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Abstract

Background: Multi‐drug combinations constitute a promising treatment approach for complex
diseases. However, the systematic exploration of interactions among their constituents in in‐vitro
experiments poses challenges when more than two drugs are combined. In the presented work,
three‐drug combinations are considered and suitable experimental designs are reviewed and im‐
plemented in the context of a simulation study focusing on synergistic interactions.

Methods: Seven experimental designs ‐ among them uniform maximum power designs and
variations of ray and checkercube designs ‐ are examined with respect to their performance in
seven different monotherapy scenarios. Main performance metrics are sensitivity of the synergy
detection and power to detect at least five synergistic points. These are evaluated based on
200 simulation runs. Data is generated under the Bliss independence model and synergies are
added to combination points in varying areas of the dose space. Data is analyzed under the
Bliss independence model using pointwise deviation assessments between observed effects and
expected effects under additivity. The experimental budget is assumed to consist of 384 runs,
allowing for up to 96 unique design points and four replicates.

Results: The power to detect at least five synergistic points appeared promising for most designs,
with values mostly lying above 90%. The sensitivity varied, with uniform maximum power designs
and checkercube designs showing, on average, higher sensitivities than ray designs. A checker‐
cube with four effective concentrations on the axes showed exceptional performance with regard
to sensitivity, but was less robust with regard to power, as it sampled in a limited range of the dose
space and sometimes missed the simulated synergy area. Scenarios with high slopes generally
posed greater difficulties for synergy detection across all designs.

Conclusion: In practical experimentation, it is important to systematically explore as large as
possible and as relevant as possible areas in the dose space with a limited number of design
points. Few principled experimental designs specifically dedicated to multi‐drug combinations
exist in the literature, with uniform designs constituting a notable exception. However, conventional
approaches, such as checkercube designs, altogether show promise, even when the experimental
budget and thus the achievable resolution on the checkercube axes are limited.



1 Introduction

Drug discovery faces numerous difficulties in both pre‐clinical and clinical development phases.
A primary reason for the eventual failure of many candidate drugs is intolerable toxicity at clini‐
cally effective doses ﴾Sun et al., 2022﴿. The emergence of drug resistance poses another obstacle
﴾Makhoba et al., 2020﴿. In the light of these problems, combination therapies consisting of multiple
drugs constitute a promising approach towards treatments that are not only more effective, but
also safer and less susceptible to the emergence of drug resistance. Intuitively, enhanced efficacy
may stem from synergies between drugs in the sense that the constituent drugs in a combination
may boost each other’s efficacy. This may allow to administer lower doses of the individual drugs,
thereby limiting their dose‐related toxicities ﴾Calzetta et al., 2024﴿. Reduced drug resistance may
follow from different mechanisms of action of the constituent drugs in a combination, making it
more challenging for diseases processes to find escape routes ﴾Malik et al., 2020﴿. Multi‐drug com‐
binations already represent the standard of care across a spectrum of diseases and are particularly
prevalent in oncology ﴾Makhoba et al., 2020; Zimmermann et al., 2007﴿.

Yet, the systematic exploration of multi‐drug combinations poses unique challenges, especially
during early drug discovery ﴾Zimmermann et al., 2007﴿: First, there is a very large number of com‐
binations of agents that could be explored. Second, interactions between the agents in any given
multi‐drug combination need to be studied thoroughly but efficiently to detect those combina‐
tions, whose constituents do not counteract each other but ideally enhance each other’s efficacy,
creating synergies. The first problem can be addressed by prioritizing rationally designed drug
combinations, whose identification can possibly be aided by artificial intelligence tools ﴾Boshuizen
& Peeper, 2020; J. Chen et al., 2025﴿. The second problem can be addressed by studying the pri‐
oritized drug combinations based on informative experimental designs, accompanied by suitable
statistical analyses, in in‐vitro settings. In doing so, it is important to test several dose combinations
since the interaction patterns may vary with dose ﴾Calzetta et al., 2024; Jonker et al., 2005﴿.

This master’s thesis is concerned with experimental designs for in‐vitro studies of combinations
of three drugs, subsequently referred to as triple combinations. Given prior knowledge of the
constituent drugs’ dose‐response curves and a limited experimental budget, the central challenge
is to select the dose combinations to be tested in an in‐vitro experiment in such a way that the
power of detecting synergies between the constituent drugs is maximized. The thesis is organized
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as follows: Chapter 2 introduces key concepts relevant to drug combination studies, including the
definition of the term synergy. Based on these concepts, the research question is further refined.
Chapter 3 provides a literature review of experimental designs applicable to triple combination
studies. Chapter 4 describes a simulation set‐up, in which some of these designs are implemented
and evaluated with respect to their performance in scenarios informed by real‐world applications
in oncology. Chapter 5 summarizes the simulation results, while chapter 6 discusses the strengths
and limitations of the simulation‐based research and suggests further reasearch venues. Chap‐
ter 7 sheds light on ethical considerations before chapter 8 draws conclusions. Of note, in this
master’s thesis, all concepts and methods are discussed from the perspective of drug combination
studies. However, the presented material is equally relevant to other fields, in particular toxicology,
where the investigation of multiple chemicals’ combined toxicity has gained increased attention
throughout the last decade ﴾J. Y. Liu & Sayes, 2024; Martin et al., 2021﴿.
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2 From Definitions to Research Questions

Early discovery of single drugs focuses on signals of efficacy; however, early discovery of multi‐drug
combinations does not only need to account for the overall efficacy of combinations, but also for
possible interactions between the constituents ﴾D. Chen et al., 2015; J. Tang et al., 2015﴿. To examine
drug interactions, several dose combinations of the agents under consideration are typically first
tested in diseased cells. Those combinations whose constituents show synergistic interactions in
these in‐vitro experiments ‐ implying that the drugs enhance each other’s efficacy, ideally across a
broad dose range ‐ are then often prioritized for further development ﴾Pemovska et al., 2018﴿. To
be able to detect synergistic interactions, it is essential to formalize the concept of synergies and
define the reference standard against which their efficacy enhancement is measured.

2.1 Drug Interactions as Deviations from Additivy

Even in the absence of drug interactions, administering a combination of drugs is typically expected
to produce a greater effect than any individual drug alone, when applied as a monotherapy at the
same dose level present in the combination ﴾Chou, 2006; Greco et al., 1995﴿. Therefore, compar‐
ing the combination effect to that of any monotherapy may be a relatively lenient criterion for
claiming the presence of interactions. As a result, the most common models for defining drug
interactions instead compare the observed combination effect to the expected combination ef‐
fect under a no‐interaction assumption in order to determine whether interactions are present.
When the observed combination effect coincides with the expected combination effect under a
no‐interaction assumption, the effect is said to be additive at the respective dose combination.
When the observed combination effect lies above ﴾below﴿ the expected effect, there is a syn‐
ergistic ﴾antagonistic﴿ interaction between the drugs at the respective dose combination. Drug
interactions are thus generally characterized by deviations from a reference model describing the
expected additive effect ﴾Calzetta et al., 2024; Foucquier & Guedj, 2015; Greco et al., 1995﴿. This
raises the question which reference models — also known as null models, as they represent the
null hypothesis of additive action — should be used to assess drug interactions. A simple effect
summation model, claiming that the expected additive effect of a combination should equal the
sum of the effects of the constituent drugs at their respective dose levels, does typically not con‐
stitute a suitable reference model, i.a. because it lacks pharmacological plausibility ﴾Calzetta et al.,
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2024; Foucquier & Guedj, 2015﴿. The following sections introduce two more reasonable reference
models, Loewe additivity and Bliss independence, which have a long‐standing history and consti‐
tute the most frequently used null models to date ﴾J. Tang et al., 2015﴿. In line with the focus of this
master’s thesis, the models are discussed in the context of triple combination therapies.

2.1.1 Loewe Null Model

The Loewe model, promoted by Loewe & Muischnek ﴾1926﴿, is based on the dose equivalence
principle, stating that for any dose of one particular agent one can find an equivalent dose of an‐
other agent, reaching the same effect. This also implies that ‐ for a given effect ﴾e.g. the observed
effect achieved by a certain three‐drug combination﴿ ‐ one can always find a dose of any of the
constituents reaching the same effect when administered as a monotherapy. Hence, following
the dose equivalence principle, one can formally re‐express a combination effect in three different
ways in the absence of interactions ﴾Lederer et al., 2018, 2019﴿

𝑓𝐴𝐵𝐶 ≡ 𝑓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) = 𝑓𝐴(𝑥𝐴 + 𝑓−1
𝐴 (𝑓𝐵(𝑥𝐵)) + 𝑓−1

𝐴 (𝑓𝐶(𝑥𝐶))) ﴾1﴿

= 𝑓𝐵(𝑥𝐵 + 𝑓−1
𝐵 (𝑓𝐴(𝑥𝐴)) + 𝑓−1

𝐵 (𝑓𝐶(𝑥𝐶))) ﴾2﴿

= 𝑓𝐶(𝑥𝐶 + 𝑓−1
𝐶 (𝑓𝐴(𝑥𝐴)) + 𝑓−1

𝐶 (𝑓𝐵(𝑥𝐵))) ﴾3﴿

where 𝑓𝐴𝐵𝐶 denotes the observed combination effect at doses 𝑥𝐴 of drug A, 𝑥𝐵 of drug B and
𝑥𝐶 of drug C, 𝑓𝐴(⋅), 𝑓𝐵(⋅), 𝑓𝐶(⋅) denote monotonic monotherapy dose‐response curves and,
correspondingly, 𝑓−1

𝐴 (⋅), 𝑓−1
𝐵 (⋅), 𝑓−1

𝐶 (⋅) denote their inverses, determining the dose needed to
reach a certain effect. Naturally, this reasoning can only hold for drugs with dose‐response curves
that share the same minimum and maximum effect ﴾Vlot et al., 2019﴿. Now, additionally assuming
that the drugs have a constant relative potency across the entire dose resp. effect range, the two
less potent drugs in a triple combination can simply be seen as dilutions of the most potent drug
in the combination. If one knows the doses of the monotherapies that reach a certain effect level,
any fractional combination of these doses summing up to 1 should then achieve the same effect
level ﴾Lederer et al., 2019﴿. Thus, looking at the combination effect 𝑓𝐴𝐵𝐶 observed at a particular
dose combination (𝑥𝐴, 𝑥𝐵, 𝑥𝐶), under Loewe additivity one would expect that

𝑥𝐴
𝑓−1

𝐴 (𝑓𝐴𝐵𝐶) + 𝑥𝐵
𝑓−1

𝐵 (𝑓𝐴𝐵𝐶) + 𝑥𝐶
𝑓−1

𝐶 (𝑓𝐴𝐵𝐶) = 1 ﴾4﴿
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where the denominators always denote the monotherapy doses needed to achieve the combi‐
nation effect 𝑓𝐴𝐵𝐶 ﴾Calzetta et al., 2024; Foucquier & Guedj, 2015﴿. Deviations from the value 1
indicate deviations from Loewe additivity. Following the proposal by Berenbaum ﴾1977﴿, one can
define the interaction index 𝜏 as

𝜏 = 𝑥𝐴
𝑓−1

𝐴 (𝑓𝐴𝐵𝐶) + 𝑥𝐵
𝑓−1

𝐵 (𝑓𝐴𝐵𝐶) + 𝑥𝐶
𝑓−1

𝐶 (𝑓𝐴𝐵𝐶)

⎧{{
⎨{{⎩

< 1 → synergy

= 1 → additivity

> 1 → antagonism

﴾5﴿

Synergy thus means that the total dose required to reach a certain combination effect 𝑓𝐴𝐵𝐶 is
lower than expected based on the drugs’ relative potencies, reflecting the dose‐effect based nature
of the Loewe framework ﴾Foucquier & Guedj, 2015; Pearson et al., 2023; Tallarida, 2012; Wooten
et al., 2021﴿. To assess whether and where interactions exist, one can calculate the interaction
index at each combination point. Alternatively, one can proceed graphically and use equation ﴾4﴿
to define a isocontour plane in 3D with drug doses on the axes and the plane defining all dose
combinations that should achieve the combination effect 𝑓𝐴𝐵𝐶 under Loewe additivity. If the
actual dose combination (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) under consideration lies below ﴾above﴿ this plane, this
indicates synergy ﴾antagonism﴿. Under the stringent conditions underlying the Loewe additivity
model, the isocontour plane is a straight, triangular plane connecting the intercepts defined by
the doses (𝑓−1

𝐴 (𝑓𝐴𝐵𝐶), 0, 0), (0, 𝑓−1
𝐵 (𝑓𝐴𝐵𝐶), 0) and (0, 0, 𝑓−1

𝐶 (𝑓𝐴𝐵𝐶)) ﴾Greco et al., 1995;
J. Y. Liu & Sayes, 2024; Rider & Simmons, 2018; Tallarida, 2011, 2012﴿.

However, neither an assessment based on the interaction index nor an assessment based on the
isocontour plane permits a natural assessment of the strength of interactions ﴾Calzetta et al., 2024;
J. Tang et al., 2015﴿. Therefore, it may be preferable to calculate deviations between the observed
combination effect and the expected combination effect under Loewe additivity on the effect scale
﴾J. Tang et al., 2015﴿. This requires treating the combination effect 𝑓𝐴𝐵𝐶 in equation ﴾4﴿ as unknown
and solving for it, given the values of (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) at a particular combination points and the
dose‐response curves 𝑓𝐴(⋅), 𝑓𝐵(⋅), 𝑓𝐶(⋅). The solution is then the expected combination effect
under Loewe additivity, which may be denoted by 𝑓 Loewe

𝐴𝐵𝐶 for enhanced clarity. Note that equation
﴾4﴿ is often nonlinear due to nonlinear monotherapy dose‐response curves, requiring numerical
solution approaches ﴾J. Tang et al., 2015﴿. Alternatively, one can derive 𝑓 Loewe

𝐴𝐵𝐶 from equations ﴾1﴿,
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﴾2﴿ or ﴾3﴿, allowing for an analytic solution; the results coincide for drugs with constant relative
potencies ﴾Lederer et al., 2018, 2019﴿.

The Loewe additivity model inherently satisfies the sham combination principle, meaning that the
combination of several dilutions of the same agent is always declared additive in this framework.
From a mechanistic viewpoint, the Loewe model is particularly intuitive for drugs that act with the
same mechanism of action, but differ in their potency. Yet, the mechanistic rationale should not be
overemphasized as the mechanism of action is often unknown and possibly more complex than
any simple reference model can capture; moreover, the goal of identifying interactions precisely
consists in rejecting the null hypothesis that the mechanistic implications of the reference model
for additivity are true ﴾Lederer et al., 2018; Makariadou et al., 2024; Thas et al., 2022﴿.

The main limitation of the Loewe model is that its validity is restricted to cases in which all agents
cover the same effect range and have a constant relative potency ﴾Greco et al., 1992﴿. This keeps
the model formulation consistent and mathematically tractable as all dose combinations expected
to reach a certain effect can be identified by compensating decreases in one drug’s dose by in‐
creases in another drug’s dose at a constant ratio ﴾Foucquier & Guedj, 2015; Lederer et al., 2018;
Tallarida, 2012﴿. Extensions of the Loewe model are complex and mostly limited to two‐drug com‐
binations ﴾see e.g. Calzetta et al., 2024 for an overview﴿. Finally, note that Loewe additivity is
undetermined when an observed combination effect 𝑓𝐴𝐵𝐶 exceeds the maximum possible ef‐
fect of the monotherapies, illustrating that the dose equivalence principle underlying equations
﴾1﴿‐﴾5﴿ does not only rely on a shared effect range between the monotherapies but also between
the monotherapies and the combinations ﴾Pearson et al., 2023; Yadav et al., 2015﴿.

2.1.2 Bliss Null Model

The Bliss model, introduced by Bliss ﴾1939﴿, is a purely effect‐based model: It is based on compar‐
ing effects at certain monotherapy vs. combination doses rather than comparing monotherapy
vs. combination doses needed to achieve certain effects. A further distinction from the Loewe
model is the probabilistic nature of the Bliss model, making it suitable for monotherapies whose
effect ranges span the interval [0, 1] and can thus be interpreted as probabilities; also combina‐
tion effects are assumed to be restricted to the interval [0, 1]. This is important since the Bliss
model assumes that the observed combination effect 𝑓𝐴𝐵𝐶 is the result of a probabilistic process
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in which the three drugs act statistically independently of each other, describing a scenario that is
most plausible for drugs with different mechanisms of action. For killing‐type responses such as
the percentage of cell death, one can rely on the probability of at least one drug causing cells to
die and then apply the standard formula for the union of three statistically independent events to
obtain the expected additive response at a given dose combination (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) ﴾Kortenkamp
& Altenburger, 2010; L. Zhang & Yang, 2016﴿:

𝑓Bliss
𝐴𝐵𝐶 =𝑓𝐴(𝑥𝐴) + 𝑓𝐵(𝑥𝐵) + 𝑓𝐶(𝑥𝐶) − 𝑓𝐴(𝑥𝐴) 𝑓𝐵(𝑥𝐵) − 𝑓𝐴(𝑥𝐴) 𝑓𝐶(𝑥𝐶) −

𝑓𝐵(𝑥𝐵) 𝑓𝐶(𝑥𝐶) + 𝑓𝐴(𝑥𝐴) 𝑓𝐵(𝑥𝐵) 𝑓𝐶(𝑥𝐶)
﴾6﴿

with 𝑓𝑖(𝑥𝑖) denoting the monotherapy effect of drug 𝑖 at dose 𝑥𝑖 with 𝑖 ∈ {𝐴, 𝐵, 𝐶}. If the
observed combination effect 𝑓𝐴𝐵𝐶 differs from the one predicted under Bliss independence,
this provides evidence of interactions ﴾J. Tang et al., 2015﴿: A higher ﴾lower﴿ combination effect
than 𝑓Bliss

𝐴𝐵𝐶 indicates synergy ﴾antagonism﴿ at the respective combination dose. Note that in the
case of survival‐type responses such as the percentage of cell viability, one can either look at the
intersection ﴾instead of the union﴿ of three statistically independent events ‐ here, cells surviving
the exposure to the doses of drugs A, B and C in a combination ‐ or transform the responses to
killing before applying equation ﴾6﴿ ﴾Greco et al., 1995; Wooten et al., 2021; Yadav et al., 2015﴿.

If the monotherapy responses 𝑓𝑖(⋅) are not naturally bounded to the 0‐1 range or if the monother‐
apies are partial responders with different maximum effects, suitable rescalings may be required
before employing the Bliss independence model, see e.g. Pearson et al. ﴾2023﴿, Thas et al. ﴾2022﴿
or Calzetta et al. ﴾2024﴿: The former two discuss rescalings aimed at maintaining the probabilistic
underpinning of the Bliss model intact by rescaling based on each drug’s maximum achievable
response relative to the maximum achievable response across all three drugs, while the latter
suggest to continue using a system’s theoretical maximum response as an anchor, even in cases
where the monotherapies are partial responders and thus cannot achieve the theoretical maxi‐
mum response. Whenever the original model based on 0–1 effect ranges or a rescaled version
preserving the probabilistic underpinning is used, the Bliss independence model is by definition
not applicable in situations where the observed combination effect exceeds the maximum effect
attainable by the most effective monotherapy, similar to the Loewe additivity model discussed in
the previous section ﴾Wooten et al., 2019, 2021﴿. Yet, unlike the Loewe additivity model, the Bliss
independence model does not treat drugs as dilutions of each other and is thus also not inher‐
ently sham compliant: Except for particular shapes of the dose‐response curves, one may thus
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erroneously conclude that there is a deviation from additivity when combining different doses of
the same drug in a so‐called sham experiment, which supporters of Loewe additivity claim to be
logically inconsistent ﴾Calzetta et al., 2024; Foucquier & Guedj, 2015; Greco et al., 1995﴿. Otherrs
dismiss the relevance of sham compliance as a main criterion for the sensibility of null models since
it is unlikely that one will ever combine drugs with the exact same dose‐response profiles in actual
combination experiments ﴾Wooten et al., 2021﴿.

2.1.3 The Choice of Null Models

Both the Loewe and Bliss null models have been introduced almost a century ago ﴾Bliss, 1939;
Loewe & Muischnek, 1926﴿. In the light of their specific limitations and also their differing perspec‐
tives on deviations from additivity, there have been intense discussions whether they constitute
suitable reference models for the assessment of drug interactions and, if so, which of the two
models should be preferred ﴾Greco et al., 1992; J. Tang et al., 2015﴿. To date, there has been no
consensus on either of these questions, leading to “a fragmented landscape” ﴾Meyer et al., 2020﴿
or even “anarchy” ﴾Calzetta et al., 2024﴿ in the field of drug interaction assessment.

Nonetheless, in principle, the majority of researchers seems to recognize that both Loewe and
Bliss null models constitute useful empirical reference models, without aspiring to a universally
correct mechanistic description of additive action ﴾Greco et al., 1992; J. Tang et al., 2015﴿. In case
both null models are applicable, there is a call for applying them in combination and possibly
only claiming the presence of interactions when the Loewe and Bliss models indicate consistent
deviations from additivity ﴾J. Tang et al., 2015; L. Zhang & Yang, 2016﴿. This accounts for the fact
that the conclusions from both models may differ when used on the same data, particularly when
monotherapy dose response curves are very steep or very shallow ﴾Greco et al., 1992, 1995; J. Tang
et al., 2015; Vlot et al., 2019﴿. A minority of researchers regards both Loewe and Bliss models as
inadequate reference models for additive action. Some of them propose their own null models;
for a review on recent proposals see e.g. Calzetta et al. ﴾2024﴿. Others, such as Geary ﴾2013﴿,
recommend to revert back to the rather lenient highest single agent model, which was originally
proposed by Gaddum ﴾1940﴿. Using max(𝑓𝐴(𝑥𝐴), 𝑓𝐵(𝑥𝐵), 𝑓𝐶(𝑥𝐶)) as criterion, one would
claim synergy ﴾antagonism﴿ when the observed combination effect 𝑓𝐴𝐵𝐶 at a given combination
(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) is above ﴾below﴿ the effect of the most potent monotherapy ﴾Berenbaum, 1989; J.
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Tang et al., 2015﴿. Relying on this model also avoids that antagonism is concluded in situations
where the combination effect is higher than the highest single agent effect, but lower than the
expected 𝑓 Loewe

𝐴𝐵𝐶 or 𝑓Bliss
𝐴𝐵𝐶 , in which case antagonism may not be of practical relevance ﴾J. Tang et

al., 2015; Yadav et al., 2015﴿.

Beyond discrepancies, all null models discussed here share certain features: Their conclusions are
inherently specific to certain dose combinations, recognizing that some dose combinations may
be additive, while others may be synergistic or antagonistic ﴾Greco et al., 1992, 1995; Harbron,
2010﴿. Moreover, they all rely on monotherapy data when deriving the expected additive effect.
Importantly, for an unbiased comparison between the expected and observed combination effect,
monotherapy data should always be measured under the same conditions as combination data,
ideally in the same experiment ﴾Chou, 2008﴿. Regarding experimental design, it must be kept in
mind that the null models do not allow to identify from which particular constituents in a multi‐
drug combination the interactions originate, unless one also samples and tests all subcombinations
﴾Chou, 2008; Foucquier & Guedj, 2015; Tekin et al., 2017﴿. Additionally, the statistical significance
of interactions cannot be assessed, unless one includes replicates of the combination points in
the experiment. This is of vital importance since in‐vitro experiments exhibit a non‐negligible
amount of noise, but still frequently ignored. In both the Loewe and Bliss frameworks, adequate
significance testing may be confronted with practical challenges ﴾Calzetta et al., 2024; Foucquier &
Guedj, 2015; Rønneberg et al., 2021; L. Zhang & Yang, 2016﴿, making the use of bootstrapping an
attractive option, especially when assessing deviations from additive expectations in nonparametric
contexts ﴾Makariadou et al., 2024; Mao & Guo, 2023; Thas et al., 2022﴿.

2.2 Research Question: Detecting Synergies in Triple Combinations

This master’s thesis is concerned with reviewing and evaluating experimental designs for in‐vitro
experiments aimed at uncovering synergistic interactions among the constituents of triple combi‐
nation therapies. As a point of departure, it is assumed that previous experimentation has allowed
to estimate the dose‐response curves 𝑓𝑖(⋅) for all three monotherapies. The central question is
then how to best leverage the existing information on monotherapies when designing a triple
combination experiment. This question is considered within the context of early drug discovery,
where an efficient screening for synergistic interactions is particularly important.
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In the first stage, a literature review on experimental designs applicable to triple combination
therapies is conducted. In the second stage, the performance of selected experimental designs is
assessed through simulation studies. These simulations concentrate on the implementation and
evaluation of the chosen designs using hypothetical examples, which are considered representative
for actual three‐drug combinations that could be encountered in the field of oncology. The most
important criteria with regard to which the designs are evaluated are their sensitivity and their
power to detect a certain threshold number of synergistic points.

The response of interest is the percentage killing of tumor cells when exposed to different drug
doses in suitable in‐vitro assays ﴾Vlot et al., 2019; Zoli et al., 2001﴿. The experimental budget is
assumed to be limited to 384 runs, including replicates. This constraint is driven by the standard
format of well plates used in in‐vitro experiments: Standard plates contain either 96 or 384 wells,
each of which is covered by tumor cells and can be exposed to different drug doses in our setting.
Using one 384‐well plate or four 96‐well plates e.g. allows to study 96 unique dose combinations,
tested in four replicates to assess variability in the response. This seems to be a sensible size of
an experiment, balancing necessary resources and achievable accuracy of estimates ﴾Makariadou
et al., 2024; Thas et al., 2022﴿. In this setting, the task is to rationally select up to 96 unique dose
combinations (𝑥𝑗

𝐴, 𝑥𝑗
𝐵, 𝑥𝑗

𝐶) with 𝑗 ∈ {1, ..., 96} for in‐vitro testing such that the chance of
detecting synergies ‐ if present ‐ is maximized.

Of note, we explicitly do not attempt to identify the most effective triple combination therapy out
of a larger pool of candidates, neither regarding the selection of constituent drugs nor regarding
the selection of doses to be applied. In contrast, we analyze up to 96 combinations of three
specific drugs A, B, C and attempt to find out whether they exhibit synergistic interactions and, if
so, at which dose combinations. In doing so, priority is given to detecting net interactions between
the three drugs with one‐step designs; explaining how the net interactions originate among the
constituents is left to follow‐up experiments. For brevity, we generally refer to drugs and doses
rather than compounds and concentrations, despite considering an in‐vitro setting.
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3 Literature Review: Designs for Triple Combination Experiments

This chapter provides a literature review, describing experimental designs for investigating inter‐
actions in three‐drug combinations in general terms. To begin with, it highlights why optimal
experimental designs are rarely feasible and more pragmatic design approaches are needed.

3.1 Challenges in Optimizing Experimental Designs for Drug Combinations

In principle, any experimental design should be carefully constructed to best suit the intended
data analysis. Yet, for drug combination studies, there are not only several possible null models
defining additive action; there are also several possible data analysis approaches based on these
null models. The latter range from locally assessing the deviation between the observed effect and
expected effect under additivity at each design point to fitting a response surface model over the
entire design space and thereby facilitating interpolations between design points ﴾Gennings, 1996﴿.
Response surface models may consider different types of responses ﴾H. B. Fang et al., 2017; Greco
et al., 1995; Lederer et al., 2019; L. Zhang & Yang, 2016﴿: Some approaches focus on modeling the
dose‐effect surface, while incorporating interaction parameters; other approaches directly model
deviations from the additive effect surface or an interaction index surface. Embedded in these
models, interactions may still be defined in analogy to Loewe or ‐ less frequently ‐ Bliss criteria.
Irrespective of the details, all response surface approaches share common challenges: When a
response surface is modeled as a function of K drugs, this generally results in a K+1 dimensional
surface with K dimensions for the drug doses and one dimension for the response, prohibiting
visualizations for more than two drugs and often requiring a rather extensive grid of design points
to allow reliable fitting of complex parametric or nonparametric models.

A noteworthy exception is the case of a fixed ratio combination where the total drug dose is esca‐
lated while the mixture proportion remains constant. In this special case, one may regard the fixed
ratio combination of K drugs as a new drug and fit a conventional two‐dimensional dose response
curve to it ﴾Straetemans et al., 2005﴿. Still, even in this case, experimental design is challenged by
nonlinearities: As monotherapies commonly have nonlinear dose response curves, drug combi‐
nations must be expected to follow nonlinear patterns as well. If one were to use optimal design
theory, one would therefore need to specify both a suitable parametric form and suitable param‐
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eter values in order to derive optimal designs based on common optimality criteria such as c‐ or
d‐optimality ﴾Hather et al., 2013; Holland‐Letz & Kopp‐Schneider, 2021; Rider & Simmons, 2018﴿.
Both specifications should be close to the truth, as optimal designs are generally sensitive to the
assumptions under which they were derived: If the actual system behaves very differently than
assumed, supposedly optimal designs may perform even worse than commonly used pragmatic
designs ﴾Hather et al., 2013﴿. Altogether, one may may conclude that there is rarely enough prior
information to implement optimal experimental designs, especially when multi‐drug combinations
are investigated during early drug discovery1. The following discussion therefore largely focuses
on pragmatic approaches and reviews variants of commonly used designs such as checkercube
or ray designs. An emphasis is also placed on space‐filling designs, which acknowledge that there
is limited information about where to expect synergies and, consequently, attempt to uniformly
cover relevant segments of the design space.

3.2 Checkercube Design

Given that optimal designs based on conventional optimality criteria are not applicable here, one
has to resort to pragmatic experimental designs to explore the design space, which is typically
taken to be a rectangle for two‐drug combinations or a cube for three‐drug combinations when
no restrictions on combinations are enforced. The edges of the rectangle resp. cube are deter‐
mined by the drugs’ activity ranges. One comprehensive experimental design for examining drug
interactions throughout the entire design space is the checkerboard ﴾K=2 drugs﴿ and, by extension,
checkercube ﴾K=3 drugs﴿ design ﴾Prichard & Shipman, 1990﴿.

This full‐factorial design approach involves selecting D dose levels for each drug and testing all
DK possible combinations ﴾Gennings, 1996﴿. Typically, five to ten dose levels per drug are cho‐
sen to ensure a broad exploration of different combinations in the design space and enable both
monotherapy dose‐response modeling and potential response surface analysis ﴾Rider & Simmons,
2018; Stein et al., 2015﴿. To effectively cover the full activity range of each drug, a practical approach
is to use logarithmically spaced serial dilutions, usually including a zero or inactive dose to allow

1For fixed ratio combinations of two drugs there are, however, some optimal design approaches, partially building
on simplifying assumptions. See e.g. the work of Hather et al. ﴾2013﴿, Sperrin et al. ﴾2015﴿, Holland‐Letz et al. ﴾2020﴿
and Holland‐Letz & Kopp‐Schneider ﴾2021﴿.
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assessing lower‐order interactions and establish baseline effects ﴾Gennings, 1996; Gonzales et al.,
2015﴿. This design is straightforward to implement and can explore a wide range of dose com‐
binations with different dose ratios. Yet, for more than two drugs and reasonably high resolution
﴾e.g., seven to eight dose levels per drug﴿, in practice it often exceeds the experimental budget,
especially when considering the need to replicate observations in order to assess the variability in
the response. In essence, an exponential increase in the number of design points with the number
of drugs leads to a curse of dimensionality ﴾Cokol et al., 2017﴿. Additionally, from a synergy detec‐
tion perspective, the checkerboard resp. checkercube design allocates many runs to high‐dose
combinations where monotherapies may already produce near‐maximal responses, limiting the
potential to detect synergistic effects at these points ﴾Martinez‐Irujo et al., 1996﴿. To address this,
one could conduct high resolution testing for monotherapies while restricting combination test‐
ing to lower dose levels, particularly when possibly undetected antagonisms at high dose levels
do not constitute a concern ﴾Harbron, 2010﴿. Further limitations are that the checkerboard resp.
checkercube design offers little room for optimizing the design ﴾Holland‐Letz & Kopp‐Schneider,
2021﴿, apart from selecting suitable dilution factors for monotherapies ﴾Donev & Tobias, 2011﴿. In
this regard, there exists no definitive guidance in the context of drug interaction assessments, since
an optimal selection would require information about the dose regions where interactions are ex‐
pected. Modifying the traditional approach based on serial dilutions, C. Chen et al. ﴾2018﴿ suggest
to use effective concentrations ﴾EC﴿ ‐ e.g. doses reaching 0, 20, 50, 80% of the maximal effect
‐ as factor levels on the checkerboard/‐cube’s monotherapy axes, especially when considering a
low‐resolution design such as a 4x4﴾x4﴿ design. In simulations within a pharmacodynamic context,
this approach yielded a comparable performance in terms of correct classifications to a 10x10x﴾10﴿
high‐resolution design.

3.3 Ray Design

To reduce the experimental burden when studying interactions among more than two drugs, the
fixed ratio ray design is a widely adopted strategy ﴾Berenbaum, 1978; Chou & Talalay, 1984; Tallar‐
ida et al., 1997﴿. This approach involves testing combinations of drugs with a fixed dose ratio, such
as a 1:1:1 ratio in a simple three‐drug example, at several different total doses. Consequently, one
samples dose combinations along a line or “ray” in the design space, starting from the origin and
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extending in the direction dictated by the chosen dose ratio. It is customary to explore several
dose ratios and thus construct several rays. Along each ray, the relative proportions of the drugs
‐ i.e. the mixture proportions ‐ remain fixed, while the total dose varies, e.g. according to logarith‐
mically spaced dilutions with D=5‐10 different total doses tested ﴾Mayer & Janoff, 2007; Nørgaard
& Cedergreen, 2010; White et al., 2005﴿. Monotherapies can be treated like rays for which the
relative proportions of the other drugs have been fixed at zero. Altogether, for R rays, the ray de‐
sign results in R× D design points, a considerably lower number than in the checkercube design.
Moreover, owing to the fixed mixture proportions, each fixed ratio mixture can be interpreted like
a new drug ﴾Foucquier & Guedj, 2015; Gennings, 1996; Straetemans et al., 2005﴿. Since several
doses of the respective mixtures are sampled, dose‐response curves can be fitted.

The existence of dose‐response curves for the fixed ratio mixtures and the monotherapies lends
itself to a Loewe‐based interaction assessment: One may use the interaction index or the isocon‐
tour plane corresponding to an effect level of interest to determine whether a lower combination
dose can achieve this effect level than predicted under additivity ﴾Berenbaum, 1978; D. Chen et al.,
2015; Gennings, 1996; Tallarida, 2012﴿. This analysis may be embedded in a parametric inferential
framework, e.g. fitting dose‐response curves for all rays simultaneously and treating the interaction
index as a ray‐specific parameter, thereby increasing efficiency ﴾Fan & Zhang, 2014; Straetemans
et al., 2005; Straetemans & Bijnens, 2010﴿. Yet, pointwise assessments of deviations from additivity
remain possible and may be necessary if a ray does not show a consistent interaction pattern,
implying that interactions do not only depend on the dose ratio but also on the dose level ﴾Fan &
Zhang, 2014; H. B. Fang et al., 2010; Harbron, 2010﴿. Response surface analyses are only possible
if a sufficient number of rays with good coverage of the design space was sampled ﴾Foucquier &
Guedj, 2015; Ning et al., 2014; White et al., 2005﴿. Otherwise the conclusions are specific to the
tested dose ratios and should not be inter‐ or extrapolated ﴾Gennings, 1996﴿. This illustrates the
advantages and disadvantages of ray designs compared to checkercube designs beyond the run
number: The latter explore the design space more thoroughly by analyzing a wider range of dose
ratios but they do not contribute as much information on each dose ratio as the former ﴾Rider
& Simmons, 2018﴿, e.g. not allowing to fit dose‐response curves ﴾except for the diagonal of the
checkercube, which corresponds to a ray if identical dilution factors are used for all monotherapies,
see Chou, 2014﴿. The extensive information on mixtures provided by ray designs is often perceived
as useful when moving from in‐vitro to in‐vivo settings ﴾Mayer & Janoff, 2007﴿.
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For the implementation of ray designs for a given number of rays R and points D per ray, two as‐
pects are important: First, the specification of the dose ratios and, second, the specification of the
total doses to be tested. The ratios cannot be optimized without information about where inter‐
actions are expected ﴾Almohaimeed & Donev, 2014﴿; the total doses can be chosen D‐optimally
in simple two‐drug settings using a parametric framework based on monotherapy information
and either the assumption of additivity or the assumption of specific interaction patterns ﴾Almo‐
haimeed & Donev, 2014; Holland‐Letz et al., 2020; Holland‐Letz & Kopp‐Schneider, 2021; Sperrin
et al., 2015﴿. Yet, robustness to the assumptions remains a concern and there is currently no exten‐
sion to three‐drug settings. The following subsections therefore discuss pragmatic approaches.

3.3.1 Equipotent Ray, Equipartition Ray and Ray Contour Designs

A common strategy for defining dose ratios in ray designs is to express them in terms of effective
concentrations, with the EC50 being a particularly common reference point ﴾Berenbaum, 1978;
Chou & Talalay, 1984; Cokol‐Cakmak et al., 2018; Straetemans et al., 2005﴿. The EC50, defined
as the dose producing a response halfway between a drug’s baseline and maximum effect, is a
critical measure of drug potency. It is explicitly parameterized in sigmoidal dose‐response mod‐
els, such as the four‐parameter logistic regression model, making it both a biologically relevant
and a convenient criterion for specifying dose ratios of interest. Often, one attempts to con‐
struct equipotent rays by selecting a 1:1:1 ratio based on the drugs’ EC50 values, translating into a
EC50𝐴 ∶ EC50𝐵 ∶ EC50𝐶 ratio in a concentration metric such as 𝜇𝑔/𝑙 ﴾Chou, 2014; Holland‐Letz
& Kopp‐Schneider, 2021; Ritz et al., 2021﴿. By specifying the ratios in terms of EC50‐equivalent
units, the contribution of the different drugs to the combination effect shall be balanced. The
equipotency argument for this fixed ratio combination, however, only holds when drugs cover the
same effect range such that the EC50 corresponds to the same absolute effect level. Even then,
true equipotency may only hold at the EC50 values: Moving away from this reference point may
result in potency differences due to e.g. different slopes of the monotherapies, even when the
dose ratio is maintained at the EC50𝐴 ∶ EC50𝐵 ∶ EC50𝐶 ratio along a ray.

Nonetheless, the idea of constructing an ﴾approximately﴿ “equipotent” ray based on the EC50 val‐
ues is frequently applied in practice. Berenbaum ﴾1978﴿ and Cokol‐Cakmak et al. ﴾2018﴿ motivate
this approach geometrically from a perspective of Loewe additivity, claiming that going through
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the center of the isobole ﴾two‐drug case﴿ resp. isocontour plane ﴾three‐drug case﴿ corresponding
to the half‐maximal effect yields maximum information about any possible curvature of this line
resp. plane, which would in turn indicate deviations from additivity. Yet, this argument appears
problematic for two reasons: First, the isobole resp. isocontour plane may even be curved un‐
der additivity if the assumption of constant relative potencies made in the Loewe framework does
not hold ﴾Lederer et al., 2018, 2019; Tallarida, 2011, 2012﴿. Second, as e.g. noted by Almohaimeed
& Donev ﴾2014﴿ or Brennan et al. ﴾2022﴿, the optimal dose ratio for detecting drug interactions
always depends on the true interaction pattern. Specifically, interactions may or may not mani‐
fest at a 1:1:1 ratio based on the EC50 values; if they do not manifest at this ratio, this does not
mean that there are no interactions at other dose ratios. Therefore, rays following several different
dose ratios should be sampled. Ignoring the technicalities, one may take a simplified approach
for specifying a range of dose ratios of interest, as suggested by Berenbaum ﴾1978﴿ and formal‐
ized by Dou et al. ﴾2011﴿ under the term “equipartition ray design”: One may construct rays by
extending lines from the origin through equidistant anchor points on an ﴾approximate﴿ “isobole”
resp. “isocontour plane”, with the latter obtained by connecting the drugs’ EC50 values, even if
this may not always yield an accurate isobole or isocontour plane. In the three‐drug setting, one
may then take inspiration from a simplex lattice design when choosing mixture proportions evenly
spread throughout the resulting plane ﴾Berenbaum, 1978; Berenbaum et al., 1983; Tallarida, 2012;
White et al., 2005﴿. This approach may allow a systematic and pragmatic exploration of several
non‐equipotent mixing ratios, in addition to an “equipotent” mixing ratio in the plane’s center.

Equipotent as well as equipartition ray designs discussed so far mostly concern the selection of
dose ratios for rays; the placement of total doses on the rays is then often achieved by e.g. two‐
fold serial dilutions, starting at a certain maximum dose and decreasing dose from there, either
based on an actual drug dose or EC50 equivalent units ﴾D. Chen et al., 2015; Chou, 2008, 2014;
Nørgaard & Cedergreen, 2010﴿. Almohaimeed & Donev ﴾2014﴿, in contrast, do not make a pro‐
posal for selecting dose ratios but for placing total doses on R rays of interest. They suggest to
focus on particular effect levels and then compute the total doses corresponding to these effect
levels under the assumption of additivity for all rays of interest. Hence, each ray ultimately has total
doses placed at points corresponding to the same effect levels, e.g. 20, 30, 40, 50, 60, 70, 80%
effect either in absolute terms or in relative terms if there is a common maximum effect. In terms
of analysis, one can make use of the fact that the points belonging to the same contour ﴾i.e. to
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the same effect level under additivity﴿, but placed on different rays are expected to achieve the
same effect and also the same interaction index value; one can thus test for deviations of either
the observed effects or the interaction index values from their reference value ﴾the additive effect
resp. an interaction index of 1﴿ at each effect level in an ANOVA setting. This by default yields
conclusions about interactions at several effect levels rather than focusing on one particular effect
level, as frequently done in the context of equipotent or equipartition rays. It may be particularly
useful when only parts of the effect range are of interest and/or e.g. either low or high doses shall
be avoided, thereby making it more difficult to use analyses based on modeling rays’ entire dose
response curves ﴾Almohaimeed & Donev, 2014﴿. The so called ray‐contour design was originally
introduced in a parametric two‐drug setting based on a five‐parameter sigmoidal dose‐response
curve for responses with distributions belonging to the exponential family under a Loewe additivity
framework. Yet, it appears easily extensible to the Bliss independence framework, which simplifies
the identification of total doses needed to achieve certain effect levels in a fixed dose ratio set‐
ting with three drugs, irrespective of the shape of the underlying dose response curve. Of note,
while the number of effect levels of interest may be reduced to save experimental resources, it is
important to include a sufficiently high number of rays in the ray‐contour approach; sample size
calculations can be conducted based on the ANOVA model ﴾Almohaimeed & Donev, 2014﴿. As
an alternative to the ray‐contour approach for placing total doses on the rays, Almohaimeed &
Donev ﴾2014﴿ also discuss optimal designs and make proposals for two‐drug settings, incorporat‐
ing pseudo‐Bayesian D‐optimal designs where the value of the optimality criterion is integrated
over a prior distribution for the model parameters. Unfortunately, extensions of this approach to
ray designs with more than two drugs do not appear to be readily available.

3.3.2 Uniform Ray Design

Uniform ray designs attempt to account for two main considerations in the context of ray designs
﴾S. S. Liu et al., 2016; Y. H. Zhang et al., 2008, 2010﴿: First, several mixture ratios should be examined.
Second, the selection of specific mixture ratios is largely arbitrary in the absence of information
on the expected location of interactions. In result, a space‐filling approach appears desirable to
reduce the risk of missing interactions. The construction of uniform ray designs is based on uniform
design theory as developed by K.‐T. Fang et al. ﴾2000﴿ and reviewed in K.‐T. Fang et al. ﴾2018﴿.
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Using a uniform design table, often referred to as U‐type table, one can uniformly select factor‐
level combinations from a certain factor‐level table of interest2. This results in combinations which
are approximately uniformly distributed in the K‐dimensional factor‐level space. In the context
of uniform ray designs, one can select R such combinations from the factor‐level space, possibly
containing effective concentrations of the K=3 drugs; these combinations can then be expanded
into R rays with several total doses on each ray. Effectively, each sampled combination point
determines a set of mixture proportions, which characterizes the direction of a particular ray in the
design space ﴾S. S. Liu et al., 2016; Y. H. Zhang et al., 2010﴿.

When implementing uniform ray designs, one typically resorts to existing 𝑈𝑛(𝑞𝑚) tables devel‐
oped for a particular number 𝑛 of experiments involving 𝑚 factors with 𝑞 levels where 𝑞 ≤ 𝑛 as
the generation of such U‐type tables is laborious ﴾K.‐T. Fang et al., 2018; S. S. Liu et al., 2016﴿. These
tables have𝑚 columns, each of which is filled with permutations of numbers in {1, ..., 𝑞}. Their 𝑛
rows determine uniformly spread combination points: When applied to a specific factor‐level table
of interest, a row (𝑎, 𝑏, 𝑐) in the U‐type table would indicate a combination with factor 1 at its 𝑎‐th
level, factor 2 at its 𝑏‐th level and factor 3 at its 𝑐‐th level with 𝑎, 𝑏, 𝑐 ∈ {1, ..., 𝑞} ﴾K.‐T. Fang et al.,
2018; S. S. Liu et al., 2016﴿. In the context of uniform ray designs for drug combination experiments,
𝑛 ≡ R corresponds to the number of rays while𝑚 ≡ K refers to the number of drugs involved and
𝑞 refers to dose levels of interest, e.g. effective concentrations. One would then match each row of
the uniform table to the factor‐level table and compute the ray‐specific mixture proportions for the
drugs A, B and C as 𝑝𝐴 = 𝑥𝐴,𝑎

𝑥𝐴,𝑎+𝑥𝐵,𝑏+𝑥𝐶,𝑐
, 𝑝𝐵 = 𝑥𝐵,𝑏

𝑥𝐴,𝑎+𝑥𝐵,𝑏+𝑥𝐶,𝑐
, 𝑝𝐵 = 𝑥𝐶,𝑐

𝑥𝐴,𝑎+𝑥𝐵,𝑏+𝑥𝐶,𝑐
﴾S. S. Liu et al., 2016; H. X. Tang et al., 2016﴿. When no U‐type table is available for the specific 𝑚
and 𝑞 of interest, one may look for a larger U‐type table and select the best possible subset of
columns. One may also merge adjacent factor levels together if needed ﴾S. S. Liu et al., 2016﴿.

While the number of factor levels is partially determined by available U‐type tables, there exists no
clear guidance on how to best design the underlying factor‐level table when creating uniform rays.
Yet, generally, it appears desirable to choose factor levels such that the mixtures constructed based
on the U‐type table cover truly different mixture ratios; in this regard, factor levels that are too close
to each other may be counterproductive ﴾S. S. Liu et al., 2016﴿. At the same time, extreme mixture

2U‐type tables are created by minimizing a discrepancy measure reflecting the deviation from a uniform distribution
based on number‐theoretic methods, monte‐carlo methods or stochastic search algorithms. For moderate sample
sizes, they achieve notably better uniformity than random sampling from a uniform distribution ﴾K.‐T. Fang et al., 2018﴿.
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ratios ﴾where one component dominates the mixture effect while other components are present
at almost ineffective concentrations﴿, may also be undesirable in many contexts. This illustrates
that uniformity as a design criterion in the construction of rays does not obliterate the need to
carefully consider the experimental context. Moreover, working with an explicit factor‐level table
may have practical benefits in terms of the titration of the required drug doses, but it may limit
the uniformity of the mixture ratios. Another approach may therefore be to only implicitly work
with factor levels: Following the ideas of general uniform design theory, one may use a uniform
design table with as many factor levels as rays to be constructed and ‐ instead of equating each
row in the table to a factor‐level combination ‐ translate each row to a point in a [0,1] space of
the required dimensionality. This point can then be scaled according to the range of the design
space of interest, which is particularly simple for rectangular design spaces, and leads to a uniform
coverage of said space ﴾K.‐T. Fang et al., 2000, 2018﴿. Ultimately, each point’s coordinates again
define a set of mixture proportions or, equivalently, a direction for a ray in the design space. The
downside of this approach is that it only takes the maximum doses into account for a potency
alignment, thereby possibly resulting in more extreme mixtures. As in any ray design, if one aims
at determining which component in a mixture is responsible for the detected interaction, one
must construct rays with subsets of the factors ﴾e.g. investigate rays for all pairs of drugs in a triple
combination while maintaining the ray ratios analogous to the triple combination rays, apart from
setting one component to zero﴿. An example of such an up‐to‐down testing approach in the
context of uniform ray designs is provided by J. Zhang et al. ﴾2014﴿.

3.4 Uniform Maximum Power Design

This section introduces another type of uniform design, often referred to as uniform maximum
power design, which is available for two‐ and three‐drug combinations ﴾Tan et al., 2003, 2009﴿.
The idea is similar to the uniform ray design: In the absence of knowledge where to expect synergy,
design points should be uniformly placed in a sensible experimental domain to efficiently cover
said domain. However, the mechanics underlying the design are noteably more involved. To be‐
gin with, it is important to clarify that design points are not simply placed uniformly throughout
the cube‐shaped dose space in a three‐drug application. Instead, the uniform maximum‐power
design is embedded in the framework of Loewe additivity and builds on a model describing the
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additive effect of the drugs A, B, C. If this model can be brought into an additive structure involving
three linearly independent functions 𝑔(𝑧1), 𝑔(𝑧2) and 𝑔(𝑧3), with the variables 𝑧1, 𝑧2 and 𝑧3 be‐
ing restricted to a domain whose shape allows uniform sampling, then uniformly sampling points
(𝑧1, 𝑧2, 𝑧3) on this transformed domain is optimal in the sense that it maximizes the minimum
power of a lack‐of‐fit test for detecting departures from additivity over a very broad class of possi‐
ble departures. This property was proven by Wiens ﴾1991﴿ in the context of general approximately
linear regression problems and exploited in the context of two‐ and three‐drug combination stud‐
ies in seminal works by Tan et al. ﴾2003﴿, H. B. Fang et al. ﴾2008﴿, H. B. Fang et al. ﴾2009﴿, Tan et
al. ﴾2009﴿ and H. B. Fang et al. ﴾2017﴿. Owing to the complexity of the approach, the subsequent
paragraphs provide technical details based on Tan et al. ﴾2009﴿.

First, within the framework of Loewe additivity, the dose equivalence principle can be applied and
the observed effect of any combination dose (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) can be re‐expressed

𝑓𝐴𝐵𝐶(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) = 𝑓𝐴(𝑋𝐴) = 𝑓𝐵(𝑋𝐵) = 𝑓𝐶(𝑋𝐶) ﴾7﴿

with𝑋𝐴,𝑋𝐵 and𝑋𝐶 denoting isoeffective monotherapy doses, reaching the combination effect
𝑓𝐴𝐵𝐶(𝑥𝐴, 𝑥𝐵, 𝑥𝐶). Now, consider drug A as the reference drug: Under additivity, the drug A
equivalent of a combination dose (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) is determined by the potencies of drugs B and
C relative to drug A. At any particular combination, it is expected that

𝑓𝐴𝐵𝐶(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) = 𝑓𝐴 (𝑥𝐴 + 𝑋𝐴
𝑋𝐵

𝑥𝐵 + 𝑋𝐴
𝑋𝐶

𝑥𝐶) ﴾8﴿

i.e., the monotherapy dose of drug A that yields an equivalent effect as the combination dose
(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) amounts to𝑋𝐴 = 𝑥𝐴 + 𝑋𝐴

𝑋𝐵
𝑥𝐵 + 𝑋𝐴

𝑋𝐶
𝑥𝐶 under Loewe additivity, with𝑋𝐴,𝑋𝐵

and𝑋𝐶 implicitly depending on the observed combination effect 𝑓𝐴𝐵𝐶(𝑥𝐴, 𝑥𝐵, 𝑥𝐶). This shall
be generalized to any possible combination effect, resulting in a regression model

𝑦 ≡ 𝑓𝐴𝐵𝐶(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) = 𝑓𝐴(𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶) ﴾9﴿

for the additive effect with 𝜌(𝑋𝑖) being an implicit function of (𝑥𝐴, 𝑥𝐵, 𝑥𝐶), expressing the
potency of drug 𝑖 ∈ {B,C} relative to drug A. In a semi‐parametric setting, one can then test for
lack‐of‐fit of this additive regression model against a general alternative model

𝑦 = 𝑓𝐴(𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶) + 𝑓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) + 𝜖 ﴾10﴿

20



where 𝑓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) captures any systematic deviation from additivity of an unspecified, pos‐
sibly non‐parametric form 𝑓(⋅) and 𝜖 captures a random error term, assumed to be normally
distributed with mean 0 and variance 𝜎2. If the additive model (9) were to exhibit a lack‐of‐fit
based on a classical F‐test comparing the model‐based error to the pure error, this would provide
evidence for 𝑓 ≠ 0 and thus indicate the presence of interactions between drugs A, B and C. Yet,
from a design perspective, the power of this lack‐of‐fit test is optimized if and only if the following
two conditions can be met ﴾Tan et al., 2003, 2009; Wiens, 1991﴿

• the additive model can be expressed in a generalized additive structure as

𝑦 =𝑓𝐴(𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶) + 𝑓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) ≈
𝛼1𝑔1(𝑧1) + 𝛼2𝑔2(𝑧2) + 𝛼3𝑔3(𝑧3)

﴾11﴿

with (𝑧1, 𝑧2, 𝑧3) derived from a one‐to one invertible transformation (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) ∈
𝑆0 → (𝑧1, 𝑧2, 𝑧3) ∈ 𝑆 from the the original cube‐shaped dose space 𝑆0 to a trans‐
formed design space 𝑆 , assuming the form 𝑧𝑖 = 𝜑𝑖(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) for 𝑖 = 1, 2, 3. Here,
𝑔1(⋅), 𝑔2(⋅), 𝑔3(⋅) are linearly independent functions and 𝛼𝑖 are known parameters. The
general alternative model then corresponds to

𝑦 ≈ 𝛼1𝑔1(𝑧1) + 𝛼2𝑔2(𝑧2) + 𝛼3𝑔3(𝑧3) + 𝑔(𝑧1, 𝑧2, 𝑧3) + 𝜖 for (𝑧1, 𝑧2, 𝑧3) ∈ 𝑆
﴾12﴿

with 𝑔(𝑧1, 𝑧2, 𝑧3) = 𝑓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) assumed orthogonal to (𝑔1(𝑧1), 𝑔2(𝑧2), 𝑔3(𝑧3))
but otherwise unspecified. The lack‐of‐fit test then corresponds to testing 𝐻0 ∶ 𝑔 = 0.

• Uniform combination points (𝑧𝑗
1, 𝑧𝑗

2, 𝑧𝑗
3) can be sampled on 𝑆 . Making use of the one‐to‐

one invertible transformation, the uniformly sampled points (𝑧𝑗
1, 𝑧𝑗

2, 𝑧𝑗
3) can ultimately be

transformed into dose combinations (𝑥𝑗
𝐴, 𝑥𝑗

𝐵, 𝑥𝑗
𝐶) to be tested in the experiment.

This approach does not require parametric assumptions about the nature of the interac‐
tions and allows sample size calculations based on a non‐central F‐distribution with non‐
centrality parameter 𝛿 = 𝑁

𝜎2 𝜂2 where 𝑁 is the total run number including replicates and
𝜂2 = ∫𝑆 𝑔2(𝑧1, 𝑧2, 𝑧3)𝑑𝑧1𝑑𝑧2𝑑𝑧3 is the assumed effect size. Following Tan et al. ﴾2009﴿, the

21



approach is illustrated for the case of monotherapies with log‐linear dose‐response curves

𝑓𝐴(𝑋𝐴) = 𝛼𝐴 + 𝛽𝐴 log(𝑋𝐴)
𝑓𝐵(𝑋𝐵) = 𝛼𝐵 + 𝛽𝐵 log(𝑋𝐵)
𝑓𝐶(𝑋𝐶) = 𝛼𝐶 + 𝛽𝐶 log(𝑋𝐶)

﴾13﴿

where, without loss of generality, it is subsequently assumed that 𝛽𝐶 ≤ 𝛽𝐵 ≤ 𝛽𝐴 in the context
of decreasing dose‐response curves. For better distinction, upper‐case𝑋𝑖 is again used to clearly
indicate a monotherapy dose of drug 𝑖 ∈ {𝐴, 𝐵, 𝐶}. The potencies of drugs B and C relative
to drug A can then be expressed for isoeffective doses 𝑋𝐴 and 𝑋𝐵 resp. 𝑋𝐴 and 𝑋𝐶 as

𝜌(𝑋𝐵) = 𝑋𝐴
𝑋𝐵

= 𝑓−1
𝐴 (𝑓𝐵(𝑋𝐵))

𝑋𝐵
=

exp (𝛼𝐵+𝛽𝐵 log(𝑋𝐵)−𝛼𝐴
𝛽𝐴

)
𝑋𝐵

=

= exp(𝛼𝐵 − 𝛼𝐴
𝛽𝐴

) 𝑋
𝛽𝐵
𝛽𝐴

−1
𝐵 = 𝜌0𝑋

𝛽𝐵
𝛽𝐴

−1
𝐵 with 𝜌0 = exp(𝛼𝐵 − 𝛼𝐴

𝛽𝐴
) ﴾14a﴿

𝜌(𝑋𝐶) = 𝑋𝐴
𝑋𝐶

= 𝜌1𝑋
𝛽𝐶
𝛽𝐴

−1
𝐶 with 𝜌1 = exp(𝛼𝐶 − 𝛼𝐴

𝛽𝐴
) ﴾14b﴿

These relative potencies are constant when 𝛽𝐴 = 𝛽𝐵 = 𝛽𝐶 , otherwise they vary with dose resp.
effect levels. For constant relative potencies, the additive model can be brought into the desired
structure with three separate logarithmic expressions by simple algebraic manipulations:

𝑦 = 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝜌0𝑥𝐵 + 𝜌1𝑥𝐶) =

= 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶) + 𝛽𝐴 log(𝑥𝐴 + 𝜌0𝑥𝐵 + 𝜌1𝑥𝐶
𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶

) =

= 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶)+

𝛽𝐴 log( 𝑥𝐴
𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶

⋅
𝑥𝐴 + 𝑥𝐵 + 𝜌1

𝜌0
𝑥𝐶

𝑥𝐴 + 𝑥𝐵 + 𝜌1
𝜌0

𝑥𝐶
+ 𝜌0𝑥𝐵 + 𝜌1𝑥𝐶

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶
) =

= 𝛼𝐴 + 𝛽𝐴 log(𝑧1) + 𝛽𝐴 log((1 − 𝜌0)𝑧2 + 𝜌0) + 𝛽𝐴 log((1 − 𝜌1
𝜌0

) (1 − 𝑧3) + 𝜌1
𝜌0

)

﴾15﴿
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with
𝑧1 = 𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶

𝑧2 = 𝑥𝐴
𝑥𝐴 + 𝑥𝐵 + 𝜌1

𝜌0
𝑥𝐶

𝑧3 = 𝑥𝐶
𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶

﴾16﴿

This specific structure allows to sample 𝑧1 independently of 𝑧2 and 𝑧3 since the former relates to a
sum while the latter relate to fractions bounded between (0, 1). It is useful for generating uniform
points (𝑧𝑗

1, 𝑧𝑗
2, 𝑧𝑗

3) in a domain 𝑆 = {(𝑧1, 𝑧2, 𝑧3) ∶ 𝑍𝐿 < 𝑧1 < 𝑍𝐻, (𝑧2, 𝑧3) ∈ 𝒱2} with
𝒱2 = {(𝑧2, 𝑧3) ∶ 𝑧𝑖 > 0 ∀ 𝑖 = {2, 3}, ∑𝑖=3

𝑖=2 < 1}. Here,𝑍𝐿 and𝑍𝐻 can be taken as lower
and upper limts of the total dose according to drug A, allowing to restrict attention to a particular
effect range of interest under additivity ﴾e.g. by choosing 𝑍𝐿 and 𝑍𝐻 such that 20 − 80% effect
are reached based on drug A’s dose‐response curve﴿. The structure of 𝒱2 then ensures that all
components ‐ i.e. drugs A, B and C ‐ are present in the resulting mixtures. Geometrically, the
domain 𝑆 has the shape of a triangular prism in the space formed by 𝑧1, 𝑧2 and 𝑧3. A simple
algorithm for uniformly sampling in this domain is provided by Tan et al. ﴾2009﴿. In the case with
constant relative potencies, the additive model has the above closed form expression, which allows
for an analytic derivation of 𝑥𝐴, 𝑥𝐵 and 𝑥𝐶 by the inverse transformations of system ﴾16﴿. In the
case with non‐constant relative potencies, the additive model lacks a closed‐form expression. Yet,
the general expression ﴾10﴿ can be reformulated by isolating the dose‐dependent components of
the relative potency terms into a distinct term to the greatest extent possible:

𝑦 = 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶) =

= 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝜌0𝑋
𝛽𝐵
𝛽𝐴

−1
𝐵 𝑥𝐵 + 𝜌1𝑋

𝛽𝐶
𝛽𝐴

−1
𝐶 𝑥𝐶) =

= 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝜌0𝑋
𝛽𝐵
𝛽𝐴

−1
𝐵 𝑥𝐵 + 𝜌1𝜓𝑥𝐶) =

= 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝜌
𝛽𝐵
𝛽𝐴
0 𝜌1− 𝛽𝐵

𝛽𝐴
1 𝜓

𝛽𝐶(𝛽𝐵−𝛽𝐴)
𝛽𝐵(𝛽𝐶−𝛽𝐴) 𝑥𝐵 + 𝜌1𝜓𝑥𝐶)

﴾17﴿

with the function 𝜓 = 𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) = 𝑋
𝛽𝐶
𝛽𝐴

−1
𝐶 depending on (𝑥𝐴, 𝑥𝐵, 𝑥𝐶) through

𝑋𝐶 , with the latter again denoting the monotherapy dose of drug C that is as effective as a
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particular combination dose (𝑥𝐴, 𝑥𝐵, 𝑥𝐶). Notice that 𝑋𝐵 is also an isoeffective monother‐
apy dose of drug B such that 𝛼𝐵 + 𝛽𝐵 log(𝑋𝐵) = 𝛼𝐶 + 𝛽𝐶 log(𝑋𝐶), thus leading to

𝑋𝐵 = exp
𝛼𝐶−𝛼𝐵

𝛽𝐵 𝜓
𝛽𝐴𝛽𝐶

𝛽𝐵(𝛽𝐶−𝛽𝐴) and eventually to equation ﴾17﴿. Regarding𝑋𝐶 , under Loewe ad‐
ditivity it must hold that 𝛼𝐴 + 𝛽𝐴 log(𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶) = 𝛼𝐶 + 𝛽𝐶 log(𝑋𝐶),
i.e.𝑋𝐶 reaches the same effect as the drug A equivalent dose of the combination (𝑥𝐴, 𝑥𝐵, 𝑥𝐶).
This allows to re‐express 𝑋𝐶 = exp(𝛼𝐴−𝛼𝐶

𝛽𝐶
)(𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶)

𝛽𝐴
𝛽𝐶 , resulting in

𝜓 = 𝑋
𝛽𝐶
𝛽𝐴

−1
𝐶 = (𝜌− 𝛽𝐴

𝛽𝐶
1 (𝑥𝐴 + 𝜌(𝑋𝐵)𝑥𝐵 + 𝜌(𝑋𝐶)𝑥𝐶)

𝛽𝐴
𝛽𝐶 )

𝛽𝐶
𝛽𝐴

−1
=

= ⎛⎜
⎝

𝑥𝐴
𝜌1

+ (𝜌0
𝜌1

)
𝛽𝐴
𝛽𝐵

𝜓
𝛽𝐶(𝛽𝐵−𝛽𝐴)
𝛽𝐵(𝛽𝐶−𝛽𝐴) 𝑥𝐵 + 𝜓𝑥𝐶

⎞⎟
⎠

1− 𝛽𝐴
𝛽𝐶

﴾18﴿

The expressions ﴾17﴿‐﴾18﴿, reflecting the additive model, are complex and do not yet prove useful
for the derivation of a uniform design. However, 𝜓 can be approximated as described by Tan et

al. ﴾2009﴿. The steps involve i.a. a linear approximation of 𝜓
𝛽𝐶(𝛽𝐵−𝛽𝐴)
𝛽𝐵(𝛽𝐶−𝛽𝐴) 𝑥𝐵, followed by a binomial

expansion of the right‐hand side of expression ﴾18﴿ with terms up to the second order, eventually
yielding a quadratic equality that can be solved for 𝜓. The solution is

𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶) ≈ 𝛽2
𝐶ℎ1(𝑥𝐴, 𝑥𝐵)

𝛽𝐴(𝛽𝐶 − 𝛽𝐴)ℎ2
2(𝑥𝐵, 𝑥𝐶) ((1 − 𝛽𝐴

𝛽𝐶
) ℎ2(𝑥𝐵, 𝑥𝐶) − ℎ

𝛽𝐴
𝛽𝐶
1 (𝑥𝐴, 𝑥𝐵)

+ [(𝛽𝐶 − 𝛽𝐴
𝛽𝐶

ℎ2(𝑥𝐵, 𝑥𝐶) − ℎ
𝛽𝐴
𝛽𝐶
1 (𝑥𝐴, 𝑥𝐵))

2
+ 2𝛽𝐴(𝛽𝐶 − 𝛽𝐴)

𝛽2
𝐶

ℎ2
2(𝑥𝐵, 𝑥𝐶)]

1
2
⎞⎟⎟
⎠
with

ℎ1(𝑥𝐴, 𝑥𝐵) = 𝑥𝐴
𝜌1

+ (𝜌0
𝜌1

)
𝛽𝐴
𝛽𝐵 𝛽𝐴(𝛽𝐶 − 𝛽𝐵)

𝛽𝐵(𝛽𝐶 − 𝛽𝐴)𝑥𝐵,

ℎ2(𝑥𝐵, 𝑥𝐶) = (𝜌0
𝜌1

)
𝛽𝐴
𝛽𝐵 𝛽𝐶(𝛽𝐵 − 𝛽𝐴)

𝛽𝐵(𝛽𝐶 − 𝛽𝐴)𝑥𝐵 + 𝑥𝐶,
﴾19﴿

Given this solution for 𝜓, the additive model ﴾17﴿ can finally be re‐written as an additive structure
in three separate logarithms. Analogous to the constant relative potency case, one obtains

𝑦 =𝛼𝐴 + 𝛽𝐴 log(𝑧1) + 𝛽𝐴 log((1 − 𝜌0)𝑧2 + 𝜌0)+

𝛽𝐴 log((1 − 𝜌1
𝜌0

) (1 − 𝑧3) + 𝜌1
𝜌0

)
﴾20﴿
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but the expressions for 𝑧1, 𝑧2 and 𝑧3 are now given by

𝑧1 = 𝑥𝐴 + (𝜌0
𝜌1

)
𝛽𝐴
𝛽𝐵

−1
[𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶)]

𝛽𝐴(𝛽𝐶−𝛽𝐵)
𝛽𝐵(𝛽𝐶−𝛽𝐴) 𝑥𝐵 + 𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶)𝑥𝐶

𝑧2 = 𝑥𝐴

𝑥𝐴 + (𝜌0
𝜌1

)𝛽𝐴/𝛽𝐵−1 [𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶)]
𝛽𝐴(𝛽𝐶−𝛽𝐵)
𝛽𝐵(𝛽𝐶−𝛽𝐴) 𝑥𝐵 + 𝜌1

𝜌0
𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶)𝑥𝐶

𝑧3 = 𝜓(𝑥𝐴, 𝑥𝐵, 𝑥𝐶)𝑥𝐶
𝑧1

﴾21﴿

This again facilitates uniform sampling of (𝑧𝑗
1, 𝑧𝑗

2, 𝑧𝑗
3) on the domain 𝑆 . The actual doses

(𝑥𝑗
𝐴, 𝑥𝑗

𝐵, 𝑥𝑗
𝐶) of interest can then be determined by numerically solving system ﴾21﴿. Altogether,

the logic and mechanics are still similar to the constant relative potency case, but the conversions
between the three drugs in the model formulation become more involved. Two important
comments apply to both the case with constant and non‐constant relative potencies: First,
as in the uniform ray design, uniformity is not achieved by random sampling from a uniform
distribution, but instead using uniform design theory by K.‐T. Fang et al. ﴾2018﴿ and K.‐T. Fang et
al. ﴾2000﴿: One can make use of existing U‐type tables with three columns ﴾one for each drug﴿,
containing perumtations of numbers 1,…,𝑛 with 𝑛 being the number of unique design points
here. Each row in the table can then be mapped into a point on a [0, 1]3 cube. In doing so,
U‐type tables minimize the resulting deviation from uniformity on the [0, 1]3 cube and typically
achieve very small discrepancy values. Ultimately, the points on the [0, 1]3 cube need to be
mapped to points on the triangular prism in the design space 𝑆 , which is straight‐forward here
but is not generally straight‐forward for more complex design spaces ﴾H. B. Fang et al., 2017; Tan
et al., 2003, 2009; Tian et al., 2009﴿. Once uniform points on 𝑆 have been obtained, they have to
be transformed to points on the actual dose space 𝑆0 according to systems ﴾16﴿ resp. ﴾21﴿. Yet,
since the total dose is restricted according to drug 𝐴 in 𝑆 , it is not enough to solve systems ﴾16﴿
resp. ﴾21﴿ for 𝑥𝐴, 𝑥𝐵 and 𝑥𝐶 : The resulting solutions for 𝑥𝐵 and 𝑥𝐶 still have to be scaled to
drug B resp. drug C units by taking

𝑥
𝛽𝐴
𝛽𝐵
𝐵 ⋅ exp(𝛼𝐴 − 𝛼𝐵

𝛽𝐵
) resp. 𝑥

𝛽𝐴
𝛽𝐶
𝐶 ⋅ exp(𝛼𝐴 − 𝛼𝐶

𝛽𝐶
) ﴾22﴿

﴾Tan et al., 2009﴿. In general, the described approach builds on a mixture‐amount logic while
carefully balancing drug potencies. It restricts attention to an additive effect range of interest,
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distributing combination doses such that each drug’s dosemay range between 0 and themaximum
monotherapy dose compatible with the upper effect range limit ﴾excluding these edge cases﴿. The
mixture amount reasoning is even more evident in the simple two‐drug case with constant relative
potencies where one can directly sample total amounts and mixture proportions uniformly based
on a rectangular design space ﴾Tan et al., 2003﴿. Apart from monotherapies with log‐linear dose‐
response curves, uniform maximum power designs are also developed for monotherapies with
linear dose‐response curves or combinations of linear and log‐linear dose response curves ﴾H. B.
Fang et al., 2009, 2017﴿. In terms of the intended analysis, it should be kept in mind that a lack‐of‐fit
test based on the additive model used in the design generation requires not only very reliable prior
information about the monotherapy dose‐response curves but also identical conditions across
the previously conducted monotherapy experiments and the current combination experiment.
Otherwise, the procedure may lead to false synergy or antagonism calls in the presence of strong
experiment‐to‐experiment variations.

Nonetheless, even without the intended analysis, the design has a merit on its own: By building
on an additive model, it allows to systematically cover a particularly interesting area of the dose
space ‐ such as the area covering combinations with 20 − 80% expected effect under additivity ‐
with as few or as many points as desired. It should be kept in mind, though, that uniformity on the
𝑧‐domain does not imply uniformity on the dose‐domain. Work by Huang & Chen ﴾2021﴿ made
advances towards balancing uniformity on the 𝑧‐domain ﴾with the aim of reaching maximum
power for synergy testing﴿ against uniformity on the dose‐domain ﴾with the aim of improving
response surface modeling﴿. Huang & Liu ﴾2024﴿ also work on bringing the two domains together
and allowing uniform sampling on the actual dose space, instead of uniformly sampling on sub‐
spaces implied by particular transformations, while maintaining the maximum power property
of uniform designs for detecting deviations from additivity. This is achieved by taking another
approach at modeling additivity, but is only developed for the two‐drug case. It overcomes the
shortcoming of the presented approach by Tan et al. ﴾2009﴿, which effectively only samples one
set of mixture proportions at any sampled total amount and thereby still does not allow to explore
the dose space freely in a fully two‐dimensional ﴾two drugs﴿ resp. three‐dimensional ﴾three drugs﴿
fashion ﴾Huang & Liu, 2024﴿. Altogether, the work by Huang & Chen ﴾2021﴿ and Huang & Liu
﴾2024﴿ highlights that uniform designs constitute an active area of research and applications to
multi‐drug combinations may be expected to be extended further in the future.
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3.5 Further Designs

Apart from the discussed uniform designs, there are also other space‐filling fractional factorial
design approaches, e. g. approaches that maximize the minimal distance between pairs of points.
Discussions on different space‐filling approaches in the context of drug combination studies are
provided by Zhou & Xu ﴾2014﴿ or S. S. Liu et al. ﴾2016﴿. Moving away from space‐filling approaches,
Brennan et al. ﴾2022﴿ propose a normalized diagonal sampling design, which samples combina‐
tions along the diagonal of an appropriately normalized checkercube. In this design, one first
chooses a normalization metric of interest, possibly the EC50, and places multiples of this metric
along the checkercube axes, effectively yielding a serial dilution based on the normalization met‐
ric. One then samples the diagonal of the resulting normalized checkercube, i.e. points where all
drugs are at their lowest concentration until points where all drugs are at their highest concentra‐
tion. Altogether, the idea consists in using a newly created dose‐effect based synergy metric and
identifying the combination with the lowest total dose that is still effective with regard to a crite‐
rion of interest, requiring a binary endpoint. The approach furthermore aims at clarifying whether
interactions in a triple combination are due to pairwise or three‐way interactions. To do so, it also
samples two‐drug combinations, setting one component of any particular three‐drug combina‐
tion on the diagonal of the checkercube to zero at a time. A downside of the approach is that it
samples few triple combination points, many of which purposefully constitute high dose combina‐
tions. Although not the focus of this master’s thesis, some authors recommend sequential designs
for multi‐drug combination experiments, reviewed e.g. briefly by Novick & Peterson ﴾2014﴿. These
authors note that their applicability may be limited if an assay’s variability is too high, possibly cre‐
ating spontaneous shifts in responses across sequential experimentation steps. Hence, the gain in
knowledge that could be leveraged across subsequent design steps must be balanced against the
inaccuracy introduced by an assay’s inherent run‐to‐run and experiment‐to‐experiment variability.
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4 Design Evaluation: Simulation Set‐Up

This chapter proceeds towards an implementation and evaluation of selected experimental designs
for triple combination therapies in a simulation study. It introduces the applied methodology.

4.1 Monotherapy Scenarios and Simulation Work‐Flow

Monotherapy scenarios: The simulation study investigates seven different monotherapy scenar‐
ios. In all scenarios, monotherapies are assumed to follow a four‐parameter logistic regression
model of the following form ﴾Holland‐Letz & Kopp‐Schneider, 2015; Huang & Chen, 2021﴿:

𝑦𝑖 ≡ 𝑓𝑖(𝑥𝑖) = 𝐴𝑖 + 𝐵𝑖 − 𝐴𝑖
1 + exp( 1

𝑠𝑐𝑎𝑙𝑖
(log(𝐸𝐶50𝑖) − log(𝑥𝑖)))

= 𝐴𝑖 + 𝐵𝑖 − 𝐴𝑖

1 + ( 𝑥𝑖
𝐸𝐶50𝑖

)− 1
𝑠𝑐𝑎𝑙𝑖

= 𝐴𝑖 + 𝐵𝑖 − 𝐴𝑖

1 + ( 𝑥𝑖
𝐸𝐶50𝑖

)−ℎ𝑖
with ℎ𝑖 ≡ 1

𝑠𝑐𝑎𝑙𝑖

﴾23﴿

where the effect 𝑦𝑖 is subsequently taken to express the percentage of cell killing induced by dose
𝑥𝑖 of drug 𝑖 ∈ {1, 2, 3} in the context of an oncological cell‐based assay with cytotoxic drugs.
The parameters𝐴 and𝐵 represent the lower and upper asymptote, whereas𝐸𝐶50 denotes the
dose where the half‐maximal effect 𝑦 = (𝐴 + 𝐵)/2 is reached. The parameter 𝑠𝑐𝑎𝑙 resp. ℎ
governs the slope of the curve. A positive value indicates a positive slope while a negative value
indicates a negative slope. In the following, the parameterization in terms ofℎ ≡ 1

scal is reported as
it facilitates a more intuitive understanding with higher absolute values indicating steeper slopes3.

The investigated parameter combinations in each scenario are listed in Table 1. The difference
between the scenarios lies in the assumed slopes of the monotherapies. The EC50 values are the
same throughout all scenarios and placed at𝑥1 = 1 for drug 1, 𝑥2 = 2.5 for drug 2 and𝑥3 = 10
for drug 3, making drug 1 the most potent and drug 3 the least potent drug in the combination.
The lower asymptotes also remain fixed at a value of 10% killing4. For the upper asymptotes,
two sub‐cases are considered within each scenario: In case a﴿, all drugs are full agonists with an

3Yet, in the simulation, the parameter 𝑠𝑐𝑎𝑙 was specified at particular values of interest, explaining why the trans‐
formed parameter ℎ may subsequently take seemingly odd decimal values

4The lower asymptote was conveniently placed at 10% to avoid negative effects at low doses in the simulation.
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upper asymptote at the maximal response value of 100% killing. In case b﴿, drug 2 and drug 3
are partial agonists with upper asymptotes at 80% resp. 60% killing.

Table 1: Overview of Monotherapy Scenarios

Drug Parameters
Scenarios

1 2 3 4 5 6 7

Drug 1

Slope ℎ 1.00 0.50 2.00 1.00 1.00 0.66 1.43
EC50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lower 𝐴 10 10 10 10 10 10 10
Upper 𝐵 100 100 100 100 100 100 100

Drug 2

Slope ℎ 1.00 0.50 2.00 0.50 0.80 0.50 1.11
EC50 2.50 2.50 2.50 2.50 2.50 2.50 2.50
Lower 𝐴 10 10 10 10 10 10 10
Upper 𝐵, case a﴿ 100 100 100 100 100 100 100
Upper 𝐵, case b﴿ 80 80 80 80 80 80 80

Drug 3

Slope ℎ 1.00 0.50 2.00 2.00 1.43 0.83 2.00
EC50 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Lower 𝐴 10 10 10 10 10 10 10
Upper 𝐵, case a﴿ 100 100 100 100 100 100 100
Upper 𝐵, case b﴿ 60 60 60 60 60 60 60

Altogether, scenarios with equal low, medium and high slopes as well as scenarios with mixed
slopes ‐ either with very different profiles or with only moderately different profiles ‐ are explored to
gain insights into the performance of experimental designs for triple combination therapies under
different conditions. Notice that all subsequently tested experimental designs comprise 3 × 7 =
21 monotherapy doses, which form the basis for fitting monotherapies’ dose‐response curves
and determining the expected additive effect at combination points for the purpose of synergy
assessment. Hence, for each monotherapy scenario, suitable seven‐point dilution series need to
be developed: Based on graphical inspection of the dose‐response curves, a maximal dose and
an integer dilution factor are chosen such that the resulting doses are equally spaced on the log‐
scale and two doses are placed towards the lower asymptote, three doses on the linear segment
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around the EC50 and two doses towards the upper asymptote ﴾Sebaugh, 2011﴿. A visualization of
the dose‐response curves, indicating the chosen dilution series, is provided in appendix A.1. The
dilution series always remains fixed for cases a﴿ and b﴿. In addition to the 21 monotherapy doses,
each subsequently tested design comprises four controls without any drug present and up to 71
triple combination doses, such that up to 96 unique design points (𝑥𝑗

𝐴, 𝑥𝑗
𝐵, 𝑥𝑗

𝐶) are obtained as
motivated in section 2.2. The remainder of this section describes the general simulation work‐flow.
Details about the selection of the triple combination points are postponed to section 4.2.

Simulation Work‐Flow: To begin with, monotherapy effects at the 21 monotherapy points and
the four control points are generated based on the assumed four‐parameter logistic regression
models. Then, up to 71 combination effects under Bliss independence are generated for each
design under investigation: To do so, for any combination (𝑥𝑗

𝐴, 𝑥𝑗
𝐵, 𝑥𝑗

𝐶), the effects of doses 𝑥𝑗
𝐴,

𝑥𝑗
𝐵 and 𝑥𝑗

𝐶 are calculated based on the respective logistic regression model and then combined
under the assumption of Bliss independence as described in section 2.1.2. Since the effect ranges
are not the ﴾0,1﴿ interval but rather the ﴾0.1, 1﴿ interval or another sub‐interval such as ﴾0.1, 0.6﴿
resp. ﴾0.1, 0.8﴿ for partial agonists, the rescaling approach suggested by Thas et al. ﴾2022﴿ is used
during the calculation of Bliss null values to respect the model’s probabilistic nature.

In the next step, synergy is added to certain combination points, resulting in a 15% increase in the
effect relative to the null effect under Bliss independence, i.e. any synergistic effect is set equal to
1.15 times the null effect. At this point, the ground truth data is successfully generated and noise is
added to both the monotherapy and combination points by drawing from a normal distribution
with mean=0 and standard deviation=3, a value that is informed by real‐life experiments. Notice
that the generation of synergistic effects before adding noise reflects the understanding that ‐
while there is a true synergy effect size ‐ it may not be equally pronounced in all experiments, with
fluctuations in experimental conditions sometimes favoring or hindering the emergence of synergy.
Hence, allowing some strengthening or canceling out of the synergistic effects by the random noise
in the simulation appears to be indicative of what may happen in real‐world experimentation.
After adding noise, it is checked whether the effects exceed the natural effect range of 0 − 100%
killing; if this is the case, they are brought back into this range by drawing from a truncated normal
distribution with standard deviation=3. For each design point, a total of four replicates with random
noise is generated in each simulation run. The simulated data, comprising up to 4 × 96 = 384
points for each design, is ultimately analyzed based on the Bliss null model as well. Each design is
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evaluated based on 200 simulation runs; monotherapy effects are kept identical across all tested
designs to not distort the analysis ﴾see section 4.3 for further information on the analysis﴿.

Synergy Patterns: While the synergy effect size is fixed at 15% relative effect, the synergy pattern
varies during the simulations: Synergy is located in different tetrahedra in the dose space. Three
out of the four vertices of the tetrahedra are fixed at (0, 0, 0), (𝑥𝑚𝑎𝑥

1 , 0, 0) and (0, 𝑥𝑚𝑎𝑥
2 , 0)with

𝑥𝑚𝑎𝑥
𝑖 representing the highest monotherapy dose of drug 𝑖, but the “center” vertex (𝑥1, 𝑥2, 𝑥3)

varies across simulation runs. Before the simulation, 200 center coordinates are generated for each
monotherapy scenario by the following procedure: First, a sequence of 150 values evenly spread
on the log‐scale in each drug’s activity range is created. Second, a 150x150x150 combination grid is
set up. Third, drugs’ EC50 values are perturbed by adding random noise from a normal distribution
with mean=0 and standard deviation=0.4×EC50; to avoid too low or negative values, a minimum
value of 0.2×EC50 is enforced. In the next step, the euclidean distance of each grid point to the
perturbed EC50 coordinate is calculated and further noise is introduced by scaling the distances
with random numbers from a uniform distribution between 0.1 and 1. The grid point resulting in
the lowest distance is then chosen as center coordinate5.

The described procedure places the center coordinate close to the EC50 coordinate
(EC501, EC502, EC503) with random variations. Yet, despite the variations, the resulting
center coordinate always lies between 0.2 and 2 times the EC50 in any direction. A visualization
of the center coordinates in relation to the EC50 coordinate is displayed in appendix A.1. Overall,
synergy is often hypothesized to occur at low to medium dose dose combinations ﴾Calzetta et
al., 2024﴿ and, consistent with this hypothesis, the synergy tetrahedra cover a wider range of low
dose resp. low to medium effect combinations. However, by extending along the drug 1 and
drug 2 axes, the tetrahedra also cover some areas in which high null effects are expected. In
terms of integration into the simulation, in each simulation run it is checked which combination
points lie in the tetrahedron designated to this run and synergy is then added to these points.

5Notice that the lower limit of 0.1 in the perturbation of the distances based on uniform random numbers avoids
extreme perturbations that yield center coordinates very far from the EC50; this maintains consistency in the simu‐
lated synergy pattern and thereby improves interpretability of the results. The main source of variability in the center
coordinates stems from the EC50 perturbations.
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4.2 Implementation of Experimental Designs

For each monotherapy scenario, seven experimental designs are tested. The designs’ implemen‐
tation is described below. Visualizations of the design points are contained in appendix A.1.

Design 1: Uniform maximum‐power design The first design is a uniform maximum power de‐
sign following Tan et al. ﴾2009﴿. Since log‐linear dose‐response curves are needed to implement
the uniform maximum power design, the following approach is taken: When all drugs are full
agonists, sharing the same effect range, the logistic regression models are log‐linearized before
applying the uniform maximum power design as recommended by Huang & Chen ﴾2021﴿. Other‐
wise, the partial agonist with the lowest upper asymptote, in this case drug 3, is used as a reference
drug and approximated by a log‐linear model around its EC50. Then, the effect range where this
approximation appears satisfactory is determined and well‐fitting log‐linear models are derived
for the remaining two drugs in this same effect range ﴾ensuring that residuals lie within a range of
approximately ±2% and quartiles within a range of approximately ±1%﴿. For the case with full
agonists, effect ranges of interest are always set to 20 − 80% based on the additive model while
for the case with partial agonists case‐by‐case decisions are made based on the effect range that
can be well‐fitted by the log‐linear approximations.

In the design generation, a U‐type table with 71 runs and 71 factor levels, obtained from the R
package UniDOE ﴾Yang, 2019﴿, is used to derive 71 combination points on a [0, 1]3 cube; these
points are then mapped to points on a uniform prism in the design space 𝑆 of the transforma‐
tions (𝑧1, 𝑧2, 𝑧3) following the algorithm by Tan et al. ﴾2009﴿. Afterwards, actual drug doses
(𝑥1, 𝑥2, 𝑥3) need to be derived by solving systems ﴾16﴿ resp. ﴾21﴿ stated in chapter 3.4. For
the simple case with equal slopes on the log‐linear scale ﴾scenarios 1‐3 a﴿﴿, system ﴾16﴿ is solved
analytically. For the general case with unequal slopes or partial agonists, system ﴾21﴿ is solved
numerically using root‐finding algorithms as residual‐based optimization is not guaranteed to fit
all equations equally well in a potentially unstable system. Achieving convergence may still be
numerically challenging, depending on the parameters of the dose‐response curves. It turns out
to be notably more robust for negative slopes than for positive slopes, which is why curves with
negative slopes are used for the design derivation. Generally, convergence is best achieved when
𝛽3 ≤ 𝛽2 ≤ 𝛽1, but partially other permutations of the drugs’ roles in system ﴾21﴿ have to be
tested to achieve convergence ﴾scenarios 4‐7, case b﴿ respectively﴿. Different starting values are
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explored and typically placed around the EC50 of the drugs for the case of full agonists resp. at a
central value in the respective drug’s range of interest for the case of partial agonists.

Design 2: Ray design with mixture proportions based on EC50 values The second design
follows the ideas of i.a. Berenbaum ﴾1978﴿ and Dou et al. ﴾2011﴿, placing “equipartition” rays
along an ﴾approximate﴿ isoocontour plane corresponding to a ﴾relative﴿ effect of 50% and thereby
exploring different ray ratios based on the drugs’ EC50 values. In the present application, ten rays
are constructed based onmixture proportions determined by the inner points of a simplex lattice of
degree six connecting the drugs’ EC50 values. The ray ratios thus correspond to ﴾1:1:1﴿, ﴾4:1:1﴿, ﴾1:4:1﴿,
﴾1:1:4﴿, ﴾3:2:1﴿, ﴾3:1:2﴿, ﴾2:3:1﴿. ﴾2:1:3﴿, ﴾1:3:2﴿, ﴾1:2:3﴿ times (EC501 ∶ EC502 ∶ EC503). For each ray, the
maximum total amount is chosen such that the expected effect under Bliss independence equals
95% killing. A common, preferably integer dilution factor is then selected such that the minimum
total amount corresponds to approx. 15% killing under Bliss independence and is reached within
seven equally spaced steps on the log‐dose scale. This decision is made to potentially be able to
model an ﴾almost﴿ complete dose‐response curve for each ray, which may be of practical interest
in real‐world applications. The approach is applied in the same way for scenarios with full and
partial agonists, while acknowledging that especially in the latter case the resulting rays are not
evenly distributed across any sensibly defined isocontour plane and may explore total doses that
lie on the asymptote of partial agonists. Maximum total doses and dilution factors may differ
between scenarios with full and partial agonists, but always adhere to the described logic.

Design 3: Uniform ray design using only the dose range The third design is a uniform ray
design ﴾S. S. Liu et al., 2016﴿. However, unlike in many other practical applications, it does not
work with an underlying factor‐level table but freely explores directions in the dose space in the
following sense: First, a U‐type table with ten runs and ten levels is used to determine ten uniform
points on a [0, 1]3 cube, again relying on the R package UniDOE ﴾Yang, 2019﴿. Second. these
points are then scaled to the actual dose range of interest, using each drug’s maximum dose from
the monotherapy dilution series, thereby yielding points in the cube [0, 𝑥𝑚𝑎𝑥

1 ] × [0, 𝑥𝑚𝑎𝑥
2 ] ×

[0, 𝑥𝑚𝑎𝑥
3 ]. Each point then determines one set of mixture proportions 𝑝𝑖 = 𝑥𝑖

𝑥1+𝑥2+𝑥3
for

𝑖 ∈ {1, 2, 3}, which is ultimately used for the construction of a ray. As in case of design 2, a total
of ten rays is constructed and a seven‐step dilution is used according to the same principles.

Design 4: Uniform ray design using factor‐level table The fourth design is a uniform ray
design, constructed based on an underlying factor‐level table ﴾S. S. Liu et al., 2016﴿. Here, a U‐
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type table with ten runs and five levels is utilized to uniformly select factor‐level combinations
from a factor‐level table containing each drug’s EC20, EC40, EC50, EC60 and EC806. The resulting
factor‐level combinations represent points in the dose space, which ‐ in turn ‐ determine mixture
proportions and thus directions along which rays can be extended according to the same logic as
described for design 3. In the present application, the factor levels around the EC50 were placed
closer to each other because the slope is steeper in these parts of the dose‐response curves.

Design 5: 4x4x4 checkercube with 4 dilutions around EC50 values The fifth design is a check‐
ercube design. Using the monotherapy dilution series, the closest two dilution steps above and
below each drug’s EC50 are selected and combined in a full‐factorial design.

Design 6: Uniform sampling from 5x5x5 checkercube with 5 lowest dilutions The sixth de‐
sign uniformly samples from a checkercube based on the five lowest doses of each monotherapy.

Design 7: 4x4x4 checkercube with 4 effective concentrations The seventh design is a check‐
ercube design, where each drug’s EC10, EC30, EC50 and EC60 values are combined. Effective
concentrations on the checkercube axes are recommended e.g. by C. Chen et al. ﴾2018﴿. The
levels are chosen so as to fit scenarios with full and partial agonists here, attempting to explore
relevant parts of the drugs’ activity ranges while avoiding too many high dose combinations.

4.3 Synergy Assessment

The synergy assessment evaluates the deviation between the observed effect and the expected
effect under Bliss independence at each combination point (𝑥𝑗

𝐴, 𝑥𝑗
𝐵, 𝑥𝑗

𝐶), naturally focusing on
“true” combination points that do not lie on any monotherapy axis for interaction assessment
﴾subsequently referred to as off‐axis points for enhanced clarity﴿. Overall, the analysis makes use
of features of the BIGL R package ﴾Makariadou et al., 2024; Thas et al., 2022; Vanderborght et
al., 2017﴿, extending it to accommodate triple combinations. It closely relies on the methodology
described by Thas et al. ﴾2022﴿, who introduced a general bootstrapping procedure and thereby

6Unfortunately, however, the corresponding U‐type table has one repeated row. To deal with this, a replacement row
is created by testing all candidate rows and picking the one with the smallest uniformity deviation. By this modification,
all rows in the resulting U‐type table are unique. Still, by peculiarities of the dose‐response curves in the scenarios with
equal slopes, not all rows translate into distinct mixture proportions; this is not corrected ‐ in the few cases where a
mixture proportion repeats, it is tested only once, resulting in a lower number of design points.
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allow to avoid parametric assumptions about the synergy pattern during estimation and inference.

In each simulation run, the following steps apply: Monotherapy axis points are first used to estimate
dose‐response curves for the three monotherapies based on four‐parameter logistic regression
models. The resulting parameter estimates are then used to predict the expected effect in terms
of percentage cell killing under Bliss independence at each off‐axis point (𝑥𝑗

𝐴, 𝑥𝑗
𝐵, 𝑥𝑗

𝐶), allowing
to compute the deviation between the observed effect ‐ averaged over all replicates ‐ and the
expected effect at point 𝑗, i.e. 𝐸𝑗 = 𝑦𝑗 − ̂𝑦𝑗 with ̂𝑦𝑗 denoting the predicted effect under Bliss
independence ﴾Makariadou et al., 2024; Thas et al., 2022﴿. These “residuals” 𝐸𝑗 are an effect size
measure, with values above ﴾below﴿ zero suggesting synergy ﴾antagonism﴿ at point 𝑗. To account
for inherent variability in the data and limit the amount of false‐positive conclusions, a formal in‐
ferential procedure is followed for ultimately calling synergy ﴾antagonism﴿ instead of additivity at
point 𝑗: Bootstrap‐based confidence intervals are constructed around each 𝐸𝑗 with a simultane‐
ous nominal coverage rate of 90% across all combination points, thus allowing for a family‐wise
error rate of 10%. This means that in 10% of the simulations at least one false synergy or antag‐
onism call would be expected across all combination points under investigation. Details about the
construction of such bootstrap‐based simultaneous confidence intervals are provided by Thas et
al. ﴾2022﴿; the present application uses 750 bootstrap samples for their computation. The reliance
on confidence intervals allows to judge the practical relevance of findings in addition to their sta‐
tistical significance, facilitating a more informed decision about whether detected interactions are
meaningful or not compared to stand‐alone hypothesis tests.

4.4 Performance Metrics

A key performance metric to be evaluated is the sensitivity of the synergy detection achieved by
each design. Sensitivity is calculated for each simulation run as the ratio between the number of
correctly identified synergistic points and the total number of simulated synergistic points covered
by the respective design. It thus reflects the percentage of simulated synergistic points that are
correctly identified in the analysis ﴾“true positive tests”﴿. In case a specific design misses the entire
synergy area in a particular run, sensitivity cannot be calculated; these cases are discarded from
sensitivity‐related computations. To strengthen the practical relevance of the design evaluation, the
power to detect at least five ﴾ten﴿ synergistic points is regarded as another key performance metric.
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Even though these thresholds are arbitrary, they allow to gauge whether a design manages to send
an interesting signal, recognizing that very few isolated synergy calls may not warrant further
downstream investigation of a triple combination therapy in practical applications. These power
metrics are computed as the number of simulation runs with at least five ﴾ten﴿ correct synergy calls
divided by the total number of simulation runs7. For completeness, specificity and family‐wise error
rate ﴾FWER﴿ are also evaluated. Specificity is calculated for each simulation run as the ratio between
the number of correctly classified non‐synergistic points and the total number of simulated non‐
synergistic points. It thus reflects the percentage of additive points that is correctly classified as
non‐synergistic ﴾“true negative tests”﴿. Importantly, since the focus is on synergy detection, false
antagonism calls are still counted as a correct “no synergy” calls in the specificity computation. The
family‐wise error rate, in contrast, is computed as the percentage of runs with at least one false
call, taking into account both false synergy and antagonism calls.

Sensitivity and specificity are averaged over simulation runs and reported as means with standard
deviations. The latter allow to judge the run‐to‐run variability and thus designs’ robustness in the
light of variations in the simulated synergy pattern. All results are interpreted descriptively. A formal
comparison of performance metrics based on hypothesis tests is not conducted for two reasons:
First, even if one were to assume a true “population” value for e.g. the sensitivity, it would not
only depend on the design and the analysis but also on the run‐specific synergy pattern, making
inference with regard to population means less appealing. Second, statistical inference is of limited
practical value here: Metrics such as sensitivity often do not have a stand‐alone value. Depending
on how large the synergistic area is and how well a design samples it, even a moderate sensitivity
may suffice to send a practically interesting signal. Naturally, in practice it is unknown how well
a design samples a synergistic area, but for this simulation study both the raw number and the
proportion of combination points lying in the synergy area are reported to further contextualize
the results ﴾in addition to the power metrics﴿.

7Runs in which a particular design covers less than five ﴾ten﴿ simulated synergistic points remain included in the
power calculation. The rationale for this decision is that there is always a sufficiently large synergy area in the simulation
such that the designs could detect at least five ﴾ten﴿ points, if they sampled in a large enough area of the dose space.
Hence, this approach purposefully penalizes designs which explore too narrow segments of the dose space.
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5 Design Evaluation: Results

In this chapter, the results of the simulation study examining seven experimental designs in seven
different monotherapy scenarios with respect to several performance metrics are presented.

Sensitivity: Figure 1 displays a heatmap for the sensitivity achieved by each design in each sce‐
nario, averaged over simulation runs. The perhaps most striking finding is that design 7 ‐ the
checkercube with drugs’ EC10, EC30, EC50 and EC60 on the axes ‐ achieves a mean sensitivity of
≥ 93% across all monotherapy scenarios and thereby notably outperforms the other designs in
terms of mean sensitivity and robustness. The only design that achieves an even better perfor‐
mance in isolated monotherapy scenarios is design 1, the uniform maximum power design. Yet, its
mean sensitivity varies more strongly by scenario, ranging between 58% and 100%. Of note, the
uniform maximum power design tends to perform better than both the checkercube design with
four dilution steps around each drugs’ EC50 on the axes ﴾design 5﴿ and the uniform sampling from
a checkercube design with each drugs’ five lowest dilution steps on the axes ﴾design 6﴿ in almost
all scenarios. The difference between the latter two designs is often small, with the exception of
scenario 7 with a mix of steeper slopes, where design 6 appears to perform better than design 58.
All the designs mentioned thus far ‐ i.e. designs 1,5,6,7 ‐ appear to reach a higher mean sensitivity
than the ray designs under investigation.

When compared among each other, the ray designs all show a similar performance; the only
noteworthy exception may be that the uniform ray design ‐ especially the one choosing directions
freely in the dose space ﴾design 3﴿ ‐ performs somewhat better than the EC50‐based ray design
﴾design 2﴿ in the scenario where the three drugs have very different slopes ﴾scenario 4 with h1 = 1,
h2 = 0.5, h3 = 2﴿. In this particular scenario, however, all ray designs tend to achieve their best
performance. They also perform well in scenario 7a﴿ where the three drugs have different, but
somewhat steeper slopes ﴾h1 = 1.4, h2 = 1.1, h3 = 2﴿. When two drugs are partial agonists in
scenario 7b﴿ or all slopes are at a high value of h = 2 in scenario 3, this finding changes, and ray
designs reach their worst mean sensitivity. Especially the difficulties in terms of synergy detection

8This may, however, be an artefact: In scenario 7, as well as in scenario 2, design 5 happens to include a dilution step
reaching the upper asymptote of a monotherapy, thus sampling in a rather high effect region. It appears plausible that
this has a more detrimental impact on sensitivity in the high slope scenario 7 than in the low slope scenario 2 because
high slopes can complicate the synergy detection as discussed below.
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in the high slope scenario 3 are not surprising and are shared by the remaining designs, except
for the checkercube design with effective concentrations on the axes.

Note that the sensitivity heatmap can only give a partial impression of the designs’ comparative
performance as it ignores two important aspects: First, the designs did not cover the simulated
synergy area equally well and partially even missed the synergy area in some simulation runs,
leading to possibly different practical implications of the same average sensitivity values. Second,
the average sensitivity summarizes each design’s performance across a range of different simulated
synergy patterns. Focusing merely on this point estimate may thus hide a notable run‐to‐run
variation in the sensitivity values, depending on the simulated synergy pattern and possibly also
the experimental design. These two aspects are therefore investigated further.

Figure 1: Heatmap displaying the mean sensitivity across simulation runs by experimental design ﴾x‐axis﴿
and monotherapy scenario ﴾y‐axis﴿.

The heatmap in Figure 2 displays the proportion of combination points that lie inside the sim‐
ulated synergy area by design and monotherapy scenario, averaged over simulation runs. This
indicates how well the designs covered the simulated synergy area, which assumed the shape of
a tetrahedron with varying “center” coordinate in the dose space and emphasized synergy in low
to moderate effect regions but also allowed for at least some synergy in higher effect regions ﴾see

38



chapter 4.1﴿.

Figure 2: Heatmap displaying the mean proportion of design points lying in the synergy area across all
simulation runs by experimental design ﴾x‐axis﴿ and monotherapy scenario ﴾y‐axis﴿. Notice that the color
range is adjusted to the data range with 0.1<proportion<0.9

With regard to coverage, design 1 again appears to perform rather well, albeit with notable vari‐
ations in the proportion of design points that lie within the synergy area across monotherapy
scenarios and within monotherapy scenarios between the cases with full versus partial agonists.
The difference between the latter two cases is not seen for any other design and is generally not
expected because the synergy pattern was identical in these two cases and the design construc‐
tion always followed the same premises. However, design 1 constitutes an exception in this regard:
In the special case of the uniform maximum power design, there was a difference in the design
construction between full and partial agonist cases. For the full agonist cases, the effect range of
interest was specified to 20 − 80% effect under Loewe additivity. For the partial agonist case,
in contrast, it depended on the overlap in the log‐linear segments of the monotherapy dose re‐
sponse curves, which was often small. Nonetheless, the erratic variation with sometimes a notably
higher and sometimes a notably lower proportion of synergistic points in any of the two cases also
signals a problem: In the presence of partial agonists, with limited overlap in the log‐linear seg‐
ments, there is reduced control over where the uniform maximum power design actually samples.
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One may enforce a restriction on the additive effect to lie within a joint log‐linear segment, but
model‐based extrapolations to lower individual drug doses where the respective monotherapy’s
log‐linearity does not hold anymore always happen, possibly leading to deviations from the effect
range of interest based on the true four‐parameter logistic regression models. The reason for
these extrapolations is that no restrictions on the mixture proportions are enforced in the design
generation, hence any additive effect of interest can be reached with a particular agent either
almost entirely dominating the mixture or being almost entirely absent. In case 4b﴿, it was even
impossible to achieve convergence to a sensible solution, which is why results for this scenario are
not presented. In scenario 3b﴿, convergence was impossible for a subset of the points, indicating
that caution is required here as well9.

Among the remaining designs, the uniform ray design with ray directions varying freely in the
dose space ﴾design 3﴿ appears to perform strikingly well in terms of coverage of the synergy area,
especially in cases with differences in slopes ﴾scenarios 4‐7﴿. A reason for this may be that design
samples mixtures with rather low doses of drug 3 in these scenarios, which may be seen as an
unintended feature that happens to align well with the simulated synergy tetrahedra but generally
calls for further potency alignments based on factor‐level tables in the use of uniform ray designs
﴾see appendix A.1﴿. Nonetheless, also the remaining ray designs appear to sample the simulated
synergy area adequately, often placing a higher proportion of design points in the simulated syn‐
ergy area than the checkercube designs. Among the checkercube designs it is interesting to note
that the design with the highest sensitivity, design 7 with effective concentrations on the axes,
neither over‐ nor underperforms in terms of sampling the simulated synergy area10.

9In full agonist cases, there were generally less problems with the implementation of the uniform maximum power
design. However, in case 2a﴿ with shallow slopes, the design happens to frequently sample in a rather high effect region,
at least when considering Bliss independence as a null model ﴾see appendix A.2﴿. Of note, the model does not exceed
its admissible range based on the Loewe‐additivity model formulated in terms of the log‐transformation of the dose
response curves as recommended by Huang & Chen ﴾2021﴿; yet, it does place very few points in the low dose region in
this case. A similar, albeit slightly less extreme observation holds for scenario 6a﴿, where slopes are again low. The usage
of a log‐linear approximation around the EC50 instead of a log‐transformation does not solve this issue of infrequent
sampling in the low dose region in the presence of low slopes; the only solution appears to be to further restrict the
effect range of interest in these scenarios

10This observation holds at least when excluding scenarios 2 and 7 for design 5 from the comparison, which ‐ as
mentioned before ‐ may be artefacts due to the inclusion of a high monotherapy dose on the upper asymptote in these
cases. See appendix A.2 for counts of design points with null effects ≥ 90%.
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Altogether, when considering both Figure 1 and Figure 2, the slightly to notably higher proportion
of simulated synergistic points tested by ray designs does not translate into enhanced sensitivities
when compared to other designs with lower synergy coverage, such as the checkercube designs.
The uniform maximum power design, in contrast, appears to frequently sample within the syn‐
ergistic area and achieve a high sensitivity. In this regard, the question arises whether the high
proportion of synergistic points in many scenarios results from the exploration of a wide dose
range or simply a good alignment with the synergy pattern examined in this simulation study,
which places particular emphasis on the low dose resp. low to medium effect regions. Especially
when considering the checkercube designs as reference, it appears that the uniform maximum
power design does not explore a particularly wide area in the dose space. However, it dedicates
notably more points to low dose combinations, pointing towards a better alignment with the sim‐
ulated synergy pattern in this study ﴾see appendix A.1﴿. This agrees with the fact that the effect
range of interest was restricted during the construction of the design, allowing for a more thorough
exploration of a somewhat narrower area in the dose space.

Apart from the average proportion of combination points lying in the synergy area, it is also of
interest how often a design misses the synergy area completely. Detailed information hereto is
provided in appendix A.2, but a clear trend is that design 2 ‐ the EC50‐based ray design ‐ is least
robust in this regard and tends to consistently miss the synergy area in almost 10% of the runs.
Upon closer examination, the affected runs seem to have a rather small, but still non‐empty synergy
area: Illustrating for scenario 1, in 3/17 ﴾9/17﴿ cases where design 2 fails, the other designs cover
less than five ﴾ten﴿ synergistic points on average. Designs 4 and 7 tend to have some problems
predominantly in high slope scenarios, where they miss synergy in up to approx. 10% resp. 5%
of the runs. The remaining designs always cover at least one simulated synergistic point.

After focusing on point estimates thus far, Figure 3 finally illustrates the variability in sensitivity values
across simulation runs. It also continues to relate the achieved sensitivity values to the number of
synergistic points tested by the respective design: The jitter on top of the boxplot indicates the
run‐specific sensitivity values, colored by the run‐specific number of synergistic points among the
combination points explored by a particular design. The first observation is that the variability
in sensitivity is often large, illustrating that the synergy pattern simulated in a particular run has
a large influence on how well synergy can be detected by a particular design. However, based
on the boxplots’ color coding as well as further graphical and correlation‐based assessments,
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there does not seem to be a consistent relationship between the mere number of synergistic
points and the sensitivity achieved by a particular design. This suggests that the placement of the
synergistic points in the dose space may matter more than the mere number or proportion of
synergistic points that exists. The second observation is that the variability may depend on both
the monotherapy scenario and the design under investigation. On average across all scenarios, it
appears that ray designs have the highest variability in sensitivity. In fact, their sensitivities’ standard
deviation is always higher than the standard deviation of checkercube designs ﴾see appendix A.2﴿.
Yet, for both the ray and the checkercube designs, the variability appears rather consistent across
all investigated monotherapy scenarios. This does not apply to the uniform maximum power
design, where the variability is highly dependent on the monotherapy scenario. The latter design
exhibits the highest variability among all designs in scenario 3 with equally high slopes of h = 2.
Also in scenario 7b﴿ with different, somewhat steeper slopes ﴾h1 = 1.4, h2 = 1.1, h3 = 2﴿
and partial agonists it exhibits an extremely large variability, reaching any possible sensitivity value
between ﴾almost﴿ 0% and 100%. On the other hand, it sometimes achieves a mean sensitivity
close to 100%, which is only possible when the variability in sensitivity is small. The appendix A.2
provides numerical results for the mean sensitivity and the mean number as well as proportion of
combination points lying in the synergy area, including the respective standard deviations.

Scenario 1a﴿ Scenario 1b﴿
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Scenario 2a﴿ Scenario 2b﴿

Scenario 3a﴿ Scenario 3b﴿

Scenario 4a﴿ Scenario 4b﴿
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Scenario 5a﴿ Scenario 5b﴿

Scenario 6a﴿ Scenario 6b﴿

Scenario 7a﴿ Scenario 7b﴿

Figure 3: Box plots for sensitivity by scenario and design across 200 simulation runs. Points are colored by the number of synergistic points covered by a
particular design in a particular run. 44



Power: Especially in the light of an often high variability in the sensitivity, it is of interest to assess
how well designs perform with respect to a practically relevant metric, such as the power to detect
at least five simulated synergistic points. Figure 4 displays the corresponding results in a heatmap11.
The heatmap shows that the EC50‐based ray design ﴾design 2﴿ has the lowest power, which is at
least partially explained by the fact that it misses the simulated area of synergy more often than
any other design. The uniform maximum power design ﴾design 1﴿, the uniform ray design with‐
out underlying factor level table ﴾design 3﴿ and the uniform sampling from a 5x5x5 checkercube
﴾design 6﴿, on the other hand, have a particularly high power, often reaching almost 100%. For
the former two designs, this may be expected since they align well with the simulated synergy
pattern. The latter design, however, did not appear to examine a particularly large proportion of
synergistic points; nonetheless, it seems to sample wide enough with high enough sensitivity to
almost consistently detect at least five synergistic points. Of interest, design 7 ‐ the checkercube
with effective concentrations on the axes, showing almost perfect sensitivity ‐ does not manage
to maintain its exceptional performance with regard to the power to detect at least five synergistic
points. In this case, this owes exclusively to sometimes missing the simulated area of synergy; if
only the runs where the area of synergy is not missed were considered, this design would have a
power of 100%.

Also with regard to power it is noticeable that scenarios involving at least one very steep slope
with h = 2, i.e. scenarios 3, 4 and 7, are more challenging for synergy detection, as already seen
before with respect to sensitivity. Scenarios with at least one very shallow slope with h = 0.5,
i.e. scenarios 2 and 6, on the other hand still achieve ﴾almost﴿ 100% power for the majority of the
tested designs. An analogous heatmap for the power to detect at least ten simulated synergistic
points is contained in appendix A.2. It shows that design 2 and design 5 perform notably worse
across all monotherapy scenarios with respect to this stricter power metric. The remaining designs
are more stable but also exhibit weaknesses in isolated scenarios, especially with steep slopes in
scenarios 3, 4 and 7b﴿.

11Here, it is important to remember that all runs were considered in the power calculation, irrespective of whether a
particular design covered at least five synergistic points in a particular run or not. This is justified as the synergy areas
were generally large enough such that designs had the chance to detect at least five synergistic points if they explored
a wide enough area of the dose space: Overall, there were no instances where none of the tested designs covered at
least five synergistic points.
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Figure 4: Heatmap displaying the power for detecting at least 5 synergistic points across all simulation runs
by experimental design ﴾x‐axis﴿ and monotherapy scenario ﴾y‐axis﴿. Notice that the color range is adjusted
to the data range with 0.7<power<1.

Specificity: Specificity was high, with a mean above 99.6% and a standard deviation below 2.2%
across all designs and monotherapy scenarios, indicating that ‐ irrespective of the design ‐ only
a small number of additive points was misclassified as synergistic. Results by scenario and design
are contained in appendix A.2.

Error control: The family‐wise error rate, reflecting the percentage of simulation runs where at
least one false synergy or antagonism call was made, was generally controlled at approximately
10% as desired. However, there were exceptions in which the inferential procedure was either too
strict or too liberal compared to the nominal level. The deviation patterns appear mostly random,
with the following exceptions: Too strict decisions, leading to a lower FWER of approx. 6% on
average across all designs, are systematically observed for the scenarios with either very shallow
slopes of h = 0.5 or very steep slopes h = 2 or a mix thereof whenever partial agonists are
present. When analyzed separately by design, uniform ray designs exhibited the most stringent
error control with FWER = 5.8% ﴾design 3﴿ resp. FWER = 8.4% ﴾design 4﴿, averaged across all
monotherapy scenarios. The EC50 based ray design reached FWER = 9.1% ﴾design 2﴿ and the
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uniform maximum power design reached FWER = 9.2% ﴾design 1﴿. The checkercube designs
achieved FWER = 8.7% ﴾design 7﴿, FWER = 10.3% ﴾design 6﴿ resp. FWER = 12.3% ﴾design
5﴿. The latter observation is mostly driven by one outlier, where the checkercube design with dilu‐
tions around the EC50 sampled very high effect combinations in a particular high slope scenario
﴾scenario 7﴿, leading to many additive effects being mistaken as antagonistic effects, probably due
to the random procedure employed to ensure that effects remain in the 0 − 100% killing range.
In total, too liberal decisions occurred in 31/98 cases across all designs and all monotherapy sce‐
narios, but were mostly moderate in nature; a threshold of FWER = 15% was e.g. only exceeded
in 3/98 cases, pointing towards an overall satisfactory error control. The appendix A.2 provides
further numerical results.
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6 Discussion and Further Research Venues

The present simulation study explored seven experimental designs in seven different monother‐
apy scenarios with respect to their capacity to detect synergistic interactions among three drugs.
During the 200 simulation runs, the location of synergies varied within the dose cube, following a
tetrahedron shape with run‐specific centerpoint. Altogether, synergy was created in such a way
that it was most wide spread among low dose resp. low to medium effect combinations. The Bliss
independence model was used both for data generation and data analysis.

The results of the simulation indicate that there may not be one single design that performs best
with respect to every metric of interest and is robust across all scenarios. For instance, a 4x4x4
checkercube with effective concentrations EC10, EC30, EC50 and EC60 on the axes as suggested
by C. Chen et al. ﴾2018﴿ showed almost perfect sensitivity across all instances. However, with
respect to the power to detect at least five synergistic points it was ultimately outperformed by
designs with lower sensitivities, such as a design sampling uniformly from a 5x5x5 checkercube
with the five lowest serial dilution steps of the monotherapies on the axes. The main reason for
this was that the 4x4x4 checkercube with effective concentrations sampled a rather narrow range
in the dose space, thereby in some occasions missing the simulated synergy area. One step
towards combining the advantages of these two designs could be to test uniform sampling from
a checkercube with effective concentrations on the axes in future simulation studies, possibly even
sampling from more than five effective concentrations to improve coverage of the design space.

Another promising design examined in the present simulation study was the uniform maximum
power design by Tan et al. ﴾2009﴿. It tended to show high power and high sensitivy, but it is
unclear whether these findings can generalize to different synergy patterns from the ones that were
considered in this simulation study, as this design also covers a rather limited range in the dose
space, which, however, happened to aligned well with the simulated synergy area. An advantage
of this design is that the sampled region is thoughtfully chosen based on an effect range of interest
under Loewe additivity. A disadvantage is that the uniform maximum power design can be difficult
to implement in scenarios with partial agonists due to numerical instability and smaller shared log‐
linear segments on the dose‐response curves. It also appears to exhibit a somewhat undesired
point placement in scenarios with very low slopes. In scenarios with high slopes, it can possibly
perform comparatively well, as long as there are no partial agonists and slopes are not too different.
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Yet, its variability in sensitivities can become high when slopes are steep. Overall, the results suggest
that this designmay provemost useful for experiments involving full agonists withmoderate slopes.
From a practical standpoint, it must be kept in mind that this design involves considerably more
laboratory effort as it does not follow any serial dilution or factorial combination scheme and thus
requires the preparation of many distinct drug concentrations.

Regarding ray designs, it was found that they tend to exhibit lower sensitivities than the other
tested designs, despite aligning adequately with the simulated synergy patterns. Moreover, on
average, they showed the highest variability in sensitivities among all tested designs. Nonetheless,
the power to detect at least five synergistic points appeared promising for uniform ray designs.
Whenever the slopes vary among the drugs, it appears recommendable to base the construction
of uniform rays on a suitable factor‐level table to achieve a certain potency alignment. In general,
optimizing the factor‐level table and especially the dilution scheme further may allow to improve
the performance of uniform ray designs with regard to sensitivity. For two‐drug combinations,
progress has been made with respect to the selection of dilution schemes for ray designs based
on optimal design approaches, partially embedded in a Bayesian framework ﴾Almohaimeed &
Donev, 2014; Holland‐Letz et al., 2020; Holland‐Letz & Kopp‐Schneider, 2015; Sperrin et al., 2015﴿,
suggesting future research venues for multi‐drug combinations. Regarding the analysis, it is likely
that the performance of ray designs would improve when moving from a pointwise to a raywise
synergy assessment embedded in an appropriate analysis framework ﴾Fan & Zhang, 2014﴿. Yet,
any modeling would require model checking, which is not easily feasible in a larger simulation
study and potentially also resource‐intensive in practical experimentation in early drug discovery.

Across all monotherapy scenarios and designs, the simulation study has confirmed that it is gen‐
erally reasonable to conduct triple combination experiments with a budget of 384 runs, allowing
for 96 design points and four replicates. This holds conditional on the simulated synergy pattern,
the assumed synergy effect size of 15% relative to the null effect and the assumed experimental
noise following a normal distribution with a standard deviation of 3. Strictly speaking, one may
also condition on potency differences between the monotherapies, as the EC50 values were kept
fixed at values suggesting that one of the drugs is notably less potent than the other two during
the simulation. Yet, even under the somewhat simplified conditions explored in the simulation,
it has also emerged that some specific monotherapy scenarios remain challenging, lowering the
chances of detecting synergies. This applies especially to scenarios involving monotherapies with
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high slopes: When all drugs had a slope of h = 2, power and sensitivity were reduced, but still
reached levels of ≥ 80% resp. ≥ 35% in the present simulation. As long as theoretical progress
regarding experimental designs for triple‐combination studies continues to be largely lacking, it
appears sensible to examine scenarios with high slopes in more detail in future simulation studies
and investigate how to improve pragmatic checkercube and ray designs in these cases and/or test
whether a higher replicate number can yield a more robust performance.

Finally, it must be kept in mind that the performance of the investigated experimental designs is also
dependent on the applied analysis methodology. A strength of the implemented bootstrap‐based
approach is that the family‐wise error rate appears, on average, well‐controlled: Large deviations
from the nominal level occur rarely and would possibly occur even more rarely if more simulation
runs and more bootstrap samples were used. Yet, a satisfactory error control by bootstrapping
methods such as the ones introduced by Thas et al. ﴾2022﴿ already constitutes notable progress in
the area of drug interaction assessment, where especially early point‐wise interaction screenings
unaccompanied bymodeling approaches are often conducted without any or without an adequate
inferential procedure ﴾Calzetta et al., 2024; Foucquier & Guedj, 2015; Thas et al., 2022﴿. This is
particularly dangerous as in‐vitro experimentation is often faced with considerable experimental
noise from various sources ﴾Vlot et al., 2019﴿, elevating the risk of false‐positive findings in the
absence of statistical error control.

The exclusive reliance on Bliss independence in the present simulation study may be considered
a limitation. It primarily owes to the need for a null model that can handle both varying relative
potencies and partial agonists without the need for complex adaptations. Yet, a re‐examination of
the simple monotherapy scenarios 1a﴿‐3a﴿, which are compatible with the standard Loewe addi‐
tivity model, could contribute further insights into the robustness of the findings, especially when
slopes are particularly shallow or particularly steep. Another way of extracting further insights from
the present simulation study would be to analyze on a run‐by‐run level whether the implemented
designs have difficulties detecting synergy in particular segments of the design space, such as
particularly low or high effect areas in an attempt to better understand where the variability in
sensitivities stems from. In the former case, synergy is less pronounced in terms of absolute effect
and may thus be more easily swallowed by noise; in the latter case, however, the emergence of
synergy may be challenged by the maximum possible effect of 100 % cell killing.
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7 Ethical Considerations

Despite challenges inherent in the investigation of multi‐drug combinations in in‐vitro experiments
and the translation of their findings into the clinic, such experiments appear crucial for gaining in‐
sights into the nature of drug interactions ﴾Calzetta et al., 2024﴿. In fact, as e.g. Chou ﴾2008﴿
argues, in‐vitro studies contribute information about drug interactions that could never be ob‐
tained from clinical trials in humans: It would be ethically prohibitive to explore a wide enough
range of monotherapy and combination doses in clinical trials to allow the assessment of interac‐
tions in their strict sense, defined as deviations from a suitable reference model for additive action
at particular dose combinations ﴾Chou, 2008; Foucquier & Guedj, 2015﴿.

The exploration of multi‐drug combinations already during early drug discovery may bear great
potential both from a public health and an industry perspective: In oncology, for instance, curative
cancer therapies ﴾if they exist﴿ almost always involve multi‐drug combinations as single agents do
not achieve a satisfactory benefit‐risk profile ﴾Palmer et al., 2019﴿. Hence, systematically explor‐
ing a wider range of combinations therapies at earlier time points may improve success in drug
discovery. Yet, the question remains how to prioritize combination therapies for testing and, sub‐
sequently, which criteria to apply when prioritizing among the tested combination therapies. Both
aspects are tied to the question what main benefits one may expect from combination therapies
in a particular therapeutic area. Palmer et al. ﴾2019﴿ discuss that focusing exclusively on combi‐
nation therapies for which synergistic interactions in terms of efficacy are expected and possibly
confirmed in experiments may turn out to be misleading: Currently established combination ther‐
apies in the area of oncology appear to mostly lack synergistic interactions but still prove clinically
useful due to low cross‐resistance, mitigating the early onset of drug resistance.

From an ethical perspective, synergistic efficacy may not be a suitable stand‐alone decision cri‐
terion for the prioritization of combination therapies and should always viewed in the context of
the overall efficacy, toxicity and resistance mechanism shown by a particular combination therapy
﴾Palmer et al., 2019; Tallarida, 2011﴿. Yet, establishing synergistic interactions at early stages in the
discovery process may provide an incentive to further investigate a particular combination therapy
with respect to the mentioned aspects and, ultimately, accumulate sufficient pre‐clinical evidence
on efficacy, toxicity and resistance mechanisms to make an informed decision about whether a
combination therapy should be developed further or not. In general, before progressing to in‐
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vivo testing and eventually clinical trials in humans, it is crucial to ensure that all drugs involved in
a combination therapy contribute to the combination’s activity in a useful manner ﴾Beppler et al.,
2016; Brennan et al., 2022; Cokol et al., 2017﴿. This aspect has not been addressed in the present
master thesis as only an initial interaction screening setting, focused on detecting net interactions
irrespective of how they originate, was considered. However, when synergies are detected in a
triple combination context, the role of the constituent drugs in the combination should routinely
be clarified in follow‐up in‐vitro experiments to avoid exposing animals and eventually humans to
unnecessary risks from constituents that do not make a relevant contribution to efficacy but may
still induce adverse effects in subsequent in‐vivo experiments.
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8 Conclusion

This master’s thesis has demonstrated that the field of assessing interactions between drugs or,
generally, chemicals has a long‐standing history dating back roughly 100 years but has focused
more on suitable analyses of drug interactions than on suitable experimental designs. Altogether,
there appears to be a scarcity of principled design proposals for in‐vitro experiments in the liter‐
ature, especially for the case of three‐drug or multi‐drug combinations. Moreover, even existing
methods such as the uniform maximum power design, are rarely used in practice and pragmatic
checkercube or ray designs are preferred. The latter always involve choices, for which there is
not yet any reliable general guidance, such as the specification of dose levels on the checkercube
axes or ray ratios and accompanying dilution series. The absence of principled design proposals
and generally valid guidance for checkercube and ray designs, however, is understandable as an
optimization with respect to the mentioned aspects would mostly require knowledge about the
expected interaction patterns, which is rarely available before the experimentation. This lack of
knowledge creates the need to efficiently cover relevant areas of the dose space in an attempt
to reduce the risk of missing interactions if they are truly present; whether this is achieved by
dedicated space‐filling designs such as uniform designs or, pragmatically, with e.g. checkercubes
spanning a wide enough area in the dose space may appear less critical. The results of a simu‐
lation study have indicated that uniform maximum power designs and checkercube designs tend
to achieve a better sensitivity than ray designs, but that almost all designs achieve a promising
performance with respect to measures of practical interest, such as the power to detect at least
five simulated synergistic points, across the majority of scenarios. Future research should focus on
monotherapy scenarios with steep slopes, which have been found to pose the greatest difficulties
for synergy detection in the presented simulation study.
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A Appendix

A.1 Visualization of Simulation Settings

A.1.1 Monotherapy Dose‐Response Curves
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Figure A1: Monotherapy dose‐response curves for all scenarios. ﴾a﴿ and ﴾b﴿ only differ in the upper asymptotes, the dilution series remains the same.
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A.1.2 Centers of Synergy Tetrahedra

Figure A2: Center coordinates for the synergy tetrahedra for all scenarios. The triangle highlights the EC50 coordinate, around which centers vary.
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A.1.3 Designs for Scenario 1a﴿

﴾a﴿ EC50 ray design ﴾b﴿ Uniform ray design using dose ranges

﴾c﴿ Uniform ray design using factor levels ﴾d﴿ Combined display of ray designs

Figure A3: Ray designs for Scenario 1a﴿. The plots use linearly scaled dose axes. Each axis spans 5 times the EC50 of the respective drug for enhanced
comparability. Plot ﴾a﴿ uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the
dose range. Plot ﴾c﴿ uses mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot
﴾d﴿ combines plots ﴾a﴿‐﴾c﴿
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﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale
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﴾c﴿ Uniform maximum power design on z‐space

Figure A4: Uniform maximum power design for Scenario 1a﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 3 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range. Plot ﴾c﴿ visualizes the points on the design space for the transformed variables 𝑧,
which is a triangular prism defined by the constraint 𝑧2 + 𝑧3 < 1.
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﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels
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﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A5: Checkercube designs for Scenario 1a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.4 Designs for Scenario 1b﴿

﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A6: Uniform maximum power design for Scenario 1b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 3 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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A.1.5 Designs for Scenario 2a﴿

﴾a﴿ EC50 ray design ﴾a﴿ Uniform ray design using dose ranges

﴾b﴿ Uniform ray design using factor levels ﴾c﴿ Combined display of ray designs

Figure A7: Ray designs for Scenario 2a﴿. The plots use linearly scaled dose axes. The axes span up to 20 times the EC50 of the respective drug. Plot ﴾a﴿
uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the dose range. Plot ﴾c﴿ uses
mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot ﴾d﴿ combines plots ﴾a﴿‐﴾c﴿

72



﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale
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﴾c﴿ Uniform maximum power design on z‐space

Figure A8: Uniform maximum power design for Scenario 2a﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 10 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range. Plot ﴾c﴿ visualizes the points on the design space for the transformed variables 𝑧,
which is a triangular prism defined by the constraint 𝑧2 + 𝑧3 < 1.
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﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels
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﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A9: Checkercube designs for Scenario 2a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.6 Designs for Scenario 2b﴿

﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A10: Uniform maximum power design for Scenario 2b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 5 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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A.1.7 Designs for Scenario 3a﴿

﴾a﴿ EC50 ray design ﴾a﴿ Uniform ray design using dose ranges

﴾b﴿ Uniform ray design using factor levels ﴾c﴿ Combined display of ray designs

Figure A11: Ray designs for Scenario 3a﴿. The plots use linearly scaled dose axes. Each axis spans 3 times the EC50 of the respective drug for enhanced
comparability. Plot ﴾a﴿ uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the
dose range. Plot ﴾c﴿ uses mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot
﴾d﴿ combines plots ﴾a﴿‐﴾c﴿
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﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale
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﴾c﴿ Uniform maximum power design on z‐space

Figure A12: Uniform maximum power design for Scenario 3a﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 3 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range. Plot ﴾c﴿ visualizes the points on the design space for the transformed variables 𝑧,
which is a triangular prism defined by the constraint 𝑧2 + 𝑧3 < 1.
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﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels
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﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A13: Checkercube designs for Scenario 3a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.8 Designs for Scenario 3b﴿

﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A14: Uniform maximum power design for Scenario 3b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning up to 3 times the EC50 of the respective
drug. Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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A.1.9 Designs for Scenario 4a﴿

﴾a﴿ EC50 ray design ﴾a﴿ Uniform ray design using dose ranges

﴾b﴿ Uniform ray design using factor levels ﴾c﴿ Combined display of ray designs

Figure A15: Ray designs for Scenario 4a﴿. The plots use linearly scaled dose axes. Each axis spans 10 times the EC50 of the respective drug for enhanced
comparability. Plot ﴾a﴿ uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the
dose range. Plot ﴾c﴿ uses mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot
﴾d﴿ combines plots ﴾a﴿‐﴾c﴿
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﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A16: Uniform maximum power design for Scenario 4a﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 10 times the EC50 of drugs 1 and 2 but
only 1 time the EC50 of drug 3. Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels

﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A17: Checkercube designs for Scenario 4a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.10 Designs for Scenario 4b﴿

Figure A18: Uniform maximum power design for Scenario 4b﴿. Plot uses linearly scaled dose axes.
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A.1.11 Designs for Scenario 5a﴿

﴾a﴿ EC50 ray design ﴾a﴿ Uniform ray design using dose ranges

﴾b﴿ Uniform ray design using factor levels ﴾c﴿ Combined display of ray designs

Figure A19: Ray designs for Scenario 5a﴿. The plots use linearly scaled dose axes. Each axis spans 6 times the EC50 of the respective drug for enhanced
comparability. Plot ﴾a﴿ uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the
dose range. Plot ﴾c﴿ uses mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot
﴾d﴿ combines plots ﴾a﴿‐﴾c﴿
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﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A20: Uniform maximum power design for Scenario 5a﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 4 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels
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﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A21: Checkercube designs for Scenario 5a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.12 Designs for Scenario 5b﴿

﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A22: Uniform maximum power design for Scenario 5b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 4 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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A.1.13 Designs for Scenario 6a﴿

﴾a﴿ EC50 ray design ﴾a﴿ Uniform ray design using dose ranges

﴾b﴿ Uniform ray design using factor levels ﴾c﴿ Combined display of ray designs

Figure A23: Ray designs for Scenario 6a﴿. The plots use linearly scaled dose axes. Each axis spans 10 times the EC50 of the respective drug for enhanced
comparability. Plot ﴾a﴿ uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the
dose range. Plot ﴾c﴿ uses mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot
﴾d﴿ combines plots ﴾a﴿‐﴾c﴿
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﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A24: Uniform maximum power design for Scenario 6a﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 10 times the EC50 of of drug 2 and drug
3 but only 5 times the EC50 of drug 3. Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels
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﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A25: Checkercube designs for Scenario 6a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.14 Designs for Scenario 6b﴿

﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A26: Uniform maximum power design for Scenario 6b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 4 times the EC50 of drug 2 and drug 3
and 8 times the EC50 of drug 1. Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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A.1.15 Designs for Scenario 7a﴿

﴾a﴿ EC50 ray design ﴾a﴿ Uniform ray design using dose ranges

﴾b﴿ Uniform ray design using factor levels ﴾c﴿ Combined display of ray designs

Figure A27: Ray designs for Scenario 7a﴿. The plots use linearly scaled dose axes. Each axis spans 4 times the EC50 of the respective drug for enhanced
comparability. Plot ﴾a﴿ uses mixture proportions based on the EC50 values. Plot ﴾b﴿ uses mixture proportions based on a uniform table, scaled to the
dose range. Plot ﴾c﴿ uses mixture proportions based on a uniform table, scaled based on a factor‐level table with EC20, EC40, EC50, EC60, EC80. Plot
﴾d﴿ combines plots ﴾a﴿‐﴾c﴿
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﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A28: Uniform maximum power design for Scenario 6b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 3 times the EC50 of the respective drug.
Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.

99



﴾a﴿ Checkercube with 4 dose levels around EC50

﴾b﴿ Sampling from checkercube with the 5 lowest dose levels

100



﴾c﴿ Checkercube with 4 dose levels at EC10, EC30, EC50 and EC60

Figure A29: Checkercube designs for Scenario 7a﴿. Plot ﴾a﴿ illustrates a 4x4x4 cube based on the closest 2 monotherapy dilutions above and the closest
2 monotherapy dilutions below the EC50 of each drug. Plot ﴾b﴿ samples uniformly from a 5x5x5 cube based on the lowest 5 monotherapy dilutions of
each drug. Plot ﴾c﴿ is a 4x4x4 cube based on EC10, EC30, EC50, EC60 of each drug. The axes are log scaled and span the entire dose range.
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A.1.16 Designs for Scenario 7b﴿

﴾a﴿ Uniform maximum power design on linear dose scale

﴾b﴿ Uniform maximum power design on log dose scale

Figure A30: Uniform maximum power design for Scenario 7b﴿. Plot ﴾a﴿ uses linearly scaled dose axes, spanning 4 times the EC50 of drug 2 and drug 3
and 8 times the EC50 of drug 1. Plot ﴾b﴿ uses log scaled dose axes, spanning the entire dose range.
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A.2 Further Simulation Results

A.2.1 Design Points and Coverage of Synergy Area

Table A1: Further Information about Implemented Designs

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Scenario 1a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾1﴿ 70 ﴾10﴿ 70 ﴾10﴿ 63 ﴾9﴿ 64 ﴾28﴿ 68 ﴾18﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 1 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 4 ﴾4﴿ 4 ﴾0﴿ 0 ﴾0﴿ 3 ﴾0﴿
𝑛syn: M ﴾SD﴿ 26.1 ﴾9.2﴿ 23.5 ﴾13.6﴿ 32.7 ﴾12.7﴿ 26.4 ﴾8.1﴿ 16.8 ﴾5.5﴿ 19.4 ﴾4.5﴿ 21.0 ﴾8.5﴿
𝑝syn: M ﴾SD﴿ 0.37 ﴾0.13﴿ 0.34 ﴾0.19﴿ 0.47 ﴾0.18﴿ 0.42 ﴾0.13﴿ 0.26 ﴾0.09﴿ 0.28 ﴾0.07﴿ 0.33 ﴾0.13﴿
Scenario 1b﴿
𝑁total ﴾𝑁90+﴿ 65 ﴾5﴿ 70 ﴾10﴿ 70 ﴾11﴿ 63 ﴾10﴿ 64 ﴾13﴿ 68 ﴾10﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 0 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 4 ﴾4﴿ 4 ﴾0﴿ 0 ﴾0﴿ 3 ﴾0﴿
𝑛syn: M ﴾SD﴿ 34.9 ﴾9.3﴿ 20.3 ﴾11.8﴿ 30.2 ﴾11.5﴿ 24.4 ﴾7.8﴿ 16.8 ﴾5.5﴿ 19.4 ﴾4.5﴿ 21.0 ﴾8.5﴿
𝑝syn: M ﴾SD﴿ 0.54 ﴾0.14﴿ 0.29 ﴾0.17﴿ 0.43 ﴾0.16﴿ 0.39 ﴾0.12﴿ 0.26 ﴾0.09﴿ 0.29 ﴾0.07﴿ 0.33 ﴾0.13﴿
Scenario 2a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾43﴿ 70 ﴾10﴿ 70 ﴾10﴿ 63 ﴾9﴿ 64 ﴾35﴿ 68 ﴾14﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 3 ﴾0﴿ 18 ﴾18﴿ 0 ﴾0﴿ 0 ﴾0﴿ 23 ﴾0﴿ 0 ﴾0﴿ 0 ﴾0﴿
𝑛syn: M ﴾SD﴿ 18.9 ﴾7.0﴿ 21.7 ﴾12.6﴿ 39.9 ﴾13.0﴿ 28.5 ﴾4.5﴿ 10.9 ﴾3.4﴿ 26.0 ﴾4.8﴿ 20.7 ﴾6.6﴿
𝑝syn: M ﴾SD﴿ 0.27 ﴾0.10﴿ 0.31 ﴾0.18﴿ 0.57 ﴾0.19﴿ 0.45 ﴾0.07﴿ 0.17 ﴾0.05﴿ 0.38 ﴾0.07﴿ 0.32 ﴾0.10﴿
Scenario 2b﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾0﴿ 70 ﴾10﴿ 70 ﴾10﴿ 63 ﴾10﴿ 64 ﴾12﴿ 68 ﴾6﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 0 ﴾0﴿ 18 ﴾18﴿ 0 ﴾0﴿ 0 ﴾0﴿ 23 ﴾0﴿ 0 ﴾0﴿ 0 ﴾0﴿
𝑛syn: M ﴾SD﴿ 54.0 ﴾10.1﴿ 18.7 ﴾11.0﴿ 35.7 ﴾11.5﴿ 26.3 ﴾4.5﴿ 10.9 ﴾3.4﴿ 26.0 ﴾4.8﴿ 20.7 ﴾6.6﴿
𝑝syn: M ﴾SD﴿ 0.76 ﴾0.14﴿ 0.27 ﴾0.16﴿ 0.51 ﴾0.16﴿ 0.42 ﴾0.07﴿ 0.17 ﴾0.05﴿ 0.38 ﴾0.07﴿ 0.32 ﴾0.10﴿
Scenario 3a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾0﴿ 70 ﴾10﴿ 70 ﴾10﴿ 63 ﴾9﴿ 64 ﴾38﴿ 68 ﴾33﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 1 ﴾0﴿ 18 ﴾18﴿ 0 ﴾0﴿ 18 ﴾18﴿ 5 ﴾0﴿ 1 ﴾0﴿ 21 ﴾10﴿
𝑛syn: M ﴾SD﴿ 26.3 ﴾9.3﴿ 24.3 ﴾13.9﴿ 21.8 ﴾9.4﴿ 24.9 ﴾13.4﴿ 20.5 ﴾7.6﴿ 23.3 ﴾6.6﴿ 21.2 ﴾13.2﴿
𝑝syn: M ﴾SD﴿ 0.37 ﴾0.13﴿ 0.35 ﴾0.20﴿ 0.31 ﴾0.13﴿ 0.39 ﴾0.21﴿ 0.32 ﴾0.12﴿ 0.34 ﴾0.10﴿ 0.33 ﴾0.21﴿
Scenario 3b﴿
𝑁total ﴾𝑁90+﴿ 45 ﴾4﴿ 70 ﴾10﴿ 70 ﴾12﴿ 63 ﴾10﴿ 64 ﴾18﴿ 68 ﴾16﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 1 ﴾0﴿ 18 ﴾18﴿ 0 ﴾0﴿ 18 ﴾18﴿ 5 ﴾0﴿ 1 ﴾0﴿ 21 ﴾10﴿
𝑛syn: M ﴾SD﴿ 22.9 ﴾6.5﴿ 22.4 ﴾12.7﴿ 20.7 ﴾8.7﴿ 22.9 ﴾12.4﴿ 20.5 ﴾7.6﴿ 23.3 ﴾6.6﴿ 21.2 ﴾13.2﴿
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
𝑝syn: M ﴾SD﴿ 0.51 ﴾0.14﴿ 0.32 ﴾0.18﴿ 0.29 ﴾0.12﴿ 0.36 ﴾0.20﴿ 0.32 ﴾0.12﴿ 0.34 ﴾0.10﴿ 0.33 ﴾0.21﴿
Scenario 4a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾24﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾10﴿ 64 ﴾31﴿ 68 ﴾23﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 2 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 2 ﴾2﴿ 8 ﴾0﴿ 3 ﴾0﴿ 35 ﴾8﴿
𝑛syn: M ﴾SD﴿ 42.7 ﴾12.4﴿ 22.8 ﴾13.8﴿ 59.4 ﴾9.5﴿ 21.6 ﴾13.0﴿ 12.8 ﴾4.3﴿ 13.5 ﴾3.8﴿ 12.1 ﴾7.1﴿
𝑝syn: M ﴾SD﴿ 0.60 ﴾0.17﴿ 0.33 ﴾0.20﴿ 0.85 ﴾0.14﴿ 0.31 ﴾0.19﴿ 0.20 ﴾0.07﴿ 0.20 ﴾0.05﴿ 0.19 ﴾0.11﴿
Scenario 4b﴿
𝑁total ﴾𝑁90+﴿ NA ﴾NA﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾10﴿ 64 ﴾13﴿ 68 ﴾10﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ NA ﴾NA﴿ 17 ﴾17﴿ 0 ﴾0﴿ 2 ﴾2﴿ 8 ﴾0﴿ 3 ﴾0﴿ 35 ﴾8﴿
𝑛syn: M ﴾SD﴿ NA ﴾NA﴿ 20.9 ﴾12.2﴿ 56.6 ﴾9.2﴿ 20.0 ﴾11.9﴿ 12.8 ﴾4.3﴿ 13.5 ﴾3.8﴿ 12.1 ﴾7.1﴿
𝑝syn: M ﴾SD﴿ NA ﴾NA﴿ 0.30 ﴾0.17﴿ 0.81 ﴾0.13﴿ 0.29 ﴾0.17﴿ 0.20 ﴾0.07﴿ 0.20 ﴾0.05﴿ 0.19 ﴾0.11﴿
Scenario 5a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾0﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾10﴿ 64 ﴾32﴿ 68 ﴾22﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 1 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 3 ﴾3﴿ 8 ﴾0﴿ 2 ﴾0﴿ 15 ﴾4﴿
𝑛syn: M ﴾SD﴿ 39.3 ﴾10.7﴿ 23.2 ﴾13.7﴿ 52.0 ﴾10.9﴿ 24.6 ﴾10.5﴿ 15.0 ﴾5.2﴿ 16.5 ﴾4.7﴿ 15.8 ﴾7.4﴿
𝑝syn: M ﴾SD﴿ 0.55 ﴾0.15﴿ 0.33 ﴾0.19﴿ 0.74 ﴾0.16﴿ 0.35 ﴾0.14﴿ 0.23 ﴾0.08﴿ 0.24 ﴾0.07﴿ 0.25 ﴾0.12﴿
Scenario 5b﴿
𝑁total ﴾𝑁90+﴿ 68 ﴾0﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾11﴿ 64 ﴾14﴿ 68 ﴾10﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 4 ﴾0﴿ 18 ﴾17﴿ 0 ﴾0﴿ 4 ﴾3﴿ 8 ﴾0﴿ 2 ﴾0﴿ 15 ﴾4﴿
𝑛syn: M ﴾SD﴿ 20.2 ﴾7.9﴿ 20.2 ﴾11.7﴿ 48.9 ﴾10.3﴿ 22.1 ﴾9.4﴿ 15.0 ﴾5.2﴿ 16.5 ﴾4.7﴿ 15.8 ﴾7.4﴿
𝑝syn: M ﴾SD﴿ 0.30 ﴾0.12﴿ 0.29 ﴾0.17﴿ 0.70 ﴾0.15﴿ 0.32 ﴾0.13﴿ 0.23 ﴾0.08﴿ 0.24 ﴾0.07﴿ 0.25 ﴾0.12﴿
Scenario 6a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾38﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾10﴿ 64 ﴾25﴿ 68 ﴾18﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 0 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 0 ﴾0﴿ 3 ﴾0﴿ 0 ﴾0﴿ 2 ﴾0﴿
𝑛syn: M ﴾SD﴿ 39.0 ﴾10.3﴿ 22.0 ﴾13.0﴿ 50.6 ﴾10.1﴿ 26.2 ﴾7.4﴿ 14.8 ﴾3.8﴿ 17.0 ﴾3.7﴿ 15.8 ﴾4.8﴿
𝑝syn: M ﴾SD﴿ 0.55 ﴾0.15﴿ 0.31 ﴾0.19﴿ 0.72 ﴾0.15﴿ 0.37 ﴾0.11﴿ 0.23 ﴾0.06﴿ 0.25 ﴾0.06﴿ 0.25 ﴾0.07﴿
Scenario 6b﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾0﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾11﴿ 64 ﴾10﴿ 68 ﴾8﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 0 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 0 ﴾0﴿ 3 ﴾0﴿ 0 ﴾0﴿ 2 ﴾0﴿
𝑛syn: M ﴾SD﴿ 31.0 ﴾10.1﴿ 19.0 ﴾11.1﴿ 45.8 ﴾9.1﴿ 23.6 ﴾6.8﴿ 14.8 ﴾3.8﴿ 17.0 ﴾3.7﴿ 15.8 ﴾4.8﴿
𝑝syn: M ﴾SD﴿ 0.44 ﴾0.14﴿ 0.27 ﴾0.16﴿ 0.65 ﴾0.13﴿ 0.34 ﴾0.10﴿ 0.23 ﴾0.06﴿ 0.25 ﴾0.06﴿ 0.25 ﴾0.07﴿
Scenario 7a﴿
𝑁total ﴾𝑁90+﴿ 71 ﴾0﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾10﴿ 64 ﴾47﴿ 68 ﴾22﴿ 64 ﴾7﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 1 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 10 ﴾9﴿ 1 ﴾0﴿ 2 ﴾0﴿ 25 ﴾10﴿
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Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
𝑛syn: M ﴾SD﴿ 36.7 ﴾10.7﴿ 23.5 ﴾13.8﴿ 32.4 ﴾12.4﴿ 23.2 ﴾12.9﴿ 24.8 ﴾6.9﴿ 16.1 ﴾5.0﴿ 16.2 ﴾10.1﴿
𝑝syn: M ﴾SD﴿ 0.52 ﴾0.15﴿ 0.34 ﴾0.20﴿ 0.46 ﴾0.18﴿ 0.33 ﴾0.18﴿ 0.39 ﴾0.11﴿ 0.24 ﴾0.07﴿ 0.25 ﴾0.16﴿
Scenario 7b﴿
𝑁total ﴾𝑁90+﴿ 68 ﴾1﴿ 70 ﴾10﴿ 70 ﴾10﴿ 70 ﴾10﴿ 64 ﴾33﴿ 68 ﴾10﴿ 64 ﴾0﴿
𝑛syn<5 ﴾𝑁syn=0﴿ 6 ﴾0﴿ 17 ﴾17﴿ 0 ﴾0﴿ 9 ﴾9﴿ 1 ﴾0﴿ 2 ﴾0﴿ 25 ﴾10﴿
𝑛syn: M ﴾SD﴿ 15.1 ﴾6.3﴿ 21.8 ﴾12.8﴿ 30.9 ﴾11.6﴿ 21.4 ﴾11.8﴿ 24.8 ﴾6.9﴿ 16.1 ﴾5.0﴿ 16.2 ﴾10.1﴿
𝑝syn: M ﴾SD﴿ 0.22 ﴾0.09﴿ 0.31 ﴾0.18﴿ 0.44 ﴾0.17﴿ 0.31 ﴾0.17﴿ 0.39 ﴾0.11﴿ 0.24 ﴾0.07﴿ 0.25 ﴾0.16﴿

In Table A1, 𝑁total refers to the total number of combination points tested in a particular design. Out of these 𝑁total

points, the subset 𝑁90+ is characterized by a null effect of ≥ 90% under Bliss independence ﴾before random noise
was added﴿. 𝑛syn<5 is the number of simulation runs where less than five of the design points lie in the synergistic
area. Out of these 𝑛syn<5 runs, in the subset 𝑛syn=0 there is no design point in the synergistic area, i.e. the respective
design misses the simulated synergistic area completely. 𝑛syn reflects the absolute number of design points lying in
the synergistic area, whereas 𝑝syn reflects the proportion of design points lying in the synergistic area. Means ﴾M﴿ and
standard deviations ﴾SD﴿ across all runs are reported.
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A.2.2 Sensitivity, Specificity and Family‐Wise Error Rate

Table A2: Mean and Standard Deviation of Sensitivties

Sensitivity: Mean ﴾SD﴿ Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Scenario 1a﴿ 0.89 ﴾0.08﴿ 0.50 ﴾0.14﴿ 0.50 ﴾0.13﴿ 0.51 ﴾0.14﴿ 0.58 ﴾0.09﴿ 0.66 ﴾0.08﴿ 0.96 ﴾0.05﴿
Scenario 1b﴿ 0.88 ﴾0.06﴿ 0.54 ﴾0.15﴿ 0.54 ﴾0.14﴿ 0.54 ﴾0.14﴿ 0.73 ﴾0.08﴿ 0.70 ﴾0.09﴿ 0.94 ﴾0.07﴿
Scenario 2a﴿ 0.79 ﴾0.11﴿ 0.55 ﴾0.14﴿ 0.52 ﴾0.13﴿ 0.51 ﴾0.12﴿ 0.64 ﴾0.10﴿ 0.73 ﴾0.07﴿ 0.96 ﴾0.05﴿
Scenario 2b﴿ 1.00 ﴾0.01﴿ 0.49 ﴾0.17﴿ 0.52 ﴾0.15﴿ 0.53 ﴾0.14﴿ 0.83 ﴾0.08﴿ 0.77 ﴾0.09﴿ 0.93 ﴾0.07﴿
Scenario 3a﴿ 0.58 ﴾0.17﴿ 0.44 ﴾0.11﴿ 0.42 ﴾0.13﴿ 0.42 ﴾0.12﴿ 0.37 ﴾0.08﴿ 0.39 ﴾0.08﴿ 0.96 ﴾0.05﴿
Scenario 3b﴿ 0.68 ﴾0.14﴿ 0.48 ﴾0.12﴿ 0.45 ﴾0.11﴿ 0.44 ﴾0.13﴿ 0.57 ﴾0.08﴿ 0.55 ﴾0.08﴿ 0.93 ﴾0.07﴿
Scenario 4a﴿ 0.78 ﴾0.09﴿ 0.64 ﴾0.15﴿ 0.77 ﴾0.08﴿ 0.70 ﴾0.14﴿ 0.63 ﴾0.11﴿ 0.71 ﴾0.08﴿ 0.96 ﴾0.06﴿
Scenario 4b﴿ NA ﴾NA﴿ 0.42 ﴾0.14﴿ 0.57 ﴾0.10﴿ 0.48 ﴾0.14﴿ 0.74 ﴾0.10﴿ 0.77 ﴾0.08﴿ 0.99 ﴾0.03﴿
Scenario 5a﴿ 0.96 ﴾0.04﴿ 0.54 ﴾0.14﴿ 0.58 ﴾0.11﴿ 0.55 ﴾0.14﴿ 0.58 ﴾0.12﴿ 0.69 ﴾0.09﴿ 0.97 ﴾0.04﴿
Scenario 5b﴿ 0.89 ﴾0.12﴿ 0.59 ﴾0.16﴿ 0.63 ﴾0.12﴿ 0.61 ﴾0.15﴿ 0.72 ﴾0.09﴿ 0.74 ﴾0.08﴿ 0.98 ﴾0.04﴿
Scenario 6a﴿ 0.79 ﴾0.08﴿ 0.52 ﴾0.15﴿ 0.55 ﴾0.12﴿ 0.53 ﴾0.13﴿ 0.71 ﴾0.09﴿ 0.76 ﴾0.08﴿ 0.98 ﴾0.04﴿
Scenario 6b﴿ 0.99 ﴾0.03﴿ 0.52 ﴾0.18﴿ 0.59 ﴾0.14﴿ 0.57 ﴾0.16﴿ 0.82 ﴾0.08﴿ 0.78 ﴾0.11﴿ 0.96 ﴾0.06﴿
Scenario 7a﴿ 0.89 ﴾0.09﴿ 0.65 ﴾0.13﴿ 0.67 ﴾0.12﴿ 0.66 ﴾0.14﴿ 0.38 ﴾0.06﴿ 0.71 ﴾0.09﴿ 0.97 ﴾0.05﴿
Scenario 7b﴿ 0.58 ﴾0.25﴿ 0.40 ﴾0.12﴿ 0.42 ﴾0.11﴿ 0.41 ﴾0.12﴿ 0.52 ﴾0.08﴿ 0.69 ﴾0.11﴿ 0.97 ﴾0.05﴿
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Table A3: Mean and Standard Deviation of Specificities

Specificity: Mean ﴾SD﴿ Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Scenario 1a﴿ 0.998 ﴾0.01﴿ 0.997 ﴾0.02﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.997 ﴾0.01﴿
Scenario 1b﴿ 0.998 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.997 ﴾0.02﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 2a﴿ 0.999 ﴾0.01﴿ 0,999 ﴾0.00﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿
Scenario 2b﴿ 0.997 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.00﴿
Scenario 3a﴿ 0.997 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 3b﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.00﴿ 0.999 ﴾0.00﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿
Scenario 4a﴿ 0.995 ﴾0.02﴿ 0.999 ﴾0.00﴿ 1.000 ﴾0.00﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 4b﴿ NA ﴾NA﴿ 0.999 ﴾0.01﴿ 1.000 ﴾0.00﴿ 0.999 ﴾0.00﴿ 0.999 ﴾0.00﴿ 0.999 ﴾0.00﴿ 0.999 ﴾0.01﴿
Scenario 5a﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.02﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿
Scenario 5b﴿ 0.997 ﴾0.02﴿ 0.998 ﴾0.02﴿ 0.998 ﴾0.01﴿ 0.997 ﴾0.02﴿ 0.997 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 6a﴿ 0.996 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 6b﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.997 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 7a﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.998 ﴾0.01﴿
Scenario 7b﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.998 ﴾0.01﴿ 0.999 ﴾0.01﴿ 0.999 ﴾0.01﴿

Table A4: Family‐Wise Error Rates

FWER Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7
Scenario 1a﴿ 0.11 0.12 0.09 0.08 0.12 0.14 0.09
Scenario 1b﴿ 0.08 0.11 0.09 0.06 0.15 0.09 0.09
Scenario 2a﴿ 0.16 0.08 0.06 0.10 0.11 0.06 0.06
Scenario 2b﴿ 0.07 0.06 0.05 0.07 0.09 0.08 0.08
Scenario 3a﴿ 0.10 0.11 0.10 0.08 0.08 0.08 0.08
Scenario 3b﴿ 0.04 0.08 0.06 0.05 0.07 0.07 0.09
Scenario 4a﴿ 0.12 0.07 0.01 0.12 0.12 0.14 0.11
Scenario 4b﴿ NA 0.05 0.01 0.07 0.09 0.06 0.10
Scenario 5a﴿ 0.07 0.07 0.05 0.07 0.14 0.10 0.08
Scenario 5b﴿ 0.11 0.10 0.06 0.11 0.13 0.16 0.09
Scenario 6a﴿ 0.13 0.14 0.05 0.10 0.15 0.15 0.10
Scenario 6b﴿ 0.09 0.13 0.07 0.11 0.11 0.11 0.10
Scenario 7a﴿ 0.08 0.10 0.08 0.11 0.28 0.13 0.11
Scenario 7b﴿ 0.08 0.09 0.06 0.07 0.10 0.11 0.07
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A.2.3 Power for Detecting at Least 10 Synergistic Points

Figure A31: Heatmap displaying the power for detecting at least 10 synergistic points by experimental design ﴾x‐axis﴿ and monotherapy scenario ﴾y‐axis﴿.
Power is calculated accross all simulation runs, irrespectively of whether at least 10 simulated synergistic points were covered by a particular design in
a particular run. Nonetheless, synergy areas were generally large enough to give all designs the chance to detect at least 10 synergistic points, if they
sampled in a relevant range: There were only 1‐3 isolated runs in scenarios 1,2,3 and 7 where no design managed to cover at least 10 synergistic points.

A.2.4 Software Code and Raw Results

R code used in the simulations as well as files containing the raw simulation results for all scenarios
and runs are provided via GitHub in the repository https://github.com/marielse/triplecombi.
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