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Abstract

In the field of chemistry, manufacturing and controls, biostatistical methods contribute to characteri-
zation, quality control and monitoring of processes. One such application concerns the construction
of a quality control (QC) range for clinical assays. The QC range indicates within which limits future
measurements of a QC sample are expected to lie, based on an estimate of assay precision. The QC
range provides a way of identifying unreliable measurement runs or an “out of control” analytical
assay. Here, we study how Bayesian methods, in particular Bayesian hierarchical models, can be used
to construct QC ranges for a vaccine assay via posterior predictive distributions. Various weakly infor-
mative and one non-informative prior specifications for the variance components are proposed, and
the method is implemented via R interfaces to the probabilistic programming language Stan. In a sim-
ulation study, we evaluate the performance of the Bayesian QC range in terms of expected prediction
coverage, expected interval width, and root mean squared prediction coverage error. For compari-
son, frequentist prediction intervals based on more classical modeling approaches are also evaluated
as candidates for the QC range. This includes a simple, single-level model that ignores clustering of
assay measurements within runs, as well as a hierarchical model estimated with restricted maximum
likelihood. The methods are applied in 30 realistic data-generation scenarios that vary according to
number of total observations, number of clusters, balancedness, assay variability, and strength of intra-
run correlation. Results show generally good QC range performance of the hierarchical models, both
frequentist and Bayesian, whereas the single-level model leads to too narrow intervals in most scenar-
ios. In settings with only a few runs from a highly heterogeneous population, which are challenging
for any estimation method, only the Bayesian methods prevent predidction undercoverage. Yet, the
Bayesian QC ranges have a tendency to become too wide in other scenarios. Based on our results,
weakly informative priors, inducing soft constraints on plausible ranges based on scientific expertise,
should be preferred over non-informative priors. We discuss nuances with respect to prior choice and
suggest several extensions and routes for further investigation. Due to their performance and flexibility,

Bayesian hierarchical models represent a promising approach for vaccine assay quality control.
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1 Introduction

Biostatistical methods contribute significantly to the science of chemistry, manufacturing and controls
(CMCQ), a cornerstone of biopharmaceutical product development (Faya & Pourmohamad, 2022b).
CMC focuses on activities like the characterization or control of products or processes. In CMC,
statistical theory and methods play a big part in decisions-making about, for example, shelf-life du-
rations, the release of product batches, the experimental designs used for quality assurance, or the

implementation of biological measurement methods (bioassays).

It has been argued that Bayesian statistics, with its flexibility, its opportunity to incorporate external
information in sparse-data settings, and its natural way of dynamically updating inferences, is partic-
ularly suited for CMC applications (Faya & Pourmohamad, 2022b; Peterson, 2020). Nevertheless,
Bayesian methods are probably still underused in CMC relative to the advantages they bring for some
applications. In fact, prominent regulatory documents for CMC “are silent on the use of Bayesian
methods” (Faya & Pourmohamad, 2022a, p. 2). This is in contrast to the long-standing adoption of
Bayesian statistics for clinical trial design and analysis (e.g., Spiegelhalter et al., 2004), as well as the
growing body of research applying Bayesian statistics for CMC. In particular, the Bayesian hierarchi-
cal model (BHM) has been picked up increasingly by researchers for addressing various challenges in
biopharmaceutical product development. The reason is that scientists commonly deal with multiple
levels and sources of variation in processes and products, or with multiple related populations of pro-
cesses and products (e.g., Lewis & Hudson-Curtis, 2022; Schach et al., 2025). Such settings call for
methods for clustered data, information borrowing, and variance decomposition — which is precisely

what (Bayesian) hierarchical models can provide (Gelman & Hill, 2000).

One area of CMC in which the BHM promises to be useful is the validation and monitoring of
analytical assays (Lebrun & Rozet, 2020; Novick et al., 2021). These are methods (e.g., bioassays)
to quantify specific chemical substances in a sample. It could be a human biological sample that is
measured to inform clinical care or clinical development (i.e., clinical assays). Sources of random
variation between assay measurements include different labs, analysts, or equipment (see Section 2.1).

The BHM provides a way to analyze and account for them during inference and decision-making.

In this study, we will specify and implement a BHM for quality control and monitoring of a clinical
assay in the field of vaccine development (see Section 2.1) and evaluate it in a simulation study, along
with commonly used alternative methods. The statistical requirements and data-generating scenarios
are developed in close collaboration with the external partner GSK. The GSK Vx-Clinical Assays
Statistics team currently mainly relies on frequentist statistical methods for assay monitoring. The
computation of control ranges for assay monitoring might benefit from extending the toolbox to
Bayesian methods. To provide first steps in this direction, this study provides examples of possible
model definition, choices of prior distributions, and techniques for posterior inference about predictive

distributions used as quality control ranges.

In Section 2, we provide the necessary background on analytical assay precision and quality control
and summarize our research objectives. Section 3 first explains the overall design of the simulation
study (Section 3.1), then the different statistical models and approaches for constructing quality con-
trol ranges (Section 3.2), along with the software implementation (Section 3.3), and the analysis of
simulation results for performance evaluation (Section 3.4). After presenting the results (Section 4),
we discuss them in light of the application and the broader literature (Section 5), concluding with

recommendations for method usage (Section 6).
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2 Background on application

2.1 Assay precision metrics and measurement scales

The methods examined in this study apply to the quality control of vaccine immunoassays. These clin-
ical bioassays are intended to quantify immune response by measuring the concentration of antibodies
from the human body in a biological sample. They play an important role during clinical development
of a vaccine candidate. Mechanistically, these could be ligand-binding assays like ELISAs (enzyme-
linked immunosorbent assays) or functional assays (Dessy et al., 2024). The measurements of the
immunoassay exhibit variability due to observed, but also unobserved factors and should hence be
modelled as arising from a stochastic process. The variability of any assay must be understood and
controlled to allow sound decision-making according to the intended purpose of the assay (Lebrun &
Rozet, 2020). In principle, the exact value of the next result produced by the assay is always uncertain

and statistical methods are necessary to cope with this uncertainty.

The total error is a core performance characteristic and a critical quality attribute of analytical assays
(DeSilva et al., 2003; Dessy et al., 2024; Junker et al., 2015): How closely does the measurement
procued by the assay agree with the underlying theoretical value of the analyte’s concentration? It can
further be decomposed into systematic error (often also called accuracy, bias or trueness) and random
error (precision). The definition of the systematic error is somewhat delicate for vaccine immunoassays:
“a ‘true’ accuracy assessment is often impossible, because highly purified and/or fully characterized
reference material does not usually exist” (Dessy et al., 2024, p. 1070). Therefore, in practice, one

typically accepts certain reference samples of unknown true composition as a standard of comparison.

This study focuses on statistical methods for inference on the random component of the total error,
i.e., assay precision. There is not only one precision. Clearly, measurements produced in the same
lab, by the same person, on the same day will vary less than measurements taken by, say, different labs
or different persons or on different days, even if all assessments measure the same biological sample.
This notion is captured in the definitions of different assay precision components (Dessy et al., 2024,
sec. 3.2). Repeatability, or within-run precision, refers to variability of measurements under constant
conditions, usually taken within a short time frame. On the other extreme, reproducibility refers
to variability of measurements under vastly different conditions like different labs. In-between these
extremes, the so-called intermediate precision of the assay is an important characteristic. It refers to the
variability of measurements from the same lab, but taken during different ruzns of the assay. Runs may
differ in terms of, for example, time, analyst, equipment, or reagent lots. Intermediate precision is
important because it reflects the variability introduced by the way assays are operated during routine

testing. Intermediate precision arises from random variation at two different levels:
Intermediate precision variance = Within-run variance + Between-run variance.

As it results from summing multiple variances, intermediate precision is also sometimes referred to as
“total random error” (DeSilva et al., 2003) or “total variance/variability” (Francq et al., 2019) of an

assay. We adopt the latter term in some instances where its meaning is unambiguous.

Intermediate precision is often expressed in terms of the intermediate precision percent coefficient of
variation (CV), which we denote by %CVyp. The CV is defined as the standard deviation of a distri-
bution divided by the mean. The ratio is often multiplied by 100, and we denote the resulting CV
on the percentage scale by %CV. The metric quantifies relative variability (Lewontin, 1966). For ana-

lytical assays, the metric generalizes over a larger range of concentration levels than does the standard
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deviation. The reason is that concentration measurements usually vary more at greater magnitudes,
leading to the standard deviation increasing (approximately) in proportion with the mean (Dessy et

al., 2024, sec. 3.2.7), at least for some concetration range.'

Conveniently, the assumption of constant CV, i.e., constant relative variability, on the original mea-
surement scale implies that after taking logarithms, the transformed measurements will exhibit con-
stant variance, irrespective of the mean (e.g., Canchola et al., 2017; Lewontin, 1966). Hence, log
transformation allows the subsequent application of statistical models with independent location and
scale parameters, most prominently the normal distribution. Due to better fit of the normal model,
log-transformed values are commonly used for analyzing laboratory results (e.g., West, 2022), includ-
ing results from analytical assays. As Dessy et al. (2024, p. 1074) note, the “use of a pre-specified
data transformation (e.g., logarithm) may [...] improve the performance of the statistical analyses. For
example, ELISAs are typically assumed to follow a log-normal distribution”.

A %CVp on the original measurement scale can be mathematically transformed into an intermediate
precision variance on the log-transformed scale, which we denote by Varpp. This transformation and
back-transformation will be useful when specifying and interpreting our statistical models for quality
control range determination (Section 3). We use logarithms with base 10.? The formula for transfor-
mation, derived under a log-normal assumption for the distribution of measurements is (Canchola et
al., 2017; Dessy et al., 2024, p. 1078)

%CVyp = \/exp <Varlp : log(10)2> —1 x 100, (1)

with inverse transformation
log ( (%S¥e)” 41
g 100

log(10)?

VarIP =

Equation 1 shows that knowing the variance of the log, O—transformed measurements is sufficient to
compute the CV of the measurements on their original scale. We emphasize that %CVp always refers

to variation among untransformed measurements coming from different runs.

2.2 Quality control range for vaccine assays

A vaccine assay that has been qualified for its purpose needs quality control and monitoring to ensure
that performance consistently remains within acceptance limits (Dessy et al., 2024, sec. 2.2.3). Even
if certain assay characteristics, like limit of detection, analytical range, or precision (e.g., in terms of
%CV1p), have been described and validated during assay development, they might not be guaranteed
over longer time frames of “real-life” usage. Imagine a vaccine clinical development program that takes
place over multiple months or years and requires many repeated measurements of immune response
across multiple samples. Quality control is important to ascertain that measurements remain reliable.

Otherwise, this will ultimately pose risks to patients.

Therefore, different regulatory guidances and quality management frameworks for CMC apply directly
or indirectly to the development and control of analytical methods. For example, Quality-by-Design

A more general variance function, which usually applies in practice, poses that the standard deviation scales as a power function of the
mean concentration (Lebrun & Rozet, 2020, p. 383). Only for power 1 this implies strictly constant CV across all concentration levels.
For power 0, we have a constant standard deviation across all concentration levels, which is not realistic for bioassays.

ZThroughout, we will write log,  for the logarithm with base 10 and log for the natural logarithm.
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is an important regulatory and scientific initiative in the pharmaceutical industry that “begins with pre-
defined objectives and emphasizes product and process understanding and process control, based on
sound science and quality risk management” (ICH, 2009, p. 16). Despite its focus on manufacturing
processes, the objectives and components of the approach can one-to-one be adapted to measurement
processes like analytical assays (Junker et al., 2015; Lebrun & Rozet, 2020). For example, process
validation guidance for industry by FDA (2011, p. 4) emphasizes the need for “continued process
verification” during commercial production to ensure “that the process remains in a state of control”.
Similarly, guideline ICH Q9 calls for “monitoring systems that are capable of detecting departures
from a state of control and deficiencies in manufacturing processes” (ICH, 2023, p. 11). This can be
translated into the realm of analytical assays as the need for “monitoring and assessing the method’s
state of control” (Junker et al., 2015, p. 494).

As one means of assay quality control, it is standard practice to include quality control (QC) samples
in every run of analytical assays (DeSilva et al., 2003; Dessy et al., 2024; Junker et al., 2015; Lebrun
& Rozet, 2020). These samples contain a previously established concentration of the analyte and are
expected to deliver consistent results over time, subject only to random error. Their inclusion serves
two primary purposes. First, they provide a run-to-run check for the reliability of results from test
samples, guiding the decision to accept or reject a run. Second, accumulated data over time allows for
the detection of long-term trends in assay results, which may indicate that the assay has systematically
gone “out of control”. Both is only possible if an acceptable range of results for the QC samples has
been clearly defined, as it provides the benchmark against which deviations and trends can be identified.
Such a range should respect that results are inherently random and governed by the precision of the
assay (see Section 2.1). We call this the QC range, and the statistical methods to construct this range

are the main topic of this study.

A QCrange is best used in conjunction with control charts, a popular tool for statistical process control,
including the real-time monitoring of analytical methods (Junker et al., 2015): Measurements taken
over time are entered in a chart, in which the limits of the QC range constitute horizontal control
boundaries. Control charts provide a quick and easy way to monitor individual results, but also long-
term trends in results. For a stylized example of a control chart, containing multiple QC ranges and

simulated data, see our results Figure 2.3

Since the QC range expresses the range within which future measurements of QC samples are expected
to lie, it is natural to draw on statistical theory for prediction intervals and predictive distributions for
building it. This is also the route taken in this study. From a risk perspective for both decision-makers
and patients, it is crucial that the next measurement is likely of acceptable quality — or, in general terms,
that the process (i.e., assay) yields products (i.e., measurements) within specifications. For precisely
this logic, predictive distributions are an important target of inference in statistical process control
(Boulanger & Mutsvari, 2020; Schach et al., 2025) — sometimes more so than the underlying model
parameters of the process themselves (Boulanger & Mutsvari, 2020, sec. 18.2). Following the classical
definition (e.g., Casella & Berger, 2002; Tian et al., 2022), a prediction interval is a function of the

random sample Y that satisfies

Py [L(Y) <Y <U(Y)] =5, )

30f course, control charts can be applied either on the log-transformed or on the original measurements, if QC range limits are also
transformed accordingly — acceptance and rejection of results is unaffected by the monotone transformation. This is in contrast to the
statistical methods for establishing QC ranges in the first place, which usually draw on modeling assumptions that are more likely to hold
under the log transformation (Section 2.1).
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where Y is the future random variable, [L(Y),U(Y)] is the prediction interval with lower and up-
per limit, respectively, 8 are model parameters of the joint distribution of (YY), and 8 € [0,1] is
a nominal confidence level. Put simply, we require that the interval constructed from observing the
sample of assay measurements Y will contain a proportion of 3 - 100% of future measurements gov-
erned by parameters 6 of the process (e.g., assay precision, QC sample concentration). In practice,
0 is unknown and will be estimated. Equation 2 implies a fixed parameter 8, which contrasts with
Bayesian prediction intervals, for which we marginalize over the distribution of the random parameter
6. The distinction will be made explicit in Section 3.2, when we describe our statistical models and
approaches. For the sake of motivating the use of prediction intervals as QC ranges, it is not yet of

prime importance.

The use of prediction intervals as QC ranges has been recommended in the literature on assay quality
control, though with some diversity in the statistical approaches considered. For example, Lebrun
& Rozet (2020, p. 387) state that data from “performed experiments can define Bayesian prediction
intervals that can be used as initial control limits when building analytical procedure control charts”.
In contrast, Francq et al. (2019, sec. 5.2) draw on frequentist mixed model theory to build intervals
for predicted concentration values. Irrespective of the precise approach, it is important that statistical
methods for constructing the QC range are well able to capture the precision of the assay governed by
the multiple variance components outlined in Section 2.1.

For process control, prediction intervals are sometimes extended to also satisfy a requirement on the
confidence/probability with which a given proportion of future values are captured by the interval.
This leads to so-called (type II, or “-content”) tolerance intervals (Casella & Berger, 2002, sec. 9.5.4;
Francq et al., 2019; Lewis & Hudson-Curtis, 2022; Patel, 1986), which are not further considered in
this study.

2.3 Research objectives

The first objective of this study is to develop theoretically and practically how Bayesian methods can
be used for constructing a QC range for assay quality control. This includes aspects like model defini-
tion, prior choice, interval estimation, and software. So far, external collaborators at GSK have relied
on more classical, frequentist methods for constructing the QC range. Therefore, proposing and im-
plementing a Bayesian approach for the QC range problem constitutes the first important research

objective.

As second objective, we evaluate the performance of different methods to construct QC ranges. In
a statistical sense, the QC ranges are prediction intervals, and they can hence be evaluated in terms
of their prediction coverage and interval width. Coverage and width are conventional metrics for
evaluating interval estimators (Casella & Berger, 2002, sec. 9.3).

Throughout the study, we examine the two-sided - 100% prediction intervals for 8 = 0.99. We will
ask the questions: How well do the prediction intervals obtained with the different methods respect
the probability of 99% to include future concentration measurements, both on average and in terms
of mean deviation, and how wide are the QC ranges on average? The questions will be answered with
Monte Carlo estimates of the relevant quantities from a simulation study. The evaluation metrics used

in the current study are explained in more detail in Section 3.4.

4See Lewis & Hudson-Curtis (2022) for a Bayesian model and simulation-based implementation similar in spirit to the one used in
our study, though for estimating tolerance intervals.
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In particular, we compare

* a “naive” approach, which proposes a non-hierarchical (single-level) iid normal model. The
model and QC range can be estimated easily, but the approach could be too simplistic under

realistic settings,
* a frequentist approach to Gaussian hierarchical modeling,

* and the proposed Bayesian approach to Gaussian hierarchical modeling, using different prior
distributions.

Based on the comparisons, recommendations about the future use of QC range methods for the

investigated settings shall be derived.
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3 Methods

3.1 Study design
3.1.1 Overview

In this simulation study, both the data-generating process (30 scenarios) and the statistical method for
determining the QC range (7 methods) are varied systematically. One simulation repetition produces
a random data set for each scenario. On each data set, all QC range methods are applied.

Each run of the simulation broadly resembles a stylized real-life workflow for determining and using

an assay QC range:

(1) Collect baseline data to estimate mean for the QC sample and assay variability %CV/p.
(2) Construct a QC range based on the estimates.
(3) Apply the QC range for testing future measurement of the same QC sample.

For step (1), we manipulate the number of runs (i.e., clusters), total number of observations, and
balancedness of the baseline data collection in a systematic way, leading to 5 different designs. Within
each design, the true degree of total variability and strength of clustering is varied, leading to the in

total 30 different scenarios (Section 3.1.2).

For step (2), we vary the assumed statistical model (2 models: single-level and hierarchical model),
the estimation approach for the hierarchical model (frequentist and Bayesian approach), and, for the
Bayesian approach, the prior distribution (5 prior distributions), leading to in total 7 different methods

(Section 3.2). Consequently, in one simulation repetition, 30 - 7 = 210 QC ranges are computed.

For step (3), we can make use of the fact that the marginal distribution of the population of future
observations — i.e., of random draws from random runs — is known in the simulation study. By
using the quantiles of the known distribution, it can be exactly stated which proportion of future

measurements is covered by the QC range constructed from the baseline data collected in step (1).

A stylized visualization of the results from these steps with a simulated data example is also shown
in Figure 2. We simulate 750 data sets (repetitions) per scenario and method to obtain Monte Carlo
estimates of QC range evaluation metrics for each scenario and method (Section 3.4).

3.1.2 Data generation scenarios
Table 1 lists all 30 investigated scenarios for generating the baseline data for the QC sample.
The scenarios fall into five broader designs with specific run configurations:

* The “Standard” case describes the design that is considered desirable in practice according to
standard operating procedures: there are exactly two measurements for each run and m = 20

runs in total, adding up to n = 40 measurements in total.

* In the “Unbalanced 1”7 design, there are also n = 40 measurements, but they spread unequally

across only m = 10 runs.

* In the “Sparse 17 design, there are less measurements (n = 20), and fewer runs (m = 5). All

runs have the same size.
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* In the “Unbalanced 2” design, measurements are again spread unequally across runs as in the

“Unbalanced 1”7 design, but m and n are held constant relative to the “Standard” design.

* In the “Sparse 2” design, there are fewer runs (m = 5) as in the “Standard” design, but n is held

constant relative to the “Standard” design.

The first three designs represent typical designs encountered in practice. The last two designs are
included to allow comparisons that are better interpretable by not varying multiple parameters at the
same time. We emphasize that all examined designs have relatively few and small clusters compared
to many other applications of hierarchical models in, for example, clinical or social science research
(e.g., Browne & Draper, 2006; Gelman & Hill, 20006).

Table 1: Settings of the data-generating process for the simulated collection of baseline data and all scenarios. Column
name n refers to the total number of assay measurements (i.c., total observations); m to the number of runs (i.e., clusters);
p to the intra-run correlation (i.e., strength of clustering); and %CV); to the intermediate precision percent coeflicient of
variation (i.e., total variability; see Section 2.1).

Design conﬁguration

Design n  m  Balance Scenario  %CVpp p
Standard 40 20 Yes 1 10 0.2
Standard 40 20 Yes 2 10 0.5
Standard 40 20 Yes 3 10 0.8
Standard 40 20 Yes 4 40 0.2
Standard 40 20 Yes 5 40 0.5
Standard 40 20 Yes 6 40 0.8
Unbalanced1 40 10 No 7 10 0.2
Unbalanced 1 40 10 No 8 10 0.5
Unbalanced 1 40 10 No 9 10 0.8
Unbalanced 1 40 10 No 10 40 0.2
Unbalanced1 40 10 No 11 40 0.5
Unbalanced 1 40 10 No 12 40 0.8
Sparse 1 20 5  Yes 13 10 0.2
Sparse 1 20 5 Yes 14 10 0.5
Sparse 1 20 5  Yes 15 10 0.8
Sparse 1 20 5 Yes 16 40 0.2
Sparse 1 20 5  Yes 17 40 0.5
Sparse 1 20 5  Yes 18 40 0.8
Unbalanced2 40 20 No 19 10 0.2
Unbalanced2 40 20 No 20 10 0.5
Unbalanced2 40 20 No 21 10 0.8
Unbalanced2 40 20 No 22 40 0.2
Unbalanced2 40 20 No 23 40 0.5
Unbalanced2 40 20 No 24 40 0.8
Sparse 2 40 5  Yes 25 10 0.2
Sparse 2 40 5 Yes 26 10 0.5
Sparse 2 40 5  Yes 27 10 0.8
Sparse 2 40 5 Yes 28 40 0.2
Sparse 2 40 5  Yes 29 40 0.5
Sparse 2 40 5  Yes 30 40 0.8

For unbalanced designs (“Balance: No” in Table 1), we decide not to fix the distribution of run sizes
(i.e., cluster sizes). Rather, run sizes are randomly drawn from a distribution. The reason is that in

practice the designs result by compiling data from different sources, like runs conducted during assay
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development. There is no experimental protocol that governs run sizes, but run sizes vary due to which
records are available to the scientists to be used as baseline data for the assay at hand. Therefore, the
degree of the unbalancedness in our study varies randomly across simulated data sets, but according
to a known process (see Appendix A.1). The generated run sizes are recorded and can be analyzed.

Within each of these five designs, we vary the true intermediate precision %CVp (small or large) and
the intra-run correlation p (small, medium, or large; for a formal definition of p in the context of
our statistical models, see Section 3.2.2) in a fully factorial fashion. Informally speaking, these two
parameters control how large the total variability is in the population, and how it distributes across

within-run and between-run variability.

Whereas %CVp reflects the precision of the assay, the population mean of measurements on the
original measurement scale reflects the concentration level of the QC sample. In our study, it is the

same in all scenarios and fixed at 100.

Simulated measurements are generated as described by Algorithm 1. Step 2 in Algorithm 1 is based
on the assumption of a log-normal distribution of the observations on the original measurement scale.
The step transforms the expected value of measurements on the original scale to the expected value of
measurements on the log, = scale (e.g., Casella & Berger, 2002, p. 109). By directly sampling from
the log, -transformed measurements, the data are already on the suitable scale for Gaussian modeling
and QC range estimation (see Section 3.2).

Algorithm 1: Simulation of measurements on the log, = scale according to scenario parameters.

Input: Parameters of the scenario (n, m, %CVip, p); QC sample concentration (100);
Transform %CVip into Varpp (see section 2.1);

Compute mean on log, = scale as 1 = log, (100) — Ve . Jog(10);

Sample m run-specific intercepts from N (u, Varyp - p);

Sample n within-run residuals from N (0, Varp - (1 — p));

Sum run-specific intercept and within-run residual for each measurement;

3.2 Statistical models

In what follows, we describe the specification and estimation of the different statistical models to
analyze the baseline data for the QC sample. From the estimated models, we compute prediction in-
tervals for a random future observation, drawn from a random future run. The limits of the prediction

intervals can be used as an analytical assay’s QC range (see Section 2.2).

3.2.1 Single-level model

Denote by y;,; the loglo-transformed observation (QC sample measurement) j = 1,..., k; from run
i =1,...,m. By n, we denote the overall number of observations n = Z:il k;. All observations from
cluster ¢ are contained in k;-dimensional vector y;, and all observations from all clusters are contained
in n-dimensional vector y. A simple way to model the data-generating process would be to assume
identically and independently distributed observations in a single-level model. Observations following

a normal distribution with a common mean parameter /i, and a common variance parameter o2,

yij ~ N(:u’sa 052) (3)
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Variation among data points y, ; is modelled with a single variance component o?. The single parameter
captures both random within-run and random between-run variation, which jointly make up the

intermediate precision variance of interest (Varyp; see Section 2.1).

_ _ k; .
By 5 we denote the overall sample mean y = * ZZL ;%1 Yij- Parameter estimators for the assumed

single-level model are easy to obtain:

| 4
5= > -0 @

The normal variance o2 is estimated by the sample variance, also called ANOVA estimator, which,
other than the maximum likelihood estimator, is unbiased in case Model 3 holds (Casella & Berger,
2002, p. 331; Searle et al., 1992, p. 249).

We can call this pooled estimation, since observations from all runs are pooled during parameter estima-
tion rather than contributing to the estimation of run-specific parameters. This leads to 62 capturing
in one parameter the variability from all levels in the true data-generating process. Clustering is ig-
nored and all observations are assumed independent. Thus, since observations from the same run are
correlated under the true model (Section 3.1.2), Model 3 is misspecified. Accordingly, 52 might not
a good estimator of Varyp.

The model can also be read as a simple linear regression model with only an intercept. A two-sided 3 -
100% prediction interval for the random future observation 7 can be obtained with standard formulae
(e.g., Casella & Berger, 2002, sec. 11.3.5) and simplifies to

ﬂs =+ tn—l,(l—,@)/2 (1 + 1/”) é;a (5)
intermediate precision
variance estimate
where t,,_; (1_g)/5 is the (1 — 3)/2 quantile of the ¢ distribution with n — 1 degrees of freedom.
3.2.2 Hierarchical model
The following two-level Gaussian hierarchical model is proposed:
Yij; | Q; ~ N(ai702)7
! (6)

Q ~ N(,LL7T2).

'This model reflects a hierarchical structure, where observations (level 1) are nested within runs (level
2). Not only observations within runs, but also run-specific intercepts are assumed to vary indepen-
dently according to a normal distribution. In the literature, this is also referred to as multilevel model,
random-effects model (due to run-specific intercepts «; being “random effects”), or mixed model —
although strictly speaking, the only “fixed effect” in Equation (6) is the global intercept term y. The
model explicitly takes clustering of observations into account (e.g., Gelman & Hill, 2006). It is com-
mon to assume hierarchical models when analyzing results from analytical assays (e.g., Francq et al.,
2019; Junker et al., 2015; Lebrun & Rozet, 2020; Novick et al., 2021).

Variation among data points y;; is modelled as coming from two sources: random within-run (o*)

and random between-run variation (72). In this model, the intermediate precision variance (Varyp;

10
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see Section 2.1) is the sum 02 + 72 (Lebrun & Rozet, 2020, p. 381). Since generally any conditional
random effects model implies a marginal model (Verbeke & Molenberghs, 2000, sec. 3.3), a marginal
formulation is also possible for Model (6), given by the multivariate normal distribution

o2 +72 72 T2
72 o2 +7'2 72
72 72 e 02472

where vectors and matrices have dimension k; and k; x k;, respectively. Marginally, the population
of Yij follows the intermediate precision variance, shown on the diagonal of the variance-covariance
matrix in Equation 7. The marginal formulation will be useful for estimating prediction intervals for

randomly drawn observations from randomly drawn runs.

Further, the intra-cluster correlation defined by ratio

72

P= 5 T2

is an informative quantity. It expresses the proportion of the intermediate precision variance that is
due to variation between runs, or, alternatively, the correlation between any two observations from
the same run (Verbeke & Molenberghs, 2000, sec. 3.3). Higher values indicate a stronger degree of

clustering.

Model (6) can be estimated in a frequentist (Section 3.2.2.1) or Bayesian framework (Section 3.2.2.2),
and both will be part of the present study. Both estimation approaches can be viewed as partially
pooled, or shrinkage estimation (Gelman & Hill, 2006, sec. 12.2): In contrast to Model (3) described
in Section 3.2.1, separate, run-specific means c; are assumed. Yet, during estimation, there is still
borrowing of information between runs, as their means are modeled as coming from one common
distribution. The degree of pooling will generally be larger for lower values of p (Lesaffre & Lawson,
2012, sec. 9.4.3). In this study, the run-specific means «; are not of scientific interest and their
estimates will not be analyzed. Specific runs represent unique applications of the assay in a specific lab

at a specific time, and it is impossible to observe future data from the same run ever again.

Note that Model (6) correctly specifies the data-generating process outlined in Section 3.1.2. Outside
of a simulation study, it is unlikely that analysts will fully correctly specify the model, but the proposed
model might approximately hold.

3.2.2.1 Frequentist estimation and prediction

In the frequentist tradition, parameters in the model in Equation (6) are typically estimated via Re-
stricted Maximum Likelihood (REML) estimation. In brief, REML estimation maximizes the like-
lihood for a linear transformation of the original data that eliminates the “fixed effects” from the
likelihood (Searle et al., 1992, sec. 6.6). The reduced set of transformed data contains only linearly
independent observations. In that way, when estimating variance components, REML respects that
some degrees of freedom are involved in estimating the “fixed effects” — in the present case of Model
(6), the global intercept . REML prevents possible downward bias of ML for variance estimation in
finite samples.>

31n fact, the single-level model parameter estimator 52 in Equation 4 is also a REML estimator.

11
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Having obtained REML estimates for parameters in the hierarchical model, a two-sided 3 - 100%

prediction interval for the random future observation § from a random future run can be estimated as

i+ tr(1-8)/2 \//;r(/j) + w’

intermediate precision

(8)

variance estimate

where 7 refers to the appropriate degrees of freedom of the ¢ distribution, approximated according to

Francq et al. (2019, p. 5608) as
(62 +7%)2

r = 2/\7
Var (62 + 72)

)

'The estimate Var (62 4 72) can be obtained via summing over all four cells of the estimated variance-
covariance matrix of the REML estimators 2 and 72, i.e., Var (62 + 72) = Var (62) + Var (72) +
2 Cov (52,72) . The variance-covariance matrix is obtained by inverting the observed Fisher informa-
tion matrix, i.e., the negative Hessian of the REML log-likelihood evaluated at the estimates. The
prediction interval hence takes into account non-independent variance component estimators and

adjusts the degrees of freedom accordingly.

We recognize the marginal model formulation from Equation (7) in the prediction interval in Equation
(8). In fact, asymptotically, the bounds defined by the estimator in Equation (8) converge to the true
(1 + 8)/2 quantiles of the population of y;; described by the distribution in Equation (7) (Francq et
al., 2019, p. 5608).

3.2.2.2 Bayesian estimation and prediction

Bayesian hierarchical models are a suitable approach to analyze clustered data produced by multiple
variance components (Box & Tiao, 1973, Chapter 5; Gelman et al., 2013, Chapter 5; Lesaffre &
Lawson, 2012, Chapter 9). Based on the Bayesian hierarchical model, it is also straightforward to
derive a full and exact distribution for a future observation, the posterior predictive distribution (PPD),

rather than having to rely on an approximation of prediction interval limits (Section 3.2.2.1).

The likelihood part of the BHM is described by the two-level model in Equation (6), equivalent to
the frequentist approach. The three parameters are assigned a prior distribution p(p, o2, 72). For
this study, we will mostly, but not always, choose independent priors that allow the factorization
p(p) p(o?) p(7?). The overall mean parameter is assigned a very dispersed prior with

o~ N(0,1002).

It is essentially uninformative, considering that p is the mean concentration level on the loglo—
transformed scale. This could reflect a sensible default if no prior information about the concentration
level should be incorporated, but an improper prior, like p(p) o 1, should be avoided. We will
not vary it as part of the current study. In conventional measurement units and before log,
transformation, concentrations of QC samples are typically in the tens, hundreds (as in our simulated
data, see Section 3.1.2), or thousands, which are orders of magnitude comfortably covered by the
prior distribution above. There is typically enough information in the data to estimate the overall
mean with good precision. For variance components, instead, different choices of prior distributions
are evaluated as part of the current research design (Section 3.1). Precise estimation of the multiple

variance components is important for estimating assay precision (and, hence, the QC range), but it

12
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is usually more difficult than estimation of the mean, given the limited sample size of clusters and
observations per cluster that would inform about within- and between-cluster variability. Therefore,
deciding between different prior distributions for variance components can play a crucial role for
inference in the BHM (see also Browne & Draper, 2006). We introduce them in Section 3.2.2.3.

The Markov Chain Monte Carlo (MCMC) technique will be used for inference about the joint pos-
terior distribution (Section 3.3), which is given by (see Lesaffre & Lawson, 2012, sec. 9.4.2)

N(yij | 0%7572) HN@% ‘ MaTz)p(CTQ,N772)'

=1

=

m
pleyo® pr? y) o< [|
i=1j

I
-

The PPD for the random future observation § from a random future run with intercept & is derived

from the marginal posterior distribution p (02, 1, 7% | y) as
p@ 1w =[ [ [ [618.070 0.7 p (0% 077 |v) dido? dpdr. (10)

Simple Monte Carlo simulation based on the posterior draws from MCMC allows us to approximate
the PPD (see Section 3.3), as well as its (1 4+ 3)/2 quantiles. These PPD quantiles constitute the limits
of a 8- 100% equal-tailed prediction interval.

3.2.2.3 Prior distributions for the variance components

Prior distributions for variance parameters in a Gaussian BHM have been discussed extensively in
the applied statistical literature (e.g., Gelman, 2006; Lesaffre & Lawson, 2012, sec. 9.5.7; Spiegel-
halter et al., 2004, Chapter 5), including in the literature on Bayesian random effects meta-analysis
(Hamaguchi et al., 2021; e.g., Réver et al., 2021).6

We will investigate both weakly informative priors and a non-informative prior (or, reference prior) for
comparison. Weakly informative priors can be defined as prior distributions that “attempt to let
the data speak while being strong enough to exclude various ‘unphysical’ possibilities which, if not
blocked, can take over a posterior distribution in settings with sparse data” (Gelman, 2009, p. 176).
For example, in this study we will use weakly informative priors to exclude unrealistically large values
for the sum of between-run and within-run variance. In the same vein, McElreath (2020, p. 407)
argues that priors which “express only a rough notion of an average standard deviation and regularize
towards zero” are often suitable default priors for variance components in the BHM. This can stabilize
estimation in particular in settings like the current: Only few runs or repeats per run might have been
measured, some of which might exhibit unusual values. Weakly informative priors can then have a
regularizing effect by relying on historical records or theoretical knowledge about the possible range
for assay precision. Still, we would like to mainly let the data speak, and hence put only little weight
on the prior information. In brief, “weakly informative priors can strike a balance between fidelity to
a strong signal, and shrinkage of a weak signal” (Simpson et al., 2017, p. 5). This philosophy of prior
specification within a Bayesian analysis has been called the “regularization point-of-view” by Réver et
al. (2021, p. 450), though we note that, ultimately, the purpose of prior choice for us is pragmatic:
The QC range should exhibit good performance characteristics for QC. This will be the yardstick to

compare different priors.

6In random-effects meta-analysis, it is commonly assumed that study-specific standard errors are known, which implies that the (com-
mon or study-specific) population variance is known. This is not a reasonable assumption in our study, where also within-run variance
needs to be estimated from the observed data.
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Gelman (2006, p. 517) distinguishes weakly informative from non-informative priors for the random
effects variance in hierarchical models, which are often improper: “We characterize a prior distribution
as weakly informative if it is proper but is set up so that the information it does provide is intentionally
weaker than whatever actual prior knowledge is available.” He argues that “any problem has some nat-
ural constraints that would allow a weakly-informative model.” This is certainly true for the variability
of an analytical assay. Accordingly, previous research has used weakly informative priors for variance
components of assay precision (Lebrun & Rozet, 2020; Novick et al., 2021; Wang & Cheng, 2022).

The current study will investigate four different (proper) weakly informative prior distributions (P1 to
P4) and one (improper) non-informative prior distribution (P5). The weakly informative priors will

draw on the following prior knowledge elicited from scientists at GSK:

* For a typical, properly applied vaccine immunoassay, which has passed assay qualification and
validation, an intermediate precision of %CVyp > 200 can essentially be rejected already a priori.
The usual thresholds for assays to be accepted for a particular concentration range are lower (e.g.,
50 or 70, depending on assay type). Generally, it can be expected that most %CVyp fall in the
range from 10 to 50.

* Assays differ considerably in how total variance splits into within- and between-run variance, so
p should not be restricted to or pulled strongly towards a particular range on the [0, 1] interval

a priori.

Despite the focus of this study on non- and weakly informative priors, their extension to informative
priors will be discussed and is straightforward within the same modeling framework and distribu-
tional families (Section 5.2). Informative priors can be powerful for example when assay-specific prior

knowledge is available.
The investigated priors P1 to P5 are defined as follows.”
Prior 1 (P1): Restricted uniform priors on o, 7

A uniform prior on a restricted range has been recommended for the level-2 standard deviation (Lesaf-
fre & Lawson, 2012, sec. 9.5.7). Putting the same, independent prior distribution on both ¢ and 7
will always maintain a symmetric prior on p with prior expectation of E(p) = 0.5 for the intra-run
correlation, broadly in line with the idea that neither small values of p should be favored over large

values « priori, nor vice versa.® Therefore, we choose

o, T~ U(0,c).

The upper limit ¢ is chosen such that %CVyp is capped at 200. No prior probability mass is as-
signed to the event that %CVp exceeds 200. Thus, based on Equation 1, we need to pick ¢ to satisfy
\/exp ((02 + ¢?) ~log(10)2) —1 = 2. The solution for ¢ under the constraint is ¢ = 0.390, after
rounding to three significant digits.

Prior 2 (P2): Half-normal priors on o, 7

Another common choice for the prior distribution for the level-2 standard deviation is the half-normal
distribution (McElreath, 2020, Chapter 13; Réver et al., 2021; Spiegelhalter et al., 2004, Chapter 5).

7Though it should go without saying, we emphasize that no information about the values of the parameters of true data-generating
process, which in this study is known (Section 3.1.2), was “leaked” into the procedure for specifying priors.
81f o and 7 follow the same distribution, the random variables o2 /(62 4 72) and 72 /(02 + 72) have the same expectation, and these

expectations must some to 1.
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Different from the uniform prior, and similar to the half-Cauchy prior (discussed below), it comes with
advantageous technical characteristics like “roughly uniform behavior near zero (implying indifference
among small heterogeneity values on the 7 scale and ensuring integrability in the lower tail), and a
monotonically decaying tail with increasing heterogeneity values (implying decreasing probability for
increasing 7 values and ensuring integrability in the upper tail)” (Rover et al., 2021, p. 452).

For the same reasons as above, o and 7 get the same, independent half-normal prior:

o, 7~ HalfN(0,w).

The scale parameter w is chosen such that 99% of probability mass is assigned to values of %CVyp
below 200. The solution found via simulations is w = 0.181. Thus, our approach for choosing the
hyperparameter of the prior is to declare the plausible upper bound based on substantive knowledge
followed by “matching [...] the upper bound to an upper percentile such as the 99th” (Gelman et al.,
2013, p. 117).

Prior 3 (P3): Half-Cauchy priors on o, 7

Another alternative is the half-Cauchy prior, a half-¢ distribution with 1 degree of freedom and, again,
one free scale parameter. The half-Cauchy distribution, and related half-¢ distributions with degrees of
freedom > 1, have been recommended and used as priors for random effect variances (Biirkner, 2017;
Gelman, 2006; Novick et al., 2021; Réver et al., 2021). For example, Polson & Scott (2012, p. 896)
investigate its technical properties and summarize that “the half-Cauchy is a sensible default prior for

scale parameters in hierarchical models”.

For the same reason as above (ensuring E(p) = 0.5), o and 7 get the same, independent half-Cauchy
prior:

o, 7 ~ Half-Cauchy(0, ).

The scale parameter ¢ is chosen by matching the median of the half-Cauchy prior distribution to
that of the half-normal prior distribution specified above, a procedure used for comparisons between
priors also by Rover et al. (2021). This requires to multiply the scale parameter w from the half-
normal distribution by the 75th percentile of the standard normal distribution (= 0.674). We obtain
P =w-0.674=0.181-0.674 = 0.122.

The main ways in which the resulting prior differs from the half-normal prior specified above are
(i) that slightly more prior probability is assigned to values close to zero, and (ii) the heavier upper
tail. Otherwise, the shape is quite similar (Figure 1A,B). The gentler slope in the upper tail, however,
might be an important advantage, since it does not by default preclude “occasionally large” values of

the standard deviation parameter (Gelman, 2000).
Prior 4 (P4): Gamma prior on %CVip /100, uniform prior on p

Priors P1 to P3 included probability distributions directly assigned to o and 7. Indirectly, they imply
priors also on quantities derived from ¢ and 7, like the intra-run correlation p. For example, even
though P1 to P3 guarantee the prior expectation E(p) = 0.5, they put relatively more prior weight
on extreme values of p (Figure 1D). This might or might not be appropriate for the problem at hand.
Also, the prior for the assay precision parameter that is arguably most easily interpreted and most

widely cited by the practicing scientist, %CVp, can only rather indirectly be controlled via p(c) and
p(7).

15



S. Gebrig: Bayesian Prediction Intervals for Clinical Assay Quality Monitoring

Another parametrization of the variance components priors, in contrast, allows to flexibly assign prior
probabilities directly on values of %CVip and p. In turn, this induces joint prior distributions that
cannot be factorized (different from the independently assigned prior distributions, as for priors P1
to P3) on the variance components o2 and 72. The procedure is closely related to the hierarchical
decomposition priors proposed by Fuglstad et al. (2020), which also avoid explicit and independent
priors on the variance components in favor of priors on total variance and variance splits. They show
some favorable properties of such priors for the BHM, among which is also the opportunity to “in-
clude expert knowledge through interpretable statements on the total variance and the distribution of
variance” (p. 1112) — a point we return to in Section 5.2.2.

An example of suitable distributional families in the present case are the Gamma distribution (after
dividing %CVjp by 100 to return from the percentage to the ratio scale) and Beta distribution, re-
spectively. These will be used here, but other families that respect the domain of the parameters are
similarly suitable (e.g., a log-normal distribution for %CVyp). The two independent priors are

%CVp/100 ~ Gamma(ag, B),
p ~ Beta(ap, Bg).

The two hyperparameters per distribution give good flexibility in specifying scale and shape (with
the Gamma distribution parametrized by the shape o and the inverse scale parameter 5;). How
could they be chosen for reasonable weakly informative priors? Again, we apply constraints from
substantive knowledge, which is straightforward in this case, because %CV|p expresses prevision of
bioassays on the original measurement scale. For %CVyp, we decide to fix the mode of the prior
distribution at 20 — a typical and representative value. In addition, as previously for prior P2, we
match the elicited upper bound of the plausible range, %#CVyp = 200, to the 99th percentile of the
distribution. The solution for hyperparameters of the Gamma distribution to satify these constraints,
found via numerical optimization, is a; = 1.58 and 3, = 2.92. For p, we encode exact indifference
over all values in the [0, 1] interval with a uniform prior distribution (o = S5 = 1). This maintains
the prior expectation that no values of intra-run correlation should be favored over others — not even

those close to 0 or 1, as was induced by priors P1 to P3 (Figure 1D).
Prior 5 (P5): Reference prior

For the level-1 variance, we pick the standard Jeffrey’s prior for the variance of a non-hierarchical

normal model (e.g., Lesaffre & Lawson, 2012, p. 116), i.e.,

p(o) x1/0, (11)

which implies a uniform prior on the log-standard deviation scale p (log(o)) o 1.

For the level-2 standard deviation, we pick a uniform distribution over the positive real line (e.g.,
Gelman, 2006, p. 521), i.e.,
p(T) oc 1,

equivalent with p(7?) oc 1/7. These independent prior distributions for the two variance components
are both improper, but, in combination with sufficient data (e.g., > 3 runs, see Gelman, 2006), yield
a proper joint posterior. Importantly, using Equation (11) as independent prior also for the level-2
variance would not lead to a proper posterior (Browne & Draper, 2006, p. 483; Gelman, 2006, sec.
4.2; Lesaffre & Lawson, 2012, sec. 9.5.7).
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The reference prior is constructed to be uninformative, acting as an objective standard for comparison.
It is not recommended for practice, as it fully ignores any knowledge about plausible parameter values,
risks leading to improper or too broad posterior distributions (e.g., when there are few clusters), and
can also lead to MCMC convergence problems when the data is little informative about the joint
posterior. It must also be acknowledged that a truly and universally uninformative prior is essentially
unattainable (and undesirable). Spiegelhalter etal. (2004, p. 171) note about the uniform distribution
of the level-2 standard deviation that “it would be inappropriate to term this ‘non-informative’, as it

is a fairly strong statement to declare that small values [...] are as likely as large values.”

Figure 1 plots marginal densities of all weakly informative, proper prior distributions in terms of o,
7, p, and %CVyp. All black densities were specified directly for the respective prior, while the colored

densities are induced by them indirectly.’
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Figure 1: Marginal densities of (A, B) the variance components and (C, D) their derived quantities for the weakly informative
prior distributions P1 to P4. Black lines indicate densities that are specified directly on the respective scale. Red lines indicate
densities that follow from directly specified priors via transformations.

9For Figure 1, the indirectly specified densities were either calculated via the change of variable method (requiring also numerical inte-
gration for the convolution of random variables when adding up the independent variance component priors) or Monte Carlo simulations.
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Table 2 shows the prior medians for all parameters. The prior QC range, i.e., the QC range implied by
the prior before seeing the data and given by the (14 ) /2 quantiles of the prior predictive distribution,
could in principle be also be investigated and compared — for example, in terms of their width or
plausibilicy. However, the prior QC range is strongly dominated by the very dispersed prior for s.
Differences in the priors for the variance components play only a small part. This is easily seen when
comparing the small prior medians of the standard deviations o and 7 with the vast prior QC ranges,
which integrate over the prior for . Hence, the comparison of prior QC ranges is not very informative
for choosing between priors P1 to P4. Only the half-Cauchy prior has a visible impact on the prior

QC range due to its heavier tails compared to the other distributions (Figure 1).1°

Table 2: Prior summaries for parameters related to assay precision and prior QC ranges, based on the weakly formative
prior distributions P1 to P4. The prior QC range is defined by the (1 + 3)/2 quantiles of the prior predictive distribution
with 8 = 0.99. The shown QC range is on the same scale as the standard deviation parameters (measurements after log, |
transformation). Prior P3 is the half-Cauchy distribution that has undefined mean and variance.

Prior 90% equal-tailed credible interval

Prior median Prior mean  Prior variance Lower limit Upper limit Prior correlation Prior QC range
Prior o, T %CVip o, T o, T o, T o, T Cor(o‘z, 7'2) Lower limit Upper limit
P1 0.195 82 0.195 0.013 0.020 0.370 0.00 -257.6 257.6
P2 0.122 52 0.144 0.012 0.011 0.355 0.00 -257.6 257.6
P3 0.122 68 - - 0.010 1.550 0.00 -259.7 259.7
P4 0.109 43 0.135 0.011 0.014 0.342 0.27 -257.6 257.6

3.3 Software and computation

All simulations and data analyses were conducted in R v4.5.0 (R Core Team, 2025). The REML es-
timators for the frequentist hierarchical models were obtained with the mgcv package (Wood, 2017).
It provides the necessary robustness to small values of the variance components, because the optimiza-
tion is conducted on the scale of the log precision. In addition, it is easy to extract the necessary
optimization results, like the Hessian matrix including the variance parameters, to calculate Equation

9.

For posterior inference in the Bayesian models, we used the brms package for priors P1 to P3 (Biirkner,
2017), and, to gain flexibility in prior specification, the cmdstanr interface for priors P4 and P5
(Gabry et al., 2025). Both employ v2.36 of the Stan software (Carpenter et al., 2017) in the backend.
Stan is a probabilistic programming language that allows fast and efficient MCMC sampling via the
NUTS algorithm, an adaptive variant of Hamiltonian Monte Carlo (Stan Development Team, 2024).
A sampling-based technique is necessary because Gaussian Bayesian hierarchical models require ap-
proximations for most except the simplest prior distributions and posterior properties (discussed by
Box & Tiao, 1973, Chapter 5). We run two Markov chains per model with a length of 15, 000 samples
per chain, obtained after 1,000 warm-up iterations.!!. MCMC diagnostics are reported as part of the
results (Section 4.2.1) and were computed with functions from the posterior (Biirkner et al., 2025)

and coda (Plummer et al., 2006) packages.

Monte Carlo simulation based on the 30, 000 posterior draws from MCMC allowed us to approximate
the PPD p (7 | y). That is, we generated a Monte Carlo sample of the PPD by repeatedly sampling

10Prior QC ranges in Table 2 are computed by sampling form the prior predictive distributions via Monte Carlo simulations. The prior
predictive distribution p(§) is obtained by replacing the joint posterior p (62, u, 72 | y) with p (62, u, 72) in Equation (10).
1 Further MCMC algorithm settings were held fixed at adapt_delta = 0.99, and max_treedepth = 10.
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from p (02, i, 7% | y) via MCMC, and subsequently from the conditional distribution p(§ | o2, 1, 72)
via Monte Carlo (one sample per sample from the joint posterior distribution), creating a mixture
distribution over the range of likely parameter values. The (1 + 3)/2 quantiles of this distribution
provide the prediction interval used as QC range for all methods based on the BHM.

We simulated 750 data sets per scenario (Table 1), and analyzed each with 7 different methods (Section
3.2). That s, in total, we calculated 750 - 30 - 7 = 157, 500 QC ranges, 750 - 30 - 5 = 112, 500 of which
were based on the BHM. On a Dell XPS 15 9510 machine (64 GB RAM, 11th Gen Intel Core i7,
2304 Mhz, 8 pyhsical cores) using 15 logical cores, the runtime of the simulations approximated 48

hours.

From the 112,500 BHM fits, we removed 2 fits that caused an error during program execution, and
further 20 fits that we deemed unreliable (they were, however, included in the diagnostics in Section
4.2.1). This was decided if either only one of the two chains finished successfully, or an excessive
number of divergent sampler transitions (> 10, 000) was observed. In general, convergence was good,
but, unsurprisingly, depended on the prior distributions (Section 4.2.1). Most of the 20 fits we had
to discard used one of the uniform priors for 72 and belonged to one of the sparse data scenarios. The
final data set analyzed hence consisted of 157,500 — 22 = 157,478 QC ranges.

3.4 Analysis

The objective of the simulation study was to obtain estimates of the expected prediction coverage and
expected width of the QC ranges for the 7 methods and nominal level 8 = 0.99. In Section 3.2, we
described in detail how the different prediction intervals are obtained given the datay and the assumed
models. Here, we describe the estimation of their expected prediction coverage and expected interval

width based on the simulation study with simulated data sets r = 1,2, ..., R per scenario.

Denote by L(y,) and U(y,.) the lower and upper prediction interval limits, respectively, of simulation
repetition r, obtained with one of the methods after having observed data y,.. Since the data y,. are
random, also the intervals are random. We observe a single interval per data set and method — leading
to a single observed value of both prediction coverage probability C,. and interval width W, for each
repetition r — both of which are also random.!? They are calculated as

C - Uy,) —n) 4 (LW)—n 7
1/ VarIP \/ VarH)
where ;o and Varyp are the true parameter values used for data generation in the respective simulation

scenario, and
Wr = U(yr) - L(yr>7

respectively. 'The Monte Carlo estimate of expected prediction coverage is then calculated as
1R . . S 1R
R " C,,and the Monte Carlo estimate of expected interval width is calculated as R™' Y7 " | W,..

Accordingly, we compute for each simulated data set the probability that a normally distributed ran-
dom variable, following the population marginal distribution of measurements, falls within the esti-
mated lower and upper limits of the prediction interval. The estimand of interest is an expectation, and

we estimate it with averaging over the observed prediction coverages from all simulation repetitions,

12The definition of nominal prediction interval coverage by Patel (1986, p. 2723) as an expectation over repeated samples makes this
randomness explicit.
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but we also report the distributions of observed prediction coverages themselves (Appendix A.5).13
The evaluation metrics can be reported with Monte Carlo standard errors, which, due to indepen-
dently drawn Monte Carlo samples, scale with VR . lItis noteworthy that, due to the monotonocity
of the transformation, the obtained estimate of expected prediction coverage holds also after back-
transforming the interval limits to the original measurement scale — a usual practice when applying

assay control charts (stylized example in Figure 2).

Besides expected prediction coverage probability, it is also relevant how strongly prediction intervals
deviate on average from the nominal level. For example, one of our methods might produce slight
overcoverage on average compared to the nominal level, but observed prediction coverages might
deviate less from the nominal level across repeated samples than for other methods. Therefore, we
introduce the roor mean squared coverage error (RMSCE), similar to the notion of “mean squared
conditional error” from Kiyani et al. (2024). It is estimated as

We believe this criterion is especially important when comparing frequentist and Bayesian estimators
in hierarchical models. Regarding point estimators of variance components, Bayesian methods might

reduce overall error for the cost of some bias (e.g., Chaloner, 1987).

In addition to the evaluation of performance in terms prediction coverage probability and interval
width, we analyze MCMC diagnostics in the aggregate for all Bayesian models fit as part of the simu-
lation study. This is important, since the proposed Bayesian methods are only a viable alternative in
the current setting if posterior distributions can be obtained reliably and efficiently. Where diagnostics
are calculated by parameter (e.g., R), we focus results on the two assay precision parameters o and 7.

For some diagnostics (e.g., Geweke statistic), we show results for the first chain only for brevity.

Finally, we analyze the point estimates for various model parameters (or their derived quantities) pro-
duced by the different methods with simple descriptive statistics. This supplements the interpretation

of results from the performance evaluation of QC ranges.

13As a side note, the approach implies that we evaluate also the Bayesian prediction intervals in terms of a fundamentally frequentist
property (see Tian et al., 2022): If we sampled repeatedly from the same data-generating process and constructed an equal-tailed 8- 100%
posterior predictive interval, which proportion of the population of future values is on average covered by it? It is not uncommon to
evaluate Bayesian methods in terms of frequentist operating characteristics, for example to guide prior choice under pragmatic performance
considerations (Réver et al., 2021, p. 450). See also other simulation studies on Bayesian estimators like Browne & Draper (2006) or
Hamaguchi et al. (2021).
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4 Results

4.1 Illustration of results for one data set

Before turning to the main results of the study, which concern the performance evaluation by aggre-
gating over simulated data sets, it is instructive to analyze a single randomly simulated data set in
more detail. This will give some more insight into the methods used. The simulated baseline data,
using the “Standard” design and parameters %CVp = 40 and p = 0.8 (i.e., scenario 6 in Table 1),
is visualized on the left in Figure 2: We have 20 runs, each consisting of two observed concentration
values. Observations are transformed back to the original measurement units by taking 10, but the
plot axis is itself log,  scaled. This reflects how QC ranges and control charts are routinely displayed
in practice. The high intra-run correlation is clearly visible in terms of relatively narrow clusters of

observations from the same run.
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Figure 2: Control chart example with simulated baseline data for the QC sample, nested in runs (black points with different
shapes on the left), and the resulting QC ranges (horizontal lines), based on the 7 methods compared in this study. Simulated
future observations drawn from random future runs serving as hypothetical test data of the QC sample are also displayed
(grey points). Observations are on the original measurement unit scale. The vertical axis is log, | scaled. SLM is the single-
level model; FHM is the frequentist hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the
different prior distributions for variance components.

Now, we apply all 7 methods of QC range estimation by using the baseline data and our various sta-
tistical models from Section 3.2. The resulting lower and upper limits are shown as colored horizontal
lines in Figure 2. For example, the BHM with prior distribution P1 gives the widest QC range for the
present data set (red lines labelled “BHM (P1)”), and the single-level model gives the smallest (black
lines labelled “SLM”). We randomly sample 1, 000 independent future QC sample measurements that
will be tested against the estimated QC range (“Test data” shown in grey in Figure 2). This illustrates
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the use case of the QC range. As expected, most of the future measurements are covered by the QC
ranges. The observed QC ranges, their prediction coverage and interval width for the example data
set are shown in Table 3. Limits and widths are on the log  scale, i.e., the scale on which model
and interval estimation take place. In this example, the narrowest interval that respects the nominal
coverage requirement is based on the frequentist hierarchical model. Even for the same example data

set, coverage and width show no monotone relationship across methods.

Table 3: Observed QC ranges with their prediction coverage probabilities and interval widths for the simulated example of
baseline data, based on the 7 QC range methods compared in this study. Interval limits and widths refer to the log, | scale.

QC range
Method Lower limit ~ Upper limit ~ Prediction coverage  Interval width
Single-level model 1.5836 2.4286 0.9862 0.8450
Frequentist hierarchical model 1.5608 2.4514 0.9906 0.8906
Bayesian hierarchical model (P1)  1.5337 2.4874 0.9943 0.9537
Bayesian hierarchical model (P2)  1.5555 2.4579 0.9914 0.9024
Bayesian hierarchical model (P3)  1.5646 2.4580 0.9903 0.8934
Bayesian hierarchical model (P4)  1.5601 2.4517 0.9907 0.8916
Bayesian hierarchical model (P5)  1.5465 2.4730 0.9928 0.9265

Ultimately, the prediction intervals from hierarchical models, both frequentist and Bayesian, make

2 and 72, respectively, or

use of estimates of mean u, and within-run and between-run variances o
their posterior distributions. Figure 3 presents inference about these parameters based on the different

hierarchical modeling approaches.

Figure 3A compares REML estimates and 90% confidence intervals with Bayesian marginal posterior
distributions under the five different prior distributions. True parameter values are printed as red
vertical lines in the upper panels, together with the frequentist confidence intervals. Over the posterior
densities, 90% equal-tailed credible intervals (marked by the 5% and 95% quantiles) and posterior
mode (obtained from a kernel density estimate), median, and mean are plotted. There is generally
agreement between inferences from the frequentist and from the Bayesian hierarchical models. For
the example data set, all intervals cover the true parameter values. All models correctly portioned
most of the total variance into the between-run component. Marginal posterior densities for the
standard deviations are right-skewed, consistently leading to the mode, median, and mean to be the
smallest, medium, and largest posterior summary measure of central tendency, respectively.'* The
largest effect of the different priors can be observed for Bayesian inference about the between-run
standard deviation 7. Also the credible intervals are widest for 7. For the mean parameter y, neither
is there much variation between different prior specifications, nor across different posterior summary
measures. In any case, we emphasize that the PPD integrates over the full posterior distribution
(Equation 10). Therefore, for the current study, characteristics of different Bayesian point estimators
of marginal densities are not of primary importance.

4For prior P1, which assigns restricted uniform distributions to both standard deviation parameters, we see quite close agreement
between REML estimates and the posterior modes of o and 7. This does not come as a surprise, given that the posterior density should in
these cases more closely follow the shape of the (restricted) likelihood as for other priors. When averaging over all simulation repetitions,
this pattern largely holds: Under prior P1, in all 30 scenarios, the posterior mode is the posterior summary measure of central tendency
closest to the REML estimate of . In 16 out of 30 scenarios, the posterior mode is the posterior summary measure of central tendency
closest to the REML estimate of 7 (in the other 14 scenarios, it is the posterior median). Pick etal. (2023, p. 2558) write that, for variances,
“use of the posterior mode is often justified as being the closest to the maximum likelihood estimate (MLE) when uninformative priors are
used”, but also caution against simplifications for mixed-effect models, where multiple priors and multi-dimensional joint posteriors are
involved. Lesaffre & Lawson (2012, sec. 9.8.2) discuss the equivalency in more detail.
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Figure 3B shows that both the frequentist and Bayesian hierarchical models are able to capture the
dependency of inferential uncertainty for the two variance components with similar results. The left
panels show draws from the joint posterior p (02, 72 | y) for the BHM based on the five different prior
distributions and the example data set. The overlaid black line highlights the quantile-based 90% prob-
ability contours. In the right panel of Figure 3B, the bivariate normal ellipse summarizes the estimated
variance-covariance matrix of the variance components’ estimators from the frequentist hierarchical
model. All methods give a similar, negative correlation between the variance components in terms of
posterior densities (for the BHM), or REML point estimators (for the frequentist hierarchical model),

with correlation values shown in the upper right corner.

After this illustrative analysis of a single simulated data set, we now turn to the main results of this

study.
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Figure 3: Parameter estimation in the simulated example of baseline data for all methods based on hierarchical models. (A) Point estimates and 90% confidence intervals for the frequentiest hierarchical
model, along with the true values used for data generation (red vertical lines), as well as marginal posterior densities with posterior summaries for the Bayesian hierarchical model, with its five different
prior distributions. (B) Scatter and contour plot of joint posterior densities of the variance components (left panels), and bivariate normal ellipse of the covariance of REML esimators of the variance

components (right panel). Correlations are shown shown in the upper right corner of each panel.
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4.2 Performance evaluation
4.2.1 Diagnostics for the BHM

MCMC diagnostics of the Bayesian hierarchical models with different prior distributions aggregated
over scenarios show no serious issues (Figure 4). For by far the most simulated data sets and priors,
the number of divergent transitions of the NUTS sampler was zero after warm-up (Figure 4A). Priors
P4 and P5 led to most divergences, but with problematic frequencies essentially only occurring for the
reference prior P5 (more than 1,000/30, 000 ~ 3.3%), and only rarely so (also note that diagnostics
were calculated before removing the most problematic model fits; see Section 3.3). For each chain,
an estimated Bayesian fraction of missing information (E-BFMI) can be calculated, which is, broadly
speaking, a measure for the efficacy of the exploration of the posterior under Hamiltonian Monte
Carlo (Betancourt, 2016). Values < 0.2 are usually taken to indicate problems. They occurred rarely
and, if they did, were concentrated among priors P4 and P5. By running two chains per model, it is
possible to calculate the R statistic (revised version by Vehtari et al., 2021), which should be close to 1
if chains reached stationarity. The majority of R values for the parameters governing assay precision (o
and 7) was indeed practically 1, with the highest proportion of larger values for prior P5 (Figure 4C).
The autocorrelation function (ACF) estimated at lag 3 from the first chain showed some variation in
mixing according to prior and parameter (Figure 4D). For o, autocorrelation was generally smaller
than for 7, so sampling efficiency tended to be lower for 7. Relatedly, 7 had lower tail effective sample
size (ESS Tail) estimates than o (Figure 4E). ESS Tail refers specifically to the sampling efficiency in the
distributions’ tails, which is most relevant for getting interval estimates from the posterior (Vehtari et
al., 2021), as required for QC range construction. Over most of the aforementioned diagnostics, priors
P1 to P3 exhibited similar results, often less spread out than results for priors P4 and P5. Arguably,
priors P1 and P3 are quite similar to each other (proper, weakly informative, with 4 priori independent
variance components; see Section 3.2.2.3). Further explorations could shed more light on why and
how this translated into the observed “clustering” of diagnostic results.!®

In Figure 4F, we provide the frequencies of Geweke statistics that fell into the two-sided rejection
region for a 0.05 significance level (see Lesaffre & Lawson, 2012, sec. 7.2.4). They tested equality of
the means of the first 10% and last 50% of samples from the first chain. Frequencies of rejection were
close to where they should be under the null hypothesis of convergence (~ 5-6%). There was slight

concentration of more rejections when sampling the posterior under reference prior P5 (~ 7-8%).

Finally, the Monte Carlo standard error (MCSE) for the (1+0.99)/2 quantiles of the PPD, i.e., of the
limits of the QC range, was computed for each model fit following Vehtari et al. (2021), taking the
dependency of samples into account. MCSE was < 0.01 most of time, and tended to be largest under
reference prior P5 (Figure 4G). Since it needs to be interpreted on the scale of the predictive distri-
bution (log1 O-transformed concentration measurements), it should be evaluated relative to the width
of the estimated prediction interval. Roughly, average widths were between 0.2 and 2, depending on
scenario (Figure 7), i.e., much larger than MCSE estimates. This indicates acceptable reliability of the
MCMC-based approximation of the exact PPD’s quantiles used as QC range limits.

B1nitial informal checks suggest that priors P4 and P5 led to more variable MCMC efficiency because they support more efficient
sampling of 7 in some scenarios but less efficient sampling in others. Specifically, they work less well than the other priors in scenarios
with /ow intra-run correlation (p = 0.2) and many available runs (m > 10); that is, when there is a moderate (but not excessive) empirical
basis for estimating 7, while at the same time, 7 is much smaller than o. The pattern could hence emerge due to a mild form of prior-data
conflict: Compared to priors P1 to P3, the priors P4 and P5 put much less probability on small values of p, yet the data speak moderately
in favor of a small value of p in the aforementioned scenarios. In all other scenarios, no such conflict arises: Either the true p is larger, or
there is less information on between-run variability in the data to contradict the prior.
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4.2.2 Interval coverage and width

Figure 5 presents the Monte Carlo estimates of expected prediction coverage of QC ranges for all
scenarios and methods. Appendix A.2 presents them along with standard errors. Figure 6 presents the
Monte Carlo estimate of prediction coverage error in terms of RMSCE, with results in more detail in
Appendix A.4. The distributions of observed prediction coverages over repeated samples are visualized
in Appendix A.5. Turning to estimates of expected interval width, Figure 7 summarizes the results.
Appendix A.3 presents them along with standard errors. A number of main results on QC range

performance in terms of prediction coverage and width can be distilled from the outputs.

The single-level model (SLM) performs worst and provides severe undercoverage for multiple scenarios
(e.g., < 96% for highly correlated measurements at p = 0.8 when runs are sparse). It yields satisfactory
expected coverage only under low intra-run correlation p, and, even then, is compromised if baseline
data comes from few or unbalanced runs. The deficiency of the SLM can also be read from the expected
width estimates: When p increases, and hence the amount of information in the data decreases, they
tend to become smaller (Figure 7). The pattern is reversed for the hierarchical models, mostly so when

» <«

there are only few runs (designs “Unbalanced 17, “Sparse 17, “Sparse 27).

All hierarchical models deliver QC ranges with expected prediction coverage that respect the nominal
level better than the SLM (e.g., no estimates of expected coverage < 98%). The frequentist hierarchical
model (FHM), however, shows greater dataset-to-dataset variability in prediction coverage than the
Bayesian methods. Extremely low prediction coverages in some data sets (e.g., < 75%) only occurred

for the FHM, not the BHM (Appendix A.5). Accordingly, RMSCE is also higher for the FHM than
the BHM across scenarios, irrespective of the prior distribution.

Almost all methods have lower expected coverage when within-run correlation is stronger, but the
decrease is substantially smaller for the QC ranges derived from hierarchical models than those derived
from the SLM. For the hierarchical models, the decrease in coverage with increasing correlation is
minor as long as the number of runs does not become too small (e.g., m = 20 in designs “Standard”
and “Unbalanced 2” appears to suffice). Average deviation from nominal prediction coverage in terms
of RMSCE is also higher at higher correlations (Figure 6). Caution is needed when interpreting and
comparing the four estimates of expected coverage for the FHM in sparse data settings at p = 0.8, as
they come with relatively high standard errors (Appendix A.2) due to their high variability (Appendix
A.5). For example, at p = 0.8 and %CVp = 40 in the “Sparse 17 design, the range of coverage
estimate +2 SE for the FHM is roughly from 98.2% to 98.7%.

In almost all scenarios, QC ranges based on the BHM exhibit average overcoverage to some extent,
and most strongly so for the priors that are flat for at least one standard deviation parameter (restricted
uniform prior P1 and reference prior P5). But the prior distribution makes a difference mainly when
the total variability in terms of %CVyp is high. Priors P2 and P3, based on independent Half-normal
and half-Cauchy distributions for the standard deviations, respectively, often lead to highly similar
results. Most markedly, at high values of correlation p = 0.8, the BHM with prior P4 behaves dif-
ferently from the others, providing lower expected coverage, in some scenarios even slightly < 99%.
This could result from its stronger shrinkage of p towards 0.5: Compared to the other priors, we are
effectively “imputing” more information about between-run variability, on which we have few data,
from the relatively abundant information on within-run variability.'® Since the latter is low at p = 0.8,

16\Whereas all other priors assume « priori independence between variance components, Prior P4 induces positive correlation between
variance components (Table 2).
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estimates of total variability (Figure 9) and prediction coverage are smaller than for all other priors;

and, in fact, mostly closer to the true values in the explored scenarios.

There is no large effect on the methods™ performances when varying between assays with higher
(%CVyp = 10) or lower precision (%CVyp = 40). Under very few runs (m = 5 in designs “Sparse
17 and “Sparse 27), a lower assay precision reduces some of the expected overcoverage of the BHM
for priors P2 to P4 — bringing their prediction coverage closer to the nominal level. There is less
conflict between the weakly informative priors and the data at lower precision. Indeed, for P2 to P4,
prior modes and prior medians of intermediate precision are relatively close to the true intermediate

precision in the low-precision scenario (Figure 1, Table 2).

Unbalancedness of the baseline data for the QC sample does not seem to be of concern per se if
hierarchical models are used, at least for the explored parameter settings. As long as the number and
size of runs remain the same (designs “Standard” and “Unbalanced 2”), expected prediction coverage
and RMSCE of QC ranges essentially do not change. However, if unbalancedness is accompanied
by a reduced number of runs — even if these runs are larger (design “Unbalanced 1”) — performance
deteriorates to some degree when these few, unbalanced runs are also highly heterogeneous (p = 0.8).

The built-in ceiling of prediction coverage at 100%, which is close to the 99% level used in this study,
affects our results in ways that need to be examined more closely. For example, in designs “Sparse 1”
and “Sparse 2”7, when information on between-run heterogeneity is scarce, QC ranges based on the
BHM often hit that ceiling, especially when true variability is low (Appendix A.5). Although intervals
become too wide, their deviation from the nominal level is capped at 100%. This leads to relatively
low RMSCE for the Bayesian QC ranges (Figure 6), while at the same time these QC ranges tend
to be relatively wide compared to the FHM (Figure 7), in line with their expected overcoverage for
many scenarios (Figure 5). For the same reason, the BHM with prior P5 generally leads to the widest
intervals and highest overcoverage of future measurements while simultaneously never having highest

RMSCE in any of the data-generating scenarios (Figure 6).

A related phenomenon creates the following seeming paradox among QC ranges from hierarchical
models: When moving from lower to higher values of p in the “challenging” designs with fewer runs
(“Unbalanced 17, “Sparse 17, “Sparse 2”), estimates of expected interval width increase, some even
substantially so, while, at the same time, estimates of expected prediction coverage decrease. This is
despite the fact that the estimates of 1 (roughly the center point of the intervals, and exactly so for the
frequentist methods) do not change meaningfully across these scenarios (Table A5). Figure 8 helps to
understand this. As a showcase, it depicts QC ranges from the first 75 simulated data sets for each
value of p for the “Sparse 1” design under low total variability (scenarios 13, 14, 15, respectively, in
Table 1). Single QC ranges that do not reach the nominal level are colored in red.!” We see that for all
methods using hierarchical models, variation in interval width between random data sets is increasing
with p: Some QC ranges become very small (with very low coverage), but most become wide (with
high coverage). Since coverage cannot exceed 100%, the negative effect that few very small intervals
have on expected coverage outweighs the positive effect that many wide intervals have. Ultimately,
such effects, and more generally the balancing of different types (under- vs. overcoverage), frequency,
and sizes of coverage errors need to be discussed with a perspective on the costs that false rejections or

acceptances of measurements have for vaccine assay quality control.

17Note that if one wished to guarantee that a certain fraction of QC ranges covered at least 99% of future measurements (intervals in
black in Figure 8), rather than that QC ranges covered 99% of future measurements on average, as we do here, this would lead to the
“[3-content” tolerance intervals mentioned in Section 2.2.
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4.2.3 Parameter estimates

The QC range performance in terms of prediction coverage and interval width is the most important
outcome in this study. Yet, we also report point estimates for model parameters (or their derived
quantities) produced by the different methods. First, some of them are relevant in their own right
for the practicing scientists, because they encode assay quality characteristics (e.g., the intermediate
precision). Therefore, obtaining “good” estimates is relevant. Second, they can help to interpret
performance of the QC range, which is, of course, dependent on inferences about model parameters.
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Appendix A.6 reports the median point estimate (median over all simulated data sets) for all parameters,
methods, and scenarios. The median point estimate is compared to the true parameter value used
during data generation. Here, truth refers to the data-generating process described in Section 3.1.2.
The estimators are those described in Section 3.2. For example, for the true mean u (Section 3.1.2),
the single-level model estimator is fi; (Section 3.2.1). Some cells are empty for the single-level model.
For example, for the true within-run standard deviation o = y/Varp - (1 — p) (as applied during
data generation in Section 3.1.2), there is no single-level model estimator, because there is only one
standard deviation estimate ,, which combines both within- and between-run variability (see Section
3.2.1). For the frequentist hierarchical model, the point estimates are the REML estimates (Section
3.2.2.1). For the BHM (Section 3.2.2.2), the posterior median is used as point estimate.!® Figures 9
and 10 visualize distributions of point estimates for %CVyp and p, respectively, where available.

We observe a couple of results. First, the mean of the QC sample is estimated well across all methods
and scenarios (Table A5). It is rather the assay precision where scenarios and methods exhibit variation
(Tables A6, A7). Generally speaking, when the number of runs becomes limited (designs “Sparse 17,
“Sparse 27, “Unbalanced 17), the FHM will tend to underestimate total variability, while the BHM
tends to overestimate total variability — in line with results on QC range prediction coverage (Section
4.2.2). The most accurate Bayesian estimates of total variability are achieved under prior P4 and
p = 0.8. As explained earlier (Section 4.2.2), overestimation is prevented under prior P4, probably

due to its stronger “partial pooling” of variance components.

Second, point estimates of %CVyp from the BHM (posterior median) tend to show a larger variation
across simulated data sets than those from the FHM, especially so under priors P1 and P5. These
impose uniform prior densities for 7. Intuitively, then, they also tend to produce wider posterior
densities for 7 (see also Figure 3A), with less stable posterior medians across random data sets. The
FHM, instead, only maximizes a (restricted) likelihood, circumventing the problem (but also skipping

the advantages) of estimating a whole distribution or its quantiles.

Finally, all hierarchical models are in principle able to capture the general pattern of partitioning of
variances (Figure 10). The variability of point estimates is consistently higher for lower values of the
true intra-run correlation, irrespective of Bayesian or frequentist inference. In these scenarios, we
estimate small variances from little information on the group level, which is difficult. Again, prior
P4 behaves a bit differently than the other priors: Small values of p are slightly overestimated, high
values of p are slightly underestimated, medium values of p are estimated well — an effect of the mild
shrinkage towards p = 0.5 prior P4 induces. Not surprisingly, estimates of p are most variable when

there are few runs and also few observations (design “Sparse 17).
gn op

To close this section, we emphasize that our comparisons between Bayesian and frequentist point
estimators should be interpreted with caution, as different results could be obtained if we used other
posterior summaries than the posterior median (Pick et al., 2023). It is not generally advisable to
summarize a Bayesian posterior distribution in a single point, in particular when estimating variance
components. How well estimators based on different posterior summaries correspond to the true
variance parameters is highly sensitive to multiple factors, not least the prior distribution (Browne
& Draper, 2006). Accordingly, our QC ranges constructed from Bayesian models use the fi// joint

posterior distribution.

18]n particular for variances, the posterior median can be preferable as a point estimator over the posterior mean (e.g., Browne & Draper,

2006; Pick et al., 2023).
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5 Discussion

5.1 Choosing between modeling approaches

Results show that the SLM that assumes no correlation structure fails to deliver suitable QC ranges for
vaccine assay quality monitoring under realistic settings. Under moderate clustering of assay measure-
ments in runs, the assay’s intermediate precision is underestimated. QC ranges become too narrow,
which, in practice, triggers too many rejections of measurements or runs that are, in fact, within spec-
ification. Indeed, the approach of pooling measurements from different assay batches or runs and
ignoring the variance components structure, “is known to slightly underestimate the true interbatch
imprecision” (DeSilva et al., 2003, p. 1892). Such underestimates result consistently in our simula-
tion study (Table A8). Dessy et al. (2024, p. 1077), in their article on vaccine assay validation, also
report that “total variability obtained by combining well characterized variance components [...] is a
better estimate than simple variability estimates ignoring the interaction between these variables” and
advocate the use of mixed models. Intuitively, correlated data reduce the amount of information in
the data. This can also be viewed as a reduction of “effective sample size” due to clustering (Faes et al.,
2009). A model that assumes independence is misspecified and will make too confident inferences.
The misspecification becomes more severe under higher ratios of between- to within-run variance,
with accordingly negative effects on prediction interval performance. In line with this, we see that
observing only few independent runs in the baseline data collection further reduces performance of

the SLM drastically under moderate to high correlation.

It is more advisable to estimate prediction intervals for assay quality control with hierarchical models.
In our study, their prediction coverage is in all scenarios in the ballpark of nominal level 41 per-
centage points. Still, the frequentist approach to hierarchical modeling, even after degree of freedom
approximations for prediction interval estimation (Francq et al., 2019), delivers some undercoverage
on average when estimated based on few, highly correlated runs. Nevertheless, it can safely be used
for constructing the QC range when runs are unbalanced, yet abundant (design “Unbalanced 27),
even under high correlation. The slightly worse performance in “Unbalanced 1”7 designs, compared
to “Unbalanced 2” designs, can result from two sources: The former design provides less information
on between-run variability (fewer runs), but also yields more extreme imbalance of run sizes.!® This
resonates with results from Browne & Draper (2006). The researchers compared the frequentist and
Bayesian approach for Gaussian hierarchical modeling in a simulation study, albeit with somewhat
larger sample sizes and more diffuse priors. They analyzed bias of different point estimators and (con-
fidence/credible) interval coverage for parameters. Fewer clusters (their minimum was 6) led to less
reliable point and interval estimates. A negative effect of unbalanced clusters could be observed in

some scenarios, but was only small.

Bayesian approaches to hierarchical modeling bring a couple of advantages over the FHM. Some are
more on the theoretical side. Estimation of model parameters for the FHM is based on a marginal-
ized form of the hierarchical model, in which explicit clusters found in the data are not represented.
Random effects can only be predicted after estimating the hyperparameters, which has been called
Empirical Bayes. Instead, the BHM estimates hyperparameters and random effects jointly, having led
Molenberghs & Verbeke (2005, p. 39) to the conclusion that “[a]rguably, a satisfactory treatment of

19\When the constant total number of measurements is distributed across fewer runs, there is more potential for large run size heterogeneity
under our data-generating mechanism for run size distributions (Appendix A.1). Indeed, mean standard deviations of generated run sizes
in the “Unbalanced 1” and “Unbalanced 2” designs were 2.9 and 1.1, respectively.
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the random-effects model is only possible within a Bayesian context”. It is well-established that the
FHM discards uncertainty about variance components (i.e., hyperparameters) for further inferences,
like standard errors of fixed effects or prediction intervals, by fixing them at their point estimates (Gel-
man et al., 2013, Chapter 5; Lesaffre & Lawson, 2012, Chapter 9). Inference in the FHM is deeply
grounded in large-sample theory (e.g., the asymptotic distribution of the likelihood-based estimator).
Such shortcomings are what makes post hoc corrections for finite samples, like the use of complex
degrees-of-freedom approximations, necessary in the first place. Instead, the Bayesian approach de-
livers exact posterior distributions that account for uncertainty in all parameters (though possibly in
form of a sampling-based approximation). Lebrun & Rozet (2020, p. 382) emphasize the importance
of this when validating analytical assays via predictive distributions Also note that, when the level-2
variance is very small or zero, only the Bayesian approach protects against negative variance estimates
(Gelman et al., 2013, sec. 5.4; Lesaffre & Lawson, 2012, sec. 9.8.1).

Against this theoretical background, our results confirm good performance of the QC ranges derived
from PPD quantiles of the BHM. Relevant undercoverage is, on average, not observed in any scenario,
and prediction coverage varies less from sample to sample than for QC ranges derived from the FHM.
The most striking result, though, is the average over-coverage of the QC range from the BHM in many
scenarios. This needs to be considered when choosing between approaches. It can systematically result
in runs and measurements being accepted during routine assay operations, although the measured QC
sample concentrations are, in fact, much less likely than the nominal 3 level would suggest. If, for
a certain assay development stage or type of sample, false acceptances are more costly or risky for the
pharmaceutical or clinical user than false rejections, slight undercoverage could be preferable over slight
overcoverage. The extent of overcoverage of the BHM is dependent on the chosen prior distribution,
which leads us to the most important theoretical and practical advantage of the BHM for CMC
applications (and beyond), namely the ability to include prior information. In the following Section
5.2, we discuss prior choice in more detail. In Section 6, we will briefly review some further practical
extensions for assay QC range construction that can be conveniently implemented only in a Bayesian

framework.

5.2 Specifying priors for the BHM
5.2.1 Non- and weakly informative priors

In the studied assay QC setting, in particular relative to other applications outside CMC, the data
sets tend to be small, independent clusters are only few, and they provide limited information. In this
type of setting, the importance of the level-2 variance prior is increased and needs close examination
(Spiegelhalter et al., 2004, sec. 5.7.3). Our priors P1 to P4 were weakly informative. They used a
weak notion of a plausible range for the intermediate precision variance, elicited from GSK’s scientists,
to provide some regularization. Yet, they were still sufficiently diffuse to let the likelihood dominate
posterior inference about variance parameters. This can be seen when comparing the wide and long-
tailed prior densities of standard deviation parameters (Figure 1) with the much more narrow posterior
densities obtained from a typical data set (Figure 3). In most simulated scenarios, the expected predic-
tion coverage, but also the interval widths and parameter point estimates, did not differ substantially
across priors P1 to P4, although in some instances they did strikingly (see below). In particular prior
specifications P2 (Half-normal for o, 7) and P3 (Half-Cauchy for o, 7), both parametrized to have the
same median, showed satisfactory performance throughout and also quite similar performance — with

minor advantages in terms of expected coverage for P3, but in terms of coverage error for P2. The
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two prior distributions differ little in the parameter range to which they assign most of the probability

mass, which likely explains their similar results.

We observe some problems with weakly informative prior P1 (restricted uniform for o, 7) and would
not recommend it for assay QC range construction, at least in the low-information settings investi-
gated here. Just as for the non-informative reference prior P5, average coverage was too high through-
out, even close to 100% in designs with very few runs (Table A.2), and the estimate (posterior median)
of intermediate precision variance was both too large to a relevant degree (Table A8) and more variable
than with other priors (Figure 9). The restricted uniform prior densities induce a relatively high prior
median for the intermediate precision variance (Table 2), which is higher than what scientists usually
expect for a vaccine assay (see Section 3.2.2.3). In sum, P1 puts too much weight on high values of
the standard deviations. Hence, it also provides only little regularization. Gelman (2006, p. 521) calls
this tendency of the restricted uniform prior for the level-2 variance a “slightly disagreeable miscali-
bration toward positive values”. When there are few clusters (< 5), he discourages its use. Our results
for the “Sparse 1” and “Sparse 2” designs confirm this. Again, a perspective on the costs of different
types of errors is instructive. For example, in random effects meta-analysis, a uniform prior for the
between-study variance has been described as conservative, as it leads to less shrinkage of study effects,
and more uncertainty about the mean effect (Réver et al., 2021). When a QC range is built from
posterior predictions of a hierarchical model, weak shrinkage could be interpreted as anti-conservative,
instead:?° Arguably, it would be the most conservative approach to reject most assay measurements,
except the ones that deliver results for the QC samples closest to the expectation (i.e., to apply a very
narrow QC range). These problems are even exacerbated with reference prior P5 (uniform over whole
positive real line for 7). It can be viewed as non-informative, but, with its non-negative support, puts
quite heavy weight on large values of the between-group standard deviation (Browne & Draper, 2006;
Spiegelhalter et al., 2004). Hence, P5 should also not be used for assay quality monitoring. Further
evidence in the same direction is provided by Hamaguchi et al. (2021), who study the coverage of
Bayesian prediction intervals for random future cluster intercepts under different level-2 variance pri-
ors. Since they worked in a meta-analysis context, within-cluster variance was assumed known. When
few clusters were available for model fitting (roughly < 5), the improper uniform prior for the level-2
variance they used led to severe overcoverage and excessively wide prediction intervals, and more so
for lower values of the true level-2 variance. We also found that MCMC sampling was least efficient
for P5, and frequency of divergences was highest (Figure 4). The relatively “good” RMSCE values for
priors P1 and P5 are a consequence of ceiling effects at excessive interval widths, and should not be
taken to indicate truly low prediction coverage error. In fact, priors P1 and P5 often produced the

most variable variance estimates.?!

A point of discussion is how to choose parameters of the prior density functions for the variance
components (i.e., hyperpriors), given that a certain distributional family is used as a weakly informative
prior. In most cases, like our priors P2 and P3, this boils down to choosing a scale hyperparameter
(e.g., for the half-normal distribution). A simple approach would be the type of data-dependent priors
that are used by default for variance components in common software packages (e.g., Biirkner, 2017).

20See also Stan Development Team (2025) for this duality of perspectives: “Historically, a prior on the scale parameter with a long
right tail has been considered ‘conservative’ in that it allows for large values of the scale parameter which in turn correspond to minimal
pooling. But from a modern point of view, minimal pooling is not a default, and a statistical method that underpools can be thought of as
overreacting to noise and thus ‘anti-conservative.””

21n principle, other (joint) non-informative priors than our prior P5 would be possible in the BHM, and they might lead to different
results (see Hamaguchi et al., 2021 for a study in the meta-analysis context). Gelman (2006) criticizes some common choices of non-
informative priors assigned on the variance scale.
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They estimate a scale parameter from the sample data and plug it in as the scale hyperparameter
of the prior distribution, possibly truncated at a lower limit, maintaining a minimum amount of
vagueness.”> Arguably, this has some nice features (most notably an automatic adaptation to the
measurement scale), but it makes the prior sensitive to random sampling variation and violates the
principle of assigning a prior before seeing the data. A more exploratory approach could start with a
large scale hyperparameter and potentially reduce it after inspecting simulations from the joint prior
or prior predictive distribution in case “too much” support for unrealistic values is obtained (a strategy
employed by McElreath, 2020 for regression modeling). We also point to the principled procedure
for choosing weakly informative priors for smoothing parameters, i.e., the random effects variance in
our case, developed by Simpson et al. (2017). Their penalized complexity priors are simple to elicit

(subjective input is only needed on one scale parameter) and yet satisfy many appealing properties.

Instead, we have used the approach of setting some scientifically informed constraints on an inter-
pretable scale (e.g., an upper quantile of %CVyp, a prior expectation of p), and then worked our
way back to the required hyperparameters (similar to considerations by Spiegelhalter et al., 2004, sec.
5.7.3). The constraints should be soft in order to maintain the weakly informative property. A collec-
tion of possible guiding questions is presented by Rover et al. (2021, p. 458), intended for medical
meta-analysis, but with more general applicability. For analytical assays, broad considerations about
the scale of measurement units, the realistic range for individual variabilities (as done by Novick et
al., 2021) or the total variability, or the typical ratio of within-run to between-run variance could be
helpful. The latter can be informed by considerations about the actual environmental factors that will
vary across runs of the assay in the current lab (e.g., will the group of lab analysts be more or less

constant?).

We did not include a weakly informative prior for the QC sample mean g, but this would be a further
possibility; in particular if concentrations of QC samples have been established as a reference in the
same lab previously. Our normal prior for ;1 with standard deviation 100 on the log, = scale was highly
diffused. Instead, for example, Wang & Cheng (2022, p. 199) center their normal prior for the mean
in their Bayesian model at 100, as for “a typical bioassay” on the untransformed scale, and assign it a

standard deviation of 20. Subsequently, they conduct prior sensitivity analysis.

Prior P4 is specified in terms of independent priors for intermediate precision variance and intra-run
correlation, which is a special case of the hierarchical decomposition priors proposed by Fuglstad et al.
(2020). We believe that this approach has some advantages over the others. It can make the elicitation
of weakly informative (and also informative, see Section 5.2.2) priors easier, because the two quantities
most intuitively interpreted are controlled directly. This gave us a simple way to express true ignorance
about p with a flat (Beta) density, bearing some resemblance to the idea of putting a uniform prior on
the shrinkage factor (Spiegelhalter et al., 2004). As one result of this, only our prior P4 implies that
a value of zero is impossible for the intermediate precision standard deviation (Figure 1), in line with
the plausible assumption that there is no variability-free clinical assay. More technically, the different
specification allows the user to induce prior correlation between the two variance components, while
simultaneously controlling the marginal total variance. Independence of variance parameters (as in
priors P1, P2, P3, and P5) is typically not a realistic assumption for hierarchical models (see also

posterior correlations in Appendix A.7).

Also in terms of simulation results, prior P4 occupies a special place In scenarios with high heterogene-

22By default, brms (Biirkner, 2017) specifies a half-¢ distribution with 3 degrees of freedom and minimum scale 2.5 for the standard
deviation parameters in the BHM.
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ity between runs, but not in scenarios with small or moderate heterogeneity, it produces markedly
different performance from all other priors. We explain this with stronger shrinkage of variances to-
wards a common value (Section 4.2.2): Although all our weakly informative priors imply the prior
expectation E(p) = 0.5 (equal magnitude of variance components), prior P4 does so at lower prior
variance. In the investigated designs, there is typically more information in the data on within-run
than on between-run variability. Therefore, prior P4 tends to shrink between-run variability towards
within-run variability, rather than vice versa. This is least desirable when between-run variability is
large (p = 0.8), as we will underestimate total variability. Consequently, when the amount of em-
pirical information about the two variances is most balanced (designs “Standard”, “Unbalanced 27)23,
the reduction in average prediction coverage for prior P4 at high correlation is smallest. Conveniently,
prior P4 can be modified easily via the parameters of the Beta density p(p) in order to tailor the strength
of this tendency to the actual design of baseline data collection — even before any data analysis. In ad-
dition, the induced prior correlation Cor(c?, 72), which will largely depend on the design (see Searle
etal., 1992, p. 85, and Appendix A.7) can be used as an indicator of the suitability of the hyperpa-
rameters. Therefore, we also recommend prior P4 for practical usage in assay QC range construction,
with the suggestion to test the operating characteristics of other hyperparameter choices, which could
vaguely acknowledge more prior information (number and size of runs, expectation about which is the
dominant variance component), where available. For example, if there are few runs and one expects
between-run to exceed within-run variance, putting > 50% of prior probability density above p = 0.5
(e.g., via Beta(1,0.5)) will likely dampen the underestimation of between-run and total variance we
observed for higher values of p. The asymmetric prior will also improve prediction coverage, while
still being only weakly informative. Even if prior expectation E(p) = 0.5 shall be maintained, increas-
ing the variance of the prior on p relative to the uniform density (e.g., via Beta(0.5,0.5)) will likely
dampen the underestimation in settings with few, highly heterogeneous runs.

5.2.2 Informative priors

All our priors P1 to P4 can relatively easily be adapted to be more informative. This is relevant for
vaccine assay quality control. Due to various factors, the baseline data for the QC sample used for
QC range construction could be unreliable. Its variability might not be representative of true assay
variability, for example because only results from very few runs, or runs obtained under few similar
conditions, could be compiled. In this case, QC range estimation could be enhanced with expert
“guesstimates” about the precision of the specific assay at hand. Alternatively, there might be results
available for the same or a closely related assay, obtained in other experiments. These could precision
experiments, which are conducted during assay validation and provide estimates of assay precision at
various sample concentrations (Dessy et al., 2024). Such estimates could then be encoded in infor-
mative prior distributions and combined with the assay’s baseline data from the QC samples in the
BHM. As Wang & Cheng (2022) describe their approach to informative prior specification: “The
method variability, e.g., intermediate precision (IP), is often available from the corresponding qualifi-
cation or validation study of the same or similar compounds.” The application of informative priors
for specific vaccine assays, or subtypes of vaccine assays (e.g., ELISA vs. functional assays), has been

deemed valuable by GSK, but its detailed investigation was beyond the scope of this study.

Nevertheless, we think that the parametrization developed for weakly informative prior P4 is by far

23A crude way to approximate the amount of information on the different variance components from the design of data collection alone
could be via the ANOVA degrees of freedom dfyyeen = m — 1 and dfi;q;, = N — m (Searle et al.,, 1992, p. 72). In all our simulated
designs, we have dff,.qyeen < dfiichin-
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best suited for setting informative priors. For example, the estimate of %CVyp from the precision
experiment could easily be set as prior mode, median, or mean using the Gamma density (see Section
3.2.2.3), with the second parameter giving control over the precise degree of informativeness (or,
the plausible range for the specific vaccine assay affer having observed its precision experiments). If
also separate estimates of the variance components can be gleaned from the precision experiment,
only under the P4 parametrization can this knowledge be incorporated directly (see also arguments in
Fuglstad et al., 2020). A Beta density provides excellent flexibility to express such information directly

on the p scale.

Information on variability from related clinical assays could also be included in a more structured
fashion by extending the model with further hierarchical priors. Imagine measurement data from other
assays (with other QC samples) are available for modeling. The assumption that assays’ intermediate
precisions are drawn from a common, larger population of precisions leads to a Bayesian location-scale
multilevel model as proposed and studied by Schach etal. (2025). The authors recommend the model
for quantifying biopharmaceutical process variance of data-scarce or new products. Transferring this
model to our application, fitting and QC range computation would be possible with the same software

and methods that we used for the simpler hierarchical models here.

5.3 Limitations

Although we studied 7 combinations of model and estimation approach, the type of interval used as
QC range was never varied in our study. For example, the nominal level was always held at 3 = 0.99.
This is a relatively high value, although not uncommon in QC applications (e.g., Lewis & Hudson-
Curtis, 2022; Novick et al., 2021). At lower values of 3, we would probably observe less ceiling effects
for prediction coverage (described in Section 4.2.2), as well as less sensitivity of the Bayesian QC range
to the tail behavior of the variance priors. Less extreme quantiles are also sampled more efficiently with
MCMC (Vehtari et al., 2021). In addition, the Bayesian prediction intervals we examined were based
on quantiles of the PPD. Highest posterior density intervals, used by Novick et al. (2021) as bioassay
QC limits, provide an alternative way to define a QC range from the PPD at the same probability level,
with the possible advantage of being narrower. We did not examine their performance.?* Similarly, we
did not look at the performance of the methods in predicting future run means instead of individual
observations. Such predictions would be readily available based on the joint posterior, and they are
relevant in other applications of hierarchical models (e.g., meta-analyses, see Hamaguchi et al., 2021),
but less so in the application studied here. We neither investigated type II tolerance intervals (Patel,
1986), although they are commonly used in quality control and can be very naturally obtained in a
Baysian framework (Lewis & Hudson-Curtis, 2022).

We applied a limited number of interval performance metrics. Further, we did so in isolation, which
makes the overall picture somewhat hard to grasp. A fruitful approach could be to analyze interval
scores for prediction intervals and predictive quantiles that combine both coverage and width infor-
mation in a single metric (Gneiting & and Raftery, 2007). Due to focus on prediction intervals as
QC ranges, our simulation study did not systematically quantify or compare the bias and variance of
different hierarchical model-based point estimators, both frequentist and Bayesian (as in, for example,
Browne & Draper, 2006). Supposedly, such an analysis would have provided an even better picture
of why and when methods differ in their prediction performance. Nevertheless, we report descriptive

24Note that the highest density property does not transfer to the original measurement scale when back-transforming the QC range to
the original measurement scale, while the quantile property does.
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summaries of parameter estimates (Section 4.2.3, Appendix A.6).

Naturally, the parameter space explored in a simulation study impacts conclusions. We covered a
relatively broad range across 30 different scenarios. Still, it would have been interesting to observe
performances across scenarios where one variance component is held at constant magnitude, while
the other one is varied. We did not include such scenarios. The interpretation of results (and vari-
ability of results) for the unbalanced designs is somewhat obfuscated by the fact that the design itself
was random. Hence, data sets in the respective scenarios differed not only randomly in terms of ob-
served measurements, but also in the distribution of cluster sizes (Appendix A.1). Further insights
could possibly be gained by correlating QC range performance metrics against measures of realized
unbalancedness. This is possible with the results from our simulation study, but has so far not been

conducted systematically.
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6 Conclusion

In this study, we have shown that a Bayesian hierarchical modeling approach can be employed for the
problem of QC range construction for clinical assays. Different ways to specify the prior distribution
were proposed and implemented with state-of-the-art Bayesian software packages. Joint posterior
distributions were obtained efficiently with the MCMC technique and could be used to infer predictive

intervals for quality control.

Based on our results, a model that ignores clustering of observations within assay runs cannot safely
be used for setting control limits in many realistic settings. In contrast, the prediction interval de-
rived from a hierarchical model estimated via REML often provides a suitable QC range. Yet, since
it is not immune to undercoverage in sparse-data and high-correlation settings, and lacks a way to
incorporate prior information — a highly valuable feature in CMC applications — we advocate for the
use of predictive distributions from Bayesian hierarchical models as a viable alternative. Although
they led to notable overcoverage of future measurements relative to the nominal level in some settings,
this tendency is sensitive to prior choice. As we showed and discussed, it is reasonable to use weakly
informative priors for the variance components in the assay quality control application, rather than
non-informative priors. The extension to informative priors is straightforward. We have outlined

possible routes for further refinement of prior specification.

As an outlook, there are further advantages of the Bayesian QC range approach. It is easy to relax
distributional assumptions, for example about the population from which runs are sampled. Also, a
log-normal likelihood could be included directly in the Stan program, avoiding the somewhat ad hoc
log transformation of the data. In addition, the Bayesian approach is perfectly suited for a dynamic
updating of the QC range after observing new runs over the course of clinical assay development, as
also noted by Lebrun & Rozet (2020, p. 387): “when obtaining each new data point of the control
chart, the control limits can be updated, providing a more precise estimation of the control limits of
the assay.” Hence, Bayesian predictive distributions can be a step towards a more continuous charac-

terization of a bioassay’s performance (Novick et al., 2021).

Finally, any method makes errors. When monitoring clinical assay quality, these errors could be false
acceptances or false rejections of new measurements and runs. In our study, different methods, as
well as different prior distributions, made different types of errors more likely. The choice of method
should be guided by considerations of the costs these errors imply for the user and, ultimately, the
risks they pose to patients. This can only be judged with a holistic view on the product’s purpose, its

development process, and its “real-life” usage for medical decision-making.
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A Appendix

A.1 Unbalanced design generation

Algorithm A1 produces the unbalanced run sizes that form part of some designs in our simulations
(Section 3.1.2). Since the order of run sizes is not important, the algorithm can be viewed as generating
partitions of n that consist of m positive integer parts. The algorithm has properties which align well
with real-world scenarios: Extreme partitions (one very large run) are less probable than somewhat
more balanced partitions, but completely uniform run sizes are very unlikely (in line with the goal
to create unbalanced run sizes). Indeed, no uniform run size distribution occurred by chance in our
simulated data sets. Table A1 summarizes the run sizes that were randomly generated by Algorithm
Al for all scenarios based on the two unbalanced designs. The most frequent ordered run size vectors
for designs “Unbalanced 1”7 and “Unbalanced 2” were (1, 2, 2, 3, 4,4, 5,6,6,7) and (1, 1,1, 1, 1, 1,
1,2,2,2,2,2,2,2,2,3, 3, 3, 4, 4), with frequencies 25 and 310, respectively.

Algorithm Al: Generate vector of run sizes.

Input: n > m > 1 (total number of observations n, number of runs m)

Output: Random partition of n into m positive parts
1 Sample m — 1 cut points independently from {0, 1, ..., n — m} with equal probability;
2 Sort the cut points and add boundaries 0 and n — m;

3 Compute gaps between consecutive points, add 1 to each gap;
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Table Al: Frequency of run sizes generated in the two designs with unbalanced run sizes. Design *Unbalanced 2’ contains
double the number of runs as design "Unbalanced 1’, but the same total sample size.

Scenario

Runsize  Unbalanced 1 Unbalanced 2

1 7,145 33,750
2 9,897 34,469
3 7,388 13,841
4 5,606 5,172
5 4,289 1,886
6 3,223 617

7 2,235 183

8 1,655 61

9 1,165 11

10 813 9

11 540 1

12 353 0

13 259 0

14 171 0

15 107 0

16 65 0

17 43 0

18 21 0

19 11 0

20 8 0

21 3 0

22 2 0

23 1 0

All 45,000 90,000
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A.2 Expected prediction coverage estimates

Table A2: Monte Carlo estimates of expected prediction coverage of QC range with Monte Carlo standard error (MCSE). SLM is the single-level model; FHM is the frequentist hierarchical model;

BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Design

Scenario

%CVip

Estimated expected prediction coverage and MCSE

SLM

FHM

BHM (P1)

BHM (P2)

BHM (P3)

BHM (P4)

BHM (P5)

Standard
Standard
Standard
Standard
Standard
Standard

10
10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.9897 (0.0003)
0.9877 (0.0004)
0.9858 (0.0006)
0.9899 (0.0003)
0.9877 (0.0004)
0.9860 (0.0006)

0.9903 (0.0003)
0.9894 (0.0004)
0.9895 (0.0005)
0.9905 (0.0003)
0.9894 (0.0004)
0.9897 (0.0005)

0.9931 (0.0003)
0.9922 (0.0003)
0.9919 (0.0004)
0.9932 (0.0003)
0.9922 (0.0003)
0.9921 (0.0004)

0.9930 (0.0003)
0.9921 (0.0003)
0.9918 (0.0004)
0.9923 (0.0003)
0.9911 (0.0003)
0.9907 (0.0004)

0.9928 (0.0003)
0.9919 (0.0003)
0.9916 (0.0004)
0.9915 (0.0003)
0.9901 (0.0004)
0.9898 (0.0005)

0.9930 (0.0003)
0.9916 (0.0003)
0.9902 (0.0004)
0.9924 (0.0003)
0.9908 (0.0003)
0.9892 (0.0005)

0.9926 (0.0003)
0.9919 (0.0003)
0.9919 (0.0004)
0.9927 (0.0003)
0.9919 (0.0003)
0.9920 (0.0004)

Unbalanced 1
Unbalanced 1
Unbalanced 1
Unbalanced 1
Unbalanced 1
Unbalanced 1

—_— =
— O O 00 N N A W N =

—_
[ ]

10
10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.9871 (0.0004)
0.9816 (0.0007)
0.9682 (0.0013)
0.9874 (0.0004)
0.9818 (0.0007)
0.9681 (0.0014)

0.9895 (0.0004)
0.9889 (0.0006)
0.9874 (0.0009)
0.9895 (0.0004)
0.9892 (0.00006)
0.9879 (0.0008)

0.9947 (0.0002)
0.9945 (0.0003)
0.9935 (0.0006)
0.9945 (0.0003)
0.9946 (0.0004)
0.9935 (0.0006)

0.9946 (0.0002)
0.9944 (0.0004)
0.9932 (0.0006)
0.9932 (0.0003)
0.9927 (0.0004)
0.9909 (0.0006)

0.9943 (0.0002)
0.9940 (0.0004)
0.9927 (0.0006)
0.9921 (0.0003)
0.9914 (0.0005)
0.9894 (0.0007)

0.9949 (0.0002)
0.9937 (0.0003)
0.9898 (0.0007)
0.9939 (0.0003)
0.9923 (0.0004)
0.9878 (0.0007)

0.9943 (0.0003)
0.9943 (0.0004)
0.9934 (0.0006)
0.9942 (0.0003)
0.9944 (0.0004)
0.9936 (0.0006)

Sparse 1
Sparse 1
Sparse 1
Sparse 1
Sparse 1
Sparse 1

—_—
E SN

10
10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.9873 (0.0007)
0.9791 (0.0010)
0.9550 (0.0023)
0.9879 (0.0006)
0.9802 (0.0010)
0.9607 (0.0020)

0.9901 (0.0006)
0.9869 (0.0009)
0.9800 (0.0018)
0.9909 (0.0005)
0.9882 (0.0009)
0.9846 (0.0014)

0.9990 (0.0002)
0.9986 (0.0002)
0.9969 (0.0006)
0.9988 (0.0001)
0.9981 (0.0002)
0.9970 (0.0005)

0.9987 (0.0002)
0.9983 (0.0003)
0.9964 (0.0006)
0.9970 (0.0002)
0.9957 (0.0004)
0.9932 (0.0007)

0.9983 (0.0002)
0.9977 (0.0003)
0.9956 (0.0007)
0.9957 (0.0003)
0.9941 (0.0005)
0.9915 (0.0008)

0.9983 (0.0002)
0.9971 (0.0003)
0.9911 (0.0009)
0.9972 (0.0002)
0.9951 (0.0004)
0.9887 (0.0009)

0.9988 (0.0002)
0.9985 (0.0002)
0.9969 (0.0006)
0.9992 (0.0001)
0.9988 (0.0002)
0.9981 (0.0004)

Unbalanced 2
Unbalanced 2
Unbalanced 2
Unbalanced 2
Unbalanced 2
Unbalanced 2

10
10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.9886 (0.0004)
0.9876 (0.0005)
0.9838 (0.0007)
0.9895 (0.0004)
0.9876 (0.0005)
0.9843 (0.0007)

0.9895 (0.0004)
0.9900 (0.0004)
0.9893 (0.0005)
0.9903 (0.0004)
0.9899 (0.0005)
0.9897 (0.0005)

0.9927 (0.0003)
0.9927 (0.0004)
0.9917 (0.0004)
0.9933 (0.0003)
0.9926 (0.0004)
0.9919 (0.0004)

0.9926 (0.0003)
0.9927 (0.0004)
0.9916 (0.0004)
0.9924 (0.0003)
0.9916 (0.0004)
0.9906 (0.0005)

0.9924 (0.0003)
0.9924 (0.0004)
0.9914 (0.0004)
0.9915 (0.0003)
0.9905 (0.0004)
0.9896 (0.0005)

0.9927 (0.0003)
0.9922 (0.0004)
0.9898 (0.0005)
0.9926 (0.0003)
0.9913 (0.0004)
0.9890 (0.0005)

0.9922 (0.0003)
0.9925 (0.0004)
0.9916 (0.0005)
0.9928 (0.0003)
0.9924 (0.0004)
0.9918 (0.0005)

Sparse 2
Sparse 2
Sparse 2
Sparse 2
Sparse 2
Sparse 2

10
10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.9865 (0.0005)
0.9747 (0.0010)
0.9537 (0.0021)
0.9867 (0.0005)
0.9772 (0.0009)
0.9518 (0.0022)

0.9895 (0.0004)
0.9856 (0.0009)
0.9836 (0.0015)
0.9898 (0.0004)
0.9874 (0.0007)
0.9821 (0.0016)

0.9982 (0.0002)
0.9981 (0.0003)
0.9980 (0.0004)
0.9978 (0.0002)
0.9975 (0.0003)
0.9962 (0.0006)

0.9979 (0.0002)
0.9977 (0.0003)
0.9977 (0.0004)
0.9959 (0.0002)
0.9952 (0.0004)
0.9926 (0.0008)

0.9975 (0.0002)
0.9972 (0.0003)
0.9969 (0.0005)
0.9947 (0.0003)
0.9939 (0.0004)
0.9911 (0.0009)

0.9979 (0.0001)
0.9964 (0.0003)
0.9932 (0.0007)
0.9967 (0.0002)
0.9949 (0.0003)
0.9879 (0.0010)

0.9982 (0.0002)
0.9981 (0.0003)
0.9981 (0.0003)
0.9983 (0.0001)
0.9983 (0.0002)
0.9973 (0.0005)
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A.3 Expected interval width estimates

Table A3: Monte Carlo estimates of expected interval width of QC range with Monte Carlo standard error (MCSE). SLM is the single-level model; FHM is the frequentist hierarchical model; BHM

is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Design

Scenario

%CVp

Estimated expected interval width and MCSE

SLM

FHM

BHM (P1)

BHM (P2)

BHM (P3)

BHM (P4)

BHM (P5)

Standard
Standard
Standard
Standard
Standard
Standard

10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.236 (0.001)
0.233 (0.001)
0.232 (0.001)
0.910 (0.004)
0.900 (0.004)
0.896 (0.005)

0.238 (0.001)
0.239 (0.001)
0.245 (0.001)
0.919 (0.004)
0.925 (0.005)
0.947 (0.005)

0.250 (0.001)
0.250 (0.001)
0.255 (0.001)
0.964 (0.004)
0.968 (0.005)
0.985 (0.005)

0.249 (0.001)
0.250 (0.001)
0.254 (0.001)
0.945 (0.004)
0.945 (0.005)
0.954 (0.005)

0.248 (0.001)
0.249 (0.001)
0.253 (0.001)
0.932 (0.004)
0.930 (0.004)
0.943 (0.005)

0.249 (0.001)
0.247 (0.001)
0.246 (0.001)
0.948 (0.004)
0.939 (0.004)
0.932 (0.005)

0.247 (0.001)
0.249 (0.001)
0.255 (0.001)
0.955 (0.004)
0.963 (0.005)
0.984 (0.005)

Unbalanced 1
Unbalanced 1
Unbalanced 1
Unbalanced 1
Unbalanced 1
Unbalanced 1

O 00 N[\ N W N =

—_ =
No—= O

10
10

40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.230 (0.001)
0.226 (0.001)
0.217 (0.002)
0.897 (0.004)
0.882 (0.005)
0.848 (0.007)

0.239 (0.001)
0.253 (0.002)
0.266 (0.002)
0.934 (0.005)
0.987 (0.007)
1.044 (0.009)

0.264 (0.001)
0.284 (0.002)
0.297 (0.002)
1.028 (0.005)
1.089 (0.007)
1.125 (0.008)

0.263 (0.001)
0.282 (0.002)
0.294 (0.002)
0.986 (0.005)
1.022 (0.006)
1.039 (0.007)

0.261 (0.001)
0.277 (0.002)
0.287 (0.002)
0.965 (0.005)
1.003 (0.006)
1.035 (0.008)

0.262 (0.001)
0.269 (0.002)
0.266 (0.002)
0.997 (0.005)
1.006 (0.006)
0.987 (0.007)

0.262 (0.001)
0.283 (0.002)
0.297 (0.002)
1.025 (0.006)
1.104 (0.008)
1.164 (0.010)

Sparse 1
Sparse 1
Sparse 1
Sparse 1
Sparse 1
Sparse 1

e T e
00 N O\ W W

10

10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.246 (0.002)
0.238 (0.002)
0.221 (0.002)
0.959 (0.006)
0.931 (0.007)
0.885 (0.009)

0.266 (0.002)
0.292 (0.004)
0.329 (0.005)
1.036 (0.008)
1.154 (0.013)
1.330 (0.019)

0.397 (0.004)
0.457 (0.005)
0.503 (0.006)
1.285 (0.007)
1.334 (0.009)
1.356 (0.009)

0.369 (0.003)
0.411 (0.004)
0.444 (0.005)
1.143 (0.006)
1.180 (0.008)
1.201 (0.009)

0.345 (0.003)
0.380 (0.004)
0.407 (0.004)
1.121 (0.007)
1.206 (0.011)
1.296 (0.015)

0.333 (0.002)
0.337 (0.003)
0.327 (0.003)
1.161 (0.007)
1.150 (0.008)
1.106 (0.009)

0.402 (0.004)
0.475 (0.006)
0.533 (0.007)
1.571 (0.016)
1.887 (0.024)
2.154 (0.029)

Unbalanced 2
Unbalanced 2
Unbalanced 2
Unbalanced 2
Unbalanced 2
Unbalanced 2

[ I S S T S R N N
BRSNS R e RG]

10
10
40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.232 (0.001)
0.233 (0.001)
0.230 (0.001)
0.911 (0.004)
0.904 (0.004)
0.897 (0.005)

0.236 (0.001)
0.242 (0.001)
0.245 (0.001)
0.925 (0.004)
0.939 (0.005)
0.956 (0.005)

0.248 (0.001)
0.253 (0.001)
0.254 (0.001)
0.973 (0.004)
0.981 (0.005)
0.992 (0.006)

0.248 (0.001)
0.253 (0.001)
0.253 (0.001)
0.952 (0.004)
0.956 (0.005)
0.960 (0.005)

0.247 (0.001)
0.251 (0.001)
0.252 (0.001)
0.938 (0.004)
0.941 (0.005)
0.949 (0.005)

0.248 (0.001)
0.249 (0.001)
0.245 (0.001)
0.956 (0.004)
0.950 (0.004)
0.937 (0.005)

0.246 (0.001)
0.252 (0.001)
0.254 (0.001)
0.965 (0.004)
0.978 (0.005)
0.992 (0.006)

Sparse 2
Sparse 2
Sparse 2
Sparse 2
Sparse 2
Sparse 2

RN N NN
S O 0 N &N W

10
10

40
40
40

0.2
0.5
0.8
0.2
0.5
0.8

0.231 (0.001)
0.221 (0.001)
0.214 (0.002)
0.895 (0.004)
0.860 (0.005)
0.823 (0.008)

0.247 (0.002)
0.274 (0.003)
0.339 (0.005)
0.956 (0.006)
1.068 (0.011)
1.301 (0.018)

0.352 (0.003)
0.439 (0.005)
0.527 (0.006)
1.180 (0.007)
1.292 (0.008)
1.353 (0.009)

0.332 (0.003)
0.398 (0.004)
0.462 (0.005)
1.072 (0.006)
1.146 (0.008)
1.200 (0.009)

0.315 (0.002)
0.369 (0.004)
0.424 (0.004)
1.050 (0.006)
1.167 (0.010)
1.295 (0.014)

0.306 (0.002)
0.322 (0.003)
0.337 (0.003)
1.091 (0.005)
1.110 (0.007)
1.098 (0.009)

0.357 (0.004)
0.455 (0.006)
0.558 (0.007)
1.382 (0.014)
1.783 (0.021)
2.148 (0.030)
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A.4 RMSCE estimates

Table A4: Monte Carlo estimates of root mean squared coverage error (RMSCE) of QC range. SLM is the single-level model; FHM is the frequentist hierarchical model; BHM is the Bayesian
hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Estimated RMSCE
Design Scenario  %CVp  p SLM FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5)
Standard 1 10 0.2 0.009 0.009 0.008 0.008 0.008 0.008 0.008
Standard 2 10 0.5 0.012 0.011 0.009 0.009 0.009 0.009 0.009
Standard 3 10 0.8 0.016 0.013 0.011 0.011 0.011 0.012 0.011
Standard 4 40 0.2 0.009 0.009 0.008 0.008 0.008 0.008 0.008
Standard 5 40 0.5 0.012 0.011 0.009 0.010 0.010 0.010 0.009
Standard 6 40 0.8 0.016 0.014 0.012 0.012 0.013 0.013 0.012
Unbalanced 1 7 10 0.2 0.012 0.010 0.008 0.008 0.008 0.008 0.008
Unbalanced 1 8 10 0.5 0.020 0.015 0.010 0.011 0.011 0.010 0.011
Unbalanced 1 9 10 0.8 0.042 0.024 0.016 0.016 0.016 0.018 0.016
Unbalanced 1 10 40 0.2 0.012 0.011 0.009 0.009 0.009 0.008 0.009
Unbalanced 1 11 40 0.5 0.021 0.016 0.011 0.012 0.013 0.012 0.012
Unbalanced 1 12 40 0.8 0.043 0.023 0.016 0.017 0.020 0.020 0.016
Sparse 1 13 10 0.2 0.018 0.016 0.010 0.010 0.010 0.010 0.010
Sparse 1 14 10 0.5 0.031 0.025 0.011 0.011 0.011 0.011 0.011
Sparse 1 15 10 0.8 0.071 0.050 0.018 0.018 0.019 0.025 0.018
Sparse 1 16 40 0.2 0.017 0.015 0.009 0.009 0.010 0.009 0.010
Sparse 1 17 40 0.5 0.030 0.024 0.010 0.011 0.014 0.012 0.010
Sparse 1 18 40 0.8 0.063 0.039 0.015 0.019 0.023 0.024 0.015
Unbalanced 2 19 10 0.2 0.011 0.010  0.009 0.009 0.008 0.008 0.009
Unbalanced 2 20 10 0.5 0.013  0.012 0.010 0.010 0.010 0.010 0.010
Unbalanced 2 21 10 0.8 0.019 0.014 0.012 0.012 0.012 0.013 0.012
Unbalanced 2 22 40 0.2 0.010 0.010 0.009 0.009 0.009 0.009 0.009
Unbalanced 2 23 40 0.5 0.013 0.012 0.010 0.011 0.011 0.010 0.011
Unbalanced 2 24 40 0.8 0.020 0.015 0.012 0.013 0.014 0.014 0.013
Sparse 2 25 10 0.2 0.013 0.012 0.009 0.009 0.009 0.009 0.009
Sparse 2 26 10 0.5 0.031 0.024  0.011 0.011 0.011 0.011 0.011
Sparse 2 27 10 0.8 0.068 0.040 0.013 0.013 0.014 0.019 0.012
Sparse 2 28 40 0.2 0.013 0.012 0.009 0.008 0.009 0.008 0.009
Sparse 2 29 40 0.5 0.027  0.021 0.010 0.011 0.013 0.010 0.011
Sparse 2 30 40 0.8 0.071 0.045 0.017 0.021 0.025 0.026 0.016
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A.5 Distribution of observed prediction coverages

Single-level model Hierarchical model (Frequentist)
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Figure 1: Observed prediction coverages of the QC ranges for all simulation repetitions and all scenarios based on (A) the
single-level model, (B) the frequentist hierarchical model, and (C) the Bayesian hierarchical model, with its five different
prior distributions. The vertical axis is power scaled for readability.
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A.6 Median parameter estimates

Table A5: Median point estimate for parameter p under different methods, compared to the true parameter value used during data generation. SLM is the single-level model; FHM is the frequentist

hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Median point estimate of

Design Scenario  %CVp  p Truep  SLM FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5)
Standard 1 10 0.2 1.998 1.998 1.998 1.998 1.998 1.998 1.999 1.999
Standard 2 10 0.5 1.998 1.998 1.998 1.998 1.998 1.998 1.998 1.998
Standard 3 10 0.8 1.998 1.998 1998 1.998 1.998 1.998 1.998 1.998
Standard 4 40 0.2 1.968 1.969 1.969 1.969 1.969 1.969 1.969 1.969
Standard 5 40 0.5 1.968 1.968 1.968 1.968 1.968 1.968 1.968 1.968
Standard 6 40 0.8 1.968 1.966 1.966 1.967 1.967 1.966 1.967 1.966
Unbalanced 1 7 10 0.2 1.998 1.997 1.997 1.998 1.998 1.998 1.998 1.998
Unbalanced 1 8 10 05 1998 1.998 1998 1.998 1.998 1.998 1.998 1.998
Unbalanced 1 9 10 0.8 1.998 1.998 1.998 1.998 1.998 1.998 1.998 1.998
Unbalanced 1 10 40 0.2 1.968 1.968 1.969 1.970 1.969 1.969 1.969 1.969
Unbalanced 1 11 40 0.5 1.968 1.965 1.966 1.966 1.966 1.966 1.967 1.966
Unbalanced 1 12 40 0.8 1.968 1.969 1.969 1.969 1.970 1.969 1.969 1.969
Sparse 1 13 10 0.2 1.998 1.997 1997 1.997 1.998 1.997 1.997 1.997
Sparse 1 14 10 0.5 1.998 1.999 1999 1.999 1.999 1.999 1.999 1.999
Sparse 1 15 10 0.8 1.998 1.999  1.999 1999 1.999 1.999 1.999 1.999
Sparse 1 16 40 0.2 1.968 1.967 1.967 1.967 1.967 1.967 1.967 1.967
Sparse 1 17 40 0.5 1.968 1.970 1.970 1.970 1.970 1.970 1.970 1.969
Sparse 1 18 40 0.8 1.968 1.971 1.971 1.971 1.971 1.971 1.971 1.971
Unbalanced 2 19 10 0.2 1.998 1.998 1.998 1.998 1.998 1.998 1.998 1.998
Unbalanced 2 20 10 0.5 1.998 1.998 1.998 1.998 1.998 1.998 1.998 1.998
Unbalanced 2 21 10 0.8 1.998 1.998 1.998 1.998 1.998 1.998 1.998 1.998
Unbalanced 2 22 40 0.2 1.968 1.968 1.968 1.968 1.968 1.968 1.967 1.967
Unbalanced 2 23 40 0.5 1.968 1.968 1.967 1.967 1.966 1.967 1.966 1.967
Unbalanced 2 24 40 0.8 1.968 1.970 1.968 1.968 1.968 1.968 1.968 1.968
Sparse 2 25 10 0.2 1.998 1.998 1.998 1.998 1.998 1.998 1.998 1.998
Sparse 2 26 10 05 1998 1.997 1997 1.997 1.997 1.997 1.997 1.997
Sparse 2 27 10 0.8 1998 1.997 1997 1997 1.997 1.997 1.997 1.997
Sparse 2 28 40 0.2 1.968 1.966 1.966 1.965 1.965 1.965 1.966 1.965
Sparse 2 29 40 0.5 1.968 1.963 1.963 1.963 1.964 1.963 1.963 1.963
Sparse 2 30 40 0.8 1.968 1.969 1.969 1.969 1.969 1.969 1.970 1.969

Surogruopy (Gon) (vssy [paruy)") 40f spatau] uonpalJ uvisalvg 5140y g



143

Table A6: Median point estimate for parameter o under different methods, compared to the true parameter value used during data generation. SLM is the single-level model; FHM is the frequentist

hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Median point estimate of &

Design Scenario  %CVp  p True o SLM  FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5)
Standard 1 10 0.2 0.0387 - 0.0379  0.0394 0.0395 0.0394 0.0381 0.0386
Standard 2 10 0.5 0.0306 - 0.0297  0.0315 0.0315 0.0315 0.0310 0.0307
Standard 3 10 0.8 0.0194 - 0.0191 0.0200 0.0200 0.0200 0.0203 0.0195
Standard 4 40 0.2 0.1496 - 0.1463  0.1522 0.1507 0.1508 0.1455 0.1486
Standard 5 40 0.5 0.1183 - 0.1169  0.1242 0.1235 0.1231 0.1210 0.1208
Standard 6 40 0.8 0.0748 - 0.0743  0.0779 0.0778 0.0771 0.0787 0.0758
Unbalanced 1 7 10 0.2 0.0387 - 0.0381 0.0392 0.0392 0.0391 0.0384 0.0386
Unbalanced 1 8 10 0.5 0.0306 - 0.0302 0.0312 0.0312 0.0312 0.0309 0.0306
Unbalanced 1 9 10 0.8 0.0194 - 0.0191 0.0197 0.0197 0.0197 0.0198 0.0193
Unbalanced 1 10 40 0.2 0.1496 - 0.1472  0.1513 0.1498 0.1493 0.1470 0.1489
Unbalanced 1 11 40 0.5 0.1183 - 0.1176 0.1215 0.1207 0.1201 0.1199 0.1194
Unbalanced 1 12 40 0.8 0.0748 - 0.0730  0.0754 0.0752 0.0748 0.0757 0.0740
Sparse 1 13 10 0.2 0.0387 - 0.0373  0.0395 0.0395 0.0394 0.0385 0.0382
Sparse 1 14 10 0.5 0.0306 - 0.0299  0.0320 0.0320 0.0318 0.0315 0.0309
Sparse 1 15 10 0.8 0.0194 - 0.0189  0.0201 0.0201 0.0200 0.0202 0.0193
Sparse 1 16 40 0.2 0.1496 - 0.1450  0.1541 0.1508 0.1494 0.1465 0.1486
Sparse 1 17 40 0.5 0.1183 - 0.1143  0.1223 0.1206 0.1188 0.1184 0.1175
Sparse 1 18 40 0.8 0.0748 - 0.0741 0.0788 0.0783 0.0774 0.0791 0.0761
Unbalanced 2 19 10 0.2 0.0387 - 0.0377  0.0390 0.0390 0.0390 0.0377 0.0381
Unbalanced 2 20 10 0.5 0.0306 - 0.0300  0.0317 0.0317 0.0316 0.0312 0.0309
Unbalanced 2 21 10 0.8 0.0194 - 0.0191 0.0200 0.0200 0.0200 0.0203 0.0195
Unbalanced 2 22 40 0.2 0.1496 - 0.1467  0.1518 0.1504 0.1504 0.1459 0.1484
Unbalanced 2 23 40 0.5 0.1183 - 0.1184  0.1247 0.1239 0.1236 0.1218 0.1213
Unbalanced 2 24 40 0.8 0.0748 - 0.0742  0.0782 0.0780 0.0773 0.0789 0.0760
Sparse 2 25 10 0.2 0.0387 - 0.0383  0.0393 0.0393 0.0392 0.0388 0.0388
Sparse 2 26 10 0.5 0.0306 - 0.0302  0.0310 0.0310 0.0310 0.0308 0.0305
Sparse 2 27 10 0.8 0.0194 - 0.0192  0.0197 0.0197 0.0197 0.0198 0.0194
Sparse 2 28 40 0.2 0.1496 - 0.1479  0.1519 0.1505 0.1498 0.1486 0.1497
Sparse 2 29 40 0.5 0.1183 - 0.1166  0.1198 0.1192 0.1184 0.1184 0.1181
Sparse 2 30 40 0.8 0.0748 - 0.0742  0.0762 0.0759 0.0755 0.0763 0.0751
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Table A7: Median point estimate for parameter T under different methods, compared to the true parameter value used during data generation. SLM is the single-level model; FHM is the frequentist

hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Median point estimate of 7

Design Scenario  %CVp  p True 7 SLM  FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5)
Standard 1 10 0.2 0.0194 - 0.0191 0.0180 0.0179 0.0178 0.0217 0.0189
Standard 2 10 0.5 0.0306 - 0.0297  0.0295 0.0294 0.0292 0.0295 0.0301
Standard 3 10 0.8 0.0387 - 0.0380  0.0395 0.0393 0.0391 0.0378 0.0395
Standard 4 40 0.2 0.0748 - 0.0701 0.0676 0.0658 0.0593 0.0813 0.0712
Standard 5 40 0.5 0.1183 - 0.1138  0.1130 0.1101 0.1058 0.1118 0.1152
Standard 6 40 0.8 0.1496 - 0.1456 0.1508 0.1469 0.1445 0.1420 0.1516
Unbalanced 1 7 10 0.2 0.0194 - 0.0164 0.0181 0.0181 0.0178 0.0215 0.0185
Unbalanced 1 8 10 0.5 0.0306 - 0.0286 0.0316 0.0314 0.0310 0.0305 0.0318
Unbalanced 1 9 10 0.8 0.0387 - 0.0366  0.0405 0.0402 0.0396 0.0372 0.0405
Unbalanced 1 10 40 0.2 0.0748 - 0.0647  0.0715 0.0677 0.0619 0.0814 0.0734
Unbalanced 1 11 40 0.5 0.1183 - 0.1125 0.1229 0.1158 0.1100 0.1153 0.1244
Unbalanced 1 12 40 0.8 0.1496 - 0.1439  0.1591 0.1502 0.1460 0.1410 0.1597
Sparse 1 13 10 0.2 0.0194 - 0.0160  0.0224 0.0220 0.0211 0.0255 0.0229
Sparse 1 14 10 0.5 0.0306 - 0.0271 0.0343 0.0335 0.0323 0.0311 0.0348
Sparse 1 15 10 0.8 0.0387 - 0.0340  0.0439 0.0428 0.0411 0.0357 0.0441
Sparse 1 16 40 0.2 0.0748 - 0.0656  0.0868 0.0754 0.0650 0.0929 0.0910
Sparse 1 17 40 0.5 0.1183 - 0.1090  0.1326 0.1162 0.1064 0.1151 0.1397
Sparse 1 18 40 0.8 0.1496 - 0.1354  0.1674 0.1463 0.1399 0.1315 0.1762
Unbalanced 2 19 10 0.2 0.0194 - 0.0184 0.0181 0.0181 0.0180 0.0218 0.0191
Unbalanced 2 20 10 0.5 0.0306 - 0.0300  0.0300 0.0300 0.0299 0.0302 0.0307
Unbalanced 2 21 10 0.8 0.0387 - 0.0375 0.0388 0.0386 0.0384 0.0372 0.0390
Unbalanced 2 22 40 0.2 0.0748 - 0.0725 0.0708 0.0682 0.0626 0.0828 0.0744
Unbalanced 2 23 40 0.5 0.1183 - 0.1153  0.1153 0.1121 0.1083 0.1133 0.1179
Unbalanced 2 24 40 0.8 0.1496 - 0.1481  0.1533 0.1493 0.1469 0.1439 0.1541
Sparse 2 25 10 0.2 0.0194 - 0.0164 0.0211 0.0209 0.0204 0.0234 0.0212
Sparse 2 26 10 0.5 0.0306 - 0.0275  0.0359 0.0352 0.0340 0.0320 0.0359
Sparse 2 27 10 0.8 0.0387 - 0.0367  0.0479 0.0466 0.0446 0.0388 0.0478
Sparse 2 28 40 0.2 0.0748 - 0.0640  0.0812 0.0732 0.0650 0.0861 0.0825
Sparse 2 29 40 0.5 0.1183 - 0.1087  0.1377 0.1221 0.1142 0.1178 0.1414
Sparse 2 30 40 0.8 0.1496 - 0.1393  0.1731 0.1519 0.1455 0.1368 0.1819
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Table A8: Median point estimate for parameter %CVyp under different methods, compared to the true parameter value used during data generation. SLM is the single-level model; FHM is the
frequentist hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.
Median point estimate of %CVp

Design Scenario  %CVp  p True %CVyp SLM  FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5) %)
Standard 1 10 0.2 10.0 9.9 9.9 10.4 10.4 10.4 10.4 10.4 g
Standard 2 10 0.5 10.0 9.7 9.8 10.3 10.3 10.2 10.2 10.2 OE
Standard 3 10 0.8 10.0 9.7 9.9 10.3 10.3 10.3 10.0 10.3 03
Standard 4 40 0.2 40.0 39.5 39.6 41.9 41.2 40.6 41.2 41.4 '\§
Standard 5 40 05 40.0 39.1 394 415 40.8 40.1 40.5 412 2
Standard 6 40 08 400 389 393 413 40.4 39.8 39.4 412 S
Unbalanced 1 7 10 0.2 10.0 9.7 9.8 10.5 10.5 10.5 10.6 10.4 ?
Unbalanced 1 8 10 0.5 10.0 9.3 9.7 10.5 10.5 10.4 10.3 10.5 §\
Unbalanced 1 9 10 0.8 10.0 8.9 9.5 10.5 10.4 10.3 9.8 10.4 E’
Unbalanced 1 10 40 0.2 40.0 38.8 39.2 42.3 414 40.5 41.7 41.9 §
Unbalanced 1 11 40 0.5 40.0 37.6 39.0 42.5 41.1 40.0 40.7 42.2 3
Unbalanced 1 12 40 0.8 40.0 35.7 38.4 42.4 40.3 39.2 38.2 42.3 §
Sparse 1 13 10 0.2 10.0 9.5 9.7 11.4 11.3 11.2 11.2 11.2 §
Sparse 1 14 10 0.5 10.0 9.1 9.4 11.4 11.3 11.0 10.7 11.3 \Q’\
Sparse 1 15 10 0.8 10.0 8.4 8.9 11.3 11.1 10.7 9.6 11.2 =
Sparse 1 16 40 0.2 40.0 38.8 396 46.7 43.9 42.3 44.1 46.1 @
Sparse 1 17 40 0.5 40.0 37.2 38.5 46.3 42.6 41.0 41.9 46.8 §
Sparse 1 18 40 0.8 40.0 34.6 37.2 45.6 40.7 39.1 37.8 47.2 8,
Unbalanced 2 19 10 0.2 10.0 9.8 9.8 10.4 10.4 10.3 10.3 10.3 %
Unbalanced 2 20 10 0.5 10.0 9.7 9.8 10.3 10.3 10.3 10.2 10.3 '\§
Unbalanced 2 21 10 0.8 10.0 9.5 9.7 10.2 10.2 10.1 9.9 10.2 @
Unbalanced 2 22 40 0.2 40.0 39.6 39.9 422 41.4 40.8 41.5 41.8 §
Unbalanced 2 23 40 05 40.0 39.2 39.7 41.8 41.0 40.3 40.6 41.5 I
Unbalanced 2 24 40 0.8 40.0 38.8  39.7 41.6 40.6 40.0 39.7 41.6 §
Sparse 2 25 10 0.2 10.0 9.6 9.7 10.9 10.8 10.7 10.8 10.8 §
Sparse 2 26 10 05 100 9.1 95 11.2 11.0 10.8 10.5 11.1 §
Sparse 2 27 10 0.8 10.0 8.9 9.6 12.0 11.8 11.4 10.1 12.0 Ny
Sparse 2 28 40 02 400 386 395 444 426 415 430 44.1 s
Sparse 2 29 40 0.5 40.0 36.5 381 44.4 41.5 40.1 40.8 45.1

Sparse 2 30 40 0.8 40.0 34.5 37.5 45.4 40.7 39.3 37.3 47.7




LS

Table A9: Median point estimate for parameter p under different methods, compared to the true parameter value used during data generation. SLM is the single-level model; FHM is the frequentist

hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance components.

Median point estimate of p

Design Scenario  %CVp  p Truep SLM FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5)
Standard 1 10 0.2 0.20 - 0.21 0.17 0.17 0.17 0.25 0.19
Standard 2 10 0.5 0.50 - 0.51 0.48 0.48 0.48 0.49 0.50
Standard 3 10 0.8 0.80 - 0.80 0.80 0.80 0.80 0.78 0.81
Standard 4 40 0.2 0.20 - 0.19 0.16 0.15 0.13 0.23 0.18
Standard 5 40 0.5 0.50 - 0.49 0.46 0.45 0.43 0.46 0.49
Standard 6 40 0.8 0.80 - 0.79 0.79 0.79 0.78 0.77 0.80
Unbalanced 1 7 10 0.2 0.20 - 0.16 0.18 0.18 0.18 0.24 0.19
Unbalanced 1 8 10 0.5 0.50 - 0.48 0.51 0.51 0.51 0.50 0.52
Unbalanced 1 9 10 0.8 0.80 - 0.79 0.81 0.81 0.80 0.78 0.82
Unbalanced 1 10 40 0.2 0.20 - 0.17 0.18 0.17 0.14 0.23 0.19
Unbalanced 1 11 40 0.5 0.50 - 0.49 0.52 0.49 0.47 0.49 0.53
Unbalanced 1 12 40 0.8 0.80 - 0.79 0.82 0.80 0.79 0.77 0.82
Sparse 1 13 10 0.2 0.20 - 0.16 0.23 0.23 0.22 0.30 0.25
Sparse 1 14 10 0.5 0.50 - 0.46 0.54 0.53 0.51 0.50 0.57
Sparse 1 15 10 0.8 0.80 - 0.76 0.83 0.82 0.81 0.76 0.84
Sparse 1 16 40 0.2 0.20 - 0.17 0.24 0.20 0.15 0.28 0.27
Sparse 1 17 40 0.5 0.50 - 0.48 0.55 0.49 0.46 0.49 0.60
Sparse 1 18 40 0.8 0.80 - 0.77 0.82 0.78 0.77 0.74 0.85
Unbalanced 2 19 10 0.2 0.20 - 0.20 0.18 0.18 0.17 0.25 0.20
Unbalanced 2 20 10 0.5 0.50 - 0.50 0.48 0.48 0.48 0.48 0.50
Unbalanced 2 21 10 0.8 0.80 - 0.79 0.79 0.79 0.79 0.77 0.80
Unbalanced 2 22 40 0.2 0.20 - 0.20 0.18 0.17 0.15 0.25 0.20
Unbalanced 2 23 40 0.5 0.0 - 0.49 0.47 0.46 0.44 0.47 0.50
Unbalanced 2 24 40 0.8 0.80 - 0.79 0.79 0.78 0.78 0.77 0.80
Sparse 2 25 10 0.2 0.20 - 0.16 0.23 0.22 0.22 0.28 0.24
Sparse 2 26 10 0.5 0.50 - 0.44 0.56 0.55 0.54 0.51 0.57
Sparse 2 27 10 0.8 0.80 - 0.78 0.85 0.85 0.83 0.79 0.86
Sparse 2 28 40 0.2 0.20 - 0.16 0.22 0.19 0.16 0.25 0.24
Sparse 2 29 40 0.5 0.50 - 0.47 0.57 0.51 0.49 0.50 0.60
Sparse 2 30 40 0.8 0.80 - 0.78 0.83 0.80 0.79 0.76 0.85
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A.7 Correlation between variance components

Table A10: Median point estimate for correlation between variance components” estimators (for the FHM), or for the correlation between variance components’ posteriors (for the BHM). under
different methods. SLM is the single-level model; FHM is the frequentist hierarchical model; BHM is the Bayesian hierarchical model; P1 to P5 refer to the different prior distributions for variance

components.

Median point estimate of correlation between estimators/posteriors of 0 and 72

Design Scenario  %CVp  p SLM  FHM BHM (P1) BHM (P2) BHM (P3) BHM (P4) BHM (P5)
Standard 1 10 02 - -0.453  -0.298 -0.292 -0.301 -0.210 -0.294
Standard 2 100 05 - -0.302  -0.325 -0.328 -0.333 -0.240 -0.303
Standard 3 10 08 - -0.106  -0.119 -0.121 -0.123 -0.112 -0.108
Standard 4 40 02 - -0.453  -0.282 -0.297 -0.307 -0.211 -0.282
Standard 5 40 05 - -0.310  -0.326 -0.348 -0.372 -0.250 -0.306
Standard 6 40 08 - -0.111  -0.125 -0.139 -0.144 -0.124 -0.112
Unbalanced 1 7 10 02 - -0.210  -0.091 -0.094 -0.098 -0.028 -0.087
Unbalanced 1 8 10 05 - -0.132  -0.083 -0.086 -0.092 -0.042 -0.077
Unbalanced 1 9 10 08 - -0.045  -0.028 -0.031 -0.033 -0.016 -0.026
Unbalanced 1 10 40 02 - -0.215  -0.094 -0.115 -0.126 -0.032 -0.084
Unbalanced 1 11 40 05 - -0.121  -0.087 -0.104 -0.115 -0.047 -0.071
Unbalanced 1 12 40 0.8 - -0.045  -0.034 -0.041 -0.043 -0.022 -0.027
Sparse 1 13 10 02 - -0.146  -0.006 -0.015 -0.018 0.062 -0.003
Sparse 1 14 10 05 - -0.105  -0.025 -0.033 -0.037 0.023 -0.010
Sparse 1 15 10 08 - -0.037  -0.015 -0.018 -0.018 0.014 -0.006
Sparse 1 16 40 02 - -0.173  -0.039 -0.059 -0.050 0.046 -0.004
Sparse 1 17 40 05 - -0.099  -0.070 -0.087 -0.070 0.006 -0.009
Sparse 1 18 40 0.8 - -0.035  -0.037 -0.043 -0.033 0.007 -0.006
Unbalanced 2 19 10 02 - -0.408  -0.261 -0.262 -0.267 -0.182 -0.258
Unbalanced 2 20 10 05 - -0.304  -0.288 -0.286 -0.292 -0.210 -0.271
Unbalanced 2 21 10 08 - -0.128  -0.131 -0.133 -0.135 -0.123 -0.122
Unbalanced 2 22 40 02 - -0.424  -0.262 -0.280 -0.295 -0.190 -0.259
Unbalanced 2 23 40 05 - -0.309  -0.294 -0.313 -0.335 -0.226 -0.277
Unbalanced 2 24 40 0.8 - -0.125  -0.128 -0.142 -0.151 -0.131 -0.117
Sparse 2 25 10 02 - -0.097  -0.013 -0.018 -0.021 0.028 -0.006
Sparse 2 26 10 05 - -0.044  -0.012 -0.015 -0.017 0.020 -0.005
Sparse 2 27 10 08 - -0.011  -0.003 -0.004 -0.005 0.015 -0.002
Sparse 2 28 40 02 - -0.101  -0.038 -0.049 -0.044 0.023 -0.007
Sparse 2 29 40 05 - -0.041  -0.027 -0.033 -0.029 0.018 -0.005
Sparse 2 30 40 0.8 - -0.012  -0.010 -0.012 -0.009 0.017 -0.002

Surogruopy (Gon) (vssy [paruy)") 40f spatau] uonpalJ uvisalvg 5140y g



S. Gebrig: Bayesian Prediction Intervals for Clinical Assay Quality Monitoring

A.8 Software code

The software code for both R and Stan is provided in a separate zip file.
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