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Abstract

Join operations are an important part of query engines, enabling the combination of data
across multiple tables. As datasets grow, the efficiency with which joins are computed must
increase alongside it. To this end, algorithms like Yannakakis’ algorithm exist to speed up these
calculations. Recent work has implemented a tweaked version of the algorithm to make it usable
in practice. To further increase query evaluation speeds, computing calculations in parallel could
prove beneficial. This thesis aims to implement parallelism in the implementation of Shredded
Yannakakis in Apache DataFusion. To achieve this, an exchange operator was created that
functions as a meta-operator, partitions data flowing through the query, and allows multiple
workers to process the partitions concurrently. The operator was integrated into 2-phase NSA
plans that accompany Shredded Yannakakis to parallelize the entire runtime. Care was taken
to preserve the efficiency of the original algorithm while allowing it to run multi-threaded.
Evaluation of the parallelized runtimes shows that both vertical and horizontal parallelism are
enabled via the new operator, improving most of the measured runtimes. Picking the correct
number of partitions to split the data into and preventing data skew across partitions proved
to be an important factor in the efficiency of the parallelization. Following these results, the
thesis further proves that careful integration of parallelism can bring performance increases to
practical query engines.



Samenvatting

Doorheen deze masterproef werd er gewerkt aan het paralleliseren van een database engine
implementatie. Bij het uitvoeren van queries is er nood aan de join operator om invoer van
verschillende bronnen samen te brengen. Deze operator is een relatief ”dure” operator, wat wil
zeggen dat deze berekeningen vaak complexer en langer zijn dan de andere operatoren van de
evaluatie. Aangezien deze operator vaak voorkomt in de praktijk is de snelheid waaraan hij
correct uitvoer kan geven dus een belangrijke factor in de prestatie van een database engine.
Een veelvoorkomend probleem van join operatoren is dat deze subresultaten kan opleveren die
niet meedragen aan het uiteindelijke eindresultaat. Dit zorgt ervoor dat er tijdens het evalueren
van een query onnodig werk verricht wordt, die de uitvoersnelheid zal verlagen.

Yannakakis’ algoritme

Een oplossing voor dit probleem is het gebruik van Yannakakis’ algoritme. Dit algoritme kan
gebruikt worden om de joins van een subset van queries efficiént te evalueren door de onnodige
datapunten te filteren. Om dit uit te kunnen voeren, moet er eerst aan de hand van het GYO-
algoritme nagegaan worden of de te evalueren query een acyclische query is, om dan verder te
gaan naar het Yannakakis-algoritme. Yannakakis’ algoritme wordt in twee delen opgesplitst en
vindt plaats aan de hand van de uitvoer van het GYO-algoritme. Deze uitvoer noemt men een
join-tree en is een boomstructuur waarin de relaties van de query in aanwezig zijn. De eerste
stap noemt men de semi-join reductie, hier wordt er aan de hand van de semi-join operator en
de join-tree gewerkt. Er zal aan de hand van de join-tree een volgorde van semi-join operaties
opgezet worden die bottom-up en top-down werken. Deze operaties zullen ervoor zorgen dat
alle onnodige tuples voor deze berekeningen niet meer beschouwd worden. De tweede stap van
het algoritme bevat dan de effectieve joins die uitgevoerd horen te worden.

Door de grote hoeveelheid werk die nodig is voor de voorbewerking van de data tijdens Yan-
nakakis’ algoritme blijkt in de praktijk dat het algoritme zoals het origineel uitgewerkt werd
toch niet zo bruikbaar is. Praktisch zijn er vaak niet genoeg redundante tuples tijdens join
berekeningen om het extra werk dat verricht zou moeten worden goed te praten. Dit wil echter
niet zeggen dat het algoritme onbruikbaar is. Recent werk [4] maakt gebruik van de algemene
concepten van het algoritme om een join algoritme op te stellen dat wel praktisch bruikbaar is.
De aanpak zelf noemt Shredded Yannakakis, het maakt gebruik van geneste datastructuren en
query shredding om deze voor te stellen. Geneste data is hiérarchisch gestructureerd, dit komt
omdat het hier mogelijk is om als attribuut een lijst van datapunten te gebruiken in plaats
van een enkel datapunt. Om deze geneste data voor te stellen wordt de data nu opgesplitst in
verschillende delen die apart als lijsten opgeslagen kunnen worden.

Een voorbeeld is te vinden in figuur[l] Aan de linkerkant is een tabel met geneste data aanwezig.
Het bevat twee normale attributen x en y, en dan een genest attribuut waarin er nog een niveau
dieper in genest is om {u,{v}} te bekomen. De tabel bevat twee tuples maar om deze tuples
te kunnen gebruiken als normale platte tuples moeten ze omgezet worden aan de hand van
een unnest operator. Deze operator zal bijvoorbeeld de bovenste tuple omzetten naar twee
verschillende platte tuples, namelijk {a1,b1,c1,d1} en {a1,b1,c2,d2}. De figuur geeft nu dus
ook weer hoe we deze twee geneste tuples zouden moeten voorstellen aan de hand van query
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shredding. De platte attributen x en y worden normaal bewaard met hun eigen waardes. De
geneste attributen worden bijgehouden aan de hand van hd, wat een pointer is naar de start van
een gelinkte lijst en w, wat het aantal tuples na unnesten voorstelt. Ieder niveau van nesting
heeft dan zijn eigen store, dit is een datastructuur die gebruikt wordt als de gelinkte lijst waar
hd naar wijst en die zelf nog extra gelijkaardige data bevat indien er dieper geneste niveaus
aanwezig zijn. Zo bevat in dit geval de store van {u,{v}} opnieuw hd en w die verwijzen naar
de store van {v}. Met deze datastructuur kan geneste data dus voorgesteld worden aan de hand
van een aantal arrays.

X y {u, {vi} R IRV
4 —
ay b |c1 | g x y o {u, {V}\i’ v nxt
' i d1 0
Co d2 aq b1 2 2 d2 0
— a; | by | 3 | 2
( — d3 0
aq b2 C3 d3 g
4 3
a ER((u )
u v} nxt
hd = w
Cq 1 1 0
c© | 2 1 1
C3 4 2 0

Figure 1: Voorbeeld van een shredded relation R

Query engines & Apache DataFusion

Doorheen de thesis werd er gebruik gemaakt van Apache DataFusion [1], dit is een uitbrei-
dbare query engine met als doel om een sterke basis aan te bieden om zelf use-cases uit te
bouwen. Het is een database waarin data opgeslagen wordt in kolomformaat. Dit wil zeggen
dat de waarden van elke kolom fysiek bij elkaar opgeslagen worden, in tegenstelling tot het
meer klassieke rij-gebaseerde formaat waar data per tuple opgeslagen wordt. Deze attribuut-
gebaseerde opslagmethode leent zich goed tot query shredding, waar data op een gelijkaardige
manier wordt opgeslagen. Om deze reden werd er voor [4] ook een implementatie gemaakt
in Apache DataFusion. Het is dus deze implementatie waarvoor parallelisme geimplementeerd
werd tijdens deze thesis.

Een algemeen concept in database engines zijn de query plans. Om SQL queries te kunnen
evalueren moeten ze omgezet kunnen worden in uitvoerbare plannen die aangeven welke stappen
er moeten genomen worden om de gewenste resultaten te verkrijgen. Indien we een voorbeeld
database aannemen met een tabel over Orders en een tabel over Products, kan een query
plan er uit zien als figuur Hier zijn twee tablescans aanwezig voor de twee invoerrelaties,
gevolgd door een join, een filter en een projectie. Dit is het niet-geoptimaliseerde logisch plan
voor een query die data op wilt halen over orders waar het gekochte product een laptop is.
Dit logisch plan kan dan verder geoptimaliseerd worden maar bevat geen specifieke operatoren,
enkel het soort operator dat nodig is. Om het plan bruikbaar te maken zal de query engine de
operatoren in het logisch plan om moeten zetten naar implementaties van operatoren die hij
ter beschikking heeft. Hij zal bijvoorbeeld moeten kiezen welk type join het meest geschikt is
voor de specifieke situatie, zoals bijvoorbeeld een hash join of en merge join. Dit doet hij aan
de hand van metingen over de invoerrelaties en de algemene structuur van de query.



OProducts.product=0Orders.product AProducts.product="laptop’

Products Orders

Figure 2: Logisch query plan

Volcano operator model & parallelisme

Om te kunnen werken met de DataFusion implementatie van Shredded Yannakakis moet er dan
gekeken worden naar hoe database operatoren in de praktijk hun data verwerken. Een manier
om dit te structureren is om het Volcano operator model paradigma te volgen. Hierbij worden
er een aantal procedures voorgesteld om operatoren met elkaar te laten communiceren. Op deze
manier kunnen ze steunen op een gestandardiseerde interface om met elkaar te communiceren
en zo data ophalen uit operatoren. Operatoren in een query plan kunnen nu data opvragen van
hun kind-operatoren van de boomstructuur om dan die data zelf te kunnen verwerken en verder
door te geven aan hun voorgangers in de boom. Dit paradigma stelt ook een manier voor om
aan de hand van deze interface parallelisme te implementeren in query plans. Het doet dit aan
de hand van een meta-operator die in de boomstructuur geplaatst kan worden, deze operator
noemt dan de exchange operator.

Om parallelisme toe te laten tijdens het evalueren van queries zal de exchange operator nieuwe
werkers maken die data zullen opvragen van de operatoren onder de exchange operator. Om
dit mogelijk te maken moet de data opgesplitst worden in verschillende partities. Elke werker
krijgt dan een partitie toegewezen en zal onderliggende data vanuit deze partitie opvragen
onafhankelijk van de andere aanwezige werkers. Een tweede taak van de exchange operator is
om de data die binnenkomt door de werkers te herpartitioneren. Dit wil zeggen dat er aan de
hand van een bepaald partitie schema, bijvoorbeeld een hash functie op een specifieke kolom,
beslist wordt naar welke partitie iedere tuple gestuurd moet worden. Deze herpartitionering
is essentieel wanneer operatoren later in het query plan data verwachten die verdeeld is op
een bepaalde manier, zoals bijvoorbeeld bij een join operatie. Aangezien de implementatie van
Shredded Yannakakis gebruik maakt van het Volcano operator model is het nu dus de bedoeling
dat er een exchange operator wordt gemaakt die werkt met shredded data.

Shredded Yannakakis

In [4] wordt uitgelegd hoe query shredding gebruikt kan worden om joins te evalueren aan de
hand van Yannakakis’ algoritme. Door gebruik te maken van een multisemijoin b> en groupby
~ operator kan het gedrag van een hash-join nagebootst worden. Na deze join operatie zullen
onnodige tuples echter niet overblijven waardoor deze dus geen deel uit maken van latere op-
eratoren en er dus rekenkracht bespaard kan worden, wat leidt tot een efficiéntere uitvoering.
Om dit waar te maken moeten de query plannen die gebruik maken van deze operatoren echter
een bepaalde structuur volgen. De plannen moeten zogenaamd twee-fasig zijn, dit houdt in dat
alle joins eerst plaats vinden als afwisselingen van multisemijoins en groupby operatoren. Het
resultaat van deze joins zal een geneste datastructuur zijn, die alvorens hij algemeen bruikbaar
is, geontnest moet worden. De unnest operator u die overeenkomt met de unnest fase bevindt
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zich bovenop de join fase. Het is belangrijk dat deze structuur wordt bewaard aangezien joinen
na ontnesten wel mogelijks voor redundante tuples zou kunnen zorgen tijdens de berekeningen.
Figuur [3] geeft een voorbeeld van een geldig 2-fase NSA plan en een ongeldig plan. Plan b is
ongeldig in deze figuur omdat een unnest operator wordt gebruikt in de join phase, waardoor
er redundante tuples zouden kunnen ontstaan.

Exchange operator voor Shredded Yannakakis

Om de exchange operator te implementeren voor Shredded Yannakakis met als doel de evaluatie
ervan te paralleliseren, moet er dus een nieuwe operator gemaakt worden die in een 2-phase NSA
plan geintroduceerd kan worden. De uitvoer van de multisemijoin en groupby operatoren zijn
verschillend dus hier zouden dan twee verschillende exchange operatoren voor moeten worden
voorzien. Tijdens het uitwerken van hoe deze operator zou moeten functioneren werd het al
snel duidelijk dat een van de twee voldoende zou zijn om de runtime te paralleliseren. Er
werd gekozen om een exchange operator te maken die bovenop een multisemijoin zit. Deze
operator moet nu dus nieuwe werkers opstarten die data uit de bijbehorende partities van de
bijbehorende multisemijoin opvraagt en dan de inkomende data herpartitioneert. Dit correct
partitioneren is nu van groot belang om de evaluatie van de query correct te laten verlopen.
Aangezien de data nu in partities moet onderverdeeld worden zullen de verschillende operatoren
de verschillende partities in parallel kunnen evalueren. Een probleem kan nu plaatsvinden indien
de data komende van een invoerrelatie die richting een multisemijoin gaat, niet op dezelfde
manier gepartitioneerd is als de data komende van de groupby operatie die ook richting dezelfde
multisemijoin gaat. Wanneer deze verdelingen niet overeenstemmen, bestaat het risico dat
tuples die samengevoegd moeten worden in de multisemijoin zich in verschillende partities



bevinden. Dit zou dan betekenen dat de werkers niet over de correcte set van relevante data
beschikken om de multisemijoin correct te berekenen en dus voor een foute uitvoer zullen
zorgen. Om dit op te lossen zullen we er dus altijd voor zorgen dat beide invoerrelaties van
de multisemijoin op hetzelfde attribuut gepartitioneerd worden met dezelfde hashfunctie om zo
ervoor te zorgen dat overeenkomende waarden die gejoined moeten worden altijd in dezelfde
partitie zullen zitten.

Om de runtime te paralleliseren voegen we nu boven iedere multisemijoin een exchange operator
toe die er voor zorgt dat de verschillende partities tegelijk geévalueerd kunnen worden, en dat
data naar de juiste partities wordt gestuurd. Belangrijk om op te merken is dat de exchange
operator die net onder de unnest operator zou staan onnodig werk doet bij het berekenen van
de hash waarden voor de tuples. Het heeft echter weinig belang dat er correct gepartioneerd
wordt aan de hand van hashing vooraleer de data de unnest operator in gaat aangezien deze hier
geen nood aan heeft om de uitvoer correct te houden. Dit zou leiden tot overbodig rekenwerk
zonder prestatiewinst. Wat wel voor prestatiewinst kan zorgen met deze exchange operator
zou een verandering zijn van partitie schema die voor een verdeelde werklading in de unnest
operator leidt. We kunnen namelijk aan de hand van een normale exchange operator, er voor
zorgen dat de unnest operator ook zijn verschillende partities in parallel kan evalueren. In het
geval dat we de hoeveelheid werk dat verricht moet worden in deze partities kunnen balanceren,
dan gaan we een bottleneck in een bepaalde partitie tegen, wat zorgt voor een versnelling van
de unnest operator. In Figuur [4] zijn drie evenwaardige plannen zichtbaar die praktisch voor
zouden kunnen komen in de implementatie. Plan a is de standaard seriéle versie van het plan,
waar er geen exchange operatoren in aanwezig zijn. Query plan b is een parallel plan, een
exch() knoop duidt op een exchange operator die gemaakt is tijdens deze thesis, deze operator
is gemaakt om de uitvoer van een multisemijoin op te kunnen vangen. Een rep() knoop duidt
op de exchange operator zoals hij gemaakt is in Apache DataFusion, deze wordt ingeschakeld
om de unnest operator te parelleliseren, aangezien deze standaard platte data als uitvoer geeft
en om de invoerrelaties correct te partitioneren.

Door de exchange operator te implementeren voegen we nu horizontaal en verticaal parallelisme
toe aan de implementatie. Horizontaal parallelisme verwijst naar de parallelle uitvoering van
de verschillende partities binnenin dezelfde operator. Iedere werker verwerkt hierbij afzonder-
lijk zijn partitie, waardoor meerdere delen van de data tegelijk kunnen worden geévalueerd.
Bij verticaal parallelisme voeren meerdere operatoren uit het plan tegelijk hun berekeningen
uit. Terwijl een bepaalde operator data produceert, kan een bovenliggende operator deze data
onmiddellijk ontvangen en verwerken. Deze overlap aan werk draagt bij aan een verminderde
uitvoeringstijd. Het moet echter wel gezegd worden dat de hoeveelheid verticaal parallelisme
maar miniem is in deze implementatie. Door hoe de groupby operator werkt, moet hier alle
data aanwezig zijn vooraleer deze uitvoer kan maken. Dit wil dus zeggen dat operatoren boven
de groupby niet kunnen werken terwijl operatoren onder de groupby nog aan het werken zijn
aangezien de groupby zelf geen data zal propageren.

Resultaten van parallelisme

Voor de evaluatie van de nieuwe operator werd er gebruik gemaakt van de STATS-CEB bench-
mark [5]. Deze bevat data en een reeks aan queries voor deze data die ontworpen zijn om
uitvoeringstijd van join algoritmes te meten. Om deze evaluatie uit te voeren wordt er gebruik
gemaakt van de uitvoeringstijd zelf, maar ook van de speedup en de efficiéntie over verschillende
degrees of parallelism. De degree of parallelism verwijst naar het aantal werkers die gelijkti-
jdig kunnen worden ingezet tijdens de uitvoering. Door de uitvoeringstijd te meten doorheen
verschillende degrees of parallelism kan er onderzocht worden hoe goed het systeem schaalt,
idealiter schaalt de uitvoeringstijd mooi mee met het aantal werkers die we toelaten. Speedup
meet hoeveel sneller een query wordt uitgevoerd wanneer we de degree of parallelism ver-
hogen, vergeleken met de seri€le uitvoering, en de efficiéntie geeft aan hoe goed de beschikbare
rekenkracht benut wordt. De degree of parallelism wordt doorheen de experimenten aangepast
door het aantal partities aan te passen waarin de data wordt verdeeld. Aangezien de exchange
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Figure 4: Verschillende equivalente plannen, serieel en parallel

operator werkers zal opstarten afhankelijk van zijn invoer partities past dit dus het aantal par-
allelle werkers aan, terwijl er wel toegelaten wordt dat DataFusion alle 16 CPU cores aanwezig
op het toestel benut.

De metingen tonen dat er duidelijk in de grote meerderheid van queries een snelheidswinst
aanwezig is. Deze winst schaalt echter wel niet super goed, waardoor de ideale speedup nooit
bereikt wordt. De exacte winst in een query is sterk afhankelijk van een aantal factoren zoals
de grootte van de uitvoer en de data skew die plaatsvindt na het hashen van de tuples in een
exchange operator. Skew komt vooral sterk tevoorschijn in de unnest operator, waardoor het
toevoegen van de extra exchange operator alvorens het unnesten zoals zichtbaar in b in figuur
[4] zeker de uitvoeringstijd kan verlagen. Er is namelijk veel werk in de unnest operator indien
er veel tuples in de finale uitvoer zitten, slecht verdeeld werk kan dan voor grote oneffenheden
kan zorgen, waardoor er in deze operator een bottleneck gemaakt wordt. De snelheidswinst
verhoogt over het algemeen wel gaande van één tot acht partities, bij zestien partities wordt er
over het algemeen terug een vermindering van uitvoeringssnelheid gezien, waarbij de algemene
tijd wel nog lager ligt dan de seriéle uitvoeringstijd. Deze verlaging wordt toegekend aan het
feit dat er dan te veel werkers opgestart worden en waardoor het wisselen tussen deze werkers
te veel extra werk vereist.
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Chapter 1

Introduction

For a database system to evaluate queries, join operations are essential for combining data from
multiple relations. They are required in a large number of queries, making their performance
an important factor in the overall efficiency of the query engine. Among the various approaches
to optimize joins, Yannakakis’ algorithm promises an efficient algorithm to process acyclic
conjunctive queries by reducing intermediate results and thus avoiding redundant computations.
Though problems arise when implementing this algorithm in practice, recent work 4] has shown
that it is possible to gain practical use out of the algorithm via query shredding. This approach
is called Shredded Yannakakis. By using the benefits that an in-memory column store database
engine provides, the original algorithm can be adapted to perform effectively on real-world
workloads.

Throughout this thesis, Apache DataFusion was used as an extensible query engine that is
written in Rust. It is designed as a foundation for implementing query optimization techniques
and allows for modification throughout most aspects of the engine. Due to its open-source
nature, the source code of DataFusion also allowed for a practical example of how parallelism
could be implemented, though the data structure created for Shredded Yannakakis brought its
own challenges along with it. The implementation of Shredded Yannakakis, created alongside
l4], does not take parallelism into account. As such, by extending this implementation with a
structure that enables parallelism, improved performance can be obtained while still preserving
its own benefits for acyclic query evaluation.

The goal of this thesis is to implement parallelism into the existing implementation of Shredded
Yannakakis via a meta-operator called the exchange operator. This operator spawns new work-
ers that evaluate parts of the query in parallel, enabling concurrent execution of independent
parts of the query plan and thus improving overall execution time by utilizing multiple cores
to evaluate the query concurrently. Extra care was taken throughout the implementation to
keep the original code unchanged as much as possible, since the exchange operator theoretically
functions as an independent operator. After achieving parallelism, a closer look will be taken
at the performance of the parallel scheme and any bottlenecks that might occur, alongside a
comparison with the original serial implementation.

This thesis is organized as follows: the first two chapters provide the necessary background
information, one focusing on Yannakakis’ algorithm and the other on query engines, with an
emphasis on Apache DataFusion and its own architecture. The fourth chapter details the
implementation of parallelism, discussing the challenges encountered and solutions devised.
Finally, the last chapter presents an analysis of the runtime performance based on measurements
obtained with the STATS-CEB [12] benchmark.
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Chapter 2

The Yannakakis algorithm

This chapter contains the theoretical foundation for understanding the algorithm central to this
thesis. It goes over the necessary syntax, like first-order logic and conjunctive queries, to then
introduce algorithms that eventually flow into Yannakakis’ algorithm.

2.1 Prerequisites for the algorithm

This section will cover the underlying concepts necessary to understand and explain Yannakakis’
algorithm. An important resource for this section was the book [2], of which specific chapters
were studied to learn the foundations.

2.1.1 First-order logic

With the subject of the thesis being optimal joins, we immediately turn to conjunctive queries.
These queries are a subset of in first-order logic, a formal system with well-defined syntax and
semantics that enables logical representation and inference. To refresh these concepts, chapter
three from [2] and chapter eight from [20] were studied.

A database schema S features a finite set of relation names, with each relation having its number
of attributes specified in S. Taking a relation name R with attributes u and v, we can form an
atomic formula such as R(1,2), which asserts that the tuple (1,2) belongs to the relation R.
In this atomic formula, R is a relation symbol, and the values 1 and 2 are constants, which
are also considered terms in first-order logic. Formulae or sentences created using First-Order
logic are then used for evaluation on a database instance.

We may also use symbols like x and y in place of constants, writing the atomic formula R(x,y).
In this case, x and y are variables, which are also terms, meaning they represent unspecified
values and do not assert anything concrete about the contents of R. However, if we write
R(z, x), this indicates that we are only interested in tuples where the values for both attributes
u and v are equal.

First-order logic allows us to chain multiple atomic formulae together using operators like
A, V, =, =,3,V, creating non-atomic/complex formulae. An example of this would be taking
the following atomic formula: Brother(Richard, John), which states that Richard and John
are brothers. We can extend this atomic formula by adding a second atomic formula to it,
together with an AND symbol A, creating Brother(Richard, John) A Brother(John,Tom). This
formula can then be evaluated on a database, allowing us to query for specific relationships
and evaluate their truth values based on the data. For instance, if the database contains
the information that Brother(Richard, John) and Brother(John,Tom) are true, then the
entire formula Brother(Richard, John) A Brother(John, Tom) would evaluate to true. Adding

13
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inferencing would allow the database to infer the fact that Brother(Richard,Tom) is also the
case as long as the Brother relation is said to be transitive.

2.1.2 Conjunctive queries

Conjunctive queries are a subset of First-Order Logic queries used to express relational joins, an
essential operation in relational databases. Since data in such databases is typically distributed
across multiple tables, combining information often requires joining these tables. When a query
needs data from multiple tables, the database engine performs a join operation to bundle data
from different sources. This subsection relies on chapter twelve from [2] as its foundation and
for its conventions.

The syntax of a conjunctive query follows as written in [2] chapter 12.

A conjunctive query over schema S is a First-Order query ¢(Z) over S with ¢ being a formula
of the form

3?](Rl (@) Aeee A Rn(an)) (2-1)

In this formula, n > 1, R;(@;) is a relational atom, and 4, is a tuple of constants and variables
mentioned in Z and y for every i € [n].

Example 2.1.1. An example of a conjunctive query follows: given a relational schema S:
Person|pid, pname, cid], Profession[pid, prname], City|cid, cname, country]. With this schema
in mind, a conjunctive query can be made to retrieve the list of computer scientists born in the
city of Athens in Greece can be constructed.

Jx3z(Person(z, y, z) A Profession(z, ’computer scientist’) A City(z,’Athens’, "Greece’)) (2.2)

This conjunctive query allows us to combine the results of multiple table sources(Person, Profes-
sion & City) into a single query. An alternative syntax for these queries is called the rule-like
syntax. Writing the previous query in rule-like syntax, we obtain the following:

Answer(y) :— Person(z, y, z), Profession(z, ’computer scientist’), City(z, Athens’,’Greece’).

(2.3)
Where Answer is a relation that does not exist in schema S, the y attribute of Answer is the
value we are looking to extract from the query (in this case, the name of the relevant persons).
Answer(y) appearing to the left of :- is called the head of the rule, while the expressions to the
right side of the :- are called the body of the rule. A conjunctive query is regarded as a boolean
if it has no output variables (meaning T is empty). In the rule-like syntax example above,
we change Answer(y) to Answer to convert the conjunctive query into a boolean conjunctive
query.

To evaluate a conjunctive query ¢ onto a database instance D, it is easiest to look at it in its
rule-based form; as such, we proceed with formula The body of the conjunctive query
can be evaluated as a pattern that must be matched with a given database instance. This is
done via an assignment 7 that maps the variables present in the body, (z,vy, z) in this case, to
constants in D. Whenever a variable gets assigned a constant in this mapping, it must be correct
for all atomic formulae present in the body. If, for example, a mapping (1,’T'om’,2) is made,
the following three tuples must be present in the database: (1,’Tom’,2) in the person table,
(1,’computerscientist’) in the Profession table and (2,”Athens’,’Greece’) in the City table. As
such, we retrieve Answer(’Tom’) from the conjunctive query ¢ and have found an answer. As
with other querying forms like SQL, the query can output multiple different values, in this
case meaning that multiple valid mappings were found. When finding a valid mapping 7 for a
database instance D, 7 is said to be consistent with D. This definition can be written as the
following formula:

{R1(n(u1)), ., Ru(n(un))} € D (2.4)
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In the case of a boolean conjunctive query, it evaluates to true if and only if a mapping can be
made that is consistent with the relevant database instance. This means that the output of the
query contains tuples; if it were to evaluate to false, the output would be empty.

2.1.3 Hypergraphs and Acyclicity

It is possible to view a conjunctive query as a hypergraph. A hypergraph is a generalization of
the regular undirected graph structure where edges can create connections between more than
two vertices. Formally, a hypergraph is a pair H = (V, E) where V is a finite set of nodes and
F is a set of subsets of V' which are called hyperedges. This notion was studied using chapter
eighteen from [2] and lecture notes from [13].

Example 2.1.2. An example hypergraph would be V = {a,b,¢,d} and E = {{a,b,c},{b,c,d}}
as visualized below in figure

€2

el

Figure 2.1: An example of a simple hypergraph.

To transform a conjunctive query ¢ into a hypergraph H = (V, E), the set of variables present
in g equals the set of vertices V. The set of hyperedges E consists of the sets of variables
appearing in the atomic formulae of q. A conjunctive query that corresponds to the hypergraph
from Example could be: Answer(a) :— R(a,b,c), S(b,c,d) in rule-like syntax.

When evaluating a conjunctive query ¢, there is a difference between whether the query is
cyclic or acyclic. In the cyclic case, the hypergraph representing ¢ contains at least one
cycle. This cycle makes it difficult to compute query ¢ since some joins depend on each other,
forcing repeated operations that often produce large intermediate results. When ¢ is an acyclic
query, however, query evaluation becomes easier to manage, allowing for certain specialized
algorithms like the Yannakakis algorithm described later. In practice, conjunctive queries are
often tree-shaped; as such, we continue with handling query evaluation of acyclic conjunctive
queries.

To formally define acyclicity for hypergraphs, several non-equivalent notions exist. We use the
notion of a~acyclicity which is defined as follows. A hypergraph is said to be acyclic if it ad-
mits a join tree. This is the case when its hyperedges can be arranged to form a tree structure,
while preserving the connectivity of elements that occur in different hyperedges. Formally, a
join tree for a hypergraph H = (V, E) is a tree T having the hyperedges of H as nodes such that
the following condition is satisfied for every variable x € V: the set of all hyperedges e € E in
which 2 occurs forms a connected subtree of T'. A connected subtree is present for an element
when each occurrence of that element can form a path to each other occurrence of that element,
by only following vertices containing it. A violation of this connectedness property is visible in

Figure
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Example 2.1.3. To support this definition, a concrete example of an acyclic hypergraph and
its join tree follows: using the hypergraph H = (V, E) for the boolean conjunctive query
q:— R(z,y),S(y, 2),T(z,w), an example taken from [13]. Its set of vertices is V = {x,y, z,w}
and its set of edges is £ = {{z,y},{v, z}, {2z, w}}. When looking at this hypergraph as visible
in Figure it is intuitively visible that this is an acyclic query. The join tree of this query
can be found in Figure The nodes of the join tree are the set of hyperedges in E and each
variable v is fully connected with a subtree.

Q@ O & @)@

R(z,y) S(y, z) T(z,w) (b) Join Tree

(a) Hypergraph

Figure 2.2: A hypergraph and Join Tree for q :— R(z,y), S(y, 2), T(z,w)

Example 2.1.4. An example of a cyclic query is the following: ¢ :— R(z,y),S(y, 2), T(z, x),
also taken from [13]. This hypergraph intuitively has a cycle since the variables z, y, and z are
shared across the atoms in such a way that one can traverse a loop: = appears in both R and T,
y appears in both R and S, and z appears in both S and T, forming the cycle R — S — T — R.

Figure [2.3] also gives an example of a join tree where the occurrences of each element form a
connected subtree and an example of when this is not the case. In Figure a join tree
for query ¢1 :— Ri(z,y), Ra(y, z), R3(z, w) is visible. The occurrences of the elements z,y, and
z are all connected, and as such, the query is a-acyclic. In Figure an invalid join tree
for query g2 :— Ri(x,y), Ra(y, ), R3(x, z) is visible. From the tree structure, we can conclude
that the query is not a-acyclic, since the occurrences of the variable z do not form a connected
subtree in the join tree. Following the usage of join trees alongside given conjunctive queries,
we now need a standardized way to construct join trees to prove that there is or isn’t a join
tree T for the query. An algorithm that can be used to do this is presented in the following
subsection.

(b) An invalid join tree, violating the connectedness
(a) A valid join tree property

Figure 2.3: Join trees used to check a-acyclicity.
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2.1.4 The GYO algorithm

To execute specialized algorithms on acyclic queries, there needs to be a way to recognize the
acyclicity of a conjunctive query. To this end, the GYO algorithm is an iterative algorithm that
repeatedly applies two operations until it has either processed the entire hypergraph or can’t
proceed any further. If the algorithm successfully processes all vertices and hyperedges from
the hypergraph, the hypergraph itself is acyclic. If it cannot proceed at any point, while still
having parts of the hypergraph remaining, the given hypergraph is cyclic. The information
presented in this subsection was gained from [13] and chapter eighteen of [2]

Taking a hypergraph H = (V, E), the algorithm states that it is acyclic if and only if all of its
vertices and hyperedges can be deleted by repeatedly applying the following two operations (in
no particular order):

1. Delete a vertex that appears in at most one hyperedge.
2. Delete a hyperedge that is contained in another hyperedge.

Taking the hypergraph from Figure the GYO algorithm’s steps are visualized in Figure
After the first four steps, the algorithm then removes either the y or z node, after which
it will remove the node that is left. Having processed all vertices present in H, it correctly
concludes that the hypergraph is indeed acyclic.

O O &> @ o @y

R S T R ST (no w)
Step 0: Initial hypergraph Step 1: Remove w because it only appears in T
R S R (noxz) S

Step 3: Remove x because it only appears in R
Step 2: Remove T because it is contained within S

S
Step 4: Remove R because it is contained within S

Figure 2.4: GYO Reduction Steps for ¢ :— R(z,y), S(y,2), T(z,w)

In the case of ¢ :— R(z,y),S(y, 2),T(z,x), the algorithm can’t even take a first step since no
vertex is in at most one hyperedge, nor are there hyperedges that are contained within another
hyperedge. As such, the algorithm correctly concludes that this is a cyclic hypergraph.

This algorithm can also be extended to construct the join tree T of the given hypergraph
H = (V,E). Whenever a hyperedge e is removed because it is contained within a different
hyperedge f, a connection between e and f is made. Following this, during the procedure
shown in figure the join tree shown in figure [2.2b|is obtained.

The GYO algorithm can be implemented in linear time relative to the size of the query. Since
it is possible to create a join tree for a given acyclic query during the GYO algorithm, we know
that a join tree can be created in linear time as well. [13]
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2.2 Efficient evaluation of acyclic queries

Using the concepts explained in section [2.1] this section contains the necessary information to
evaluate acyclic conjunctive queries. First, it explains an important operator used to facilitate
this, after which an algorithm using this operator is explained.

2.2.1 The semijoin operator

The following information was gained from chapter nineteen of [2] and the lecture presented
in |13]. As alluded to earlier, certain algorithms only work on acyclic conjunctive queries.
Now that we know how to check the acyclicity of a conjunctive query, we can begin describing
these specialized algorithms. For a given acyclic conjunctive query ¢, an interesting optimization
would be to discard tuples from all relations that appear in the body of ¢ that will not participate
in the final result of ¢q. In doing this, the amount of work the join operations need to perform
can be reduced, leading to a more efficient evaluation of q. These tuples are called dangling
tuples. One way to remove these is via the semijoin operator. A semijoin operation between
to relations R and S with att(R) being the attributes of R, is defined as:

Rx S = Tratt(R) (R > S) (25)

As such, the result of a semijoin operation features all tuples from the first relation R with at
least one joining tuple in the second relation S. Tuples that share equal values in all overlapping
attributes are said to be consistent and are present in a semijoin operation’s result. Following
this definition, we conclude that the semijoin operator allows us to remove dangling tuples that
would occur in a join between R and S. This operator’s result can be seen as a pruned version
of the original relation that minimizes unnecessary data by eliminating tuples that would not
contribute to a successful join.

The semijoin operator can create a full reducer. This is a sequence of semijoin operators that
removes all dangling tuples from all relations that appear in the body of a conjunctive query.
If an instance of a database contains no dangling tuples, it is called globally consistent. Sup-
pose the full reducer is applied to the conjunctive query before evaluation. In that case, the
evaluation itself will be more efficient since the subresults that would not contribute to the final
results are pruned.

Example 2.2.1. A possible full reducer of the query ¢ :— R(z,y), S(y,z), T(z,w) from
would be the sequence:

S =SxT,S=xRRR:=RxS,T:=TxS (2.6)

To obtain a full reducer, we again turn to the GYO algorithm from Subsection Whenever
a hyperedge e is removed from the graph because it is contained within another hyperedge
f, we compute the semijoin f := f X e. After the algorithm terminates, we also perform the
semijoins in the reverse order.

2.2.2 Yannakakis’s algorithm

Using the concept of full reducers, Yannakakis’s algorithm can be used to evaluate acyclic
conjunctive queries. This query uses the join tree T of a given query ¢ that is to be evaluated.
The input of this algorithm is an acyclic conjunctive query ¢ and a database D; the output is
the evaluation of query ¢ on database D, which can be written as ¢(D). What follows is an
explanation of the algorithm as described in [8].

The algorithm is split up into two main steps, the first is a semi-join reduction. This re-
duction is done in two sweeps, one following the join-tree in a bottom-up order and the other
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following it in a top-down order. In the second step, the join tree is used as a query plan to
perform the actual joins. Since creating a join tree and constructing a full reducer via the GYO
algorithm involve the same operations, a full reducer can be derived from the join tree.

Example 2.2.2. Taking the query Q(y, z, p, w, x,u) :— R(y, 2), S(p,w), T(x,y, z), U(2), W (y, z,u),
its join tree T is shown in Figure [2.5

Figure 2.5: Join tree T for query q

Now both reducer passes necessary in the algorithm become clear. The reducer of the first pass
performs the following sequence of semijoins: T:=T x U, T :=TxW R:=Rx S, R:=RxT.
This sequence completely removes all dangling tuples from the root node R. If ¢ were a boolean
query, checking whether or not R contains any tuples would yield the answer to the query.
Since ¢ is not, the algorithm continues to the second sweep of top-down semijoin reductions. A
possible sequence of semijoins performed during this phase is: S := S x R, T :=T x R, U :=
UxT,W:=W xT. With this, a full semijoin reduction has been completed, and the database
is said to be globally consistent and all dangling tuples are removed. As such, the algorithm
can proceed to the joining phase.

Now the algorithm can start computing the results of query ¢g. It does this by incrementally
computing the join results of connected tables in the join tree. This is possible using either a
top-down or a bottom-up traversal. Choosing a top-down traversal allows us to combine the
second sweep of the first phase with the computation of the joins, removing one traversal of
the join tree. Since a full reducer was applied to the database before computing the joins, each
join can now only increase the size of the results. There will never be any rows present in any
subresult that will be removed in a later join, since this would be a dangling tuple.

Yannakakis’s algorithm efficiently evaluates acyclic join queries in O(|Input| + |Output|). The
O(|Input|) complexity corresponds to the first phase of the algorithm, with |Input| being the
size of the input relations, where dangling tuples are removed via semijoins in a bottom-up
and top-down traversal of the join tree. This phase only processes the input relations and does
not generate intermediate join results. The O(|Output|) component corresponds to the second
phase, with |Output| being the size of the output, where the final join results are constructed
by traversing the join tree and generating output tuples that satisfy all join conditions. Due to
the first phase of the algorithm, no intermediate result can exceed the size of the final output,
ensuring that the entire evaluation remains efficient and avoids the explosion of subresult size
common in join operations called the diamond problem [5].
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2.2.3 Practical use of Yannakakis’s algorithm

While Yannakakis’s algorithm provides strong theoretical promises of faster query evaluation,
when implemented as-is, it lacks practical use in many real-world scenarios. When joining two
tables in a real-life database system, the join attributes are often primary and foreign keys. This
key-foreign key structure inherently limits the size of intermediate results as well as the final join
output. As a result, the overhead of performing semijoin reductions—especially the traversal of
the join tree and the multiple passes over data—can outweigh the benefits, particularly when the
joins already filter out a large amount of subresults. In such cases, traditional join algorithms
optimized by query planners and indexes often outperform Yannakakis’s approach in practice,
despite its superior worst-case guarantees.

As mentioned in [24], testing Yannakakis’s algorithm in DuckDB, it does indeed perform worse
than the regular query plan DuckDB would create. When removing the key constraints and
duplicating the dataset multiple times, however, the duration of Yannakakis’s algorithm stays
the same while the duration of the regular query plan skyrockets. These measurements prove
that the theoretical guarantees of the algorithm are still valid, even though they do not come
to fruition in most practical cases.

All of this does not mean that Yannakakis’s algorithm is unusable in practice. Works like [4]
have created efficient implementations of the algorithm within existing database engines. The
rest of this thesis will build upon the results of [|4]

2.3 Shredded Yannakakis

This section aims to explain the method proposed in [4] to efficiently implement Yannakakis’s
algorithm in existing database engines. To explain this, we must explain nested semijoin
algebra as well as the notion of query shredding. These concepts are important to the
actual content of the thesis, since the implementation of this approach was parallelized during
it.

2.3.1 Basis of the shredded approach

The basis of the shredded approach provides a different approach to processing computationally
expensive joins, which can then be used to provide the same guarantees as the original algorithm
without requiring additional semi-joins |5]. This method decomposes the traditional hash-join
operation, which is often used in real-life database operations, into two distinct sub-operations.
These are called lookup and expand. Lookup finds the first match in the hash table made for
the build side, while expand iterates over the rest of the matches. These two sub-operators
now serve different purposes; lookup is an operator that either keeps the number of rows
present unchanged or shrinks it, while expand will do the opposite and grow the subresults.
This approach can also be compared to pruning the subresults, since the lookup identifies and
discards combinations that do not have a matching key in the build side’s hash table. Finding
an initial match filters out a large number of non-matching tuples from the probe side before
the expansion phase, thus reducing the overall work and the size of intermediate results.

The shredded approach will now expand upon the Lookup & Expand approach, defining it in
terms of a set of nested relational operators. This set is called the Nested Semijoin Algebra
and allows Lookup & Expand plans to be executed in interpreted query engines.

2.3.2 Nested Relational algebra

The Nested Relational model allows for nesting objects within relations. An example would be
taking a relation with schema Department(depld, depName) and one that uses the previous
relation Company(name, departments). In this example, an object of type Department is
a tuple with two components; it has a depld, which could be an integer denoting its unique
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identifier, alongside a depName, which is a string denoting its name. The company scheme has
two attributes: a depld, which could again be an integer denoting an identifier, and departments,
which is a subset of tuples of an instance of the department relation. Instead of linking a
department to a company using a key-foreign key structure, using the complex data object
model, it is possible to link them using the attributes of the relations themselves.

In the Nested Relational model, two types of attributes are distinguished: flat attributes and
nested attributes. Flat attributes hold atomic values such as integers or strings. For example,
depld is a flat attribute because it is a single integer value. Nested attributes, on the other hand,
refer to the schemes of nested relations. In the earlier example, the departments attribute in the
Company schema is a nested attribute because it holds a set of Department tuples, conforming
to the Department(depld, depName) schema.

This data model is used in [4] to create nested data structures when processing the subresults
necessary for the join operations.

2.3.3 Query shredding

To represent complex data objects with flat and nested attributes, [4] proposes the use of a
shredded representation. Here, a nested relation can be represented using a collection of flat
relations. A columnar data format is assumed, where a flat relation R(x1,...,x,) is physically
represented as a tuple R = (R.z1,..., R.x,) where each R.x; is a vector of length |R|. Taking
one value from each R.x; at the same offset produces a tuple of R.

Now taking a nested relation R as a relation with both flat and nested attributes, its weight
is the total number of tuples produced when flattening R. The unnest operation unnests a
specified nested attribute in tuple t, turning it into an equivalent flat attribute in one or more
new tuples. An example of this would be unnesting the tuple {z, {y, {z}}} into tuple {z,y, z}.
If we were to unnest the tuple, the resulting tuple would be {z,y,{z}}, which would still be
nested. To obtain a completely flat tuple, we would need to either unnest it again or use the
flatten operator on either this tuple or the original tuple, which completely unnests it in both
cases.

Given ascheme X = {y1,..., 9%, Z1,---, 21}, Y1, - - - , Y denotes the flat attributes and 7y, ..., Z;
denotes the nested attributes. When converting X to a shredded representation shred(X), it be-
comes shred(X) = {y1,...,yx, hd_Z1,..., hd_Z;, w_Zq,...,w_Z;}. The flat attributes are kept
as-is, while the nested attributes are kept as a pair of hd_Z; and w_Z;. The first attribute hd_Z;
contains a pointer to the head of a linked list that represents the content of nested attribute
Z;. A separate list called nzt is used to point to the next tuple of the linked list. The scheme
ishred(X) is denoted by the union of shred(X) and nat. Lastly w_Z; stores the weight of the
nested relation Z;.

Let us continue with the shredded representation of the data present in a relation. Starting
with a nested relation R over scheme X, the nested representation is R = (R, Xg, 7). Where
R is a relation with scheme shred(X), g is a store over X, and r is a selection vector for R.
Store ¥y is a collection of relations, one X (YY) for each nested relation Y in X, where every
Y r(Y) has schema ishred(Y), this being the union shred(Y') U nat.

Example 2.3.1. An example of a shredded relation can be found in Figure [2.6| Here, a
relation with schema {z, y, {u, {v}} containing two nested tuples is shown, alongside its shredded
representation. The nat vectors are used to traverse the linked list to which hd points to. In
this vector, a zero denotes no next value, while values higher than zero indicate the index of the
next value, starting from one. Starting from hd, following the next vector allows the algorithm
to produce all flat tuples during the unnesting process. Flattening this nested relation would
yield four flat output tuples: {ai,b1,¢1,d1}, {a1,b1,c2,d2}, {a1,b2,c5,ds} and {a1,ba, c3,ds}.
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Figure 2.6: Example of a shredded relation R

2.3.4 Main operators of nested semijoin algebra

The nested semijoin algebra proposed in [4] is a set of relational operators that can operate on
nested relations. At the core of this nested semijoin algebra lie four operators that can be used
to perform join operations. These operators are Group-by (), nested semijoin (»>), unnest
(1), and flatten (u*), alongside the standard relational operators, altered slightly to work on
nested relations. Combining the first two operators, it is possible to emulate the evaluation of
a hash-join with a nested output.

The first operator group-by (v5) corresponds to creating the hash table necessary for the hash-
join operation. The operator will group the tuples present in the relation it is applied to
(relation R with schema X) on the attribute(s) specified in . The resulting hash map’s key
values are the attributes specified in g, while its values are the corresponding attributes present
in X\ {g}. The attributes of § must all be flat attributes, since it is not possible to perform a
group-by operation on a nested attribute. The important distinction to make is that after the
group-by occurs, all hashmap values are nested together for each separate key. The resulting
hash table made during the group-by operation is called a dictionary. A dictionary over § ~» Z
maps y-tuples as keys to non-empty relations with scheme Z as values.

The second operator nested semijoin »>, is applied after the group-by operation. It takes a
dictionary D: g ~» Z and relation R with schema X. If X is compatible with § ~ Z, occurring
when the attribute(s) of § are present in X and that A(Z) N A(X) = (), meaning that the
flat attributes of Z and X do not overlap. This operator will then fulfill the role of probing
dictionary D for each tuple t in R. If the dictionary contains t[g], it will extend t with a new
nested attribute Z, containing the corresponding value present in D for t[g].

The unnest and flatten operators are needed to transform the eventual nested relation into a flat
one with easily usable tuples. As mentioned earlier, the difference between the two operations is
that the unnest operation only unnests one level of nesting, while the flatten function completely
unnests the given nested relation. While the flatten operation can be achieved with a sequence
of unnest operations, [4] implemented the flatten operation separately from the unnest operation
to reduce overhead and increase performance.
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2.3.5 Hash joins via nested semijoin algebra

Using the nested semijoin and group-by operators, a join between two relations can be achieved
within the nested semijoin algebra. After performing both operations, a nested relation is
obtained; as such, a flatten or unnest can be used to convert this to a relation containing only
flat attributes. Joining two relations R and S via the nested semijoin algebra can be formalized
via the following formula:

R(z,y) = 8(y,z) = u{z}(RM’Y{y} (9)) (2.7)
Example 2.3.2. Figure shows an example of a join via group-by and nested semijoin.
Two flat relations R(a,b) and S(b,c) are joined on their shared attribute b. A dictionary
is created for relation R using the group-by operation, after which this dictionary is used in
the nested semijoin operation together with flat relation S. The result is a nested operation
where the join key and remaining attributes of S are flat attributes, while the remaining at-
tributes of R are nested. When flattening the result of the nested semijoin operator, we receive

{(b1,c1,a1), (b1, c1,a2), (b1, c2,a1), (b1, c2,a2), (b2, c3,a3)}.
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Figure 2.7: Join example between two tables using NSA operators

A structure for the query plan is specified to evaluate joins efficiently within the nested semijoin
algebra. Both the nested semijoin and group-by are linear operators and, as such, generate
outputs with a cardinality that is linear with their inputs. Taking the nested semijoin, each
tuple in R can produce one tuple in Rp»> S at most, so this output cannot increase in size. As
such, the nested semijoin can’t create dangling tuples, just like the regular semijoin. On the
other hand, the unnest and flatten operators are non-shrinking operators, meaning that they
can potentially create dangling tuples. Because of this, they are always preceded by the join
operations in 2-phase NSA. When they are used in this manner, they simply create their output
as flat tuples and do not create any unnecessary tuples.
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Figure 2.8: (a) A 2-phase NSA plan. (b) A non 2-phase NSA plan, with unnest applied
before linear operators.

To create an efficient query plan, [4] now proposes the notion of 2-phase NSA expressions.
For an NSA expression to be 2-phase, every unnest and flatten must have only non-shrinking
operators as its ancestors within the query tree. This constraint ensures that the operators
capable of increasing the subresults are only applied after all operators that keep the sizes
of their outputs linear to their inputs. This order avoids the risk of unnecessary subresult
expansion early in the evaluation, which could degrade performance. It is then stated that
a given join query @ can be evaluated by means of a 2-phase NSA join plan if and only if
Q is acyclic. Shredded Yannakakis can then evaluate these 2-phase NSA expressions in time
O(In + Out), the same time complexity as the original Yannakakis’s algorithm [2.2.2] Figure
is based on Figure 8 of [4], it shows an example of a 2-phase NSA plan (a) where the
flatten operator is only called at the root of the tree. Query plan (b) also displays a non 2-
phase NSA plan, where an unnest operator is placed between a nested semijoin and a group-by
operator.

2.4 Usage of the algorithms within this thesis

For the practical aspects of the thesis, an implementation created for |4] was studied and ex-
tended. It implements the nested semijoin algebra operators in Apache DataFusion [1] to
measure the efficacy of the shredded approach. Alongside the operators, the shredded data
structure was also implemented to be used alongside the NSA operators. Since Apache Data-
Fusion is a column-store database system, it lends itself nicely to using the shredded approach
since it allows efficient column-level access.



Chapter 3

Database systems &
parallellism

Since the goal of the thesis is to add parallelism to a database implementation, basic terminology
and concepts of databases are illustrated within the first section this chapter. Later sections
cover a more specific approach to query evaluation, alongside a specific database implementation
named Apache DataFusion, which was used throughout the thesis.

3.1 Introduction to database systems

Database systems are used as the backbone of many information systems. They allow us to store
data and query it to retrieve information. This section covers basic terminology of databases,
explaining how a database generally processes information. Through these explanations styling
rules and conventions of the second chapter from [7] are used.

3.1.1 Structures within databases

To illustrate a possible structure of a database, an example of a relation is shown in Table
In this table, each row represents a single product in a relation featuring information
about products present in a store. The schema for this relation is Products(product, category,
price, supplier). When this relation is inserted into a relational database, it can be interacted
with using SQL (Structured Query Language). This allows managing the data present in the
relations by allowing insertions, updates, or deletions and querying this data in a standardized
fashion.

Product Category Price Supplier

Laptop Electronics 1000 TechCorp
Smartphone Electronics 700 MobileMakers
Headphones  Accessories 200 SoundCo

Table 3.1: Example instance of the Products relation

The following explanation was written using chapter 15 and 16 of |7] as a refresher. Since
database management systems allow their users to query and manage data, their interface (e.g.
SQL) needs to be translated into actionable execution plans. Its so-called query processor
handles this task; this component of the database management system is responsible for both
query compilation and execution. The first step in translating an SQL statement into an
actionable query is parsing. The query compiler parses the given SQL query into a parse tree.

25
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This tree structure is then translated into relational algebra as an intermediary step between
the original query statement and an actionable plan. In this stage, the query is called a logical
query plan. It will describe the steps necessary to execute the query in a high-level, declarative
manner, specifying what data needs to be retrieved and how the relations should be combined,
but without committing to specific implementation details like which algorithms or indexes
to use. An example for the running product example would be to translate the following
query.

SELECT Orders.customer, Products.price
FROM Products, Orders
WHERE Products.product

Products.product

Orders.product AND
laptop

It retrieves data about orders and products from two tables: Products(product, category, price,
supplier) and Orders(customer, product, quantity). More specifically, the query asks which
customers bought a laptop at what price. The query can then be translated into the following
relational algebra expression:

Tl customer,price (UProducts.product:Orders.product/\Products.product:’laptop’(PrOdUCtS X Orders))

The logical query plan can be visualized as a graph structure, more specifically, a tree structure
which we will call an execution tree. The leaves of the tree structure represent the tables
present in the database from which data is extracted. Other nodes in the structure represent
logical operators that the data will flow through to compute the result. Examples of operators
present are Selection, projection & filter. The earlier relational algebra expression can be
translated into the following execution tree.

OProducts.product=Orders.product AProducts.product=’laptop’

Products

Figure 3.1: Simple query plan

Typically, the query processor will then optimize the logical query plan before translating it
into later stages. This logical plan optimization features rewrites of the relational algebra
statements in order to improve efficiency in later stages. An example would be to change the
Cartesian product present in Figure to a more efficient theta join <. This way, unneces-
sary intermediate results are avoided, reducing the overall computational cost and improving
query performance. Another straightforward optimization, for example, states that the fewer
nodes left from this stage onwards, the faster the eventual execution will be. A more concrete
example of this would be the removal of redundant joins. In general, joins are some of the most
computationally expensive operations in relational databases; hence, there is a need to remove
joins that do not contribute to the result. Another optimization that is applicable to the earlier
query plan would be the pushing of selections. Our query plan only has a selection for the
Products table. If the query compiler added the same selection above the Orders table, fewer
tuples would enter the computationally expensive join operator. As a result, the join operator
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would have less work to do. Since the selection operator is computationally less expensive, in
general, this query plan is more efficient than the previous plan (although on a case-by-case
basis, the previous plan could be more efficient).

T Orders.customer, Products.price
D<]Products.product = Orders.product

OProducts.product = ’laptop’

O Orders.product = ’laptop’

Products Orders

Figure 3.2: Optimized query plan

The query processor of a database management system will then translate the optimized log-
ical query plan into a physical query plan. This physical plan comprises different, specific
algorithms corresponding to different operators in the logical plan. As such, the query proces-
sor must select the most appropriate algorithms for each logical operator, as multiple physical
operators can implement each logical operator, each optimized for different scenarios. This is
a cost-based analysis where the cost can, for example, be expressed in the number of I/O op-
erations the system needs to make during query execution. To make these decisions, the query
optimizer will consult statistics; these include measurements like table size or data layout on
disk to compute the amount of disk I/Os needed for a particular algorithm and compare it to
other physical operators. This step can be seen as changing the operators in the tree structure
nodes to more specific algorithms, for example, converting a join node into a hash join node.
This query plan also includes helpful information during query execution, like how relations
should be accessed and whether or not a relation should be sorted, since sorting relations in
earlier operators can ease later computations. Once a physical query plan is realized, the query
engine will be able to execute it, streaming the data present in the database through the chosen
operators in the tree structure. It does so in a bottom-up fashion, starting with reading the
input relations, which are present as leaves within the tree structure. The evaluation then works
its way upward through the operators. Each internal node will receive data and execute its
operation, sending it onward to the next operator. Eventually, reaching the root node where
the results can be collected and returned to the user.
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3.1.2 Data storage types

The database engine used during the realization of this thesis features data stored in a columnar
format. To explain why this would be desirable over the more traditional and intuitive row
format, a comparison of the two follows. Figure [3.3|is a visual representation of the difference
between row and column storage. In row storage, data is stored as tuples, translating to
one array for each tuple. This provides a simple and intuitive way of retrieving data, where
retrieving row n retrieves the entire tuple. This approach means that whenever the data of
a tuple needs to be accessed, the entire tuple needs to be read, regardless of the number of
attributes needed. This can either be a positive or a drawback. If an operation inherently
requires multiple attributes from each tuple, data can be accessed efficiently. The problem
is that whenever an operation only requires a single attribute, the entire tuple needs to be
read into memory. Since a larger amount of data is retrieved than necessary, this needs more
cache memory than it ideally would, overwriting other data present in the system cache and
possibly forcing a reread on that data. With the less traditional columnar storage, data is
stored vertically, translating to one array for each column. This allows for more efficient data
access when performing certain analytical operations .

An example of this would be computing the average age of the people present in the mock-up
database visible in Figure [3.3] In the row-storage case, the system would need to read nine
fields of data (all three tuples in their entirety). Using columnar storage, the system would
only need to read the age column, meaning that only three fields of data need to be read. In
this case, the columnar format would be more efficient. Columnar data storage does, however,
lack when operations are write-heavy. Writing a new tuple to the database requires the data
to be written into each column separately, creating a similar effect to the drawbacks of row
storage.

In conclusion, both row-based and column-based storage have their strengths and weaknesses.
Depending on the purpose of the database system, one may very well be preferred over the
other.

| Id |Name | Age | | Id |Name | Age |
1 Alice | 20 1 Alice | 20
2 Bob 21 2 Bob 21
3 |Charlie|] 22 3 |Charlie| 22

Figure 3.3: Row & column storage
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3.2 The Volcano query processing system

Having created the physical query plans as explained in section [3.1, a query engine requires
all of its implemented physical operators to be structured in the same way so it can slot any
operator before or after any other operator. Since different queries evaluate different plans,
operators can occur in several places in query plans. One way to realize this is to follow the
Volcano query evaluation system [10]. It provides an interface that the operators can implement
to provide standardized data flow; this way, each operator knows the structure of the data it
receives and can implement it accordingly. This environment also provides a way to execute
queries in parallel, implementing an operator to partition data and spawn different subtasks
to enable parallelism. Volcano promises to be an extensible system, allowing users to create
new operators that work alongside existing operators as long as they follow the established
paradigm. Although the origins of this system are quite old, implementations of it are still
being made and used, examples of which include Apache DataFusion and previous iterations of
DuckDB [19]. This section aims to explain the original Volcano operator model as relevant to
the thesis. Later sections explain a specific implementation of the operator model in Apache
DataFusion.

3.2.1 The Volcano model as iterators

In the Volcano system, algebraic operators are implemented as iterators. This is facilitated by
the operator interface mainly consisting of three different calls, namely open, next & close.
Using these calls, operators can communicate and retrieve data from other descendant nodes.
The open() procedure will serve as the initialization call for an operator. An example of this
can be the materialization of the build side in a hash join in order to create the dictionary used
during the join itself or simply the allocation of memory to store this dictionary. An open()
function will typically call the open() function of its child nodes, propagating it throughout the
query plan. In the original Volcano model, each operator has its associated state record. This
data structure holds arguments for the operator (its state). To create the query results, the
next() function of the top-most operator is repeatedly called. The purpose of this function is
to retrieve a batch of data from its child operator, execute its calculations on this batch, and
return the new batch. The next() operator, however, is not obligated to poll its child operator
every time it is called. If it still has data left over that was not used in a previous procedure
call, it might use this and return the result of its calculations on this leftover batch. Using
the next() procedure calls, data flows through the operator nodes present in the query plan,
starting from the tables present in the relational database, and gets modified to the eventual
end result. Lastly, the close() function is called when the nezt() function of the root operator
receives the end-of-stream message. Like the others, when close() is called on the root operator
node, it propagates throughout the tree. The goal of the close() function is to shut down
an operator, for example, freeing any memory that was allocated during the execution of this
operator[10].

Using these three operations, the iterator structure becomes clear. Once the open() call has
been propagated throughout the tree, next() calls begin to propagate. These calls will iteratively
build the query results. As such, the promise made by the system to be extensible is fulfilled
as long as new operators are implemented with this iterator structure in mind. Volcano uses
anonymous inputs or streams, meaning that an operator does not need to know where its data
comes from or what operations have been performed on this data. This way, the prerequisite
of being able to slot any operator above or underneath any other operator is fulfilled. Since we
must implement operators in a way that standardizes their output, we know the structure of
this data and can implement all standard database operators with this knowledge.

A concrete implementation of this model is explained using the classic hash join algorithm.
The algorithm itself is divided into two phases. In the first phase, known as the build phase, a
hash table is constructed using one of the two input relations, referred to as the build side. The
keys of this hash table correspond to the join attribute(s), while the values store the remaining
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attributes of the tuples. This hash table is then utilized in the second phase to perform the
join. In the second phase, the probe phase, the other input relation, referred to as the probe
side, is used to probe the hash table. This will determine matches and create output tuples
using the keys and values of the hash table as well as the attributes from the tuple used to
probe the table. For the Volcano implementation, the build phase corresponds to the open()
procedure, and the probe phase is included in the next() procedure. Every call of the next()
procedure corresponds to probing the tuples present in the operator, retrieving tuples from
child operators whenever necessary. When the child operators send the end-of-stream message,
the join operator will join the data that it has left and send its own end-of-stream message
afterward. When the parent operator propagates the close() procedure to the join operator, its
own close() procedure gets called. This procedure can then free up the space allocated to the
build table, cleaning up traces left by the operator [9)].

3.2.2 Parallelism in the Volcano model

The following subsection explains a new operator as it is outlined in [9]. The original Volcano
model features meta-operators that embody different concepts for query processing. One of
these operators is the exchange operator. Like the other operators, it can be slotted into a
query plan tree. The exchange operator, however, does not perform a calculation on the data
like the other operators. The role of the exchange operator is to allow parallelism during the
query evaluation process. In general, there are two types of parallelism, vertical and horizon-
tal parallelism. With vertical parallelism, multiple different operators run simultaneously.
This way, multiple iterators can run concurrently, improving execution speed. With horizontal
parallelism, a single operator can be run over multiple workers. To facilitate this, data needs
to be shuffled across workers so every worker has the correct portion of data. The exchange
operator aims to achieve both forms of parallelism while keeping the same interface as the other
operators in the paradigm.

To enable vertical parallelism, the exchange operator is made to create a new process on which
the operator can run alongside a shared memory structure to communicate between processes
called a port. These are created during the open procedure call of the operator. The new
process can be created using a UNIX fork, for example. This will create a child process that is
identical to the original parent process. The exchange operator will follow a different route in
the two different processes, creating a producer-consumer relationship between the child and
parent. The role of the producer (child) process is to function as a normal iterator. It will
pull data from its own child operators when its next procedure is called. The producer process
will call the next procedure of its child operator as long as the end-of-stream tag has not been
received. It does so independently of its parent operator, effectively becoming a driving force
in the execution tree. This is comparable to the root node of the tree calling next procedures
as long as it has not received the end-of-stream tag. When data enters the producer, it will be
forwarded to the data port created by the parent. This is where the exchange operator differs
from the other operators in the Volcano model. Usually, data flows through the execution tree
in a demand-driven fashion, only moving data whenever the next procedure is called. The
dataflow between parent and child processes, however, is data-driven, flowing from producer to
consumer whenever data is present in the producer. This change was made to reduce overhead
by not having to send data requests. When the parent operator of the exchange operator calls
its next procedure, the consumer process will pull data from the port, waiting for new data
when there is no data present.

The exchange operator also enables horizontal parallelism. Horizontal parallelism is divided
into two forms, bushy and inter-operator parallelism. Bushy parallelism is when different
subtrees of the execution tree run in parallel. The difference between vertical parallelism and
bushy parallelism is that in vertical parallelism, the different operators are pipelined into each
other. With bushy parallelism, the results of the parallelized operators eventually meet later
in the execution tree (for example, in a join operator). Inter-operator parallelism occurs when
multiple threads or processes run the same operator concurrently. They do this on subsets
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which we will call partitions of the data present in the database, requiring extra care that the
data has been partitioned correctly. Bushy parallelism comes prepackaged with the exchange
operator workings as explained earlier, if we insert one or multiple exchange operators correctly
into the execution tree. The exchange operator will execute the subtree below it, executing it
in a new process, in parallel. Intra-operator parallelism requires a data partitioning mechanism
to work, adding this necessity to the exchange operator. This is achieved by making changes
to the port data structure. Instead of it being a simple single channel for sending data from
the producer to the consumer, it must now support multiple producer and consumer processes.
To realize this, the port data structure gets split into multiple channels, one for each consumer
process. Each consumer process gets a channel assigned to it and is required to only pull data
from said channel. The producer processes use a helper function to determine which channel
to send a certain input to. The helper functions can be thought of as implementations of
round-robin partitioning, hash partitioning, ... .

(a) Execution tree without exchange
operator(s) (b) Execution tree with exchange operators

Figure 3.4: Different execution trees

An example of how the exchange operator should be added to existing query plans is visible
in Figure based on Figure 5 from [9]. Figure shows the standard, single-threaded
version of the plan. In figure [3.4b| exchange operators were added to this plan. It reads three
different tables from the database and joins them via two different binary join operators. The
role of the bottom three added exchange operators is to independently read the input relations
and partition them. These operators should be attuned to each other to ensure the correct
(equal) partitioning scheme. The role of the top exchange operator is to start one or more new
processes to compute the two joins underneath it. It will become the driving force that calls the
next procedures of these joins and ensures that the original process only handles the projection
root node and the consumer side of the exchange operator.

To illustrate the need for correct partitioning, an explanation of the grace hash join algo-
rithm follows, based on the presentation from [21]. This is a commonly used algorithm for
performing joins on parallel and/or distributed systems. The grace hash join algorithm starts
with declustering as it is called in [21], although, in this text, we will call it partitioning.
As visible in during the partitioning stage, input relation R is partitioned into N buckets
by performing a hash on the join attribute(s). Afterwards, the same is done to input relation S,
hashing it with the same hash function on the join attribute(s). Using the same hash function
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for both relations is vital to the correctness of the algorithm since this is how we ensure tuples
that are to be joined end up in the same bucket. After partitioning is completed, the algorithm
will join matching buckets from both relations to build the resulting relation. In a parallel
context, each pair of buckets can be joined in a different thread or process, allowing horizon-
tal, intra-operator parallelism. The partitioning phase of the algorithm can, for example, be
implemented during the file scan where the input table is originally read. This way there is no
need for an extra exchange operator in the execution tree. The output this operator produces
is, in turn, partitioned on the original join key. In order to combine the outputs of the different
partitions, there is a need for a new meta-operator that is capable of combining data from
multiple threads.
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Figure 3.5: Grace Hash Join Algorithm

3.3 Apache DataFusion

During the realization of this thesis, Apache DataFusion was used. It is an extensible query
engine written in Rust that uses a columnar data format. DataFusion promises high perfor-
mance while still being manually extensible to allow its users to tune it to their preferences or
to add more functionality or algorithms to the query engine. The engine uses Apache Arrow
as its memory model; this makes DataFusion an in-memory query engine featuring columnar
data storage. The main goal of DataFusion is to provide a reusable system that can be used
as a baseline for other systems, implementing the optimal strategies for the basic elements of
a query engine. To write this section, a paper provided by the developers of DataFusion [17],
architecture talks explaining the goals and inner workings of Apache DataFusion [14] [15] [16],
and the source code [1] were used.

3.3.1 Core concepts in DataFusion

To understand what DataFusion was made for, understanding the concept of deconstructed
databases is vital. Database systems have been extensively researched throughout history, re-
sulting in a wide array of developed and comparatively analyzed techniques. Most of these
techniques, however, are only implemented in strict, tightly integrated databases that limit
their reuse for the average user. Since implementing a database system is costly, many sys-
tems prefer to focus on a ”one size fits all” approach during development, ensuring their wide
usage. DataFusion aims to shift this approach towards ”fit for purpose” systems, implement-
ing an efficient baseline and a multitude of extension APIs. This makes creating a database
system less costly since developers can lean on DataFusion for the basics of their system, skip-
ping implementing aspects that have been implemented numerous times throughout history
[17].

Apache Arrow represents data in memory during computations using columnar layouts. It
provides a standardized way to represent data and was created with concepts such as cache
efficiency in mind. Much like the idea behind DataFusion, Arrow allows its users to avoid
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re-implementing basic features needed for database systems. The usage of Arrow enables and
significantly enhances DataFusion’s columnar processing capabilities. DataFusion allows input
data from multiple types of source files. A simple example of this is CSV files. DataFusion
allows data sources to be CSV files. A different, preferred data source, however, is Apache
Parquet. Parquet is a column-oriented data file format that works nicely with Arrow. It was
also made with performance in mind, providing structures like indexes and bloom filters for fast
data access. It features efficient data compression and embedded schemas, allowing the schema
of the data type to be added to the data file itself, making the file ”self-describing”. Having
these technologies strongly implemented in DataFusion is part of what makes it so successful
and efficient [17].

To use DataFusion or implement extensions, one needs to adhere to its basic structure. It
works as a general high-performance query engine without any manual changes. Adding it to a
project is done by simply adding the correct crate (Rust terminology for package) to the project.
Running a simple SQL query requires adding the input files (e.g., CSV or parquet files) as tables
within a context, specifying a query, and running the SQL query in the context. DataFusion
will then create a logical and physical execution plan and execute the query whenever the result
is required. The sessioncontext is an important part of DataFusion; it allows query execution
and maintains a state for an instance of the query engine. Adding data sources is done via

this sessioncontext by stating the file to be used and a table name for the data read from this
file.

@

3.3.2 Core structures in DataFusion

A query engine comprises different subsystems that, when used together, allow its users to
execute a query in its entirety. DataFusion allows developers to build on top of the existing
subsystems it provides in order to customize its behavior. Figure displays Figure 2 of
[17] outlining DataFusion’s architecture; this subsection will explain the different parts of this
architecture and the role they play in query execution as summarized in [17].
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Figure 3.6: DataFusion system architecture

Starting with the input data sources, as mentioned earlier, DataFusion supports multiple
file formats. A possible extension to this would be to support a file structure that is not yet
supported. Existing file formats are supported using the same interface that can be used to
create custom file formats for inputting data. The implementation of parquet files makes use
of Apache Arrow, increasing their efficiency. Catalogs are needed to provide metadata about
tables and columns present in the database (sessioncontext). They also provide the data types
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that are present in the different tables alongside statistics relevant to the optimization of query
execution.

The front end of the query engine consists of three different elements. The data types sup-
ported by DataFusion are implemented using Apache Arrow’s type system. The SQL planner
is tasked with parsing SQL text and forming a logical plan. An extension to this system would
increase the size of the SQL subset the engine supports. A different extension that would be
associated with the front end of the engine would be the addition of a new or different query
language. Lastly, DataFusion also supports DataFrames and LogicalPlanBuilders to offer
an alternative to building query plans via SQL. This is also extensible, allowing developers to
create their own logical plan builders to further customize DataFusion’s behavior.

Next up are the logical plans and their optimizer. It is possible to create customized logical
plans using custom logical expressions. The optimizer that rewrites the logical plan is also cus-
tomizable, rewrites are executed using passes over the logical plan. These passes are extensible
and usually feature operations like type coercing and introduction of sort and redistribution
operations.

The last and most important for this thesis is the execution engine itself. The operators present
follow the Volcano operator model. Operators are implemented using streams, allowing them
to produce output incrementally. The rust stream trait allows for the creation of a standardized
polling structure [3]. Implementing a stream requires the developer to implement a poll_next
function that returns the current state of the stream; if there is a data point present in the
operator, the function will return Poll::ready(Some(x)), indicating that output was created. If
the operator currently has no output that is ready to be propagated, Poll::Pending(None) will
be returned, indicating that the caller of the function should try again at a later time. Lastly,
Poll::Ready(None) is returned to indicate that the stream has been completed and no new data
will be propagated from this stream. Certain operators, like a full sort operator, necessitate a
full materialization of the subresults. These operators are called pipeline-breaking operators.
With the Volcano operator model, the output of the query is built up incrementally, with data
flowing in a demand-driven fashion only when the next() operator is propagated through the
entire query tree. Whenever an operator requires its complete input to produce even its first
output tuple, it acts as a pipeline-breaking operator. This is because the next() call cannot be
satisfied until the operator has processed all the data from its children in the query tree.

Data flows in the form of RecordBatches, bundling tuples into a larger structure, allowing for
more efficient computation. The size of a RecordBatch is variable, and it is important that a
suitable size is chosen. Large RecordBatches allow us to call fewer iterations of next(), possibly
allowing for a faster query runtime. However, this must be balanced against the fact that
a large RecordBatch carries a longer individual processing time per batch per operator, also
pressuring memory consumption at runtime. Parallelism is achieved using an exchange operator
that works as explained in section [3:2.2] This allows a runtime to use multiple instances of the
same operator in order to run them in parallel. This would mean that a single operator is split
up into multiple streams, each handling their own partition of data that flows throughout the
query tree. To schedule the parallel threads, the Tokio runtime is used. It is a library present
in Rust, designed for asynchronous network I/O and renowned for its efficiency. Memory is
managed using a shared memory pool, operators record their current memory consumption via
function calls on the shared pool. Extensions to the execution engine include new operators or
a different memory management scheme.

With these different sections of the query engine being extensible, DataFusion offers a highly
customizable programming environment, allowing many different specialized database systems
to be made from a shared baseline.
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3.4 Parallelism in DataFusion

Understanding the implementation of query parallelism in DataFusion was an essential part of
the thesis. The implementation explained later on is based on DataFusion’s implementation
since it was made to parallelize custom DataFusion operators. The goal of this section is to
provide details on the exchange operator as implemented within the original DataFusion source
code.

3.4.1 DataFusion operator structure

When talking about operators, we specifically refer to implementations of physical operators
present in DataFusion. These operators are used as nodes in physical plans made by DataFusion.
To qualify as an operator to be used in a DataFusion runtime, the programming object must
implement the ExecutionPlan trait. A trait is the Rust equivalent of an interface in other
programming languages, like Java, or an abstract class in C++. A trait defines a set of methods
that a type must implement, without specifying how those methods are implemented, allowing
different types to share common behavior. This trait features the all-important execute()
function, which functions as an initialization function for the operator. This also allows the
operator to call the execute() of its child relations, propagating the start of the query execution
through the tree structure. When creating a custom operator, the role of the execute function
is to create the stream of data that will be used to pull it in its parent operator. As such,
when we propagate the execute() throughout the query tree, parent operators will receive the
relevant data streams from their child operators, allowing them to poll for RecordBatches.
Other functions from this trait include getters for information like the operator name and
schema, and also functions to create new instances of the operator.

The simplest example of the execute() function is the one found in the filter operator. The
only thing that happens is the creation of a metrics object to track and report performance
and resource usage during query execution, alongside the execute() function call on its child
operator. Afterwards, it creates a FilterEzecStream object that can be used to pull data from
the operator itself, meant to go to its parent operator. A more advanced implementation of the
execute function can be found in the hash_join operator. For this operator, we require a full
materialization of the build side and the creation of the hash table. After creating the build
table necessary for the operator, the ezecute() function of the probe side operator is called, and
the HashJoinStream object is created.

As mentioned in the previous section [3.3.2] operator output is generated via streams. A stream
object in DataFusion is implemented via the RecordBatchStream trait, functioning like a
regular Rust stream with a corresponding schema that specifies the schema of RecordBatches
created by this stream. Each operator implements its own stream, where it pulls a RecordBatch
from its child relation, performs its operation on the data, and indicates it is ready to pass data
onto its parent operator. To return to the filter operator for a simple example, the file where
the implementation of the operator is located also houses the implementation of its stream,
the FilterFExzecStream. The following stream explanation is visualised in Figure A stream
defines an item that passes through the stream, which is a RecordBatch in this case and a
poll_next() function. This function can be thought of as the next() function for the Volcano
operator model. It should first poll its child operator for a RecordBatch, the filter operator then
filters the RecordBatch using a helper function called filter_and_project(). Afterwards, it will
indicate that it is ready to send this batch further by setting its poll parameter to Poll::Ready,
the poll_next() function will then return the processed RecordBatch.

For a more advanced example, we again turn to the hash_join operator. In this operator, its
next() is implemented as a finite state machine, with states indicating what the operator is
currently doing with its input data as visible in Figure As such, this Figure varies from
Figure in that in shows the inner workings of the operator, without taking the streaming
states into account. The operator starts in the WaitBuildSide state, which indicates that it is
still busy with fully materializing the build state. This materialization is necessary to create
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Figure 3.7: flow inside the filter operator

the hash table needed for the algorithm to function. After the hash table has been built, the
stream transitions to the FetchProbeBatch state. A call to the poll_next() function in this state
leads to a call to the poll_next() of the probe side child operator. If this child yields a new
RecordBatch, the state of the hash join operator transitions to the ProcessProbeBatch state,
where the fetched batch is joined with the build side and an output batch is produced. Should
the child operator not yield a batch, the stream transitions to the FzhaustedProbeSide phase,
during this phase, the stream processes unmatched build side rows. This could be necessary
in an outer join operation, for example, where it is necessary to also output all build-side rows
that did not find a match on the probe side. When the stream reaches the Complete phase, it
indicates that it is ready by returning Poll::Ready(None) whenever poll_next() is called. This
information was gained from the DataFusion source code [1].

WaitBuildSide

FetchProbeBatch

|

ExhaustedProbeSide Completed

ProcessProbeBatch

Figure 3.8: State machine implementation of DataFusion’s hash join poll_next

3.4.2 The exchange operator in DataFusion

”Since DataFusion implements the Volcano model, parallelism can be enabled by implement-
ing an exchange operator. This operator is called the repartition operator in DataFusion’s
source code and workflow. This subsection will explain the flow of this operator within Data-
Fusion since the exchange operator implemented during this thesis was modeled after it. This
subsection was written using DataFusion’s source code [1] as a base.

To start explaining how this operator works, a description of the data structure used within the
operator follows. Since this operator will receive data from multiple child operator streams and
needs to support multiple parent operator streams, a data structure called a distributor chan-
nel is used. This structure can be thought of as a multi/demultiplexer, turning an amount of
inputs into a possibly different amount of outputs. A visualisation is shown in Figure 3.9

The operator workflow starts with its ezecute() function, which acts as the open() function for
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the Volcano operator. In this initialization function, a given number of workers will be spawned,
each responsible for driving a partition/stream of the child operator to completion. As part
of its task, a worker performs a full materialization of the relevant child stream. It will poll
the corresponding child stream batch-per-batch for each incoming RecordBatch and will then
look at each incoming row within the batch separately. For each row, the worker looks at the
correct attribute(s) to decide which output partition/stream it has to be sent to. This process
is comparable to the first step in figure and is done via a keyed hash function from the
ahash Rust crate. An important note to make when hashing in this context, since a random
state is used within the hashing algorithm, it is imperative that this random state is the same
for each operator/stream present within the query tree. As explained in Subsection every
operator needs to partition its data using the same hash function in order to have a correctly
functioning partitioning scheme. If, for example, a join operator has two child operators that
hash the same values to different partitions, the operator would not be able to correctly join
the data and would then provide incorrect results. DataFusion simply seeds the random state
with a static value to circumvent this.

For each outgoing partition, a new RecordBatch will be created containing the rows headed for
this partition. It is not possible that this does not fit into a RecordBatch since the operator
splits one batch into one or more batches. Each outgoing batch will then be sent to the correct
output buffer to wait for the corresponding parent stream to retrieve it.

Since the open() function contains all of the interaction needed with the child operators, along-
side the preparation of the output data. This operator’s Volcano next() function simply retrieves
a RecordBatch from the corresponding output buffer whenever it is called. The only extra work
it performs is checking whether or not its corresponding output buffer has been exhausted and
incrementing the number of exhausted output buffers by one whenever this is the case.

Child stream 1 —

Buffer

Y

Parent stream 1

\

Child stream 2 Gate

Buffer

Y

Parent stream 2

Child stream 3

Figure 3.9: Distributor channel diagram

The exchange operator is automatically inserted into query trees whenever DataFusion compiles
an SQL query. It is possible to print out the physical plans that execute the given query to
verify this. Suppose that we execute a join between tablel(a,b) and table2(a,b) on column
a, hereby selecting only the rows where tablel.b > 10 and table2.b < 10. This is done using
the following SQL query:

SELECT * FROM tablel JOIN table2 ON tablel.a = table2.a WHERE tablel.b > 10 AND
table2.b < 10.

Figure shows the constructed logical plan for this query. It shows the filters found in the
WHERE clause alongside the table reads and joining of the two used data sources. At the top
of the logical plan is a projection that does not remove any attributes. The query compiler can
derive various physical plans from this initial logical representation. Some of these optimizations
occur at the logical plan level, like pushing the filter operations down towards the table scans.
This early filtering reduces the amount of intermediate results, leading to a more efficient join
operation. To facilitate parallelism, the exchange operator also needs to be inserted into the
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plan, preferably at multiple locations.

Figure [3.17] displays two different physical plans for the same query. Figure [3.114] is created
when parallelism is disabled in DataFusion; this plan lacks the exchange operator. There are
two main differences between the initial unoptimized logical plan and the physical plans in
this case. First off, the query compiler has decided to split the filter operator into two filter
operators and to push them down to the table scan (ParquetExec), an optimization done in
the logical plan stage. Second is that a new operator named CoalesceBatchesEzxec is added;
this operator is linked to the size of RecordBatches, which has an impact on the runtime as
explained in Since the filter operator decreases the size of the batches that leave it, the
query compiler places a BatchCoalescer after it to get the average RecordBatch size back up to
a larger amount.

Figure[3.11D]is created when running the query normally, allowing DataFusion to make a parallel
runtime environment. The RepartitionExec operator is the exchange operator implementa-
tion, it supports multiple partitioning schemes as visible in the plan. The RepartitionEzec
operator comes in pairs in this query tree. The first of the two uses a round-robin partitioning
scheme. This means that data will get shuffled across multiple partitions equally. The param-
eters of this operator also contain the number of input partitions that enter this operator; this
is set to one, meaning that the reading of the entire file and its filtering all happen in a single
stream/task. The parameter of the round-robin partitioning itself is set to four, which means
that the data will be split evenly across four different partitions. As such, this repartitioner
will split one stream of data into four different streams of roughly equal size.

An important sidenote to make is that the repartition operator does not always come in pairs.
If the previous operators are already working in multiple streams, there is obviously no need
for a round-robin partitioner. There is also the case when an input file is sufficiently large, and
the query compiler will decide to read this in parallel into multiple streams. In this case there
is also no need for the round-robin repartitioner. The hashing RepartitionFEzxec has four input
partitions, these are the four different streams that the round-robin repartitioner created. This
repartition operator will map four input streams to four output streams, correctly partitioning
them based on the join key of the following join operator. As mentioned earlier, this operator
will split up RecordBatches into multiple smaller batches; as such, the query compiler places
another BatchCoalescer above the repartition operators to increase the average batch size back
up to the standard 8192. The HashJoinExec operator is set to partitioned in the parallel
case. This means that it has to take things into account, like the number of output partitions
each of its children has; if, for example, the left child has three output streams while the right
child has four, it would abort the query execution. In the single-threaded version, there is no
need for checks like these, and as such, it operates in a different mode. When the HashJoinExec
operator is set to a non-partitioned mode, it is also possible for the build side relation to be read
in multiple streams while the probe side only contains one stream. In this case, the operator
will automatically coalesce all partitions of the build side into a single stream.
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Figure 3.10: Logical plan tree for a join with filter
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Chapter 4

Integrating parallellism

This chapter contains an outline of the implementation of Shredded Yannakakis made by [4]
in DataFusion. It then describes how parallelism was added to this implementation, the issues
that arose, and the solutions for those issues.

4.1 Overview of the Existing Implementation

This section provides a detailed explanation of the Rust implementation of Shredded Yannakakis
presented in [4]. It describes the core data structures and the various operators’ functionality.
The subsequent section will then outline the steps required to introduce parallelism into this
implementation correctly.

4.1.1 Data structures

At the core of the implementation lies the NestedBatch data structure. This object is de-
scribed as a batch of records that have at least one mested column. This is comparable to
the RecordBatch present in Apache DataFusion, since it manages a collection of records. A
NestedBatch contains both flat and nested data, with the flat data being held as-is and the
nested data being split into several arrays using a shredded representation (see subsection.
These arrays represent the different parts of the shredded approach, like the head-of-list and
next vectors. The nested data is also recursive, allowing for flexibility between different levels
of nesting.

Figure [4.1] shows the most intuitive way I found to visualize a NestedBatch. Figure is an
example of a nested table with Figure [£.1D] being the same data, visualised as they are presented
in a NestedBatch. The flat attributes are on the left-hand side of both figures, since the nested
batch stores these as-is. The flat attributes have arrows pointing to their corresponding nested
values. The arrows themselves correspond to the head-of-list vector present in this level of
nesting. Each rectangle indicates one level of nesting, and the dotted arrows correspond to the
next vector for this level of nesting. When no dotted line is present, the next value is zero,
indicating there is no next element.

With this data structure, tuples with nested data can be collected as records in NestedBatches,
ready to be used within the implementation of the nested semijoin algebra.

4.1.2 Operators

The two main operators required for joining two input relations are called multisemijoin and
group-by. The multisemijoin operator differs slightly from the nested semijoin as explained in
Section while the group-by operator is the same.

40
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Figure 4.1: Comparison between shredded and nested representations

The multisemijoin operator was implemented as a DataFusion operator with its corresponding
stream. It takes a guard relation, which is a regular table read, alongside one or more child
group-by operators. It will then perform the semijoin operation as presented in Figure [2.7]
the guard relation would be relation S, while the group-by operation is the child relation.
The multisemijoin has its own stream structure, with its own data type running through it. A
SemiJoinResultBatch is the output of the multisemijoin operator and the input of the group-
by operator. It can either be a flat RecordBatch or a nested NestedBatch; this is necessary
since the multisemijoin is also used to introduce table scans to the 2NSA plans. A 2NSA
plan is slightly different in practice as visible in Figure [{.2] since an extra semijoin is used as
input to the lowest group-by. The output of the multisemijoin that reads relation T are flat
RecordBatches, that enter the group-by <.} to be nested on attribute a.

The group-by operator, also implemented as a DataFusion operator with its corresponding
stream, differs from the multisemijoin in fully materializing its input stream. A group-by
operator will exhaust its child multisemijoin relation in its ezecute() function, collecting metrics
like the number of input batches and rows as it does so. After this, it will group all batches
using its specified group-by attribute. It will then return a GroupedRel object, similar to a
NestedBatch but with specialized implementations depending on its content. The important
difference between the multisemijoin and the group-by operators is that the multisemijoin has
a corresponding stream structure, allowing it to function like a regular DataFusion operator
via execute() and pollnext() function calls. In contrast, the group-by operator immediately
returns the value of its computation.

4.2 Adding parallelism to the existing implementation

This section will explain the idea behind the parallel implementation created for the existing
shredded Yannakakis implementation [4]. It will review the architectural decisions and describe
the strategies used to facilitate parallelism.

4.2.1 The exchange operator for shredded Yannakakis

To add parallelism to Shredded Yannakakis, the overarching strategy was to introduce an
exchange operator that works with nested relational algebra. As explained in Subsection [3.2.2
the exchange operator is a meta-operator that can be inserted into existing query plans. Once
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Figure 4.2: A realistic 2-phase NSA plan

in place, it spins up new threads to drive the execution of different subtrees to completion in
parallel. Apache DataFusion already includes an exchange operator for standard RecordBatch
data, but adapting it to support nested batches required some adjustments to ensure the query
results remained correct. We must now focus on creating an exchange operator that can be
inserted into 2NSA plans. The original operator in DataFusion will be referred to as the
repartition operator, while the newly implemented operator designed to handle nested data
will be referred to as the exchange operator.

When thinking of ways to approach this problem, it quickly became clear that implementing
the exchange operator would be different for either the multisemijoin or the group-by operators.
Since it goes on top of an existing operator, and both operators produce their output in other
ways with different resulting data objects, ensuring correctness for both would mean that two
different operators had to be made. Following a manual calculation of what should happen for
the data to flow through the operators concurrently, it became apparent that implementing the
exchange operator for either operator would prove sufficient. Doing this for the multisemijoin
seemed to be the most intuitive approach. The manual calculation also made clear how the
partitioning would go and why this would be correct.

When implementing the exchange operator above multisemijoin operators using the general
idea explained in Subsection [3.2.2] and shown in Figure 3.5] it’s crucial to partition the data
correctly as it passes through the operator to ensure correctness. This involves selecting an
attribute on which to partition the data, where the value of that attribute determines the out-
going partition for each tuple. This attribute, referred to as the partition key, must align with
the grouping attribute used by the group-by operator higher up in the query plan to maintain
correctness and avoid missing join tuples. When partitioning in this manner, we ensure we
obtain a reproducible scheme. This is important because we are performing the semijoin on
two different relations together; as such, we must ensure that equal join key values end up in
the same partitions.

Example 4.2.1. To illustrate how this could go wrong, using Figure data from table T
and table S are joined in the second multisemijoin. If, for example, numerical data is split into
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two partitions, where data coming from T is sent to partition 0 if its partition key is even and
sent to partition 1 if it is odd. Data read from table S now also needs to follow this partitioning
scheme, for if it is not followed, tuples that should join will not be present in the same partition
and as such won’t be recognized as joining tuples. This leads to the same issue that arose in

Figure 3.5

Since there is no repartitioning after a group-by operation, its output is still partitioned as
it was when leaving the multisemijoin exchange operator. We also know that the group-by
operator output will have one flat attribute. Consequently, this is the attribute on which the
data is partitioned and will be present in the guard stream of the higher multisemijoin. All
that needs to happen now is to partition the guard stream on this join key using a regular
DataFusion repartition operator. Since we use different operators to partition the data, both
partitioning schemes must utilize the same hashing function. Otherwise, equal values for the
join key might still end up in different partitions. If we are able to align the hashing that occurs
after a multisemijoin with the hashing that occurs when reading the guard relation, we have
ensured correct partitioning.

Example 4.2.2. A walkthrough of the partitioning needed in Figure follows. Starting with
the lowest table scan for table T, it would need to be partitioned on its Z attribute, since this
is what its following group-by operator will group the relation on. Leaving the group-by v{zy,
the output would still be partitioned on the Z attribute, since the group-by will perform its
operation on the different partitions separately without any data shuffling. This would mean
that the table scan for table S which is the guard relation for the multisemijoin also needs to be
partitioned on its Z attribute; this way, equal values for Z will always be present in the same
partition, and as such, the multisemijoin operator can join the two relations correctly. Leaving
this multisemijoin operator, the output is still partitioned on the Z attribute. The problem
now is that the next join operation will take place using the Y attribute as the join key, as
such, there is a need for a repartitioning of the data, now using Y as the partition key.

The exchange operator must now be implemented to repartition the nested data structure to
achieve this partitioning. It must look at every output tuple of its underlying multisemijoin and
send it to the correct output streams. Just like the regular exchange operator, it will function
like a distributor channel as seen in Figure [3.9] Having repartitioned the data on attribute ¥’
in between the multisemijoin and group-by vy}, the group-by operator will again group the
incoming tuples. The table scan of guard relation R will then be partitioned on its Y attribute,
before being sent to the multisemijoin that will join the two inputs. It now becomes clear that
every time the join key changes along the query plan, a repartitioning step must be introduced
to ensure the data is correctly aligned for the next operator.

Since the exchange operator promises to introduce parallelism into query runtimes without
changing existing operators, the goal of the implementation was to make changes only inside the
newly implemented operator. The implemented operator largely succeeds in doing so; however,
there was one change that had to be made to the group-by operator. The group-by operator
contains an array of child multisemijoin streams, which it uses to materialize their subresults.
This array had to be converted to a two-dimensional array, where instead of only containing
the children, it contained each partition of each child. Since the original implementation only
worked with a single partition, the operator could not work over parallel partitions without this
change.

4.2.2 Shuffling nested data

The main hurdle in implementing the exchange operator is implementing how data gets shuffled
across partitions. To look at every tuple and decide where to send it, a full materialization of the
subresults is necessary. Each tuple will be looked at separately while calculating a hash value for
its partition key. Since the partition key is always a flat attribute in the nested batch case, we
can extract this column to calculate the hash values, as happens for regular RecordBatches. In
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Figure 4.3: Possible Shredded Yannakakis runtime

the flat RecordBatch case, a RecordBatch gets split into smaller RecordBatches, one for each
output channel. After the whole incoming RecordBatch has been processed, each outgoing
batch will be pushed into its corresponding output channel. During the implementation of the
operator, issues arose with shuffling the nested data columns. This subsection will explain the
problems that arose, while Subsection [£:2.3] will explain the solution to this problem.

The group-by operator, as implemented, fully materializes its input data before performing its
operation. Since the data is fully materialized, it contains the whole subresult and performs
its operation on it in its entirety. This leads to any group-by operator always returning one
groupedRel (which can be considered as a RecordBatch), which contains its nested data in one
NestedColumn alongside its flat attributes. The multisemijoin operator will take this single
resulting groupedRel batch and join it with its guard relation, resulting in multiple batches
leaving the multisemijoin operator. In practice, when creating the outgoing groupedRel in the
group-by operator, the implementation will simply take the first batch from the materialized
subresult and use its nested data since it knows that the nested data is the same in each batch
present in the group-by. An important note is that the nested data is equal in all batches; the
head-of-list vector that links flat attributes to nested attributes may differ for each batch. To
illustrate this by using Figure the numbers inside the nested columns are the same 1,2
and 3, the next vector is the same, visualized by the dotted arrows, but the arrows pointing
from the flat attributes to the nested attributes are different.
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When working with multiple streams concurrently, each stream of data/partition that flows
through the group-by operator may result in a different groupedRel with different data. A
problem arises when data shuffling occurs, when, for example, we send a nested batch from
partition 0 to partition 1, its nested columns will contain data created in partition 0. The
other batches present in partition 1 will contain the data that originates from this partition,
meaning that when we simply work with the nested data of any given batch during the group-by
operator, this data is not necessarily representative of all batches present in the partition. This
leads to an incorrect query execution, possibly creating index out of bounds exceptions since
the head-of-list vector remains unchanged, and crashing the query runtime.

To illustrate this problem, we turn to Figure 4.4 Each separate part of the image shows a
batch that passes through the operators; the batches themselves come from inside the exchange
operator. Starting with batch a, since it only contains one row, the repartitioning in the
exchange operator will calculate the hash value for the partition key and send that row (now
batch ¢) to the correct output partition, which is partition 0 in this case. Batch b has two rows,
so hashes will be calculated for each row. Because of the values for the partition key hashing to
different buckets, the batch will need to be split into two separate batches. Batch d will be sent
to partition 0, meaning that it has moved partitions, while batch e stays in partition 1.

The problem now becomes clear when looking at batches f and g. They are what becomes of
the batches c¢,d and e after passing through a group-by and a multisemijoin operation. Since
partition 0 now has two batches with differing nested column data, {1,3} and {3}, and the
group-by operator simply looks at the first batch it retrieves to obtain the nested column data.
We obtain a race condition, where depending on which partition was the first to push its data
through the exchange operator, the results of the following group-by operator change. It is clear
that both batches f and g do not contain the same results, neither of them being correct. This
means that the output of the query execution would be incorrect. When running this scenario,
though, the pointer in batch g that points to the second value of the deepest nested column
points outside the array, ending the execution with an error.

We can note that this problem does not take place in partition 1, since there is only one instance
of nested column data. This would mean that if data shuffling never takes place and data never
changes partitions, this issue does not take place, and the runtime can correctly return. This
would practically be the case when all joins in the query take place on the same attribute.
In that case, the input relations always get partitioned into the different streams and keep on
being processed within the same streams, avoiding the need for reshuffling. This is not always
the case, obviously, so a solution for this problem had to be devised.

4.2.3 Combining nested data

The solution implemented for the problem outlined in the previous Subsection[f.2.2]is to create a
new structure, responsible for combining multiple nested data structures into one. By combining
the nested data of each partition into one overarching NestedColumn, we again ensure that the
nested data is equal throughout all batches passing through the group-by operators, leading to
correct query outputs.

Practically, a NestedCombiner object was added to the functionality of the nested exchange
operator. It requires one batch from each incoming partition and extracts its nested columns.
Afterwards, it will concatenate all nested columns from each partition into one overarching
nested column, keeping an array of offsets so the head-of-list and next pointers can be incre-
mented by the corresponding offset to maintain correctness. This nested column will then be
inserted into the batches that are headed to the output channels of the exchange operator.

The fact that the exchange operator now requires one batch from each partition before it can
start producing its output does bring some inefficiency with it. Each exchange operator now
requires a synchronization point where all partitions must have made enough progress to send
at least one batch to their input channel of the relevant exchange operator. To implement this,
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Figure 4.4: Batches passing through the exchange operator

a barrier from the Tokio runtime was used. The barrier knows the number of partitions that
must call its wait() function and will halt any progress that partitions want to make as long
as any still have to execute the function call. Once all partitions have progressed up to the
barrier, one partition will perform the work needed to combine the nested columns present in
the combiner object, while the others wait behind a second barrier until this work is finished.
Afterwards, the different partitions all get a copy of the large combined nested column alongside
the offsets that the combiner calculated, and start partitioning the batches to send them to their
corresponding output partitions. Now, when splitting a batch into multiple smaller batches,
the offset corresponding to the partition the batch originated from is added to the head-of-list
vector, and the data is swapped with the data that was created in the nested combiner. This
ensures that flattening the batch still results in the same flat data that the batch originally
would flatten to, while also removing the issue of incorrect nested columns after shuffling the
data.

Example 4.2.3. We now turn to Figure for a concrete example of the combiner in action.
It features the same input relations and query as in Figure[4.4]but now with the nested combiner
implemented. The batches that get sent to the output channels now feature different nested
column data than they did in [£:4] since the data has been created by the nested combiner.
The operator will wait for the nested data from both partitions to be present before calling
the nested combiner to combine the two. It will then combine the two arrays {3} and {1, 3}
together into array {3, 1,3}, while also changing the weights of the nested column to the correct
values. After the combiner is done with its operation, batches ¢, d, and e can be made using
this data. The head of list pointers then get summed up with the relevant offsets. Batches
made in partition zero have an offset of 0, while batches made in partition one will have an
offset of the length of the nested data present in partition zero. Since the nested data is {3}
in this case, the offset will be one. When working with more than two partitions, all previous
nested data sizes must be summed by taking the previous offset and adding the length of the
newly appended nested data to it. The head-of-list in batch ¢ now points to the first value in
the nested data. In contrast, batch d, whose tuple previously had a head-of-list pointer value
of 2, now has a value of 3.

The ripple effect of the newly changed nested data can be seen in batch f. This batch is an input
batch for an exchange operator higher up in the query plan. It has the concatenated nested
data, and as such, the head-of-list pointers can no longer point outside of the array. Alongside
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Figure 4.5: Batches passing through the exchange operator with the combiner active

correcting the output, this approach also fixes the race condition present without it, since now
each partition has the same values for the nested data.

4.2.4 Editing existing plans

The original implementation uses a JSON file format to pass query plan data to DataFusion.
The file consists of a tree structure that denotes the different operators and their parameters.
To give an example of this, the parameters of a multisemijoin include its join keys, its guard
relation, which is usually a table scan operator, and its child relations. The child relations are
a variable number of group-by operators that are used as input to the multisemijoin operator;
this can be either zero, one, or multiple operators.

To add the exchange operator to this structure, extra nodes were added to the conversion logic
from JSON to the implemented operators. First off, the regular DataFusion exchange operator
was added. Its parameters include the number of output partitions and the partitioning scheme
(hashing or round-robin). This operator was necessary to partition the RecordBatches read
during the table scan operation into multiple streams. Secondly, two new attributes were
added to the multisemijoin node. The first attribute partitioned indicates whether or not a
multisemijoin exchange operator is to be added above this multisemijoin node or not and the
second denotes the partitioning scheme of this exchange operator.

In Figure three different query trees are visible. The tree itself displays a join between tables
T and S, and the operators in the tree occur as they would in a runtime of the implementation.
Tree (a) features the regular serial query plan. It first reads table T' as the guard relation of its
first multisemijoin, after which it will perform the multisemijoin operation, alongside the group-
by operation. Now it will pass a second multisemijoin operation where table S is read as the
guard relation. After the top multisemijoin, a flatten operator is used to transform the nested
data into flat data. Query tree (b) features the same plan, now ready for parallelism. Above
the two table scans, a DataFusion repartition operator is inserted with n output partitions.
Above the two multisemijoin operators, an exchange operator was inserted, specific to the
output of this operator. It automatically uses the same number of output partitions as the
DataFusion exchange operator, since the partition count is automatically propagated. This
plan now calculates its output across multiple workers. Each exchange and repartition operator
spins up workers according to its input partitioning count; the repartition operator for table
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scans only spins up one worker since the table scan produces its output in a single partition.
Afterwards, this repartition operator will split that data into m partitions, allowing parallel
data flow. As such, the exchange operator meant for the multisemijoin starts n workers that
each pull batches from their respective partition in parallel.

Above the flatten operator, another standard DataFusion exchange operator was added with
one output partition. It receives n input partitions from its child unnest node and coalesces
them into 1 output partition. If this operator is not added to the query plan, the output made
by the runtime will be partitioned. An example would be a query that retrieves the number
of output types using Count(x). Partitioned output would feature n outputs, corresponding to
one number for each partition, that together sum up to the same number that the serial runtime
would return. By repartitioning everything into a single partition, the counting aggregate can
perform its operation on the entire output and return the same value as it would in the serial
case.

As visible in tree (c), the exchange operator between the unnest and the top-most multisemijoin
can be left out of the query tree while still retaining the same, correct output. This is because
the exchange operator does nothing more than shuffle the data across partitions, alongside
spinning up worker threads. The DataFusion repartition operator above the unnest will see
n input partitions, and as such spin up n workers that take care of the unnest, top-most
multisemijoin, and group-by operators. The extra data shuffling cost that this operator incurs
does nothing to the correctness of the output and only increases the measured runtime.

Another possibility would be to keep the exchange operator for the highest multisemijoin op-
erator, but to have it use round-robin partitioning instead of hash partitioning. This greatly
decreases the complexity of the work that this operator performs, since there will be no need
for calculating hashes and checking all tuples in a RecordBatch separately. The upside of this
is that we perform load-balancing before sending batches to the unnest operator. If the hash
partitioning scheme gives us a skewed distribution of data, the unnest operator would have
more work in certain partitions and less in others, increasing runtime when compared to a more
balanced workload. In the ideal case, the exchange operator would take an approximation of
the amount of work that the unnest operator performs for each outgoing batch and send them
accordingly, which would allow even better load balancing.

Another potential upside of keeping the exchange operator underneath the unnest operator is
that this will then allow a higher degree of vertical parallelism. This exchange operator will
allow the unnest operator that is being run by its own workers to unnest batches concurrently
with its child multisemijoin that creates its input.

4.3 Type(s) of implemented parallelism

As explained in Subsection [3:2.2] we distinguish between different types of parallelism, and the
exchange operator is designed to support multiple forms of it simultaneously. Starting with
vertical parallelism, the implemented operator theoretically supports the concurrent evaluation
of multiple operators. In practice, however, this is not entirely achieved in the implementation
of the nested semijoin algebra. The degree of vertical parallelism is limited by the fact that
the group-by operator requires full materialization of its input before it can begin producing
output. As a result, operators higher in the query tree cannot receive any input batches until
the preceding group-by operator has received and processed all necessary data. This effectively
limits vertical parallelism to groups consisting of a multisemijoin operator, a group-by operator,
and an exchange operator.

For horizontal parallelism, inter-operator parallelism is clearly enabled. The implemented ex-
change operator partitions the data into multiple streams and allows those streams to be pro-
cessed concurrently. However, the materialization required by the group-by operator also limits
bushy parallelism, as it prevents different subtrees of the query plan from being evaluated
concurrently.
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Figure 4.6: Different equivalent plans, serial and parallel

As practical proof, a query was evaluated while timestamping any batches that passed through
any operator. It clearly shows that a group-by operator acts as a boundary between two multi-
semijoin operators evaluating their batches. As such, vertical and bushy horizontal parallelism
is practically limited.

4.4 Shortcoming of the implementation

The implementation of the exchange operator was created with the goal of being able to support
any 2-phase NSA plan. There is, however, one class of queries that can be evaluated with the
serial implementation that cannot be evaluated in parallel. This is due to the fact that the
multisemijoin operator supports multiple group-by children relations. Each child relation will
be joined with the guard relation of the multisemijoin. This, however, leads to the possibility
that several attributes of the guard relation can be used as join keys. In this case, since the
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guard relation is always partitioned on its join key attribute using an exchange operator, the
guard relation would have to be partitioned on multiple join keys at the same time to ensure
correct partitioning. A new exchange operator to facilitate this behaviour was not created
throughout the thesis, so queries that exhibit this were filtered out to maintain correctness and
validity during testing. What follows is how an exchange operator could be implemented to
facilitate this.

We now need to utilize the standard DataFusion hash function, but hash our values in such
a way that we get a multi-dimensional hashing scheme. Now, instead of assigning each tuple
to one bucket, we assign each tuple to N buckets, where N corresponds to the number of
attributes that will be used as a join key within the multisemijoin operator. We hash each
tuple N times using the standard hash function, once for each join key, and place it in the
bucket corresponding to the join key. To put it formally, take P partitions, let K be the join
key attributes used in the multisemijoin K = ki, ks, ..., k,. Now, for each tuple, we compute
hash(T(k1)), hash(T(k3)), ..., hash(T'(k,)) with T'(k,) denoting the value for the k, attribute
of the tuple. We then map each hash value to a partition via the modulo operation. Tuples
can now appear in multiple partitions, allowing them to be joined correctly since they will now
be present in the correct partitions.



Chapter 5

Experimental Evaluation

This chapter will explain concepts used to evaluate parallelism and go over the results of the
parallelism added to the shredded Yannakakis implementation. Different aspects such as total
runtime, independent operator runtime, scalability via efficiency and speedup will be covered.
Comparisons will be made to the original serial runtime, with all measurements coming from
the same machine.

5.1 Concepts of parallel evaluation

When evaluating parallel implementations, the degree of parallelism (DOP) plays a critical
role in determining performance. This metric specifies how many operations can be executed
concurrently and typically corresponds to the number of worker threads or tasks active at
any given time. In the implemented system, the exchange operator introduces parallelism
by spawning multiple workers, each responsible for processing a portion of the input. These
workers are scheduled and managed by the Tokio runtime [23], which assigns tasks to available
processor cores. As a result, the DOP directly influences how effectively system resources,
particularly CPU cores, are utilized during query execution.

To compare the runtime duration of varying degrees of parallelism, speedup and efficiency
are used as metrics. Speedup is defined as the ratio of time required by the sequential algorithm
to solve a problem, denoted by T'(1), to the time required by the parallel algorithm using p
processors to solve the same problem T'(p). As such, speedup S(p) for p processors is defined
using the following formula as stated in [1§].

S(p) == 583 (5.1)

There is a concept called the ideal speedup, which serves as a theoretical upper bound to
the performance gain achievable through parallelism. In this case, the speedup is the same as
the number of cores used for parallelism, thus scaling linearly. This means that if a task takes
T time to complete in the serial case, it should ideally take Tj/p time on p cores, resulting
in speedup S(p) = p. In practice, due to factors such as load imbalance, synchronization
delays, and function call overhead, the measured speedup often falls short of this ideal speedup.
Nonetheless, the ideal speedup can be seen as a curve that is useful as a benchmark for evaluating
the efficiency of parallel implementations. Figure shows the ideal speedup curve as a linear
function of the number of cores used.

Speedup is also limited by a phenomenon known as Amdahl’s law, alongside overhead such as
thread scheduling and the additional overhead brought by the fact that parallel implementations
usually feature more/longer code than their serial counterparts. Amdahl’s law states that the
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Figure 5.1: Ideal speedup and efficiency as a function of the number of cores.

speedup of a parallel algorithm is limited by the number of operations it must still perform
sequentially. This means that the theoretical maximum speedup of a program as a result of
parallelization is based on the proportion of the program that can be/is parallelized. It alters the
speedup formula to formula 5.2} where f is now the fraction of the workload that is parallelized,
meaning that 1 — f denotes the fraction of the workload that is serial. This formula was also
extracted from [18]:

1

ey (5.2)

S(p) =

A second useful concept for evaluating parallelism is efficiency. Since an ideal system with p
processors has a speedup equal to p, and this is not the case in practice, a processor cannot use
100% of its time for the computation. The processor also has tasks other than pure computation
such as scheduling threads and interprocess communication. The formula for efficiency in
Equation [5.3] can hence be interpreted as a measure of the percentage of time the processor
is utilized to effectively perform ”useful” computations. In the ideal case, efficiency equals
one, but in practice, it is between zero and one, since we know that the ideal speedup is not
usually feasible. Figure also displays the ideal efficiency for different degrees of parallelism
[18].

E(p) = (5.3)

Two different types of parallelism can be differentiated from each other. When talking about
strong scaling, the problem size is fixed and the speedup and efficiency are evaluated for a
different number of cores. This strong scaling is often associated with Amdahl’s law. The oppo-
site would then be weak scaling, where the problem size varies while the number of processing
cores used stays fixed. Since Amdahl’s law proposes a theoretical upper limit to speedup,
Gustafson noted that this view does not reflect parallel systems in practice. Gustafson’s law
proposes that as more processors are added to the computation, the problem size increases to
take advantage of this extra computational power. This law, as described in [11], provides a
more optimistic approach to parallelism. The implementation of the thesis considers strong
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scaling, since it looks to improve the runtime of existing queries by allowing them to run their
calculations in parallel.

5.2 Experimental setup

To evaluate the scalability of the implementation, queries need to be evaluated and timed. To
this end, the original shredded Yannakakis implementation in DataFusion will be compared to
the parallel implementation. This means that for the same query there will be query plans
where the exchange operator is absent, which are compared to the query plans that do feature
the exchange operator above multisemijoin operators to integrate parallelism. We compare
both plans on their execution time, which is measured starting after the query plan has been
generated, until the output is fully created. We always report an average of multiple runs, since
a phenomenon called warmup runs was noticed throughout testing. When calling a query
multiple times, the first execution is typically much slower than later runs, possibly due to
initialization overhead. Whenever an average value was used, the number of repeated runs will
be mentioned in its discussion.

The benchmark used throughout the analysis of the results is the STATS-CEB benchmark [12].
Due to the aforementioned limitations of the implemented exchange operator in Section [4.4] of
the 143 queries used in [4], 125 queries remain that can be correctly evaluated by the imple-
mentation. These queries vary in the number of records that pass through the joins, as well as
the number of joins they compute. The tests were run on my own laptop, featuring an AMD®)
Ryzen 7 5800HS processor with 16 cores and 16 Gigabytes of RAM.

In order to get more detailed insight into the total runtimes, metrics objects were implemented
for the various operators. These allow us to measure specific aspects/subtasks of the operators
to find possible bottlenecks and are implemented in the DataFusion query engine. Examples
of metrics for the exchange operator are: the time it takes to pull the first batch from its child
multisemijoin, the time spent waiting for all partitions to arrive, and the time spent combining
the nested column data of the different partitions as described in Subsection Using these
metrics, we can also measure the idle time spent waiting at the barrier for synchronization
between the different partitions.

Measurements are mostly taken with partition counts in exponents of two, meaning that we
measure the time it takes for the serial implementation to evaluate a query, alongside one, two,
four, eight, or sixteen partitions using the parallel implementation. We can then calculate the
speedup and efficiency of these measurements, alongside looking at the more specific metrics.
The calculations for speedup use Formula and the calculations for efficiency use Formula

5.3 Results for the STATS-CEB benchmark

This section discusses the results of the execution speed when evaluating the queries from the
STATS-CEB benchmark [12]. It takes all 125 usable queries into account (see Subsection
and evaluates the approach in its entirety. The section that follows will then provide more
in-depth looks at some queries from the benchmark. The queries themselves focus on join
operations; they are designed to simulate analytical workloads by joining data from multiple
sizeable input tables together. Most queries include filtering, and all queries end in a count
aggregation. Measurements for this section are averaged out from ten runs.

5.3.1 Results without specifying core count

This subsection features results from measurements where the number of cores usable by the
Tokio runtime was not specified, allowing it to use all 16 cores available. The only difference
between the runtimes is the number of partitions that the data gets split into. This then leads
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Figure 5.2: Log-log scatterplot for STATS-CEB benchmark

to a different number of workers for each operator, changing the degree of parallelism while
keeping the amount of usable cores stable.

To evaluate the benchmark, scripts were created to add the new necessary information to the
query plans originally created for the serial implementation. After filtering out the usable query
plans from the benchmark, we are left with 125 of the original 143 queries. They were then
tested for correctness on multiple partition counts, to ensure the validity of the implementation
with the limitation set (Section . The benchmark queries vary greatly in complexity and
input size. In particular, filter operators often filter out large subsets of the data, changing the
amount of work that later operators need to perform. To illustrate, a query from the benchmark
follows.

SELECT COUNT(*) FROM c, b
WHERE c.UserId = b.UserId AND c.Score=0
AND b.Date<=’2014-09-11,,14:33:06’::timestamp;

By filtering the data in the WHERE clause, fewer records pass through the join operators,
leading to less work for these operators and a smaller output size.

Queries are identified by a number, ranging from 1-146. To simplify the following explanations,
an approximation can be made that as the identifier increases, the queries become more complex.
Figure [5.2] shows a log-log scatterplot comparing the serial execution times to the parallel
execution times. A logarithmic scale was chosen since the query execution times often vary
greatly. Each dot corresponds to a specific query, with the colors of the dots corresponding
to the partition count of the measurement. For this plot, the fastest measured partition count
was chosen. If a dot were to be placed on the diagonal line of the plot, its serial and parallel
runtimes would be equal. All dots underneath the line have gained a boost in performance from
being run in parallel, while the dots above the line have slowed down due to parallelism (on
all partition counts). The figure explained in this paragraph is reproduced in for improved
readability.

Table displays the number of times the given number of partitions was faster than the serial
implementation. In the fastest queries column, it shows the number of times that number of
partitions has the fastest average runtime among all parallel partition counts, indicating it is
the most suitable partition count for those queries. Starting with one partition, this effectively
increases the workload by adding the exchange operators to the query plan, without the upside
of inter-operator parallelism. Theoretically, a performance gain from vertical parallelism is
still possible, but as explained in Section [£:3] there is little vertical parallelism present in the
implementation. There are still 33 queries that gain enough benefit from this vertical parallelism
to gain a small boost in performance, though these gains are very small. A large jump is visible
when comparing it to the two partition measurements. In this case, data is split into two
streams so operators can process the different streams concurrently, allowing for inter-operator
parallelism. A smaller jump is seen between two and four partitions, and the number starts
to drop between four and eight. When looking at the number of times a certain number of
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Partition Count # Faster queries compared to Serial # Fastest Queries

1 partition 33 4
2 partitions 106 9
4 partitions 115 49
8 partitions 113 51
16 partitions 100 12

Table 5.1: Metrics for different partition counts

Partition Count Average(ms) Median(ms) Average without outliers(ms)

Serial 162.70 15.10 73.04
1 partition 215.54 17.00 75.37
2 partitions 155.11 13.30 58.28
4 partitions 132.57 11.80 51.92
8 partitions 136.36 11.90 51.82
16 partitions 134.01 12.90 53.08

Table 5.2: Table with average and mean for different partition counts

partitions was the fastest out of the parallel runs, eight partitions are often the fastest, followed
closely by four. This metric indicates the number of times a dot on Figure has the color
of that partition. There is a large drop in fastest queries when comparing eight partitions
to sixteen, this is due to the overhead that the increased number of partitions brings with
them.

For a more specific breakdown of runtimes across the different partition counts, we turn to
Table This table presents the average and median execution times for ten runs for different
partition counts. It is evident that the average execution times for one partition are higher
than those of the serial implementation. However, starting from two partitions, the average
time is lower, indicating improved performance for the majority of queries. Queries 126 and 135
stand out as outliers, showing significantly longer runtimes than the other queries. Query 126
displays a significant decrease in performance when run with one partition when compared to
the serial runtime. Its inclusion skews the average runtime for the one-partition case, making
it appear worse than it actually is. When these outliers are excluded, the average execution
time for one partition drops considerably. The majority of queries already show performance
gains starting from two partitions, indicating that parallel execution is generally effective even
at this lower level of partitioning.

The lowest overall execution times are achieved with four partitions, suggesting this configu-
ration offers the best balance between parallelism and overhead. There is, however, a case to
be made that the eight partition measurements have a slightly lower average when omitting
the two outliers. Fewer partitions (one or two) do not leverage parallelism as effectively, while
higher partition counts (eight or sixteen) can cause additional overhead that negates some of
the performance gains.

Figure displays the query runtimes from the STATS-CEB benchmark. Queries around the
median are gathered into a boxplot, while outliers are presented with a scatterplot. The majority
of queries are contained within the boxplot, while the same 22 queries out of the 125 total queries
always occur as outliers. Median values inside of the boxplots slightly differ from those in Table
[6.2] since they only account for the non-outliers. Important to note is that the outliers in this
graph do not correspond to the outliers mentioned in table Outliers mentioned in the table
are those that have an incredibly large impact on the average measurements, with their runtimes
being above 1500 ms, while the queries in the graph count as outliers when they fall outside a
certain range from the median. Figure [5.3]is reproduced in [A22] for better readability.
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Figure 5.3: Scatter- boxplot for runtimes of different partition counts

From the figure, an increase in average runtimes is visible when comparing the serial case to the
parallel configuration with one partition. An especially large performance decrease is visible
in the longest-running query of the benchmark (query 126), explaining the large difference in
average runtime with and without outliers in Table Overall performance gains are observed
from one to eight partitions, while a decrease in performance is visible at sixteen partitions. This
degradation in performance can be attributed to the overhead contributed by the large degree
of parallelism. Since a large number of workers will be created throughout these evaluations,
context switches occur often, alongside an increase in scheduling for the different workers. The
sixteen cores present on the machine on which these tests were performed can’t coordinate these
large numbers of workers efficiently.

5.3.2 Results with specifying core counts

For this subsection, all runtimes were measured again, but this time, instead of letting the
Tokio runtime use as many cores as possible (16 in my case), the number of used cores equaled
the number of partitions that the data is divided into. This limits the degree of parallelism
and should slow down the runtimes, since horizontal and vertical parallelism cannot be utilized
at the same time. An upside to this could be a decreased amount of scheduling needed, since
fewer threads may lead to less context switching and simpler task coordination.

Table [5.3] contains some information from these measurements. The two outlier queries, again,
have a large impact on the measurements taken. Since they have larger deviations, the averages
where they are present differ from the averages in Table while the averages where they are
omitted are more in line with those from the earlier table. This phenomenon is especially
visible when comparing the average runtime of two partitions between the two tables. The
difference in average runtime for two partitions can be attributed to two cores not being enough
for the large query 126, since, with an average of ~9700ms for these measurements and an
average of ~8250ms for the previous measurements, it varies greatly between the two tests.
The other average results from these measurements mostly overlap with those from the previous
subsection.

What is interesting, however, is that with these measurements, instead of one partition being
faster in 33 cases, it is only faster in four cases. This is because we still increase the workload,
but since we only allow our runtime one core, any upside gained by vertical parallelism cannot
be achieved since there is no way of completing tasks concurrently. There are also some other
changes visible when comparing this column to the same column in Table [5.2] but these can
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Core Count Average (ms) Average without outliers (ms) # Faster queries compared to serial
Serial 168.66 73.22 X

1 core/partition 219.53 77.27 4

2 cores/partitions 176.70 58.30 111

4 cores/partitions 136.92 52.07 118

8 cores/partitions 138.21 51.70 112

16 cores/partitions 138.89 52.93 102

Table 5.3: Table with average and mean for different partition counts with varying core
counts

be attributed to varying runtimes, even though an average of runtimes was taken for each
query.

5.3.3 Conclusions for this section

From the graph in Figure it is clearly visible that the linear speedup from Figure is
not reached. From the tables present in the subsection, a small increase in performance can
be seen, though not linearly. This was to be expected, since the required full materialization
in the group-by operator heavily limits parallelism, alongside the necessary synchronization
of partitions in the newly implemented exchange operator. There is also a general decrease
in performance when running the queries with sixteen partitions. This can be attributed to
the machine used for the timings only having 16 cores, and not all cores can be used for the
calculations at once, since other processes run concurrently. In Figure[3.11] DataFusion had also
decided to make use of four partitions to enable parallelism via their repartitioner, indicating
that this partitioning count should indeed be optimal in their case.

Because most queries are found in the boxplots, the few outlier queries have a disproportionate
impact on the average measurements, making those measurements less reliable. The average
where they are left out, however, paints a slightly different picture, especially when comparing
the serial implementation to the 1 partition runtimes. I initially expected more of a difference
between the results with and without specifying core counts; the main difference here is with
one partition/core count. When using sixteen cores and one partition, vertical parallelism is
still possible since the workers created by the exchange operator(s) can wait for their input
concurrently, limiting the amount of context switching necessary. When only allowing one
processing core, there is a need for context switching between the tasks started by the exchange
operator(s), increasing runtime duration. Measurements like speedup and efficiency will be
calculated in the next Section for separate queries, alongside independent operator timings.
This will allow us to get a better grasp on what is exactly going on during the different runtimes
and where any bottlenecks may appear.

5.3.4 Results for the STATS-CEB benchmark in DuckDB

To frame the results that were measured using the newly implemented exchange operator, the
same 125 queries were measured in DuckDB [6]. In DuckDB, it is possible to specify the number
of threads that the runtime can use. By altering this number, the degree of parallelism changes,
and the total runtime changes along with it. A sidenote to make is that since only the thread
counts change, there is no separate one-thread parallel runtime. Both figures relevant for this

explanation and are reproduced in and for improved readability.

Visible in Figure is the scatterplot also used in Figure but with measurements taken
from DuckDB. Each dot again corresponds to a query runtime, comparing the serial runtime to
the fastest parallel runtime. A dot being under the diagonal line corresponds to a query that
received a performance increase from parallelism. In Figure there are three dots that are
distinctly visible above the diagonal line, indicating a degradation of performance. In the case
of DuckDB, however, this is never the case. Though there are still six queries that perform
better serially than they do in parallel, the differences are much smaller.
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Figure 5.5: Scatter- boxplot for runtimes of different thread counts in DuckDB

Figure [5.5 displays the separate query runtimes for the benchmark. Queries around the median
are again gathered into a boxplot, while outliers are present as dots in a scatterplot. The
majority of queries are again contained within the boxplot. The overall runtimes lie a lot lower
using the Shredded Yannakakis approach, the distribution of queries also differs a bit. Query
126 is still the largest outlier, taking ~25 seconds to complete serially, where the median of
the benchmark lies at 17ms. It does greatly benefit from parallelism up to four threads. As
with the measurements of Shredded Yannakakis, eight and sixteen core counts do not really
offer up much of a performance increase; this can again be attributed to scheduling overhead.
Remarkable in these measurements is the presence of query 38 as the second-longest running
query of the benchmark. This query did not stand out in the measurements for Shredded
Yannakakis, while for these measurements its runtime is greatly increased, and when comparing
its high-thread runtimes, it takes 14193 ms on sixteen threads compared to 10593 ms on eight
threads, indicating potential overhead or other issues and becoming the longest-running query
at sixteen threads.

Table presents some more specific runtime measurements. Just like in table the 4-
thread/partition runtime proves to be the fastest, offering a balance of scheduling overhead
and effective parallelism. Large queries again skew the average by quite a bit, which is why an
average without the very large outliers is also present in the table. From this table, we can see
that DuckDB also does not approach the ideal speedup. While the total measurements do point
to better parallelism, this is not the case for every single query. Pointing to queries like query
38 again, their performance degrades greatly when run on more threads, while a degradation
of this scale has not been measured in the Shredded Yannakakis approach.

5.4 Results for separate STATS-CEB queries

In this section, a more in-depth analysis will be made for several individual queries from the
STATS-CEB benchmark. We will take a closer look at runtimes per partition count, op-
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Thread Count Average(s) Median(s) Average without outliers(s)

Serial 0.585 0.0225 0.261
2 threads 0.405 0.0190 0.181
4 threads 0.351 0.0164 0.152
8 threads 0.370 0.0167 0.154
16 threads 0.404 0.0168 0.160

Table 5.4: Table with average and mean for different thread counts for DuckDB

erator metrics, and the difference between the presence of an extra exchange operator (see
Subsection between the joining and unnesting phase, where this makes a notable dif-
ference. This extra operator better balances the workload in the unnest operator, alongside
enabling vertical parallelism between the unnest operator and the uppermost multisemijoin
operator in the query tree. The measurements from this section are averages of 30 runs.

Figure displays the query plans of the three queries that will be further analyzed in this
Section. All three queries share a similar main structure, with the join phases containing
repetitions of multisemijoin, group-by, and scan groups, eventually feeding into the unnest
operator. The queries from the benchmark all return a count aggregate; as such, this aggregate
is the final operator in the serial plan, from which the output is retrieved. To parallelize these
serial plans, the conversions visible in Figure are applied. The numbers next to certain
operators in the plans of queries 31 and 133 are identifiers used in figures [5.9) and [5.14]

5.4.1 Query 31

Query 31 of the benchmark is a right-deep plan with four multisemijoin operators and three
group-by operators. Its average runtime when compared to the rest of the benchmark lands it
around the median of the boxplot in Figure [5.3] Its output size of 6 672465 places it above the
benchmark median of 1356723, though they share their order of magnitude. Its output size,
alongside its average serial runtime makes it an average query for the benchmark.

Comparing serial to parallel

From Figure we observe that there is a clear difference between the runtimes with usable
parallelism and those without. The serial and one partition runtimes both lie around the
same average, with the parallel one partition runtime lying slightly lower. We attribute this
to variations in hardware performance. When we go higher than one partition, we do see
improvements. Two, four, and eight partitions all see an improvement in performance when
compared to their previous measurements; the jump from four to eight partitions is a small
one, however. When running with sixteen partitions, performance decreases as expected from
the overarching benchmark results.

For speedup and efficiency in Figure [5.8] we immediately notice that we do not approach the
ideal speedup nor an efficiency value of one. The speedup does increase throughout one to eight
partitions, mirroring the increased performance visible in the boxplot This does, however,
not scale linearly with the number of extra partitions. Similar to the average time, there is
only a slight improvement when increasing from four to eight partitions. However, speedup
decreases when moving from eight to sixteen partitions, likely due to scheduling overhead and
the fact that the machine’s sixteen cores cannot all be effectively utilized simultaneously for
the computations. The efficiency keeps on decreasing as the partitions increase; this is to be
expected when looking at the chart plotting the average runtimes for each partition count. This
indicates that the cores are not used efficiently when increasing the number of partitions into
which the data is split.
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Figure 5.6: Query plans of analyzed queries

Comparing operators

For a closer inspection of independent operators, each operator holds several metrics. The
exchange operator, for example, measures the time it takes waiting for the nestedcombiner
(described in Section to combine its columns and the amount of time it spends partition-
ing batches, among others. An overarching metric for several operators is called its elapsed
compute. This metric measures the amount of CPU time an operator occupies until it has
processed its last batch. When a CPU core waits for input in an operator, that wait will add
to the elapsed compute of that operator. Notably, the multisemijoin operator differs from ex-
change and groupby in how it receives data: it does not consume input through a stream. As
a result, its elapsed compute time excludes time spent waiting for input. In contrast, both the
exchange and groupby operators poll their input as a stream. When they begin polling their
child operators, their elapsed compute timers start, thereby including the time it takes for all
descendants to produce the first batch. This can significantly inflate their elapsed compute,
especially since the groupby operator requires a full input materialization before producing
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Query 31: Execution Time Distribution by Configuration
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Figure 5.7: Boxplot of runtime measurements for query 31
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Figure 5.8: Various metrics graphs for query 31

any output. Consequently, the elapsed compute times of groupby and exchange operators will
include the full compute time of their downstream operators, leading to the ever-increasing
elapsed compute timers of exchange and groupby operators.

The gradual increase of elapsed compute time is visible in Figure[5.9} Each of the three graphs
show a different type of runtime for query 31, the first plot displays the serial runtime. The
plot on the right shows a parallel runtime without an exchange operator between the joining
and unnesting phases; the plot at the bottom features this extra operator set to use a round-
robin partitioning scheme. Both parallel runs only feature two partitions in order to keep the
graphs orderly. Since all graphs have the same scale for their y-axis, we can make comparisons
across graphs. The general throughline is that the average time each operator has to spend is
slightly lower in the parallel case than it is in the serial case. Hence, an overall performance
increase is gained. A noticeable change lies between the lowest multisemijoins, when comparing
the serial case to the parallel cases, the elapsed compute of the parallel cases lies about 1000x
lower than that of the serial case. The unnest time of the unnesting operator is unbalanced
between the two partitions in the normal parallel case, an issue that can be solved by adding
the extra exchange operator. An issue with this operator, however, is that its own runtime
is extraordinarily long. The cause of this is the time it takes for the operator to send all its
batches to the unnest operator. This metric is called its send time, and takes up more time
in this case than it does in the normal cases. This behavior is also observed in the standard
DataFusion exchange operator. Figure is reproduced in for better readability.

Further observations can be made regarding each group of exchange, multisemijoin, and group-
by operators. Since group-by operators must wait for all input data before proceeding, their
runtime is significantly higher than that of multisemijoin operators. When examining group-
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Figure 5.9: Operator compute durations for three different runtimes for query 31

by operators in isolation, a large portion of their elapsed compute time is spent waiting for
their child multisemijoin operators to finish. This is due to the full materialization required
before the group-by can begin processing. Conversely, a multisemijoin operator that follows
a group-by has a much shorter elapsed compute time because its timer only increments when
the preceding group-by has completed, and it can actually perform its computations. When
we sum the elapsed compute times of a multisemijoin operator and its child group-by operator,
we obtain an approximation of the elapsed compute time of the subsequent exchange operator,
whose elapsed compute is also inflated due to busy waiting behaviour, just like in the group-by
operator. When taking a closer look at an exchange operator, we see that most of its time is
spent waiting for data to arrive, more precisely, waiting for its first batch to arrive. It then
possibly waits a short amount of time for all other partitions to receive their first batch, and
then proceeds to the nested combiner. This necessary synchronization phase is a small fraction
of the total time spent in this operator.

The specific breakdown of the exchange operator that slots between multisemijoin and groupby
#3 in Figure from the parallel case without round-robin is visible in Table From this
table, it immediately becomes clear that most of the operator’s time is spent waiting for the
first batch to arrive. The repartition_time also takes a relatively long time when compared to
the other metrics. This is because it constitutes all the work that the operator is supposed to
do. This metric is made up of pulling a batch from its corresponding input channel, calculating
hashes for tuples, partitioning the tuples based on the hashes, and sending them to the relevant
output channels. The reason why combine_timer is zero in partition 1 is that this partition is
not responsible for performing this operation.

5.4.2 Query 133

Query 133 is another query that finds itself in the boxplot in Figure This query is presented
more in-depth due to the partitioning of data being skewed when evaluating the query with a
high number of partitions. Its output size of 13971410 places it above the benchmark median
of 1356 723 rows.
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Metric Partition 0 Partition 1
fetch_time 41989 217078
first_batch_time 5456 488 5201409
barrier_time_1 541 96 441
barrier_time_2 7214 160
combine_timer 23003 0
lock_time 511 351
repartition_time 1089178 1111620
send_time 2193 7025
elapsed_compute 6622951 6628 942

Table 5.5: Operator Metrics for the newly implemented exchange operator in ns

Query 133: Execution Time Distribution by Configuration
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Figure 5.10: Boxplot of runtime measurements for query 133

Comparing serial to parallel

The query shows a by-now expected degradation of performance for one partition when com-
pared to the serial runtime. As with query 31 from Subsection a boost in performance
is visible when inter-operator parallelism is possible with two partitions, and again when the
degree of parallelism is increased with four partitions. This query, however, already starts de-
grading at eight partitions, with further performance loss at sixteen partitions. The reason for
this performance degradation becomes apparent when comparing the specific operators’ times.
The unnesting operator accounts for a large amount of the total query runtime, with poor
balancing of work in this operator, we do not stand to gain much performance increase from
parallelism.

As expected from the average measurements, the speedup calculated for this query lies lower
than that of the previously analyzed query. A similar efficiency graph to the one in Figure [5.8
is also present.

Adding the round-robin exchange operator

The amount of output rows a partition ends up with is a good indicator of its workload it
has to perform in the unnest operator. If this number is compared to the total number of
output rows the query produces, data skew across partitions can be analyzed. Recall that
query 133 produces 13971410 output rows. In Table metrics for the unnest operator of
this query are visible. For each configuration, the first column shows the maximum number
of input rows the unnest operator gets in a single partition. The second and third column
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Figure 5.11: Various metrics graphs for query 133
Configuration Max Input Rows Min Output Rows Max Output Rows
Serial 9197 13971410 13971410
4 partitions 2708 696 351 9673345
4 partitions + round-robin 2358 2562 392 4736971
8 partitions 1388 288 557 9153273
8 partitions 4+ round-robin 1173 816 362 3020560

Table 5.6: Detailed metrics for the unnest operator of query 133

show the minimum and maximum number of output rows that the unnest operator produces
in a single partition. A skewed workload is visible when looking at the regular four and eight-
partition configurations. In both cases, a large majority of the output rows (~ 65-70% in both
cases) are produced in a single partition, leading to a strongly unbalanced workload and a
disproportionately long runtime in a single partition. This longer partition leads to a longer
overarching runtime since the query can only end after this partition has fully unnested its
output. Adding a load-balancing operator via an extra exchange operator decreases this skew
considerably. While the workload is certainly still skewed, the maximum number of output
rows more than halves in both cases, leading to more balanced workloads and theoretically
decreasing the overall runtime.

This more balanced workload will theoretically prevent any single partition from becoming
a bottleneck due to having a disproportionately large share of data. In practice, due to the
elementary nature of round-robin partitioning, this could still happen. Ideally, a new parti-
tion scheme would be made that takes the amount of work necessary to unnest a batch into
account.

In the two figures that follow, average measurements for the round-robin configuration can be
found. The results of this configuration lead to a higher performance gain than with the con-
figuration described previously. There is still a performance loss from eight partitions onwards.
This is to be expected, since the data skew occurs in more operators than just the unnest
operator. The increased vertical parallelism gained by adding the exchange operator now leads
to a faster 1 partition runtime.

When observing the speedup for this configuration plotted in Figure [5.13] it can be concluded
that this configuration is a better fit for query 133 than the configuration without the extra
round-robin partitioning. This is due to the utilized hash function leading to a data skew that
greatly influences the amount of time the unnest operator takes to use.

Looking at the independent operator durations in Figure [5.14] the large skew in unnest time
becomes clear. When the round-robin exchange operator is not inserted, the unnest time
dominates the runtime, since as mentioned earlier, the workload for this operator is distributed
poorly. Just like for query 31, the durations of the groupby and exchange operators take
longer due to them including downstream wait times. Because of them being forced to wait for
downstream operators to finish, a logical follow-up would be to suggest that a general trend is
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Query 133: Execution Time Distribution by Configuration
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Figure 5.12: Boxplot for measurements of query 133 with an extra exchange operator
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Figure 5.13: Various metrics graphs for query 133 with an extra exchange operator

that deeper plans will generally take longer than plans with fewer joins. Since more joins lead
to more groupby operators, the runtime needs to wait for more full materializations, increasing
the elapsed compute values of later operators and increasing the runtime duration as a whole.
The figure itself is reproduced in for readability.

Comparing the standard two configurations

With the new configuration adding the round-robin repartitioning, query 133 sees lower aver-
age runtime measurements in the higher partition counts, resulting in a better speedup and
efficiency. We can conclude that the large skew in data across partitions can be an important
bottleneck in many queries. When this skew is not present or less pronounced, performing the
extra work necessary to rebalance the data before unnesting it can be useless, increasing the
runtime instead of shortening it. Creating a new partitioning scheme specifically to feed into
the unnest operator would also lead to more work in this operator since this partitioning is
more complex than the current round-robin partitioning.

5.4.3 Query 135

The last query that will be investigated in more detail is query 135. This is one of the two
outliers omitted in certain calculations of Section[5.3|due to its large runtime. This large runtime
is attributed to the fact that most queries in the benchmark have filter operations that reduce
the amount of data to be processed. This query, however, features comparatively little filtering
and will process the large amount of data in its entirety. Query 135 is a join between five tables,
resulting in 2263957 167 outputs, the second-largest output size of the benchmark.
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Figure 5.14: Operator compute durations for three different runtimes for query 133

Comparing serial to parallel

The large output size of this query is caused by an explosion of rows in the unnest operator. In
total, 43135 input rows enter the unnest operator, with 2263 957 167 output tuples leaving it.
This explosion of rows brings a large workload for the unnest operator along with it. As such, a
large majority of the runtime is spent in the unnesting phase, rather than actually joining the
data. For this query, balancing the partitioning of data headed towards the unnest operator is
once again a major factor in speeding up the runtime.

Figure [5.15 displays some boxplots for measurements of query 135 for a standard configuration
of parallelism. When comparing the serial runtime to the parallel runtime with one partition,
we see a slight improvement when going parallel, though these two are comparable, except for
the large outlier in the parallel case. There is an improvement visible in increasing the degree
of parallelism by splitting the data into two partitions, though only slightly. This points to
a skewed distribution of the workload that is to be performed in the unnest operator, since
most of the possible performance gain is located in this operator. A larger increase is visible
when splitting into four partitions, indicating a better distribution of the workload. Unlike
the previous two queries, there is no degradation in performance visible when working with
sixteen partitions, though there is also little to no performance increase when comparing it to
eight partitions. Since the distribution of data in the unnest operator is crucial to increasing
performance, adding an extra round-robin repartitioning before this operator could increase
performance.

The metrics shown in Figure show that the serial and one-partition runtimes both lie
around the same duration. Because of this, the speedup for the 1-partition runtime is 1.00.
The speedup then slightly increases with two partitions, while a larger jump is visible at four.
Notable is that the speedup for both the eight- and sixteen-partition runtimes is 1.65, also
indicating that they approximate each other’s average runtimes.
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Figure 5.15: Boxplot of runtime measurements for query 135
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Figure 5.17: Boxplot for measurements of query 135 with an extra exchange operator
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Figure 5.18: Various metrics graphs for query 135 with an extra exchange operator

Adding the round-robin exchange operator

Figure [5.17] displays the boxplots for 30 measurements of query 135 where an extra round-robin
exchange operator was inserted between the join and the unnest phases of the query evaluation.
In contrast with the measurements from Figure there is a decrease in performance when
evaluating with eight and sixteen partitions when compared to the four-partition runtime. From
this boxplot, it becomes clear that splitting the data into four partitions gives the fastest overall
runtime, just like most other queries in the benchmark.

Figure [5.18] now shows the average, speedup and efficiency metrics for this configuration. A
slightly larger maximum speedup is visible when compared to Figure going from 1.65 to
1.79. This indicates that the addition of the exchange operator proved beneficial to the perfor-
mance. This configuration does see a peak at four partitions, while the previous configuration
still benefited from eight and sixteen partitions. This can be attributed to the fact that the
extra exchange operator will spawn additional workers, leading to sixteen concurrent workers
for the eight-partition case and 32 concurrent workers for the runtimes with sixteen partitions,
half of each responsible for pulling data from the multisemijoin operator and half responsible
for pulling data from the unnest operator. The sixteen cores present on the machine that ran
these tests will not be able to actually run all these workers in parallel, forcing context switches
that degrade performance, potentially degrading it so far that it takes longer to perform with
the extra operator than it would without it. For this query we omit the graph displaying inde-
pendent operator runtimes, since the time spent during this runtime is so skewed towards the
unnest operator that the other operators are not visible in the graph.



5.4. RESULTS FOR SEPARATE STATS-CEB QUERIES 69

Configuration Average runtime (ms) Max Input Rows Min Output Rows Max Output Rows
Serial 4323 43135 2263957167 2263957167

2 partitions 3846 26337 277095707 1986 861460

2 partitions + round-robin 2947 22113 1038370724 1225586 443

4 partitions 2700 14802 18217437 1086 628 254

4 partitions + round-robin 2408 11735 444395 746 704935813

8 partitions 2627 11796 4600632 1048 588 666

8 partitions + round-robin 2550 5965 172810 156 402569437

16 partitions 2623 7778 201 604 847978287

16 partitions + round-robin 2669 3704 70523645 310489591

Table 5.7: Table with unnest metrics for query 135

Comparing the two configurations

To further illustrate the performance differences and their links to the unnest workloads, Table
[5.7) displays the average runtimes for the different configurations, alongside unnest metrics
that correspond to the workload to be performed in the operator. An important metric for
determining the influence that the distribution of data will have on the runtime is the maximum
output rows in the unnest operator. If a majority of the output rows stem from a single partition,
that partition will have a disproportionately large workload and will take considerably more
time unnesting its input than the other partitions would, acting as a bottleneck that increases
the total query runtime. If the maximum number of output rows is lower, the partition with the
highest workload has less work to perform, decreasing its runtime and decreasing the bottleneck
effect it has on the runtime. There is a significant difference in maximum output rows when
comparing the regular runtimes to those with the added round-robin exchange operator. In the
lower partition counts (two, four, and eight), this leads to a performance increase due to better
balancing and an increase in vertical parallelism. With eight partitions, however, the increase
in performance is a lot smaller than those of the previous two partition counts, and the large
number of workers starts to cause overhead with context switches and scheduling. Finally, when
compared to the runtime with sixteen partitions, while the unnest operator still benefits from
a better balancing of workload, the large number of workers starts to bring too much overhead
with them, causing a decrease in performance when compared to eight partitions and an even
further decrease when adding the extra exchange operator.

5.4.4 Conclusions for this section

While the ideal speedup and efficiency are not reached with the added exchange operator, there
is most definitely a performance gain visible by allowing the queries to run in parallel. The
speedup measured is dependent on the structure of the query plan that is to be evaluated and
the amount of data that flows through it. Even though the implementation of parallelism mostly
focuses on the join phase, the impact that the unnest phase has on the overall runtime is not to
be underestimated. The exchange operator does, however, also improve the performance of the
unnest, operator by allowing it to work concurrently across several partitions. It also promotes
vertical parallelism between the join and unnest phases by inserting it between the two phases,
with the added benefit of a possible rebalancing of data skew. A new partitioning scheme that
takes the workload of the unnest operator could be desirable, granted that these calculations
aren’t too complex, since these computations could then lead to significant processing time
themselves. The rebalancing of data before unnesting via an extra exchange operator can
significantly speed up the runtime, though the extra work this brings might sometimes outweigh
its benefit.

While the overall speedup of DuckDB is higher than that of the implementation presented
in this thesis, it is not too far off. DuckDB also does not come close to the ideal speedup
and efficiency, and just like with parallel shredded Yannakakis, the measured speedup when
increasing the degree of parallelism is also dependent on the query itself.



Chapter 6

Conclusions

Throughout this thesis, practical experience was gained with query engines and their inner
workings. The Volcano operator model served as a baseline on how operators that process data
should be implemented and provided a clear structure to do so. The actual implementation of
this model in Apache DataFusion was then studied to understand how this could be applied in
practice. Going through the source code of Apache DataFusion also allowed me to learn how
to approach open-source projects and eventually extend them, alongside learning the ins and
outs of the Rust programming language.

Educating myself on the more theoretical aspects of the thesis present in Chapter [2| took some
time due to the mixture of my having to refresh my knowledge on some concepts I had learned
earlier, alongside learning new concepts like Yannakakis’ algorithm itself. After creating the
foundation necessary to understand the concepts of Shredded Yannakakis [4], I had to take some
time to completely understand the approach itself, to then start analyzing the code implemen-
tation of Shredded Yannakakis. An important part of understanding the code implementation
was to gain an understanding of how the data structures work. The data structures themselves
I found to be fairly complex, with various levels of recursive nesting, and with the data being
scattered throughout the objects due to the nature of query shredding itself.

During the implementation of the exchange operator within Shredded Yannakakis, theorizing
about how it should be implemented proved to be much easier than actually implementing the
operator itself. The issue presented in Subsection [£:2.2] proved to be fairly complex in practice
due to the nature of the data structures. Crashes and errors quickly revealed that something was
going wrong, and due to their nondeterministic nature, they pointed towards a race condition.
Finding what exactly went wrong took quite some time and forced me to find a way to clearly
visualize the data structures, since simply printing them out proved insufficient to finding the
root cause of the issue.

Now, for the results themselves, even before solving the data shuffling issue, performance gains
were visible when comparing the serial implementation to the one where parallelism was added.
Although they do not approach the ideal speedup, this was to be expected given the context
of the implementation. There are still many synchronization points present during the query
evaluation, halting the different workers and slowing down the process. Increasing the degree
of parallelism also improves efficiency for the new implementation, up until a certain point.
This occurs due to scheduling overhead and the fact that every exchange operator spawns new
workers, eventually leading to more workers than there are cores present on the system that
carries out the query evaluation. Data skew caused by the hash function can greatly impact the
performance increase that partitioning the data allows. When evaluating total query runtime,
the larger the data skew, the more work there is to do in a single partition. Total query runtime
is strongly linked to how long it takes to finish the longest-running partition, since it needs to
be processed completely before the final result can be returned. The hash function used can
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still lead to some data skew, possibly leading to performance losses. In general, though, most of
the measured queries gained a performance boost from the newly implemented parallelization
scheme.

Further work includes implementing the new repartition operator for table scans, which would
allow the multisemijoin operator to actually join multiple groupby results at once in a parti-
tioned context. Another possibility would be to implement an exchange operator that functions
on top of the groupby operator to see if this results in better results. The impact that the unnest-
ing phase has on performance is also not to be neglected. Though the current implementation
of parallelism effectively distributes the work in this operator, a new partitioning scheme could
be created to better balance this workload.
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