While sharing many similarities with
HLS, DASH distinguishes itself through its standardisation and broader codec support. Similar
to HLS, DASH segments video into chunks and uses manifest files to describe available streams.
DASH allows the use of any encoding standard, providing greater flexibility than HLS. Like
HLS, DASH uses client-side adaptation. Key differences from HLS include its status as an
international standard, its support for a broader range of codecs, and its distinct manifest file
format.

2.2.3 Transport

Both HLS and DASH rely on HTTP as their application layer protocol, utilising TCP for
transport. Video content is prepared for transportation by encoding it with codecs such as
H.264, HEVC/H.265, or others allowed by DASH. This encoded content is divided into seg-
ments, which are standalone media files containing compressed audio and video data. These
segments are aligned across all bitrates to facilitate seamless bitrate switching. A primary man-
ifest file is requested by the player, listing available streaming versions and metadata. Each
bitrate has its own media playlist file containing all segments in order, with URLs pointing
to the segment files. These files also contain segment metadata. Segments and playlists are
hosted on web servers or CDNs. Video retrieval begins with requesting the primary manifest,
followed by selecting an optimal bitrate and requesting the corresponding media playlist. Seg-
ments are fetched sequentially, and playback starts once enough data is buffered. Client-driven
adaptation involves periodic network speed measurements, allowing for bitrate switching based
on bandwidth changes.

2.2.4 Problems with HTTP Adaptive Streaming

A significant challenge with HAS, mainly from using TCP, is head-of-line (HOL) blocking [Ste19].
This issue is particularly problematic for real-time applications, where maintaining the most
recent video content is crucial for user experience. In such contexts, the priority is to deliver
the newest parts of the video stream, ensuring that users receive the most up-to-date data
despite potential connection issues. However, TCP’s in-order delivery mechanism exacerbates
HOL blocking, as the newest packet added to the send buffer must wait for earlier packets to
be delivered, regardless of their relevance.

HLS further amplifies these challenges due to its inherent latency, which can exceed 10 seconds in
standard implementations. The protocol relies on segment-based delivery, with typical segment
durations ranging from two to ten seconds, introducing delays between encoding, uploading, and
final playback. Low-latency HLS (LL-HLS) has mitigated some of these issues by using Chunked
Transfer Encoding (CTE) and Common Media Application Format (CMAF), reducing latency
to a few seconds. However, even LL-HLS cannot match WebRTC’s sub-second responsiveness,
making it unsuitable for real-time interaction.
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Additionally, bitrate adaptation in HLS is constrained by segment boundaries (e.g., every two
seconds). If a user is streaming a 1080p video and their bandwidth decreases, they must
still download several seconds of high-bitrate content before the stream switches to a lower
resolution. This delayed adaptation further worsens latency and impacts the viewing experi-
ence.

While MPEG-DASH shares many similarities with HLS, it provides more flexibility in segment
handling and allows clients to make smarter adaptation decisions. Unlike HLS, DASH does not
inherently require preloading three full segments before playback, enabling faster startup times.
Furthermore, DASH implementations can support faster bitrate adaptation, as segment lengths
are not fixed by the protocol, allowing for finer control over quality switching. However, like
HLS, DASH still relies on TCP and is subject to HOL blocking, though optimisations such as
low-latency DASH (LL-DASH) and HTTP/3 adoption are improving its responsiveness.

2.3 Comparison of Alternatives

2.3.1 Latency

Latency is a crucial factor in media streaming, particularly for applications requiring real-time
interaction. Different streaming protocols handle latency in distinct ways, influencing their
suitability for various use cases. This section examines the importance of latency, typical latency
values for WebRTC and HTTP Adaptive Streaming (HAS), and the trade-offs between low
latency and buffering. The talking points in this section are summarised at the end in Table 2.1
to give a side-by-side view of the different approaches these protocols take on latency.

Importance of Latency in Media Streaming

Latency refers to the time delay between capturing an event and displaying it to viewers. In
real-time applications such as video conferencing, online gaming, and interactive live streaming,
low latency is essential to ensure smooth and natural interactions. High latency can lead to
disjointed communication, delayed feedback, and reduced user engagement. In contrast, for non-
interactive streaming scenarios such as video-on-demand or large-scale broadcasting, latency
is less critical, and a moderate delay is often acceptable in exchange for improved playback
stability.

Typical Latency Values for WebRTC

WebRTC is designed specifically for real-time communication, prioritising low latency over other
considerations. Under typical network conditions, WebRTC achieves latency values between
150 and 500 milliseconds. This ultra-low latency is ideal for interactive applications, enabling
natural conversations, instant feedback, and synchronised actions in multiplayer environments.
However, maintaining such low latency requires continuous adaptation to network fluctuations,
often at the cost of higher processing demands.

Typical Latency Values for HAS Protocols

Unlike WebRTC, HAS protocols, such as MPEG-DASH and HLS, are optimised for scalability
and stability rather than real-time responsiveness. Standard implementations of HAS introduce
latency in the range of several seconds to tens of seconds due to segment-based video delivery.
Traditional HAS workflows require multiple segments to be buffered before playback begins,
contributing to this delay.

To address this, low-latency enhancements have been introduced [BLA+25], leveraging tech-
nologies such as Chunked Transfer Encoding (CTE) and Common Media Application Format
(CMAF). These improvements reduce latency to just a few seconds, making HAS more suitable
for near-real-time applications, though it still falls short of the real-time responsiveness required
for interactive communication.



2.3. COMPARISON OF ALTERNATIVES 17

Trade-offs Between Low Latency and Buffering

Balancing latency and buffering is a key challenge in media streaming. Low latency minimises
the delay between content production and playback, making it crucial for real-time applica-
tions. However, it also reduces the time available for buffering, increasing the risk of playback
interruptions if network conditions fluctuate. On the other hand, larger buffers improve play-
back stability by ensuring that content is continuously available, even during network hiccups.
This stability comes at the cost of added delay, making it unsuitable for interactive scenarios.
The choice of latency versus buffering depends on the application’s goals: while real-time in-
teractions prioritise low latency, non-interactive streaming, like on-demand video, can tolerate
higher latency for smoother playback.

Finding the right balance ensures a better user experience tailored to the specific needs of the
application and its audience.

Aspect WebRTC HAS

Importance of La-
tency

Critical for real-time interaction
(video conferencing, gaming).
Low latency ensures smooth,
engaging experiences.

Less critical for one-way broad-
casts. Higher latency is accept-
able for stability and reach.

Typical Latency
Values

150-500 milliseconds, ideal for
interactive applications.

Native HLS: >10 seconds. Low-
latency HLS: a few seconds, im-
proved with CTE and CMAF.

Trade-offs Low latency minimises delays
but reduces buffering time, risk-
ing interruptions.

Larger buffers ensure stability
but introduce latency, which
comes at the cost of real-time
interaction.

Table 2.1: Summarisation of the differences regarding latency for WebRTC and HAS
protocols.

2.3.2 Scalability

Scalability is a crucial consideration when evaluating video streaming protocols, as different
architectures handle increasing audience sizes in distinct ways. WebRTC and HTTP Adaptive
Streaming follow fundamentally different approaches, each with its own strengths and limita-
tions. The following sections explore how these protocols manage scalability, the challenges they
face, and their respective trade-offs in cost and complexity. The talking points in this section
are summarised at the end in Table 2.2 to give a side-by-side view of the different approaches
these protocols take on scalability.

How WebRTC Handles Scalability: Peer-to-Peer vs. SFU Models

WebRTC supports two primary scalability models: Peer-to-Peer (P2P) and Selective Forward-
ing Unit (SFU). In the P2P model, media streams are exchanged directly between participants,
which works efficiently for small groups but quickly becomes unsustainable for larger ones due
to exponential bandwidth usage. The SFU model addresses this by introducing a centralised
server that receives and selectively forwards streams, significantly reducing client bandwidth
requirements. This enables WebRTC to scale for group calls while maintaining low latency,
making it ideal for interactive applications.

Scalability Challenges in WebRTC for Large Audiences

Despite the improvements provided by SFUs, WebRTC faces significant challenges when scaling
to large audiences. Supporting hundreds or thousands of viewers requires extensive server
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infrastructure to handle real-time media processing. Unlike traditional streaming methods,
WebRTC does not inherently support caching or distribution via Content Delivery Networks
(CDNs), leading to higher operational costs and complexity. Additionally, ensuring consistent
quality across geographically distributed users can be difficult due to network variability.

HTTP Adaptive Streaming’s CDN-Friendly Architecture for Massive Scalabil-
ity

In contrast, HAS protocols are designed for large-scale content distribution through their CDN-
friendly architecture. By segmenting video into small chunks, HAS allows content to be cached
and delivered efficiently from CDN servers, significantly reducing the load on the origin server.
This makes HAS an excellent choice for one-to-many broadcasts, such as live events or webinars,
where stability and reach are prioritised over real-time interaction. However, the segmentation
and distribution process introduces higher latency, making HAS less suitable for applications
requiring immediate responsiveness.

Comparison of Cost and Complexity for Scaling Each Approach

The cost and complexity of scaling WebRTC and HAS differ significantly. WebRTC requires
dedicated server infrastructure, particularly when using SFUs, leading to higher operational
costs and increased deployment complexity. However, its low-latency performance makes it the
preferred option for interactive communication.

HAS, on the other hand, leverages existing CDN infrastructure, making it a more cost-effective
solution for large-scale streaming. Its deployment is straightforward, as video content is cached
and distributed efficiently. However, the trade-off is increased latency, which limits its suitability
for real-time interactions.

Aspect WebRTC HAS

Scalability Models Peer-to-peer for small groups,
Selective Forwarding Unit for
larger groups. SFU reduces
client bandwidth.

CDN-friendly architecture. Seg-
ments video into chunks, cached
and distributed across CDN
servers.

Scalability Chal-
lenges

Resource-intensive for large
audiences, requires dedicated
server infrastructure. Quality of
service across distributed users
is complex.

Higher latency due to segmenta-
tion and distribution. Less suit-
able for real-time interaction.

Scalability Advan-
tages

SFUs improve scalability for
group calls. Low latency is ideal
for interactive applications.

Highly scalable for massive audi-
ences, cost-effective due to CDN
infrastructure.

Cost and Com-
plexity

Higher operational costs due to
dedicated server infrastructure.
Complex deployment and main-
tenance.

Lower cost for large-scale
streaming due to CDN usage.
Simpler deployment for one-to-
many broadcasts.

Table 2.2: Summarisation of the differences regarding scalability for WebRTC and HAS
protocols.

In summary, WebRTC offers low-latency communication but faces significant scalability chal-
lenges, especially for large audiences. HAS, in contrast, provides cost-effective scalability but
with higher latency, making it ideal for passive viewing experiences. Understanding these trade-
offs is essential when selecting the appropriate streaming technology for a given use case.
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2.3.3 Conclusion

Both WebRTC and HTTP-based live streaming present robust solutions for video streaming,
each excelling in distinct areas based on their design and intended use cases. WebRTC stands
out with its low latency and real-time communication capabilities, making it ideal for inter-
active applications such as video conferencing and live collaboration. Its advanced congestion
control mechanisms and support for peer-to-peer connections facilitate seamless and responsive
user interactions. However, this comes at the cost of increased complexity and limited scal-
ability when catering to large audiences, necessitating additional infrastructure like Selective
Forwarding Units (SFUs) to manage extensive participant numbers effectively.

On the other hand, HTTP-based live streaming, including protocols like HLS and DASH,
provides unmatched scalability through its compatibility with existing CDNs. By leveraging
standard HTTP infrastructure, these streaming methods enable efficient content distribution
to massive audiences while ensuring adaptive bitrate streaming, which optimises video quality
based on network conditions. This makes them highly effective for delivering high-quality video
at scale, particularly for one-to-many broadcast scenarios. However, traditional HTTP-based
streaming suffers from higher latency due to segment-based delivery, making it less suitable for
real-time applications. While optimisations such as Low-Latency HLS and CMAF have helped
reduce delay, they still do not match the immediacy required for interactive use cases.

Media over QUIC (MoQ) aims to bridge the gap between these two approaches by leveraging
QUIC’s transport-layer advantages, such as multiplexed streams, improved congestion control,
and reduced connection establishment overhead. By incorporating WebRTC’s low-latency capa-
bilities and HTTP-based streaming’s efficient content distribution model, MoQ offers a flexible
and scalable solution for modern media delivery. Its ability to support both real-time and
near-real-time streaming makes it well-suited for applications ranging from interactive commu-
nication to large-scale live broadcasting. Additionally, MoQ’s use of QUIC’s native congestion
control can dynamically adapt to network conditions, optimising both latency and quality
without the need for complex server-side infrastructure. As a result, MoQ presents a promising
evolution in video streaming, combining the best aspects of WebRTC and HTTP-based live
streaming while addressing their respective limitations.



Chapter 3

The Media over QUIC
Protocol

The evolution of media transport protocols has led to the adoption of QUIC [IT21] as a foun-
dation for modern streaming technologies. QUIC, designed as a transport layer protocol, offers
key advantages over traditional TCP-based streaming by reducing latency, improving conges-
tion control, and enabling better multiplexing of data streams. This makes it particularly
attractive for media applications where low latency and reliability are critical.

Media over QUIC (MoQ) leverages the capabilities of the QUIC transport protocol to provide
a more efficient and flexible foundation for modern media delivery. It is designed to bridge
the gap between traditional HTTP Adaptive Streaming (HAS) protocols and real-time commu-
nication solutions like WebRTC, combining the scalability of the former with the low-latency
characteristics of the latter.

While HAS protocols such as HLS and DASH support large-scale distribution via segment-
based delivery over HTTP/TCP, they inherently introduce playback latency. WebRTC, on the
other hand, excels at minimising delay for interactive applications but faces challenges when
scaling to broad audiences. MoQ addresses these limitations by introducing a session-based,
publish/subscribe model capable of supporting both near-real-time streaming and efficient con-
tent distribution.

Operating atop QUIC, MoQ inherits benefits such as connection multiplexing, improved con-
gestion control, encryption, and support for connection migration. These features enhance
media transport performance but also pose practical integration challenges. Many existing in-
frastructures, particularly CDNs, are tightly coupled to HTTP-based delivery models and must
be adapted or re-architected to support MoQ traffic, including the deployment of MoQ-aware
relays.

MoQ’s architectural shift, from client-pull to session-oriented publish/subscribe, also necessi-
tates a rethinking of content delivery strategies and session management. Furthermore, while
QUIC provides some inherent NAT traversal support, MoQ lacks a fully standardised peer con-
nectivity solution comparable to ICE, which may complicate deployments in NAT-restricted
environments, particularly for peer-to-peer implementations.

Although MoQ is still undergoing standardisation and ecosystem development, its potential
to unify responsiveness and scalability makes it a promising candidate for the next generation
of media transport. However, realising this potential in practice depends on its ability to
integrate with current infrastructures, evolve robust tooling, and gain widespread industry
support.

Media over QUIC is built out of several components, as can be seen in Figure 3.1. It can
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Figure 3.1: This figure demonstrates the building blocks of the Media over QUIC
protocol and how every building block relates to the others.

be implemented using either WebTransport or directly with QUIC. WebTransport provides a
browser-friendly API for using QUIC streams and datagrams securely within web applications,
while direct QUIC implementations allow more control for native applications. Media over
QUIC Transport (MOQT) is a media transport protocol built on top of these transport options,
defining how media is published, subscribed to, and transmitted efficiently. WARP, then, is the
streaming format that MoQ uses in MOQT to define how the streams are structured, packaged,
and time-aligned.

This chapter presents the design of the Media over QUIC protocol and explains how it addresses
the limitations of current media streaming solutions. The MoQ protocol is still under active
development within the IETF, and the discussion in this chapter is based on version 08 of the
draft specification [CPN+25], the most recent at the time of writing. The content reflects the
protocol’s latest mechanisms and architectural choices as defined in that draft. The chapter
begins by describing the core concepts of MoQ, including sessions, publish-subscribe semantics,
and object-based transport. It then explores key components such as stream management,
prioritisation, and relaying. Next, it introduces WARP, a media streaming format designed
for MoQ that defines how media is structured, described, and transmitted using catalogues.
Finally, the chapter concludes with a comparison between MoQ and established protocols like
HAS and WebRTC, illustrating the design improvements that MoQ introduces in terms of
latency, scalability, and protocol convergence.

3.1 MOQT Session

MOQT is the transport component of MoQ and builds on QUIC by introducing a structured
method for media distribution. It follows a publish-subscribe model, where publishers announce
available media tracks, and subscribers request access to them. This model enables efficient
data routing, caching, and relay-based distribution. Unlike traditional streaming protocols,
MOQT does not rely on HTTP-based segment fetching but instead treats media as discrete
objects that can be dynamically prioritised and delivered over QUIC. The structured nature
of MOQT allows it to achieve both low latency and scalability by leveraging QUIC’s unique
transport characteristics. A high-level view of this session can be seen in Figure 3.2, which
contains a message sequence chart of the communication between two clients. All aspects of
this conversation are explained further in this section.
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Figure 3.2: This diagram illustrates the process of establishing a MOQT session between
a client and a MoQ publisher. It begins with the establishment of a QUIC connection, fol-
lowed by the exchange of CLIENT SETUP and SERVER SETUP messages to configure the ses-
sion. The client then sends a SUBSCRIBE ANNOUNCES message to request available tracks,
to which the publisher responds with an ANNOUNCE message. The client subsequently
subscribes to a track using a SUBSCRIBE message, and upon receiving a SUBSCRIBE OK

from the publisher, media objects are transferred to the client. This sequence highlights
the structured and efficient communication protocol employed by MOQT for media dis-
tribution.
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3.1.1 Session Setup and Track Announcement

The first step in connecting two MoQ entities is to create a QUIC connection. This connection
can be made using WebTransport in the case of a web application or just by using QUIC itself.
During this process, a bidirectional control channel is opened. This channel allows the two en-
tities to communicate control messages, which are shown in the control message table provided
in Table 1 in the Appendix. When a subscriber connects to a MOQT-enabled server, a session
setup process occurs. The subscriber and server exchange CLIENT SETUP and SERVER SETUP

messages, over the control channel, to negotiate transport options, authentication, and sup-
ported features. These messages define the parameters that will govern the session, including
QUIC-specific settings and optional security policies.

Once the connection is enabled, the client prompts the publisher for its available tracks using
a SUBSCRIBE ANNOUNCES message. This message contains a namespace and lets the publisher
know that it has to send a notice of every available track in the requested namespace to the
requesting client. This information gets sent over in an ANNOUNCE message.

3.1.2 Subscription and Fetching Mechanism

MOQT supports two ways of accessing content:

• SUBSCRIBE: The subscriber requests a track to receive continuous updates, making
this mode ideal for live streaming. When subscribing, the client may specify certain
parameters, such as priority levels or specific subtracks (e.g., only requesting audio instead
of full video and audio). Additional flags, such as subscribe start and subscribe end,
enable fine-grained control over the start and end group sequence numbers, allowing clients
to control the temporal scope of the subscription.

• FETCH: The subscriber requests specific past media objects, enabling on-demand play-
back and rewind functionality. This mode is, for example, helpful in scenarios such as
instant replay in sports streaming, where a user can quickly revisit key moments without
disrupting the live experience.

When the client receives an ANNOUNCE message, it chooses the track it wants to subscribe to
and sends a SUBSCRIBE or FETCH message to the publisher. The publisher then, respectively,
follows up with a SUBSCRIBE OK or FETCH OK message, letting the client know their subscription
or fetch was successful. The publisher then proceeds to send over the requested data.

3.2 MOQT Principles

Central to MOQT’s design are two key principles: prioritisation and the use of relays. These
principles work in tandem to ensure that media content is delivered efficiently, even under
challenging network conditions, and can scale to meet the demands of a large audience.

The following sections explore these foundational principles in detail, highlighting how MOQT’s
prioritisation system ensures optimal bandwidth usage and how relays contribute to scalable
and efficient media distribution.

3.2.1 Prioritisation System in MOQT

One of the standout features of Media over QUIC Transport (MOQT) is its sophisticated
prioritisation system, designed to optimise media delivery under varying network conditions.
This system operates on two primary levels: subscriber priority and publisher priority, each
playing a crucial role in ensuring efficient and effective media streaming.
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Subscriber Priority

Subscriber priority is a mechanism within MoQ that enables clients to assign varying levels of
importance to the media tracks they subscribe to. This is achieved through an 8-bit unsigned
integer value set in the “subscriber priority” field of the SUBSCRIBE message, which reflects the
relative priority of the associated stream. This capability becomes particularly valuable in use
cases involving multiple concurrent media streams, for instance, when delivering video alongside
audio or supplementary metadata. By assigning higher priority values to more critical streams,
clients can help ensure that essential content is delivered with minimal disruption, even under
constrained network conditions.

Importantly, subscriber priorities are not static. They can be dynamically adjusted in response
to real-time network performance or user-specific requirements. This flexibility allows systems
to continuously adapt, ensuring that high-priority content, such as audio during a live event,
remains uninterrupted. In scenarios of network congestion, subscriber priority serves as a
mechanism for intelligent bandwidth allocation. By directing available resources toward high-
priority streams, it helps maintain the playback quality of critical content, thereby improving
the overall user experience.

Publisher Priority

In contrast to subscriber priority, publisher priority is defined by the media producer and
is specified in the publisher priority field within the headers of individual media objects
in a stream. This mechanism allows content publishers to convey the relative importance of
different media elements, ensuring that the most critical components are transmitted first. A
common application of this is in video streaming, where keyframes (I-frames) are prioritised
over predicted (P-frames) and bidirectional frames (B-frames). By ensuring that keyframes
are delivered ahead of dependent frames, the protocol supports smoother playback and faster
recovery from interruptions such as packet loss.

Beyond frame-level prioritisation, publisher priority enables object-level control over the trans-
mission sequence. This fine-grained prioritisation is particularly advantageous in adaptive bi-
trate streaming scenarios, where content quality must be dynamically tuned to match fluctuat-
ing bandwidth conditions. By assigning higher priority to essential media objects, publishers can
maintain a more consistent user experience, even when network resources are constrained.

Integrated Prioritization

The combination of subscriber and publisher priorities within MoQ establishes a comprehensive
framework for adaptive media delivery. By jointly considering both types of priority, MoQ
enables more intelligent scheduling decisions that optimise bandwidth utilisation and reduce
the likelihood of playback interruptions. This dual-priority model allows the protocol to assess
the relative importance of each media object from both the sender’s and receiver’s perspectives,
ensuring that the most valuable content is transmitted first.

Central to this approach is MoQ’s scheduling algorithm, which evaluates both subscriber- and
publisher-assigned priorities when determining the transmission order of media objects. This
ensures that high-priority content is prioritised appropriately, regardless of whether the impor-
tance was designated by the client or the publisher. Such a mechanism is especially beneficial
in scenarios where network resources are constrained or fluctuate over time.

The resulting prioritisation system is both flexible and efficient, enabling real-time adaptation
to varying network conditions. By dynamically adjusting the delivery of media streams based on
priority values, MOQT maintains a high quality of experience for end users, even in challenging
environments. This integrated approach to prioritisation underscores MOQT’s suitability for
scalable, latency-sensitive media applications.
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By leveraging this dual-level prioritisation system, MOQT provides a powerful tool for managing
media delivery, ensuring that critical content is prioritised and that bandwidth is used efficiently.
This results in a more reliable and responsive streaming experience for end-users.

3.2.2 Object Hierarchy

To support efficient, scalable, and structured delivery of media, MoQ defines a layered object
model. This model consists of tracks, groups, optional subgroups, and objects. Each layer plays
a specific role in ordering, dependency management, and stream handling. Figure 3.3 illustrates
this hierarchy in the context of a temporal video stream.

Figure 3.3: Example hierarchy for MoQ objects. At the top level, the track, which in
this case is a 1080p video track. This track is divided into groups. The figure shows
group 43 as an example, which is a GOP and contains subgroups with objects.

At the highest level, a Track represents a logically continuous stream of media content, such as
an audio or video feed. Tracks are uniquely identified by a combination of a track namespace
and a track name. Within the MoQ protocol, tracks are the primary unit of subscription and
data delivery: subscribers explicitly request access to specific tracks using SUBSCRIBE or FETCH
messages. A track may contain multiple Groups, each encapsulating a coherent segment of
content. For example, a group might correspond to a single Group of Pictures (GOP) in a
video stream.

Within each group, media content is further subdivided into Subgroups. A subgroup is a
sequence of Objects that must be delivered together due to interdependencies, such as temporal
or spatial enhancement layers in scalable video coding. Subgroups enable granular stream-
level prioritisation and cancellation, since each is typically mapped to an individual QUIC
stream. Importantly, subgroups are optional in MoQ. They are only necessary when object
interdependencies or delivery semantics require them. When objects are independent and do
not benefit from separate prioritisation or stream mapping, they can be sent directly within a
group without subgrouping. This flexibility allows senders to reduce complexity and overhead
in simple scenarios, while still supporting advanced use cases when needed.

At the lowest level is an object. This is the fundamental unit of media data in MoQ. It consists
of metadata and an immutable byte payload, which may represent a frame, audio sample,
or any other media fragment. Objects within a subgroup are ordered by Object ID, and
their delivery order is significant. Furthermore, objects within the same subgroup may share
decoding dependencies, whereas objects from different subgroups are considered independent
and decodable in isolation.
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3.2.3 Relays and Scalability

In the architecture of MOQT, relay nodes play a pivotal role in enhancing scalability and
ensuring efficient media distribution. These relays serve as intermediaries between publishers
and subscribers, performing several key functions that collectively contribute to the system’s
performance and reliability.

Relays are responsible for caching and distributing media objects, which helps reduce the load
on origin servers. When subscribers request media content using the FETCH mechanism, relays
can cache these objects. This caching strategy allows relays to serve subsequent requests for the
same content directly rather than having each subscriber retrieve the content from the origin
server. By doing so, relays significantly reduce redundant traffic and alleviate the burden on
the publisher’s infrastructure, leading to more efficient use of network resources and improved
content delivery speeds.

Moreover, relays facilitate efficient subscription aggregation. When multiple subscribers request
the same media track, instead of each client establishing a direct connection to the publisher, the
relay maintains a single subscription for that track. The relay then forwards the media stream
to all interested subscribers. This aggregation minimises redundant traffic back to the original
publisher, optimising bandwidth usage and reducing the overall network load. By managing
subscriptions in this way, relays ensure that the publisher’s resources are utilised efficiently,
even under high demand.

The strategic deployment of relays in various geographical locations further enhances MOQT’s
scalability and performance. By positioning them closer to end-users, MOQT can deliver con-
tent with reduced latency as the data travels shorter distances. This geographical load balancing
ensures that the system can handle large-scale distributions effectively, providing a consistent
and high-quality streaming experience to a global audience. Relays distribute the load across
different regions, preventing any single server or network segment from becoming a bottleneck,
which is particularly important during peak usage times.

In summary, the integration of relay nodes in MOQT enables a highly scalable and efficient
media delivery system. By caching content, aggregating subscriptions, and balancing loads geo-
graphically, relays ensure that media streams are delivered with minimal latency and maximum
resource utilisation, ultimately enhancing the user experience.

Relays play a crucial role in making MOQT efficient at scale, functioning similarly to CDNs in
HAS-based streaming but with the added benefit of QUIC’s transport optimisations. Unlike
WebRTC, which relies on peer-to-peer transmission, MOQT leverages structured routing and
caching, achieving both low latency and large-scale distribution.

By combining these key components, MOQT offers a highly flexible, low-latency, and scalable
approach to media streaming, significantly improving on both HAS-based and WebRTC-based
delivery models.

3.3 WARP: A Streaming Format for Media over QUIC

As Media over QUIC defines the transport layer for real-time and scalable media delivery, it
is designed to be agnostic to how media is packaged and formatted. To function effectively,
MoQ requires well-defined streaming formats that dictate how media is encoded into objects
and groups, the atomic units in the MoQ data model. One such format is WARP [LCV+24],
which is introduced and explained in this section.

WARP is not a standalone protocol but a media streaming format that operates on top of
MOQT. It defines how media data, such as video, audio, or metadata, is organised, encoded,
and mapped to MoQ’s object-based delivery system. In essence, WARP complements the
MoQ protocol by fulfilling the role that MPEG-TS or fMP4 would play in traditional stream-
ing pipelines, but is designed specifically for the object-centric, publish/subscribe model of
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MoQ. By standardising the packaging format, WARP enables interoperability between media
producers and consumers over MoQ, while also facilitating relay caching and content-aware
processing.

3.3.1 Design Principles and Structure

WARP defines several key components that work together to enable low-latency, adaptive
streaming:

• LOC Packaging (Low-overhead Content): Media is segmented into small objects
suitable for transport as MoQ Objects. Each object may contain a frame or fragment,
with minimal overhead to maximise delivery efficiency.

• Time-Alignment: WARP supports alignment of multiple media tracks (e.g., audio and
video) to facilitate synchronised playback at the receiver. Each track is time-stamped in
a shared timeline.

• Catalogue Metadata: Central to WARP is a ”Catalogue” structure, which describes all
available tracks and their associated metadata (e.g., resolution, codec, framerate). This
catalogue enables clients to discover and subscribe to tracks dynamically.

• Patch Updates: The catalogue is designed to be updated incrementally using ”patches”.
This allows broadcasters to add, modify, or remove tracks mid-session without resending
the entire catalogue, supporting use cases such as dynamic bitrate switching or track
reconfiguration.

3.3.2 Track and Object Mapping

In WARP, each media track is identified by a unique name and namespace, which are used
to map the track to the underlying MOQT. The tracks are described in the catalogue using a
structured metadata schema that encompasses both transport-level and media-level informa-
tion.

Each track entry specifies the media codec (such as avc1.64001f for H.264/AVC), the expected
resolution (e.g., 1280x720), and the target bitrate. The schema also allows for the inclusion of at-
tributes such as temporal and spatial IDs (used in scalable video coding), framerate, mimetype,
and initialisation data. These attributes help the subscriber understand the capabilities and
configuration of each track and allow relays to process or prioritise tracks appropriately.

Additionally, WARP supports logical groupings such as alternate groups (for multiple quality
levels of the same content) or render groups (to coordinate synchronised rendering of audio and
video). Dependencies between tracks can be expressed to enable layered decoding or adaptive
switching strategies.

To illustrate, the following example shows a simplified entry for a video track in a WARP
catalogue:
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{
"video" : [{

// Transport information

"track" : {
"name" : "720p" ,
"priority" : 2

} ,
// The codec in use

"codec" : "avc1.64001f" ,
// The resolution of the video

"resolution" : {
"width" : 1280 ,
"height" : 720

} ,
// The maximum bitrate (3Mb/s)

"bitrate" : 3000000
// etc.

} ] ,
}

Listing 3.1: Example of a 720p video stream entry in a WARP catalogue [Cur25].

This entry defines a video track labelled ”720p” with medium priority of 2, encoded using H.264
at 1280x720 resolution and a target bitrate of 3 Mbps. It demonstrates how the catalogue
provides enough detail for clients to evaluate the suitability of a track for a given playback
context or network condition.



Chapter 4

Using qlog for logging

Structured logging is essential in network protocols to enable effective debugging, performance
analysis, and troubleshooting. As modern protocols like QUIC and HTTP/3 grow increasingly
complex, a well-defined and consistent logging format becomes indispensable for understanding
system behaviour, identifying bottlenecks, and improving reliability. The qlog format [MNSP25]
emerges as a powerful solution tailored to meet these demands. Designed specifically for network
protocols, it provides a standardised, extensible, and hierarchical format that captures critical
events and metrics in a machine-readable and human-friendly manner. This chapter explores
qlog’s features, benefits, and its application in enhancing the observability and analysis of the
Media over QUIC protocol.

4.1 Overview of qlog

Before delving into the challenges of network protocol observability and qlog’s specific capa-
bilities, it is important to first understand how qlog is conceptually structured. qlog is a
standardised logging framework designed to capture structured events within network proto-
cols such as QUIC and HTTP/3. It defines a flexible and extensible model for representing logs
as sequences of discrete protocol events.

A simple example is shown in Listing 4.1. This example shows the hierarchical nature of the
qlog file, where the top level is the file itself. This is divided into different traces, which all
contain data from a single vantage point, such as a client, server or intermediary. This data is
in the form of events, which is a structured object with at least three main fields:

• time: a numeric timestamp relative to the start of the trace

• name: a string identifier, typically following the format namespace:event type

• data: an object containing event-specific fields

29
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{
"qlog_version" : "0.4" ,
"title" : "Sample␣connection" ,
"traces" : [

{
"vantage_point" : { "type" : "client" } ,
"reference_time" : "2025-05-20T14:00:00.000Z" ,
"events" : [

{
"time" : 12 ,
"name" : "transport:packet_received" ,
"data" : {

"packet_type" : "initial" ,
"packet_number" : 2

}
} ,
{

"time" : 34 ,
"name" : "recovery:congestion_state_updated" ,
"data" : {

"old" : "slow_start" ,
"new" : "congestion_avoidance"

}
}

]
}

]
}

Listing 4.1: Basic example of a qlog file. This logging format is divided into three
distinct hierarchical parts: the file itself, the traces and the events.

4.1.1 Logging Challenges and qlog’s Solutions

Network protocol logging presents several challenges, particularly when dealing with encrypted
protocols like QUIC and HTTP/3. The lack of visibility into packet-level behaviour and the vari-
ety of custom logging formats used across implementations make it difficult to develop standard-
ised tools for debugging, analysis, and interoperability testing. Additionally, non-standardised
formats hinder data sharing and collaboration between teams or organisations.

The qlog format addresses these challenges by providing a structured, extensible logging for-
mat for network protocols. Its design facilitates easy sharing, uniform analysis methods, and
the creation of reusable tooling. By introducing schema-based logging that supports detailed
event descriptions, qlog enables consistent capture of protocol behaviours while allowing for
customisation specific to individual use cases.

4.1.2 Key Features of qlog

One of qlog’s defining characteristics is its hierarchical structure, which organises data into
three levels: files, traces, and events. A log file contains one or more traces, each representing
a sequence of events recorded at a particular vantage point, such as a client or server. Events,
the smallest units in the hierarchy, capture specific protocol activities, such as a packet being
sent or received. The events are described by a type and are combined with a timestamp. This
structured approach improves traceability and makes analysis more systematic.



4.2. BENEFITS OF QLOG 31

The qlog format is also highly extensible. It supports protocol-specific schemas and allows users
to define custom fields for specialised requirements. Using CDDL (Concise Data Definition
Language) [BVB19], developers can expand existing event schemas or create entirely new event
types while ensuring compatibility with the broader qlog ecosystem.

Another key feature is qlog’s compatibility with multiple serialisation formats, including JSON
and JSON Text Sequences. This flexibility allows logs to be used in both batch-processing sce-
narios and streaming contexts, addressing diverse use cases while maintaining interoperability
between tools and systems.

Lastly, qlog makes use of namespaces. They play a crucial role in preventing naming conflicts
by providing a structured and unique context for defining event types and their associated
data. Each namespace represents a distinct domain, such as a specific protocol (e.g., QUIC,
HTTP/3), and serves as a prefix for all event types within it. For example, events in the QUIC
namespace might include quic:packet sent and quic:connection closed. By prefixing each event
type with its namespace (quic:), qlog ensures that even if another protocol defines similar event
types (e.g., http:packet sent), there is no ambiguity or collision between the names.

4.2 Benefits of qlog

The adoption of qlog as a standardised logging format introduces several advantages that ad-
dress longstanding challenges in network protocol observability. By combining structure, ex-
tensibility, and performance-aware design, qlog enables detailed, interoperable logging without
imposing excessive overhead. This section outlines the core benefits of qlog, focusing on its
role in promoting standardisation, enhancing debugging workflows, and maintaining logging
efficiency in high-throughput environments.

4.2.1 Standardisation

The qlog format establishes standardisation in network protocol logging by introducing a
schema-based, structured format applicable across diverse use cases. Standardisation elimi-
nates the fragmentation caused by proprietary or ad-hoc logging systems, allowing developers,
researchers, and engineers to work with a consistent format regardless of the protocol or applica-
tion. This consistency makes it easier to develop universal tools for debugging, visualisation, and
analysis. For example, whether logging QUIC, HTTP/3, or custom protocols, qlog’s schemas
ensure that events are captured, stored, and interpreted in a predictable and uniform manner.
This unified approach fosters collaboration, simplifies interoperability testing, and reduces the
complexity of integrating logs from multiple sources.

4.2.2 Debugging

For debugging, qlog delivers powerful tools to understand and analyse protocol behaviours.
It captures detailed events like packet transmissions, retransmissions, state transitions, and
connection-level metadata, providing developers with deep insights into system performance
and issues. By organising these events into a hierarchical structure of files, traces, and events,
qlog makes it straightforward to isolate problems, such as misconfigured network parameters or
implementation errors in a specific protocol. The use of vantage points allows for correlating logs
from different locations (e.g., client, server, and network middleboxes), offering a comprehensive
view of interactions across the communication stack. Such clarity is invaluable in identifying
the root causes of interoperability failures, performance bottlenecks, or unexpected behaviours
in encrypted protocols like QUIC.
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4.2.3 Efficiency

The qlog format’s focus on efficiency ensures that logging does not impose significant overhead
while retaining its flexibility and detail. The use of common fields is a key optimisation. These
fields allow attributes shared across events, such as protocol type, group IDs, or time format, to
be stored once at the trace level rather than repeated for each event. This significantly reduces
redundancy, particularly in scenarios where logs capture large volumes of events over time.
Additionally, qlog employs delta encoding for timestamps, where each event’s time is logged
relative to the previous event rather than as an absolute value. This reduces the size of times-
tamp data while preserving the sequence and timing information necessary for analysis. For
high-throughput logging scenarios, such as large-scale QUIC connections, these optimisations
ensure that logs remain compact and manageable without sacrificing the granularity needed for
debugging and analysis.

4.3 Challenges and Limitations

While qlog offers numerous advantages for logging and analysing network protocols, it also
introduces certain challenges and limitations that need to be considered for its effective use in
real-world scenarios.

One significant concern is the potential overhead introduced by qlog compared to not logging
at all. Although qlog includes several optimisations, such as common fields and delta-encoded
timestamps, the act of capturing, serialising, and storing log data inherently consumes resources.
This can lead to performance issues, particularly in real-time or high-throughput environments,
such as servers handling thousands of simultaneous QUIC connections. The overhead includes
increased CPU utilisation for logging operations, memory usage to buffer log data, and I/O
strain from writing logs to disk or streaming them to external systems. For time-sensitive ap-
plications, the delay introduced by logging may impact user experience or system performance,
especially if the implementation is not optimised or logging verbosity is set too high. Balancing
the need for detailed logging with system performance remains a critical challenge, particularly
for deployments in resource-constrained environments.

Another limitation lies in the area of privacy. qlog’s structured format is designed to capture
detailed protocol events, which may include sensitive information such as IP addresses, port
numbers, connection identifiers, and session data. While this level of detail is invaluable for
debugging and analysis, it raises concerns about exposing user data or violating privacy reg-
ulations such as GDPR. For instance, logs could inadvertently reveal user-specific patterns,
geographic information, or session activities if shared or improperly secured. qlog provides
mechanisms like metadata anonymisation and data minimisation to address these concerns,
but implementing such practices requires careful planning. Organisations must establish poli-
cies for anonymising sensitive fields, controlling access to logs, and ensuring secure storage.
However, these measures can add complexity to logging workflows and may reduce the utility
of the logs for some analytical purposes.

A third challenge is the relative scarcity of tooling for qlog compared to more established
logging systems. While the qlog format is designed to be easily parsed and used, the ecosystem
of tools for visualisation, analysis, and debugging is still developing. Tools such as qvis (for
visualising QUIC and HTTP/3 logs) exist but are specialised and limited in their capabilities
compared to more mature logging ecosystems like ELK (Elasticsearch, Logstash, Kibana) or
Splunk. Additionally, integrating qlog with existing logging pipelines may require significant
customisation, especially for environments where qlog must coexist with other formats or logging
systems. The limited availability of tooling also places a more significant burden on developers
to create custom scripts or tools to process and analyse qlog files, which can be a barrier to
adoption. Expanding the availability and capabilities of qlog-compatible tools will be essential
for broader uptake in production systems.
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4.4 Applying qlog to Media over QUIC

The qlog format’s structured logging format aligns closely with the debugging and analysis
needs of Media Over QUIC. Its ability to capture and organise detailed event data provides a
comprehensive view of both transport and application-layer behaviours, enabling developers to
diagnose and optimise protocol performance effectively.

One of the key challenges in MoQ is diagnosing issues in QUIC’s encrypted transport layer.
Traditional packet capture tools struggle to provide insights into encrypted streams. qlog
addresses this by logging events directly from the endpoints, offering visibility into internal
protocol operations without requiring access to decrypted packet data. For example, qlog can
capture events such as packet retransmissions or stream resets, helping developers pinpoint the
root causes of delivery failures or performance issues.

Moq’s design requires close interaction between the transport and media layers. qlog enables this
by supporting multiple namespaces within a single trace, allowing developers to log and correlate
media-specific events (e.g., moq:frame sent) with QUIC transport events (e.g., quic:packet lost).
This cross-layer insight simplifies debugging by providing a unified view of interactions, making
it easier to diagnose issues like synchronisation errors or suboptimal retransmission strate-
gies.

The qlog format’s structured logging allows MoQ developers to capture metrics essential for
real-time media delivery, such as packet delivery times, round-trip times, and retransmission
rates. Analysing these logs can reveal inefficiencies, such as congestion control misconfigurations
or high latency during media playback. These insights can guide optimisations to improve
the user experience, such as adjusting retransmission timers or fine-tuning adaptive bitrate
algorithms.

The qlog’s format extensible framework is especially valuable for MoQ, which may require
custom event types to log application-specific details. Developers can define custom schemas
to capture media-related metrics, such as frame encoding parameters, synchronisation between
audio and video streams, or adaptive bitrate adjustments. This customisation ensures that logs
provide actionable insights tailored to the unique needs of media delivery protocols.

Moq’s real-time nature benefits from qlog’s support for streamed logging formats, such as JSON
Text Sequences. This capability enables developers to monitor logs as they are generated,
facilitating rapid feedback during debugging sessions or live performance monitoring. Streamed
logs integrate seamlessly with real-time visualisation tools, helping developers identify and
address issues without waiting for complete log files.
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Scaling a Web-based MoQ
Logging System

As Media over QUIC matures into a protocol designed for large-scale, real-time media delivery,
ensuring that its logging infrastructure can scale accordingly becomes crucial. Observability
systems must handle high volumes of protocol events, deliver actionable insights under variable
traffic loads, and remain responsive during peak conditions. This chapter explores the challenges
of designing a scalable logging infrastructure for Media over QUIC, with a focus on structured
logging using qlog. These challenges arise from the nature of distributed systems, the constraints
of real-time data handling, and the need to store and manage large volumes of protocol-specific
logging data. Ensuring the system’s performance and reliability under varying load conditions
is critical, especially for live and high-throughput media scenarios.

To address this, the chapter is structured around key points in the logging pipeline: ingestion,
storage, and processing, where specific scalability issues are likely to emerge. Each section
presents the challenges inherent to that stage and proposes targeted solutions to mitigate them.
In the final section, we discuss broader architectural strategies that apply across the entire
system, offering cross-cutting approaches to enhance scalability, flexibility, and resilience.

5.1 Handling High Throughput of Logs

A scalable logging system must be capable of handling a high volume of log messages without
compromising performance. As the number of clients increases, so does the rate of log genera-
tion, leading to potential bottlenecks in data transmission, storage, and retrieval. This section
examines the challenges associated with high log throughput and the strategies employed to
ensure efficient processing, even under peak loads.

5.1.1 Event Categories and Their Logging Impact

Each client in the system generates logs at varying rates depending on factors such as video
streaming activity, logging verbosity, and network conditions. The types of logs generated
are crucial for understanding client behaviour, diagnosing issues, and optimising the streaming
experience. For instance, a client might produce logs for the following categories:

• Connection and Transport Events: These logs provide insights into the underlying
network conditions and the client’s interaction with it. Examples include:

– Congestion Control Metrics: Information about congestion window size, packet loss
rates, and round-trip times helps understand network congestion and its impact on
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streaming quality. These logs are essential for diagnosing network-related playback
issues, such as buffering or dropped frames.

– Jitter Measurements: Variations in packet arrival times (jitter) can lead to audio
and video glitches. Logging jitter values allows for identifying network instability
and its effects on the user experience.

– Flow Control Metrics: Data related to flow control mechanisms, such as backpressure
signals, helps analyse how the client adapts to varying network bandwidth availabil-
ity. This is crucial for smooth bitrate adaptation.

The volume of connection and transport-related events, such as connection setup, path
changes, or packet-level feedback, is largely influenced by network conditions. In stable
environments, these events remain infrequent and predictable. However, under unstable
or lossy network conditions (e.g., mobile handovers, congestion episodes), these events
can spike due to path validation attempts, retries, or transport-level adjustments. This
makes their frequency highly dynamic and potentially bursty during adverse conditions.

• Media-Related Events: These logs capture information about the actual streaming
process and the client’s interaction with the media stream. Examples include:

– Bitrate Adaptation: Logs related to bitrate switching decisions (e.g., when the client
switches from 720p to 480p) are essential for understanding how the client adapts to
changing network conditions. These logs can be used to optimise adaptive bitrate
(ABR) algorithms.

– Stream Subscribing/Unsubscribing: Logs indicating when a client joins or leaves a
stream are important for tracking viewership and resource utilisation on the server.

– Buffer Underruns: These logs indicate instances where the client’s buffer runs out
of data, resulting in playback interruptions. They are critical for identifying network
or server-side issues.

Media-related events are typically the most frequent in MoQ-based systems, as they track
the actual flow of audio/video content. The logging volume here is directly tied to the
configured verbosity level. In low-verbosity modes, only key transitions (e.g., bitrate
shifts, keyframe boundaries) may be logged. In contrast, high-verbosity modes may emit
logs for every datagram or object parsed, which can result in tens of thousands of events
per second, particularly for high-bitrate streams or fine-grained object structures. As
such, careful calibration is needed to balance observability with system overhead.

• System-Level Diagnostics: These logs capture information about the client’s resource
usage and overall health. Examples include:

– CPU Usage: Logging CPU utilisation allows for the identification of performance
bottlenecks on the client side.

– Memory Consumption: Tracking memory usage helps detect memory leaks or other
memory-related issues that could affect streaming performance.

– Player State (Playing, Paused, Buffering): Logging the player’s state allows for the
analysis of user interaction and the correlation of playback issues with specific player
states.

– Timestamp of key events like seeking: Logging the timestamp of key events, such
as seeking, is crucial for analysing user behaviour and correlating it with potential
playback issues.

System-level diagnostic events, such as manual instrumentation markers, logging of system
state snapshots, or user-triggered actions (e.g., toggling logging views or issuing manual
queries), tend to be relatively infrequent. Their frequency is typically dictated by de-
veloper or operator intent rather than protocol dynamics. While they provide valuable
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contextual information (especially during debugging sessions), they contribute minimally
to log volume compared to transport or media-layer events. Nevertheless, their timing
and correlation with other high-frequency logs can be crucial for root cause analysis.

If logging is performed at a fine-grained level, each client could generate hundreds of log entries
per second. For example, a client switching bitrates multiple times during a session, experi-
encing occasional network jitter, and logging various player states could quickly produce this
volume of data. With thousands of clients operating simultaneously, the system must efficiently
ingest and process hundreds of thousands of log messages per second. Assuming, for example,
5,000 concurrent clients, each generating 200 logs per second, the system needs to handle 1
million log messages per second. Without optimisation, this influx can overwhelm the message
broker, backend, storage layers, and visualisations. Therefore, careful consideration must be
given to the design and implementation of each component of the logging pipeline to ensure it
can handle this scale of data.

5.1.2 Burst Traffic Scenarios

One of the most significant challenges in designing a scalable logging system, especially for
real-time applications like video streaming, is accommodating burst traffic patterns. Unlike a
steady stream of logs, real-world scenarios often involve unpredictable spikes in logging activity.
These bursts can overwhelm the system if it’s not designed to handle them effectively, leading
to excessive latency, dropped log messages, or even complete system failure. In the context of
video streaming, several factors can trigger such bursts:

• Network Degradation: A sudden network degradation, such as a temporary loss of
connectivity to a Content Delivery Network (CDN) server or a widespread network outage,
can cause a cascade of log messages from affected clients. For example, if a CDN server
becomes unreachable, all clients relying on that server will experience packet loss. This
will trigger retransmission requests, increased latency, and potential connection failures,
leading to a surge in logs related to these events. Furthermore, clients might attempt
to switch to lower bitrates or pause playback, generating additional log entries. These
correlated log messages from numerous clients can create a significant spike in log volume.

• Client-Side Issues: Issues on the client side, such as application crashes, unexpected
behaviour, or resource exhaustion (e.g., CPU overload), can also trigger bursts of log
data. For instance, a client application crash might result in a ”log dump” containing the
application’s state and error messages at the time of the crash. If multiple clients experi-
ence similar issues simultaneously (e.g., due to a software bug), the resulting log dumps
can create a substantial burden on the logging system. Similarly, resource exhaustion on
the client side can cause a sudden increase in logging activity as the client struggles to
maintain performance.

• Large-Scale Events: Large-scale video streaming events, such as live broadcasts of
popular events, can lead to a massive influx of log messages. During these events, many
clients connect to the streaming service simultaneously, generating logs related to con-
nection establishment, stream subscription, playback, and other activities. Even if the
average log rate per client is relatively low, the sheer number of concurrent clients can
result in a very high aggregate log volume, especially during peak viewing times. Fur-
thermore, these events often have predictable peak times, allowing for some preemptive
scaling, but unexpected surges in viewership can still strain the system.

• Server-Side Issues: Problems on the server side, such as database failures, message
broker outages, or backend service disruptions, can also lead to bursts of log data. For
example, if the database used to store logs becomes unavailable, the backend might queue
log messages in memory. Once the database is restored, the backend will flush the ac-
cumulated log messages to the database, resulting in a sudden spike in write activity.
Similarly, a failing message broker might cause clients to retry sending messages, leading
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to a surge in traffic when the broker recovers.

If the system is not designed to handle these bursts effectively, it may experience excessive
latency, dropped log messages, or even complete failure due to overwhelmed resources. This
can severely impact the ability to monitor the health and performance of the video streaming
service, making it difficult to diagnose and resolve issues. Therefore, robust mechanisms for
buffering, queuing, and processing log messages are essential to ensure the logging system
remains resilient during periods of high load.

5.1.3 Message Brokering for Scalable Log Ingestion

In high-throughput environments, transmitting log data directly from instrumentation inter-
faces to backend systems can lead to performance degradation and reliability issues. To mitigate
this, many scalable logging architectures incorporate a message broker [Ibm25], a decoupled
intermediary that facilitates the ingestion, buffering, and routing of log messages between pro-
ducers and consumers.

A message broker supports communication patterns such as publish-subscribe or message queu-
ing, allowing log producers to emit events without needing to be aware of downstream processing
components. This decoupling enables more resilient and modular systems, as it reduces tight
coupling and improves fault tolerance.

Well-known message broker systems include Apache Kafka 1, RabbitMQ 2, NATS3, and Eclipse
Mosquitto 4. Each is suited to different use cases depending on the performance requirements
and protocol constraints. For example, Mosquitto is a lightweight MQTT broker that is par-
ticularly well-suited for scenarios where low overhead, small footprint, and push-based delivery
are advantageous, common in embedded or edge-based logging scenarios. Apache Kafka, on the
other hand, is designed for high-throughput, distributed messaging and persistent log storage.
Its strong durability guarantees, horizontal scalability, and efficient batch processing, make it
a natural fit for backend systems that need to ingest and process large volumes of structured
logging data, such as those generated in MoQ observability pipelines.

By introducing a broker, the system can scale horizontally through topic partitioning, con-
sumer replication, and load balancing. Additionally, brokers often provide features such as
delivery guarantees, message persistence, and temporal buffering, all of which are critical in
environments with intermittent connectivity or fluctuating traffic.

In summary, the use of a broker-based architecture offers a scalable, flexible approach to man-
aging high-volume log flows while maintaining reliability and extensibility between the instru-
mentation interface and the backend infrastructure.

5.1.4 Transport Protocol Considerations for Scalable Delivery

The selection of a transport protocol to relay log messages from the instrumentation interface
to the backend infrastructure plays a pivotal role in the design of a scalable logging system.
This choice directly impacts performance characteristics such as latency, throughput, deliv-
ery guarantees, and fault tolerance, and can constrain or guide the choice of message broker
technology.

Several protocol options are commonly used in logging systems, each with trade-offs:

• HTTP/HTTPS: Ubiquitous and firewall-friendly, but incurs higher overhead due to
connection setup and statelessness. Suitable for batch uploads or push-to-ingest gateways.

1https://kafka.apache.org/
2https://www.rabbitmq.com/
3https://nats.io/
4https://mosquitto.org/

https://kafka.apache.org/
https://www.rabbitmq.com/
https://nats.io/
https://mosquitto.org/
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• WebSockets: Enables low-latency bidirectional communication. Useful for browser-
based instrumentation or scenarios with continuous log streaming.

• gRPC: Offers performance efficiency with support for streaming and structured schemas
(via Protocol Buffers). Often used in tightly coupled microservices environments.

• MQTT: A lightweight publish-subscribe protocol optimised for bandwidth-constrained
and high-latency networks. MQTT is ideal for mobile, edge, or embedded devices and is
fully supported by brokers like Eclipse Mosquitto.

• QUIC-based transport: Emerging as a viable candidate for telemetry and logging due
to its low-latency and multiplexing capabilities, though adoption in logging scenarios is
still nascent.

Choosing a protocol involves evaluating the operational environment (e.g., bandwidth con-
straints, device capabilities, NAT traversal), delivery requirements (e.g., at-most-once, at-least-
once), and integration with existing broker ecosystems. For example, selecting MQTT as the
transport protocol naturally leads to adopting Mosquitto or a similar lightweight broker to
manage the message flow.

In essence, the transport protocol serves as the backbone of log communication and should
be selected with an awareness of how it aligns with system constraints and the overall logging
architecture.

5.2 Data Storage and Management

Given the high-throughput nature of MoQ media sessions and the structured verbosity of qlog-
based instrumentation, the logging system must handle both real-time ingestion and efficient,
cost-aware long-term storage. This section examines storage challenges and presents design
strategies tailored to the needs of a MoQ-aware logging architecture.

5.2.1 Storage Capacity and Cost

Video streaming logs can consume significant storage space. Factors like the number of clients,
logging verbosity, and the duration of log retention all contribute to the overall storage re-
quirements. Estimating the required storage capacity is crucial for planning infrastructure and
budgeting. Therefore, we introduce a theoretical function to get a broad calculation of how
much data needs to be stored. We base this on one of the control message types which results
in the most amount of messages (Bitrate Adaptation), as this will give us the most accurate
estimation.

L = W × 60×R×M ×B

L = amount of log storage

W = watch-time in hours

R = number of ABR switches per minute

M = number of control messages sent per switch

B = average size of qlog message in bytes

To get an estimation of L, we can look at an example such as Twitch.com5, a renowned live
streaming platform and thus a potential future user of MoQ. At the time of writing this, Twitch
averages around two million viewers per day [Twi25], resulting in 50 million hours of watchtime.
Furthermore, the number of bitrate switches averages one per two minutes [TDM16], every
switch results in two messages (UNSUBSCRIBE from current bitrate track and SUBSCRIBE to new
bitrate track) and every log message in qlog format averages 200 bytes. We fill these values
into the function:

5twitch.com

twitch.com
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W = 5.0× 107 h/day

R = 0.5 switches/min

M = 2 msgs/switch

B = 200 bytes/msg

L = 5.0× 107 × 60× 0.5× 2× 200 ≈ 6.0× 1011 bytes/day = 600 GB

This simplified model illustrates the rapid accumulation of log data, even before considering
peak loads due to popular streaming days, increased verbosity as a result of more message types,
or larger log sizes due to richer event content. Without mitigation, this results in unsustainable
storage pressure. A good solution to this challenge of large amounts of log messages that need to
be stored can be found in data retention policies, which concern what data should be stored or
archived, where that should happen, and for exactly how long. Most logging messages lose a lot
of their value when kept for a longer period of time. An option here would be to keep all logs for
a short, fixed period (e.g., 7–30 days) in fast-access storage to facilitate debugging and real-time
system monitoring. This can then be useful for critical incidents that require quick investigation
using recent trace data. After that time period, we could employ a hierarchical storage model
(HSM) [She22] that separates logs by access frequency. For instance, ”hot” logs can be stored
in high-performance, document-based databases like MongoDB6, which offer flexible schema
support and optimised indexing for JSON-style records such as qlog entries. Alternatively,
SQL-based databases such as PostgreSQL7 could be used when stronger consistency or complex
relational querying is required. Older or less frequently accessed logs can be compressed and
migrated to “cold” storage solutions such as Amazon S38 or other archival platforms. This
tiered approach balances accessibility, performance, and storage cost effectively.

As logs age and their relevance diminishes, retaining every individual entry becomes both un-
necessary and inefficient. To further optimise storage, log aggregation and sampling can be
applied as post-processing strategies. Aggregation involves summarising fine-grained events
into coarser metrics, for example, compiling bitrate switches into hourly distributions or track-
ing average object delivery times per session. Sampling, on the other hand, reduces log density
by retaining only a subset of events (e.g., every Nth entry), which can significantly cut storage
volume while preserving overall behavioural trends. Though these techniques reduce granular-
ity, they are highly effective for long-term retention without compromising the system’s ability
to analyse historical performance.

Finally, after logs reach the end of their defined lifecycle, they should be automatically deleted.
Before deletion, compaction techniques, such as deduplicating repetitive debug entries or prun-
ing verbose internal states, can reduce unnecessary storage use without sacrificing analytical
integrity.

5.2.2 Data Retrieval and Querying

Efficient retrieval of log data is essential for debugging, performance analysis, and security
investigations in a scalable MoQ logging system. As log volumes increase, the ability to query
logs quickly and precisely becomes more challenging. For example, users may need to isolate all
error events for a specific session within a given time window or trace the sequence of control
messages exchanged during a failed subscription negotiation. To support these use cases, the
system must implement mechanisms that allow fast filtering by criteria such as timestamps,
client or track IDs, event types, or error codes.

6https://www.mongodb.com/
7https://www.postgresql.org/
8https://aws.amazon.com/s3/

https://www.mongodb.com/
https://www.postgresql.org/
https://aws.amazon.com/s3/
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One core challenge is the indexing of large datasets, which is critical for maintaining low-
latency query performance at scale. Without carefully designed indexes, search operations over
millions of entries become computationally expensive. Time-series databases such as InfluxDB
or TimescaleDB offer efficient indexing for time-based queries, making them well-suited for
chronological inspection of log flows. For more flexible or full-text querying, Elasticsearch and
Solr provide distributed indexing and advanced search capabilities, enabling fast filtering across
nested JSON structures common in qlog.

Another key difficulty lies in handling complex queries, where users combine multiple filters and
conditions, for example, correlating session metadata with control-plane errors and transport
behaviour. Supporting such queries requires both efficient query execution plans and a suffi-
ciently expressive query language. Systems like ClickHouse or MongoDB (with its aggregation
pipeline) can be advantageous here, depending on the data model and workload.

Finally, query performance optimisation becomes critical, especially for real-time dashboards
and on-demand visualisations. Techniques such as caching frequent queries, pre-aggregating
metrics over time intervals, or applying data downsampling can significantly reduce system
load while maintaining responsiveness.

While general-purpose document databases like MongoDB are attractive in low-volume envi-
ronments due to their native JSON support and flexible schemas, features that align well with
qlog’s structure, they may fall short in high-throughput scenarios. For production systems,
database selection should be driven by scalability, indexing granularity, and query performance
under load.

5.2.3 Data Security and Privacy

Log data generated by a MoQ observability system may contain sensitive user-related informa-
tion, including IP addresses, client identifiers, session metadata, and in some cases, content-
specific references. If improperly handled, this data poses significant privacy and security risks,
especially under regulatory frameworks like the General Data Protection Regulation (GDPR).
To address these concerns, several key challenges must be considered and mitigated through
technical and procedural safeguards.

One major concern is unauthorised access to log data, which can expose identifiable user in-
formation. This can be mitigated by implementing strict access control mechanisms, such as
role-based access control (RBAC), ensuring that only authorised personnel or services can view
or manipulate log data based on predefined permissions.

A second critical requirement is data protection during storage and transmission. Logs should
be encrypted both at rest and in transit using modern cryptographic standards (e.g., TLS for
transport, AES-256 for storage). This reduces the risk of data breaches due to interception or
unauthorised file access.

A further privacy challenge is the potential identifiability of users within stored logs. To address
this, data anonymisation or pseudonymisation techniques should be applied, for example, hash-
ing or tokenising user identifiers, masking IP addresses, or aggregating sensitive fields. These
practices help minimise personal data exposure, especially in environments used for analytics,
development, or research.

Finally, the system must ensure ongoing compliance with legal and industry standards, such as
GDPR, CCPA, or ISO 27001. This includes maintaining clear audit trails of access to log data,
supporting user data deletion upon request, and documenting how sensitive fields are handled
across the logging pipeline.

By embedding these measures into the design of the logging infrastructure, the system ensures
that privacy and security are not afterthoughts but core architectural concerns, essential both
for protecting user data and for maintaining trust with stakeholders.
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While implementing strong privacy and security measures is essential, it also introduces trade-
offs in terms of data completeness and analytical richness. For instance, allowing users to opt out
of logging or selectively disable certain types of event capture, in line with privacy regulations
or personal preferences, inevitably reduces the overall volume and diversity of data available for
system-wide analysis. Similarly, aggressive anonymisation or redaction may obscure patterns
or correlations that are otherwise valuable for debugging or performance optimisation. This
tension between individual privacy rights and collective insight is particularly relevant in open
ecosystems or public research settings, where shared observability data plays a crucial role in
protocol evolution and interoperability testing. Designing the system to respect user agency
while still capturing sufficient aggregate data for meaningful analysis requires careful calibration
of logging defaults, anonymisation strategies, and opt-out mechanisms.

5.3 Log Processing and Aggregation

The sheer volume of log data generated by a large-scale video streaming platform necessitates
efficient processing and aggregation mechanisms. This section discusses the challenges and
considerations involved in processing and aggregating qlog data from multiple sources.

5.3.1 Log Parsing and Normalisation with qlog

Logs from different sources (clients, servers, network devices) might have varying formats, even
within a structured logging framework like qlog if extensions are used. Parsing and normalising
these logs into a consistent structure is essential for easier processing, analysis, and aggrega-
tion. Fortunately, the use of qlog significantly simplifies this process. Because qlog defines a
structured format for logging, it allows for consistent parsing and reduces the complexity of
normalisation. Since all logs adhere to the qlog structure, the effort required to write parsers
is greatly reduced. This standardisation enables easier integration with various analysis tools
and facilitates efficient aggregation of log data from different sources. While qlog itself provides
a base structure, protocol-specific or application-specific extensions might still require some
level of normalisation to ensure compatibility with analysis tools. However, the core structure
provided by qlog greatly minimises the effort required.

5.3.2 Log Aggregation

Aggregating logs from multiple clients and servers is crucial for a holistic view of the system’s
behaviour. This is particularly important for correlating events across different clients, servers
or network devices involved in the same video streaming session. For example, to diagnose a
playback issue reported by a user, you might need to aggregate logs from the subscribing client,
the relay, and the origin client to identify the root cause. Qlog’s structured format makes
aggregation significantly easier. The consistent structure and the inclusion of common fields
(like timestamps and connection identifiers) facilitate the correlation of events across different
log files. This enables the creation of aggregated views of the streaming session, providing
insights into the end-to-end performance and identifying potential bottlenecks.

5.3.3 Real-time vs. Batch Processing

In a scalable MoQ observability system, both real-time and batch log processing play crucial
but distinct roles, each optimised for different types of insight and operational use cases.

Real-time processing is primarily focused on operational monitoring and reactive debugging. As
logs are ingested, they are immediately parsed and analysed to detect anomalies, track protocol-
level events, or trigger alerts. This enables engineers and operators to respond rapidly to issues
such as unexpected connection drops, elevated error rates, or inconsistent control message flows.
Real-time dashboards, for example, allow live tracking of stream health across active sessions,
helping identify problems as they unfold and reducing mean time of detection.



42 CHAPTER 5. SCALING A WEB-BASED MOQ LOGGING SYSTEM

Batch processing, in contrast, supports long-term, aggregated analysis of system behaviour.
Rather than responding to immediate events, it enables retrospective evaluations, such as iden-
tifying usage trends across client populations, analysing patterns in subscription behaviour,
or correlating streaming quality with network conditions. These insights inform performance
optimisation, capacity planning, and strategic decision-making. Batch pipelines can also in-
corporate more computationally intensive processing (e.g., clustering, anomaly classification,
report generation) that would be too resource-heavy to run live.

Because each mode serves a different analytical purpose, real-time for immediate diagnosis,
batch for historical context and systemic understanding, modern observability systems typically
adopt a hybrid architecture. Logs are streamed into a real-time processing layer for active
observability and simultaneously persisted for batch workflows that run at scheduled intervals
or on demand. This combination ensures that both urgent operational visibility and deep
analytical insight are supported by the same underlying logging infrastructure.

5.4 Other Strategies for Scalable Web-Based Logging

The preceding section identified the key challenges associated with scaling a logging system
for a Media over QUIC deployment. These include managing bursty traffic patterns, ensur-
ing low-latency access to logs, controlling storage growth, and supporting concurrent access by
analysis tools and visualisations. Left unaddressed, such issues can lead to degraded perfor-
mance, reduced observability, and an inability to support large-scale media streaming scenarios
effectively.

To address these challenges, this section proposes a set of architectural and operational strate-
gies that align with the specific characteristics of MoQ and its logging requirements. These
strategies include modular design principles, efficient storage practices, adaptive deployment
methods, and effective visualisation tooling. The aim is to enable the logging system to scale
in proportion to traffic without compromising responsiveness, reliability, or analytical preci-
sion.

5.4.1 Scalable System Architecture

A foundational principle for enabling scalability in a web-based logging system is the decomposi-
tion of the system into modular services. By structuring the logging pipeline into independent
components, such as ingestion, buffering, processing, storage, and visualisation, each service
can be scaled independently based on its load profile. This modularity also simplifies failure
isolation and enhances the maintainability of the system.

To decouple producers from consumers and mitigate the effects of burst traffic, an asynchronous
message queue or log buffer can be introduced. In this model, incoming log events are tem-
porarily stored in a resilient queuing system (e.g., Kafka 9, Redis Streams 10), which serves
as an intermediary between high-throughput producers (such as MoQ relays) and downstream
consumers. This design smooths out load spikes, avoids data loss during temporary slowdowns
in storage backends, and simplifies parallel processing of logs.

5.4.2 Elastic Deployment and Load Adaptation

In environments where traffic is variable or difficult to predict, such as during major live events,
elastic deployment is essential. Container orchestration platforms like Kubernetes support
horizontal pod autoscaling based on resource metrics such as CPU, memory, or custom event
rates. By dynamically adjusting the number of log ingestion or processing instances, the system
can accommodate high loads without requiring permanent overprovisioning.

9https://kafka.apache.org/
10https://redis.io/

https://kafka.apache.org/
https://redis.io/
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Additionally, isolating high-throughput sources can prevent them from overwhelming shared
infrastructure. For instance, logs originating from relays handling a high number of subscribers
can be routed to separate ingestion queues or stored in dedicated partitions. This separation pre-
serves fairness and ensures that critical but low-volume logs are not dropped or delayed.



Chapter 6

Observability System Proposal

This chapter introduces an observability system for the MoQ protocol. It proposes a scalable and
extensible architecture designed to support both real-time debugging and long-term analysis.
While Chapter 5 addresses the broader scalability concerns, this chapter presents a concrete
solution to those challenges. Given the evolving nature of MoQ, the system is built with
adaptability at its core, ensuring compatibility with future protocol developments and enabling
continued relevance as the ecosystem matures.

Beyond raw protocol mechanics, the availability of robust debugging, analysis, and deployment
tooling plays a critical role in protocol adoption. Established HAS protocols such as MPEG-
DASH and HLS benefit from well-defined media segment formats, standardised manifests, and
mature tooling ecosystems for media packaging, manifest generation, and adaptive bitrate logic.
MoQ, by contrast, is still in the early stages of ecosystem development. Tooling support remains
limited, and integration with browsers or major media servers is currently non-existent. While
projects such as FFmpeg do have preliminary support for MoQ-based streaming, this remains
the exception rather than the rule. Technical feasibility exists, but widespread support and
accessibility are lacking. This lack of tooling hampers visibility and debuggability in MoQ
deployments, especially given that QUIC’s encrypted transport layer restricts passive network
inspection. This challenge reinforces the necessity of purpose-built observability infrastructure
such as the one proposed and prototyped in this work.

Currently, for QUIC-related traffic, logging is primarily conducted using qvis1. This visual-
isation tool aids in the interpretation of QUIC-related events by providing a structured and
interactive view of qlog data. While it facilitates a deeper understanding of QUIC protocol
behaviours, its scope is limited to single-perspective analyses and does not offer a fully holistic
overview of multi-endpoint or end-to-end interactions. This is the main reason we propose a
new system aimed at filling this gap. We do this by offering a distributed platform, giving the
developers free rein over what they want to log regarding MoQ. The aim here is to provide them
with standardisation of how the logging happens while also giving enough freedom to allow for
new insights and to ensure the platform’s longevity.

The proposed logging system consists of a package that can be included in the MoQ project,
offering an easy-to-use API for creating event-based logs. This side of the system ensures
formatting and is in contact with a backend via a broker. When the events arrive at the
backend, they are saved and can be accessed via an interactive tool. Here, the developer or
operator can listen to live transfers of streams and fetches (mentioned in Section 3.1.2), save
this transfer data or load previously saved data files. We opted for qlog as a data format as
this has become the standard for any QUIC-related logging and offers good building blocks as
well as the option for expansion.

1https://qvis.quictools.info

44

https://qvis.quictools.info


6.1. SYSTEM GOALS AND REQUIREMENTS 45

This chapter outlines the proposal for an observability system tailored to MoQ. It begins by
defining the system’s goals and requirements, followed by a description of its architecture and
each of its core components. Subsequently, it presents the underlying data model, explaining
how qlog was selected, how it is extended to support MoQ-specific events, and how these
logs are structured and processed. The chapter concludes by detailing the data flow from
instrumentation to visualisation.

6.1 System Goals and Requirements

As mentioned before, the system aims to provide developers with a platform to log and visualise
a streaming setup during their testing and development process, as well as a way of gathering
information on end-users utilising a streaming service. By offering a distributed way of logging,
a developer can obtain a unified visualisation of the inner workings and problems of their
entire setup, eliminating the need to manually combine different logging implementations and
visualisations.

In creating such a system, some functional requirements are very important. First of all, logging
should be possible from multiple locations, whether distributed geographically or consolidated
on a single machine. This approach supports both individual developers who run local setups
and work independently to improve or contribute to the protocol, and larger organisations that
have access to infrastructure such as content distribution networks. It allows each to implement
and evaluate parts of a MoQ deployment in a manner suited to their available resources.

Another key requirement is persistent log storage, which allows users to compare historical
traces and identify long-term trends. This is crucial for recognising improvements or diagnosing
recurring issues. Furthermore, persisted logs create the possibility of exporting data, allowing
users to leverage external visualisation or analysis tools, thus enhancing the system’s analytical
capabilities and flexibility. Following this, we also state that developers should be able to upload
their own formatted qlog documents to the tool, allowing them to visualise externally logged
data.

Equally important is the visualisation of logged data, which transforms raw events into action-
able insights. For a system such as this to deliver real value and achieve widespread adoption,
it must provide users with an effective means of interpreting the information it collects. Sim-
ply generating data is insufficient; users need insight. By integrating a visualisation tool that
presents the logged events in a clear and structured manner, the system empowers users to
interpret complex protocol behaviour more intuitively.

Beyond the core functional requirements, the system must embody several critical non-functional
attributes to ensure its operational quality, reliability, and long-term value, particularly given
the dynamic nature of MoQ development and the potential scale of deployment. Scalability
stands out as a primary concern; the system must be architected to gracefully handle significant
and potentially fluctuating loads. This involves efficiently managing high throughput rates of
log messages originating from numerous concurrent clients and absorbing unpredictable traf-
fic bursts, which are common in streaming environments. Consequently, the entire pipeline,
encompassing data ingestion, processing, storage, and querying, must be designed for horizon-
tal scaling to maintain performance as demand grows, likely employing strategies like message
brokers and distributed processing, as explored in Chapter 5.

Closely related is the need for fault tolerance. The logging infrastructure should demonstrate
resilience, ensuring that failures within individual components, such as a specific logger instance,
the message broker, or backend services, do not cascade into complete system failure or lead
to substantial data loss. Implementing redundancy, robust queuing mechanisms and strategies
for graceful degradation will be vital in maintaining system availability and the integrity of the
collected log data.
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Performance is another key consideration. The logging activities must impose minimal over-
head on the MoQ applications under observation to avoid impacting their primary function.
Furthermore, the system should provide timely feedback, especially for real-time monitoring
scenarios, necessitating low-latency log ingestion and processing. Efficient data retrieval and
querying are also essential for effective debugging and analysis. This requires careful optimi-
sation throughout the system, including efficient data serialisation like qlog, effective database
indexing, and streamlined data pipelines.

From the perspective of MoQ developers, usability of the logging library is critical. Instrument-
ing a protocol implementation should be as frictionless as possible, relying on a minimal and
intuitive API. Developers require clarity in how to initialise and use the logging interface, as
well as flexibility to log protocol-specific events without significant overhead or disruption to
existing code structures.

For users interacting with log data, such as protocol researchers, system operators, or QA engi-
neers, the visualisation interface must prioritise accessibility and clarity. An effective tool should
support uploading and downloading logs with ease, while providing interactive visualisations
that highlight temporal relationships, session dynamics, and protocol behaviours.

Finally, acknowledging the evolving nature of the MoQ protocol, maintainability and exten-
sibility are crucial for the system’s longevity. The architecture and codebase should be well-
structured and readily adaptable to future modifications. This includes accommodating changes
to the MoQ protocol itself, integrating logging for new features, and potentially adding new vi-
sualisation capabilities over time. Designing for modularity and leveraging standardised formats
like qlog will significantly aid in achieving this necessary flexibility.

6.2 System Architecture

Having established the system’s core requirements, we now explore its architectural design,
detailing how each component contributes to these goals. Figure 6.1 illustrates the proposed
architecture, which is organised into four discrete layers: the instrumentation interface, the
logger broker, the log serialiser and store, and, finally, the visualisation front-end. Each layer
satisfies a distinct subset of the stated requirements, and together they constitute a coherent
end-to-end solution. In the sections that follow, we discuss the function and interconnection of
each layer, while deliberately avoiding prescriptive implementation details; this intentional lati-
tude enables adopters to choose technologies that best suit their context rather than conforming
to arbitrary constraints.

Figure 6.1: This figure shows the proposed system layout, which comprises four parts
in combination with the already existing MoQ implementation. These parts are, in order
from where the logging starts, the instrumentation interface, the logger broker, the log
serialiser and store and the visualisation frontend.
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6.2.1 Event Capture and Instrumentation Interface

This component is a modular and lightweight logging interface designed specifically for MoQ.
It provides a dedicated API for capturing MoQ-specific runtime events in a structured, qlog-
compliant format. Developers can use a single function call to log essential metadata, including
the event type, vantage point (such as client or relay), associated message payloads, and a stream
identifier. The stream identifier facilitates log grouping across distributed systems, enabling
comprehensive analysis from multiple vantage points. The interface integrates seamlessly with
existing MoQ implementations, including moq-rs and moq-js2, both of which are actively
developed and used within the working group.

To minimise disruption to the primary application logic and ensure non-blocking behaviour, the
system employs a multi-threaded architecture. A dedicated thread handles the lifecycle of the
broker connection and message queuing, thereby isolating event logging tasks from the main
execution path. This design ensures that capturing and transmitting telemetry data does not
impede media transport performance, especially in latency-sensitive contexts. By abstracting
away the complexity of qlog formatting and network transmission, the interface enables rapid
and consistent observability integration across diverse MoQ-based projects.

Crucially, this component is also responsible for assigning precise timestamps to each log entry
upon capture, aligning with the qlog specification’s requirement for high-resolution temporal
tracking. By decoupling event capture from delivery and leveraging parallelism, this archi-
tecture ensures scalable, low-overhead logging suitable for real-time media transport environ-
ments.

6.2.2 Logger Broker

To facilitate the efficient and scalable transfer of logging data from the instrumentation interface
to the backend infrastructure, the system introduces an intermediate broker component. The
instrumentation interface connects to this broker using a designated stream identifier, which
is supplied explicitly during the logging API call. This identifier serves as a routing key,
enabling the backend system to correctly associate incoming logs with their corresponding
stream contexts and subsequently retrieve them as needed. Allowing the user to log to multiple
streams from one single MoQ implementation also allows for splitting or filtering certain parts
of the logging data. One could, for example, split the control channel messages from the content
streaming logs, allowing for a more precise grouping and a more deliberate scaling of parts of
the system. The option then poses itself to send the control channel data to a weaker broker,
while sending the large amounts of video streaming logs to a more scaled-up node.

The introduction of a broker into the logging pipeline is a deliberate architectural decision
aimed at supporting horizontal scalability and decoupling log production from log consump-
tion. As further elaborated in Chapter 5, this decoupling ensures that the system can handle
high-throughput logging scenarios while maintaining low overhead on the instrumented appli-
cations.

To minimise performance impact and ensure reliable delivery under variable network conditions,
the broker should leverage a lightweight protocol as mentioned in Section 5.1.4. This choice
of protocol should align with the broader goals of the system, namely, enabling consistent and
scalable observability without disrupting media transport performance. MQTT emerges as a
strong candidate due to its lightweight nature and consistency, offering adequate scalability for
moderate-sized deployments. These qualities align well with the system’s need for low overhead
and reliable delivery in early-stage or edge environments.

2The Media over QUIC working group utilises two main components for their implementation: moq-rs:
https://github.com/kixelated/MoQ-rs, moq-js: https://github.com/kixelated/MoQ-js

https://github.com/kixelated/MoQ-rs
https://github.com/kixelated/MoQ-js
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As the scale of the system increases, particularly in scenarios involving numerous concurrent
streams or high-frequency logging events, the limitations of MQTT may become more pro-
nounced. Specifically, MQTT’s constrained message throughput and limited durability mecha-
nisms can pose challenges in environments demanding robust data persistence, advanced query-
ing capabilities, and large-scale analytics.

To accommodate such scaling demands, the architecture supports the integration of a more
powerful distributed streaming platform, for example, Apache Kafka. Kafka is designed for
high-throughput, fault-tolerant log ingestion and is well-suited for backend systems requiring
durable, replayable log streams and real-time processing capabilities.

While MQTT provides a lightweight solution for early-stage deployments, more advanced sce-
narios may require increased throughput and durability. In such cases, the system could be ex-
tended with a downstream Kafka integration. A bridging component might subscribe to MQTT
topics and forward messages into Kafka, enabling high-throughput, replayable log streams. This
hybrid approach retains MQTT’s low overhead at the edge while allowing Kafka to handle back-
end scalability. Such an extension would be particularly valuable as MoQ adoption grows and
observability demands increase.

By decoupling ingestion from long-term processing in this way, the system maintains flexibility:
MQTT remains the interface for clients, while Kafka enables scalable back-end operations. This
layered design ensures that the logging infrastructure can evolve in response to operational
demands, without requiring intrusive changes to the client-side instrumentation.

6.2.3 Log Serialiser and Store

The logging backend component subscribes to the designated logging streams via the message
broker. Its primary role is to continuously consume and process log events as the instrumen-
tation interfaces publish them. This backend is designed to perform multiple critical functions
that support both real-time monitoring and retrospective analysis.

First, incoming qlog events are durably written to a log store chosen for its ease of evolution
at small scale and its capacity to grow later. For initial deployments, MongoDB offers an
excellent fit. Its schemaless, document-oriented design accommodates rapid iteration without
requiring migrations, which suits the evolving nature of MoQ particularly well. The low setup
overhead and inherent flexibility enable developers to focus on protocol instrumentation and
experimentation without being encumbered by rigid data models. This makes MongoDB not
merely sufficient but well-aligned with the goals of early-stage development. As the system
grows and requirements evolve, such as higher ingest rates, increased trace volumes, or more
advanced analytical needs, PostgreSQL, optionally extended with TimescaleDB, provides a nat-
ural progression. The use of a JSONB column ensures continuity, allowing qlog data structures
to remain consistent across both backend options. This step adds native time-series partitioning
and compression, and exposes the full expressive power of SQL for later analysis, all without
altering the higher-level logging API.

Second, the backend acts as an intermediary between the log store and subscribed frontend
clients. It actively forwards log events from specific streams to the frontend interfaces, enabling
real-time visualisation of protocol activity. This live update mechanism provides valuable insight
into ongoing MoQ sessions, supporting debugging and monitoring efforts during runtime.

Third, the backend exposes a query interface to the frontend, allowing users to retrieve historical
logs from a specific stream over a defined time window. Upon receiving such a request, the back-
end queries the database, filters the relevant events based on timestamp and stream identifier,
and groups the results according to their vantage point. It then constructs a well-formed qlog
file in accordance with the qlog specification, which is subsequently made available for download
through the frontend interface. This enables post-mortem analysis using qlog-compatible tools
and promotes consistency across the system’s observability pipeline.
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6.2.4 Visualisation Frontend

This component allows the user to choose a logging stream to listen to. Doing so starts the
pushing of events on that logging stream from the backend to the frontend. When events arrive,
they get parsed and visualised correctly so the user can interpret them.

The visualisation frontend provides an interactive interface for users to monitor and analyse
Media over QUIC sessions in real time. It enables developers to select a specific logging stream of
interest, thereby initiating a subscription process. Once a stream is selected, the backend starts
pushing relevant event data to the frontend through a live connection. Upon arrival, incoming
events are parsed and interpreted according to the qlog event schema. The frontend maps
these events to appropriate visual elements, offering structured and intuitive representations
that facilitate user comprehension. This includes, for instance, timelines of control message
exchanges, datagram flow, and vantage point-specific activity. The visualisation logic ensures
that the MoQ events are handled in a meaningful and consistent manner.

In addition to real-time inspection, the frontend offers the capability to download the current
set of displayed events as a qlog-compliant file. This allows users to perform in-depth offline
analysis using external qlog tools or to archive session logs for documentation or debugging
purposes. The combination of live visual feedback and on-demand archival export makes the
frontend a central component in the system’s observability and usability pipeline.

Moreover, the frontend also supports the upload of locally stored qlog files that adhere to
the schema. Developers can load previously saved event streams into the interface, enabling
retrospective exploration and analysis without requiring a live connection to the backend. This
dual functionality, supporting both live and offline data, enhances the flexibility of the system
and facilitates a wide range of usage scenarios, from active debugging to post-mortem protocol
analysis.

Real-time media protocols like MoQ generate a high volume of control and data events, dis-
tributed across multiple streams and actors. Debugging such behaviour, especially when in-
volving prioritisation, object loss, or asynchronous control flows, can be extremely difficult
by relying solely on raw logs. A dedicated visualisation layer is therefore essential, not just
for user comprehension, but for protocol validation, implementation testing, and performance
tuning.

The design of the visualisation frontend draws inspiration from existing tools such as qvis3,
which offers powerful transport-level visualisations based on standardised qlog traces and has a
similar goal to what we want to achieve with the visualisation frontend. The qvis tool demon-
strates the value of structured logs for understanding QUIC’s behaviour, particularly in terms of
packet transmission, loss recovery, and congestion control. However, qvis is primarily oriented
toward QUIC’s transport semantics and is not equipped to visualise the session-level constructs
introduced by MoQ. It operates on per-endpoint traces and lacks support for analysing control
messages such as SUBSCRIBE, ANNOUNCE, or FETCH. Moreover, it provides no correlation between
related events across different endpoints, an essential capability for debugging distributed MoQ
sessions. To overcome these limitations, the visualisation frontend presented in this thesis
extends the qlog format with MoQ-specific events and introduces views tailored to protocol
semantics, enabling a richer understanding of session-level behaviour.

3https://qvis.quictools.info

https://qvis.quictools.info
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6.3 Data Model and Flow

To enable structured, extensible, and scalable logging for MoQ sessions, a clear and consistent
data model is essential. This section details the internal data representation and event flow
that underpin the proposed logging architecture. It outlines how MoQ-specific protocol seman-
tics are captured, transformed, and propagated through the system using an extended qlog
schema. By defining the structure and movement of data from event capture to visualisation,
this model ensures coherence between system components and facilitates accurate, low-latency
introspection of session behaviour.

6.3.1 Extending qlog

While the adoption of qlog provides a robust and standardised foundation for capturing transport-
layer events, effectively debugging and analysing Media over QUIC requires visibility into
application-level interactions specific to the protocol itself. As established in Chapter 4, qlog
excels due to its structured format, established tooling, and inherent extensibility, features that
make it an ideal choice for logging complex network protocols like QUIC. However, the base
qlog specification primarily defines events relevant to the transport layer, e.g., QUIC packet
handling and connection states. It naturally lacks predefined event types and semantic struc-
tures tailored to the unique operations and mechanisms of MoQ, such as track announcements,
subscriptions, or object prioritisation. To achieve comprehensive observability for MoQ systems
and facilitate targeted analysis, it becomes essential to leverage qlog’s extensibility. Therefore,
this section outlines a proposed extension to the qlog format, defining a dedicated set of event
types and data structures specifically designed to capture the critical dynamics of Media over
QUIC sessions within the standardised qlog scheme.

Namespace Design for MoQ Events

To maintain modularity and ensure future-proofing, two distinct qlog namespaces have been
defined:

• moq: This namespace contains standardised and protocol-compliant event types that
directly reflect the operations described in the MoQ transport specification, such as control
messages (e.g., subscribe ok, announce, fetch cancel), session state transitions, and
stream classifications. For clarification, the full list of control message types is provided
in Table 1 of the appendix.

• moq-custom: This auxiliary namespace captures experimental, vendor-specific, or yet-
to-be-standardised events that are nevertheless relevant to the MoQ ecosystem. It allows
implementers to log custom behaviour (e.g., internal scheduling decisions or fallback logic)
without conflicting with future official extensions.

This dual-namespace approach aligns with qlog’s extensibility guidelines as defined in Section
8.2 of the main qlog schema draft [MNSP25]. It supports the evolution of MoQ while preserving
compatibility with standard analysis tools.

Unified Logging Through Multi-Endpoint Traces

Another enhancement this work introduces involves structuring qlog files to incorporate multi-
endpoint traces, enabling correlated observation of a full MoQ session across clients, relays,
and servers. While qlog already supports the concept of trace objects (each encapsulating a
single logical view with its own vantage point), our extension advocates the use of a traces
array within a single qlogFile object to group synchronised logs across endpoints. This enables
powerful end-to-end analysis scenarios, such as matching subscribe requests at clients with
subscribe ok responses from servers, or tracing the relay path of announce messages through
intermediate nodes.
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Each trace entry is annotated with the vantage point field (as per Section 6 of the qlog
schema), clearly distinguishing its role (client, server, relay) and allowing event correlation
across the distributed MoQ session.

Figure 6.2 shows the overall hierarchy of the qlog file and how the traces can be used to
distinguish the different vantage points. We see that the top level is the qlog file, which contains
multiple traces, one for each of the vantage points. Each trace then contains the events that
were logged from this vantage point.

Figure 6.2: Layout of the qlog file and how it is used in the proposed system. Every
file contains a trace for each of the vantage points, which each contains the events logged
from that vantage point.

MoQ qlog Event Definitions Draft

After the initial implementation phase, a formal proposal for MoQ-specific qlog events was
published in the IETF as an Internet-Draft [PE25]. This draft introduces a broader event
vocabulary for MoQ, organised around key operational stages such as control message lifecycle,
object datagram handling, and subgroup composition. Notable event types include:

• MoQ:control message created and MoQ:control message parsed: These define
the creation and interpretation of control messages in a structured and type-aware manner.

• MoQ:object datagram created, MoQ:fetch header parsed, and similar events:
These focus on deeper packet-level dynamics and subgroup/data stream orchestration.

• Stream and object lifecycle events, reflecting the granular structure of the MoQ data
model as defined in the MoQ transport specification.

The official schema uses the structured Concise Data Definition Language (CDDL) [BVB19]
and aims for integration with existing qlog tooling ecosystems such as qvis. While more compre-
hensive in scope, this draft emerged after the initial phases of this thesis work. Consequently,
the current implementation diverges somewhat in naming conventions, event granularity, and
data layout, but remains compatible in principle thanks to qlog’s flexible schema extension
points. Future work may involve aligning the custom logging system more closely with this
proposed standard, especially as it stabilises and gains broader adoption. Until then, the
current focus remains on delivering practical observability for control flow in evolving MoQ
environments.
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6.3.2 Serialising MoQ Events to qlog Format

When creating the system, the deliberate choice was made to adapt the event logging to follow
the qlog format. From the start, when the user makes a logging call in their implementation
code, they are forced to follow the qlog format. This is to, first of all, create a mental model
for the user, allowing them to better understand the complete data flow of the system, but
primarily because qlog is a logging scheme that has proven itself to be useful and is widely
adopted to be the standard when logging QUIC connections.

As previously noted, the system requires users to utilise the qlog format for their data input.
Events are logged when a user calls the logging function of the Logger class within their
implementation code. This Logger’s function accepts an object structured as a qlog event. The
example presented in Listing 6.1 demonstrates the format of a log message. When logging,
users must provide an object containing the eventName, vantagePointID, stream, and data

fields. Here, the eventName and data fields map directly onto the respective name and data

fields of a standard qlog event. The stream field indicates the specific stream for sending the
log message to the server, while the vantagePointID acts as a unique identifier employed both
in the visualisation process and for organising logs by location into distinct traces within the
qlog file.

{
eventName : "subscribe -received" ,
vantagePointID : "PUBLISHER" ,
stream : "logging-stream" ,
data : {

message : msg ,
}

}

Listing 6.1: Logging ”subscribe-received” on a publisher in a JavaScript environment

The data field within a qlog event object provides a flexible mechanism for including rich,
event-specific information beyond the core metadata. Rather than enforcing a constrained
schema, qlog leverages an open-ended, key-addressable structure in which each key is a string.
The associated value may be any JSON-compatible type, including strings, numbers, booleans,
arrays, or nested objects. This generality enables developers to log arbitrary, contextually
relevant information without rigid constraints on format or structure.

This design choice directly supports the goals of extensibility and adaptability. Developers
implementing event logging for a specific use case, such as Media over QUIC, can define
and emit structured contextual data without modifying the underlying schema or serialisa-
tion mechanisms. Consequently, the logging system remains both broadly interoperable and
future-proof. Should the nature of the logged events evolve (e.g., to include more complex
diagnostics or metadata), the existing logging pipeline remains functional without requiring
systemic changes.

Additionally, using native JSON types ensures natural integration with analysis tooling. Data
consumers can access known fields via string keys and, depending on the application’s needs,
may interpret or parse values directly (e.g., treating a value as an integer, parsing a nested
object, or applying domain-specific logic). This encourages the development of tooling that is
both robust and capable of leveraging domain semantics.

After the data is captured and formatted as qlog data on the client side, it gets transported
over to the back-end, where it gets sent over to the visualisation front-end as well as saved
in a database. Data gets saved on the server to serve the developer later when they want to
download the qlog file from the tool for further analysis. A developer or analyst can also upload
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a qlog file directly into the visualisation tool. Doing so will only load the file locally and will
never save the file elsewhere.



Chapter 7

System Proof of Concept

To show that the proposed system introduced in Chapter 6 is feasible and can result in valuable
insights regarding the debugging and monitoring, as well as improve the explainability of the
Media over Quic protocol, we built out a proof of concept following our findings. This is but
one of many possible ways the proposal can be interpreted, and one should always choose what
works best for their implementation. Choices made in this chapter are not definitive and can
be altered if the system is scaled up or down.

For this proof of concept, we make use of the already existing implementation from the MoQ
working group. At the start of the development process, this implementation followed draft
04 of the MOQT protocol, and thus, some more recent features were not tested. It should,
however, be noted that because of the generic nature of the system and the open extension of
the qlog format, newer versions of the protocol can still be visualised, and the system does not
lose much of its value.

Figure 7.1: Updated architecture layout based on the exact implementation of the proof
of concept. Blue-marked objects show adaptations made to Figure 6.1, which describes
a more generic version.

Figure 7.1 shows an adapted version of Figure 6.1 regarding the system architecture. In the
adapted figure, we include specific implementation details (marked in blue) to illustrate how the
system architecture can be realised in practice. This chapter provides a comprehensive walk-
through of a practical implementation of the logging system following this system architecture.
It details how the components of the system interact to form a coherent, observable pipeline for
MoQ sessions, bridging the theoretical architecture defined earlier with a real-world, functional
prototype. Each section discusses a major subsystem, design choice, or integration challenge,
offering both technical insight and rationale. Together, they demonstrate the flexibility of the
proposed design and its viability in realistic settings.

54
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7.1 Instrumentation Interface

The instrumentation interface is the framework layer that attaches to the existing implemen-
tation. It provides the user with an easy-to-use interface for logging events. In the context
of the proof of concept, the instrumentation layer serves as the connection between the log-
ging infrastructure and the operational components of the Media over QUIC system. Building
on the architectural and technical foundations established in the implementation chapter, this
layer exposes a set of abstractions and integration points that facilitate real-time interaction
with MoQ streams and their associated qlog events. Its primary purpose is to provide a mod-
ular and extensible mechanism for capturing protocol-level events and translating them into
structured logs that conform to the MoQ-specific qlog schema. Ultimately, the design of the
interface layer aims to demonstrate how standardised logging can be seamlessly integrated into
next-generation streaming protocols, offering visibility into session-level behaviour while main-
taining the scalability and performance characteristics inherent to MoQ.

We will now introduce some choices that were made following the proposed system. Because
this proof of concept makes use of the existing Media over QUIC implementation from the IETF
working group, the instrumentation interface has to be implemented in both the Rust language
and in JavaScript (or TypeScript). This results in some language- or platform-specific choices
that had to be made. Considering these different implementations, both adaptations follow the
same ideas.

7.1.1 Singleton Instance

Both implementations introduce a new Logger class. An instance of this class allows for calling
the logging function and sending log messages to the backend. This class follows the singleton
design pattern. This ensures that not every call creates a new instance of the class, allowing all
logging operations to occur over the same backend connection without the need to maintain a
separate global connection variable. We also save memory space and improve performance, not
having to create new instances of the class for every location in the MoQ implementation where
a log message is sent. In the context of MoQ, where multiple asynchronous and concurrent
events may require logging simultaneously, the singleton pattern guarantees consistent and
thread-safe access to the logging backend without introducing synchronisation issues or resource
contention.

Listing 7.1 shows the function used for handling the singleton pattern. When the instance is
not yet created, we create a new instance of the Logger class. Otherwise, we pass the already
created instance. In Rust, we can implement a singleton pattern using the lazy static crate.
We can see this crate in use in Listing 7.2. It allows us to define a value (such as an instance of a
class or struct) that is initialised exactly once and then shared across the whole codebase. The
Mutex in this code example ensures serial execution of the logging functions, ensuring thread
safety.

s t a t i c getInstance ( ) {
i f ( ! Logger . i n s t anc e ) {

Logger . i n s t anc e = new Logger ( )
}
return Logger . i n s t anc e

}

Listing 7.1: Code for implementing the singleton design pattern in a JavaScript or
TypeScript environment.
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l a z y s t a t i c ! {
pub stat ic ref LOGGER: Mutex<MqttLogger> = Mutex : :new(

MqttLogger : :new( ) ) ;
}

Listing 7.2: Code for implementing the singleton design pattern in a Rust environment.

7.1.2 Connection Thread

To minimise the computational overhead on the implementation thread, threading was employed
to handle logging operations asynchronously. This design choice is particularly important in a
streaming context, where delays in media processing or transmission could result in degraded
user experience. Both implementations use their respective threading models to ensure that the
connection with the backend, as well as the transmission of log messages, occur on a separate
thread, thus avoiding blocking the main execution flow.

When a user creates a new log message, a minimal piece of code is run to capture and fill the
log message with the correct time and send it to the logging thread. While the implementation
is logging, the logging thread listens for these logs. The first time the thread starts up, the
connection is opened with the broker connecting it to the backend. Once established, the thread
remains active, asynchronously handling the transmission of subsequent log messages.

Listing 7.3 shows that the constructor of the Logger class immediately initiates a new Web
Worker. Web Workers offer a straightforward mechanism for running scripts in background
threads, thereby preventing blocking of the main thread. In this design, the Web Worker is
responsible for executing the remaining logic necessary to connect to the broker via MQTT.
An equivalent approach in Rust is illustrated in Listing 7.4, where a new thread is spawned
within the constructor. The connection logic is encapsulated inside this thread, utilising the
move keyword to transfer ownership of the required variables into the thread’s scope.

Although Web Workers and Rust threads provide similar concurrency benefits, they differ
fundamentally in their execution models and communication mechanisms. In JavaScript, the
main thread communicates with the Worker via message passing, while in Rust, threads can
share memory and coordinate using channels or synchronisation primitives.

constructor ( ) {
this . worker = new Worker (new URL("./loggerWorker.js" , import .

meta . u r l ) , { type : "module" })
}

Listing 7.3: Initialisation of a new Worker as a thread in the JavaScript implementation
of the Logger

thread : : spawn (move | | {
// The entire MQTT client connection and buffering loop

// happens inside this closure

}) ;

Listing 7.4: Initialisation of a new thread in the Rust implementation of the Logger
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7.1.3 Buffering Messages

Because logging messages can be accumulated in a rapid fashion, a system was added to both
logger implementations to buffer them. We can introduce a buffer like this because the logging
visualisations do not have to be updated in real-time to be valuable. Another factor allowing
us to do this is the timings of the events, which are registered before entering the buffer.

To implement this logic in JavaScript, we make use of the setInterval function, as shown in
Listing 7.5. We place the logic for buffering the events and sending them to the backend within
this function, which then gets called once every second, so as not to overload this backend.
The buffer is a JavaScript dictionary which, for every different stream identifier passed in the
stream field of the events, contains an array with all the buffered events for that stream. This
principle is visible in Listing 7.7. Although in a local scenario the buffer will, most of the time,
be filled with only one stream identifier, it allows for the buffering of events when streams
should be split up. To implement this same principle in Rust, we choose to import interval
and Duration from the Tokio crate. They allow us, much like the JavaScript implementation,
to wait for a second, accumulate the messages in the buffer, and then transmit them. They can
be seen in use in Listing 7.6.

setInterval ( ( ) => {
// Logging and buffering logic happens inside this closure

} , 1000)

Listing 7.5: setInterval() function which executes the code inside the code block once
every second.

l et mut i n t e r v a l v a r = interval ( Duration : : f r om sec s (1 ) ) ;
loop {

i n t e r v a l v a r . tick ( ) . await ;
// Logging and buffering logic happens inside this closure

}

Listing 7.6: Usage of the interval function and the Duration struct for executing the
code block every second.

{
"logging-stream1" : [ event1 , event2 ] ,
"logging-stream2" : [ event3 , event4 ] ,

}

Listing 7.7: Buffer content structure example.

7.1.4 The Logging Interface

To make the logging experience as smooth as possible for the user, the interface for doing the
actual logging is kept as straightforward as possible while still offering the needed flexibility
for logging in typical qlog fashion and logging on multiple streams. For the JavaScript or
TypeScript implementation, seen in Listing 7.8, a user starts by getting the instance of the
Logger class by calling getInstance. They then log an event by passing a formatted object to
the logEvent function. This object, as mentioned in section 6.3.2, is filled with the eventType,
vantagePointID, stream and data fields to follow the qlog format. A similar logic applies to
the implementation in Rust. Here we first create the log message as an object of the LogMessage
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class. We fill this message with the same fields as before. Because of Rust’s strongly typed
syntax, we pass the data as a hashmap. The last step is using the mqtt log function to send
over the message to the broker.

Logger . getInstance ( ) . logEvent ({
eventType : "subscribe -received" ,
vantagePointID : "PUBLISHER" ,
stream : "logging-stream" ,
data : {

message : msg ,
} ,

})

Listing 7.8: Logging of ”subscribe-received” on a publisher in a TypeScript environment

l et l og message = LogMessage {
eventType : format ! ( "subscribe -received" , msg .name( ) ) ,
vantagePointID : "RELAY" . to string ( ) ,
stream : "logging-stream" . to string ( ) ,
data : HashMap : : from ( [

("message" . to string ( ) , msg)
] ) ,

} ;
mqtt log ( log message ) ;

Listing 7.9: Logging of ”subscribe-received” on a publisher in a Rust environment

7.2 Logger Broker

The broker in the proposed system serves as the intermediary component between the instru-
mentation interface and the backend. Its primary functions, elaborated in Chapter 6, Sec-
tion 6.2.2, include enabling straightforward horizontal scalability and facilitating the transfer
of messages via streams. For the proof-of-concept implementation, MQTT was selected as
the message transfer protocol due to its lightweight nature, efficient connection handling, and
compatibility with WebSocket connections for browser-based clients. Furthermore, MQTT’s
publish-subscribe paradigm aligns conceptually with MoQ’s design, enabling clients to push
messages in an efficient and structured manner.

The broker utilised in this implementation is Eclipse Mosquitto, an open-source MQTT broker
known for its lightweight footprint and ease of deployment, making it an optimal choice for the
envisioned system architecture.

A Docker container with two open ports is used to deploy the broker. The first port supports
raw MQTT connections, which are utilised by the Rust implementation and the backend com-
ponents. The second port is configured for WebSocket connections, enabling communication
with web-based clients. The broker listens on these ports and handles both subscribe and
publish operations.

Listing 7.10 demonstrates how MQTT is employed in the JavaScript/TypeScript implementa-
tion. A client connection is first established, after which the publish function can be invoked
to send messages to the broker, each identified by a specific stream id.
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The equivalent implementation in Rust is shown in Listing 7.11. Here, the client is initialised
using a create options configuration, followed by establishing a connection to the broker using
these options. Messages are then published in a similar fashion by calling the publish method
on the client instance.

const c l i e n t = mqtt . connect (BROKERADDRESS) ;

c l i e n t . publish (
stream id ,
JSON. str ingi fy (msg) ,

) ;

Listing 7.10: Creation of the MQTT connection with the broker and sending of a
message to the broker in a JavaScript or TypeScript environment.

l et c r e a t e op t i o n s = mqtt : : CreateOpt ionsBui lder
: :new( )
. c l ient id (CLIENT ID . to string ( ) )
. server uri (BROKERADDRESS)
. persistence (None )
. f ina l i ze ( ) ;

l et c l i e n t = match mqtt : : C l i en t : :new( c r e a t e op t i o n s ) {
Ok( c l i e n t ) => c l i e n t

} ;
l et msg = mqtt : : Message : :new(

stream id ,
j son pay load . as bytes ( ) . to vec ( ) ,
mqtt : : QoS : : AtLeastOnce

) ;
c l i e n t . publish (msg) ;

Listing 7.11: Creation of the MQTT connection with the broker and sending of a
message to the broker in a Rust environment.

To enable the receiving of messages transmitted via the broker, the backend also establishes
a connection to the broker. Because MQTT uses the publish/subscribe paradigm, it suffices
to create this connection and subscribe to the broker. We can see how this subscription gets
created in Listing 7.12. It starts off by creating the connection. On this connection is where
we can call the subscribe function with the stream identifier we want to listen to. From then
on, we can catch messages using a listener and handle the messages accordingly.
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const c l i e n t = mqtt . connect (BROKERADDRESS, {
c l i e n t I d : CLIENT ID ,
c l ean : true ,

}) ;
c l i e n t . on ("connect" , ( ) => {

c l i e n t . sub s c r i b e (STREAM ID) ;
}) ;
c l i e n t . on ("message" , async ( top ic , payload ) => {

// Handle the received message

}) ;

Listing 7.12: Creating the connection to the broker, subscribing to a stream and
listening for messages on that stream

7.3 Log Serialiser and Store

The log serializer and storage component is implemented as the system’s backend service. The
component handles the retrieval and storage of messages, as well as their transmission to the
visualisation frontend. The retrieval was already handled in the previous section, where the
connection with the broker was also explained. After the messages are received, they are sent
to the database. For this proof of concept, MongoDB was chosen to store the events due to
its flexibility in handling semi-structured data and its ease of integration with JSON-based
message formats, which aligns well with the qlog event structure.

Listing 7.13 illustrates the initialisation of the MongoDB connection and the definition of the
data schema used for storing log events. The database is connected using the mongoose library,
which simplifies interactions with MongoDB in Node.js environments. The schema defined by
StreamEventSchema reflects the structure of a typical qlog event as adapted for MoQ logging.
It includes fields such as stream id, event type, timestamp, vantagePointID, and data, the
latter of which is declared as Mixed to allow for the flexible, semi-structured nature of qlog event
data. This design accommodates the heterogeneous payloads typical of qlog-formatted messages
while maintaining compatibility with MongoDB’s document-based storage model. The schema
thus ensures consistent data ingestion and facilitates downstream querying and analysis by the
visualisation component.

To ensure scalable and performant log ingestion in high-throughput environments such as Media
over QUIC, the backend adopts a dual-buffering strategy. At its core, each media stream is
associated with a dedicated in-memory buffer, maintained in a JavaScript Map. Incoming log
messages, received via MQTT, are parsed and appended to their respective stream buffers.
Once the buffer for a given stream exceeds a predefined threshold, it is flushed to MongoDB
in bulk using the insertMany operation. This reduces write amplification and I/O overhead,
while still preserving timely persistence.

As shown in Listing 7.14, the system supports real-time log delivery to the frontend via a Server-
Sent Events (SSE) endpoint exposed at /events. Clients can subscribe to a specific streamId,
upon which the server registers their connection and begins streaming relevant events. To
prevent frontend overload, an additional receive-side buffering mechanism is introduced. If a
batch of events surpasses a configurable size limit, they are aggregated into a single composite
event before being pushed over the SSE connection. This combination of backend buffering
and SSE stream management ensures a balance between latency, throughput, and resource
efficiency across both development and deployment scenarios. Furthermore, the system detects
when the last client for a stream disconnects and invokes a final buffer flush to ensure no data
is lost.



7.3. LOG SERIALISER AND STORE 61

The last notable function of the backend is retrieving the logs from the database. This can be
done, as visible in Listing 7.15, by performing a GET request to /api/events and providing a
stream identifier. The URL also contains the start and end times of your query. These will then
be used to fetch the correct events from the database. Ideally, there would also be a system
limiting who can fetch events from which streams, but implementing this was not a high priority
for this system, as it is a proof of concept.

mongoose . connect ( p roce s s . env .MONGODBURI | | "mongodb://localhost

:27017/stream_logs" , {
useNewUrlParser : true ,
useUni f iedTopology : true ,

}) ;

const StreamEventSchema = new mongoose .Schema({
s t ream id : Str ing ,
event type : Str ing ,
timestamp : Number ,
vantagePointID : Str ing ,
data : mongoose .Schema . Types . Mixed ,

}) ;

const StreamEvent = mongoose .model("StreamEvent" ,
StreamEventSchema ) ;

Listing 7.13: Creation of the MongoDB store.

app . get ("/events" , ( req , r e s ) => {
r e s . setHeader ("Content-Type" , "text/event-stream" ) ;
r e s . setHeader ("Cache-Control" , "no-cache" ) ;
r e s . setHeader ("Connection" , "keep-alive" ) ;

const streamId = req . query . streamId | | "default" ;
c l i e n t s .push({ re sponse : res , streamId }) ;

req . on ("close" , ( ) => {
c l i e n t s = c l i e n t s . f i l t e r ( c l i e n t => c l i e n t . r e sponse !==

re s ) ;
i f ( ! c l i e n t s . some( c l i e n t => c l i e n t . streamId === streamId )

) {
flushStreamBuffer ( streamId ) ;

}
}) ;

}) ;

Listing 7.14: Setup of the SSE endpoint for the the visualisation clients.
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app . get ("/api/events/:streamId" , async ( req , r e s ) => {
const { streamId } = req . params ;
const { startTime , endTime } = req . query ;

i f ( act iveStreams . has ( streamId ) ) {
await flushStreamBuffer ( streamId ) ;

}

const query = {
s t ream id : streamId ,
timestamp : {

$gte : parseInt ( startTime ) ,
$ l t e : parseInt ( endTime ) ,

} ,
} ;

const events = await StreamEvent . find ( query ) . sort ({ timestamp
: 1 }) ;

r e s . json ({ events }) ;
}) ;

Listing 7.15: Querying historical stream events based on time filters.

7.4 Visualisation Frontend

As discussed in Section 6.2.4, the frontend can listen to logging streams by identifier. When
clicking the listen button, the client registers itself with the backend and opens the SSE
connection. Starting from that point, the events are pushed to the frontend and displayed as
they come in. The visualising of the events happens in a dashboard, where every time a new
event is registered, the visualisations update accordingly. These visualisations are built from
scratch using D3.js, offering creative freedom but coming at the cost of slower development
time. In this section, we will go over every part of the front-end visualisation tool and all the
features that the visualisations include.

7.4.1 Control Bar

At the top of the visualisation interface, several controls are arranged as seen in Figure 7.2.
From left to right, we see a listening toggle with an accompanying input field, an upload button,
and a download button with its own input field. On the left, the first input field allows users
to specify a stream identifier for active listening. When the adjacent button is pressed, the
system initiates real-time monitoring of incoming events for the specified stream, updating
visualisations dynamically as events are received. Centrally placed is the upload button, which
permits users to submit qlog-formatted files, either previously generated by the system or
created externally. Upon upload, the events in the file are parsed and loaded chronologically,
again triggering dynamic updates to the visualisations based on their contents. On the right-
hand side, the download button allows users to export the currently visualised events. A user
specifies the desired stream via the associated input field, after which the system performs a
fetch operation as described in Section 7.3, bundles the events into a qlog-compliant file, and
allocates each vantage point its own trace within the output.
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Figure 7.2: The controls which are located at the top of the page of the visualisation
frontend. In this example, when pressing the ”Start Listening” button, the frontend
will start to receive events on the ”logging-stream” stream and adapt the page correctly.
Uploading a qlog file using the upload button will result in the file being parsed and the
events being displayed correctly. The last button on the right allows the user to download
a qlog file of all the events currently displayed.

Figure 7.3: Latency measurement example for subscribe messages. The count repre-
sents the number of subscribe messages sent over in the current time period. The average
and max latency give more insights into the latency values themselves. Pending, in this
figure, displays the number of subscribe messages that are sent but never received.

7.4.2 Latency Measurement zone

Just below the control bar on the visualisation tool are the latency measurements. These will
calculate the latency per event type. The mapping of messages can only be done when events
are logged when they are sent at the publisher and when they are received at the subscriber.
We can, using that same system, also log individual hops, but this will require a more granular
visualisation.

Figure 7.3 shows how these latency measurements are displayed on the page. In this example, it
shows the values which were calculated from the subscribe messages. This latency measurement
zone is populated with information about the number of subscribe messages, the average latency,
the maximum latency and the pending messages. Using the average latency measurement, the
user can define if there are any immediate problems with the system. When greeted with an
abnormally high average latency, they might be able to relate this to an outlier by looking at
the max latency and count values. A low count value with a large outlier will inherently result
in a higher average latency. Finally, the pending row of the measurements can give insights into
problems that the messages have with propagating through the system. When this number is
unusually high, it means that messages are getting lost somewhere in the setup, and the user
can try to identify where using the other visualisations.

7.4.3 Basic Event Chart

The most basic visualisation on this dashboard is the event chart. When a new event is regis-
tered, it gets placed on this chart as a circle, grouped by event type and displayed over time.
The chart starts off bare, with no registered events or event types. As events come in, they get
checked for their type. If a new type is noticed, a new value on the y-axis is created, and the
event is placed corresponding to their timestamp and event type. These circles are hoverable,
showing the exact information that was passed to the frontend in qlog format. The user can
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also zoom in on the chart, resulting in a more precise analysis. When events on the chart are
near each other in terms of timestamp and are of the same event type, this would result in
them being placed on top of each other and thus not providing the correct sense of scale at
first glance. To omit messages being visually left out, they get staggered on top of each other,
visually resulting in a group of messages, where each of them is still hoverable.

Figure 7.4: This figure demonstrates how the basic chart of the visualisation tool can
display incoming or saved events. It currently displays the control messages for setting
up a simple MoQ stream. First, (1) the publisher connects to the relay and (2) announces
its streams. This is then followed by the (3) subscriber connecting to the relay and (4)
subscribing to several streams.

Figure 7.4 demonstrates an example of the basic chart on the visualisation tool. The system
at the time of this example is only logging control messages sent over the bidirectional control
stream. The example is composed of the publisher connecting to the relay and announcing its
different tracks. This is followed by a subscriber connecting to the same relay and subscribing to
several tracks. As mentioned before, the event types are displayed on the y-axis together with
their respective qlog extended namespace. The events themselves are ordered chronologically.
When multiple events are in close proximity to each other, they are grouped visually, which
can be seen in zone 4 of the figure.

7.4.4 Connection Graph

The second graph that is visible on the dashboard is a connections graph. Because of MoQ’s
complex scaling features using relays, we create value by visualising the network of participants
and relays. To make connections between relays and clients, we examine the connect-sent

and connect-accepted messages that are sent over the control channel. The result is then a
graph that displays all entities that are relevant to the stream and their connections. Based
on the vantagePointID field in the event message, it is possible to determine if the entity is a
relay, a subscriber or a publisher and colour them accordingly, resulting in a more structured
visualisation. Using the visualisation, the user can see if connections are working and create a
model of the setup they are using.

Figure 7.5 demonstrates an example of the connections graph. In the first MoQ setup (a), four
subscribers connect to a single relay as well as a single publisher. Whenever a new entity joins,
it gets placed on the graph in the form of a circle. In this process, the tool tries to detect if
the entity is a subscriber, a publisher or a relay based on the vantage point identifier. It then
proceeds to give them a corresponding colour to make distinguishing the different types easier.
In this example, blue is used for subscribers, yellow is used for publishers and brown is used for
relays. This type recognition is also used for better labelling of the nodes. The vantage point
identifier is used to give the node a meaningful label. When the identifier length surpasses a
threshold, it gets reduced to its type as a label. This is to prevent large labels from causing
problems in interpreting the graph, as a tradeoff for losing the identifier information.
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(a) Connection graph comprising a single publisher
and four subscribers connected to a relay.

(b) Connection graph comprising a single publisher
and twenty subscribers connected to a relay.

Figure 7.5: Figure (a) and (b) show the dynamic nature of the connections graph.
When the subscriber count, connected to a single relay, reaches five, they get bundled in
a single circle to reduce overcrowding of the chart with nodes.

When connection events are logged (moq:connect-sent or moq:connect-accepted), the tool
tries to find the correct links between the different nodes in the graph based on these connection
log messages. These connections are displayed as grey lines between the nodes.

Because of the intention of supporting large-scale setups with plenty of different nodes, an
aggregation technique is used. Nodes that are of the same type and connect to the same relay
are bundled into one singular node if their count surpasses a threshold (in the current system,
this is set to five). As not to lose any information in this process of aggregating, the node
is clickable, which opens a pop-up that contains the vantage point identifiers of the included
clients.

7.4.5 Message Sequence Chart

While messages are received, if they are filtered out as control messages 1, they become visible
on the message sequence chart. When a new vantage point is detected in the logs, a new entity
in the form of a vertical line is displayed on the chart. Starting from that point, every time
a new control message is sent to another vantage point, this is shown as an arrow starting
from the sender and pointing at the receiver. This chart will grow vertically as more control
messages flow in. Using this chart, the user can see how the connections are built and how the
communication between the vantage points occurs.

Figure 7.6 shows the MoQ setup process in the message sequence chart. We see, once again, a
publisher connecting to the relay, followed by a subscriber connecting to the relay. This chart,
however, shows the direction the messages are going as well as the time they are sent and
received. Using this chart, the user can follow the complete conversation between the different
actors in a MoQ setup. After the connection is made, the publisher announces its streams to
the relay, and the subscriber is able to subscribe to these streams.
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Figure 7.6: Example of message sequence chart which displays part of the control
message conversation between the different actors. Messages are sent from one entity to
another and displayed with direction, timestamps and event types. This example follows
the start of the stream setup, where a publisher connects to a relay and announces a
stream, followed by a subscriber connecting to a relay and subscribing to said stream.
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7.4.6 Event List

The last visualisation on this page is a list of all the events that are logged. This list expands
every time a new event arrives and is ordered by timestamp. Events are placed here in a raw
JSON format, giving the user the complete information they sent from their implementation.
The value in this list lies in how it interacts with the other visualisations. Firstly, when clicking
on a vantage point in the connections graph, all events sent from that vantage point will be
highlighted in the event list, letting the user identify problems related to one vantage point or
relate other facets specific to that vantage point. Second, when clicking on one of the events
in the basic event chart, it highlights and moves the screen to that particular event. This
could allow the user to get another view of where the event is located regarding the overall
messages and give them more context in the event itself. This feature also works when clicking
on a clustered group of events on this chart. When doing so, all events in this cluster will be
highlighted instead of the one clicked on.

Figure 7.7 shows an example of the event list with all its different components. The first com-
ponent, visible in Subfigure 7.7a, shows an example of the event list counters. These numbers
represent the distribution of events next to the total number of events. This distribution is
first divided into the subscribers, publishers and relays and shows how many messages each
type of entity logged. Following this is the distribution of types of events, where currently the
announce and subscribe event types are shown. Lastly, the subscribe type is split into sent
and received messages. All of these counters can be clicked to apply a hard filter on the list.
This filter will remove any logged events from the list that do not comply with the selected
counter. The second Subfigure 7.7b shows the event list itself. Here, all events that come in are
displayed in the format they are logged. The list itself grows downwards and can become too
large to find or relate specific events, which is why there are several actions possible to aid in
this process. The first action is shown in Subfigure 7.7c. It pictures the behaviour of the event
list when the user clicks an event in the basic chart. When they do so, the window moves down
to the specified event, and it is highlighted yellow. In case a user clicks on a bundled event in
the basic chart, all events in that bundle are highlighted, and the window moves to the first
event in that bundle it passes. The second action to change the event lists view is visualised
in Subfigure 7.7d. Here, a user selected one or more nodes in the connections graph, resulting
in the events logged by the unselected entities being greyed out. Both actions can be reset by
performing a different action or by clicking a reset button in the bottom right of the window.
All actions resulting in highlighting specific events in the list can be combined with each other
as well as with the filters mentioned previously to further limit the number of events the user
focuses on.
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(a) The event list counters, located above the list itself. These counters show the total number of messages and
how they are distributed. Clicking on one of these counters filters the list of events below.

(b) The basic visualisation of some of the events displayed in the data field on the page. These events are shown
as they are sent over by the logging entities.

(c) A snippet of the event list with a highlighted event as a result of clicking the specific announce-sent event
in the basic chart. The clicking action highlights the event as visible and moves the window to the location of
the highlighted event on the page.

(d) A snippet of the event list with a highlighted event as a result of clicking the PUBLISHER node in the
connections graph. The events logged by the entity represented by this node are shown as normal, and the other
events are greyed out.

Figure 7.7: These figures represent the event list with its different components and
some of its possible states and interactions. The list itself shows all events as they come
in in the format that they come in to allow the user to see exactly what they have logged.
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7.5 Architectural Reflections and Practical Constraints

While the core architecture and functionality of the proposed logging system align with the
project’s design goals, several practical considerations emerged during implementation. These
factors, ranging from integration challenges within existing codebases to subtle inconsistencies
in event timing, highlight the complexities of applying logging infrastructure in real-world
environments. This section outlines key issues that influenced the implementation process and
discusses their implications for both current and future applications of the system.

7.5.1 Integration Overhead and Retrofitting Challenges

Even with a simple interface for logging events, integrating it into an existing implementa-
tion can still require a non-negligible amount of effort. This includes managing the import,
constructing the log message, and invoking the logger at appropriate points in the codebase.
Accurately gathering the necessary data to construct valid log messages also introduced addi-
tional complexity. In particular, fields such as vantagePointID often had to be hard-coded to
avoid intrusive modifications to the existing codebase. These limitations highlight the challenges
of retrofitting logging into an existing implementation. In contrast, designing with logging in
mind from the outset allows for cleaner integration and more consistent data capture.

7.5.2 Visualisation Value

A key strength of this proof of concept lies in its ability to generate meaningful visualisations
that offer valuable insight into the system’s behaviour. While the current implementation does
not cover every possible use case, it already supports several useful scenarios. The frontend,
developed from scratch using D3.js, provides a flexible web-based interface that enables dy-
namic and customisable visual representations. Although extending it with new visualisations
may require some development effort, the modular structure makes it well-suited for further
expansion and adaptation to specific needs.

7.5.3 Timing Problems

During the development of the system, an odd event was observed: on occasion, a received

message would be logged before its corresponding sent message. Since each timestamp is
recorded as close to the event’s actual occurrence, this behaviour cannot be attributed to
asynchronous logging or concurrent processing artefacts alone. Upon investigation, the anomaly
was traced to the message being logged after the actual message was sent to the corresponding
entity in one place, and it being logged before this in the other location. In our case, this was an
easy fix, but it should be noted that problems like this can result in misleading visualisations,
where events appear to occur in an impossible order. It should therefore be considered when
interpreting logged timelines. However, this issue is typically limited to differences in the order
of one millisecond or less, which rarely impacts the system’s usability unless extremely fine-
grained, in-depth analysis is performed.

Another timing-related problem that could occur when logging distributed devices as precisely
as the system aims to do is related to internal clocks. Every device in the setup will have its
own internal clock that gets updated periodically using an NTP server. It can occur that even
when performing these periodic time checks, the clocks of different devices skew ever so slightly.
When this happens, this can result in wrong conclusions if the analysis the user tries to execute
requires these precise timings.

7.5.4 Scaling for Local Development

Several architectural choices in this system were made with an emphasis on performance and
scalability in medium to large-scale deployments. For instance, incorporating a message broker
facilitates horizontal scaling of the logging pipeline, and evaluating high-throughput, efficient
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databases enables sustainable storage and querying of extensive qlog event datasets. While
these components introduce overhead that may appear unnecessary for a lightweight, local de-
ployment, their inclusion reflects a broader design philosophy: supporting a range of deployment
scenarios, from isolated developer testing environments to distributed research platforms or pro-
duction, scale monitoring systems. This multi-scenario approach inevitably leads to trade-offs.
Optimisations for scalability, such as asynchronous message processing or log pre-aggregation,
may introduce latency or complexity that is disproportionate in a single-user context. However,
these design decisions were made deliberately to accommodate diverse use cases and to ensure
the system remains robust and extensible as MoQ adoption grows and operational demands
increase. The resulting architecture thus prioritises generality and future-proofing, even when
this implies occasional inefficiencies in narrow contexts.



Chapter 8

Creating Value with MoQ
Observability Infrastructure

For the successful adoption of the system, we require proof that shows its value and its place
in the current development and the further adoption of MoQ. While MoQ builds upon QUIC’s
robust foundation, its layered session semantics and asynchronous control mechanisms introduce
new complexities that are difficult to capture using conventional logging techniques. This
system thus tries to provide structured insight into the inner workings of the protocol during a
stream.

Observability in the context of MoQ refers to the ability to systematically capture, inspect,
and analyse the internal state transitions, message flows, and behavioural dynamics of a MoQ
session over time. Given the protocol’s emphasis on real-time delivery, low latency, and publish-
subscribe interaction models, as described in Chapter 3, observability must extend beyond
simple logging. This, to provide structured, semantic insights into the behaviour of individual
components and their interactions across the network.

Providing observability for MoQ does pose some inherent challenges. These start at the root of
the protocol with QUIC. As QUIC encrypts most transport metadata, this means that normal
network observability systems will not work. This, combined with the high-level asynchronous
control flows that MoQ adds, makes the protocol especially difficult to envision. Another aspect
that makes it difficult to observe MoQ is the many entities that are present in a setup. If we
want to envision the whole streaming process, it is mandatory that we are able to capture and
combine data from these multiple endpoints to get a complete overview. This also means that
the tools and visualisations that we create must handle these multi-participant sessions.

As part of the solution for the challenges posed above, we introduced a structured logging
scheme using an extension of qlog in Section 6.3.1. This scheme allows us to capture semantically
meaningful events. By using a generalised logging format, we allow the use of external tooling
and ensure the longevity of the system. This logging scheme, however, in and of itself, does not
solve all the challenges. For this, we need a visualisation tool that accompanies it.

This chapter evaluates the practical value of the infrastructure by examining its role in real-
world diagnostic scenarios. Through scenario-based analysis, we demonstrate how the system
enhances transparency and troubleshooting capabilities during a MoQ session. These examples
cover typical challenges in MoQ deployment and can range from debugging control message
flows to relay forwarding failures. Each scenario contrasts the observability gap in a MoQ
system without dedicated logging against the insight gained using our enriched logging and
visualisation stack. The goal is to validate the system not merely as a proof-of-concept but
as a necessary tool for MoQ development and operations, offering actionable feedback dur-
ing protocol experimentation, interoperability testing, and deployment diagnostics. Beyond
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scenario-driven diagnostics, the chapter also explores the system’s contribution to learnability,
how it facilitates understanding of MoQ’s operational intricacies for both new and experienced
developers. Finally, it examines the long-term value of this observability infrastructure in sus-
taining protocol evolution, supporting ecosystem tooling, and encouraging interoperability over
time.

8.1 Scenario A: Preemptive Subscribe Confirmation

In this scenario, a subscriber initiates a SUBSCRIBE request to a relay in order to receive media
content associated with a specific track. The request includes the AbsoluteStart filter type
and a StartGroup value, instructing the system to begin delivery from the group identified by
the given StartGroup identifier.

Problems arise when the publisher operates in a live-only configuration and does not retain
previously published groups. In such cases, a StartGroup referencing an expired or pruned
group will result in no data being available for delivery. This becomes particularly problematic
when the relay, optimised for low-latency session setup, responds immediately to the subscriber
with a SUBSCRIBE OK without waiting for confirmation from the upstream publisher. Although
the MoQ transport specification recommends that a relay “SHOULD delay its SUBSCRIBE OK

response until it receives a SUBSCRIBE OK from the publisher” [CPN+25], this is not a strict re-
quirement [Bra97]. As a result, some relays may acknowledge subscriptions speculatively.

This speculative behaviour can lead to silent failure if the upstream publisher does not respond,
either because it lacks data for the requested StartGroup or because it treats the request as
invalid and silently drops it. The subscriber, having received a SUBSCRIBE OK from the relay,
assumes the subscription is active and awaits media that will never arrive. Meanwhile, the
relay, having committed to the acknowledgement prematurely, lacks a mechanism to notify the
subscriber of the upstream failure.

Such failures are particularly challenging to detect and diagnose in traditional systems, as no
explicit error is generated, and media delivery simply fails to materialise. The complexity in-
creases further in multi-hop topologies or when multiple subscriptions are in flight. As shown
in this evaluation, the proposed observability infrastructure enables the detection and analy-
sis of this failure mode by correlating control message flows and their relative timing across
entities.

Diagnosing this kind of failure without a dedicated observability system is extremely challenging.
From the subscriber’s perspective, a SUBSCRIBE OK has been received, and the client assumes
that media delivery should begin. The absence of subsequent media data may be misattributed
to congestion, publisher inactivity, or other unrelated issues. On the relay side, unless verbose
internal logging is manually enabled, there is often no indication that the upstream subscription
remains pending. Comparing timings and relating the specific subscribe messages to each other
over different entities can prove difficult as well. Furthermore, since QUIC encrypts control
streams, passive inspection tools cannot provide any insight into the relay’s interaction with
the publisher.

In this context, a developer or operator is left with minimal actionable information. Identifying
the root cause requires access to internal relay state and timestamped message flows from
multiple entities, often reconstructed manually and with limited confidence in accuracy. In
distributed deployments involving multiple relays or publishers, this diagnostic burden becomes
unmanageable.

With the observability system in place, this failure scenario becomes immediately visible through
the structured correlation of MoQ control events across vantage points. By inspecting the mes-
sage sequence chart generated by the visualisation frontend, it becomes clear that the subscriber
receives a SUBSCRIBE OK before the relay has received upstream confirmation from the publisher.
Figure 8.1 shows this specific message sequence chart that clearly demonstrates where and how
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Figure 8.1: Subscribe conversation between the publisher, relay and subscriber. The
subscriber sends its subscribe message to the relay, which responds with a confirmation.
The relay passes the subscribe message to the publisher but never receives any confirma-
tion.

it goes wrong. The subscriber starts the process by sending a subscribe message to the in-
termediate relay. The relay receives this and sends its own subscribe message to the correct
publisher. Before receiving confirmation from the publisher, the relay sends a confirmation
message to the subscriber. As mentioned, this is completely allowed according to the MoQ
draft, but can cause confusion as a result. This sequence exposes the causal misalignment that
leads to silent failure.

In contrast to the manual correlation required in traditional systems, the visualisation here
enables near-instant diagnosis. In addition, by analysing the track identifiers of the events,
a developer can isolate the affected subscription and confirm the absence of associated object
events. This evidence enables targeted debugging and remediation, such as updating the relay
logic to defer SUBSCRIBE OK until backend confirmation is received, or at minimum, issuing a
warning when upstream confirmation is delayed or dropped.

8.2 Scenario B: Undetected Connection Failures at Scale

In this scenario, a streaming platform rolls out a larger-scale test where one of the streams on
their platform is implemented using MoQ. For this live stream, the publisher is expected to
serve media to approximately 100 subscribers over a relay, where each subscriber is attempting
to establish a MoQ session. While most subscribers successfully connect and receive content, a
non-negligible number remain inactive, failing to receive any media data. From the publisher’s
perspective, no errors are raised, and network-level connectivity appears nominal. On the
subscriber side, the connection attempt appears incomplete, and the application shows a blank
screen.

Without a dedicated observability infrastructure, identifying the root cause is non-trivial. Tra-
ditional transport-layer tools such as Wireshark offer limited value in this context, particularly
when working with encrypted QUIC connections. While it is technically possible to decrypt
local QUIC traffic using session keys, this is not practical when dealing with large-scale or
real-world deployments involving remote users. Moreover, Wireshark and similar tools lack
protocol-specific awareness of MoQ control flows, making it difficult to pinpoint logical failures
such as misrouted messages or invalid connection metadata.

By leveraging the observability system presented in this thesis, the issue becomes evident
through two complementary visual tools. First, the connection graph, shown in Figure 8.2, re-
veals that certain subscriber nodes fail to establish valid links to the relay. These disconnected
nodes are immediately visible as isolated or dangling entities in the graph layout, contrasting
sharply with the majority of successful peer relationships.

From this visual cue, the developer can drill down into the event list for a specific failed
connection. By filtering for control messages specifically coming from one of these subscribers,
the root cause is revealed: the affected subscribers sent a connection request message containing
an incorrect or unrecognised destination field, and the relay dropped the message.
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Figure 8.2: Larger scale connections graph with 95 subscribers correctly connecting to
the relay and 5 subscribers being left out. The connection between the publisher, relay
and 95 subscribers is correctly shown in the chart as a connected graph. The 5 dangling
subscribers are left out as shown as a circle, not connected to any other nodes.

8.3 Scenario C: Latency Observation

In this scenario, a developer tries to gain insights into latency values across the MoQ protocol.
In their testing, they observed that when placing a player on the sending side and one on
the receiving end, side by side, there is a notable amount of delay when starting the live-
stream.

Without an observability system, identifying the root cause of this latency would require ex-
tensive manual correlation of logs from multiple endpoints. This includes synchronising local
clocks, parsing timestamps, and interpreting the order of control and data messages across
distributed nodes. Given the asynchronous nature of MoQ control messages and the layered
protocol structure, such analysis is error-prone and inefficient.

The observability system proposed in this thesis addresses this diagnostic challenge by visualis-
ing end-to-end latency metrics across protocol events. Using the latency measurement module,
the developer identifies that subscribe messages consistently exhibit abnormal delays. As shown
in Figure 8.3, the average end-to-end latency is measured at 786 milliseconds, with peak values
exceeding two seconds, a substantial degradation for real-time media delivery.

This numeric feedback not only confirms the developer’s initial suspicion but also narrows the
focus to the session startup phase, particularly the propagation and processing of SUBSCRIBE
and SUBSCRIBE OK control messages. By highlighting these delays directly within the tool, the
system removes the guesswork from multi-endpoint analysis and enables actionable insight into
session dynamics.

Further inspection using the tool’s event timeline view reveals that the delay stems from the
interval between one specific moq:subscribe-sent and moq:subscribe-received interaction.
With this information, we relate the problem to significant network-level delay, most likely
due to congestion or buffering along the transmission path, which postpones the arrival of this
message and consequently delays the initiation of media delivery.
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Figure 8.3: Example of a high value for the average latency for subscribe messages.
This high value can be caused by the outlier, here over two seconds, and will require
more in-depth analysis.

8.4 Improved Learnability of MoQ

Beyond its utility as a debugging and performance analysis tool, the proposed logging and
visualisation system also contributes significantly to the learnability of the Media over QUIC
protocol. By providing structured, contextualised insights into MoQ’s operational flow, the
system serves as an educational resource for developers, researchers, and protocol designers
who are new to the protocol.

Traditionally, understanding the behaviour of emerging network protocols like MoQ requires
synthesising knowledge from fragmented blog posts, early-stage specifications, and diverse code-
bases. This learning curve is further steepened by the protocol’s complexity, particularly the
publish-subscribe architecture, announcement propagation, and hierarchical stream and object
structures.

The visualisations enabled by the proposed system, powered by enriched qlog data, allow users
to observe in real time how connections are established, how control messages such as ANNOUNCE
and SUBSCRIBE are exchanged, and how these influence session behaviour.

The connections graph, as shown in Figure 8.4, can allow future developers to further under-
stand the topological layout of a MoQ session. This, combined with the message sequence chart
in Figure 8.5, will aid in improving knowledge for the complete MoQ session setup.

Furthermore, the system can act as a pedagogical aid in academic or training contexts. Instruc-
tors can use recorded traces to explain protocol mechanics in a temporal and visual manner,
thus reducing dependence on abstract textual descriptions. The standardised structure of qlog
further ensures that traces are interoperable across tools and implementations, enhancing the
accessibility of knowledge across the community.

Overall, the proposed observability infrastructure not only supports MoQ development and
operations but also functions as a foundational resource for education and protocol adoption.
By closing the gap between protocol specification and operational intuition, it facilitates a
smoother entry point into the MoQ ecosystem.
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Figure 8.4: Connection graph comprising a single publisher and four subscribers con-
nected to a relay.

Figure 8.5: Example of message sequence chart which displays part of the control
message conversation between the different actors. Messages are sent from one entity to
another and displayed with direction, timestamps and event types. This example follows
the start of the stream setup, where a publisher connects to a relay and announces a
stream, followed by a subscriber connecting to a relay and subscribing to said stream.
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8.5 Long-term Value and Future Proofing Through Stan-
dardisation and Archival

Beyond the immediate utility of visualisations in diagnosing protocol behaviour and improving
session-level insights, the system proposed in this thesis also contributes to long-term value
creation through its emphasis on data standardisation, extensibility, and archival capabili-
ties.

At the core of this system lies the use of the qlog format, an extensible, structured logging
schema specifically structured for modern transport protocols like QUIC and MoQ. The choice
for qlog is not only a technical implementation detail, it is an important design decision that
provides significant value for future development and evolution. By serialising events in a
consistent and schema-compliant format, this system enables interoperability across tools and
implementations. This adherence to a shared schema enables plug-and-play compatibility with
both existing visualisation tools and emerging analysis frameworks.

Standardisation of log format also facilitates cross-tool visualisation. As new tools for protocol
analysis emerge, the availability of logs in a widely adopted structure, such as qlog, ensures
that the same dataset can be reused or reinterpreted. On the contrary, logs generated by other
qlog-compliant tools can be ingested into this system, creating a modular ecosystem of tooling
around MoQ.

The back-end of the system also supports long-term analysis through persistent archival of event
traces. By maintaining a historical record of session behaviour of data, such as control message
flows, developers can visualise protocol evolution over time. This is especially useful in a new
protocol like MoQ, where iterations may rapidly reshape semantic behaviour. Through com-
parative analysis across archived datasets, the impact of such changes can be validated.

Moreover, archived logs create opportunities for downstream use cases such as regression de-
tection, anomaly identification, and benchmarking. In future development cycles, historical
qlog datasets can serve as reference traces against which the correctness or performance of
new implementations may be tested. In operational deployments, they provide a forensic layer,
enabling post-hoc analysis of failures, policy changes, or congestion events.

However, the long-term value described above is not without its limitations. The durability of
archived traces and the interoperability benefits derived from standardisation depend heavily on
the stability and backwards compatibility of the qlog schema and its MoQ-specific extensions.
Should the qlog format undergo major revisions, whether in its core structure, serialisation
conventions, or event semantics, existing datasets may become incompatible with future tools
unless explicit migration or translation layers are introduced. Likewise, as MoQ itself is an
evolving protocol, changes in its control message types or transport semantics may render
older logs semantically ambiguous or partially obsolete. Without robust versioning and tooling
support for schema evolution, these shifts risk fragmenting the ecosystem and diminishing the
archival utility of early datasets. Consequently, while standardisation offers strong future-
facing benefits, its practical effectiveness hinges on continued community coordination around
qlog evolution and clear deprecation policies.

In summary, while the long-term utility of standardised logging and archival is contingent upon
the continued stability and evolution of the qlog schema, the system as proposed nonetheless
establishes a strong foundation for sustainable protocol engineering. By adhering to a shared
format and preserving detailed session traces, it empowers both short-term debugging and
long-term protocol analysis. Even in the face of potential schema evolution, the structured
approach adopted here offers a viable path toward version-aware tooling, forward compatibility,
and reproducible experimentation, which are essential qualities for maturing protocols like
MoQ.
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Conclusion

This thesis set out to address the critical gap in the observability of Media over QUIC, a modern
media transport protocol designed to deliver scalable, low-latency video delivery across diverse
network environments. As MoQ introduces distinctive concepts such as publish-subscribe se-
mantics, prioritisation logic and relay-based distribution, it also presents unique challenges for
developers and researchers attempting to understand, evaluate and debug its behaviour. Given
the protocol’s ongoing standardisation and limited tooling support, there is a clear need for
infrastructure that enables transparent introspection and analysis of MoQ behaviour in realist
conditions.

In response, this work presented a modular, scalable observability system based on the extensible
qlog format. The system captures protocol events in real time, structures them using a MoQ-
specific qlog extension, and visualises them through an interactive frontend. By designing this
toolset, the thesis aimed to enhance protocol transparency and support developers in debugging,
evaluating and refining MoQ implementations.

From an architectural perspective, the system is scalable and adaptable. A decoupled logging
pipeline based on message brokering, combined with lightweight serialisation and buffering
techniques, enables the system to ingest and process high-throughput log streams under varied
network and session conditions. Moreover, the design highlights key technical requirements for
building effective observability tooling in this domain.

Through several scenarios, the system has proven to provide actionable insights that are oth-
erwise difficult to obtain. Using detailed logging of control events, such as announcements and
subscriptions, users can identify setup errors, detect inconsistencies and reason about perfor-
mance characteristics. The integration of a dedicated visualisation layer further strengthens this
capability, offering an intuitive view of session dynamics and asynchronous message flows.

Ultimately, this thesis contributes not only a functional observability system but also a frame-
work that can support the broader evolution and standardisation of MoQ. Its design accom-
modates multiple scenarios, from debugging to analysis and protocol education, demonstrating
both flexibility and long-term value. The challenges encountered during implementation have
further informed future design considerations, which are explored in the next section.

9.1 Future Work

This thesis has laid the groundwork for structured observability in Media over QUIC by extend-
ing qlog to support MoQ-specific semantics and designing a scalable, web-based logging and
visualisation system. While the results are promising, several avenues remain open for further
exploration and development.
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Expanding Event Coverage and Schema Maturity

The current implementation primarily focuses on logging control messages and some stream-
based messages. Future work could extend qlog coverage to include more detailed transport-
layer events (e.g., congestion interactions) and payload-level insights. Additionally, aligning the
MoQ-specific qlog schema with evolving drafts and integrating feedback from broader commu-
nity adoption would improve interoperability and long-term sustainability.

Real-world Deployment and Performance Evaluation

Future work should involve integrating the logging system into live MoQ environments to assess
its effectiveness and operational impact. Such deployments would provide insight into usability,
robustness under realistic workloads, and compatibility with different MoQ implementations.
Alongside this, comprehensive performance benchmarking is essential to evaluate system over-
head, log throughput limits, and responsiveness. These insights can inform optimisations in
buffering, log transport, and storage strategies, ensuring the system scales effectively with high-
bandwidth or bursty media traffic.

Automated Analysis and Anomaly Detection

With the recent surge in machine learning algorithms, the door is open to leverage them or
to create rule-based analytics over the logged data, which could enable proactive detection of
performance anomalies, session failures, or misconfigurations. This would transform the logging
system from a passive diagnostic tool into a dynamic observability platform.

User-Centric Visualisation Enhancements

With production deployment in mind, more advanced, user-configurable visualisations tailored
to different stakeholder roles (e.g., developers, operators, QA engineers) could improve usability.
Features such as timeline compression, comparative session views, or drill-down analytics could
be valuable additions.

Security, Privacy, and Data Governance

While basic considerations are discussed, further work is needed to evaluate the implications
of logging sensitive metadata, especially in federated or privacy-sensitive deployments. Future
iterations should implement fine-grained access control, redaction capabilities, and anonymisa-
tion policies in compliance with standards such as GDPR.

9.2 Reflection

Writing this thesis has been a challenging yet rewarding experience that allowed me to bring
together technical knowledge, research skills and personal growth. While I had prior exposure
to topics such as QUIC and structured logging through coursework and my bachelor’s paper,
applying them in the context of a new protocol like Media over QUIC exposed new complexities
and forced me to rethink assumptions. I had to translate a constantly evolving standard into a
working, analysable system, which required both technical and conceptual clarity.

Looking back, one of the main things I would approach differently is the degree of involvement
with the broader MoQ community. Although I followed standardisation efforts, reviewed related
drafts and asked for some input in open channels, I missed the opportunity to engage more
actively with the working group. Earlier feedback from implementers or researchers familiar
with current deployment challenges could have influenced both design decisions and evaluation
priorities. I now realise that a more collaborative approach could have yielded insights that
would have improved the system’s relevance and usability in real-world contexts.
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Another point of reflection concerns the architectural emphasis of the system. I spent a con-
siderable amount of time ensuring the design was modular and scalable, with support for burst
traffic and high-throughput scenarios. While these capabilities are important, especially when
considering future large-scale experiments or deployment pipelines, I now feel that the system
would have been more useful in the short term if it had focused more on enabling deep dives for
developers. Providing better filtering, interactive drill-downs, or customisable trace views could
have made the tool more immediately actionable for protocol implementers working through
specific bugs or integration issues. These ideas emerged during the later phases of development,
but by then, time constraints limited how far they could be explored.

This thesis has taught me to accept and work around feedback I received from others, whether
in literature, specifications or conversations. I learned how to apply the knowledge that was
presented to me while maintaining a critical perspective on areas that could still be improved.
This process of finding a balance in openness to critique and having confidence in my own
reasoning became a key lesson I will carry forward.

While the final system may not be exactly what I envisioned at the start, I’m proud of the
result. It brings together a range of technical components and protocol knowledge in a way
that is both functional and extensible. Most importantly, it reflects a learning process not just
about MoQ or logging but about design trade-offs, collaboration and the reality of engineering
under uncertainty.
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Message Name Description

CLIENT SETUP Initialises the session from the client side, including sup-
ported versions and parameters.

SERVER SETUP Server response to the client setup, selecting the version
and setup parameters.

GOAWAY Informs the peer that no further streams should be ini-
tiated, signalling session termination.

MAX SUBSCRIBE ID Sets the upper bound for subscription identifiers al-
lowed from the peer.

SUBSCRIBES BLOCKED Indicates the sender cannot accept new SUBSCRIBE
messages temporarily.

SUBSCRIBE Initiates a subscription to a specified track or group of
media.

SUBSCRIBE OK Acknowledges that a SUBSCRIBE message has been
accepted and is being processed.

SUBSCRIBE ERROR Indicates that a SUBSCRIBE request could not be ful-
filled due to an error.

UNSUBSCRIBE Terminates an existing subscription to a media stream.

SUBSCRIBE UPDATE Updates parameters of an ongoing subscription.

SUBSCRIBE DONE Publisher notifies that all objects for a subscription
have been sent.

FETCH Requests a specific range of previously published media
objects.

FETCH OK Indicates that a FETCH request was successful and
data is being delivered.

FETCH ERROR Indicates failure in processing the FETCH request.

FETCH CANCEL Cancels an ongoing FETCH request.

TRACK STATUS REQUEST Asks for metadata or status information about a track.

TRACK STATUS Responds to a TRACK STATUS REQUEST with rele-
vant metadata.

ANNOUNCE Advertises available track namespaces to potential sub-
scribers.

ANNOUNCE OK Confirms successful receipt and acceptance of an AN-
NOUNCE message.

ANNOUNCE ERROR Denies or reports an error processing an announcement.

UNANNOUNCE Withdraws a previously advertised namespace.

ANNOUNCE CANCEL Signals that future subscriptions to a namespace should
be disallowed.

SUBSCRIBE ANNOUNCES Subscribes to future announcements matching a given
namespace prefix.

SUBSCRIBE ANNOUNCES OK Acknowledges a successful SUBSCRIBE ANNOUNCES
message.

SUBSCRIBE ANNOUNCES ERROR Indicates an error in processing a SUB-
SCRIBE ANNOUNCES request.

UNSUBSCRIBE ANNOUNCES Terminates interest in further announcements for a
namespace prefix.

Table 1: Overview of Media over QUIC Control Messages
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