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Summary

0.1 Introduction

The automation of manual tasks has progressed significantly since the mid-20th century, with
robotics playing a key role in sectors such as manufacturing, transportation, and household
chores. Traditionally, robot control relied on rule-based and hard-coded logic. However, the
past decade has seen a shift toward AI-driven automation using Large Language Models (LLMs),
Vision-Language Models (VLMs), and other specialized AI tools. These models have enabled
more adaptive and intelligent behaviors in systems like self-driving cars and robots such as
Boston Dynamics’ “Spot”.

Despite these advances, programming robots remains a complex challenge, especially for tasks
involving reasoning, spatial awareness, and planning. While LLMs and VLMs offer new possibil-
ities by mimicking human reasoning and being more user-friendly, they are primarily designed
for conversational tasks, not robotic control. Integrating them into robotics requires overcoming
limitations in planning and control.

Numerous prior works have integrated LLMs into robotic systems, but they typically rely on
additional models or engineered frameworks to support or constrain the language model. Such
frameworks include using learned value function to filter and select robotic skills generated by
an LLM, enhancing the memory capabilities of LLMs to improve their teachability based on
human feedback and using LLMs to define reward parameters, allowing a robot to optimize its
behavior by selecting actions that meet those goals. While all of these approaches demonstrate
promising results, they depend on extensive supporting infrastructure to guide or correct the
LLM. This raises the question of whether recent advancements in LLMs are sufficient to enable
effective robot control without such auxiliary components.

The central research question is: “Can large language models navigate a mobile robot
through an area, using a minimal supporting framework?”. The goal is natural language
interaction with robots, where an LLM interprets and executes user instructions directly. A
major technique used is prompt engineering, which helps guide the LLM’s responses. The
framework is intentionally kept minimal, with most logic and control delegated to the LLM,
supplemented only by simple feedback from the robot’s environment.

0.2 Related Work

Large Language Models (LLMs) are powerful yet opaque systems whose full behavior remains
poorly understood. Their general-purpose capabilities make them valuable across many do-
mains, including robotics. However, they also present significant limitations and risks, particu-
larly in high-stakes applications. It is therefore essential to understand their drawbacks before
deploying them in real-world scenarios. LLMs do not “think” or “reason” like humans; instead,
their outputs are generated based on probabilistic patterns in text. This can lead to hallucina-
tions, which are plausible but factually incorrect outputs, which may pose safety concerns in
robotics. Several studies have proposed methods to detect and mitigate these hallucinations.
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Additionally, LLMs are highly sensitive to prompt variations, often producing drastically dif-
ferent outputs with minor changes. Other concerns include computational cost, environmental
impact, and security and privacy vulnerabilities. Human-Robot Interaction (HRI) is a key as-
pect of robotics, where predictability and transparency are critical for effective collaboration.
LLMs can contribute positively to HRI due to their human-like language understanding. Prior
work has explored their use in simulating parts of systems in HRI studies and modeling human
behavior.

This thesis focuses on using LLMs for robotic navigation, an area previously explored in both
known and unknown environments. In known settings, LLMs have achieved performance com-
parable to traditional planners such as A*, but displayed increased processing speed. In un-
known environments, two main approaches have been studied: continuous mapping during
exploration and building reusable maps. These systems often rely on Visual Language Models
(VLMs) with camera and sensor input. In contrast, this thesis uses a minimal framework and a
text-only LLM to assess navigation capabilities in isolation. HRI remains relevant in navigation
tasks, both in terms of interaction with the operator and with the environment. Effective in-
terfaces are needed for operator-LLM communication, and robots must navigate safely around
humans. Some works have explored using LLMs to reason about pedestrian behavior and social
connection to guide robot actions.

A key challenge in LLM-based robotics is long-horizon task planning, where models may exceed
token limits or forget earlier instructions. Proposed solutions include decomposing tasks into
subtasks, using structured memory systems to reduce the number of things that need to be
remembered, incorporating environment graphs that store information and making LLMs re-
member details about the environment in their own output. While this thesis focuses primarily
on short-horizon tasks, related memory issues did arise and were partially mitigated through
prompt reminders and providing additional context.

Finally, prompt engineering, which is optimizing the instructions given to the LLMs, remains the
most effective method for improving LLM performance. Prior studies have identified strategies
such as structured input-output templates, persona assignment, few-shot prompting, contex-
tual information inclusion, and chain-of-thought reasoning. These techniques were employed
extensively throughout this work to enhance navigation outcomes.

0.3 Initial Feasibility Testing

To start, a series of feasibility tests were conducted using GPT-4o (OpenAI), Gemini-2.0-Flash
(Google DeepMind), DeepSeek-V3 and DeepSeek-R1, which are among the most advanced
publicly accessible LLMs. A simplified environment, a labeled chessboard grid, was chosen
to test spatial understanding in a controlled setting. This setup provided a discrete, easy-to-
interpret space for the models to reason about navigation, movement, and obstacles.

In the tests, a robot, representing a mobile agent, could move one square at a time in any
direction, with the added requirement of turning to face the correct direction before moving
forward. Obstacles on the grid added complexity, requiring the models to avoid invalid paths.
These experiments offered early insight into each model’s strengths and limitations in reasoning
about movement and space, helping to establish whether LLMs alone can form the basis for
autonomous robot control.

0.3.1 Tests and Results

To evaluate the navigation capabilities of LLMs, three types of tests were designed: execut-
ing single-step movements, planning full paths in a single response, and navigating interac-
tively step-by-step with real-time feedback. Each test was conducted in both obstacle-free
and obstacle-rich environments, with obstacles being either known (explicitly described) or un-
known (inferred through failed movements). LLMs were also asked to generate ASCII-based
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visualizations of the environment for clarity and traceability.

The results showed that current LLMs, GPT-4o, Gemini-2.0-Flash, and DeepSeek-V3, are ca-
pable of basic spatial reasoning and can handle simple navigation tasks when instructions are
clear. They performed reasonably well in executing direct commands and could remember
obstacle locations in guided scenarios. However, their consistency declined in more complex en-
vironments, especially during full-path planning where collisions or repetitive loops sometimes
occurred. Diagonal paths were often ignored in favor of simpler orthogonal movement. Step-
by-step navigation, where models received feedback after each move, produced better outcomes
than generating entire paths at once. It allowed the LLMs to adjust to unexpected obstacles
and refine their strategies. Nonetheless, hallucinations and logical inconsistencies still emerged,
particularly in ambiguous situations. Among the models, DeepSeek-R1 displayed stronger per-
formance in reasoning and obstacle handling but suffered from extremely long response times,
limiting its practicality. DeepSeek-V3 improved on speed but lagged behind ChatGPT and
Gemini, which responded faster overall. Visual representations were another weak point: most
models struggled with consistently accurate ASCII or image-based depictions of the robot’s
position and environment. DALL-E 3 produced more coherent visuals than earlier versions but
still misrepresented certain spatial details.

0.4 Concept

The feasibility tests demonstrated that LLMs possess the foundational capabilities for nav-
igation, but further experimentation was needed in more controlled settings with improved
prompting strategies. All interactions with the LLMs were conducted via text-based input,
with the primary models being GPT-4o and Gemini-2.0-Flash, both accessed through their of-
ficial APIs. Additional exploratory testing was performed using DeepSeek-R1 and LLaMA 3.1,
either via third-party APIs or through local deployment. The robotic platform used was the
“TurtleBot3 Waffle Pi”, which is capable of basic movement commands: forward, backward, and
in-place rotation in both clockwise and counterclockwise directions. Experiments were carried
out in Python and Unity-based simulations as well as in physical real-world environments. The
robot operated in a flat, two-dimensional space, with its position represented using Cartesian
coordinates and its orientation expressed in degrees, following either Unity’s or the standard
mathematical convention. The environment could contain both known and unknown obstacles.
Unknown obstacles had to be inferred by the LLMs themselves by running into them. In sim-
ulation, tracking the robot’s position was straightforward. In real-world experiments, tracking
was accomplished using an infrared camera-based motion capture system from Qualisys.

0.4.1 Input and Output

LLMs received structured Task Prompts containing instructions, environment descriptions, out-
put formatting rules, and information about obstacle handling, error handling and output for-
matting. Additionally, there was a brief reminder that was iteratively updated based on the
perceived weaknesses of the LLMs. For each navigation task, the LLMs were given a start point,
destination, and sometimes orientation. They issued one move per message, aided by real-time
feedback after each command. This feedback was in the form of the robot’s updated position
after executing a forward or backward move and a confirmation when turning. Prompt styles
were tested with and without reasoning allowed in the response (similar to chain-of-thought
prompting).

0.4.2 Prompting and Navigation Strategies

To evaluate effective prompting techniques for robotic navigation, two strategies were tested for
handling robot orientation: either explicitly providing the orientation at the start or requiring
the LLMs to deduce it by observing the result of a forward move. The latter aligns with the
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thesis goal of minimizing external support. LLMs were also tested under two output styles:
returning just the result or showing their reasoning step-by-step along with the formula.

For turning, both relative and absolute strategies were explored. Relative turning required the
LLMs to track orientation changes through commands like “turn left 90 degrees” or “turn -45
degrees”, using different phrasings. Absolute turning involved specifying a final orientation
(e.g., “face 90 degrees,” “face North” or “positive-x”), with the control system translating
this into a relative turn. While direction names were effective in constrained environments,
they became impractical for arbitrary angles. These tests helped identify which phrasing and
strategies best supported spatial reasoning in LLM-based navigation.

0.4.3 Experimental Scenarios

Tests were conducted across three distinct scenarios, each evaluating different aspects of the
LLMs’ reasoning capabilities. The first scenario that was tested was a grid-based movement
environment, in which the robot was constrained to move on a fixed grid similar to a chessboard.
Movement was restricted to discrete steps: 1 meter for orthogonal directions and

√
2 meters

for diagonal ones. The robot could rotate in 45-degree increments, allowing for movement in
eight possible directions. This setup provided a simplified testbed to evaluate whether LLMs
could perform basic spatial reasoning and control a robot accordingly. All experiments for this
scenario were conducted in a Unity simulation, as the real-world TurtleBot3 lacks the motion
precision required to reliably conform to grid constraints.

The second scenario involved a more realistic form of navigation, where the robot was no
longer restricted to a grid and could move any distance in any direction between 0° and 360°.
Experiments were conducted both in simulation, using Unity, and in the real world with the
TurtleBot3. In contrast to the precise control afforded by simulation, the real-world robot was
subject to physical inaccuracies such as wheel slippage and motor drift. Consequently, a toler-
ance of 0.5 meters from the target location was allowed for successful navigation in real-world
experiments. In this scenario, absolute turning was expressed exclusively in degrees, as named
directions are impractical in continuous movement. Although this scenario introduced more
complex orientation calculations, the underlying optimal movement strategy was conceptually
simple: the robot should rotate to face the destination and move directly toward it.

In many real-world applications, obtaining the exact coordinates of a robot at all times is
not always feasible due to sensor limitations or environmental constraints. To simulate such
scenarios, a final set of experiments was conducted in which the LLMs were no longer provided
with precise location data. Instead, they were only given the current distance to the endpoint,
challenging them to navigate with significantly reduced information. These experiments were
carried out using grid-based movement in a Python simulation to reduce the complexity of the
task while maintaining structure. The underlying strategy for this scenario was to attempt
moves in various directions and observe whether the distance to the target decreased. While
this task can be trivially solved using a simple trial-and-error algorithm, the objective was
to assess whether LLMs could demonstrate spatial reasoning to identify and converge on the
correct path more efficiently. Obstacles were not tested here, as they would be difficult to detect
and showed poor results in other scenarios.

0.5 Implementation

The temperature and top-p parameters for both ChatGPT and Gemini were set to 0.1 to
ensure more deterministic output while maintaining enough variability to enable error correc-
tion. Communication with these models was handled via their official APIs using Python code.
LLaMA 3.1 and DeepSeek-R1 were run locally using the program Ollama, while DeepSeek-R1
was also accessed through a third-party API provider called OpenRouter, again using Python
for integration.
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The primary simulation environment was built in Unity, where a virtual model of the TurtleBot3
navigated within a modeled room. This setup included two main components: one module
for controlling the robot’s movement and another for establishing a socket connection to the
Python backend that interfaced with the LLMs. Robot movement was implemented using linear
interpolation for smooth transitions in both translation and rotation. In addition, a simplified
simulation, without visual representation, was implemented in Python for the distance-based
movement tests, replicating the logic of the Unity environment in a lightweight form.

For real-world experiments, the TurtleBot3 was controlled via Python scripts that sent motor
commands. As in the simulation, socket communication was used to interface with the Python
code handling the LLM interactions. However, in the real-world setup, the robot’s position
was not derived from its internal sensors but from an external tracking system. Specifically, a
Qualisys infrared camera-based motion capture system was employed. Tracking markers were
attached to the TurtleBot3, and the area was calibrated using the Qualisys Track Manager
software, allowing for precise real-time location data. The code requesting positional data ran
on the same machine as the LLM interface.

0.6 Evaluation

This chapter presents the evaluation of LLMs in robotic navigation tasks. It begins with the
results of the exploratory experiments that formed the structure of the subsequent quantita-
tive tests, which were conducted to obtain more consistent, data-driven insights into model
performance across various navigation challenges.

0.6.1 Exploratory Results

A series of exploratory experiments were conducted to refine the prompt design, output formats,
and navigation strategies before quantitative testing. Multiple LLMs were evaluated, including
ChatGPT, Gemini, DeepSeek-R1, and LLaMA. Local models (DeepSeek and LLaMA) struggled
due to limited resources, with DeepSeek via OpenRouter showing promise but suffering from
excessive latency. Consequently, later tests focused on ChatGPT and Gemini.

Two output styles were compared: command-only and reasoning-based. Without reasoning,
LLMs performed poorly, often misinterpreting directions and failing to navigate or avoid obsta-
cles. When allowed to show reasoning, performance improved significantly. Among orientation
conventions, switching from Unity’s to the standard mathematical system reduced errors, par-
ticularly in calculating angles from movement. However, systematic 180 degree errors persisted
until prompt reminders about quadrant corrections were added.

For turning, both relative and absolute methods worked well with reasoning, though absolute
turning was more reliable. Signed degree values slightly outperformed other relative formats.
Obstacles posed persistent challenges, LLMs could only handle one at a time and failed to use
path history or adapt strategies, often getting stuck in loops. In distance-based movement, in-
consistent behavior led to circling or direction reversals, and while improved prompting reduced
some errors, full resolution was not achieved.

0.6.2 Methodology for Quantitative Tests

The quantitative tests focused exclusively on GPT-4o and Gemini-2.0-Flash, with both models
operating at a temperature and top-p value of 0.1 to ensure consistent yet flexible behavior.
The tests covered the same four core scenarios explored during experimentation: orientation
calculation, grid-based movement, free movement, and distance-based movement. All tests
allowed reasoning in the LLMs’ responses, as earlier experiments demonstrated that this led
to significantly better outcomes. Each scenario included multiple test cases to capture a range
of navigation setups, with and without obstacles. To evaluate consistency, all tests, except
orientation tests, were repeated three times per model. Each tests was done in a separate



8

conversation with the LLMs to provide a consistent knowledge baseline. Performance metrics
included overall and per-case success rates, number of moves taken, and final distance to the
destination in free movement scenarios.

0.6.3 Scenarios and Results

Orientation. Orientation calculation was tested within both the grid-based and free move-
ment scenarios, under conditions where the LLMs were either required to show their calculation
steps or not. In the grid-based setup, 10 test cases were evaluated with step-by-step calculations
included. Both LLMs achieved a 100% success rate. In an additional three test cases without
visible calculations, both models again succeeded. This indicates high reliability in grid sce-
narios. In free movement, performance slightly declined. With the formula shown, ChatGPT
succeeded in 7 out of 10 test cases (70%), while Gemini succeeded in 9 (90%). Notably, Chat-
GPT’s failures were not due to incorrect calculations but rather from assuming an orientation
instead of performing the required forward move. Gemini’s single failure was also procedural
rather than computational. When the formula was omitted, ChatGPT succeeded in all three
test cases, whereas Gemini failed one, rounding the orientation to the nearest multiple of 45°.
These results suggest both models are capable of correctly computing orientations, but con-
sistently better results are obtained when prompting them to explicitly show their calculation
steps.

Grid-Based Movement. The grid-based movement scenario was tested under varying con-
ditions: with and without obstacles, and using two turning strategies: relative (positive/nega-
tive degrees) and absolute (explicit direction in degrees). Test complexity ranged from simple
straight-line movements to routes requiring one or more turns and reorientations.

In obstacle-free settings, there were 10 test cases per turning strategy. For both relative and
absolute turning, each LLM successfully completed all test cases in at least one of the three
attempts, demonstrating general capability for basic navigation. Occasional failures did occur,
ChatGPT due to output formatting issues, and Gemini due to stopping prematurely. However,
both models struggled with path optimality. When the destination was not reachable via a direct
line, they tended to travel along separate x and y axes or overshoot diagonally. Interestingly,
when using absolute turning, both LLMs often ignored the instruction to report orientation
before issuing the first move, highlighting sensitivity to minor prompt variations.

Obstacle inclusion significantly reduced success rates. While both LLMs could navigate around
a single obstacle, the introduction of multiple obstacles frequently led to infinite loops, repeated
path attempts, or hallucinated locations. ChatGPT handled obstacles slightly better overall,
whereas Gemini more often generated implausible or incorrect outputs. These results con-
firm that although LLMs can effectively manage grid-based movement in open environments,
complex spatial reasoning with dynamic obstacle avoidance remains a considerable challenge,
pointing to limitations in the models’ working memory and their lack of an internal state rep-
resentation or backtracking mechanism.

Free Movement. This scenario evaluated LLM performance in a free-movement setting,
both in simulation and with a real TurtleBot3 robot, where movement was continuous rather
than grid-based. Tests were performed with both relative turning and absolute turning. The
movement in the simulation was perfectly accurate, while the movement in the real world was
influenced by the errors of the TurtleBot3, meaning the robot only had to get within half a
meter of the destination.

In simulation, both ChatGPT and Gemini achieved high success rates in basic navigation tasks
without obstacles, although small issues like hallucinations, inefficient movements, and misinter-
pretations of orientation (especially with relative turning) were observed. ChatGPT generally
performed more reliably and efficiently, while Gemini occasionally made 180° errors in orienta-
tion and exhibited less stable behavior after obstacle encounters. Obstacle navigation remained
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a significant challenge for both models, particularly in more complex configurations (e.g., walls
or U-shapes), where both LLMs failed consistently. The increased complexity of the movement
also made the single-obstacle scenario more challenging, as the LLMs frequently failed to steer
the robot far enough to the side to fully bypass the obstacle, resulting in repeated collisions.
However, this did not necessarily prevent the LLMs from reaching the destination.

Real-world tests showed similar patterns, with ChatGPT showing higher consistency and Gem-
ini repeating previous orientation errors. Additionally, both LLMs attempted to further reduce
the distance to the destination, despite the robot already being within the required half-meter
threshold, increasing movement time. Overall, while LLMs handled simple free movement nav-
igation well, they struggled with consistent instruction-following and avoiding obstacles.

Distance-Based movement. The distance-based movement scenario tested the LLMs’ abil-
ity to navigate unknown environments using only Euclidean distance to the destination as
feedback. Without access to the orientation, only relative turning was used. In a simple setup,
both LLMs managed to reach the destination in all attempts. Gemini consistently outperformed
ChatGPT by reliably identifying a correct path with minimal variation. ChatGPT, however,
showed inconsistent behavior and was occasionally inefficient or repetitive, but did demonstrate
signs of higher-level spatial reasoning in one complex case, where it adapted its path based on
detecting parallel movement relative to the destination. In a more challenging scenario requir-
ing multi-step planning, Gemini again showed solid consistency across all trials, albeit with
slightly longer paths. ChatGPT failed in two out of three attempts but had the most efficient
successful run, indicating potential for deeper understanding when successful. Overall, Gemini
was more reliable, while ChatGPT showed greater, though inconsistent, reasoning depth. Both
models’ strategies were heavily influenced by the prompt design, with only limited evidence of
autonomous spatial inference.

Across all tests and experiments, ChatGPT showed better performance but Gemini had a much
shorter response time, forcing a sleep to be added in the code to not run into the request limit.
This is mainly because Gemini-2.0-Flash was used, which is a version designed for speed instead
of reasoning power, while GPT-4o is a more balanced model.

0.7 Conclusion & Future Work

0.7.1 Conclusion

This thesis set out to evaluate whether large language models (LLMs) can autonomously nav-
igate mobile robots with minimal external support. The investigation followed an iterative
approach, beginning with exploratory experimentation to refine prompting strategies, followed
by quantitative testing to assess consistency and performance in both simulated and real-world
settings. The results indicate that LLMs like GPT-4o, Gemini-2.0-Flash, and DeepSeek-V3 are
capable of interpreting commands, reasoning through navigation tasks, and executing movement
plans using step-by-step interaction with real-time feedback. However, their success depends
heavily on clear task prompts and structured environments. All models struggled with obstacle
handling, often repeating failed strategies, forgetting previous paths, and becoming stuck in
loops. While DeepSeek-R1 demonstrated relatively strong reasoning, its long response times
made it impractical for real-time use. A key finding was the importance of open reasoning.
When models were allowed to explain their thinking, performance improved notably. Still, seri-
ous challenges remained: models failed to track orientation consistently, misinterpreted turning
commands, and struggled with pathfinding and distance-based reasoning. Their inability to
generate accurate spatial representations or adapt heuristics also limited their effectiveness.
Inconsistent output, even under identical conditions, further undermined reliability. In conclu-
sion, while LLMs show promise for low-support navigation in simple environments, they are
not yet dependable for general-purpose robotic autonomy. To be viable for real-world deploy-
ment, they require external support, such as memory aids, abstraction layers, or more advanced
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reasoning modules, to overcome their current limitations.

0.7.2 Limitations and Future Work

This thesis primarily focused on GPT-4o and Gemini-2.0-Flash, with limited trials using DeepSeek-
R1 and LLaMA3.1, leaving many strong alternatives like Claude, Mistral and Grok unexplored.
Broader benchmarking across models could offer clearer insights as capabilities evolve. A ma-
jor limitation was the short-horizon nature of tasks, which do not reflect the complexity of
real-world applications where long-term memory, token limits, and state tracking become more
critical. Future work should explore extended navigation scenarios using conversation man-
agement or persistent memory mechanisms. Improving obstacle handling and distance-based
navigation is also essential; while this study minimized external aids to evaluate raw LLM
capability, adding lightweight support such as sensor inputs, verification models, or simple
memory could significantly boost performance, especially in dynamic or complex environments.
A recurring issue was the models’ inconsistent adherence to output formatting, often leading
to execution errors despite sound reasoning. Adopting structured formats like JSON could
improve reliability and integration with control systems, though care must be taken not to
overly constrain model behavior. Finally, future research could expand beyond navigation into
robotic manipulation using grid-based representations to explore simple tasks like grasping
and object placement, while assessing how such models perform in less controlled, real-world
conditions.

0.7.3 Reflection

Over the course of this thesis, I developed a clearer understanding of the limitations of LLMs
in domains like robotic navigation and spatial reasoning. While their conversational fluency
initially impressed me, their failure to follow explicit spatial instructions revealed that their
reasoning is often shallow and unreliable in unfamiliar contexts. A major turning point in the
work was the realization that allowing models to include reasoning and intermediate calcula-
tions in their responses led to significantly better outcomes. Unfortunately, this insight came
relatively late in the process, and a considerable amount of time was spent attempting to im-
prove performance under restricted output settings. Another misstep was relying too heavily on
iterative prompt tuning with only a small number of models. This project also underscored the
critical importance of maintaining structured, detailed records throughout all stages of experi-
mentation. In early phases, testing was highly exploratory, and results were often logged only
in brief notes or informal summaries. This lack of structured documentation made it difficult
to trace errors, repeat tests, or draw precise conclusions later during analysis. As the project
progressed, more rigorous data collection practices helped reduce these issues, but the earlier
gaps inevitably slowed progress and required certain experiments to be redone.



Samenvatting

0.8 Inleiding

De automatisering van manuele taken is sinds het midden van de twintigste eeuw sterk geëvolueerd,
waarbij robotica een sleutelrol speelt in sectoren zoals productie, transport en huishoudelijke
taken. Traditioneel was de aansturing van robots gebaseerd op regelgebaseerde en hardge-
codeerde logica. In het afgelopen decennium is er echter een verschuiving opgetreden richting
AI-gedreven automatisering, met het gebruik van Large Language Models (LLM’s), Vision-
Language Models (VLM’s) en andere gespecialiseerde AI-tools. Deze modellen hebben gezorgd
voor meer adaptief en intelligent gedrag in systemen zoals zelfrijdende auto’s en robots zoals
Boston Dynamics’ “Spot”.

Ondanks deze vooruitgang blijft het programmeren van robots een complexe uitdaging, vooral
voor taken die redenering, ruimtelijk inzicht en planning vereisen. Hoewel LLM’s en VLM’s
nieuwe mogelijkheden bieden door menselijk redeneren na te bootsen en gebruiksvriendelijker te
zijn, zijn ze in eerste instantie ontworpen voor conversatietoepassingen, niet voor robotbestur-
ing. Hun integratie in robotica vereist dan ook het overwinnen van beperkingen op het gebied
van planning en aansturing.

Verschillende eerdere studies hebben LLM’s gëıntegreerd in robotsystemen, maar doen daar-
bij meestal een beroep op aanvullende modellen of speciaal ontwikkelde frameworks om het
taalmodel te ondersteunen of te beperken. Voorbeelden hiervan zijn het gebruik van aangeleerde
value functions om robotvaardigheden gegenereerd door een LLM te filteren en te selecteren,
het verbeteren van het geheugen van LLM’s om hun leerbaarheid via menselijke feedback te
vergroten, en het inzetten van LLM’s voor het definiëren van reward parameters zodat een
robot zijn gedrag kan optimaliseren door acties te kiezen die aan die doelen voldoen. Hoewel al
deze benaderingen veelbelovende resultaten opleveren, zijn ze sterk afhankelijk van uitgebreide
ondersteunende infrastructuur om het LLM te begeleiden of te corrigeren. Dit roept de vraag
op of de recente vooruitgang in LLM’s voldoende is om effectieve robotbesturing mogelijk te
maken zonder zulke bijkomende componenten.

De centrale onderzoeksvraag luidt: “Kunnen grote taalmodellen een mobiele robot door
een gebied navigeren met een minimaal ondersteunend framework?” Het doel is
natuurlijke taalinteractie met robots, waarbij een LLM gebruikersinstructies direct interpreteert
en uitvoert. Een belangrijke techniek die hierbij gebruikt wordt, is prompt engineering, die helpt
om de reacties van het LLM te sturen. Het raamwerk wordt bewust minimaal gehouden, waarbij
de meeste logica en controle wordt overgelaten aan het LLM, aangevuld met slechts eenvoudige
feedback uit de omgeving van de robot.

0.9 Gerelateerd Werk

Large Language Models (LLM’s) zijn krachtige maar weinig transparante systemen, waarvan
het volledige gedrag nog steeds niet goed wordt begrepen. Hun algemene toepasbaarheid maakt
ze waardevol in uiteenlopende domeinen, waaronder robotica. Tegelijk brengen ze ook aanzien-
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lijke beperkingen en risico’s met zich mee, vooral in toepassingen met hoge risico’s. Het is
daarom essentieel om hun tekortkomingen te begrijpen voordat ze in reële situaties worden
ingezet. LLM’s “denken” of “redeneren” niet zoals mensen; hun output is gebaseerd op prob-
abilistische patronen in tekst. Dit kan leiden tot hallucinaties: ogenschijnlijk plausibele maar
feitelijk onjuiste uitingen, wat veiligheidsrisico’s met zich mee kan brengen in robotica. Ver-
schillende studies hebben methoden voorgesteld om dergelijke hallucinaties te detecteren en te
beperken. Daarnaast zijn LLM’s zeer gevoelig voor variaties in prompts, waarbij kleine wi-
jzigingen in de input vaak leiden tot sterk afwijkende resultaten. Andere zorgen omvatten de
hoge rekentijd, de milieu-impact en kwetsbaarheden op het gebied van beveiliging en privacy.
Mens-Robot Interactie (Human-Robot Interaction, HRI) is een cruciaal aspect van robotica,
waarin voorspelbaarheid en transparantie belangrijk zijn voor effectieve samenwerking. LLM’s
kunnen hierin positief bijdragen dankzij hun mensachtige taalbegrip. Eerder onderzoek heeft
hun inzet verkend bij het simuleren van onderdelen van systemen in HRI-studies en bij het
modelleren van menselijk gedrag.

Deze thesis richt zich op het gebruik van LLM’s voor robotnavigatie, een gebied dat eerder
is onderzocht in zowel bekende als onbekende omgevingen. In bekende omgevingen hebben
LLM’s prestaties bereikt die vergelijkbaar zijn met traditionele planners zoals A*, maar met een
hogere verwerkingssnelheid. In onbekende omgevingen zijn twee hoofdbenaderingen onderzocht:
continue mapping tijdens verkenning en het opbouwen van herbruikbare kaarten. Deze systemen
maken vaak gebruik van Visual Language Models (VLM’s) die camerabeelden en sensorinput
verwerken. In tegenstelling hiermee gebruikt deze thesis een minimaal framework en een tekst-
only LLM om de navigatiemogelijkheden in isolatie te beoordelen. HRI blijft relevant binnen
navigatietaken, zowel in de interactie met de operator als met de omgeving. Er zijn doeltreffende
interfaces nodig voor communicatie tussen de operator en het LLM, en robots moeten zich
veilig kunnen bewegen in de nabijheid van mensen. Enkele studies hebben onderzocht hoe
LLM’s kunnen redeneren over gedrag van voetgangers en sociale interacties om robotacties te
sturen.

Een belangrijke uitdaging in LLM-gebaseerde robotica is langetermijnplanning van taken, waar-
bij modellen hun tokenlimiet kunnen overschrijden of eerdere instructies vergeten. Voorgestelde
oplossingen hiervoor zijn onder andere het opsplitsen van taken in subtaken, het gebruik van
gestructureerde geheugensystemen om het aantal te onthouden elementen te beperken, het to-
evoegen van omgevingsgrafen om informatie op te slaan, en het laten opnemen van contextuele
details in de output van het LLM zelf. Hoewel deze thesis zich hoofdzakelijk richt op ko-
rtetermijntaken, kwamen verwante geheugenproblemen toch naar voren en werden deze deels
opgevangen met herhaalde promptherinneringen en extra contextuele input.

Tot slot blijkt prompt engineering, het optimaliseren van instructies aan LLM’s, de meest ef-
fectieve methode om hun prestaties te verbeteren. Eerdere studies hebben strategieën gëıdenti-
ficeerd zoals gestructureerde input-outputformaten, toekenning van persona’s, few-shot prompt-
ing, toevoegen van contextuele informatie en chain-of-thought redeneren. Deze technieken zijn
uitgebreid toegepast in dit werk om de navigatieresultaten te verbeteren.

0.10 Initiële Haalbaarheidstesten

Om te beginnen werd een reeks haalbaarheidstesten uitgevoerd met GPT-4o (OpenAI), Gemini-
2.0-Flash (Google DeepMind), DeepSeek-V3 en DeepSeek-R1, enkele van de meest geavanceerde
publiek toegankelijke LLM’s. Er werd gekozen voor een vereenvoudigde omgeving, een gelabeld
schaakbordraster, om het ruimtelijk begrip van de modellen in een gecontroleerde context te
testen. Deze opzet bood een discrete en gemakkelijk te interpreteren ruimte waarin de modellen
konden redeneren over navigatie, beweging en obstakels.

In de testen kon een robot, die een mobiele agent voorstelde, zich telkens één vakje verplaatsen
in eender welke richting, met de bijkomende vereiste dat hij eerst in de juiste richting moest
draaien alvorens vooruit te bewegen. Obstakels op het raster verhoogden de complexiteit,
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aangezien de modellen hierdoor ongeldige paden moesten vermijden. Deze experimenten boden
vroege inzichten in de sterktes en beperkingen van elk model wat betreft het redeneren over
beweging en ruimte, en hielpen bepalen of LLM’s zelfstandig de basis kunnen vormen voor
robotbesturing.

0.10.1 Testen en Resultaten

Om de navigatiemogelijkheden van LLM’s te evalueren, werden drie soorten testen ontwor-
pen: het uitvoeren van enkele bewegingen per instructie, het plannen van een volledig pad in
één respons, en interactieve stap-voor-stap navigatie met real-time feedback. Elke test werd
uitgevoerd in zowel obstakelvrije als obstakelrijke omgevingen, waarbij obstakels ofwel bekend
waren (expliciet beschreven) of onbekend (afgeleid uit mislukte bewegingen). LLM’s kregen ook
de opdracht ASCII-gebaseerde visualisaties van de omgeving te genereren voor duidelijkheid en
traceerbaarheid.

De resultaten toonden aan dat de huidige LLM’s, GPT-4o, Gemini-2.0-Flash en DeepSeek-V3,
in staat zijn tot basisvormen van ruimtelijk redeneren en eenvoudige navigatietaken aankun-
nen, mits duidelijke instructies. Ze presteerden redelijk goed bij het uitvoeren van directe
commando’s en konden obstakellocaties onthouden in begeleide scenario’s. Hun consistentie
nam echter af in complexere omgevingen, vooral bij het plannen van volledige paden, waar
soms botsingen of herhalende lussen optraden. Diagonale bewegingen werden vaak genegeerd
ten voordele van eenvoudigere orthogonale bewegingen. Stap-voor-stap navigatie, waarbij de
modellen feedback kregen na elke zet, leverde betere resultaten op dan het in één keer genereren
van een volledig pad. Dit stelde de LLM’s in staat zich aan te passen aan onverwachte obstakels
en hun strategieën bij te sturen. Niettemin bleven hallucinaties en logische inconsistenties op-
treden, vooral in dubbelzinnige situaties. Van de geteste modellen vertoonde DeepSeek-R1 de
sterkste prestaties qua redenering en obstakelverwerking, maar kampte met extreem lange re-
sponstijden, wat de bruikbaarheid inperkte. DeepSeek-V3 was sneller, maar bleef achter op
ChatGPT en Gemini, die gemiddeld de snelste reacties gaven. Visuele representaties bleken
een zwakker punt: de meeste modellen hadden moeite met het consequent accuraat weergeven
van ASCII visualisaties van de robot en zijn omgeving.

0.11 Concept

De haalbaarheidstesten toonden aan dat LLM’s over de fundamentele capaciteiten voor navi-
gatie beschikken, maar verdere experimenten waren nodig in meer gecontroleerde omgevingen
met verbeterde promptingstrategieën. Alle interacties met de LLM’s gebeurden via tekstin-
voer, met als primaire modellen GPT-4o en Gemini-2.0-Flash, beide benaderd via hun officiële
API’s. Aanvullende verkennende testen werden uitgevoerd met DeepSeek-R1 en LLaMA 3.1,
via externe API’s of via lokale implementatie. Het gebruikte robotplatform was de “TurtleBot3
Waffle Pi”, die in staat is tot basale bewegingscommando’s: vooruit, achteruit, en rotatie op
de plaats met de klok mee en tegen de klok in. Experimenten werden uitgevoerd in Python-
en Unity-gebaseerde simulaties en in fysieke omgevingen. De robot bewoog zich in een vlakke
tweedimensionale ruimte, waarbij zijn positie werd weergegeven met Cartesische coördinaten en
zijn oriëntatie in graden, volgens de conventie van Unity of de standaard wiskundige notatie. De
omgeving kon zowel bekende als onbekende obstakels bevatten. Onbekende obstakels moesten
door de LLM’s zelf worden afgeleid door er tegenaan te botsen. In simulatie was het bijhouden
van de positie van de robot eenvoudig. In de echte wereld werd tracking uitgevoerd met een
infrarood motion capture-systeem van Qualisys.

0.11.1 Input en Output

LLM’s ontvingen gestructureerde taakprompts met instructies, beschrijvingen van de omgeving,
regels voor outputformaat en informatie over obstakelverwerking, foutafhandeling en output-
structuur. Daarnaast was er een korte herinnering die iteratief werd bijgewerkt op basis van de
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waargenomen zwaktes van de LLM’s. Voor elke navigatietaak kregen de LLM’s een beginpunt,
bestemming en soms oriëntatie. Ze gaven één beweging per bericht, geholpen door realtime feed-
back na elk commando. Deze feedback bestond uit de geüpdatete positie van de robot na een
vooruit- of achteruitbeweging en een bevestiging bij het draaien. Promptstijlen werden getest
met en zonder redenering in de respons, vergelijkbaar met chain-of-thought prompting.

0.11.2 Prompting- en Navigatiestrategieën

Om effectieve promptingtechnieken voor robotnavigatie te evalueren, werden twee strategieën
getest voor het omgaan met robotoriëntatie: ofwel de oriëntatie expliciet meegeven aan het
begin, ofwel de LLM’s deze laten afleiden door het resultaat van een voorwaartse beweging
te observeren. Dit laatste sluit aan bij het doel van de thesis om externe ondersteuning te
minimaliseren. LLM’s werden ook getest met twee outputstijlen: enkel het resultaat retourneren
of hun redenering stap voor stap tonen samen met de formule.

Voor draaien werden zowel relatieve als absolute strategieën onderzocht. Relatief draaien
vereiste dat de LLM’s oriëntatiewijzigingen bijhielden via commando’s zoals “draai 90 graden
naar links” of “draai -45 graden”, met verschillende formuleringen. Absoluut draaien hield in
dat een eindoriëntatie werd gespecificeerd, zoals “kijk naar 90 graden”, “kijk naar het noorden”
of “positieve x”, waarbij het controlesysteem dit vertaalde naar een relatieve draai. Richt-
ingsnamen waren effectief in beperkte omgevingen, maar werden onpraktisch bij willekeurige
hoeken. Deze testen hielpen bepalen welke formuleringen en strategieën het ruimtelijk redeneren
in LLM-gebaseerde navigatie het best ondersteunden.

0.11.3 Experimentele Scenario’s

Testen werden uitgevoerd in drie verschillende scenario’s, elk gericht op het evalueren van
verschillende aspecten van het redeneervermogen van de LLM’s. Het eerste scenario was een
rastergebaseerde bewegingsomgeving, waarin de robot zich bewoog op een vast raster vergelijk-
baar met een schaakbord. Beweging was beperkt tot discrete stappen: 1 meter voor orthogonale
richtingen en

√
2 meter voor diagonale. De robot kon draaien in stappen van 45 graden, wat

beweging in acht mogelijke richtingen toeliet. Deze opzet vormde een vereenvoudeld testplat-
form om te evalueren of LLM’s basaal ruimtelijk redeneren konden uitvoeren en een robot
dienovereenkomstig konden besturen. Alle experimenten in dit scenario werden uitgevoerd in
een Unity-simulatie, aangezien de echte TurtleBot3 niet de bewegingsprecisie bezit die nodig is
om betrouwbaar aan de rasterbeperkingen te voldoen.

Het tweede scenario betrof een realistischer vorm van navigatie, waarbij de robot niet langer
aan een raster gebonden was en in eender welke richting en afstand kon bewegen tussen 0° en
360°. Experimenten werden uitgevoerd zowel in simulatie via Unity als in de echte wereld met
de TurtleBot3. In tegenstelling tot de nauwkeurige controle die simulatie bood, had de echte
robot te maken met fysieke onnauwkeurigheden zoals het slippen van wielen en motordrift.
Daarom werd een tolerantie van 0,5 meter rond het doel toegestaan voor succesvolle navigatie
in echte experimenten. In dit scenario werd absoluut draaien uitsluitend uitgedrukt in graden,
aangezien richtingsnamen onpraktisch zijn bij continue beweging. Hoewel dit scenario com-
plexere oriëntatieberekeningen introduceerde, was de onderliggende optimale bewegingsstrate-
gie conceptueel eenvoudig: de robot moest naar de bestemming draaien en er rechtstreeks
naartoe bewegen.

In veel echte toepassingen is het niet altijd mogelijk om voortdurend de exacte coördinaten van
een robot te verkrijgen vanwege sensorbeperkingen of omgevingsfactoren. Om zulke situaties
te simuleren, werd een laatste reeks experimenten uitgevoerd waarin de LLM’s niet langer
exacte locatiegegevens kregen. In plaats daarvan ontvingen ze enkel de huidige afstand tot
het eindpunt, wat hen uitdaagde om te navigeren met aanzienlijk minder informatie. Deze
experimenten werden uitgevoerd met rastergebaseerde beweging in een Python-simulatie om
de taak beheersbaar te houden met behoud van structuur. De onderliggende strategie in dit
scenario was om bewegingen in verschillende richtingen te proberen en te observeren of de
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afstand tot het doel verminderde. Hoewel deze taak eenvoudig opgelost kan worden met een
trial-and-error algoritme, was het doel om te evalueren of LLM’s ruimtelijk redeneren konden
vertonen om sneller het juiste pad te vinden. Obstakels werden hier niet getest, aangezien
detectie moeilijk zou zijn en in andere scenario’s slechte resultaten opleverde.

0.12 Implementatie

De parameters temperatuur en top-p voor zowel ChatGPT als Gemini werden ingesteld op 0,1
om meer deterministische output te garanderen, terwijl er genoeg variabiliteit bleef om foutcor-
rectie mogelijk te maken. De communicatie met deze modellen verliep via hun officiële API’s
met Python-code. LLaMA 3.1 en DeepSeek-R1 werden lokaal uitgevoerd met het programma
Ollama, terwijl DeepSeek-R1 ook toegankelijk was via een derdepartij API-provider genaamd
OpenRouter, ook gëıntegreerd met Python.

De primaire simulatieomgeving werd gebouwd in Unity, waar een virtueel model van de Turtle-
Bot3 navigeerde binnen een gemodelleerde kamer. Deze opzet bestond uit twee hoofdbestand-
delen: een module voor het aansturen van de beweging van de robot en een andere voor het
opzetten van een socketverbinding met de Python-backend die de interface met de LLM’s ver-
zorgde. De robotbeweging werd gëımplementeerd met lineaire interpolatie voor vloeiende over-
gangen in zowel translatie als rotatie. Daarnaast werd een vereenvoudigde simulatie zonder
visuele weergave uitgevoerd in Python voor de afstand-gebaseerde bewegingstests, waarbij de
logica van de Unity-omgeving lichtgewicht werd nagebootst.

Voor de experimenten in de echte wereld werd de TurtleBot3 aangestuurd via Python-scripts
die motorcommando’s verstuurden. Net als in de simulatie werd socketcommunicatie gebruikt
om te koppelen met de Python-code die de interacties met de LLM’s verzorgde. In de echte
wereld kwam de positiebepaling van de robot niet voort uit de interne sensoren, maar uit een
extern volgsysteem. Hiervoor werd een infrarood motion capture-systeem van Qualisys ingezet.
Er werden trackingmarkers bevestigd aan de TurtleBot3 en het gebied werd gekalibreerd met
de Qualisys Track Manager-software, wat precieze locatiegegevens in realtime mogelijk maakte.
De code die de positiegegevens opvroeg draaide op dezelfde machine als de interface met de
LLM.

0.13 Evaluatie

Dit hoofdstuk presenteert de evaluatie van LLM’s in robotnavigatietaken. Het begint met de
resultaten van de verkennende experimenten die de basis vormden voor de daaropvolgende
kwantitatieve tests, die werden uitgevoerd om meer consistente, data-gedreven inzichten te
verkrijgen in de prestaties van de modellen bij verschillende navigatie-uitdagingen.

0.13.1 Verkennende Resultaten

Er werden een reeks verkennende experimenten uitgevoerd om het ontwerp van de prompts, out-
putformaten en navigatiestrategieën te verfijnen vóór de kwantitatieve tests. Meerdere LLM’s
werden geëvalueerd, waaronder ChatGPT, Gemini, DeepSeek-R1 en LLaMA. Lokale modellen
(DeepSeek en LLaMA) hadden moeite vanwege beperkte middelen, waarbij DeepSeek via Open-
Router veelbelovend was maar last had van te hoge latentie. Daarom richtten latere tests zich
op ChatGPT en Gemini.

Twee outputstijlen werden vergeleken: alleen commando’s en redeneervorm. Zonder redeneer-
vorm presteerden de LLM’s slecht, ze interpreteerden richtingen vaak verkeerd en faalden in
navigatie of het vermijden van obstakels. Bij toestemming om redeneringen te tonen, verbeterde
de prestatie aanzienlijk. Van de oriëntatieconventies verminderde de overgang van Unity’s naar
het standaard wiskundige systeem fouten, vooral bij het berekenen van hoeken vanuit beweging.
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Systematische fouten van 180 graden bleven echter bestaan totdat promptherinneringen over
kwadrantcorrecties werden toegevoegd.

Voor draaien werkten zowel relatieve als absolute methoden goed met redeneervorm, hoewel
absoluut draaien betrouwbaarder was. Ondertekende gradenwaarden presteerden iets beter dan
andere relatieve formaten. Obstakels bleven een blijvende uitdaging, LLM’s konden er maar
één tegelijk aan, gebruikten geen padgeschiedenis en pasten strategieën niet aan, waardoor
ze vaak vastliepen in lussen. Bij afstand-gebaseerde beweging leidde inconsistent gedrag tot
cirkelen of richtingsomkering, en hoewel verbeterde prompting sommige fouten verminderde,
werd volledige oplossing niet bereikt.

0.13.2 Methodologie voor Kwantitatieve Tests

De kwantitatieve tests richtten zich exclusief op GPT-4o en Gemini-2.0-Flash, waarbij beide
modellen draaiden met een temperatuur en top-p waarde van 0,1 om consistente maar flexibele
prestaties te garanderen. De tests behandelden dezelfde vier kernthema’s die tijdens de experi-
menten werden onderzocht: oriëntatieberekening, grid-gebaseerde beweging, vrije beweging en
afstand-gebaseerde beweging. In alle tests werd redeneervorm in de antwoorden van de LLM’s
toegestaan, aangezien eerdere experimenten aantoonden dat dit leidde tot significant betere
resultaten. Elk scenario omvatte meerdere testgevallen om een reeks navigatieopstellingen te
bestrijken, met en zonder obstakels. Om consistentie te evalueren werden alle tests, behalve
oriëntatietests, driemaal per model herhaald. Elke test werd uitgevoerd in een aparte conversa-
tie met de LLM’s om een consistente kennisbasis te waarborgen. Prestatiemaatstaven omvatten
de algemene en per-geval succespercentages, aantal gemaakte bewegingen en de uiteindelijke
afstand tot de bestemming in scenario’s met vrije beweging.

0.13.3 Scenario’s en Resultaten

Oriëntatie. Oriëntatieberekening werd getest binnen zowel de grid-gebaseerde als de vrije be-
wegingsscenario’s, onder de voorwaarden dat de LLM’s ofwel hun berekeningsstappen moesten
tonen, of niet. In de grid-gebaseerde opzet werden 10 testgevallen geëvalueerd met stap-voor-
stap berekeningen inbegrepen. Beide LLM’s behaalden een succespercentage van 100%. In
nog eens drie testgevallen zonder zichtbare berekeningen slaagden beide modellen opnieuw. Dit
duidt op een hoge betrouwbaarheid in grid-scenario’s. Bij vrije beweging daalde de prestatie
iets. Met getoonde formule slaagde ChatGPT in 7 van de 10 testgevallen (70%), terwijl Gemini
in 9 (90%) slaagde. Opvallend was dat de fouten van ChatGPT niet voortkwamen uit onjuiste
berekeningen, maar uit het aannemen van een oriëntatie in plaats van de vereiste voorwaartse
beweging uit te voeren. De ene fout van Gemini was ook procedureel in plaats van computa-
tioneel. Wanneer de formule werd weggelaten, slaagde ChatGPT in alle drie de testgevallen,
terwijl Gemini er één faalde, waarbij de oriëntatie naar de dichtstbijzijnde veelvoud van 45°
werd afgerond. Deze resultaten suggereren dat beide modellen in staat zijn oriëntaties cor-
rect te berekenen, maar dat consequent betere resultaten worden behaald wanneer ze expliciet
worden aangespoord hun berekeningsstappen te tonen.

Grid-gebaseerde Beweging. Het grid-gebaseerde bewegingsscenario werd getest onder wis-
selende condities: met en zonder obstakels, en met twee draai-strategieën: relatief (posi-
tieve/negatieve graden) en absoluut (expliciete richting in graden). De testcomplexiteit varieerde
van eenvoudige rechte bewegingen tot routes die één of meerdere bochten en heroriëntaties
vereisten.

In obstakelvrije omgevingen waren er 10 testgevallen per draai-strategie. Voor zowel relatief
als absoluut draaien voltooide elk van de LLM’s alle testgevallen met succes in ten minste één
van de drie pogingen, wat de algemene bekwaamheid voor basale navigatie aantoont. Af en toe
traden fouten op, ChatGPT vanwege problemen met outputformattering, en Gemini doordat
het voortijdig stopte. Beide modellen hadden echter moeite met padoptimaliteit. Wanneer de
bestemming niet via een rechte lijn bereikbaar was, neigden ze ertoe langs afzonderlijke x- en
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y-assen te reizen of diagonaal te overschieten. Interessant was dat bij absoluut draaien beide
LLM’s vaak de instructie negeerden om de oriëntatie te rapporteren vóór de eerste beweging,
wat hun gevoeligheid voor kleine promptvariaties illustreert.

Het toevoegen van obstakels verminderde de succespercentages aanzienlijk. Hoewel beide LLM’s
rond een enkel obstakel konden navigeren, leidde de introductie van meerdere obstakels vaak
tot oneindige lussen, herhaalde paden of gefantaseerde locaties. ChatGPT ging over het al-
gemeen iets beter om met obstakels, terwijl Gemini vaker onwaarschijnlijke of incorrecte out-
puts genereerde. Deze resultaten bevestigen dat hoewel LLM’s grid-gebaseerde beweging in
open omgevingen effectief kunnen beheren, complexe ruimtelijke redenering met dynamische
obstakelvermijding een aanzienlijke uitdaging blijft, wat wijst op beperkingen in het werkge-
heugen van de modellen en hun gebrek aan een interne statusrepresentatie of terugspoelmech-
anisme.

Vrije Beweging. Dit scenario evalueerde de prestaties van LLM’s in een vrije beweging-
somgeving, zowel in simulatie als met een echte TurtleBot3-robot, waarbij de beweging continu
was in plaats van grid-gebaseerd. Tests werden uitgevoerd met zowel relatief als absoluut
draaien. De beweging in de simulatie was perfect nauwkeurig, terwijl de beweging in de echte
wereld bëınvloed werd door fouten van de TurtleBot3, waardoor de robot slechts binnen een
halve meter van de bestemming hoefde te komen.

In simulatie behaalden zowel ChatGPT als Gemini hoge succespercentages bij basale navigati-
etaken zonder obstakels, hoewel kleine problemen zoals hallucinaties, inefficiënte bewegingen en
misinterpretaties van oriëntatie (vooral bij relatief draaien) werden waargenomen. ChatGPT
presteerde over het algemeen betrouwbaarder en efficiënter, terwijl Gemini af en toe 180° fouten
in oriëntatie maakte en minder stabiel gedrag vertoonde na obstakelontmoetingen. Obstakel-
navigatie bleef een grote uitdaging voor beide modellen, vooral in complexere configuraties
(bijvoorbeeld muren of U-vormen), waar beide LLM’s consequent faalden. De toegenomen
complexiteit van de beweging maakte ook het scenario met één obstakel uitdagender, omdat de
LLM’s er vaak niet in slaagden de robot ver genoeg naar de zijkant te sturen om het obstakel
volledig te passeren, wat resulteerde in herhaalde botsingen. Dit weerhield de LLM’s er echter
niet noodzakelijk van om de bestemming te bereiken.

Tests in de echte wereld toonden vergelijkbare patronen, waarbij ChatGPT meer consistentie
liet zien en Gemini eerdere oriëntatiefouten herhaalde. Daarnaast probeerden beide LLM’s de
afstand tot de bestemming verder te verkleinen, ondanks dat de robot al binnen de vereiste
halve meter was, wat de bewegingstijd verlengde. Over het geheel genomen konden LLM’s
eenvoudige vrije bewegingsnavigatie goed afhandelen, maar ze worstelden met het consequent
opvolgen van instructies en het vermijden van obstakels.

Afstandsgebaseerde Beweging. Het afstandsgebaseerde bewegingsscenario testte het ver-
mogen van LLM’s om onbekende omgevingen te navigeren met alleen Euclidische afstand tot de
bestemming als feedback. Zonder toegang tot oriëntatie werd alleen relatief draaien gebruikt.
In een eenvoudige opzet slaagden beide LLM’s erin de bestemming in alle pogingen te bereiken.
Gemini presteerde consequent beter dan ChatGPT door betrouwbaar een correct pad met min-
imale variatie te identificeren. ChatGPT vertoonde echter inconsistent gedrag en was af en toe
inefficiënt of repetitief, maar toonde wel tekenen van hoger niveau ruimtelijk redeneren in één
complex geval, waarin het zijn pad aanpaste op basis van het detecteren van parallelle beweging
ten opzichte van de bestemming. In een uitdagender scenario dat meerstapsplanning vereiste,
toonde Gemini opnieuw solide consistentie in alle pogingen, zij het met iets langere paden.
ChatGPT faalde in twee van de drie pogingen, maar had de meest efficiënte succesvolle uitvo-
ering, wat duidt op potentieel voor diepgaander begrip wanneer het slaagt. Over het geheel
genomen was Gemini betrouwbaarder, terwijl ChatGPT een grotere, zij het inconsistente, diep-
gang in redeneren liet zien. De strategieën van beide modellen werden sterk bëınvloed door het
promptontwerp, met slechts beperkte aanwijzingen voor autonome ruimtelijke inferentie.
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In alle tests en experimenten vertoonde ChatGPT betere prestaties, maar Gemini had een veel
kortere responstijd, waardoor een pauze in de code moest worden ingebouwd om niet tegen
het verzoeklimiet aan te lopen. Dit komt vooral doordat Gemini-2.0-Flash werd gebruikt, een
versie die is ontworpen voor snelheid in plaats van redeneerkracht, terwijl GPT-4o een meer
gebalanceerd model is.

0.14 Conclusie & Toekomstig Werk

0.14.1 Conclusie

Deze thesis had als doel om te onderzoeken of grote taalmodellen (LLM’s) zelfstandig mo-
biele robots kunnen navigeren met minimale externe ondersteuning. Het onderzoek volgde een
iteratieve aanpak, beginnend met verkennende experimenten om de prompting-strategieën te
verfijnen, gevolgd door kwantitatieve tests om consistentie en prestaties te beoordelen in zowel
gesimuleerde als echte omgevingen. De resultaten geven aan dat LLM’s zoals GPT-4o, Gemini-
2.0-Flash en DeepSeek-V3 in staat zijn om commando’s te interpreteren, te redeneren over
navigatietaken en bewegingsplannen uit te voeren via stapsgewijze interactie met real-time feed-
back. Hun succes is echter sterk afhankelijk van heldere taakbeschrijvingen en gestructureerde
omgevingen. Alle modellen hadden moeite met het omgaan met obstakels, waarbij ze vaak mis-
lukte strategieën herhaalden, eerdere routes vergaten en vastliepen in loops. Hoewel DeepSeek-
R1 relatief sterke redeneerprestaties liet zien, maakten de lange reactietijden het onpraktisch
voor real-time gebruik. Een belangrijke bevinding was het belang van open redeneren. Wan-
neer modellen hun denkproces mochten toelichten, verbeterde de prestatie aanzienlijk. Toch
bleven er serieuze uitdagingen: modellen faalden in het consequent bijhouden van oriëntatie,
interpreteerden draaicommandos verkeerd en hadden moeite met het vinden van paden en af-
standsgebaseerde redenering. Hun onvermogen om nauwkeurige ruimtelijke representaties te
genereren of heuristieken aan te passen, beperkte ook hun effectiviteit. Inconsistente output,
zelfs onder identieke omstandigheden, ondermijnde de betrouwbaarheid verder. Samenvattend
tonen LLM’s potentie voor navigatie met weinig ondersteuning in eenvoudige omgevingen, maar
zijn ze nog niet betrouwbaar genoeg voor algemene robotautonomie. Om bruikbaar te zijn voor
praktische toepassingen, hebben ze externe ondersteuning nodig, zoals geheugenhulpmiddelen,
abstractielagen of geavanceerdere redeneermodules, om hun huidige beperkingen te overwin-
nen.

0.14.2 Limitaties en Toekomstig Werk

Deze thesis richtte zich voornamelijk op GPT-4o en Gemini-2.0-Flash, met beperkte tests met
DeepSeek-R1 en LLaMA3.1, waardoor veel sterke alternatieven zoals Claude, Mistral en Grok
buiten beschouwing bleven. Een bredere benchmark over meerdere modellen zou duidelijkere
inzichten kunnen opleveren, zeker naarmate de capaciteiten van modellen verder evolueren. Een
belangrijke beperking was de focus op kortetermijntaken, die niet de complexiteit van toepassin-
gen in de echte wereld weerspiegelen, waar zaken als langetermijngeheugen, tokenlimieten en
statustracking veel belangrijker worden. Toekomstig onderzoek zou zich moeten richten op
uitgebreidere navigatiescenario’s, bijvoorbeeld met behulp van gespreksbeheer of mechanismen
voor persistent geheugen. Ook het verbeteren van obstakelvermijding en afstandsgebaseerde
navigatie is essentieel. Hoewel deze studie externe hulpmiddelen tot een minimum beperkte
om de ruwe capaciteiten van LLM’s te evalueren, zou het toevoegen van lichte ondersteuning,
zoals sensorinvoer, verificatiemodellen of eenvoudige geheugensystemen, de prestaties aanzien-
lijk kunnen verbeteren, vooral in dynamische of complexe omgevingen. Een terugkerend prob-
leem was de inconsistente naleving van outputformaten door de modellen, wat vaak leidde tot
uitvoeringsfouten ondanks correcte redenering. Het gebruik van gestructureerde formaten zoals
JSON zou de betrouwbaarheid en integratie met besturingssystemen kunnen verbeteren, al
moet daarbij worden opgelet dat het gedrag van het model niet te veel wordt beperkt. Tot
slot zou toekomstig onderzoek zich kunnen uitbreiden naar robotmanipulatie, door gebruik te
maken van grid-gebaseerde representaties om eenvoudige taken zoals grijpen en objectplaats-
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ing te verkennen. Hierbij kan dan worden beoordeeld hoe zulke modellen presteren in minder
gecontroleerde, realistische omstandigheden.

0.14.3 Reflectie

Tijdens het verloop van deze thesis heb ik een beter begrip gekregen van de beperkingen van
LLM’s in domeinen zoals robotnavigatie en ruimtelijke redenering. Hoewel hun gespreksvaardigheid
aanvankelijk indruk maakte, toonde hun falen om expliciete ruimtelijke instructies te volgen aan
dat hun redenering vaak oppervlakkig en onbetrouwbaar is in onbekende contexten. Een be-
langrijk keerpunt in het werk was het besef dat het toestaan van redenering en tussenliggende
berekeningen in de antwoorden leidde tot aanzienlijk betere resultaten. Helaas kwam dit inzicht
relatief laat in het proces, en werd er veel tijd besteed aan het proberen te verbeteren van
prestaties onder beperkter outputgebruik. Een andere misstap was het te zwaar leunen op it-
eratieve prompt tuning met slechts een klein aantal modellen. Dit project benadrukte ook het
cruciale belang van het bijhouden van gestructureerde, gedetailleerde documentatie gedurende
alle fasen van het experimenteren. In de vroege fases was het testen sterk verkennend en
werden resultaten vaak slechts in korte notities of informele samenvattingen vastgelegd. Dit
gebrek aan gestructureerde documentatie maakte het moeilijk om fouten te traceren, tests te
herhalen of precieze conclusies te trekken tijdens de analyse. Naarmate het project vorderde,
hielpen strengere dataverzamelingspraktijken deze problemen te verminderen, maar de eerdere
hiaten vertraagden het proces onvermijdelijk en vereisten het opnieuw uitvoeren van bepaalde
experimenten.
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Chapter 1

Introduction

Since the mid-20th century, automation has transformed everyday tasks and entire industries,
ranging from factory assembly lines to household chores with robotic vacuum cleaners. One of
the most impactful areas of this transformation is automation in robotics, where machines now
perform tasks once handled by human labor. Traditionally, these systems relied on rule-based
algorithms, pre-programmed routines, and fixed logic. But in recent years, Artificial Intelligence
(AI) has dramatically advanced the field. From helping robots make autonomous decisions to
enabling more flexible interactions with their environment, AI is redefining robotic capabilities.
These advances include the use of Large Language Models (LLMs), Vision-Language Models
(VLMs), and task-specific AI such as image recognition systems. Well-known examples include
self-driving cars and Boston Dynamics’ robot, “Spot”.

These LLMs and VLMs offer a new approach to automation that builds on the challenges of
traditional programming. Programming robots has long been a complex task, especially when it
comes to high-level reasoning required for navigation, decision-making, or interacting with dy-
namic environments, challenges that are difficult to solve with fixed algorithms. Unlike classical
methods, LLMs can emulate aspects of human reasoning, while VLMs provide visual context
by interpreting images. Together, they enable more adaptive, intelligent behavior in robots.
These models also lower the barrier to entry for non-experts, as many are freely available and in-
creasingly user-friendly. However, applying them to robotics isn’t without challenges. Because
LLMs were primarily designed for language tasks, they must be adapted to handle robotics-
specific requirements like path planning, spatial reasoning, and real-time control. VLMs excel
at environmental awareness through visual input but still require integration with LLMs or
task-specific models to drive behavior effectively.

Numerous work has investigated using LLMs and VLMs to control robots already and something
most of these have in common is that they trained specific models or implemented frameworks
around the LLM to aid or correct it. For example, Ahn et al. [1] designed “SayCan” which
uses an LLM to output robotic skills via a learned value function that filters candidate skills.
Liang et al. [2] use their framework “LMPC” to increase the memory capabilities of an LLM
to improve teachability based on human feedback. Lastly, Yu et al. [3] utilize LLMs to define
reward parameters. By optimizing these rewards, or goals, actions to execute a task can be
selected. While these approaches achieve positive results, all of these depend on supplemental
models or engineered training procedures to correct, constrain, or extend the LLM’s native
reasoning. While this might still be the best approach, the advancements in LLMs increased
their capabilities, leaving the question to be asked wether or not a bare bone LLM can achieve
similar results, eliminating the use of additional models or extensions.

In this thesis, the central research question is “Can large language models navigate a
mobile robot through an area, using a minimal supporting framework?”. The ulti-
mate aim is to enable users to command robots using natural language, with the LLM acting
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as both interpreter and operator. For instance, when a user instructs a robot car to move to
a specific location, the LLM interprets this request and generates a set of executable naviga-
tion commands for the robot. This approach could significantly lower the barrier for robot
control, allowing users without programming or AI expertise to interact effectively with mobile
robots.

A key technique in this effort is prompt engineering, which is the careful construction and
refinement of prompts (i.e., task instructions, examples, and contextual cues) to guide the
LLM’s output. Throughout this work, various prompting strategies are explored and evaluated
to identify effective methods. Feedback mechanisms, which relay the robot’s state back to the
LLM after each move, are also essential to ensure accurate situational awareness. Nonetheless,
the surrounding framework must remain minimal; most of the computational and logical burden
should be handled by the LLM itself.

Initial feasibility tests were conducted using the web-based interfaces of several leading LLMs:
ChatGPT-4o (OpenAI), Gemini 2.0-Flash (Google), DeepSeek-V3, and DeepSeek-R1. These
tests assessed baseline navigational capabilities in a controlled, text-based format. The main
body of experimentation was carried out using two models: ChatGPT-4o and Gemini 2.0-
Flash. Limited testing was also performed with DeepSeek-R1 and LLaMA 3.1 for comparison
purposes. All interactions with the LLMs were conducted via a command-line interface, with the
LLM connected to a mobile robot using socket-based communication. Testing was performed
in a simulated and physical environment. The Unity game engine provided a virtual testing
ground, while real-world tests were conducted using the “TurtleBot3 Waffle Pi” 1. This robot
operates under the Robot Operating System (ROS), ensuring compatibility with other ROS-
based mobile platforms. The robot was tasked with navigating an environment that could be
either known, where the coordinates of the robot are provided to the LLM, or unknown, where
the coordinates are withheld. In the known environment, the robot’s position was tracked
using the Qualisys motion capture system 2, which uses markers to provide precise coordinate
feedback. Obstacles could be present in these environments but were not necessarily tracked in
advance; they could also be discovered dynamically through collision feedback. In the unknown
environment, positional information was limited, and only the estimated distance to the goal
was provided to the LLM.

The feasibility tests demonstrate that while LLMs are capable of basic navigation, they struggle
with environmental understanding and handling more complex scenarios. In simple point-to-
point navigation tasks within a known environment and without obstacles, both ChatGPT
and Gemini performed well. However, when obstacles were introduced, even when their posi-
tions and the path they followed were explicitly provided, both models encountered difficulties.
They were often unable to apply backtracking or consistently remember obstacle locations, and
could only reliably avoid a single obstacle. Turning performance improved when LLMs were
instructed to use absolute directions (e.g., “face north”) instead of relative turns (e.g., “turn
left”). In unknown environments, ChatGPT and Gemini managed to reach the destination, but
their behavior suggested reliance on trial-and-error rather than reasoning-based planning. The
models typically tried various directions without forming an internal representation or under-
standing of the environment. This lack of genuine decision-making became evident as many of
their “intelligent” choices were simply restatements of information already provided in the task
prompt. An important observation during testing was that enabling the LLMs to reason ex-
plicitly within their responses significantly improved performance across all test scenarios. This
means that rather than being forced to output only the final instruction, they were encouraged
to write out their thought process. Despite this, the inclusion of reasoning was still insufficient
to fully handle obstacle-related tasks. A recurring issue throughout testing was the failure to
follow specific instructions, particularly related to output formatting.

1https://www.turtlebot.com/turtlebot3
2https://www.qualisys.com/



Chapter 2

Related Work

This section reviews prior research relevant to the application of Large Language Models (LLMs)
in robotics. It begins by examining how LLMs function, including limitations and inherent
trade-offs when applied to complex tasks such as robot control. Following this, existing work
on leveraging LLMs for human-robot interaction (HRI) is explored, highlighting how natural
language capabilities facilitate communication but also introduce challenges. Next, frameworks
designed to enhance LLM-driven robotic control are introduced. The discussion then addresses
navigation strategies in both known and unknown environments, along with HRI in navigational
tasks. Research on long-horizon task planning with LLMs is reviewed, including difficulties in
maintaining coherence over extended sequences and potential solutions like hierarchical planning
and memory augmentation. The chapter concludes with an introduction to prompt engineering
techniques proposed to improve LLM performance and reliability.

2.1 Understanding Large Language Models

LLMs are powerful but complex systems. Their ability to solve a wide range of tasks makes
them valuable across many fields. However, they also come with significant limitations and
risks, especially in high-stakes applications like robotics. It is essential to be aware of these
considerations before relying on LLMs in real-world scenarios.

2.1.1 How do LLMs work?

LLMs, as discussed in the work of Shanahan [4], do not “think” or “reason” in the human sense.
While they may appear intelligent in conversation, their behavior is grounded in statistical pat-
tern matching learned from vast amounts of textual data. These models generate responses by
predicting the most probable sequence of words following a given prompt, based on their train-
ing data. This lack of genuine understanding explains why LLMs can fail to follow seemingly
straightforward instructions, especially in tasks like navigation that require spatial awareness
and consistent state tracking. This limitation became apparent throughout the experiments in
this thesis. Despite providing detailed instructions and feedback, LLMs often produced incor-
rect or nonsensical actions. Their apparent human-like responses can lead users to overestimate
their comprehension, making failures more surprising and harder to diagnose [5]. However, in
some aspects, they do behave similarly to humans, for instance, they tend to generate better
responses when prompted to explain their reasoning, given clear examples, or when the prompt
is phrased with greater precision. This underlines the importance of careful prompt engineering
to maximize performance.

27
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2.1.2 Hallucinations in LLMs

LLMs have a tendency to hallucinate, which is confidently generating information that is false
or fabricated. In the field of robotics, these hallucinations could potentially cause severe is-
sues. For instance, if a robot arm mistakes a person’s hand for an object that needs to be
manipulated, it could result in harm to the individual. As such, systems capable of identi-
fying and mitigating hallucinations are critical in LLM-based robotics applications. Leiser et
al. [6] explored hallucinations in the context of human–LLM interactions. They introduced
HILL (Hallucination Identifier for Large Language Models), a tool that detects hallucinations
in ChatGPT outputs and provides users with greater transparency. Their work involved the
development of several visual design prototypes for HILL, which were then evaluated through
user testing to find the most effective and intuitive design. The HILL system offers a vari-
ety of feedback: a confidence score for the generated response, a political classification score
(ranging from left to right), a score estimating the probability of paid/promotional content,
specific hallucination indicators, and a self-assessment score generated by ChatGPT indicating
how accurate it believes its answer is. The user study conducted in this research showed that
HILL successfully identifies hallucinations and increases user confidence in assessing ChatGPT’s
reliability, without creating excessive visual noise.

Other researchers have studied hallucinations in the domain of robotics, particularly in planners
used for navigation and manipulation. In the work of Ren et al. [7], the authors introduced
KnowNo, a system designed to detect uncertainty in LLM responses and request additional
user input when needed. The system begins with a natural language instruction and uses a
pre-trained LLM to generate multiple possible actions to fulfill the instruction. Then, it applies
conformal prediction, a statistical framework for uncertainty quantification, to select a subset
of actions that are most likely to be correct. If this subset contains only one action, the system
proceeds with it; otherwise, it pauses and prompts the user for clarification or to select one of
the available options. The challenge lies in finding the right balance: the system must ask for
enough help to avoid incorrect actions, but not so much that it becomes overly reliant on the
user. Their experiments, performed on a range of simulated and real robot tasks with varying
ambiguity levels, demonstrated that KnowNo improves both the efficiency and autonomy of
LLM-based planners compared to existing baselines.

In terms of robotic manipulation, Duan et al. [8] proposed AHA, a vision-language model
(VLM) designed to detect and reason about task failures. To generate training data, the authors
created a pipeline named FailGen, which modifies tasks from an existing dataset to introduce
various types of failures. A total of seven failure types were included, such as incomplete grasp,
incorrect rotation, and choosing the wrong target object. To train AHA, each manipulation
task is broken down into sub-tasks, which are executed sequentially. After each sub-task, an
image of the environment is sent to the VLM to determine whether the task was completed
successfully. If not, the model provides a reasoning explanation describing why it interpreted the
task as a failure. AHA was benchmarked against six state-of-the-art VLMs, including GPT-4o,
Gemini-1.5, and LLaVA-v1.5, and was found to outperform the second-best model (GPT-4o)
in all evaluations. Additionally, the authors found that AHA facilitates reward synthesis for
reinforcement learning, improves the accuracy of task and motion planning, and enhances zero-
shot task verification using synthetic robot data.

2.1.3 Prompt vulnerabilities

LLMs are also vulnerable to prompt modifications, a phenomenon where user input, either
intentionally or unintentionally, alters the behavior of the model in undesired ways. In malicious
cases, users can craft prompts that cause the LLM to disregard its original instructions or
adopt new, potentially harmful behaviors. In conversational assistants, this might result in the
LLM providing incorrect information or refusing to respond. However, in the context of LLM-
controlled robotics, such vulnerabilities can lead to much more serious consequences, such as
autonomous vehicles deviating from their intended paths, or robot arms manipulating objects
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they should not. These actions could result in property damage, injury, or even death [9,
10]. Importantly, prompt modifications do not always arise from malicious intent. Seemingly
minor changes in phrasing or prompt structure can significantly affect performance. While such
variability might be tolerable in general-purpose language applications, it presents a serious
concern in robotic control, where reliability and safety are paramount.

The work of Wu et al. [11] investigates unintentional prompt variations in LLM and VLM-
controlled robotic systems. They examine various types of prompt alterations and their im-
pacts. For LLMs, vulnerabilities arise from changes such as synonym replacement, word re-
ordering, paraphrasing, and adding overly descriptive or irrelevant details. For VLMs, issues
can result from inserting non-task-related objects into the visual scene, applying small image
transformations, or reducing visual quality. Their experiments, conducted on a range of robotic
manipulation tasks, demonstrated that even minor prompt modifications can lead to perfor-
mance drops of 19.4% in task execution success rate in the tested systems. These findings
highlight the critical need for robust input preprocessing and validation mechanisms. However,
care must also be taken to avoid overly restricting user inputs, as this could negatively affect
usability and user satisfaction.

2.1.4 Considerations and Trade-Offs of Using LLMs

While LLMs are powerful and flexible tools, their use, particularly in robotics, comes with a
number of important considerations and trade-offs. Kasneci et al. [12] explore these concerns in
the context of education, but many of their insights are equally relevant for robotic applications.
One key issue is the lack of understanding among end users. Although LLMs can convincingly
mimic human reasoning, they function in fundamentally different ways. Users without technical
expertise may find it difficult to comprehend why the model behaves in certain ways, especially
when it makes mistakes. This lack of understanding can also make it difficult to fix problems or
adapt the system to specific needs. Even experienced users may struggle to interpret or debug
LLM outputs due to the black-box nature of these models. Another major consideration is cost
and accessibility. Running powerful LLMs requires significant computational resources. Local
deployment offers the greatest control and reliability but is prohibitively expensive for most
users, particularly when dealing with the largest or most advanced models. An alternative is
cloud-based access, which reduces upfront cost and hardware requirements but introduces other
limitations, such as latency, dependence on internet connectivity, and potential service outages.
Cloud access also raises concerns about data privacy and security. In robotic applications,
users may upload text descriptions, sensor data, or camera images from their environment.
Depending on the service provider, this data could be stored, analyzed, or even inadvertently
leaked. This poses serious privacy risks, especially in sensitive or personal settings. Finally,
there is the issue of environmental sustainability. Training and running LLMs at scale consumes
vast amounts of electricity, and the infrastructure that supports them is not always powered
by renewable energy sources. As the demand for LLM applications grows, so too does their
environmental footprint. These ethical and practical trade-offs must be taken into account
when considering the deployment of LLMs and VLMs in real-world robotic systems.

2.1.5 LLMs in Human-Robot Interaction

Human-robot interaction (HRI) is a component of robotics that involves ensuring seamless
cooperation between humans and robots. This includes aspects such as clear communication,
shared task understanding, trust, safety, and adaptability. Recent work has investigated how
the integration of LLMs into robotic systems affects HRI and what design considerations this
integration introduces. Kim et al. [13] explore user perceptions of three types of LLM-powered
agents, text-based, voice-based, and physically embodied robot agents, across four different
tasks. Their study found that users expressed the highest level of satisfaction with the text
agent, followed by the robot agent, and finally the voice agent. The voice-based agents, both
standalone and embedded within the robot, were perceived as more error-prone. Participants
struggled with recognizing appropriate timing for interaction and experienced frustration due



30 CHAPTER 2. RELATED WORK

to voice recognition failures. These issues were less pronounced in the robot agent due to
its additional communicative signals, such as gaze direction and gestures, which helped users
understand when the robot was processing input or ready for a response. The robot agent offered
unique advantages in situations requiring multitasking, as users were able to issue commands
while attending to another task, relying on the robot’s nonverbal feedback for coordination.
In contrast, the simplicity and predictability of the text agent made it preferable for purely
conversational tasks, as users appreciated the ease of use and faster response generation. The
study concludes that enhancing LLM agents with nonverbal communication cues, carefully fine-
tuning models for specific domains, and implementing safeguards such as training on curated
datasets and maintaining human oversight can significantly improve user experience and safety
in HRI settings.

In a different study, Williams et al. [14] propose leveraging LLMs for rapid prototyping of
interactive robotic systems, similar to the Wizard-of-Oz (WoZ) methodology. Traditionally,
WoZ studies involve humans simulating intelligent robot behavior during early-stage research,
particularly when the desired functionality has not yet been fully implemented. Williams et
al. argue that LLMs can serve a similar role by standing in for incomplete components of the
system, such as speech recognition or natural language generation. Their work discusses how
LLMs can be used both for parsing user input and generating appropriate system responses.
They acknowledge the risks of using LLMs in this context, especially regarding hallucinations,
inconsistent behavior, and bias stemming from the models’ training data. However, they also
emphasize the value LLMs bring in terms of flexibility, scalability, and realism in simulated
interactions. The authors recommend detailed documentation of LLM use in HRI studies,
including justification for the chosen model, ethical considerations, and plans for transitioning
from prototype to deployable system.

Zhang et al. [15] investigate the use of LLMs to model human behavior in robotic planning.
Such human models are essential in enabling robots to anticipate human reactions and act
accordingly in socially appropriate ways. Traditional models, whether manually engineered or
data-driven, often lack generalizability or require vast amounts of task-specific data. The au-
thors explore the potential of using pre-trained LLMs, specifically text-davinci-003 and FLAN-
T5-XXL, as general-purpose task-level human behavior models. They evaluate these models
using three datasets: MANNERS-DB, which focuses on social appropriateness; Trust-Transfer,
which involves measuring the effectiveness of building and transferring trust; and SocialIQA,
which benchmarks commonsense reasoning in social situations. Their findings indicate that
text-davinci-003 performs comparably to existing baselines across all datasets, while FLAN-
T5-XXL performs well overall but underperforms on trust-related tasks. The models showed
particular weaknesses in reasoning about spatial and numerical information, especially in sce-
narios that involved personal space or geometric relationships. The researchers also found that
model performance improved with the use of chain-of-thought prompting and adjustments to
how input information was structured. To validate their findings, the authors integrated the
LLM-based models into an existing robot planner, previously reliant on custom-built models,
and observed similar levels of performance. This suggests that LLMs are viable as task-level
human models in HRI, although some limitations remain. Tasks involving nuanced spatial
reasoning or requiring precision still present challenges that may necessitate the use of comple-
mentary models or further advances in LLM architecture.

2.1.6 Other use-cases of LLMs in robotics

In addition to real-world deployment, LLMs are proving valuable in simulation-based robot
training. Training robots in physical environments is often time-consuming and resource-
intensive, while simulations can expedite the process and reduce costs. However, manually
constructing realistic simulation environments remains a major bottleneck. To address this,
Wang et al. [16] developed RoboGen, a fully automated system for simulation environment gen-
eration and robot training using a propose-generate-learn cycle, powered primarily by LLMs.
RoboGen begins by either selecting a robot-object pair (e.g., a robot arm and a microwave)
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or a few example tasks from a predefined task list. Based on this, an LLM generates novel
learning tasks, such as placing an object inside the microwave. The LLM then compiles a list of
necessary scene assets, which are retrieved from existing databases or generated via a pipeline
that includes text-to-image synthesis and image-to-3D model conversion. A vision-language
model (VLM) is employed to verify the validity of these generated assets. Once the assets are
verified, the LLM scales and positions them to construct a coherent 3D simulation environment.
Following scene creation, the LLM decomposes the overall task into sub-tasks and assigns suit-
able learning algorithms to each one, choosing among methods such as reinforcement learning,
gradient-based trajectory optimization, and motion planning using action primitives. When
reinforcement learning is selected, the LLM also designs reward functions tailored to each sub-
task. These sub-tasks are learned in sequence, with the results from each stage feeding into
the next. This architecture enables the system to be fully autonomous, while remaining easily
upgradable as newer LLMs and VLMs become available. The performance of RoboGen was
evaluated on several metrics, including task diversity, scene validity, the quality of training
supervision, and the success of learned skills. The system outperformed baseline methods in
generating diverse tasks and achieved high success rates in both training and skill execution.
Incorporating VLMs into the asset verification process significantly improved the accuracy and
realism of the generated scenes. In total, RoboGen successfully created and learned over 100
diverse robotic skills, encompassing manipulation, locomotion, and interactions with soft-body
objects.

2.2 Frameworks for Assisting LLMs in Robotic Control

To enhance the performance of LLMs in robotic applications, large frameworks are often devel-
oped to provide structured guidance and ensure that the LLM outputs are more consistently
accurate and executable. One such framework is “SayCan,” introduced by Ahn et al. [1]. This
system aims to ground the outputs of an LLM so that they become more contextually appropri-
ate for robotic control scenarios. A known limitation of LLMs is their difficulty in decomposing
high-level tasks into actionable sub-tasks without explicit knowledge of the robot’s capabili-
ties or the current state of the environment. SayCan addresses this issue by integrating the
generative reasoning of LLMs with learned value functions that represent the robot’s opera-
tional context. When given a high-level instruction, the LLM is tasked with proposing a list of
likely useful skills to achieve the goal. Concurrently, the value function evaluates the feasibil-
ity of executing each of these skills based on the current environmental and robot states. By
combining the LLM’s semantic probabilities with the value function’s feasibility estimates, the
system identifies the most appropriate skill for the robot to execute. SayCan was evaluated in
both real and simulated environments, which were an office kitchen and a replica office kitchen
setup, across a total of 101 distinct tasks. It successfully created an executable plan in 84%
of the test cases and successfully executed the plan in 74% of the cases. Moreover, the system
demonstrated the ability to handle long-horizon tasks, successfully planning and executing an
eight-step sequence. This study underscores the importance of providing LLMs with sufficient
contextual information to support reliable task planning and execution. While their approach
relies on a dedicated framework to provide this context, the work in this thesis takes a dif-
ferent path by ensuring that the prompt includes detailed explanations of all possible actions
and environmental events, as well as continuously updating the robot’s precise location to the
LLM.

Another example is the Language Model Predictive Control (LMPC) framework [2] that im-
proves the learnability of an LLM. The framework enables LLMs to remember not only the
immediate conversational context, but also prior user interactions and feedback. This extended
memory makes it easier to teach a model how to correctly complete robot control tasks based
on natural language feedback from users. Instead of treating each interaction as a short-term
prompt that is forgotten once it falls out of the model’s context window, LMPC treats the
process of teaching robots as a kind of sequential decision-making problem. Specifically, they
formulate the interaction between humans and robots as a partially observable Markov decision
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process, where the human’s language serves as observations and the robot’s generated code
serves as actions. This allows them to train the LLM to predict future interactions based on
past ones. To implement this, they fine-tune the LLM to model human-robot conversations,
training it to simulate likely continuations of the interaction and choose actions that would
reduce the number of user corrections needed. They introduce two variants: LMPC-Rollouts,
which predicts full sequences of future interactions using a planning-based approach at inference
time, and LMPC-Skip, which is trained to directly jump to the final successful action. Experi-
ments on 78 robot tasks across five different embodiments, both simulated and real, show that
LMPC significantly improves performance compared to the base model. It reduces the number
of required corrections, improves success rates on unseen tasks, and generalizes better across
different robots and APIs. LMPC-Rollouts, in particular, proves more robust in multi-turn
teaching scenarios, while LMPC-Skip performs better when the model is likely to get things
right on the first try.

Yu et al. [3] utilize LLMs to define reward parameters that can be optimized to accomplish a
variety of robotic tasks. Given a user instruction, the LLM translates it into a reward function,
which acts as a high-level specification of the robot’s goal. These rewards are then passed to a
motion controller, based on MuJoCo’s model predictive control (MPC), which optimizes them
in real time to generate the appropriate low-level actions for the robot. This setup allows for an
interactive loop where users can give high-level corrections in natural language, and the robot
can adjust its behavior accordingly. The key insight is that, rather than relying on predefined
control primitives or hand-written policies, the system leverages the LLM’s ability to define
meaningful reward structures that can guide complex behavior. The approach is evaluated
on 17 tasks using a simulated quadruped and dexterous manipulator, achieving a 90% task
completion success rate. It substantially outperforms a baseline method that relied on code-
generated control primitives, which succeeded on only 50% of tasks. They also show sim-to-real
transfer on a real robot arm, where the system can successfully generate grasping and pushing
behaviors, demonstrating that learning through reward translation can enable more flexible and
generalizable robot skills.

2.3 Navigation

The use of LLMs in robot navigation presents an exciting research area and forms the central
focus of this thesis. Leveraging LLMs can enable practical, nearly fully automated navigation
solutions that are designed to be usable even by users without expertise in complex algorithms
or specialized robotic tools. Navigation tasks can be divided into two broad categories: known
environments and unknown environments. Each category presents distinct advantages and
challenges.

2.3.1 Navigating in known environments

Latif [17] investigates navigation within a fully mapped environment. They propose an LLM-
based path planning algorithm that utilizes states and actions. The algorithm iteratively com-
putes the best next action based on the current state to move toward the goal state, updating
the current state accordingly until the goal is reached. This method was implemented using
ChatGPT-3.5-turbo and benchmarked against two established path planning algorithms: A*
and Rapidly Exploring Random Tree (RRT). The comparison focused on processing time, path
correctness, and path length. The LLM-based planner demonstrated the fastest processing
time, being approximately twice as fast as RRT and seven times faster than A*. In terms of
path correctness, A* achieved the highest accuracy, with the LLM and RRT following closely
behind. Regarding path length, A* produced the shortest paths, with the LLM planner achiev-
ing nearly equivalent lengths, while RRT generated the longest paths. These results illustrate
the potential of LLMs for efficient path planning in fully known environments, where the layout
and obstacles are perfectly mapped. In this thesis, the majority of tests will be conducted in
known environments, although obstacles may be either known or unknown.
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2.3.2 Navigating in unknown environments

While navigation in known environments is a practical use case and generally yields more reliable
results, mapping such environments can be time-consuming, costly, and sometimes unfeasible,
especially when environments change dynamically. Consequently, exploring how LLMs perform
in unknown or partially unknown environments is equally important and constitutes a significant
topic of this thesis.

On-The-Fly Mapping. Some approaches perform mapping of the immediate surroundings
at each movement step but do not retain memory of previously mapped areas. Dorbala et
al. [18] introduce Language-Guided Exploration (LGX), a novel algorithm for Language-Driven
Zero-Shot Object Goal Navigation (L-ZSON), in which an AI agent must navigate toward
an object without prior knowledge of the environment. Their system employs LLMs to make
sequential navigation decisions and uses a pre-trained Vision-Language Model (VLM) for object
recognition. The robot performs a 360-degree scan, capturing RGB images and depth data to
generate a cost map of the current area. These images are processed by either an object
detection or an image captioning model, whose outputs feed into an LLM that decides the
robot’s next move. This cycle repeats until the target object is located. The authors investigate
different prompt engineering strategies to optimize performance, experimenting with varying
narrative perspectives (first person, third person, assistant description), ordering of information
within prompts, and natural language scene captions. Evaluation on the RoboTHOR simulated
environment shows a 27% navigation success rate improvement over the previous state-of-the-art
OWL-ViT CLIP on Wheels (CoW) baseline [19]. Real-world tests on a TurtleBot 2 achieved a
54.2% navigation success rate, demonstrating the complementary strengths of VLMs and LLMs
in navigation. Among the prompting strategies, natural language captions performed the worst,
likely due to the restricted action space they imply, as they only describe the four cardinal
directions as possible paths. No significant differences were found between different narrative
perspectives; however, information within the prompt affected outcomes, as LLMs often forgot
instructions that appeared earlier in the prompt after being followed by large amounts of other
data. This aligns with observations in this thesis, where adding concise reminders at the end
of prompts has proven beneficial.

Another relevant example is Zhang et al. [20], who develop NaVid, a navigation system relying
solely on monocular RGB input to address Sim2Real transfer gaps commonly encountered with
other sensors. Built on the video-based VLM LLaMA-VID, NaVid accepts human instructions
alongside continuous RGB frames and outputs movement commands executed sequentially, with
updated frames provided after each move until reaching the destination. Trained on extensive
navigation data combined with large-scale web data, NaVid achieves state-of-the-art results
on the VLN-CE benchmark, offering continuous low-level control within photorealistic indoor
scenes, and surpasses baseline methods in multiple real-world tests.

Biggie et al. [21] propose an approach called Navigation with Context (NavCon), which intro-
duces an intermediate layer translating the LLM’s knowledge into executable API instructions.
This layer mitigates the LLM’s inherent lack of real-world awareness and unpredictability in
output by parsing inputs into grounded commands. NavCon takes as input an RGB image of the
robot’s surroundings, a 3D volumetric environmental map, and a natural language command.
Their experiments reveal that concatenating the RGB images into a single input improves per-
formance compared to separate, labeled images. GPT-3.5 is used to generate Python code
that extracts and processes all input information, converting it into a target 3D location for
navigation. A graph-based planner then computes the path to the destination. Tested on a
Boston Dynamics Spot equipped with a custom sensor suite, the system attains 90% accuracy
in controlled experiments involving 50 different command types, including generic, specific, re-
lational, and contextual inputs, and 70% accuracy in expansive outdoor environments. The
framework demonstrates the capacity to identify and navigate to specific objects in relevant
scenarios, such as locating a fire extinguisher to respond to an emergency.
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Reusable Maps. Some approaches focus on creating reusable maps of the environment to
accelerate navigation in areas the robot has previously explored. Huang et al. [22] address nav-
igation in unknown environments by introducing spatial visual-language maps, called VLMaps.
These maps are generated using standard Vision-Language Models (VLMs) combined with 3D
reconstruction libraries. VLMaps integrate RGB images, depth data, and semantically rich fea-
tures detected by the VLM to construct a 3D representation of the environment. Unlike purely
geometric maps, VLMaps include object names derived from the VLM’s detection capabilities,
providing a meaningful semantic layer. Leveraging these maps, an LLM can interpret naviga-
tion instructions referencing known objects, such as “move between the table and the couch,”
and decompose them into actionable subgoals. The LLM further translates these subgoals into
executable Python code. Huang et al. evaluate their system in both simulated and real-world
environments. In simulation, their approach consistently outperforms three baseline methods,
including CLIP on Wheels. In real-world tests, it successfully completes 10 out of 20 navigation
tasks.

All the systems described so far rely heavily on cameras to capture environmental data, which
are then analyzed by VLMs to provide rich contextual input for the LLM. This significantly
eases the reasoning burden on the LLM. To specifically assess the reasoning capabilities of
LLMs in navigation, my thesis deliberately excludes the use of VLMs or camera input. Instead,
navigation will be conducted within a mapped area where only the robot’s coordinates, and
optionally obstacle locations, are provided. This design restricts the LLM’s input to location
data alone, compelling it to independently infer and reason about the environment.

2.3.3 Human-Robot Interaction in navigation tasks

Effective navigation depends not only on the robot’s movement capabilities but also on the
interaction method with human operators and others sharing the space. The operator must
be able to communicate with the robot clearly and intuitively, enabling efficient task comple-
tion while minimizing misunderstandings or errors. Additionally, robots operating in shared
environments must detect and respond appropriately to bystanders, whether by recalculating
paths, signaling intentions, or requesting assistance.

Interaction With the Operator. Macdonald et al. [23] introduce the Context-observant
LLM-Enabled Autonomous Robots (CLEAR) platform, which provides LLM-enabled robot
autonomy through a modular microservice architecture connected via REST APIs. The system
is designed around several interconnected components that each serve a distinct role. One
part interprets user commands given in natural language, while another processes visual data
from the robot’s camera. A central module handles the more computationally intensive tasks,
and a user interface, accessible via browser or voice, allows people to interact with the robot.
Coordinating all of this is a central controller that keeps track of objects, generates natural
language summaries, and ensures smooth communication between components. CLEAR relies
on pre-trained language models, enabling even non-expert users to control robots effectively
through simple language commands. Tested on a simulated quadcopter and a Boston Dynamics
Spot, GPT-4 outperformed GPT-3.5 and LLaMA2, achieving an overall task execution success
rate of 97%.

Nwankwo et al. [24] explore natural language interaction with autonomous robots, addressing
the complexity and steep learning curve of traditional robot programming languages. While
prior work on natural language interfaces often involves costly and time-consuming reinforce-
ment learning training, they propose a system integrating LLMs and VLMs to bypass this
requirement. Users communicate with the robot through a chat-based GUI linked to an LLM
that interprets the commands. Simultaneously, a VLM processes camera and sensor data. Their
robot execution node generates movement commands based on this multimodal input. Tested
in both simulated and real-world settings, the system achieves 99.13% command recognition
accuracy and 97.96% success in command execution.
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Interaction with People in the Environment. Luo et al. [25] propose a group-based so-
cial navigation framework (GSON) that enables mobile robots to perceive and leverage social
relationships among pedestrians to navigate more naturally in shared spaces. Their robot uses
RGB cameras and a 2D lidar sensor to scan the environment and detect humans, assigning
unique identifiers for subsequent processing. A Large Multimodal Model (LMM), which is a
combination of an LLM and a VLM, then analyzes these detections to identify social groups,
such as queues or clusters. The robot’s planner incorporates this social grouping information to
navigate around groups appropriately; for instance, it avoids passing between people standing in
a queue. The authors evaluated GSON across 50 simulated scenarios using four different LMMs:
GPT-4v, GPT-4o, Gemini 1.5pro, and Claude 3.5-sonnet. All models achieved over 50% accu-
racy in correctly grouping people, with GPT-4o performing best at 73%. Subsequent testing
with GPT-4o in both simulation and real-world environments showed that GSON outperforms
existing baseline methods. A real-world long-range navigation trial further validated the ap-
proach, demonstrating the robot’s ability to traverse a complex path while passing multiple
groups without disturbing them, highlighting its effectiveness in diverse social settings.

In contrast, Zu et al. [26] developed LIM2N, a system that allows users to guide the robot
through a combination of natural language descriptions and user-generated sketches of the
environment. User input, provided as text or voice, is processed by an LLM to extract tasks
and environmental details. Meanwhile, an intelligent sensing model transforms 2D laser scans
into a visual map, on which users can add annotations, such as drawing navigation paths
or marking endpoints, to refine instructions. Pedestrian detection is performed via cameras.
This multimodal information feeds into a reinforcement learning controller that manages three
possible tasks: point-to-point navigation, following humans, and guiding humans. LIM2N was
evaluated in both simulated and real-world scenarios and compared against manual remote
control. It outperformed manual control when navigating fixed obstacle environments but
showed slightly reduced performance in dynamic settings with pedestrians or unpredictable
obstacles. User satisfaction surveys indicated a generally positive experience with LIM2N,
with only participants familiar and comfortable with manual control favoring the traditional
approach.

2.4 Planning

When navigating over longer distances, an LLM must remember the overall goal, as well as
obstacles and other relevant environmental details encountered along the way. However, with
extended interactions, LLMs may forget rules or instructions given early in the conversation.
Continuously passing all relevant information in every prompt is not always practical, since
increasing token count leads to higher computational costs and slower response times.

The problem of LLMs overlooking rules in complex, long-horizon task planning is investigated
by Zhang et al. [28]. These tasks usually involve more rules to ensure that the generated plan can
be executed correctly, requiring the LLM to retain extensive information and perform complex
reasoning. However, due to limited memory and reasoning capacity, LLMs sometimes fail to
follow all rules. Their framework, FLTRNN, addresses this by using an LLM to break a task into
smaller, manageable subtasks, and then using recurrent neural networks (RNNs) to solve each
subtask. RNNs, being designed for sequential data processing such as text, naturally integrate
memory management, which reduces the burden on the LLM. The LLM then aggregates all
subtask plans to form the overall task plan. To reduce memory load further, they introduce a
long-term and short-term memory separation: long-term memory stores basic task information
relevant throughout, while short-term memory contains details specific to each subtask. This
way, the LLM only needs to remember information about the current subtask rather than
the entire task at once. To improve reasoning, the system uses two strategies: Chain-of-
Thought prompting, where the LLM is encouraged to explicitly reason through its answers,
and a memory graph, a storage structure where the LLM can offload intermediate reasoning
information so it doesn’t need to keep everything in active memory. The system was tested in a
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virtual household environment with a robot capable of manipulating objects. Across all metrics
and datasets, FLTRNN consistently outperformed other methods and demonstrated the lowest
standard deviation, indicating robustness and stability. They also note that for shorter tasks,
a pure planning approach without explicit reasoning performs better.

Rana et al. [29] propose a solution to the same problem by grounding plans generated by
LLMs in larger, complex environments using 3D scene graphs (3DSGs). These are hierarchical
multigraphs that represent an environment at multiple levels. For example, the highest level
might be the floor of a building, with rooms underneath, and objects inside the rooms at the
lowest level. The 3DSGs they use add an extra level for assets, which are immovable objects,
placed between rooms and objects. Their approach assumes pre-constructed 3DSGs of the
environment and consists of two phases. First is the semantic search phase, where the LLM
searches through the 3DSG to find the relevant subgraph based on the instruction. This reduces
the amount of information the LLM needs to consider, mitigating memory overload and token
limit issues. The second phase is iterative re-planning: the LLM generates a plan by selecting
nodes from the subgraph to visit, and a path planner such as Dijkstra generates paths between
these nodes. The plan is iteratively verified by a scene graph simulator that checks feasibility
within the subgraph, allowing corrections if needed. They tested the semantic search phase
comparing GPT-3.5 and GPT-4; GPT-3.5 frequently failed while GPT-4 succeeded, illustrating
the improved reasoning capabilities of newer models. The full system was tested in a real-world
office floor environment spanning 36 rooms and containing 150 assets. The results show the
robot can successfully navigate and interact with objects, outperforming baselines due to the
iterative re-planning.

Wake et al. [27] propose a method to translate natural-language instructions into executable
robot actions using ChatGPT. They design customizable prompts containing six key pieces of
information, including the instruction and textual environmental context. Importantly, they
found ChatGPT performs more robustly when information is provided separately across a con-
versation, rather than all at once. Based on these prompts, ChatGPT outputs a sequence
of user-defined robot actions with explanations in JSON format, while also reasoning about
the environment and estimating post-operation states to support subsequent planning. This
essentially lets ChatGPT “reason in its output,” removing the need to provide updated envi-
ronmental info on every input. To reduce incorrect instructions, the system incorporates user
feedback. When tested on a simulated robot arm, the system initially achieved a 36% success
rate in creating an executable plan without feedback. Analysis of failures revealed two main
issues: incorrect verb selection due to ambiguous instructions, and omission of necessary steps
because ChatGPT struggled with task granularity. After renaming some possible instructions
and providing more examples for granularity, performance improved. With multiple rounds of
feedback, ChatGPT generated successful action sequences in all scenarios.

In this thesis, these approaches are less applicable as only short-horizon tasks are performed.
Additionally, the simpler environment means less information needs to be remembered. Chal-
lenges with LLMs forgetting rules or goals have been addressed by adding short reminders at
the end of prompts. However, LLMs still struggle to recall obstacles or paths they have already
visited, and this issue will be explored further in later chapters.

2.5 Prompt Engineering

To interact effectively with LLMs or VLMs, one must carefully craft prompts, which are the
instructions or queries given to the model. The exact phrasing and structure of these prompts
can dramatically influence the quality and relevance of the model’s output. Consequently,
prompt engineering has evolved into a specialized discipline focused on designing prompts that
maximize model performance on specific tasks. White et al. [30] provide a comprehensive
catalog of prompt patterns intended to enhance prompt engineering with ChatGPT. Analogous
to software development, prompt engineering can be viewed as a form of programming, which
makes it suitable for documentation and reuse through standardized patterns. They propose
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16 distinct prompting strategies, grouped into 6 categories. Below, I discuss the patterns most
relevant to my thesis:

• Meta Language Creation Pattern: This involves creating a custom “language” or
symbolic format to communicate specific information to the LLM. In my thesis, this
pattern is used to define the format of coordinate data that the LLM receives and returns.
By explicitly setting this format, the LLM reliably interprets the coordinates and generates
appropriate navigation moves. However, care must be taken to avoid ambiguities in the
custom language, as these can degrade performance.

• Persona Pattern: Here, the LLM is assigned a persona or role to guide the style and
content of its output. For instance, the LLM is instructed to act as a robot operator
controlling a robot capable of a defined set of movements. This helps the model tailor its
responses to the expected context and vocabulary.

• Template Pattern: Some tasks require the LLM’s output to follow a strict format. This
pattern involves providing explicit templates or examples to the LLM to constrain its re-
sponses. In this thesis, the LLM must output navigation moves in a specific, easy-to-parse
format, which is achieved by demonstrating possible moves and instructing the model to
delimit the moves between particular symbols. However, overly restrictive templates can
harm output creativity and quality, so it is important to balance constraints with allowing
the LLM some freedom. For example, placing strict format requirements only at the end
of the response.

• Infinite Generation Pattern: This pattern enables ongoing conversations without re-
inputting the initial instructions every time. It achieves this by giving the LLM a template
for how the interaction should proceed. In this thesis, the LLM is prompted to generate
one move per turn and then wait for a location update before proceeding, allowing the
dialogue to continue indefinitely while maintaining context.

• Reflection Pattern: The LLM is prompted to explain the reasoning behind its answers.
This not only aids user understanding and validation but often enhances output quality
by encouraging the model to “think through” its responses explicitly.

They also emphasize the rapid evolution of LLM capabilities, which can render existing prompt
patterns obsolete and create demand for novel prompting strategies. Complementing this, Mar-
vin et al. [31] underscore the critical role of prompt engineering in unlocking the full potential
of LLMs. They discuss several optimization techniques relevant to my thesis:

• Few-shot Prompting: Including a few examples of the desired task within the prompt
helps the LLM better grasp the task requirements and improves response accuracy, con-
trasting with zero-shot prompting where only an explanation is provided.

• Chain-of-Thought Prompting: When reasoning is important, the LLM is encouraged
to output its step-by-step thought process alongside the answer, which enhances perfor-
mance and interpretability.

• Knowledge Generation Prompting: The LLM is tasked with generating new knowl-
edge based on given information. For example, when navigating an unknown environment,
the LLM might be asked to recognize and remember obstacles based on previous moves
and responses.

• Contextual Prompting: This involves passing additional context in the prompt to
improve decision-making. For instance, providing a list of known obstacle locations helps
the LLM plan paths that avoid them.

• Dynamic Prompting: The prompt is iteratively updated based on previous model
outputs. If the LLM repeatedly makes a particular mistake, this error can be explicitly
added to the prompt to guide future responses toward correctness.
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Chapter 3

Initial Feasibility Testing

LLMs are primarily designed and optimized for language-based tasks such as answering ques-
tions, giving advice, solving problems, assisting with coding, and generating text. However,
navigation and spatial planning require structured reasoning about the physical world, which
remains a significant challenge for LLMs. These tasks involve a type of reasoning that is funda-
mentally different from linguistic processing, and LLMs often struggle with the complexities of
spatial understanding. To address these limitations, existing research typically uses supportive
frameworks around LLMs to enhance their spatial capabilities. These frameworks either sup-
port the LLMs by assisting with spatial reasoning or offload that component entirely to other
systems, achieving promising results. Nevertheless, as LLMs continue to evolve and improve
across various domains, it is becoming increasingly plausible that they may eventually handle
spatial reasoning tasks independently. Before evaluating their performance in complex naviga-
tion tasks, it is essential to conduct feasibility studies to determine whether LLMs are capable
of solving simpler spatial reasoning problems. These preliminary tests not only provide an
overview of each model’s abilities but also offer insight into the specific failure points in more
advanced tasks. They help identify the limitations of current models and guide future work in
refining test cases and selecting appropriate support mechanisms.

3.1 Testing Setup

The feasibility tests were conducted using the web-based interfaces of ChatGPT (by OpenAI),
Gemini (by Google DeepMind), and DeepSeek (by DeepSeek-Vision). For ChatGPT, the Ope-
nAI Developer Playground was used, which requires paid access and allows users to interact
directly with various model versions. Prompts were entered manually, and the responses were
evaluated qualitatively based on correctness, reasoning, and consistency. The models used in
this study were GPT-4o, Gemini-2.0-Flash, and DeepSeek-V3. Although GPT-4o was accessed
via the OpenAI Developer Playground, it was also available for free through the web interface,
as were the other two models. However, this free access comes with certain usage limitations.
Additionally, an evaluation was carried out using DeepSeek-R1 to explore its potential perfor-
mance. These models represent the current state-of-the-art in publicly accessible large language
models. While they are primarily designed for natural language understanding and generation,
they also demonstrate increasingly strong reasoning capabilities. Access to the APIs of both
ChatGPT and Gemini also influenced their selection for this study. DeepSeek was included due
to its emerging reputation for strong reasoning performance.

3.1.1 Environment

To help the LLMs understand both the nature of the tasks and the structure of the environ-
ment they are navigating, a clear and intuitive setup was essential. A chessboard-style grid,
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Figure 3.1: Overview of the robot’s movement environment and capabilities.

illustrated in Figure 3.1, was chosen as the representation of the environment due to its clarity
and simplicity. The chessboard offers a limited number of discrete, labeled squares, each of
which can be individually referenced and reasoned about. This makes it well-suited for as-
sessing spatial understanding while reducing ambiguity. The restricted number of locations
minimizes environmental complexity, limiting possible paths. It also tests whether the LLMs
respect spatial constraints. Movement on a chessboard can be easily described in horizontal,
vertical, or diagonal terms, unlike real-world navigation, where any direction between 0° and
360° is possible. This constraint simplifies reasoning about direction while still requiring the
models to understand and plan movement.

3.1.2 Robot and Moves

With the environment defined, the next step is to introduce an entity that can move across the
board, along with the set of possible moves it can execute. This entity serves as the abstract
representation of a navigational agent. While chess pieces such as pawns or queens can move
across a board in specific patterns, this study instead uses a robot as the moving entity, given
the thesis’ focus on robot navigation. The exact identity of the entity is less critical than the
movement capabilities it embodies, which must generalize to real-world robotic systems. Most
navigational robots, including the TurtleBot3 used in this thesis, can perform basic movements
such as moving forward and backward and turning to face a new direction. To navigate toward
a target square on the board, the robot must first orient itself in the correct direction and then
move forward until it reaches the destination. Functionally, this results in movement capabilities
similar to those of a king in chess: one square in any direction, as shown in Figure 3.1. However,
unlike a chess piece, the robot must explicitly turn to face its intended direction of movement
before proceeding forward. This added constraint more accurately reflects the operational
limitations of physical robots.

3.1.3 Obstacles

Obstacles are included in the environment to introduce additional complexity and test the
models’ ability to reason around constraints. Obstacles occupy entire squares and render them
inaccessible from all directions. A square containing an obstacle cannot be moved onto or
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traversed, regardless of the direction from which it is approached. If the robot attempts to
move forward into a square occupied by an obstacle, it will remain in its current position.
Attempting to “jump” over an obstacle by issuing multiple forward movements is similarly
invalid; the robot will still not change location. This models physical constraints in the real
world, where robots cannot pass through or leap over solid barriers.

3.2 Test Scenarios and Results

To thoroughly assess the capabilities of large language models (LLMs) in navigation tasks,
three distinct test scenarios were designed. Each scenario targets different aspects of spatial
reasoning and planning:

• Single-step movement execution: Evaluates whether the model can correctly under-
stand and execute individual movement commands.

• Multi-step pathfinding: Assesses the model’s ability to plan a complete route to the
target square within a single response.

• Interactive step-by-step navigation: Examines the model’s capacity to adapt its
strategy dynamically based on feedback after each movement, simulating real-time navi-
gation.

In each scenario, tests were conducted both in obstacle-free and obstacle-rich environments.
Moreover, in the interactive navigation scenario, obstacles were either known (explicitly pro-
vided within the prompt) or unknown (requiring the LLM to infer their presence). In the
case of unknown obstacles, the model was expected to detect barriers by attempting a forward
move; if the robot’s position remained unchanged following this action, it was interpreted as
the presence of an obstacle blocking the path. To enhance clarity and facilitate evaluation, the
LLMs were instructed to produce textual, ASCII-based representations of the chessboard en-
vironment. These visualizations included indicators for the robot’s current position and, when
applicable, obstacle locations. Examples of such ASCII chessboards, both with and without
obstacles, are presented in Figure 3.2. Multiple tests were conducted within each scenario,
and all tests in a scenario were executed within a single conversation with the LLMs. Unless
otherwise specified, references to DeepSeek refer to the DeepSeek-V3 model.

3.2.1 Limitations of Consistency in LLM Testing

Before discussing the tests and results, it is important to note that when an LLM fails in a
certain scenario, it does not imply the LLM is incapable of ever passing it. LLMs are inherently
non-deterministic. They generate outputs by sampling from a probability distribution over
possible tokens, which can result in different outputs even when the input remains unchanged.
While adjusting generation parameters such as temperature and top-p can reduce variability
and make the model more consistent, full determinism is generally not achievable in typical
usage. In theory, full determinism could be achieved when you have control over all influencing
factors, including decoding parameters, model version, tokenization, and prompt formatting.
However, in practice when using hosted APIs or web interfaces, external variables such as model
updates or hidden system prompts can lead to changes in behavior. This was observed during
testing, where the behavior of the LLMs would change on different days, likely due to internal
changes. Together with their tendency to hallucinate, this means that it might perfectly pass
the test when you repeat it. For this reason, it is essential to test each scenario multiple times
to be certain the LLM can pass it. The percentage of successful attempts is a key performance
metric, particularly in the context of robotic navigation, where consistent task completion is
essential for practical deployment. For these initial feasibility tests, each scenario was only run
once, as the goal was not to measure the precise accuracy of the LLMs but rather to gain a
general understanding of their capabilities.
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Figure 3.2: ASCII chessboard representations generated by different LLMs, where the
robot is denoted by “P”. (a–c) Boards without obstacles: (a) ChatGPT, (b) Gemini, and
(c) DeepSeek. (d–f) Boards with obstacles: (d) ChatGPT using “X”, (e) Gemini using
“X”, and (f) DeepSeek using “#” to represent obstacles.

3.2.2 Task Prompt

At the beginning of each test, the LLMs were presented with a prompt outlining the task. This
prompt included a description of the environment, conceptualized as a chessboard, along with
an instruction to render the board in ASCII format and to place the robot at the bottom-left
corner. It also specified the scenario-specific objective, detailed the available movement options,
and instructed the LLM to redraw the board after each move. In the multi-step pathfinding and
step-by-step navigation scenarios, the prompt further included information about the potential
presence of obstacles, as well as the locations of any known ones. The task instructions followed
the persona prompting pattern as described in the related work (see Chapter 2). In the step-
by-step navigation scenario, the meta-language creation pattern was also employed to inform
the LLM about the format of the feedback provided after each action.

3.2.3 Single-Step Movement Execution

The first test evaluates whether LLMs can accurately execute spatial movement commands
based on user input. In this setup, the user functions as the navigator, providing instruc-
tions, while the LLMs are responsible for interpreting and executing them. This task primarily
tests spatial reasoning, short-term memory within a conversation, and adherence to explicit
instructions. At the start of each test, the LLMs are provided with the robot’s initial position,
orientation, and a specific movement command. For instance, if the robot is at “a1” and facing
upward and instructed to move forward, the correct response would be “a2,” the square directly
in front. If an obstacle is present at the target square (e.g., “a2”), and the robot is instructed
to move forward from “a1,” the LLM must recognize the obstruction and respond with “a1,”
indicating that the move could not be completed. In this test, all obstacles were predefined and
explicitly stated in the prompt. Since the LLMs were not responsible for navigation, they were
not required to detect unknown obstacles themselves.

Results Without Obstacles. In obstacle-free scenarios, all tested LLMs consistently fol-
lowed movement instructions correctly. They were able to track the robot’s position and orien-
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tation and provide accurate responses regarding its final location after a command. However, a
common issue was observed with the visual board representations included in their responses.
While the textual response indicated the correct resulting square (e.g., “a3” after two forward
moves from “a1”), the ASCII board often showed the robot at an incorrect position. This dis-
crepancy suggests that although the LLMs could logically process movement instructions and
update position correctly, they struggled to maintain consistency in visual spatial representa-
tions.

Result With Obstacles. When obstacles were introduced, the results were more varied.
ChatGPT initially produced incorrect outputs by attempting to move the robot over or onto
obstacles, suggesting a misunderstanding of the obstacle constraints. After receiving clarifying
feedback, it adjusted its behavior and began stopping at obstacles as expected. Gemini correctly
recognized and avoided the first obstacle but failed to account for a second one later in the test
sequence. DeepSeek, in contrast, demonstrated accurate performance, handling all obstacle
constraints correctly. It also provided more detailed and logically structured reasoning in its
responses, indicating a more methodical approach. However, similar to the non-obstacle tests,
all models exhibited difficulties with accurately rendering the obstacles on the visual board.
This further reinforces the observation that while the models can process and reason about
spatial instructions, they are less reliable when tasked with maintaining a consistent spatial
visualization.

3.2.4 Multi-Step Pathfinding

In the second test, the roles were reversed: the LLMs now acted as navigators. This test
evaluates whether the models possess basic path planning and spatial reasoning capabilities.
The LLMs were given a start position, orientation, and destination, each defined as a specific
square on the chessboard (e.g., moving from “a1” facing up, to “c4”). Their task was to return
a set of movement commands that would lead the robot from the start to the destination.
For instance, a correct response could involve moving forward three times to reach “a4,” then
turning 90 degrees to the right, and moving forward twice to reach “c4.” If obstacles were
present, the LLMs were expected to plan a path around them. As this test is non-iterative, all
obstacles were known and provided in advance.

Results Without Obstacles. All models succeeded in reaching the destination without
obstacles, but their chosen paths varied in quality and efficiency. ChatGPT and Gemini both
followed a similar strategy: first resolving one axis (either horizontal or vertical), then the
other. For example, to move from “a1” to “c4,” they would first move right to “c1” and then
up to “c4.” This method is correct but not optimal, as diagonal movement would be more
efficient. DeepSeek initially followed a similar strategy but introduced an inefficient detour.
For a move from “a1” to “b4,” it first moved to “c1,” then up to “c4,” and finally corrected left
to reach “b4.” This route is functionally correct but unnecessarily long. When prompted to
provide optimal diagonal paths, all LLMs showed significant difficulties. ChatGPT, for example,
attempted to move diagonally from “a1” to “b4” by turning 45 degrees to face northeast and
moving forward three times, ending at “d4,” an overshoot in the horizontal direction. After
being corrected, it reverted to the earlier, non-optimal axis-by-axis strategy. On a subsequent
correction, it attempted a diagonal move again, but this time ended at “c3,” still an incorrect
square. Gemini performed worse in this scenario, failing to produce any correct path when
prompted for optimality. DeepSeek consistently returned correct but non-optimal paths, and
could not successfully implement diagonal movement when explicitly requested to do so.

Results With Obstacles. Obstacle navigation proved to be a significant challenge for all
LLMs, with none of them managing the reach the destination without breaking the rules and
traversing over obstacles. The test scenario included two staggered rows of five obstacles each:
one on the fourth row skewed rightward, and one on the sixth row skewed leftward, with an
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overlapping center. The task required moving from the bottom of the board to the top, forcing
the robot to navigate around both rows. ChatGPT successfully identified and avoided the
first row of obstacles but failed to avoid the second, proceeding onto an obstructed square
as if it were clear. DeepSeek showed similar behavior: it avoided the first obstacle row and
acknowledged the second but misjudged its position. It attempted to sidestep the obstacles
after reaching them but found itself on top of the blocked squares and became stuck. Gemini
exhibited particularly erratic behavior. After reaching the first obstacle, it entered a loop in
which it repeatedly alternated between two paths, both of which led into obstacles. This cycle
caused it to get stuck in an infinite loop, reaching the output limit and terminating.

DeepSeek-R1. Significant improvements were observed when using DeepSeek-R1. The model
successfully avoided both rows of obstacles and followed an optimal path to the destination.
Furthermore, its board representation was consistently accurate, with both obstacles and robot
positions correctly visualized. However, this came at a substantial cost in response time. Gen-
erating the initial board alone required approximately 60 seconds. Complex tasks, such as
navigating past obstacles or computing optimal routes, took five to six minutes to complete.
Additionally, the model outputted its full internal reasoning process, which in one case was
nearly 5000 words for a single task. Although DeepSeek-R1 delivered excellent navigation re-
sults, its impractical runtime made it unsuitable for further feasibility tests, particularly for
interactive tasks requiring multiple sequential moves. If each individual move took several min-
utes to process, completing even a simple multi-step navigation would become infeasible.

3.2.5 Interactive Step-By-Step Navigation

The final test builds upon the previous one but introduces interactivity by requiring the LLMs to
provide navigation instructions one step at a time. In this scenario, the models could only output
a single movement command per message. After each move, feedback was provided indicating
the resulting square. For example, if the model started at “a1” facing up and responded with
“forward,” the reply would be “a2.” Obstacles in this test could be either known or unknown.
This test assesses the LLMs’ ability to remember previous instructions, track their position and
orientation over time, and incorporate feedback dynamically. Interactive navigation is a more
realistic simulation of robotic control, as it allows error correction mid-process and is thus used
in later stages of this research.

Results Without Obstacles. Initial results mirrored those of the multi-step pathfinding
task. Both Gemini and DeepSeek initially failed to comply with the one-step-at-a-time format,
returning full navigation sequences instead. This was resolved through additional instruction
and examples. All three models ultimately reached the destination, but consistently followed
suboptimal paths. When asked to provide optimal routes, results diverged. Simple diagonal
paths (e.g., “a1” to “d4”) were executed correctly in most cases. However, slightly more complex
routes requiring mixed movement (e.g., “a1” to “b3,” which combines diagonal and vertical
movement) were generally mishandled. DeepSeek, for instance, correctly moved diagonally
from “a1” to ‘b2,” but then incorrectly assumed another diagonal move would result in “b3,’
a misunderstanding of movement direction. ChatGPT and Gemini also began correctly but
soon veered off course, missing the target and sometimes hallucinating moves or navigating
randomly.

Results With Obstacles. Obstacle handling in this interactive format posed difficulties ini-
tially. ChatGPT and Gemini both struggled to correctly incorporate obstacle rules, but showed
notable improvement after receiving targeted feedback. ChatGPT, for example, failed to rec-
ognize blocked squares at first but adapted once the movement rules were re-explained. Gemini
exhibited a similar issue, misclassifying known obstacles as unknown and misunderstanding
their behavior. This too was improved with further clarification. DeepSeek, by contrast,
demonstrated robust reasoning from the start. It proactively explored the environment by
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testing squares and analyzing the feedback to infer the obstacle mechanics. When faced with
uncertainty, it would ask for the result of a move before assuming its success, effectively simu-
lating an exploratory learning process. As a result, DeepSeek was able to reach the destination
while successfully avoiding both known and unknown obstacles.

3.2.6 Conclusion

The results of the tests indicate that ChatGPT, Gemini, and DeepSeek possess a basic level
of spatial reasoning, enabling them to navigate simple environments. However, their perfor-
mance is often inconsistent. All models demonstrated proficiency in following explicit naviga-
tion instructions and remembering known obstacles when properly informed of task rules and
conditions. Multi-step path planning was feasible but became less reliable in the presence of
obstacles, while the LLMs remembered obstacle locations, they occasionally collided with them
or became stuck in repetitive loops. Additionally, the models frequently favored orthogonal
movement paths over optimal diagonal routes. DeepSeek-R1 showed significant improvements
in handling these challenges and correctly executed tasks involving obstacles and path optimiza-
tion. However, it incurred long response times, sometimes several minutes per move, rendering
it impractical for real-time navigation scenarios. Interactive step-by-step navigation, where
moves were executed one at a time with feedback, yielded better results than generating the
entire path at once. This approach allowed LLMs to incorporate feedback, crucial for detecting
and responding to unknown obstacles. Nonetheless, the models sometimes exhibited hallu-
cinations or erratic behavior when unexpected situations arose. Visual representation posed
a consistent challenge for all models except DeepSeek-R1. The positioning of the robot and
obstacles on ASCII boards frequently did not match the actual state, limiting the usefulness
of visual aids. Regarding response times, ChatGPT and Gemini were highly responsive, while
DeepSeek’s models were noticeably slower. DeepSeek-V3 offered improved speed compared to
R1 but remained slower than the other models. Gemini’s superior speed can be attributed to
the 2.0-Flash model’s design, which prioritizes faster response times at some cost to reasoning
performance.
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Chapter 4

Concept

Initial feasibility tests demonstrated that LLMs are capable of performing basic navigation
tasks. They could interpret and execute movement commands, and generate navigation in-
structions, either step-by-step or as complete sequences, when given a destination. However,
these early experiments also revealed limitations, particularly in handling obstacles and pro-
ducing consistent outputs. Based on these initial insights, a more structured evaluation was
conducted to rigorously test the models’ capabilities under controlled conditions and with re-
fined prompting strategies. The goal was to explore the performance boundaries of the LLMs
and assess their consistency and reliability when provided with well-crafted inputs. This was
approached through iterative prototyping and quantitative testing, which is discussed in Chap-
ter 6. Both simulated and real-world environments were used during the evaluation to ensure
practical relevance and controlled experimentation. This chapter outlines the system setup,
the input and output formats, the prompting and navigation strategies used, and the different
scenarios that are tested.

4.1 System Overview

This section provides an overview of the system that is used in this thesis. It describes the
key components of the setup, including the language models used, the interaction mechanism
between the user and the model, the hardware platform itself, and the characteristics of the
environment in which the robot operates. Together, these components form the basis for the
evaluation.

4.1.1 Interaction Method and Models

Text-based interaction with the LLMs was used throughout the evaluation. Users provided
input via the terminal, specifying the robot’s current location, destination, and, when neces-
sary, orientation. During the feasibility testing phase, ChatGPT, Gemini, and DeepSeek were
accessed via their respective web clients. For subsequent testing, however, API access was re-
quired to automate the process and improve efficiency. Therefore, ChatGPT and Gemini were
primarily used, as API access was available for both OpenAI and Google’s Gemini. That said,
Gemini imposes a daily and per-minute token limit, though these limits were broad enough
not to impact the evaluation. The specific models used were GPT-4o and Gemini-2.0-Flash,
as these were the most up-to-date models available via API at the beginning of the thesis. It
is possible that the models received updates during the course of the thesis, which may have
influenced results. Brief experimentation was also conducted with other models, specifically
Meta’s LLaMA3.1 and DeepSeek-R1. DeepSeek-R1 was selected due to its strong performance
during feasibility testing, while LLaMA was chosen for its popularity in related work. Since
these models do not have publicly available APIs, and LLaMA is not directly accessible in this
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Used Models, Parameters and Platform

Model Temperature Top-p Platform

GPT-o4 0.1 0.1 OpenAI API
Gemini-2.0-Flash 0.1 0.1 Gemini API
DeepSeek-R1 Default/0.1 Default OpenRouter/Ollama
Llama3.1 0.1 Default Ollama

Table 4.1: Overview of the language models used in the experiments, including their
temperature and top-p sampling values, as well as the platform through which each model
was accessed.

Figure 4.1: The TurtleBot3 Waffle Pi seen from different angles and with infrared
tracking markers (gray spheres) attached to it. From left to right: front view, right-side
view, rear view, and top view.

region, alternative access methods were used. These included the third-party API platform
OpenRouter and running the models locally using the Ollama framework. The implementation
details of these methods are discussed further in Chapter 5. Table 4.1 provides an overview of
the models used, including the temperature and top-p values, as well as the platforms through
which the models were accessed. The temperature and top-p, which influence the randomness
of LLM outputs, are described in detail in Chapter 5.

4.1.2 Robot Platform

The first step in the experimentation process was selecting a suitable robot platform, which
influenced the set of possible moves. The robot selected for this thesis is the “TurtleBot3
Waffle Pi1”, shown in Figure 4.1. The TurtleBot3 is compact and highly maneuverable. It
features two independently controlled wheels positioned near the front of the robot. This
configuration allows the robot to move forward and backward, as well as rotate in place by
driving the wheels in opposite directions. These movements are consistent with the moves used
in the earlier feasibility tests (see Chapter 3). The robot is powered by an 11.1V 1800mAh
rechargeable Li-Po battery. While the TurtleBot3 supports flexible movement, it is not highly
precise. Inaccuracies in execution can result from factors such as motor inconsistencies, wheel
slippage, and the limitations of the onboard motion controller. For example, small differences
in motor speed can cause the robot to drift slightly during straight-line motion. Additionally,
due to the wheels being offset from the robot’s center, rotating in place causes a minor shift
in the robot’s central position. A 3D simulation model of the TurtleBot3 was also used during
development. The simulated version mirrors the real robot’s movement capabilities, with one
notable exception: in simulation, the robot rotates precisely around its central axis, meaning
its coordinates remain unchanged during turns. This differs slightly from the physical robot’s
behavior but provides a useful approximation for testing control logic.

1https://www.turtlebot.com/
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Figure 4.2: The navigation environment setup: (a) a 2D Cartesian coordinate system
used for positioning, and (b) the mathematical orientation convention showing the four
quadrants.

4.1.3 Environment Setup

The next step was to define the environment in which the robot would navigate, including its
characteristics such as coordinate representation and obstacles. The chessboard-based setup
used during the feasibility tests (see Chapter 3) served as a useful starting point but was
ultimately too limited in terms of space and flexibility. Although the concept of an “infinite
chessboard”, meaning one with an unlimited number of squares, was considered, it still restricts
movement to a fixed grid and a limited set of directions. A more versatile alternative is to use
continuous coordinates. This approach provides a theoretically unlimited navigable area and
allows the robot to orient and move in any direction. A two-dimensional Cartesian coordinate
system (x,y) was selected for this purpose, as the robot does not move along the vertical (z-
axis) and the environment is assumed to be flat. A schematic of this coordinate system is
shown in Figure 4.2 (a). For representing orientation, degrees were chosen since they allow for
expressing all possible headings from 0° to 360°, and this format integrates easily with Unity’s
simulation environment. However, it is important to note that there are multiple conventions for
defining orientation, which can lead to inconsistencies. In Unity, 0° is aligned with the positive
y-axis, and positive rotations proceed in the clockwise direction. In contrast, the standard
mathematical convention defines 0° along the positive x-axis, with positive rotations occurring
counterclockwise. Both conventions were tested in the simulation environment, while only
the mathematical convention was used for the real-world experiments. The rationale behind
this decision will be discussed in Chapter 6. A visualization of the mathematical orientation
convention is provided in Figure 4.2 (b). Obstacles may also be present in the environment.
These obstacles are considered impassable by the robot and may be either known in advance
or unknown, depending on the specific experimental setup.

4.1.4 Tracking the Robot

Most experiments in this thesis were conducted in a Unity-based simulation. Unity offers
direct access to the position and orientation of objects, making robot tracking straightforward.
Some experiments were also performed in a Python-based simulation, which, while lacking a
visual component, offers similar access to positional and orientation data. In the real world,
however, tracking the TurtleBot3 requires additional hardware. All real-world experiments were
conducted in a room equipped with the “Qualisys” motion capture system. This camera-based
system uses infrared tracking to determine the precise location and orientation of objects with
attached reflective markers. When applied to the TurtleBot3, this setup provides real-time
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positional and orientation data, similar to what is available in simulation. Implementation
details for both the simulations and the Qualisys system are discussed in Chapter 5.

4.2 Input and Output

To carry out any navigation task, LLMs require structured input and must return output in a
usable format. In this thesis, the input includes the initial task prompt, details necessary to
initiate a navigation task (e.g., position, orientation, and goal), and updates about the robot’s
progress. Based on this input, the LLMs generate commands that are parsed and executed.
This section explains the design of the input-output framework.

4.2.1 Task Prompt

Crafting an effective task prompt is essential for optimizing the LLMs’ performance. The
prompt must clearly describe the task, the robot’s environment, possible actions, and rules,
while also addressing challenges identified during earlier experiments. It is structured in several
logical sections. First, a task and environment description outlines the robot’s role, the objective
of reaching a destination, and the layout of the environment, including the coordinate system
and orientation convention. This is followed by detailed instructions, which provide rules for
interpreting input and deducing orientation, along with specific guidance aimed at known LLM
limitations. If obstacle detection is relevant, the prompt includes a section on obstacle handling,
where the LLM is instructed to infer obstacles based on whether the robot’s position changes
after a forward move. If the displacement is smaller than expected or unchanged, an obstacle
is assumed. In some cases, the prompt also describes error handling strategies to account for
inaccuracies due to rounding or hardware limitations of the TurtleBot3. A section on output
formatting then specifies how responses should be structured, typically requesting step-by-step
instructions and waiting for feedback before continuing. Finally, a reminder reinforces the
core objective and key constraints, often updated based on observations from previous LLM
performance.

4.2.2 Input

After the task prompt, which remains fixed for each scenario, additional input is needed to
provide the LLMs with the current state of the robot and to ensure it can keep track of progress
throughout the navigation task. This input includes the robot’s current position, orientation,
and destination. Since the objective of this thesis is to delegate most of the task logic to
the LLMs, the input is designed to be minimal yet sufficient. Experiments were conducted in
two types of environments: a tracked environment, where the robot’s exact coordinates and
orientation are always known, and an unknown environment, where only the distance to the
destination is available.

In the tracked environment, the robot receives precise (x, y) coordinates for both its current
location and the destination. The orientation is either explicitly provided or left for the LLM
to infer, depending on the experimental setup. If the orientation is provided, the input is
phrased as: “You are at (x, y), move to (x’, y’). Orientation: θ”. If the orientation must be
inferred, the same message is sent without the orientation, and instructions for deducing it are
included in the task prompt. Additionally, if obstacles are present and known, their locations
are appended to the message in the format: “Obstacles: (x1, y1), (x2, y2), ...”. This allows the
LLM to incorporate environmental constraints into its planning and navigation decisions.” To
help the LLM keep track of its position during navigation, it is given feedback after each move.
If the robot moves forward or backward, the new position is sent to the LLM. Initially, the same
approach was used after turning, but since the robot’s position does not change during in-place
rotations in the simulation, this sometimes resulted in input that resembled an unsuccessful
movement. To avoid ambiguity in subsequent reasoning, the simulation was adjusted to send
a confirmation message like “Successfully turned” instead. In the real-world scenario, since
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the physical TurtleBot3’s position does change slightly after a turn, its new coordinates were
always provided, even after rotations. In the unknown environment setup, the robot receives
less precise input. Instead of exact coordinates, only the distance to the destination is given.
This form of abstraction was used to test the LLMs’ reasoning ability and adaptability when
dealing with uncertainty or limited feedback. In scenarios with obstacles, an additional strategy
was tested in which the LLM received not only the current position but the full path traversed so
far. This was intended to help the model remember previously visited locations, recognize when
it was looping, and improve its ability to backtrack after encountering blocked paths.

4.2.3 Output

To move the robot, the LLMs must generate commands that can be interpreted and executed
by the system. Throughout all experiments, the available commands were limited to forward,
backward, and turn, reflecting the capabilities of the TurtleBot3 platform. In scenarios where
the LLM needed to determine the orientation before navigating, it also had to output an
orientation value. Two different output styles were evaluated during testing. In the first
style, the LLMs were instructed to provide only the necessary value, which was either the
movement command or the orientation, without any additional explanation. This made parsing
the response straightforward and reduced the risk of misinterpretation. In the second style,
inspired by the reflection pattern and Chain-of-Thought (CoT) prompting method discussed in
the related work (see Chapter 2), the LLMs were encouraged to explain their reasoning. This
often resulted in richer, more detailed output that included the logic behind each decision. To
make parsing still possible in this format, the LLMs were asked to follow a specific convention:
orientation values were prefixed with “Orientation:” and movement commands were enclosed in
dollar signs, such as “$forward$” or “$turn 90$”. This structure allowed the system to extract
the necessary commands using simple regular expressions, while still benefiting from the LLMs’
intermediate reasoning.

4.3 Prompting and Navigation Strategies

Various prompting and navigation strategies were employed to evaluate which approaches
yielded the most reliable results. This section outlines the different prompting techniques used
to make the LLMs aware of the robot’s orientation, as well as the methods tested for executing
turns during navigation.

4.3.1 Orientation

Two approaches were evaluated for informing the LLMs of the orientation of the robot. The
first involves explicitly providing the orientation to the LLMs at the beginning of the task.
This method is straightforward in the simulation, where the orientation can easily be accessed
through code, but less practical in real-world scenarios, where obtaining the orientation may
require additional hardware or estimation. The second approach delegates this responsibility to
the LLMs by requiring them to deduce the orientation. This is achieved by moving the robot
forward once and comparing its new position to the original one. In addition to simplifying the
input required from the user, this method aligns with the overall goal of this thesis: minimizing
the supporting framework and maximizing the role of the LLMs. Overall, the LLMs were tested
using two different output strategies. In the first, they were instructed to return only the final
orientation value. In the second, they were asked to show their reasoning process step by step,
including the calculations used to determine the orientation.

4.3.2 Turning Methods

Multiple turning strategies were explored during experimentation, broadly categorized into
relative and absolute turning. In relative turning, the LLM specifies the angle the robot must
turn relative to its current orientation. For instance, if the robot is facing 90 degrees and is
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instructed to turn 90 degrees in the positive direction, it will end up at 180 degrees. This
approach is direct and requires the LLMs to keep track of the robot’s orientation themselves.
Three different variants of relative turning were explored:

• Directional commands with angles: The LLMs are instructed to specify turns using
terms like “left” or “right” along with a degree value (e.g., “Turn left 90 degrees”), where
“left” corresponds to a counter-clockwise turn and “right” to a clockwise one.

• Clockwise/counter-clockwise phrasing: Instead of using “left” or “right,” the LLMs
are instructed to use “clockwise” or “counter-clockwise” with the angle (e.g., “Turn
counter-clockwise 45 degrees”).

• Signed degree values: Turns are expressed using numeric values with positive or neg-
ative signs (e.g., “Turn 90 degrees” or “Turn -45 degrees”). The direction of the turn
depends on the used orientation convention.

In absolute turning, the robot is instructed to face a specific global orientation regardless of its
current direction. Since the physical robot executes only relative turns, this method requires
the control code to track the robot’s current orientation and compute the shortest relative turn
to reach the desired global direction. Two absolute strategies were explored:

• Numeric angles: The LLM specifies the target orientation as a global angle (e.g., “Face
90 degrees”).

• Named directions: The LLM uses direction labels instead of angles. These can include
compass directions (e.g., “North” or “Southwest”) or coordinate-based descriptors (e.g.,
“positive-x” or “negative-y”) that indicate movement along one or more axes. For di-
agonal directions, compound labels such as “positive-x positive-y” are used to indicate
combined movement. However, such naming conventions are only feasible when move-
ment is limited to a discrete set of standard directions (e.g., multiples of 45 degrees).
When arbitrary orientations are allowed, such as any angle between 0° and 360°, these
label-based methods become impractical, as there are no intuitive or standardized names
for all possible directions.

These various strategies were developed to explore how format and phrasing affect the LLM’s
ability to guide robot navigation, and to assess which forms of instruction align best with spatial
reasoning tasks.

4.4 Experimental Scenarios

Experimentation and testing were conducted across three distinct scenarios: grid-based move-
ment, free movement, and distance-based movement. Each scenario was designed to evaluate
different aspects of the LLMs’ reasoning capabilities. This section outlines the characteristics
of each scenario, including the specific rules, objectives, and whether the tests were performed
in simulation, the real world, or both.

4.4.1 Grid-Based Movement

Following the initial chessboard-based feasibility tests, a natural progression was to explore nav-
igation in a grid-based environment. In this setup, movement was restricted to whole-number
coordinates, meaning the robot could only move to locations where the grid lines illustrated
in Figure 4.2 (a) intersect. This approach is conceptually similar to the chessboard test but
offers a much larger area for navigation. Consequently, forward and backward movement was
always executed in unit steps, effectively locking the robot to the grid. While translational
movement adhered strictly to unit distances, turning was constrained to discrete increments
of 45 degrees. This meant the robot could only face and move in orthogonal (e.g., 0°, 90°,
180°, 270°) or diagonal (e.g., 45°, 135°, 225°, 315°) directions. For orthogonal directions, each
forward movement covered a distance of exactly 1 meter. In contrast, for diagonal orientations,
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the robot moved
√
2 meters forward in order to arrive at a new location with whole-number

coordinates. This value corresponds to the diagonal of a 1-by-1 meter square and was neces-
sary to preserve the grid structure. This grid-based movement setup offered a balance between
simplicity and meaningful experimentation, allowing for clear evaluation of the LLMs’ ability
to interpret orientation, plan paths, and issue correct commands. To determine orientation in
this context, the LLMs were instructed to move forward by one unit and infer their direction
from the resulting change in coordinates. All experiments within this scenario were conducted
in a simulated Unity environment. The physical TurtleBot3 was not used due to its limited
ability to consistently perform precise movements required for a strict grid layout.

4.4.2 Free Movement

While grid-based movement offers a controlled framework for navigation testing, it lacks realism
due to the rigidity of its constraints. Therefore, additional experiments were conducted in a
more flexible scenario: free movement. In this scenario, the robot was allowed to traverse the
coordinate system continuously. Forward and backward movement could be executed over any
distance with centimeter-level precision, and turns were permitted to any angle between 0 and
360 degrees. Although this setup increases the complexity of individual computations, it often
reduces the total number of actions required to reach a destination. In contrast to the grid-based
scenario, where movement directions are constrained, optimal navigation here typically consists
of orienting directly toward the destination and moving the precise distance. More extensive
sequences of actions were only required when either the orientation or distance was incorrectly
estimated, or when obstacles were introduced. To determine the initial orientation, the robot
was instructed to move forward by 20 centimeters, which was a compromise between minimal
movement and sufficient displacement to calculate direction accurately. A smaller move may
not provide adequate coordinate change for reliable orientation estimation. Experiments were
conducted in both simulated and real-world environments.

4.4.3 Distance-Based Movement

In contrast to previous environments where precise coordinates were available via motion cap-
ture systems, distance-based navigation offers a simpler alternative that avoids the need for
global localization. To evaluate whether LLMs could reason under such sparse input, a sim-
plified Python-based simulation was created in which the robot received only the Euclidean
distance to the goal, no coordinate or orientation data were provided. Grid-based movement
was used to simplify the task and reduce the number of possible directions, with steps of 1
meter and turns in multiples of 45 degrees. Only relative turning was possible, since absolute
orientation could not be determined without coordinate data. Obstacles were excluded from
these tests due to the already limited information available and the challenges they posed in
more informative scenarios. The baseline strategy under these conditions is to iteratively move
forward and monitor whether the distance to the destination decreases. A naive algorithm
would check all directions repeatedly, but a more intelligent agent could use spatial reasoning
to infer general directionality, which could reduce the amount of moves needed to reach the
destination. For instance, if a forward move decreases the distance, it can be inferred that the
opposite directions are unlikely to be optimal. Therefore, the goal is to see if the LLMs possess
this kind of spatial reasoning. This approach was not extended to real-world testing due to
unsatisfactory results in the simulation. Nonetheless, it served as an interesting conceptual
baseline for reasoning under minimal input conditions.
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Chapter 5

Implementation

This chapter will go further into detail on all the systems and software that were used to perform
the experimenting and testing. It will include how the communication with the LLMs happened,
the configuration of the models, how data is passed between the LLMs and the robot, how the
simulation is built and how the TurtleBot3 is tracked and controlled. All software components,
excluding those executed directly on the TurtleBot3, were run on an MSI laptop equipped with
an AMD Ryzen 7 8845HS processor, integrated Radeon 780M graphics, and a dedicated Nvidia
GeForce RTX 4070 Laptop GPU. The system has 16 GB of RAM and operates on Windows
11.

5.1 Model Parameters

Several model parameters can be adjusted to influence the output of large language models
(LLMs), including temperature, top-p and top-k. The most used ones are temperature and
top-p, commonly referred to as nucleus sampling. These are also the most widely available
across LLM platforms and APIs.

Temperature. The temperature parameter controls the degree of randomness in the model’s
output. LLMs select from multiple candidate tokens to output, based on probability. More
likely words will have a higher probability and less likely words will have a lower probability.
The temperature changes the probability of these words. With a lower temperature, the gap in
probability between the most and least likely words is increased. Consequently, tokens with the
highest likelihood are selected more frequently, resulting in more deterministic and predictable
outputs from the LLM. With a higher temperature, the gap in probability is decreased, meaning
less likely words also have a higher chance of getting chosen. This increases generative diversity
but may lead to less coherent or contextually appropriate outputs. temperature can usually
have a value between 0 and 2.

Top-p. In contrast, top-p determines the amount of words that are considered for the output.
It does this by choosing the smallest set of words whose cumulative probability mass exceeds
p. A higher top-p means more possible words are considered, making the text more diverse. A
lower top-p means less considered words and more deterministic and repetitive answers. Top-p
can have a value between 0 and 1.

For a robot navigation task, the optimal values of these parameters are dependent of the specific
situation, but overall the LLM should provide predictable and deterministic output. This is due
to the presence of strict formatting constraints that the LLMs must adhere to, and excessive
generative variability may compromise these requirements. Moreover, navigation tasks often
involve a single optimal path, and taking any other route is inefficient. For obstacles, there is
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maybe a bit more creativity required to find a good solution. However, an obstacle can also
be avoided in only 1 or more optimal ways, hence, deterministic output remains preferable.
Therefore, this suggests that maintaining both parameters at low values to make the responses
nearly completely deterministic. However, a problem with this is that an incorrect response
would also be repeated every time in this scenario. Therefore, in this implementation, both
temperature and top-p are set to 0.1, which increases determinism while retaining a small
degree of variability to mitigate error repetition. For example, when both parameters are set
to low values, the output is typically concise and adheres strictly to the required format, such
as “Forward 3” or “Turn 90”. In contrast, with higher values for temperature and top-p, the
model may produce more verbose and descriptive outputs, such as “Move forward 3 meters” or
“Turn 90 degrees to the left”, which may violate format constraints and reduce consistency in
command interpretation. Additionally, with lower parameter values, the model is more likely
to consistently follow the same path for identical inputs, which is advantageous in scenarios
where predictable and repeatable behavior is required, such as robotic navigation.

5.2 Communication with LLMs

In this section the technical details of the communication with the LLMs is explained. This
includes the communication with ChatGPT, Gemini and other models. The APIs or services
to connect to the models will be mentioned, along with the structure of the code that is used
and where the models are running.

5.2.1 ChatGPT

As mentioned in Chapter 4, APIs are used to communicate with LLMs. These APIs enable
fully automated communication, thereby maximizing efficiency in reducing the robot’s time to
reach its destination. Access to the OpenAI API 1 is available for interaction with ChatGPT.
Additionally, this gives access to the OpenAI Developer Platform, which also includes access
to the Assistants API. This API allows users to create a personalized “Assistant” via the
web interface and configure various parameters. These include system instructions, the model,
files, functions, response format and model parameters, such as temperature and top-p. This
approach facilitates the creation of a task-specific assistant, offering a more streamlined process
than the standard API. The task prompt is specified in the system instructions field, with the
temperature and top-p parameters set to 0.1 and the selected model being GPT-4o. The API
is accessed using Python and the OpenAI library, which offers code to connect to the API with
the API key, retrieve the assistant created in the web interface, create a conversation thread,
add messages to the thread and retrieve the responses. The procedure begins by establishing a
connection to the API with the API key. Subsequently, the assistant is retrieved via its ID and
a conversation thread is created. To transmit a message, one is added to the thread with the
“user” role and the thread is run with the correct assistant. Upon completion of the run, the
thread’s message list is queried, and the most recent response is retrieved. The code for this
can be found in the documentation of the OpenAI API.

5.2.2 Gemini

For Gemini, the API is freely available from Google 2. However, no web interface is available
for customization, necessitating configuration via code. As with ChatGPT, interaction was
implemented using Python code, specifically using the “genai” library developed by Google.
With this library, the API can be accessed using an API key, a chat can be created with a
specific model and a configuration that includes system instructions and model parameters can
be passed. Messages can also be added to the chat, and responses retrieved accordingly. The
free API has a rate limit of 1500 requests per day and 15 requests per minute. To begin,

1https://openai.com/api/
2https://ai.google.dev/
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a connection to the large language model (LLM) is established using an API key. A chat
session is then created using a specific model and configuration; in this case, the model used is
Gemini-2.0-Flash. The task prompt is stored in a .txt file, read into the program, and passed
in the configuration alongside the model parameters. The temperature and top-p are set to 0.1.
Initiating a conversation is comparatively simpler than the OpenAI API, as the send message()

function automatically returns the LLM’s response. However, the response remains an object,
from which the textual content must be extracted. The Gemini documentation provides code
snippets for all these tasks.

5.2.3 Other Models

Two other models are used: DeepSeek-R1 and Llama3.1. These do not have free APIs avail-
able from the developers and subsequently need other methods to access them, such as using
OpenRouter or running them locally.

OpenRouter. The first method is via OpenRouter 3, an online platform providing both paid
and free API access to a variety of AI models. The service has providers that either resell API
access they bought from official providers or provide access to models they run locally. The
platform supports a wide range of models, including free versions, which may include distilled
models or model ensembles. For example, they have a distilled version of DeepSeek-R1 which
converts the original model into a more compact and computationally efficient architecture.
Model distillation involves creating a smaller, more efficient version of a large language model
and transferring the knowledge of the main model to the smaller one. A potential limitation of
using OpenRouter is increased latency from certain providers, particularly those offering free
access. In this implementation, the DeepSeek-R1 model was utilized. To access OpenRouter
models in code, the OpenAI library in Python is used. OpenRouter provides code examples for
this on the web page. While the API connection follows a similar process, message handling
differs in this context. For this, a list of messages and corresponding sender roles must be
maintained, typically designated as “user” for human inputs and “assistant” for model outputs.
This list is passed to the LLM each time and a response is returned, after which the response
is appended to the list. The response is an object and the message is accessed from the object.
This approach enables the simulation of a complete conversational exchange. The task prompt
is now read from a .txt file, as with the Gemini implementation, and is included as an initial
message at the start of the conversation. The temperature and top-p can be added to each
request.

Locally. The second method is running the models locally. This is achieved using Ollama 4,
a free software tool that provides access to a broad range of LLMs to download and run locally,
including custom models, such as distilled variants. Most models are available in multiple
versions resulting in variations in model size and performance. This makes it feasible to run
models on less powerful hardware, though potentially with reduced performance. On Windows
systems, the user must first download and install the Ollama software, which is available via the
official website and integrates Ollama into the command-line interface. Through command-line
instructions, users can subsequently download specific models, run them, define custom models
and upload them to a registry. To add customizations to the models, custom models can be
constructed from existing ones using a Modelfile that contains necessary information such as the
base model, system instructions and model parameters. In this implementation, custom models
were created of both DeepSeek-R1 and Llama3.1, with the task prompt as system instructions
and the temperature set to 0.1. The DeepSeek model has 7 billion parameters and is 4.7GB
in size. The Llama one has 8 billion parameters and is 4.9GB in size. They have a note on
their Github page saying that at least 8GB of ram is needed for 7 billion parameter models,
at least 16GB for 13 billion and at least 32GB for 33 billion. The development system used

3https://openrouter.ai/
4https://ollama.com/
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contains 16GB of RAM, though it concurrently runs other software. Accordingly, models in
the 7–8 billion parameter range were selected. The models can be run in the command line
itself or may alternatively be accessed through an API. This can be done in Python with either
the OpenAI library or Ollama’s own library. In this implementation the Ollama library is
used, which allows messages to be sent to a specific model and the response to be retrieved.
Conversational interaction follows the same procedure as in the OpenRouter implementation,
which means the user needs to keep a list of all messages sent along with the sender. Unlike
other APIs, no explicit connection initialization is required. The chat() function is called with
the model and message list as parameters. This function returns the response as an object from
which the message can be extracted.

5.3 Simulation

To simulate and evaluate robot navigation with LLM control, a virtual environment, a movable
robot model, and a communication interface with the LLMs are required. This section out-
lines the design of the simulation in Unity, including the environment setup, robot movement
mechanics, and obstacle handling.

5.3.1 Environment and Scripts

The simulation environment was developed using Unity 5, specifically version 6000.0.26f1. The
environment is a model of a hotel room from a publicly available package in the Unity Asset
Store 6. A preconfigured room model from the package was selected and modified by removing
furniture to increase the available movement area. This configuration is illustrated in Figure 5.1
(a). The model was selected due to its relatively large navigable area and its enclosed structure,
which realistically simulates an indoor room environment. Its rectangular geometry allows for
uniform movement possibilities along multiple directions. Two main C# modules are used in
the implementation: one for the movement of the robot, and one for the socket communication.
The robot movement module handles the movement of the robot and has functions to move
the robot forward, backward, make it turn smoothly and request the coordinates of the robot.
The socket module handles the connection with the Python code that connects to the LLM.
The module receives commands and invokes the corresponding functions in the robot movement
module. Upon completion of the executed movement, the socket module creates a response and
sends the response back to the Python code. The response includes either the robot’s updated
coordinates or a confirmation of the executed command.

5.3.2 Robot Model and Moves

For the robot, a 3D representation of the TurtleBot3 was implemented, which is shown in
Figure 5.1 (c). Moving the robot forward or backward is achieved by computing a three di-
mensional vector that represents the destination with the following formula: “destination =
currentPosition+ currentOrientation ∗ distance”, and moving the robot to that destination.
The current position is queried from the “RigidBody” of the model with rigidBody.position,
which returns a three dimensional vector. The current orientation is queried from the “Trans-
form” of the model with transform.forward, which similarly returns a three dimensional
vector. Lastly, the distance is provided in the parameters and is a float value. This approach
ensures linear movement without deviation. Turning is done by calculating the target rota-
tion with “targetRotation = currentRotation ∗Quaternion.Euler(0, degrees, 0)”, and turning
to that rotation. In this case, all values are quaternions. The degrees in the second factor
of the multiplication are the relative degrees the robot needs to turn, represented as a float
value. For relative turning the input rotation values are applied directly, while for absolute
turning the shortest turn to the destination is calculated first. The calculation is done with the

5https://unity.com/
6https://assetstore.unity.com/packages/3d/props/interior/hotel-room-collection-214335



5.3. SIMULATION 59

DeltaAngle() function from the Mathf library. This means the robot model turns around its
center, allowing it to turn in place perfectly. The TurtleBot3 in real life is not able to perfectly
do this, as the wheels are positioned more forward on the robot. To make sure the movement
looks smooth and the robot does not spontaneously transition to the target position, linear
interpolation is used. This entails moving the robot in small increments at a constant rate until
the destination is reached. Linear interpolation is used for both moving in a straight line and
turning. Unity has built in functions Lerp() (straight movement) and Slerp() (turning) for
interpolation. In the grid-based movement scenario, a formula is used to test if the current
orientation is diagonal in order to know when to move forward

√
2 meters instead of 1 meter.

The formula is: “(currentRotation.eulerAngles.y/45)%2 != 0”, which checks if the current
orientation is an odd multiple of 45 degrees. In contrast, for the free movement, the length of
the movement is decided by the input. When using the Unity orientation convention, turning
is simply done with the input degrees. However, for the mathematical orientation convention,
the input degrees first have to be translated to Unity’s orientation convention. This consists of
multiplying the degrees by -1 for relative turning and subtracting them from 90 degrees for ab-
solute turning. The coordinates are rounded to a precision of 2 decimals for the free movement,
resulting in a positional precision of approximately one centimeter.

To simulate the real world situation, the errors of the TurtleBot3 where simulated. This was
done by adding a random error to the movement of the robot in Unity. The maximum size of
the error was calculated based on the size of the movement. For moving straight, the error has
a maximum size of 5% of the distance. For turning, the maximum size is the minimum of 10%
of the turning distance and 10 degrees. Based on this maximum size, a random value is chosen
between the negative and positive of the maximum size, meaning the robot can move too far or
not far enough. There was no error added to the path of the robot, ensuring that the trajectory
remained linear. This makes it not an exact replica of the real world situation, but sufficiently
accurate to make the LLMs run into the same issues.

5.3.3 Obstacles

For the obstacles, cylinders were used with a height of 1 meter and a diameter of 1 meter.
Cylindrical obstacles were chosen instead of rectangular ones to enable diagonal traversal past
them. For example, if the robot is at coordinate (0,0) and there is an obstacle at (0,1), the
robot should still be able to move diagonally to (1,1). With rectangular obstacles this could
result in collisions or graphical clipping through the edge of the obstacle, due to the width of the
robot’s model. Representative examples are shown in Figure 5.1 (b). This makes it so obstacles
on coordinates next to each other do not leave any space in between, to make it similar to an
actual wall. In the grid based movement scenario, a Physics.Raycast() was used to check if
the coordinate the robot was trying to move to contained an obstacle or not, which decided
whether the move would be executed or not. In contrast, in the free movement scenario, the
robot would move until there was a collision with an object, which was similarly checked with
a ray cast, but after each increment of the interpolation.

5.3.4 Python Simulation

A simplified simulation for the distance-based movement scenario was also implemented in
Python. This secondary implementation was developed to enable rapid prototyping and testing
of movement logic, particularly in contexts where full physics or visual feedback was unnecessary.
The Python simulation mirrors the functional behavior of the Unity environment but omits
graphical components, focusing instead on state updates and command processing. It maintains
the robot’s position and orientation and displays this information in the terminal after each
action. A starting position and a target destination can be predefined within the code. Based
on input commands (e.g., forward, backward, turn), the robot’s state is updated accordingly.
For turn commands, the specified angle is added to the current orientation. For forward and
backward movement, geometric calculations are required: the current orientation (in degrees) is
first converted to radians, and movement along the x- and y-axes is computed using the cosine
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Figure 5.1: Assets used in the Unity simulation: (a) the hotel room environment where
the robot operates, (b) three obstacles arranged in a row, and (c) the TurtleBot robot
model.

and sine functions, respectively. These values are then added to or subtracted from the robot’s
current position, depending on the direction of motion.

5.4 Real-World Setup

This section outlines the setup used for conducting the real life experiments. It describes
the TurtleBot3 platform and its software configuration, including how movement is controlled
using ROS. It also details the motion capture system used for tracking the robot’s position,
and explains how various components of the system communicate with each other.

5.4.1 TurtleBot3 Configuration and Control

The TurtleBot3 is equipped with a Raspberry Pi 3 running an Ubuntu Linux distro. It also
has Robot Operating System (ROS) 7 installed, which is a set of frameworks for robot software
development. ROS provides prebuilt packages for functionalities such as sensor integration,
robot control, navigation, and perception.Additionally, ROS decouples software from hardware,
allowing code developed for one robot to be reused on another with minimal modification. This
simplifies the process of writing code for the TurtleBot3 and also makes it reusable.

The TurtleBot is controlled through Python code by publishing Twist messages to a designated
topic within the Robot Operating System (ROS) framework. These Twist messages define the
robot’s motion by specifying linear and angular velocity vectors in three dimensions. The on-
board motion controller continuously listens to this topic and interprets the incoming messages
to execute movement commands. Listing 5.1 presents the Move() and Turn() functions used
to control the TurtleBot3. Linear motion, both forward and backward, is achieved by assigning
positive or negative values to the linear velocity component along the x-axis. Rotational move-
ment is executed by adjusting the angular velocity around the z-axis: a positive value induces
a left turn, while a negative value causes a right turn. This turning behavior is realized by
driving the wheels in opposite directions. To initiate movement, the appropriate velocity values

7https://www.ros.org/
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are set and the message is published to the topic. To stop the robot, all velocity components
are reset to zero and the message is republished. The speed for both moving in a straight line
and turning was set to half of the maximum value. This value was initially selected for speed
testing, but was retained for all experiments, as it was well-suited to the dimensions of the test
environment. Moving forward a specific distance was done by calculating the time to move
by dividing the distance by the speed. After starting the movement, the sleep() function
was executed for the calculated time, after which the movement was stopped. The TurtleBot3
does not consistently achieve the intended displacement due to wheel acceleration, slippage,
and motor inaccuracies. A scaling factor was added to the distance based on measurements
of the error to make the moves as accurate as possible. However, this error varies between
executions. Additionally, the error in the motors can cause speed differences in the wheels,
causing the TurtleBot3 to not move perfectly in a straight line. As a result, perfectly accurate
motion cannot be guaranteed.

1 compensation_factor_move = 1.05

2 def move(node , distance , forward ):

3 # set speed and calculate duration

4 if forward:

5 speed = WAFFLE_MAX_LIN_VEL / 2

6 else:

7 speed = -WAFFLE_MAX_LIN_VEL / 2

8 duration = (distance / speed) * compensation_factor_move

9 # Create and publish a Twist message (start moving)

10 twist = Twist()

11 twist.linear.x = speed

12 twist.angular.z = 0.0 # No rotation

13 node.pub.publish(twist)

14 time.sleep(duration) # Move for the calculated time

15 # Stop the robot

16 twist.linear.x = 0.0

17 node.pub.publish(twist)

18

19 compensation_factor_turn = 1.07

20 def turn(node , angle):

21 # set speed and calculate duration

22 speed = WAFFLE_MAX_ANG_VEL / 2

23 angle_radians = math.radians(angle)

24 time_required = (abs(angle_radians / speed))

25 time required *= compensation_factor_turn

26 # Create and publish a Twist message (start turning)

27 twist = Twist()

28 twist.angular.z = speed if angle > 0 else -speed # left or right

29 node.pub.publish(twist)

30 time.sleep(time_required) # Wait for turn completion

31 # Stop turning

32 twist.angular.z = 0.0

33 node.pub.publish(twist)

Listing 5.1: Python functions for controlling robot movement. The move() function
handles forward and backward motion, while the turn() function controls left and right
rotation.

The TurtleBot3 has to be initialized first before it can move, which consists of running ROS
and running the Python code. This is achieved by establishing SSH connections with the
TurtleBot3. To run ROS, the following command is executed in the terminal: “ros2 launch
turtlebot3 bringup robot.launch.py”. To run the Python code, the code first has to be down-
loaded to the TurtleBot3. This is done by setting up an SSH agent on the TurtleBot3 and
connecting a Github account to the agent. From there, the code can be pulled and can be run
from the terminal.
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Figure 5.2: Setup of the Qualisys motion capture system in the room: (a) Arqus A5
camera, (b) Miqus M3 camera, and (c–d) cameras mounted on scaffolding within the
environment.

5.4.2 Qualisys Motion Capture

The Qualisys motion capture system 8 was used to track the position of the TurtleBot. The
setup includes a total of 11 cameras: eight Miqus M3 cameras, which are Qualisys’ standard
model (Figure 5.2 (b)), and three Arqus A5 cameras, which are a more advanced model (Fig-
ure 5.2 (a)). These cameras are suspended from scaffolding surrounding the tracking area, as
shown in Figure 5.2 (c) and 5.2 (d). The system is configured and operated using the Qualisys
Track Manager (QTM) software, which enables calibration, recording, and real-time tracking.
Initially, the cameras are connected via Ethernet by joining the same local network. Cali-
bration is performed using a calibration wand that is moved throughout the environment to
align the camera system. Once calibrated, the TurtleBot3, equipped with reflective tracking
markers, is placed in the area. Within the QTM software, these markers are grouped to de-
fine a “rigid body” allowing the system to recognize and continuously track the TurtleBot as
a unified object. A comparison between the virtual scene in QTM and the physical setup is
shown in Figure 5.3. Position tracking requires only a single marker, as it provides sufficient
spatial data to determine coordinates. However, orientation tracking is more complex due to
the symmetric, non-directional nature of individual markers. A single marker provides only a
point in space, and two markers form a line, which offers limited orientation information that
depends on consistent marker identification. Reliable 3D orientation requires at least three
non-collinear markers arranged in a uniquely identifiable shape, such as an “L” or an irregular
triangle, ensuring that the configuration appears distinct from all possible viewing angles and
enabling re-identification after temporary occlusion. Although the TurtleBot is outfitted with
multiple markers for broader use cases, only position data is utilized in this implementation.
The orientation must be inferred by the language models themselves. The marker located at
the center of the TurtleBot is used for tracking, ensuring consistency with the virtual simulation
in Unity. Accessing the positional data in code is achieved using the Qualisys Track Manager
SDK for Python. This library provides functionality to connect to the tracking system, control
recordings, and continuously stream data packets that include marker coordinates and other
tracking information.

8https://www.qualisys.com/
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Figure 5.3: The TurtleBot3’s operating area in the real world and its representation
in Qualisys Track Manager: (a) the physical environment, and (b) the QTM interface
showing the TurtleBot3 at the bottom of the tracked space.

5.5 Communication Between LLMs and Robot

To enable communication between the LLMs and the robot, a connection must be established
between the Python code handling the LLM interaction and either the simulation or the physical
TurtleBot3. While Unity (used for the simulation) supports C# and can directly access LLM
APIs, it lacks native terminal input functionality. Implementing user input in Unity would
require the creation of a canvas-based input interface. To avoid this added complexity and
improve code reusability, a separate Python script running on the same laptop is used to
handle communication with the LLMs. Communication between the Python code and the
Unity simulation is achieved using TCP socket scripts. In this setup, the Unity C# code
initializes a TCP server that listens for incoming connections, while the Python script acts
as the TCP client. Commands generated by the LLM are sent from Python to Unity, where
the robot executes the corresponding action. After completion, Unity responds with either a
position update or a confirmation of a turn. A visual overview of the data flow in the simulation
is illustrated in Figure 5.4 (a).

For the real-world setup, the same Python script is used to interface with the LLMs. It also runs
on the laptop, as the TurtleBot3’s limited computational capabilities necessitate a lightweight
codebase on the robot itself. Moreover, the connection to the Qualisys motion capture sys-
tem requires an Ethernet interface, which the TurtleBot3 does not support, further justifying
that all LLM and tracking-related code should run on the laptop. In this configuration, the
TurtleBot3 runs only a basic TCP socket server and movement control code. The laptop runs
a corresponding socket client to send movement commands. Once the TurtleBot3 completes an
action, it responds with a “done” message. The laptop then queries the Qualisys system for
the updated position and forwards this information back to the LLM via the API. Figure 5.4
(b) gives a visual overview of the data flow in the real-world setup.



64 CHAPTER 5. IMPLEMENTATION

Figure 5.4: Overview of the data flow architecture in both simulation and real-world
implementations: (a) data flow within the simulation environment, and (b) data flow in
the physical system setup.



Chapter 6

Evaluation

This chapter provides an overview of all the evaluations conducted during this study, beginning
with insights from iterative prototyping. These initial exploratory tests helped identify key
challenges and informed the design of the final quantitative experiments. The chapter then
outlines the methodology of the quantitative tests, covering test design, evaluation metrics,
and measures taken to ensure consistency and fairness. Finally, the various test scenarios
are described alongside their corresponding results, offering a data-driven perspective on LLM
performance across diverse navigation tasks and conditions.

6.1 Exploratory Results

Before designing the quantitative tests, a series of exploratory experiments were conducted to
better understand the capabilities and limitations of LLMs in navigation tasks. Prompting
strategies, output formats, and scenario configurations were iteratively refined based on these
findings to ensure the evaluation would meaningfully capture model behavior under realistic
constraints.

6.1.1 Overview of Evaluated Models

In addition to ChatGPT and Gemini, experiments were conducted using DeepSeek and LLaMA
models. DeepSeek-R1 was evaluated both via OpenRouter and through local deployment, while
LLaMA3.1 was tested only locally due to the lack of freely available full-scale versions with suf-
ficient request limits on OpenRouter. Results from locally running both models were generally
poor, as they consistently failed to adhere to the required output format and exhibited highly
unpredictable behavior. This was likely caused by the use of smaller model variants, constrained
by the limited computational resources of the local testing setup. In contrast, DeepSeek-R1
accessed through OpenRouter showed more promising results; however, it exhibited significant
latency, requiring over ten minutes to complete simple tasks. In one more complex scenario,
the test was terminated after 45 minutes due to excessive runtime. Given this performance,
the current version of DeepSeek-R1 is not suitable for real-time robotic navigation applications,
primarily due to its slow response time. Therefore, further experimentation focused solely on
ChatGPT and Gemini.

6.1.2 Output Format

The output format was tested under two conditions: without reasoning, where LLMs pro-
vided only movement commands, and with reasoning, where they could freely think in their
responses. Without reasoning, performance was generally poor, meaning most tests failed. The
LLMs struggled particularly with moving downward in the coordinate system and when initially
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misaligned with the destination. Success was limited to very simple grid-based tasks. Addi-
tionally, they had difficulty with turning directions, often confusing left and right, and failed
to avoid obstacles entirely. Attempts using “clockwise” and “counter-clockwise” terminology
did not improve results, while signed degree values yielded slightly better outcomes. The best
performance without reasoning was observed using absolute turning, especially when directions
were named based on coordinate axes (e.g., “positive-x”), which aligned well with spatial rea-
soning about coordinate changes. In the distance-based movement scenario, the LLMs were
unable to reach the destination and repeatedly got stuck in loops trying the same directions.
However, when reasoning was permitted, the LLMs’ performance improved dramatically. These
results are discussed in the following sections.

6.1.3 Orientation

Initially, experiments used Unity’s orientation convention since the simulation ran in Unity,
eliminating the need for conversion. However, LLMs frequently made errors with turn directions
and degree values despite detailed explanations of the Unity system. Switching to the standard
mathematical orientation convention significantly reduced these errors, likely due to its more
widespread use and representation in the LLMs’ training data. LLMs demonstrated strong
proficiency in calculating the orientation of the robot, meaning and this approach was used
throughout most experiments.

A common error observed was the calculated orientation often being incorrect by exactly 180
degrees, due to how LLMs applied the arctangent calculation. The typical formula computes the
displacement vector (x, y) = (x2 − x1, y2 − y1), then calculates the angle as θ = arctan(y/x).
However, the basic arctangent function only returns angles correctly in the first and fourth
quadrants, requiring quadrant correction for vectors in the second or third quadrants. For
example, a move from (1, 0) to (0, 1) yields a displacement vector of (0−1, 1−0) = (−1, 1) and
and angle of arctan(1/−1) = −45 = 315 degrees, but must be corrected by adding 180 degrees
to get the true orientation of 135 degrees. The LLMs often omitted this correction, resulting in
systematic 180 degree errors. Adding an explicit reminder in the task prompt to consider the
quadrant when interpreting arctangent results significantly reduced this issue.

6.1.4 Turning Methods

With reasoning allowed, both relative and absolute turning methods yielded strong results.
Absolute turning was slightly more reliable, as LLMs occasionally lost track of their orientation
during extended movement sequences when using relative turning. Among the relative methods,
specifying signed degree values performed marginally better than using directional labels. For
absolute turning, performance was consistent across all naming conventions.

In the physical tests with TurtleBot3, movement inaccuracies accumulated over time, leading
to increasing deviation between expected and actual orientation. This affected both relative
and absolute turning methods, which eventually failed under these conditions. Importantly,
such errors were often a secondary effect of output hallucinations, which caused excessive and
unnecessary movement steps. In ideal conditions, only one or two correct steps were required
to reach the target.

6.1.5 Obstacles

Obstacles posed a major challenge in both grid-based and free-movement scenarios. LLMs were
only able to avoid a single obstacle directly in front of the robot; when multiple obstacles (e.g.,
walls) were introduced, they frequently got stuck in loops, retrying the same blocked paths
and often hallucinating. In some cases where execution was not forcibly terminated, Gemini
eventually stopped attempting the task and explicitly stated that it was unable to complete
it, often accompanied by an apology. Whether obstacles were known or unknown made little
difference, highlighting a lack of memory and backtracking capability. To address this, the
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full path history was included in the input, along with explicit instructions to avoid revisiting
previous locations. However, this strategy had no noticeable effect, as LLMs largely ignored
both the path and the instruction. As a result, the path history method was excluded from the
quantitative tests.

6.1.6 Distance-Based movement

While earlier sections addressed general challenges across scenarios, the distance-based move-
ment scenario exposed distinct error patterns that required targeted prompt modifications. A
recurring issue was inconsistent handling of direction changes. For instance, after turning right
and observing an increased distance, the LLM would often reverse the turn instead of exploring
further in the same direction. Afterwards, they would reverse the direction again, resulting in
loops. However, switching direction when the distance increased is not necessarily a problem
and can even be a good strategy, but staying consistent after a switch is crucial. Another fre-
quent error involved accepting equal distance readings as progress, which led to circling around
the goal without approaching it. To address this, instructions were added to the prompt di-
recting the model to backtrack and try a new direction when the distance remained unchanged.
While these changes reduced some errors, they did not fully resolve the underlying issues.

6.2 Methodology for Quantitative Tests

The primary LLMs used in this study are GPT-4o (ChatGPT) and Gemini-2.0-Flash. These
models were chosen for the majority of the experiments to ensure comparability across test
conditions. DeepSeek-R1 and LLaMA3.1 were excluded from the quantitative evaluation due
to poor performance of the locally run LLaMA and the excessively slow response times of
DeepSeek-R1 when accessed via OpenRouter. For all experiments, the temperature and top-p
parameters were set to 0.1 to reduce variability and promote consistent, deterministic outputs.
Additionally, both models were explicitly instructed, and encouraged, to use reasoning in their
responses, as previous findings showed this significantly improved performance. Each test was
conducted using both models in both simulated and real-world environments. To eliminate the
effect of memory or context accumulation, each individual test was run in a new conversation.
This ensured that both LLMs started from the same knowledge baseline for every task. Given
the known inconsistency of LLM behavior, all tests were repeated three times per model, with
the exception of the orientation-specific experiments. Performance was evaluated using two
main metrics: pass percentage and number of moves. Both the overall success rate and the
per-task pass rate were recorded to assess the models’ general capabilities as well as task-
specific consistency. In the free movement scenarios, the final distance to the destination was
also measured as an auxiliary performance metric. However, in real-world settings this value
is partly affected by hardware inaccuracies, meaning the LLMs do not have full control over
this. All experiments within a single scenario were conducted on the same day to reduce the
influence of time-based changes, such as LLM updates. Tests across different scenarios were
conducted on separate days, which may have introduced minor variability due to potential
model updates.

6.3 Scenarios and Results

Tests were conducted in a range of scenarios designed to evaluate different aspects of LLM-
guided robotic navigation. These scenarios mirrored those used in the exploratory phase of the
study and include: orientation estimation, grid-based movement, free movement, and distance-
based movement. For each scenario, multiple test cases were developed to evaluate model
performance across varied conditions. At the end of the chapter, there is a brief discussion on
the response times of both LLMs.
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6.3.1 Figuring Out the Orientation

The first series of tests evaluates the LLMs’ ability to compute the robot’s orientation based on
a given start and endpoint. This was tested using both grid-based and free movement setups.
Two variations of tests were conducted: one where the LLMs were instructed to write out
the full orientation formula and one where only the final orientation value was required. All
orientation tests were conducted in simulation, as the TurtleBot3 in the real world does not move
in perfectly straight lines, leading to unavoidable deviations in final orientation. Nonetheless,
free-movement tests in the real world still served to verify orientation accuracy by checking
whether the robot correctly reached the intended destination. In the grid-based scenario, tests
included both orthogonal and diagonal orientations, with and without obstacles. If an obstacle
was present, the LLM was expected to adjust its movement through relative turning, as absolute
turning was not feasible without knowledge of the robot’s orientation. If the robot had to turn,
the LLM was expected to report the new facing direction, not the original one. In the free-
movement scenario, both orthogonal and diagonal orientations were tested as well, though in
this case the diagonal values could be arbitrary rather than limited to multiples of 45 degrees.
Performance was measured as the percentage of correctly passed tests.

Grid Movement. Ten configurations were tested under grid-based movement where the full
orientation formula was included in the response. Six of these had no obstacles, and four
included an obstacle. Of the ten, seven were orthogonal cases and three were diagonal. Each
test was executed once. Both ChatGPT and Gemini achieved a 100% success rate in this
setting. A notable difference was observed in obstacle handling: ChatGPT consistently turned
45 degrees to the right, whereas Gemini opted for a 90-degree right turn.

In the version of the test where the LLMs only provided the orientation result (without showing
the formula), three configurations were used: two orthogonal and one diagonal. Each configu-
ration was repeated three times to evaluate consistency. Again, both models achieved a 100%
success rate across all tests. The only distinction was in how orientation was expressed: in
one case, ChatGPT returned 315 degrees while Gemini returned –45 degrees, which represent
the same orientation. Overall, omitting the formula did not negatively impact performance in
grid-based movement.

Free Movement. For free movement, ten unique setups were tested with the formula included
in the response. Two of these featured orthogonal orientations, while the remaining eight had
arbitrary angles. One setup included an obstacle. Each test was performed once. ChatGPT
achieved a 70% success rate. However, all failures stemmed from incorrect task execution rather
than computational errors. Specifically, ChatGPT would sometimes predict its location without
actually issuing a movement command, e.g., “If I move forward, I assume my location will be
(x,y) and therefore my orientation is x degrees.” This indicates a failure to follow instructions,
not a failure in orientation calculation. Additionally, one test failed due to improper output
formatting, although the orientation itself was correct and thus was still counted as a success.
Gemini achieved a 90% success rate, with fewer errors related to instruction-following. The
single failure involved reporting the robot’s initial orientation rather than the updated one
after obstacle avoidance. Both models showed minor discrepancies (1–2 degrees off) in a few
tests, likely due to rounding errors in trigonometric calculations.

When the formula was omitted, three diagonal setups were tested and repeated three times
each. ChatGPT correctly passed all iterations, with two of the cases showing a deviation of
about 2 degrees. Gemini correctly answered two out of the three test setups. In the third case,
where the correct orientation was 246 degrees, Gemini consistently answered 225 degrees, likely
rounding to the nearest 45-degree multiple. When this same test was immediately repeated
with the formula shown, Gemini provided the correct response, indicating the error was due to
estimation rather than reasoning failure.
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Conclusion. The results demonstrate that both ChatGPT and Gemini are perfectly capable
of accurately calculating robot orientation in both simple and complex conditions. Additionally,
both models were able to adjust orientation in response to obstacles. While presenting the full
formula slightly improves consistency, accurate results can still be obtained without it, especially
with grid-based movement. The only errors with the formula written out were failures to follow
the instructions. These failures may stem from factors such as instruction complexity, model
configuration, or recent changes in model behavior due to updates.

6.3.2 Grid-Based Movement

The grid-based movement scenario assesses the LLMs’ ability to navigate a simplified, struc-
tured environment. Tests were conducted both with and without obstacles, and each case
was repeated three times for consistency. Navigation was evaluated using both relative turn-
ing (positive/negative angle conventions) and absolute turning (using degree values), with the
same test cases applied to each method. In some scenarios, the robot was initially oriented
toward the destination, while in others, it began facing a different direction. Tests included
both orthogonal and diagonal initial orientations. The complexity of the cases varied: some
involved a direct path to the goal, while others required multiple turns. Notably, in every test,
the LLMs had to determine their orientation independently. As a result, the first move was
always executed in the direction the robot initially faced. Obstacle tests were limited to three
configurations, as the specific direction of obstacle approach was deemed irrelevant. These cases
tested different numbers of obstacles and included both known and unknown obstacle setups.
The performance metrics were the percentage of successfully passed test cases (i.e., reaching
the correct destination), consistency across repeated trials, and path length, as efficiency is also
critical in navigation. All tests were carried out in simulation.

Without Obstacles. Ten distinct test cases without obstacles were evaluated. Of these,
seven involved orthogonal starting orientations, and three involved diagonal ones. Three cases
had the robot already facing the destination, while the remaining seven required at least one
turn. In six cases, the destination could be reached in a single straight line; the other four
required directional changes.

Using relative turning, both ChatGPT and Gemini reached the destination in at least one of
the three attempts for each test case. Failures were rare: ChatGPT failed one attempt in
three separate test cases, while Gemini failed one attempt in two cases. All other attempts
across test cases were successful. These results can be seen in Table 6.1. ChatGPT’s failures
were exclusively due to output formatting errors. For example, some moves were not enclosed
within the required “$” delimiters, causing execution failures in the code. In contrast, Gemini’s
failures were due to logical errors. In one instance, Gemini hallucinated success by responding
with “Done” even though the robot had not yet reached the destination. Both LLMs followed
the most optimal path in the same four cases, those where the destination could be reached
via a direct line. In the remaining six cases, there was a mix of optimal and suboptimal paths.
ChatGPT often avoided diagonal movement in these situations, instead moving the x and y
distances separately. For instance, to go from (0,0) to (1,1), it would first move to (1,0) and
then to (1,1). Gemini occasionally made similar non-diagonal moves, but also exhibited more
severe inefficiencies, taking unnecessarily long detours, albeit still reaching the goal. Illustrative
examples of these behaviors are shown in Figure 6.1. Subfigures (a), (b), and (c) correspond to
one scenario, while (d), (e), and (f) belong to another. In the first scenario, the optimal path
is shown in (a). ChatGPT overshot the destination, then moved back down as shown in (b),
while Gemini traveled the x and y distances separately, shown in (c). In the second scenario,
the optimal path is shown in (d). ChatGPT again avoided diagonal movement as shown in
(e), and Gemini took a peculiar detour, first moving up-right and then down, illustrated in (f).
Additionally, Gemini occasionally began by turning in the wrong direction but corrected itself
in subsequent steps.

The results for absolute turning closely mirrored those of relative turning and are displayed in
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Figure 6.1: Traveled paths of the robot in two grid-based navigation test cases. The
x- and y-axes represent position coordinates, and each line shows a path taken by the
robot. The starting point is marked with a square, and the endpoint with a triangle.
(a) Optimal path in the first test case, (b) path with an overshot diagonal movement in
the first case, (c) non-diagonal path in the first case, (d) optimal path in the second test
case, (e) non-diagonal path in the second case, and (f) an irregular path in the second
case.
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Attempts passed (out of 3)

Relative turning Absolute turning

Test ChatGPT Gemini ChatGPT Gemini

1 3/3 3/3 3/3 3/3
2 3/3 3/3 3/3 3/3
3 3/3 3/3 3/3 3/3
4 3/3 2/3 3/3 2/3
5 3/3 3/3 3/3 3/3
6 2/3 3/3 3/3 3/3
7 3/3 2/3 3/3 3/3
8 3/3 3/3 2/3 2/3
9 2/3 3/3 3/3 3/3
10 2/3 3/3 3/3 3/3

Table 6.1: Number of tests passed (out of 3) by ChatGPT and Gemini across multiple
scenarios without obstacles in the grid-based movement task with both relative and
absolute turning.

Table 6.1. Both LLMs reached the destination at least once in every test case and successfully
completed all three attempts in nearly all scenarios. As with relative turning, ChatGPT’s errors
were mostly due to output formatting mistakes and its occasional failure to take diagonal
paths that would yield a more optimal route. Gemini exhibited similar behavior but often
compounded mistakes with incorrect initial turns, requiring it to later correct its path. A
particularly notable issue in the absolute turning tests was a repeated failure by both LLMs to
follow a critical output formatting instruction. They were explicitly instructed to first calculate
and output the robot’s orientation, wait for a confirmation, and only then proceed with the
movement. Despite these clear instructions, and even with an additional reminder at the end
of the prompt, both models frequently returned the orientation and the movement in a single
response. This oversight was not problematic in relative turning because the LLMs only needed
to internally track orientation. However, in absolute turning, this instruction is crucial: the
underlying code can use the separately returned orientation to compute the shortest rotation
in later moves. In simulation, this did not cause errors since Unity provides the orientation
directly. In a real-world deployment, however, this behavior could lead to execution failures,
as the current code setup depends on receiving orientation data in a distinct message. While
this limitation could be addressed by adapting the code to handle additional output formats,
maintaining consistency in the LLMs’ responses is essential, as it is not feasible to anticipate
and accommodate every possible variation. Interestingly, the prompt instructions were nearly
identical for both relative and absolute turning, only the part about turning was different,
making the inconsistency even more puzzling. This suggests that minor differences in model
interpretation or task framing can significantly affect instruction adherence.

With Obstacles. The obstacle navigation tests used three different configurations, visualized
in Figure 6.2. In configuration (a), a single obstacle was placed directly in front of the robot,
with the goal located behind it. Configuration (b) involved a row of three obstacles forming a
wall between the robot and its destination. Configuration (c) built on (b) by adding two more
obstacles above the existing row, creating a U-shaped arrangement that required the robot to
navigate around and enter the “U” to reach the target. Each of these tests was executed with
both known and unknown obstacle configurations, using only relative turning in all cases. In
the first obstacle test, both ChatGPT and Gemini successfully navigated around the obstacle in
both known and unknown scenarios. ChatGPT demonstrated higher consistency, completing all
three attempts without failure. Gemini failed two attempts by hallucinating, issuing arbitrary,
directionless movements. ChatGPT followed clean, predictable paths each time, although it
only used diagonal movement for the optimal route in one of the attempts. Gemini, meanwhile,
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Figure 6.2: Various obstacle configurations used in the simulation environment: (a) a
single obstacle, (b) three obstacles placed side by side, and (c) five obstacles arranged in
a “U” shape.

never used the optimal diagonal path and frequently introduced inefficient detours. In some
attempts, it even began by moving in the wrong direction and had to correct its course later.
The only functional difference between known and unknown obstacles was a single extra move
required to identify the obstacle in the unknown configuration. For the second and third obstacle
setups, neither LLM passed a single attempt. Both models exhibited the same flawed behavior:
after detecting an obstacle, they would turn (usually right), encounter a second obstacle, then
revert to the original path and repeat the process. This would either result in getting stuck
in a loop or hallucinations. This pattern persisted even in the known-obstacle configuration,
indicating that awareness of obstacle positions alone is insufficient for more complex reasoning
in constrained environments.

Conclusion. The results show that both LLMs can effectively navigate simplified, obstacle-
free environments. However, their path choices can vary between attempts, and they often
fail to consistently select the most efficient routes. ChatGPT generally outperformed Gemini,
with most of its failures attributed to instruction-following issues rather than logic errors.
Gemini, on the other hand, was more prone to hallucinations and frequently had to correct
itself. The inconsistent instruction adherence in the absolute turning tests, despite nearly
identical prompts to the relative turning tests, highlights how small prompt variations or context
differences can significantly impact LLM behavior. When it comes to obstacle handling, both
LLMs struggled beyond the most basic configuration. They reliably navigated around a single
obstacle, but any increased complexity, such as a wall or U-shaped barrier, led to repetitive,
looping behavior, even when obstacle positions were pre-defined. The only difference between
known and unknown obstacles was an extra move to locate the obstacle. This suggests that
reasoning about obstacles in a constrained grid and applying backtracking remains a challenging
task for current LLMs.

6.3.3 Free Movement

This scenario evaluates the LLMs in a more realistic setting, where movement is not restricted to
a discrete grid and small execution errors are possible. Tests were conducted both in simulation
and on the TurtleBot3 in the real world. In the simulation, movements were assumed to be
perfectly accurate, while in the real-world tests, physical inaccuracies from the TurtleBot3 were
taken into account. Unlike the grid-based scenario, fewer test cases were needed here, as the
optimal navigation strategy is straightforward: after determining its orientation, the robot must
rotate toward the target and move forward until it arrives. Both relative and absolute turning
were tested, with and without obstacles. Each test was repeated three times. In simulation, a
tolerance of a few centimeters was accepted due to rounding errors, while in real-world tests, the
goal was to get within 0.5 meters of the target due to higher execution noise. The performance
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Attempts passed (out of 3)

Relative turning Absolute turning

Test ChatGPT Gemini ChatGPT Gemini

1 3/3 3/3 3/3 3/3
2 2/3 1/3 2/3 3/3
3 3/3 3/3 3/3 3/3
4 2/3 3/3 3/3 2/3
5 3/3 3/3 3/3 3/3

Table 6.2: Number of tests passed (out of 3) by ChatGPT and Gemini across multiple
scenarios without obstacles in the free movement task with both relative and absolute
turning.

metrics included pass rate, consistency, and final distance to the destination.

Simulation. Five test cases were performed in the simulation. In two of them, the robot
started roughly aligned with the destination; in the remaining three, it was oriented differently,
including arbitrary angles. Table 6.2 shows the results. ChatGPT and Gemini both achieved
100% pass rates for both relative and absolute turning across these scenarios. However, not
each attempt was passed. ChatGPT had three failed attempts: one due to a hallucinated
forward-backward loop, and two where it stopped too far from the destination. Gemini also
failed three attempts, all due to orientation miscalculations. In these, the LLM misinterpreted
the orientation quadrant and was 180 degrees off, causing incorrect initial moves and follow-up
hallucinations. It was only able to recover from this error in one case. Most successful attempts
reached within 1–5 cm of the target. These minor deviations were accepted, as they result from
unavoidable rounding errors in trigonometric calculations. Notably, even in cases where the
robot was nearly aligned with the goal, both LLMs sometimes performed a minor corrective
turn (e.g., 3°) to improve alignment. ChatGPT occasionally exhibited odd behavior: in one
attempt, it approached the target in small incremental steps rather than a single straight move,
increasing execution time unnecessarily. In two other cases, it decomposed the navigation into
separate x and y movements, echoing its earlier behavior from the grid-based tests, despite
being in a free-movement context.

The three obstacle configurations from the grid-based tests were reused here (see Figure 6.2),
with separate evaluations for known and unknown obstacles. Only relative turning was used.
Performance dropped slightly compared to the grid-based scenario, primarily due to imprecision
in obstacle avoidance. Since movement was not confined to grid steps, the LLMs often moved
only half a meter sideways when encountering an obstacle. This was typically not enough to
avoid another collision with the same obstacle, requiring another corrective move. In some
cases, this was handled successfully; in others, the LLMs became confused and began issuing
hallucinated or aimless commands. ChatGPT passed five out of six attempts. The single
failure involved misidentifying a second obstacle after re-colliding with the first one, followed
by hallucinated movement. Gemini failed half of the attempts. Most failures were due to
hallucinations after a second obstacle collision, though in one case, the robot simply stopped
at the wrong destination. Even in successful cases, Gemini’s behavior was less efficient, often
turning in the wrong direction after passing an obstacle and then correcting itself. This was due
to an internal orientation error during relative turning. Since Gemini’s reasoning was correct
but it turned in the wrong direction, this issue would likely be resolved by using absolute
turning instead. As with grid-based movement, the two more complex obstacle scenarios (the
wall and U-shape) failed in every attempt. Both LLMs displayed the same behavior as before,
looping through the same paths, failing to try new routes, or hallucinating random navigation
steps. This indicates that the challenge posed by multi-step detours in constrained environments
remains unresolved in both models, regardless of movement freedom.
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Real World. Two test cases were performed in the real-world scenario using the TurtleBot3.
In one case, the robot was already oriented toward the destination, and in the other, it was
not. The results were similar for both relative and absolute turning. Both LLMs were able to
pass the tests, but ChatGPT showed greater consistency, with zero failed attempts. Gemini,
on the other hand, failed in a few ways. In one absolute turning attempt, it failed to follow the
instructions and instead applied relative turning. Furthermore, when using relative turning,
Gemini made the same mistake twice by failing to take the correct quadrant into account
when calculating the orientation, resulting in a 180-degree error. This led to the robot initially
turning in the wrong direction and moving away from the target. A notable difference in
behavior between the models appeared in the test where the TurtleBot3 started already aligned
with the destination. ChatGPT recognized that no rotation was necessary and moved straight
forward, whereas Gemini still performed a slight turn in each attempt to better align itself,
though this did not translate into better accuracy or a closer final position. Another interesting
observation was that, in the first test case, both LLMs often made small corrective movements
even when already within the required half-meter threshold from the destination. While this
behavior was not explicitly forbidden by the instructions, it introduced unnecessary movements
and reduced efficiency, especially when the robot was already close enough.

Conclusion. Free movement does not pose a significant challenge to either LLM. Both were
able to consistently reach the destination in simulation and real-world tests, even with small
inaccuracies in movement. However, as with previous scenarios, obstacles continued to be a
major challenge. Both LLMs were able to avoid a single obstacle in some cases, but they con-
sistently failed when faced with more complex obstacle arrangements. Whether the obstacles
were known or unknown had minimal effect on performance, aside from an additional move to
identify unknown ones. The most persistent issue across all scenarios was the LLMs’ failure to
fully adhere to instructions, which led to execution errors. Although relative and absolute turn-
ing performed similarly overall, some specific failures, such as Gemini’s missteps with turning
direction, could have been avoided with absolute turning.

6.3.4 Distance-Based Movement

The distance-based scenario tests whether the LLMs can navigate through an unknown en-
vironment using only the distance to the destination as feedback. The goal was not just to
verify if navigation is possible, but also to determine whether the LLMs could demonstrate
spatial reasoning that might allow them to outperform basic search or exploration algorithms.
These tests were conducted in a Python-based simulation that tracks the robot’s position and
calculates the Euclidean distance to the destination. Only relative turning was used in this
scenario, as the robot’s absolute orientation was not available. Two test cases were used, and
each was executed three times for both ChatGPT and Gemini. In the first test case, the robot
started directly next to the destination but was not oriented towards it. The starting position
was (1,1), the destination was at (2,1), and the robot’s initial orientation was 90 degrees, facing
upward. The destination was intentionally placed to the right because the LLMs tend to begin
turning to the left by default. This setup was meant to assess whether the models could quickly
discover the correct direction or if they would inefficiently rotate through all possibilities.

In this first test, both LLMs reached the destination in all attempts. ChatGPT failed to show
any efficient strategy in two of the attempts, trying nearly all directions in succession, suggesting
a lack of reasoning. The movement paths for these cases are illustrated in Figure 6.3 (a).
However, in the third attempt, ChatGPT performed slightly better and reached the destination
in fewer moves, as seen in Figure 6.3 (b). Despite the improvement, it still repeated one
previously attempted direction unnecessarily. After detecting that turning left from the original
orientation increased the distance, it correctly turned right but then re-tested the original
direction again, showing it did not fully rule out ineffective options. Gemini, on the other
hand, consistently reached the destination in fewer moves than ChatGPT and took the same
path across all three attempts. This is shown in Figure 6.3 (c). One slightly odd behavior was
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that Gemini never tested the initial orientation of the robot; it immediately rotated to a new
direction instead of verifying the one it started in. Nonetheless, its efficiency in discovering the
destination stood out.

The second test was a bit more complicated. The robot started at (1,1) with an initial orienta-
tion of 135 degrees, facing diagonally to the top left, and the destination was located at (3,4).
Because the destination could not be reached in a straight line from the start, this case tested
whether the LLMs could form a general understanding of the target’s direction and plan a more
complex route accordingly.

ChatGPT struggled in this scenario, reaching the destination in only one out of three attempts.
However, the single successful attempt was the most efficient among all the attempts from both
models. As depicted in Figure 6.3 (d), ChatGPT began by turning right after recognizing that
the original direction did not decrease the distance. It then continued forward until the distance
stopped decreasing. At that point, it turned left, tested that direction, realized it was ineffective,
and then turned right instead. Notably, once at position (1,4), it tested upward and downward
movements and recognized that it was moving parallel to the destination’s direction. It then
made a 90-degree turn to the right, correctly orienting itself directly toward the destination.
This path possibly suggests some form of spatial awareness and logical deduction. The other
two attempts by ChatGPT failed due to repetitive loops, either retrying the same directions
without learning or failing to backtrack when the distance remained constant. In contrast,
Gemini successfully reached the destination in all three attempts, albeit with a slightly longer
path each time, as shown in Figures 6.3 (e) and (f). While its strategy was less efficient than
ChatGPT’s best run, it was far more consistent overall. Gemini appeared to apply a basic but
effective reasoning process: it would start by turning left, notice the increase in distance, and
then decide to turn right instead. This allowed it to quickly converge on the destination using
a path that, while not optimal, was quicker than a naive algorithm and reliable. However,
this strategy was explained in the task prompt and was therefore not devised by the LLMs
themselves.

Conclusion. Both ChatGPT and Gemini demonstrated the ability to reach the destination
with limited information, yet their performance did not significantly surpass that of a basic
algorithm. The spatial reasoning observed in their responses largely mirrored the strategies
outlined in the prompt, indicating that these were not independently developed by the models.
Notably, ChatGPT exhibited some capacity for extrapolation beyond the provided instructions,
particularly in the second test case, where it executed a 90-degree turn after detecting it was
moving parallel to the target, suggesting a degree of situational awareness. Gemini, by con-
trast, delivered more consistent outcomes across all attempts, reliably reaching the destination
through a repeatable and effective path.

6.3.5 Response Time

Throughout all experiments, Gemini consistently responded much faster than ChatGPT. In
fact, Gemini’s response time was so rapid that a deliberate delay had to be introduced in the
code to avoid exceeding the request rate limits. This speed advantage can be attributed to the
use of Gemini-2.0-Flash, a lightweight variant optimized for speed at the cost of some reasoning
complexity. On the other hand, GPT-4o is designed for broader reasoning capabilities and more
accurate outputs, which naturally results in slightly longer response times. This difference in
design purpose is reflected in the outcomes as well: while Gemini responded more quickly,
GPT-4o achieved better overall performance across the tasks.
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Figure 6.3: Traveled paths of the robot in the distance-based navigation scenario. The
x- and y-axes represent position coordinates. Each line indicates the path taken by the
robot, with the starting position marked by a square and the endpoint marked by a trian-
gle. The numbers indicate the order of directions followed by the LLM. (a) Non-optimal
path generated by ChatGPT in the first test case, (b) improved path by ChatGPT in the
same case, (c) path by Gemini in the first test case, (d) path by ChatGPT in the second
test case, and (e–f) two separate paths generated by Gemini in the second test case.



Chapter 7

Conclusion & Future Work

This chapter concludes the thesis by summarizing the key findings and addressing the central
research question. It also discusses the limitations encountered during the study, outlines
directions for future research, and offers a personal reflection on the research process.

7.1 Conclusion

This thesis set out to explore whether large language models (LLMs) can independently navigate
mobile robots with minimal external support. The goal was to evaluate how well these models
could interpret commands, reason through spatial challenges, and generate executable actions
without relying on extensive frameworks or pre-programmed logic. The study followed an
iterative approach: initial prototyping was used to refine prompting strategies and identify
effective interaction patterns, followed by quantitative testing to assess consistency, accuracy,
and overall performance in both simulated and real-world environments.

The results have demonstrated that LLMs are capable of navigating mobile robots using a
minimal supporting framework. However, they exhibit significant limitations when dealing
with complex environments, especially those involving obstacles or limited contextual informa-
tion. The initial feasibility tests confirmed that LLMs such as GPT-4o, Gemini-2.0-Flash, and
DeepSeek-V3 can interpret navigational commands, generate full movement plans, and operate
interactively with step-by-step execution while processing real-time feedback. However, these
successes depended heavily on how clearly the task was defined. Without thorough explanations
and illustrative examples, the LLMs frequently misunderstood task requirements, particularly
the behavior of obstacles and how to respond to collisions or blocked paths. Even with clear
task descriptions, all LLMs tested struggled to handle obstacles effectively. They often failed to
remember the position of obstacles or previously attempted paths and would repeat ineffective
strategies, becoming trapped in navigation loops. Among the models, DeepSeek-R1 showed
the most promising reasoning capabilities, displaying a better understanding of environmental
constraints. However, its slow response time rendered it unsuitable for real-time applications.
A major challenge for all models was the generation of accurate visual representations of the
navigation space. Despite having access to the correct position of the robot, the models of-
ten failed to place it accurately within generated maps or images. This suggests a disconnect
between their internal state tracking and their output formatting capabilities.

Further experimentation, done primarily with ChatGPT and Gemini, emphasized the impor-
tance of allowing LLMs to reason openly in their responses. When reasoning and calculations
were restricted (e.g., by asking only for final commands), performance declined significantly.
Conversely, when allowed to show their reasoning, LLMs performed more reliably across both
grid-based and free movement scenarios. Still, major issues persisted. In both scenarios, LLMs
could typically only avoid a single obstacle before performance degraded. When multiple ob-

77



78 CHAPTER 7. CONCLUSION & FUTURE WORK

stacles were present, the models often hallucinated new paths or became disoriented. Similarly,
optimal pathfinding was a consistent weakness. Models frequently defaulted to inefficient, or-
thogonal routes in grid-based scenarios, even when shorter diagonal paths were available. From
a command interpretation standpoint, LLMs sometimes failed to adhere to output format re-
quirements, leading to integration issues with robot control code. Relative turning commands
also introduced confusion, with models occasionally losing track of the robot’s orientation,
though absolute turning commands slightly improved reliability. In scenarios where only the
distance to the goal was known, LLMs showed limited spatial reasoning. In most cases, they
relied on a single, prompt-given strategy and failed to develop new heuristics. Attempts to
explore the environment often led to repeated errors or direction loops around the destina-
tion, problems that a conventional algorithm could solve more efficiently. Lastly, the results
consistently highlighted a broader issue: inconsistency. LLMs often produced different results
for identical inputs, even with deterministic settings configured. Successful navigation in one
attempt might fail in the next, indicating that current LLMs lack the predictability required
for reliable autonomous control.

In summary, while LLMs like GPT-4o and Gemini-2.0-Flash can navigate a robot through
simple, structured environments using minimal external support, they are not yet robust or
consistent enough for reliable, general-purpose deployment. Until LLMs develop more advanced
and stable spatial reasoning capabilities, they will continue to require external support, either
in the form of reasoning aids, memory modules, or environmental abstraction layers, to perform
dependable robotic navigation.

7.2 Limitations and Future Work

This thesis primarily focused on two leading large language models, GPT-4o and Gemini-
2.0-Flash, with limited experimentation conducted using DeepSeek-R1 and LLaMA3.1. These
models were selected based on API availability and their status as state-of-the-art at the time of
testing. However, the field of language models is evolving rapidly, and numerous other models
from various providers remain unexplored. Future work could include a broader evaluation of
LLMs such as Anthropic’s Claude, Meta’s LLaMA (in various versions), Mistral AI’s models,
and xAI’s Grok. These models vary in size, architecture, and reasoning capabilities, and contin-
uous updates from developers make repeated benchmarking a worthwhile endeavor. In addition,
further testing could include newer versions of models from the same providers. For instance,
OpenAI released GPT-4.1 and reasoning-optimized models such as o1 and o3 during the final
stages of this thesis. These models offer enhanced reasoning performance but, as observed with
DeepSeek-R1, tend to have slower response times. Similarly, Google’s Gemini-2.5 may offer
improvements in both speed and capability, and should be investigated in future studies.

A key limitation of this research is its focus on short-horizon navigation tasks, which are sce-
narios in which the robot performs relatively few movements to reach a target. While valuable
as an initial proof of concept, these short tasks do not fully reflect the challenges encountered
in real-world applications, where robots often operate in larger spaces and over extended du-
rations. In such long-horizon tasks, limitations related to token limits, memory retention, and
state tracking become more apparent. For instance, this thesis noted that LLMs occasionally
forgot the robot’s orientation after multiple steps. Further research should also examine how
LLMs perform in long-horizon contexts, including whether it is more effective to maintain a
continuous dialogue history or to restart the conversation at logical checkpoints.

Another limitation identified was the difficulty LLMs faced in handling obstacles and using
distance-based movement, largely due to the absence of a supporting framework. To improve
performance in these areas, future work could explore lightweight alternatives to full multimodal
frameworks. For example, using a secondary LLM for verification, integrating basic sensor
input to detect obstacles, or incorporating simple user feedback loops. For feedback to be
useful, it must be retained across steps without requiring repeated input, which implies a need
for lightweight memory mechanisms. If these current limitations of the LLMs could be solved,
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expanding the environment’s complexity is another avenue of interest. This thesis mainly
dealt with static and relatively simple settings. By adding environmental features such as
walls, furniture, elevation changes, or even moving obstacles (e.g., humans), the adaptability
and robustness of LLMs could be further challenged. These scenarios would require more
frequent environmental updates, pushing the limits of the models’ spatial reasoning and real-
time adaptability.

A practical issue encountered during testing was the LLMs’ inconsistent adherence to the re-
quired output format. Even when reasoning and decision-making were correct, small formatting
errors, such as incorrect syntax and outputting multiple moves in the same message, frequently
caused the control system to fail. To address this, future work could explore the use of struc-
tured output formats such as JSON, which would impose stricter formatting constraints and
facilitate direct parsing by control software. However, care must be taken not to overly con-
strain the LLMs, as the results indicate that excessive limitations can negatively impact their
performance.

Beyond the navigation-focused scope of this thesis, future work could also explore LLM ap-
plications in robotic manipulation. Previous research has demonstrated promising results in
this domain, though typically with the aid of significant supporting frameworks. Future work
could assess whether LLMs can perform manipulation tasks (such as grasping or repositioning
objects) under a bare-bones setup similar to the one used here. For instance, by treating a robot
arm’s workspace as a grid and controlling it from a top-down perspective, an LLM could poten-
tially move to target coordinates and issue basic commands such as “grasp” or “release.” While
this approach may succeed in simplified settings, its limitations in handling more dynamic and
unstructured manipulation tasks would be a critical area to explore.

In summary, this thesis establishes a foundation for LLM-controlled robotic navigation with
minimal support. However, many opportunities remain to extend and refine this work through
testing additional models, increasing task complexity, exploring long-term memory strategies,
and expanding to other robotic capabilities such as manipulation.

7.3 Reflection

Throughout the course of this thesis, I have gained a deeper understanding of the inner workings
of LLMs, particularly their capabilities and limitations in non-conversational domains such as
spatial reasoning and robotic control. Initially, I was impressed by how human-like these mod-
els appeared during everyday interactions and basic reasoning tasks. However, this perception
changed significantly once I tested their performance in navigation tasks. Despite their fluency
and apparent intelligence in conversation, the models often failed to follow explicit instructions
or reason correctly about spatial relationships, even when provided with detailed explanations.
This highlighted a critical realization: the reasoning demonstrated by LLMs is often superficial
and can break down when applied to domains outside of their training focus. This observa-
tion reinforces the importance of treating LLM outputs critically and not assuming genuine
understanding or reliability across all domains.

The progression of my research began with strong momentum but eventually slowed as the
limitations of the models became more apparent. A major turning point came when I discovered
that allowing the LLMs to include their reasoning within their responses significantly improved
navigation outcomes. Without such reasoning, the models frequently made errors that rendered
navigation tasks nearly impossible. Unfortunately, this insight came somewhat late in the
process, resulting in time lost on earlier, less productive approaches. That said, the contrast
between reasoning-enabled and reasoning-disabled responses ultimately became a valuable point
of comparison in the analysis.

Another challenge during the project was the tendency to refine prompts incrementally in hopes
of improving model performance. While prompt engineering is essential, I now recognize that
the time spent on minor prompt tweaks might have been better used testing a broader range
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of models, including newer versions or alternatives from other providers. This broader bench-
marking could have offered a more comprehensive understanding of the current capabilities of
different LLMs in navigation contexts.

A further important lesson was the critical value of thoroughly documenting both experimenta-
tion findings and test results. Initially, results from the experiments were recorded only in brief
textual summaries, which proved insufficient when compiling and analyzing data later during
the thesis writing process. This issue was intensified by the frequency of exploratory testing,
where informal notes were made about observed issues, but structured data was not collected.
Similarly, for the quantitative testing, several tests had to be repeated because critical de-
tails, such as the robot’s path, specific errors encountered, or reasons for failure, had not been
logged properly. This experience highlighted the necessity of maintaining detailed, structured
records throughout the development and evaluation phases to support accurate analysis and
reproducibility.

In conclusion, the results of this thesis are mixed. On the one hand, LLMs have demonstrated
the potential to navigate robots in structured, obstacle-free environments with minimal frame-
work support. On the other hand, their performance is inconsistent and breaks down in the face
of complexity, particularly with obstacles and limited environmental information. This rein-
forces that while LLMs are powerful tools, their deployment in real-world robotics still requires
caution, careful design, and, in many cases, additional support frameworks. Further work will
be needed to determine how these limitations can be mitigated and what strategies or model
improvements can enable more reliable robotic control in the future.
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