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Abstract of the thesis presented to the Senate of Hasselt University in fulfillment of the
requirement for the Masters degree in Statistics and Data Science

SAPTIO-TEMPORAL EVOLUTION OF COVID-19 IN BELGIUM FROM

2020-2022

By

IBEH NKEM GLORIA - 2158877

June 2025

Background.

Since the outbreak of coronavirus disease 2019 (COVID-19) in 2019, over 4 million people

in Belgium have been the disease. The primary mode of transmission of this disease is

through breathing in the respiratory droplets of an infected person, or the droplets can

land on the eyes or in the month. During the pandemic, various studies were conducted

to support policy makers with insights to make relevant decision on implementation of

intervention strategies. However, it is imperative to evaluate the impact of some of these

intervention; vaccination, stringency on even after the pandemic. We evaluated the effect

of vaccination and the stringency index, a proxy for non-pharmaceutical intervention,

against COVID-19 infection and hospitalization in Belgium from 2020 to 2022.

Methods.

Data on COVID-19 confirmed cases, hospitalizations, and vaccination coverage in Bel-

gium were made publicly available by Sciensano, the Belgian institute for public health.

A Bayesian spatiotemporal dynamic model was used assess the impact of vaccination

and stringency on incidence of COVID-19 infections and hospitalizations putting into

consideration the space and time variability.

Our findings revealed that the interaction of vaccination and stringency decreased inci-

dence of COVID-19 cases and hospitalizations.

Modeling incidence of COVID-19 cases and hospitalization on split data for the periods;

no vaccination period in 2020, primary dose period in 2021, and booster dose period in
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2022 showed significant effect of the interaction between stringency and vaccination in

reducing the risk of infection and hospitalization during the year 2021 and 2022. However,

these effects decline from 0.02% reduction in infection risk in 2021 to 0.01% reduction in

2022. Likewise, a decline from 0.09% reduction in hospitalization risk in 2021 to 0.04%

reduction in 2022 was observed. The risk of hospitalization increases by 128% in 2020,

63% in 2021 and 82% in 2022 with one unit increase in the logarithm of incidence of

COVID-19.

Conclusion.

Our findings highlights combined effect of vaccination and stringency as an effective

control measure to contain the spread of COVID-19.

Keywords: Bayesian Hierarchical model, COVID-19, Hospitalization, Random Effect,
Temporal effect.
Sustainable Development Goal (SDG): Goal 3 Good Health and Well-being
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CHAPTER 1

INTRODUCTION

1.1 Background

1. Background

In late 2019, the viral pneumonia outbreak was first reported in Wuhan City, the capital

of Hubei Province in China (Cheng et al., 2020), and the pneumonia was identified to

be caused by a pathogen i.e severe acute respiratory syndrome coronavirus (SARS-CoV-

2). The World Bank Organization named it the new COVID-19. On 30 January 2020,

the WHO declared the COVID-19 epidemic a public health emergency of international

concern. This virus, considered to be spreading rapidly, causes infection across the

globe. As at 13 January 2023, more than 270 million cases of COVID-19 cases have been

reported in Europe, with Belgium accounting for over 4 million of these cases (Statista,

2025). According to the World Health Organization, as at 22 June, 2025, over 778 million

cases of COVID-19 have been confirmed globally. At a time, beyond the health crisis,

the pandemic disrupted economic and social activities, limiting productivity that left

some countries to struggle post pandemic. This is a reflection of limited preparation in

emergency situations.

The disease is characterized by dry cough, fatigue, fever, dyspnea, myalgia among others

(Chilamakuri and Agarwal, 2021). A clinical diagnosis is required to detect and confirm

the presence of the virus in the human system. Infected individuals can show symptoms

or remain asymptomatic. The asymptomatic state of the disease does not reveal the

actual burden of the disease, but is a much more significant public health concern, being

a hidden source of new infection. Previous study in Belgium showed that the proportion

of SARS-CoV-2 infections that were asymptomatic ranged from 20% to 88% (Hoxha et

al., 2021). The disease is highly contagious and can be transmitted from person-to-person
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INTRODUCTION

(Chan et al., 2020).

Rapid spread and high infectious nature of the disease did not only burden health facil-

ities but had a cascade impact on socioeconomic development due to limited interaction

between people. A lockdown measure, which began on 18 March 2020, was applied in

Belgium (Wagener et al., 2022) along side other protective behaviors, e.g face masking,

social distance, were enforced. In late December 2020, the Belgian government began

the roll-out of the vaccination campaign, with several vaccine campaigns targeting differ-

ent groups and other population in Belgium at successive phases. It reached a primary

vaccination (first dose) coverage of more than 80% of its adult population aged 18 years

and older by October 2021 (Braeye et al., 2023). A primary vaccination coverage of 96%

was attained by January 1 2023, for those 65 year and older. While 93% and 75% of the

same age group received at least one or two booster doses respectively(Stouten et al.,

2025).

Belgium administered two viral vector vaccines, AstraZeneca and Janssen brands, and

two mRNA vaccines Pfizer and Moderna brands. Clinical trials of mRNA COVID-19

vaccines demonstrated their efficacy in reducing both incidence and hospitalization in

real-world settings among individuals who received at least one dose of either vaccine;

BNT162b2 (Pfizer/BioNTech) and mRNA-1273 (Moderna) (Pawlowski et al., 2021).

However, study by (Braeye et al., 2023) also stated that the emergence of the Delta

variant of the disease and the subsequent Omicron variant resulted in an increase in the

intensive care unit and hospitalization occupancy. Period of predominance circulation

of Alpha variant is from 26 January 2021 to 30 June 2021, Delta from 1 July 2021 to

2 January 2022 and Omicron from 3 January 2022 to 31 January 2023 (including all

subvariants) (Stouten et al., 2025).

Vaccine protection against COVID-19 wanes over time. Data from six European countries

showed that for residents of the community aged 65-79 years and 80 years and older, the

effectiveness of vaccination against hospitalization declined over 6 months after primary

2
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vaccination with a decrease from 66.9% (95% CI: 60.1; 72.6) to 36.1% (95% CI: 27.3;

67.9). The efficacy of the first booster vaccine against hospitalization decreased from

95.6% (95% CI: 88.0; 98.4) to 67.7% (95% CI: 45.9; 80.8). However, for the second

booster, an increase in effectiveness from 39.3% (95% CI: 3.9; 64.5) to 80.6% (95% CI:

67.2; 88.5) for those aged 65-79 years and a slight increase from 82.0% (95% CI: 75.9;

87.0) to 83.9% (95% CI: 77.7; 88.4) for those 80 years and older were observed within

the study period (Kislaya et al., 2023). According to study by Braeye T. et al, that

evaluated the variant-specific effects of vaccination and prior infection against COVID-

19 incidence and hospitalization showed that while primary vaccine reduced incidence

and hospitalization, this effect fades away and becomes less effective. While the booster

vaccine increased protection against COVID-19 incidence and hospitalization over the

study period (Braeye et al., 2023).

The incidence and hospitalization of COVID-19 has fluctuated over time and space in

Belgium and was influenced by different factors and regional disparities. Studies have

integrated spatial and temporal components into the analysis of various drivers of change

in COVID-19 incidence and hospitalization. The effects of mobility on the evolution of

the pandemic have been investigated at the level of all 581 Belgian municipalities and

it revealed that the reduction of mobility significantly affected the reduction of new

infection and this impact is greater in most populated area (Ensoy-Musoro et al., 2023).

Less stringent travel policies showed that a greater cases during this period were imported

from other areas (Nguyen et al., 2023).

Understanding how vaccination and the composite measure of strictness of government

policies impact temporal evolution and spatial heterogeneity in spread of COVID-19 cases

and hospitalization across Belgian province is relevant in assessing the effectiveness of

the country’s response and optimize findings for future response. The results will guide

authorities in making decisions about emerging airborne infectious diseases.

In this research, we explore factors associated with spatial and temporal heterogeneity
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of COVID-19 incidence and hospitalization in Belgian provinces, with the aim to assess

the changes in their effectiveness during different phases of the study. The neighborhood

structure was used to describe dependency and spatial similarities among provinces.

Research Questions

1. What is the effect of vaccination and non pharmaceutical intervention on incidence

of COVID-19 infections and hospitalizations?

2. What is the association between incidence of COVID-19 infections and hospital-

izations?

3. What are the spatial disparities in COVID-19 cases and hospitalization?

4



CHAPTER 2

MATERIALS AND METHODS

This section focuses on the description of the data source, preparation and exploration,

and statistical method and analysis.

2.1 Description of the dataset and pre-processing

COVID-19 cases data

The daily confirmed number of cases of COVID-19 across all 581 municipalities in Bel-

gium was obtained from publicly available data on the Sciencano website, the Belgian

Institute for Public Health, from 4 March 2020 to 3 September 2023. Cases of COVID-

19 less than 5 were replaced by 2.5 in the data. Data were aggregated in a weekly time

frame.

Hospitalization data

The total number of daily COVID-19 hospitalization for each of the 10 provinces of

Belgium and the capital region of Brussels was also obtained from Sciensano. Weekly

aggregate of the data was carried out.

Population data

The population size of each municipality in Belgium in 2021 was retrieved from STAT-

BEL, the Belgian Statistical Office. The total population size of Belgium was about 11.5

million on 1 January 2020, this value was assumed to remain constant for the period of

2020 to 2022 in this analysis.

Vaccination data

The vaccination data containing cumulative counts of doses administered in Belgium

classified by dose type (A, B, C, E, E2, E3), age group, and week in each municipality

were retrieved from Sciensano. Dose types A and B are the initial dose (first dose) and the

follow-up dose (second dose) for the primary vaccine schedule that requires two doses,

5



Materials and Methods

respectively. However, dose-type C is a single-dose vaccine required to complete the

primary vaccine schedule. Dose types E, E2, and E3 are first, second, and third booster

doses, respectively, given after completing the primary vaccine schedule. Typically, an

individual can only receive dose E2 after receiving dose E and can receive dose E3 after

receiving dose E2. Cumulative vaccination values less than 10 were replaced by the

number 5 in the data.

Stringency data

Stringency index data are publicly available from Our World in Data. The stringency

index is a measure of the severity of government policies, not necessarily the effectiveness

of a country’s response. It is a summary measure of non pharmaceutical intervention:

school closure, workplace closure, travel bans, cancellation of public events, restriction

of public gathering, closure of public transport, stay-at-home requirement, public infor-

mation campaigns and restriction on internal movement, with values ranging from 0 to

100 (Roser, 2021). When stringency is equal to 0, there are no restrictions in the society,

but when equal to 100 the highest restriction is obtainable. The data set contains daily

stringency index records for 255 locations in the following geographical regions: Asia,

Europe, Africa, Oceania, and North America and South America from the period of

"01-01-2020" to "10-10-2023".

Table 2.1: Overview of the datasets used in the analysis, including details on their
temporal resolution, spatial scale, and time frame.

Dataset Resolution Spatial Level Time Frame
Cases Daily Municipalities 04 March 2020-03 Sept., 2023
Hospitalization Daily Provinces 06 March 2020-27 June 2023
Vaccination Weekly Municipalities Week 53, 2020-Week 43, 2022
Population Year Individual 2021
Stringency Index Daily National 03 Jan, 2020–04 Oct., 2023

A summary of the data sets used in our study can be found in Table 2.1.
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2.2 Data processing

The process of data cleaning and processing involves identifying relevant parts(variables),

modifying them as required, and discarding irrelevant parts. The five data sets retrieved

and described above were transformed and merged into suitable structure for our analysis.

From the stringency data set, a subset of Belgium stringency index data was obtained.

The ISO 8601 week numbering system of the international standard was used to create

a time variable in year-week. The aggregate of the average weekly stringency index

was calculated. In Belgium, a weekly period from January 2020 to December 2022, the

stringency index ranged from 0 to 81.5 approximately. The data set of cases of COVID-

19 was transformed into a weekly aggregate by province (to increase the opportunity for

events and pool together larger populations) to obtain the sum of infection in a given

week per province. Information on all 581 unique municipality-to-province mapping

was obtained and joined to the vaccination data set, this way, we were able to obtain

the weekly aggregate by province of the cumulative number of people that received the

vaccine. The number of new lab-confirmed COVID-19 hospitalized patients in the last 24

hours (incidence) was aggregated into weekly counts per province. This number excludes

patients who were admitted to the hospital for other reasons but tested positive for

COVID-19 in a screening context. The population data was then assessed to ensure that

the names of the provinces were spelled in the same language across all other data sets.

The trimming of white space and the removal of characters within the variables were

performed.

The five data sets were then merged using the time point in year-week and province

identifiers to ensure accurate linkage at the provincial level. The data frame now con-

tains weekly records of the observed number of infections, hospitalizations, cumulative

vaccinations, stringency index, the province id’s, dose, and population size per province.

Additional key variables such as hospitalization rate and infection rate, were calculated

using existing raw data following standardized definition. A new variable dose type was
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created. This variable (dose-type) splits the data into three time periods as follows: No

vaccination period -2020, primary series vaccination - 2021 (those who received dose B

or dose C; full initial vaccination) and booster (those who received at least one dose of

the booster vaccine). Again, the cumulative vaccination rate was calculated. Finally, the

expected cases of hospitalization and expected cases of infections were calculated.

The rate of incidence of COVID-19 infection (confirmed infections, also called confirmed

cases) was defined as the number of cases per 100,000 over a week per province. The

rate of incidence of hospitalizations was calculated as the number of hospitalizations per

100,000, over a week per province. The cumulative vaccination rate was calculated as

the weekly proportion of cumulative vaccination per 100 individuals per province-dose

type. The expected value of COVID-19 incidence was derived by multiplying the weekly

global risk of infection for Belgium by the population at risk in each province. Likewise,

the expected value of COVID-19 incidence of hospitalization was derived using the same

formula.

The data set was then filtered based on dose type, while we ensured a real final coverage

for each of the three vaccination periods was captured, and analysis of infections and

hospitalizations was conducted on the three data sets separately.
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2.3 Description of data set

Table 2.2: Data dictionary of study variables
Variable Variable Description Data Type

n-case-r Weekly rate of cases per 100,000 per
province

Continuous

n-hosp-r Weekly rate of hospitalization per
100,000 per province

Continuous

CASES Weekly counts of infection per
province

Discrete

Incidence Weekly counts of hospitalization per
province

discrete

CUMUL Cumulative number of COVID-19
vaccine administered

discrete

stringency-index Measure of restriction policy in Bel-
gium

Numeric

2.3.1 Primary outcome

The weekly number of confirmed incidence of COVID-19 infection is the primary outcome

of this study.

2.3.2 Secondary outcome

The secondary outcome is the weekly number of new lab-confirmed COVID-19 patients.

This number excludes patients who were admitted to the hospital for other reasons but

tested positive for COVID-19 in a screening context.

2.4 Exploratory data analysis

Exploratory data analysis was performed to visualize the characteristics of the study

data. This involved plotting the time plot of the rate of infection and hospitalization

over time and across provinces. The time plot of the stringency index variable was

visualized. We also plotted time plot of the rate of vaccination by province and dose

types. The minimum and maximum values of the variables by province and time are

reported in the Appendix. Data were presented in tables and figures as appropriate.
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2.5 Statistical model

2.5.1 Bayesian hierarchical models

This study used Bayesian hierarchical models extended to account for time dependency,

spatial similarities, and space-time interaction to investigate the effect of factors as-

sociated with infections and hospitalizations and the extent to which infections and

hospitalizations change at the provincial and temporal levels over time. The model in-

corporates information from the spatial neighbors structure to estimate relative risk with

reduced variance of estimates and smooth implausible values. It explicitly models the

auto-correlation too. This approach was chosen because the idea is that some sources of

variation between regions are spatially dependent while some are not, thus Besag-Yorke-

Mollie-2 (Besag–York–Molli‘e (BYM)2) prior was used as a spatial prior. The temporal

structured and unstructured effect was modeled. Inference from models was made using

the Integrated Nested Laplace Approximation Integrated nested Laplace approximations

algorithm (INLA) as it is a more efficient strategy for approximating the posterior.

Spatial neighbors are defined using the spatial weight matrix that quantifies the distance

between neighbors. The graph that assigns the sets of neighbors to each province was

produced from a Belgian shape file using information on area boundaries. We first define

the adjacency matrix. In this case, we are adopting a contiguous (shared either boundary

edges or boundary corners) neighbor definition. We accept contiguous polygons that

share at least one vertex. For any unit with no shared borders (no neighbors), we get

the nearest unit and list it as a neighbor. The nb2INLA functions of the spdep package

in R was used to make the adjacency matrix into a graph format that can be used in

R-INLA.

This model assumes that each spatial unit (province in this case) is spatially dependent

on every other spatial unit and that infections are likely to show some degree of temporal

correlation.

Model selection
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To identify the most appropriate spatiotemporal model for both outcomes, several models

with different combinations of structured and unstructured components for temporal

and spatial random effects were estimated. The spatial trend was modeled using BYM2

with default priors. likewise, the space-time interaction, temporal trends, and regression

parameters for fixed effects were set to the default.

Their fits were compared using Deviance Information Criterion (DIC) while the sum of

the log of the Conditional Predictive Ordinate (CPO) values was used to check the model

prediction. The DIC criterion accounts for the complexity of the model. Smaller DIC

indicates better model.

D(θ) = 2 log(p(y | θ)) (2.1)

pD = Eθ|y[D(θ)]−D(Eθ|y[θ]) (2.2)

DIC = D + pD (2.3)

2.5.2 Model formulation

Infection: spatio-temporal model formulation

The spatiotemporal model assumes that the number of incidence of infection in Belgium

provinces (i = 1, . . . , 11) and week (t = 1,. . . ,105) follows a Poisson distribution as:

zit ∼ Poisson(λit) (2.4)

λit = Eitρit (2.5)

log(ρit) = ηit (2.6)

ηit = β0 + β1x1,it + β2x2,it + β3x1,itx2,it + bi + γt + ϕt + δit (2.7)

where:

• Eit is the expected number of cases of COVID-19 in the i-th province.
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• ρit is the relative risk of infection for each province i and week t, this is essentially

the relative deviation of this province at week t from expected.

• ηit is the linear predictor,

• β0 is the intercept (average rate of infection in the entire study region),

• β1 is the parameter estimate for rate of vaccination,

• β2 is the parameter estimate for the stringency index,

• β3 is the parameter estimate for the interaction between vaccine and stringency

index,

• bi is a spatial random component modeled using BYM-2,

• ϕt is an unstructured temporal effect,

• γt is a temporally structured effect modeled,

• δit is the space-time interaction term.

The BYM2 model uses a scaled spatially structured component and an unstructured

component: b = 1√
τb

(√
1− ψ v∗ +

√
ψ u∗

)
The random walk in time of first order is as follows:

γt | γt−1 ∼ Normal(γt−1, σ
2)

τ = 1/σ2 is the precision while the unstructured temporal effect is modeled with an

independent and identically distributed normal(Gaussian exchangeable) as follows

ϕj ∼ N (0, σ2ϕ)

12
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The interaction between space and time ( no spatial or temporal structure ) follows a

Gaussian distribution as:

δij ∼ N (0, σ2δ )

Hospitalization: spatiotemporal model formulation

To assess the effect of incidence of COVID-19 infection, vaccination, and stringency index

on the incidence of hospitalization, we fitted the Bayesian hierarchical model extended

to account for time dependency, spatial similarities, and space-time interaction.

The number of hospitalizations in each Belgian province (i = 1, . . . , 11) and week (t =

1,. . . ,105) follows a Poisson distribution as follows:

yit ∼ Poisson(λit) (2.8)

λit = Eitρit (2.9)

log(ρit) = ηit (2.10)

ηit = β0 + β1x1,it + β2x2,it ++β3x3,it + β4x1,itx2,it + bi + γt + ϕt + δit (2.11)

where:

• Eit is the expected number of hospitalization,

• ρit is the relative risk of hospitalization for each province i and week t,

• β0 is the intercept (average rate of hospitalization in the entire study region),

• β1 is parameter estimate for rate of vaccination,

• β2 is the parameter estimate for the stringency index,

• β3 is the parameter estimate for COVID-19 infection,

• β4 is the parameter estimate for the interaction between vaccine and stringency

index.
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and the remaining parameters are defined as earlier.
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CHAPTER 3

THE RESULTS

3.1 Exploratory data analysis

Figure 3.1: Rate of incidence of COVID-19 infections in Belgium provinces from 20W09
to 22W52

The time series plot in Figure 3.1 shows the evolution of the confirmed incidence of

COVID-19 infection rate in Belgium provinces from week 09 of 2020 (i.e week_id 01 on

the rescaled axis) to the last week 52 of 2022 (i.e week_id 150 on the rescaled axis). We

see a peak between week_id 49 and 73 (January-June 2021) that is associated with the

Alpha variant of concern (VOC) (Phylogenetic Assignment of Named Global Outbreak

(Pango) (Stouten et al., 2025). A gradual increase is noticed from week_id 73 to week_id

97 (July 021 to January 2022) with a peak at week_id 95. This period was attributed

to the Delta variant of the virus (Stouten et al., 2025). We see a sharp deep around

week_id 98 possibly due to the end of year holiday period, which was followed by a

sharp rise with peak at week_id 100 corresponding to increase cases of COVID-19 due

to the Omicron variant spread which began in January 2022.
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Figure 3.2: Weekly Stringency Index (National Level) from 20W09 to 22W52

Across all provinces, per week, we observe consistency in stringency indicating uniformity

in the national policy rather than provincial policy. Figure 3.2 shows how stringency in-

creased in the early weeks of 09 2020, with the highest value of 80 indicating intense public

health restrictions in the early period of this study. We observe a gradual relaxation of

public health restrictions in Belgium that fluctuated over the years.

Figure 3.3: Rate of hospitalizations per province in Belgium from 20W09 to 22W52
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Figure 3.3 shows the evolution of COVID-19 hospitalizations in Belgium provinces. It

can be seen in Figure 3.3 that there is a random fluctuation of the rate of hospitalizations

across all provinces, but more specifically, we see the highest peak towards the end of the

year 2020. A peak in hospitalizations was also observed during the period of the Alpha

variant and a gradual increase during the Delta variant was also observed.

Figure 3.4: Rate of vaccination per province and dose type in Belgium from 20W53 to
22W52

Figure 3.4 shows vaccination campaign began in Belgium during the end of year 2020.

The cumulative vaccination coverage rate for population who completed the primary

vaccination increased gradually starting from week 53 year 2020. By week 33 year 2021,

all province attained 60% coverage and above but Brussels that did not exceed 60%. The

population percentage that received at least one dose of booster vaccination started week

16 year 2021. All provinces reached 40% and above except for Brussels. WestVlaanderen

had the highest primary and booster dose coverage of 82% and 75%, respectively, at the

end of year 2022.
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Summary statistics and visuals

The ranges of key variables by province-year-week for the three periods can be found in

the Appendix.

3.2 Results for spatio-temporal data analysis

3.2.1 Result: Model selection for models fitted to infections data during the

three periods separately

No vaccination period

Table 3.1: Model fitted to infections for population percentage with no vaccination
Model Structure Log CPO Sum DIC

Model 1 BYM2, RW2 -2987.89 4774.461
Model 2 BYM2, RW 1 -2992.188 4774.315

Table 3.2: Modle 4: Log transformed estimates of model fitted to infection (Using 2020
data)

Parameter Estimate Std. Error LCI UCI
Intercept 0.9043 0.0723 0.7715 1.0561
Stringency_index 1.0012 0.0012 0.9988 1.0036

All models in Table 3.1 have the stringency index as the only predictor. From Table3.1 we

selected model 4 with the smallest DIC value of -28712.39 as the best model among the

models. The component of the model included spatial and temporal random effects and

the interaction between unstructured spatial and structured temporal random effects.

Table 3.2 shows the parameter estimate for model fitted to infection during the period

when the percentage of the population did not receive vaccination in 2020. After ac-

counting for spatial and temporal components, changes in the stringency index are not

associated with a significant increase or decrease in infections. The effect is practically

zero and non-significant, meaning that policy stringency did not measurably influence

the infections in year 2020.

Primary vaccination

From table 3.3 model 7 shows smallest DIC value of 6256.349 among the models high-
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Table 3.3: Model fitted to infections for initial(primary) dose completion-2021
Model Structure Log CPO Sum DIC

Model 7 BYM2, RW2 -3690.252 6256.349
Model 8 BYM2, RW2 -3691.698 6256.752
Model 9 BYM2, RW1 -3692.128 6257.394
Model 10 BYM2, RW1 -3694.123 6257.299

Table 3.4: Model 8: Log transformed estimates of model fitted to infection (Using 2021
data)

Parameter Estimate Std. Error LCI UCI
Intercept 1.3760 0.2289 0.9865 1.8855
CUMUL_vacc_rate 0.9941 0.0026 0.9888 0.9991
Stringency_index 1.0004 0.0029 0.9946 1.0061

lighting the effect of vaccination, stringency index and the interaction between stringency

and vaccination on the incidence of confirmed COVID-19 cases. The removal of interac-

tion between vaccination and stringency achieved a DIC value of 6256.752 with a very

small negligible difference. For these models, the spatial trend was modeled using BYM2,

the structured temporal trend modeled using the random walk of order two (RW2), un-

structured temporal trend with exchangeability and interaction between unstructured

spatial and unstructured temporal effect.

Table 3.4 shows parameter estimates for model-8 fitted to infection when the population

percentage received complete primary vaccination (period dominated by primary dose

B or C). A one-unit increase in vaccination is associated with a decrease of 0.53% in

the risk of infections in the population that completed primary vaccination. During this

period, policy restriction had negligible impact on the risk of infection. In Table 3.5 of

the parameter estimates from Model 7, model with interaction, shows that the effect of

interaction between the stringency index and vaccination significantly decreased the risk

of infection by 0.02%.

Booster vaccination

Table3.6 shows that model 12 had the smallest DIC value of 6562.722 among the models.
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Table 3.5: Model 7: Log transformed estimates of Model fitted to infection (Using 2021
data) with interaction
Parameter Estimate Std. Error LCI UCI
Intercept 1.1415 0.2321 0.7568 1.6667
CUMUL_vacc_rate 1.0014 0.0050 0.9915 1.0112
Stringency_index 1.0039 0.0036 0.9968 1.0110
CUMUL_vacc_rate:Stringency_index 0.9998 0.0001 0.9996 1.0000

Table 3.6: Booster: Fitted to infection-2022
Model structure Log CPO Sum DIC
Model 11 BYM2, RW2 -3763.619 6562.827
Model 12 BTM2, RW2 -3763.266 6562.722
Model 13 BYM1, RW1 -3763.739 6562.957
Model 14 BYM1, RW1 -3763.553 6562.862

Model 12 shows the effect of vaccination and the stringency index on the incidence of

confirmed COVID-19 cases. An extension of this model to include the interaction between

vaccination and stringency index achieved a DIC value of 6562.827 that did not change

much compared to Model 12.

Table 3.7 shows the parameter estimates for model 12 fitted to infections when percentage

of the population received at least one booster vaccine dose (E). It indicates that one-

unit increase in vaccination and stringency index is associated, respectively with 0.5%

significant increase and 0.8% non significant increase in the risk of infection. The param-

eter estimates of the extended model that included interaction between stringency and

vaccination, Table3.8 shows that each unit increase in both vaccination and stringency is

jointly associated with a 0.01% decrease in the risk of infection, though not significant.

From 2020 to 2022, the relationship between vaccination, policy stringency, and COVID-

19 infection risk evolved considerably in different vaccination phases during the pandemic.

Policy restriction when a percentage of the population has not received a vaccine did

not necessarily contain spread of infection. In addition to government restriction as a

mitigation measure, receiving a complete primary dose of the vaccine corresponds to

a reduction in infection risk by 0.02%. For the percentage population of those who
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Table 3.7: Model 12: Log transformed estimates of model fitted to infection (Using 2022
data)

Parameter Estimate Std. Error LCI UCI

Intercept 0.615 0.079 0.476 0.786
CUMUL_vacc_rate 1.005 0.002 1.000 1.009
Stringency_index 1.008 0.006 0.996 1.020

Table 3.8: Model 11: Log transformed estimates of Model fitted to infection (Using 2022
data) with interaction
Parameter Estimate Std. Error LCI UCI
Intercept 0.579 0.107 0.406 0.827
CUMUL_vacc_rate 1.006 0.003 0.999 1.012
Stringency_index 1.011 0.008 0.994 1.028
CUMUL_vacc_rate × Stringency_index 0.9999 0.00005 0.9998 1.000

received at least one dose of the booster vaccine, the synergistic effect of vaccination and

stringency corresponds to a decrease by 0.01% in infection risk. The risk of infection

weakened from 0.02% in 2021 to 0.01% in 2022. This could be as a result of the waning

immunity from primary doses and the emergence of more transmissible variants that

made it harder for relatively relaxed restrictions to control spread.

Figure 3.5: Spatial trend of model fitted
on infection: No vaccination(2020)

Figure 3.6: Spatial trend of model fitted
on infection: primary vaccination(2021)

Before widespread of vaccination in 2020, a spatially heterogeneous burden of COVID-

19 was observed, see Figure 3.5. Brussels which is an urban center, Liege, Luxemburg
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Figure 3.7: Spatial trend of model fitted
on infection: Booster vaccination(2022)

Figure 3.8: Temporal trend of model fitted
on infection: No vaccination(2020)

Figure 3.9: Temporal trend of model fitted
on infection: - primary vaccination(2021)

Figure 3.10: Temporal trend of model fit-
ted on infection: booster(2022)

and Hainaut experienced an elevated infection risk characterised by a spatial relative

risk above 1, compared to the entire Belgium after stringency index has been taken

into account, which could be attributed to a higher population density and mobility.

Other provinces showed reduced residual risk possibly due to lower exposure. Moving

to the period characterized with the percentage of population who completed primary

vaccination ( B or C) in 2021, Brussels maintained a high infection risk, Waloon Brabant

now showed a higher infection risk compared to the entire Belgium. This could reflect

a lag in vaccine uptake, population mobility or socioeconomic disparities in Walloon

Brabant.

Regardless of the booster roll out, a spatial surge was seen across provinces in Bel-

gium, with Luxembourg with the highest residual risk. The possible driver could be the
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Figure 3.11: Relative risk of COVID-19 infection in Belgium-2020

emergence of more transmissible variants (e.g Omicron) of the disease, reduced policy

stringency, behavioral fatigue or waning of primary vaccine immunity. However, the risk

in Brussels and Liege remained low.

In 2020 Figure 3.8, we see a decrease and later an increase in temporal infection risk,

peaking around week 27 year 2020 (week_id 33 on the rescaled x-axis), reflecting the

second wave of infection in Belgium. This is followed with a steep decline in the risk

towards the end of 2020. A steady rise in infection risk from early 2021, though low from

week 1 to week 25, and rise above the threshold of 1 from week 25, mirroring the Delta

variants wave and waning of immunity, see Figure 3.9. In 2022, the risk of infection

was low early in the year, see Figure 3.10 indicating the positive effect of the booster

interventions against the emergence of Omicron variant of the disease. However,this was

followed by a gradual rise in risk later in the year from week 17. Thus, infection risk was

time-dependent.
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Figure 3.12: Relative risk of COVID-19 infection in Belgium-2021

From figure 3.11 to figure 3.13 shows the relative risk of COVID-19 infection in Belgium-

nfew selected weeks in 2020, 2021 and 2022.

3.2.2 Result: Model selection for model fitted to hospitalizations data dur-

ing the three periods separately

No vaccination period

Table 3.9: Model fitted to hospitalization during no vaccination period
Model Structure DIC

Model 15 BYM2, RW2 3309.257
Model 16 BYM2, RW2 3309.646
Model 17 BYM2, RW1 3341.120
Model 18 BYM2, RW1 3313.741

Table 3.9 compares models that estimate the relative risk of hospitalizations for the

percentage population that did not receive vaccination. From 3.9 Model 15 with the

smallest DIC value of 3309.257 to be the best among the models, the model highlighted
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Figure 3.13: Relative risk of COVID-19 infection in Belgium-2022

Table 3.10: Model 16: log transform estimates of model fitted to hospitalization (Using
2020 data)

Parameter Mean Std. Error LCI UCI
Intercept 0.1225 0.0492 0.0515 0.2425
Stringency_index 0.9938 0.0052 0.9836 1.0042
logCASES 2.2868 0.0888 2.1164 2.4656

the effect of stringency index, confirmed cases of COVID-19 and interaction between

vaccination and cases of COVID-19 on the incidence of hospitalizations. The interaction

effect is non significant. The removal of the interaction between cases and stringency

index in the model achieved a DIC value of 3309.646 (Model 15) with little change in

value. So Model 16 was chosen. We modeled the spatial structure effect using BYM2 and

the structured and unstructured temporal effect using 2 and exchangeability respectively.

Table 3.10 shows the parameter estimates for model 16 fitted to hospitalizations when

the percentage of the population did not receive any vaccination (no vaccination period).
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Table 3.11: Model 15: log transformed estimates of model fitted to hospitalization (Using
2020 data) with interaction

Parameter Mean Std. Error LCI UCI
Intercept 0.0539 0.0433 0.0098 0.1705
Stringency_index 1.0109 0.0115 0.9885 1.0338
logCASES 2.7447 0.3126 2.1831 3.4100
Stringency_index:logCASES 0.9970 0.0018 0.9935 1.0005

After accounting for the spatial and temporal component, a one-unit increase in log

confirmed cases is associated with a significant increase 128% in the risk of hospitalization

in the population that did not receive vaccination. The policy restriction reduced the

risk of hospitalization but the reduction is non significant.

Primary vaccination period

Table 3.12: Model fitted to hospitalization for primary dose-2021 population.
Model structure Sum log CPO DIC
Model 19 BYM2, RW2 -2343.14 4130.364
Model 20 BYM2, RW2 -2359.114 4130.879
Model 21 BYM2, RW1 -2363.69 4135.450
Model 22 BYM2, RW1 -2380.347 4136.996

Table 3.13: Model 20: Log transformed estimates of model fitted to hospitalization
(Using 2021 data)

Parameter Estimate Std. Error LCI UCI
Intercept 0.6290 0.3366 0.1941 1.4865
CUMUL_vacc_rate 0.9802 0.0028 0.9747 0.9857
Stringency_index 1.0035 0.0078 0.9882 1.0191
logCASES 1.6521 0.0657 1.5255 1.7837

Table 3.12 compares models that estimates the relative risk of hospitalizations for the

percentage population that completed primary vaccination. From 3.12 we selected model

19 with the smallest DIC value of 4130.364 to be the best model among the models,

the model highlighted the effect of stringency index, vaccination, confirmed cases and

the interaction of vaccination and stringency on the incidence of hospitalizations. We

modeled the spatial structure effect using BYM2 and the structured and unstructured
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Table 3.14: Model 19:Log transformed estimates of model fitted to hospitalization (Using
2021 data) with interaction

Parameter Mean SD LCI UCI
Intercept 0.3593 0.1985 0.1071 0.8681
CUMUL_vacc_rate 1.0145 0.0092 0.9966 1.0328
Stringency_index 1.0190 0.0089 1.0018 1.0368
logCASES 1.6326 0.0612 1.5153 1.7556
CUMUL_vacc_rate:Stringency_index 0.9991 0.0002 0.9986 0.9995

temporal effect using 2 and exchangeability respectively.

Table 3.14 shows the parameter estimates for model 19 fitted to hospitalizations when

the population percentage completed primary vaccination dose. A one unit increase in

log cases is associated with a 63% significant increase in hospitalization risk, reflecting

that infections drive more hospitalizations. The interaction term between vaccination

and stringency was significantly less than one, indicating that when both interventions

increased jointly, they were associated with a small (0.09%) reduction in hospitalization

risk, suggesting a potential synergistic effect in reducing the burden on health facilities.

Booster period

Table 3.15: Model fitted to hospitalization booster dose-2022 population.
Model structures Log CPO sum DIC
Model 23 BYM2, RW2 -2335.437 4304.136
Model 24 BYM2, RW2 -2353.95 4303.522
Model 25 BYM2, RW1 -2353.722 4310.620
Model 26 BYM2, RW1 -2373.134 4309.958

Table 3.16: Model 24: Log transformed estimates of model fitted to hospitalization
(Using 2022 data)

Parameter Estimate Std. Error LCI UCI

Intercept 0.1193 0.0563 0.0437 0.2609
CUMUL_vacc_rate 0.9975 0.0033 0.9914 1.0042
Stringency_index 1.0153 0.0136 0.9885 1.0422
logCASES 1.8046 0.0868 1.6381 1.9795
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Table 3.17: Model 23: Log transformed estimates of model fitted to hospitalization
(Using 2022 data) with interaction

Parameter Mean SD LCI UCI
Intercept 0.0684 0.0335 0.0240 0.1530
CUMUL_vacc_rate 1.0075 0.0046 0.9990 1.0170
Stringency_index 1.0370 0.0150 1.0076 1.0667
logCASES 1.8207 0.0850 1.6577 1.9920
CUMUL_vacc_rate:Stringency_index 0.9996 0.0001 0.9994 0.9998

Table 3.15 compares models that estimate the relative risk of hospitalizations for the

percentage population that received at least one booster vaccination. From Table3.15

we selected model 24 with the smallest DIC value of 4303.522 to be the best among the

models, the model highlighted the effect of stringency, vaccination, confirmed cases on

the incidence of hospitalizations. Extending the model to include interaction between

vaccination and stringency resulted to Model 23 with DIC value of 4304.136. We modeled

the spatial structure effect using BYM2 and the structured and unstructured temporal

effect using RW2 and exchangeability respectively.

Table 3.16 shows parameter estimates for Model 24 fitted to hospitaization for population

percentage that received at least one booster vaccine. Vaccination reduced the risk of

hospitalization by 0.25% but the reduction is not significant. A one unit increase in

log cases increased the risk of hospitalization by 80%. Further more, Table 3.17 shows

parameter estimates for the extended model with interaction. A one-unit increase in log

cases is associated with a 82% increase in the risk of hospitalization. Each unit increase

in vaccination and stringency is jointly associated with 0.04% decrease in hospitalization

risk.

In 2020, strict government policy reduced the risk of hospitalizations by 0.5%, though

this reduction is not significant. A significant increase in the risk of hospitalization 128%

during this period was shown. The synergistic effect of vaccination and stringency index

on reducing COVID-19 hospitalization risk was weakened from 0.09% in 2021 to 0.04%

in 2022. Furthermore, the effect of COVID-19 cases on the increase in hospitalization
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risk was reduced from 128% in 2020 to 63% in 2021, then increased to 82% in 2022.

Figure 3.14: Spatial trend of model fitted
on hospitalization: No vaccination(2020)

Figure 3.15: Spatial trend of model fit-
ted on hospitalization: primary vaccina-
tion(2021)

Figure 3.16: Spatial trend of model fit-
ted on hospitalization: Booster vaccina-
tion(2022)

Figure 3.17: Temporal trend of model
fitted on hospitalization: No vaccina-
tion(2020)

The risk of COVID-19 hospitalization in 2020, period when percentage of the population

has not received vaccination, was elevated in Brussels and in Luxemburg, see Figure

3.14. During the widespread spread of primary vaccine doses in 2021, Figure 3.15, the

risk of hospitalization remained high in Brussels and Luxembourg and spread to Namur,

West Flander. In 2022, Figure 3.16, their was an elevated risk in Brussels, West Flander,

Namur and Liege.

In 2020, hospitalization risk started high early in the year, with a sharp decline, then

slight fluctuation in the year, then followed by a sharp rise towards the end of the year,
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Figure 3.18: Temporal trend of model fit-
ted on hospitalization: primary vaccina-
tion(2021)

Figure 3.19: Temporal trend of model fit-
ted on hospitalization: booster(2022)

see Figure 3.17. The year 2021 began with a high risk of hospitalization, aligned with

the emergence of the Alpha variant of the disease, the risk dropped rapidly going below

1 then began to rise in week 21 and peaked at about week 30 which aligns with the

emergence of Delta variant period. The risk began to drop gradually again around week

36 and went below 1 after week 41 and began to rise towards the end of the year, finally

showed a drop, see Figure3.18. In 2022, there was an indication of a gradual increase in

hospitalization risk with fluctuation across the year, see Figure 3.19.

From figure 3.20 to figure 3.22 shows the relative risk of COVID-19 hospitalization in

Belgium from 2020 - 2022 for a few selected weeks.

In 2020, we can see an increased risk of infection in Liege, Namur and Hainaut, Figure

3.23, characterised by posterior probabilities above 0.8. The risk of hospitalization in this

period was high at Luxembourg and Namur, see Figure 3.26. Most provinces in 2021 are

unlikely to experience increased risk of infection see Figure 3.24 while we are uncertain if

there is risk in Luxembourg, Walloon Brabant and Brussels. The risk of hospitalization in

this period is high at Luxembourg, Namur and West Flanders, see Figure 3.27. Further,

the risk of infection in 2022 Figure 3.25 was increased in Luxembourg, Namur, Walloon

Brabant, Flemish Brabant, Antwerp and East Flander, the risk of hospitalization in this

period was noticed at Namur and Liege, see Figure 3.28.
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Figure 3.20: Relative risk of COVID-19 hospitalization in Belgium-2020

In Appendix Figure 1-12, we show the posterior probabilities of the risk of infection for

the interactions between space and time. Different provinces show evidence of interaction

larger than 1 that changes for different week-year.

Appendix Figure 13-24 shows the posterior probabilities of the risk of hospitalization for

the interactions between space and time.
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Figure 3.21: Relative risk of COVID-19 hospitalization in Belgium-2021

Figure 3.22: Relative risk of COVID-19 hospitalization in Belgium-2022
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Figure 3.23: Posterior probability that the
relative risks of infection exceed 1-No vac-
cination

Figure 3.24: Posterior probability that the
relative risks of infection exceed 1- primary
vaccination

Figure 3.25: Posterior probability that the
relative risks of infection exceed 1-boost
vaccination

Figure 3.26: Posterior probability that the
relative risks of hospitalization exceed 1-
No vaccination

Figure 3.27: Posterior probability that the
relative risks of hospitalization exceed 1-
primary vaccination

Figure 3.28: Posterior probability that the
relative risks of hospitalization exceed 1-
booster vaccination
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CHAPTER 4

DISCUSSION

This study examined the influence of vaccination and government-imposed stringency

measures on the risk of COVID-19 infection and the influence of these factors plus

COVID-19 infection on the risk of hospitalization in Belgium’s provinces from 2020 to

2022. The findings from year-specific models consistently showed reduction in the risk

for infection and hospitalization, particularly through the interaction of vaccination and

stringency levels. This finding closely aligned with the global study that used data from

216 countries across the continent in 2022, which found that maintaining a certain level

of government stringency measures in addition to increasing vaccination coverage is a

good strategy to control infection Yang et al., 2022. Our finding is comparable to results

of the 2024 study conducted in the United State (USA) which examined the relative

effectiveness of vaccination and non phermaceutical Intervention (NPIs) on COVID-19

infection, deaths, reproduction rate, and unemployment rate in the USA Khatiwada et

al., 2024.

Insight from disaggregated data by year showed that during the period when vaccination

was not administered in 2020, policy stringency did not measurably influence the risk

of infection and hospitalization. The interaction of vaccination and stringency showed

a decrease effect from 0.02% reduction in infection risk in 2021 to 0.01% reduction in

2022. The decrease effect in 2022 when the booster dose dominated may not only be a

reflection of vaccine fatigue but also waning vaccine protection; however, there was still a

significant reduction in risk. Hence, timely booster campaigns and adaptive public health

strategies are important. By conducting analysis on disaggregated data, we were able to

see how the temporal dynamics of vaccine effectiveness, particularly waning immunity,

can influence the infection pattern at the population level.

34



Discussion

Similarly, analysis on split data sets shows a synergistic effect of cumulative vaccination

and stringency to decrease hospitalization risk. A decrease of 0.09% and 0.04% was

observed from analysis of the split data 2021 and 2022, respectively. Again, the effect

declined in 2022. Despite the cases of COVID-19 that consistently increase hospitaliza-

tion risk in 2020, 2021 and 2022, there is a decline in this risk from 128% increase in

2020, 63% increase in 2021 and 82% increase in 2022.

In all analysis, over 90% of the variability in infection and COVID-19 hospitalization

is explained by spatial differences. Our findings have implications for public health

intervention planning. For example, in terms of resource allocation, since COVID-19

incidence and hospitalization risk are highly spatially structured, we need a targeted

intervention by province, rather than uniform strategies, to achieve more effective results

in the control of the pandemic. These findings will also support future outbreak response.

4.1 Strength and limitations

A key strength is the validity of the data used in this study. Obtaining data from a trusted

source enhanced the reliability and validity of our results in this study. Methodologically,

our study employed robust statistical approach, Bayesian hierarchical spatio-temporal

models, accounting for time dependency and spatial similarities between provinces. That

is, statistical strength is borrowed from spatio-temporal neighbors, which is an efficient

way to improve the reliability and precision of small area disease risk estimates. The

method explicitly modeled spatial auto-correlation which is important to allow estimation

under assumption of conditional independence. The models allowed for quantification

of the influence of covariates. Despite the strength, our study has some limitation, as

such, strength of these conclusions is limited. A notable constraint is that the study

used information only on detected cases, and not all COVID-19 infections in Belgium

were confirmed especially among asymptomatic individuals. Likewise, the number of

hospitalization included number of new laboratory-confirmed COVID-19 and excludes

patients who were admitted to the hospital for other reasons, but tested positive for
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COVID-19. This under- reporting could bias the effect estimates. Although different

variants of the virus were in circulation during different periods, the study did not account

for the dominant variants of COVID-19 which varied across years with likely influence

on infection and hospitalization risk. The implication is that the temporal association

between interventions and incidence and hospitalization could be distorted and the model

might wrongly attribute the variation in incidence and hospitalization to other covariates.

Incorporating variant data will disentangle the impact of evolving virus characteristics

from public health interventions or vaccination effects.

Another limitation is that the study did not model the incidence and hospitalization data

for the different age groups, which definitely experienced different severity in terms of

infection and hospitalization. More so, there is a lag between vaccination and change in

infection and between infection and change in hospitalization, we did not set this lag.

4.2 Ethical thinking

Data were collected from Open Data sources which permits free use in as much as it’s

use is in a correct manner without misinterpretations. All data sets retrieved for this

study were aggregated at the municipal or provincial level, so privacy and confidentiality

are not a concern, since there is no individual identifier. Hence, the issue of consent or

ethical approval is not a concern. It is not the intent of this study to stigmatize any

province; therefore a careful analysis was carried out.

4.3 Societal relevance

According to Statista 2025, as at January 2023, Belgium accounts for 1% (4 million) of

the 270 millions of COVID-19 cases reported in Europe. This means 36% of Belgium

population were infected by the virus, which is a huge number. Therefore, the results

of this study will help identify or provide a clear understanding of provincial disparities

in terms of the burden of the disease and the response to intervention (vaccination and

stringency). This insight will guide future pandemic preparation.

The high variability explained by spatial difference stresses the importance of targeted
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intervention by province, thus enhancing effective implementation of equitable public

health strategies. This could include strengthening primary health care facilities for

wider vaccination coverage in regions that showed lower vaccination coverage.

This study is a contribution to the global effort to understand the impact of pharma-

ceutical and non-pharmaceutical interventions in the control of COVID-19 in space and

time.

4.4 Stakeholder awareness

Some of the relevant stakeholders for this study include the public health authorities like

The Health Food Chain Safety and Environment (THFCSE) - Federal Public Service

(FPS) and Regional Health Authorities in Belgium, the National Institute for Health

and Disability Insurance, hospitals, research institution like Sciensano and the general

public.

The insights from this study will be relevant for THFCSE - FPS to understand the

provincial and temporal impact of strategies and measures (vaccination and stringency)

deployed to contain the pandemic and it will also equip them to prepare for a future

health emergency. Healthcare providers will be able to anticipate spatial surge in service

demand in the event of an infectious disease outbreak, thus working with guided strategies

to provide relevant and timely support. Researchers could build upon methodologies used

in this study. communities will have a clear picture of the impact of the pandemic and

how containment measures worked.
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

This study emphasizes the synergistic effectiveness of vaccination and government strin-

gency policy as a control measure of COVID-19 infection and hospitalization. The effec-

tiveness was better in 2021, a period dominated by the primary vaccine dose B, C. In

addition, the incidence of COVID-19 significantly increased the rate of hospitalization,

but more research is required to confirm this.

The high variability observed in infection and hospitalization for COVID-19 explained

by spatial differences points to the spatial driver of the pandemic. Our findings from

this study highlight the need for a targeted provincial-level intervention in Belgium that

addresses vaccination uptake and adherence to stringency policy during future outbreaks.

For future studies, explicitly accounting for the emergence of variants of SARS-CoV-2 is

important because of it’s likely influence on infection risk and vaccination effectiveness.

This will prevent the possibility of obtaining a wrong estimate of the effect size for other

variables. Future studies could also explore incorporating different age group.
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APPENDICES

.1 Appendix A: Figures

Figure 1: Posterior probability for spatio-
temporal interaction -20W01

Figure 2: Posterior probability for spatio-
temporal interaction -20W15

Figure 3: Posterior probability for spatio-
temporal interaction -20W30

Figure 4: Posterior probability for spatio-
temporal interaction -20W40
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Figure 5: Posterior probability for spatio-
temporal interaction -21W01

Figure 6: Posterior probability for spatio-
temporal interaction -21W15

Figure 7: Posterior probability for spatio-
temporal interaction -21W30

Figure 8: Posterior probability for spatio-
temporal interaction -21W45

Figure 9: Posterior probability for spatio-
temporal interaction -22W01

Figure 10: Posterior probability for spatio-
temporal interaction -22W15
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Figure 11: Posterior probability for spatio-
temporal interaction -22W30

Figure 12: Posterior probability for spatio-
temporal interaction -22W45

Figure 13: Posterior probability for spatio-
temporal interaction -20W01

Figure 14: Posterior probability for spatio-
temporal interaction -20W15

Figure 15: Posterior probability for spatio-
temporal interaction -20W30

Figure 16: Posterior probability for spatio-
temporal interaction -20W40
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Figure 17: Posterior probability for spatio-
temporal interaction -21W01

Figure 18: Posterior probability for spatio-
temporal interaction -21W15

Figure 19: Posterior probability for spatio-
temporal interaction -21W30

Figure 20: Posterior probability for spatio-
temporal interaction -21W45

Figure 21: Posterior probability for spatio-
temporal interaction -22W01

Figure 22: Posterior probability for spatio-
temporal interaction -22W15

45



APPENDICES

Figure 23: Posterior probability for spatio-
temporal interaction -22W30

Figure 24: Posterior probability for spatio-
temporal interaction -22W45

Figure 25: Rate of vaccination per province and dose type in Belgium from 20W53 to
22W52
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Figure 26: Rate of vaccination per province and dose type in Belgium from 20W53 to
22W52

Variable Stat Province Year-Week Value
cum_rate_vacc Min Antwerpen 20W09 0.000000e+00
cum_rate_vacc Max Antwerpen 20W09 0.000000e+00
Incidence Min Hainaut 20W10 0.000000e+00
Incidence Max Hainaut 20W45 9.310000e+02
stringency_index Min Antwerpen 20W09 1.111000e+01
stringency_index Max Antwerpen 20W13 8.148000e+01
CASES Min Hainaut 20W44 2.500000e+00
CASES Max Hainaut 20W44 1.906050e+04
CUMUL Min Antwerpen 20W09 0.000000e+00
CUMUL Max Antwerpen 20W09 1.339201e+01
n_cases_r Min Liège 20W43 1.693676e+03
n_cases_r Max Hainaut 20W45 6.917063e+01
n_hosp_r Min Antwerpen 20W10 0.000000e+00
n_hosp_r Max Hainaut 20W45 6.917063e+01
expected_cases Min Limburg 20W09 3.961272e+01
expected_cases Max Antwerpen 20W43 1.701228e+04
expected_hosp Min Antwerpen 20W09 0.000000e+00
expected_hosp Max Antwerpen 20W44 7.175817e+01

Table 1: Summary statistics for dataset 1
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Variable Stat Province Year_Week Value
cum_rate_vacc Min WestVlaanderen 21W01 4.155198e-04
cum_rate_vacc Max WestVlaanderen 21W52 8.449009e-01
Incidence Min Namur 21W27 0.000000e+00
Incidence Max OostVlaanderen 21W47 3.580000e+02
stringency_index Min Antwerpen 21W45 3.191348e+01
stringency_index Max Antwerpen 21W14 7.590000e+01
CASES Min OostVlaanderen 21W01 1.850000e+01
CASES Max Antwerpen 21W47 2.220695e+04
CUMUL Min OostVlaanderen 20W53 5.000000e+00
CUMUL Max Antwerpen 21W52 1.493044e+06
n_cases_r Min OostVlaanderen 21W01 1.207737e+00
n_cases_r Max WestVlaanderen 21W47 1.500625e+03
n_hosp_r Min Namur 21W27 0.000000e+00
n_hosp_r Max WestVlaanderen 21W47 2.975122e+02
expected_cases Min OostVlaanderen 20W53 2.050000e+01
expected_cases Max Antwerpen 21W47 2.032316e+03
expected_hosp Min Luxembourg 21W26 2.264368e+01
expected_hosp Max Antwerpen 21W47 3.206538e+01

Table 2: Summary statistics for selected COVID-19 variables by province and week for
data 2-primary dose series.
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Variable Stat Province Year_Week Value
cum_rate_vacc Min Brussels 22W02 2.884333e+01
cum_rate_vacc Max Antwerpen 22W01 9.942091e+01
Incidence Min Luxembourg 22W45 1.000000e+00
Incidence Max Antwerpen 22W05 4.170000e+02
stringency_index Min Antwerpen 22W21 1.111000e+01
stringency_index Max Antwerpen 22W01 3.387714e+01
CASES Min Luxembourg 22W45 2.175000e+02
CASES Max Antwerpen 22W03 5.593550e+04
CUMUL Min Luxembourg 22W01 1.284170e+05
CUMUL Max Antwerpen 22W43 1.277938e+06
n_cases_r Min Brussels 22W52 3.750092e+01
n_cases_r Max WestVlaanderen 22W03 3.643860e+03
n_hosp_r Min Luxembourg 22W45 3.463539e-01
n_hosp_r Max Liège 22W04 3.074656e+01
expected_cases Min Luxembourg 22W45 1.422530e+02
expected_cases Max Antwerpen 22W03 5.683725e+04
expected_hosp Min Luxembourg 22W46 7.306092e-01
expected_hosp Max Antwerpen 22W04 3.561208e+01

Table 3: Summary statistics for selected COVID-19 variables by province and week for
data 3- Boost dose series.
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.2 R-CODE

1

2 #R-CODE for spatio -temporal modeling.

3 #stringency data

4 OWID_stringency_index <- read_excel("C:/Users/Nkem/Desktop/Stat␣Data␣Sc/

Masters␣thesis/OWID_stringency␣index.xlsx")

5 string_data <- OWID_stringency_index

6 sub_string_data <- subset(string_data , string_data$continent =="Europe")

7 bel_sub_string_data <- subset(sub_string_data , sub_string_data$location

== "Belgium")

8 bel_sub_string_data$date <- as.Date(bel_sub_string_data$date)

9 bel_sub_string_data.ml <- bel_sub_string_data %>%

10 mutate(YEAR = isoyear(date),

11 WEEK = isoweek(date),

12 YEAR_WEEK = paste0(substr(isoyear(date), 3, 4), "W", sprintf("

%02d", isoweek(date)))) %>%

13 group_by(YEAR_WEEK , YEAR ,WEEK) %>%

14 summarize(stringency_index=mean(stringency_index , na.rm = TRUE), .

groups = "keep") # Applies only to numeric columns

15 #View(bel_sub_string_data.ml)

16 colSums(is.na(bel_sub_string_data.ml))

17 #Population data

18 TF_SOC_POP_STRUCT_2021 <- read_excel("C:/Users/Nkem/Desktop/Stat␣Data␣Sc

/Masters␣thesis/TF_SOC_POP_STRUCT_2021. xlsx")

19

20 population_data <-TF_SOC_POP_STRUCT_2021

21 demographics <-population_data %>% mutate(

22 CD_REFNIS = as.integer(CD_REFNIS),

23 CD_AGE = as.character(CD_AGE))

24 # Prepare population_data

25 demographics_data <- demographics %>%

26 dplyr:: select(CD_REFNIS , TX_DESCR_NL, CD_DSTR_REFNIS , TX_ADM_DSTR_

DESCR_NL , CD_PROV_REFNIS ,
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27 TX_PROV_DESCR_NL , CD_RGN_REFNIS , TX_RGN_DESCR_NL, CD_SEX

, CD_NATLTY ,

28 TX_NATLTY_NL , CD_CIV_STS , TX_CIV_STS_NL, CD_AGE , MS_

POPULATION) %>%

29 mutate(AGEGROUP = case_when(

30 CD_AGE < 18 ~ "0-17",

31 CD_AGE >= 18 & CD_AGE <= 24 ~ "18-24",

32 CD_AGE >= 25 & CD_AGE <= 34 ~ "25-34",

33 CD_AGE >= 35 & CD_AGE <= 44 ~ "35-44",

34 CD_AGE >= 45 & CD_AGE <= 54 ~ "45-54",

35 CD_AGE >= 55 & CD_AGE <= 64 ~ "55-64",

36 CD_AGE >= 65 & CD_AGE <= 74 ~ "65-74",

37 CD_AGE >= 75 & CD_AGE <= 84 ~ "75-84",

38 CD_AGE >= 85 ~ "85+",

39 TRUE ~ NA_character_

40 ))

41 unique(demographics_data$CD_RGN_REFNIS)

42

43

44 clean_province_names <- function(df, colname) {

45 df %>%

46 mutate(

47 !!colname := str_replace_all(!!sym(colname), "Provincie \\s*", ""),

# remove "Provincie"

48 !!colname := str_replace_all(!!sym(colname), "-", ""),

# remove hyphens

49 !!colname := str_trim(!!sym(colname))

# trim any extra whitespace

50 )

51 }

52

53 demographics_data <- clean_province_names(demographics_data , "TX_PROV_

DESCR_NL")
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54

55 demographics_data <- demographics_data %>%

56 mutate(TX_PROV_DESCR_NL = recode(TX_

PROV_DESCR_NL ,

57 "WaalsBrabant" ="BrabantWallon",

58 "Henegouwen" = "Hainaut",

59 "Luik" = " L i g e ",

60 "Namen" = "Namur",

61 "Luxemburg" = "Luxembourg" ))

62

63 demographics_data <- demographics_data %>%

64 mutate(TX_PROV_DESCR_NL = case_when(

65 is.na(TX_PROV_DESCR_NL) & TX_RGN_DESCR_NL == "Brussels␣

Hoofdstedelijk␣Gewest" ~ "Brussels",

66 TRUE ~ TX_PROV_DESCR_NL

67 ))

68

69 demographics_data_grouped.prov <-demographics_data%>%

70 group_by( TX_PROV_DESCR_NL ,CD_PROV_REFNIS) %>%

71 summarise(

72 MS_POPULATION = sum(MS_POPULATION , na.rm = TRUE) ,.groups = ’keep’)

73 #colSums(is.na(demographics_data_grouped.prov))

74 #View(demographics_data_grouped.prov)

75 #CD_REFNIS , TX_DESCR_NL ,

76

77 #Vaccination data

78 COVID19BE_VACC_MUNI_CUM <- read.csv("C:/Users/Nkem/Desktop/Stat␣Data␣Sc/

Masters␣thesis/COVID19BE_VACC_MUNI_CUM.csv")

79 vaccin_data <- COVID19BE_VACC_MUNI_CUM

80 vaccine_data.ml <- vaccin_data %>%

81 mutate(

82 CUMUL = as.numeric(ifelse(grepl("<", CUMUL), 5, CUMUL)),

83 )
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84 View(vaccine_data.ml)

85 vaccine_data.ml%>% arrange(YEAR_WEEK , NIS5 , AGEGROUP , DOSE)

86 #E for extra/booster dose of vaccine administered since Week 36 of 2021

(started on September 6, 2021)

87 #E2 for second booster administered since week 4 of 2022 (Monday ,

January 24, 2022)

88 # E3 for third booster

89

90 vacc.NIS <- vaccine_data.ml%>% group_by(YEAR_WEEK , NIS5 ,DOSE)%>%

91 summarise(CUMUL = sum(CUMUL , na.rm =

TRUE) ,.groups = "drop")

92

93

94 colSums(is.na(vacc.NIS))

95

96 #colSums(is.na(vaccin_data))

97 View(vacc.NIS)

98

99 #View(COVID19BE_CASES_MUNI)

100

101 COVID19BE_CASES_MUNI <- read.csv("C:/Users/Nkem/Desktop/Stat␣Data␣Sc/

Masters␣thesis/COVID19BE_CASES_MUNI.csv")

102 cases_data <- COVID19BE_CASES_MUNI

103 View(cases_data)

104 cases_data.base <- cases_data %>%

105 dplyr:: select(NIS5 , DATE , TX_DESCR_NL, TX_ADM_DSTR_DESCR_NL , PROVINCE ,

REGION , CASES) %>%

106 mutate(

107 CASES = as.numeric(ifelse(grepl("<", CASES), 2.5, CASES)), #

Convert "<" cases to 2.5

108 DATE = as.Date(DATE , format = "%Y-%m-%d"), # Convert DATE to Date

format

109 YEAR = isoyear(DATE),
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110 WEEK = isoweek(DATE),

111 YEAR_WEEK = paste0(substr(isoyear(DATE), 3, 4), "W", sprintf("%02d",

isoweek(DATE))))%>%

112 group_by(YEAR_WEEK , YEAR , WEEK ,NIS5 , PROVINCE) %>%

113 summarise(

114 CASES = sum(CASES , na.rm = TRUE),

115 .groups = "keep"

116 )

117 View(cases_data.base)

118 View(vacc.NIS)

119 dim(cases_data.base)

120

121 cases_data.base%>% arrange(NIS5)

122 cases_data.base <- cases_data.base %>%

123 filter(!is.na(PROVINCE))

124 unique(cases_data.base$PROVINCE)

125 View(cases_data.base)

126

127 vacc_cases <- full_join(cases_data.base , vacc.NIS ,

128 by = c("NIS5" = "NIS5", "YEAR_WEEK"="YEAR_WEEK")

)

129 View(vacc_cases)

130

131 vacc_cases_by_province <- vacc_cases%>%group_by(YEAR_WEEK ,YEAR ,WEEK ,

PROVINCE ,DOSE) %>%

132 summarise(CUMUL = sum(CUMUL , na.rm = TRUE),

133 CASES = sum(CASES , na.rm = TRUE),

134 .groups = "drop")

135 unique(vacc_cases_by_province$PROVINCE)

136 vacc_cases_by_province <- vacc_cases_by_province %>%

137 filter(!is.na(PROVINCE))

138 View(vacc_cases_by_province)

139 colSums(is.na(vacc_cases_by_province))
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140

141 #Hospitalization data

142 COVID19BE_HOSP <- read.csv("C:/Users/Nkem/Desktop/Stat␣Data␣Sc/Masters␣

thesis/COVID19BE_HOSP.csv")

143 #View(COVID19BE_HOSP)

144 hosp_data.sp<- COVID19BE_HOSP

145 hosp_data.base <- hosp_data.sp %>%

146 mutate(DATE = as.Date(DATE , format = "%Y-%m-%d"), # Convert DATE to

Date format

147 YEAR = isoyear(DATE),

148 WEEK = isoweek(DATE),

149 YEAR_WEEK = paste0(substr(isoyear(DATE), 3, 4), "W", sprintf("%02d",

isoweek(DATE))))%>%

150 group_by(YEAR_WEEK , YEAR , WEEK ,PROVINCE) %>%

151 summarise(

152 Incidence = sum(NEW_IN , na.rm = TRUE),

153 .groups = "keep"

154 )

155 unique(hosp_data.base$PROVINCE)

156 #merge vaccine/cases and hosp data

157 vacc_cases_hosp_by.prov <- vacc_cases_by_province%>%

158 full_join(hosp_data.base , by = c("YEAR_WEEK" = "YEAR_WEEK","YEAR" = "

YEAR","WEEK" = "WEEK", "PROVINCE" = "PROVINCE" ))

159 colSums(is.na(vacc_cases_hosp_by.prov))

160 unique(vacc_cases_hosp_by.prov$PROVINCE)

161 #merge vaccine/cases/hosp and string data

162 vacc_cases_hosp_bel_by.prov <- vacc_cases_hosp_by.prov%>%

163 full_join(bel_sub_string_data.ml , by = c("YEAR_WEEK" = "YEAR_WEEK", "

YEAR"="YEAR", "WEEK"="WEEK" ))

164 #View(vacc_cases_hosp_bel_by.prov)

165 colSums(is.na(vacc_cases_hosp_bel_by.prov))

166 vacc_cases_hosp_bel_by.prov <- vacc_cases_hosp_bel_by.prov %>%

167 filter(!is.na(PROVINCE))
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168 unique(vacc_cases_hosp_bel_by.prov$PROVINCE)

169 vacc_cases_hosp_bel_pop_by.prov <-vacc_cases_hosp_bel_by.prov%>%

170 full_join(demographics_data_grouped.prov , by = c("PROVINCE"="TX_PROV_

DESCR_NL"))

171 #View(demographics_data_grouped.prov)

172 #View(vacc_cases_hosp_bel_by.prov)

173 unique(vacc_cases_hosp_bel_pop_by.prov$PROVINCE)

174 vacc_cases_hosp_bel_pop_by.prov <- vacc_cases_hosp_bel_pop_by.prov

%>%

175 mutate(n_cases_r = (CASES/ MS_POPULATION) * 100000 ,

176 cum_rate_vacc =( CUMUL/ MS_POPULATION) * 100,

177 n_hosp_r = (Incidence / MS_POPULATION) * 100000)

178 #filter from 2020 -2022

179 vacc_cases_hosp_bel_pop_by.prov <- vacc_cases_hosp_bel_pop_by.prov%>%

180 filter(YEAR_WEEK >= "20W01" & YEAR_WEEK <= "22W52")

181 colSums(is.na(vacc_cases_hosp_bel_pop_by.prov))

182 View(vacc_cases_hosp_bel_pop_by.prov)

183 # Create a unique numeric ID for each province

184 vacc_cases_hosp_bel_pop_by.prov <- vacc_cases_hosp_bel_pop_by.prov %>%

185 mutate(provID = as.numeric(as.factor(CD_PROV_REFNIS)))

186 vacc_cases_hosp_bel_pop_by.prov.1<- vacc_cases_hosp_bel_pop_by.prov %>%

187 mutate(row_id = as.numeric(interaction(PROVINCE , YEAR_WEEK , drop = TRUE)

))

188

189 vacc_cases_hosp_bel_pop_by.prov.imprv <- vacc_cases_hosp_bel_pop_by.prov

.1%>%

190 mutate(

191 ISO_week = paste0(YEAR , "-W", sprintf("%02d", WEEK)),

192 DATE = ISOweek2date(paste0(ISO_week , " -1")) # "-1" is Monday

193 ) %>%

194 dplyr:: select(-ISO_week) # Optional: remove helper column

195
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196 vacc_cases_hosp_bel_pop_by.prov.imprv <-vacc_cases_hosp_bel_pop_by.prov.

imprv[order(

197 vacc_cases_hosp_bel_pop_by.prov.imprv$PROVINCE ,

198 vacc_cases_hosp_bel_pop_by.prov.imprv$provID ,

199 vacc_cases_hosp_bel_pop_by.prov.imprv$YEAR_WEEK ,

200 vacc_cases_hosp_bel_pop_by.prov.imprv$YEAR ,

201 vacc_cases_hosp_bel_pop_by.prov.imprv$WEEK

202 ), ]

203

204 )

205

206 View( vacc_cases_hosp_bel_pop_by.prov.imprv )

207 df <- vacc_cases_hosp_bel_pop_by.prov.imprv %>%

208 dplyr:: select(YEAR_WEEK , YEAR , WEEK , PROVINCE , DOSE , CUMUL , MS_

POPULATION , cum_rate_vacc ,row_id, CASES , Incidence , stringency_

index , CD_PROV_REFNIS ,n_cases_r, n_hosp_r,provID ,logCASES) %>%

209 mutate(week_id_v = paste0(YEAR , "-W", sprintf("%02d", WEEK)))

210 #& YEAR == 2020

211 no_vacc <- df %>%

212 filter(is.na(DOSE) ) %>%

213 mutate(VACC_TYPE = "No␣vaccine")

214 View(no_vacc)

215

216 # Filter for Dose A only

217 #first <- df %>%

218 # filter(DOSE == "A") %>%

219 # Exclude those who also received B

220 #anti_join(df %>% filter(DOSE == "B") %>% #dplyr :: select(row_id), by =

"row_id") %>%

221 #mutate(VACC_TYPE = "First dose only (A)")

222 #View(first)

223 # Combine B and C as ’Primary series ’

224 primary <- df %>%
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225 filter(DOSE %in% c("B", "C")) %>%

226 group_by(PROVINCE , YEAR , WEEK , YEAR_WEEK , week_id_v,row_id , CD_PROV_

REFNIS ,provID) %>%

227 summarise(

228 cum_rate_vacc = sum(cum_rate_vacc , na.rm = TRUE),

229 CUMUL =sum(CUMUL , na.rm = TRUE),

230 MS_POPULATION = mean(MS_POPULATION , na.rm = TRUE),

231 CASES = mean(CASES , na.rm = TRUE),

232 Incidence= mean(Incidence , na.rm = TRUE),

233 stringency_index = mean(stringency_index , na.rm = TRUE),

234 n_cases_r = mean(n_cases_r, na.rm = TRUE),

235 n_hosp_r= mean(n_hosp_r, na.rm = TRUE),

236 logCASES = mean(logCASES , na.rm = TRUE),

237 .groups = "drop"

238 ) %>%

239 mutate(VACC_TYPE = "Primary␣series")

240 View(primary)

241

242 booster_any <- df %>%

243 filter(DOSE == "E") %>%

244 mutate(VACC_TYPE = "At␣least␣one␣booster")

245 View(booster_any)

246

247 library(scales)

248 # Combine all

249 df_combined <- bind_rows(no_vacc , primary , booster_any)

250

251 #Exploratory data analysis

252

253 ggplot(

254 df_combined ,

255 aes(x = week_id_v, y = n_cases_r, color = PROVINCE , group = PROVINCE)

256 ) +
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257 geom_line(size = 1) +

258 facet_wrap(~ VACC_TYPE , ncol = 2, scales = "free_y") +

259 scale_y_continuous(labels = percent_format(scale = 1)) +

260 scale_x_discrete(

261 breaks = unique(df_combined$week_id_v)[seq(1, length(unique(df_

combined$week_id_v)), by = 4)]

262 ) +

263 labs(

264 title = "Cumulative␣Vaccination␣Rate␣by␣Province␣and␣Dose␣Type",

265 x = "Week",

266 y = "Cumulative␣Vaccination␣Rate␣(%)",

267 color = "Province"

268 ) +

269 theme_bw(base_size = 12) +

270 theme(

271 axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)

272 )

273

274 # Aggregate to get the mean stringency per week

275 stringency_national <- df_combined %>%

276 group_by(YEAR_WEEK) %>%

277 summarise(stringency_index = mean(stringency_index , na.rm = TRUE))

278 #Time plot for rate of hospitalization

279 ggplot( df_combined , aes(x = YEAR_WEEK , y = n_hosp_r, group =

PROVINCE , color = PROVINCE)) +

280 geom_line() +

281 geom_point(size = 2) +

282 theme_bw() +

283 theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))

284

285 ts_stringency_index <- ts(stringency_national$stringency_index )

286 plot(ts_stringency_index , type="l", xlab="", ylab="")
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287 title(xlab="Weekly␣Time␣point", ylab="Weekly␣Stringency␣Index␣(National␣

Level)", line=2, cex.lab =1.2)

288 #filtering for "no -vaccination" data

289 first_vacc_week <- df_combined %>%

290 filter(VACC_TYPE != "No␣vaccine") %>%

291 summarise(first_week = min(YEAR_WEEK)) %>%

292 pull(first_week)

293 df_no_vacc <- df_combined %>%

294 filter(VACC_TYPE == "No␣vaccine" & YEAR_WEEK < first_vacc_week)

295 df_no_vacc <- df_no_vacc %>%

296 mutate(

297 year_week_strp = paste(YEAR , sprintf("%02d", WEEK), sep = "-")

298 ) %>% arrange(YEAR , WEEK) %>%

299 mutate(week_ID = as.numeric(factor(year_week_strp , levels = unique(

year_week_strp))))

300 #View(df_no_vacc)

301 df_no_vacc <- df_no_vacc %>%

302 group_by(VACC_TYPE , YEAR_WEEK) %>%

303 mutate(

304 population = sum(MS_POPULATION , na.rm = TRUE),

305 weekly_case_rate = sum(CASES , na.rm = TRUE) / sum(MS_POPULATION , na.

rm = TRUE),

306 weekly_hosp_rate = sum(n_hosp_r, na.rm = TRUE) / sum(MS_POPULATION ,

na.rm = TRUE),

307 # Expected counts per province -week

308 expected_cases = MS_POPULATION * weekly_case_rate ,

309 expected_hosp = MS_POPULATION * weekly_hosp_rate

310 ) %>%

311 ungroup ()

312

313 View(df_no_vacc)

314

315 #filtering primary dose series
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316 # Step 1: Filter to primary series

317 df_primary <- df_combined %>%

318 filter(VACC_TYPE == "Primary␣series")

319

320

321 vacc_2022 <- df_primary %>%

322 filter(YEAR_WEEK == "22W52") %>%

323 group_by(PROVINCE) %>%

324 summarise(CUMUL_2022 = sum(cum_rate_vacc , na.rm = TRUE), .groups = "

drop")

325

326 # Step 3: Replace the 21W52 cumulative rate with 22W52 ’s value

327 prim_updated <- df_primary %>%

328 left_join(vacc_2022, by = "PROVINCE") %>%

329 mutate(cum_rate_vacc = ifelse(YEAR_WEEK == "21W52",

330 coalesce(CUMUL_2022, cum_rate_vacc),

331 cum_rate_vacc)) %>%

332 dplyr:: select(-CUMUL_2022) # Step 4: Remove all 2022 rows (since 21W52

now holds final coverage)

333

334 vacc_2020 <- prim_updated%>%

335 filter(YEAR_WEEK == "20W53" ) %>%

336 group_by(PROVINCE) %>%

337 summarise(CUMUL_2020 = sum(cum_rate_vacc , na.rm = TRUE), .groups = "drop

")

338 View(vacc_2020)

339

340 pri.final <-prim_updated %>%

341 # Join 2020 cumulative totals by NIS5

342 left_join(vacc_2020, by = "PROVINCE") %>%

343 # If YEAR_WEEK is 21W01 , add CUMUL_2020 to CUMUL

344 mutate(cum_rate_vacc = ifelse(YEAR_WEEK == "21W01", cum_rate_vacc+

coalesce(CUMUL_2020, 0), cum_rate_vacc)) %>%

61



APPENDICES

345 # Remove the helper column

346 dplyr:: select(-CUMUL_2020)

347 View(pri.final)

348 pri.final <- pri.final %>%

349 filter(!str_detect(YEAR_WEEK , "^20W" ))

350

351 pri.final <- pri.final%>%

352 filter(!str_detect(YEAR_WEEK , "^22W")) %>%

353 mutate(

354 year_week_strp = paste(YEAR , sprintf("%02d", WEEK), sep = "-")

355 ) %>%

356 arrange(YEAR , WEEK) %>%

357 mutate(week_ID = as.numeric(factor(year_week_strp , levels = unique(

year_week_strp))))

358

359 # Step 5: Calculate weekly expected cases & hospitalizations

360 pri.final <- pri.final %>%

361 group_by(VACC_TYPE , YEAR_WEEK) %>%

362 mutate(

363 population = sum(MS_POPULATION , na.rm = TRUE),

364 weekly_case_rate = sum(CASES , na.rm = TRUE) / sum(MS_POPULATION , na.

rm = TRUE),

365 weekly_hosp_rate = sum(n_hosp_r, na.rm = TRUE) / sum(MS_POPULATION ,

na.rm = TRUE),

366 expected_cases = MS_POPULATION * weekly_case_rate ,

367 expected_hosp = MS_POPULATION * weekly_hosp_rate

368 ) %>%

369 ungroup ()

370 View(pri.final)

371 #filtering for at lest one booster

372 df_booster <- df_combined1 %>% filter(VACC_TYPE == "At␣least␣one␣booster"

)

373 #View(df_booster)
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374 # Step 1: Filter rows from 21W01 to 21W52

375 vacc_2021 <- df_booster %>%

376 filter(YEAR_WEEK == "21W52" )%>%

377 group_by(PROVINCE) %>%

378 summarise(CUMUL_2021 = sum(cum_rate_vacc , na.rm = TRUE), .groups = "

drop")

379 #View(vacc_2021)

380

381 # Step 2: Add this to 22W01 rows

382 booster_updated <- df_booster%>%

383 # Join 2022 cumulative totals by NIS5

384 left_join(vacc_2021, by = "PROVINCE") %>%

385 # If YEAR_WEEK is 22W01 , add CUMUL_2021 to CUMUL

386 mutate(cum_rate_vacc = ifelse(YEAR_WEEK == "22W01", cum_rate_vacc +

coalesce(CUMUL_2021, 0), cum_rate_vacc)) %>%

387 # Remove the helper column

388 dplyr:: select(-CUMUL_2021)

389 #View(booster_updated)

390 # Step 3: Remove all 21 W 0 1 21W52 rows since their values are now

merged into 22W01

391 booster.final <- booster_updated %>%

392 filter(!str_detect(YEAR_WEEK , "^21W"))

393 # View the result

394 #View(booster.final)

395 booster.final <- booster.final %>%

396 mutate(

397 year_week_strp = paste(YEAR , sprintf("%02d", WEEK), sep = "-")

398 ) %>% arrange(YEAR , WEEK) %>%

399 mutate(week_ID = as.numeric(factor(year_week_strp , levels = unique(

year_week_strp))))

400 booster.final <- booster.final%>%

401 group_by(VACC_TYPE , YEAR_WEEK) %>%

402 mutate(
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403 population = sum(MS_POPULATION , na.rm = TRUE),

404 weekly_case_rate = sum(CASES , na.rm = TRUE) / sum(MS_POPULATION , na.

rm = TRUE),

405 weekly_hosp_rate = sum(n_hosp_r, na.rm = TRUE) / sum(MS_POPULATION ,

na.rm = TRUE),

406 # Expected counts per province -week

407 expected_cases = MS_POPULATION * weekly_case_rate ,

408 expected_hosp = MS_POPULATION * weekly_hosp_rate

409 ) %>%

410 ungroup ()

411 View(booster.final)

412

413 #obtaining rangses of key variables

414 # List of variables you want to check

415 vars_to_check <- c("cum_rate_vacc", "Incidence", "stringency_index", "

CASES", "CUMUL",

416 "n_cases_r", "n_hosp_r", "expected_cases", "expected_

hosp")

417

418 # Function to get min and max with province and time for one variable

419 get_min_max_info <- function(data , var) {

420 var_sym <- sym(var)

421

422 min_row <- data %>%

423 filter(!!var_sym == min(!!var_sym , na.rm = TRUE)) %>%

424 slice (1) %>%

425 mutate(Stat = "Min", Variable = var)

426

427 max_row <- data %>%

428 filter(!!var_sym == max(!!var_sym , na.rm = TRUE)) %>%

429 slice (1) %>%

430 mutate(Stat = "Max", Variable = var)

431
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432 bind_rows(min_row , max_row) %>%

433 dplyr:: select(Variable , Stat , PROVINCE , YEAR_WEEK , Value = !!var_sym

)

434 }

435

436 # Apply to all variables and combine

437 range_results <- bind_rows(lapply(vars_to_check , get_min_max_info , data

= pri.final))

438 range_results

439

440 #Creating neighborhood matrix and graph

441 BE_581. shp <- st_read("BE_581. shp")

442 # Group by province ID and dissolve polygons

443 BE_581. shp <- BE_581. shp[order(BE_581. shp$C_PROVI) ,]

444 BE_581. shp_prov <- BE_581. shp %>%

445 group_by(C_PROVI) %>%

446 summarise(geometry = st_union(geometry)) %>%

447 ungroup ()

448

449 #Creating neighborhood matrix and graph

450 add_nb <- function(x){

451 queen_nb <- poly2nb(x, queen = TRUE)

452 count = card(queen_nb)

453 if(!any(count ==0)){

454 return(queen_nb)

455 }

456 ## get nearest neighbour index , use centroids:

457 nnbs = knearneigh(st_coordinates(st_centroid(x)))$nn

458 no_edges_from = which(count ==0)

459 for(i in no_edges_from){

460 queen_nb[[i]] = nnbs[i]

461 queen_nb[[nnbs[i]]] = c(queen_nb[[nnbs[i]]],i)

462 }
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463 return(queen_nb)

464 }

465 nb.new <- add_nb(BE_581. shp_prov)

466 adj.mat_prov.1 <- nb2mat(nb.new , style="B", zero.policy=TRUE)

467 adj.mat_prov.2 <- nb2INLA("adj.mat_prov.1", nb.new)

468 grp <-inla.read.graph(filename="adj.mat_prov.1")

469 # Convert to listw object

470 lw <- nb2listw(nb.new , style = "W")

471 lw

472 adj.mat_prov.1

473 grp

474

475 #Repeat merge for the different data set

476 # join data to shape file to No -vaccine data

477 map <- full_join(BE_581. shp_prov ,df_no_vacc , by = c("C_PROVI" = "CD_PROV

_REFNIS"))

478 #View(map)

479 #str(vacc_cases_hosp_bel_pop_by.prov.imprv)

480 data.set <- data.frame(YEAR_WEEK=map$YEAR_WEEK , PROVINCE=map$PROVINCE ,

CASES= as.integer(map$CASES), n_cases_r= map$n_cases_r, n_hosp_r=

map$n_hosp_r, CUMUL_vacc_rate= map$cum_rate_vacc , C_PROVI=map$C_

PROVI , provID=map$provID , CUMUL=as.numeric(map$CUMUL), stringency_

index=map$stringency_index , week_ID = as.numeric(map$week_ID),

Incidence=as.integer(map$Incidence), MS_POPULATION=map$MS_POPULATION

, expected_cases =map$expected_cases , expected_hosp=map$expected_

hosp , logCASES=map$logCASES)

481 #creating spatial and temporal identifiers for fitting spatio -temporal

model

482 data.set$provID <- as.numeric(data.set$provID)

483 data.set$provID1 <- data.set$provID

484 data.set$week_id.1 <- data.set$week_ID

485 data.set$ID.prov.week <- interaction(data.set$PROVINCE , data.set$week_ID

, drop = TRUE)
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486 ID.prov.int <- data.set$provID

487 ID.week.int <- data.set$week.ID

488 data.set$ID.prov.week = seq(1,length(data.set$ID.prov.week))

489 #creating linear combination for each week

490 lcs = inla.make.lincombs(week_ID = diag (52), week_id.1 = diag (52))

491 #creating linear combination for each week for no_vaccination -2020 data

set

492 lcs <- inla.make.lincombs(week_ID = diag (44), week_id.1 = diag (44))

493 #creating linear combination for each week for 2022 data set

494 lcs <- inla.make.lincombs(week_id = diag (52), week_id.1 = diag (52))

495 ## default pc-priors

496 hyper <- list(prec = list(prior = "pc.prec", param = c(0.5, 0.01)))

497 # modeling infection in 2020

498 formula.cases.rw1.2C <- CASES ~ stringency_index +

499 f(provID , model="bym2",graph=grp ,scale.model=TRUE) +

500 f(week_ID ,model="rw1") +

501 f(week_id.1,model="iid") +

502 f(ID.prov.int ,model="iid", group=ID.week.int , control.group=list(model="

rw1"))

503 covid.case.rw1.2C <- inla(formula.cases.rw1.2C ,family="poisson",

504 data=data.set ,E=expected_cases ,

505 control.predictor=list(link=1, compute=TRUE), #enable prediction

506 control.compute=list(dic=TRUE , cpo=TRUE),

507 lincomb=lcs)

508 #Modeling infection in 2021

509 formula.cases.rw2.1A <- CASES ~ CUMUL_vacc_rate *stringency_index +

510 f(provID , model="bym2",graph=grp ,scale.model=TRUE) +

511 f(week_ID ,model="rw2") +

512 f(week_id.1,model="iid") +

513 f(ID.prov.week ,model="iid")

514 covid.case.rw2.1A <- inla(formula.cases.rw2.1A,family="poisson",

515 data=data.set ,E=expected_cases ,

516 control.predictor=list(compute=TRUE), #enable prediction
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517 control.compute=list(dic=TRUE , cpo=TRUE), lincomb=lcs)

518 #Modeling infection in 2022

519 formula.cases.rw2.no.inter .1B <- CASES ~ CUMUL_vacc_rate +stringency_

index +

520 f(provID , model="bym2",graph=grp ,hyper = hyper ,scale.model=TRUE) +

521 f(week_ID ,model="rw2",hyper = hyper) +

522 f(week_id.1,model="iid",hyper = hyper) +

523 f(ID.prov.week ,model="iid",hyper = hyper)

524 covid.case.rw2.no.inter.1B <- inla(formula.cases.rw2.no.inter.1B,family=

"poisson",

525 data=data.set ,E=expected_cases ,

526 control.predictor=list(compute=TRUE), #enable prediction

527 control.compute=list(dic=TRUE , cpo=TRUE))

528 #Modeling hospitalization in 2020

529 formula.hosp.rw2.no.inter.1B <- Incidence ~ 1 +stringency_index*logCASES

+

530 f(provID , model="bym2",graph=grp ,scale.model=TRUE) +

531 f(week_ID ,model="rw2") +

532 f(week_id.1,model="iid") +

533 f(ID.prov.week ,model="iid")

534 covid.hosp.rw2.no.inter.1B <- inla(formula.hosp.rw2.no.inter.1B,family="

poisson",

535 data=data.set ,E= expected_hosp ,

536 control.predictor=list(compute=TRUE), #enable prediction

537 control.compute=list(dic=TRUE , cpo=TRUE),

538 lincomb=lcs)

539 #modeling hospitalization in 2021

540 formula.hosp.rw2.1A <- Incidence ~ 1 + CUMUL_vacc_rate*stringency_index+

logCASES +

541 f(provID , model="bym2",graph=grp ,scale.model=TRUE) +

542 f(week_ID ,model="rw2") +

543 f(week_id.1,model="iid") +

544 f(ID.prov.week ,model="iid")
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545 covid.hosp.rw2.1A <- inla(formula.hosp.rw2.1A,family="poisson",

546 data=data.set ,E= expected_hosp ,

547 control.predictor=list(compute=TRUE), #enable prediction

548 control.compute=list(dic=TRUE , cpo=TRUE),

549 lincomb=lcs)

550 #modeling hospitalization in 2022

551 formula.hosp.rw2.1A <- Incidence ~ 1 + CUMUL_vacc_rate*stringency_index+

logCASES +

552 f(provID , model="bym2",graph=grp ,hyper = hyper , scale.model=TRUE) +

553 f(week_ID ,model="rw2",hyper = hyper) +

554 f(week_id.1,model="iid",hyper = hyper) +

555 f(ID.prov.week ,model="iid",hyper = hyper)

556 covid.hosp.rw2.1A <- inla(formula.hosp.rw2.1A,family="poisson",

557 data=data.set ,E= expected_hosp ,

558 control.predictor=list(compute=TRUE , link =1), #enable prediction

559 control.compute=list(config = TRUE , dic=TRUE , cpo=TRUE),

560 lincomb=lcs)

561 #Code for extraction parameter estimates

562 lapply(covid.hosp.rw2.1A$marginals.fixed , function(marg) {

563 inla.zmarginal(inla.tmarginal(exp , marg))

564 })

565 #Code for ploting posterior mean of residual random effects

566 BE_581. shp_prov$re.hosp1 <- sapply(covid.hosp.rw2.1A$marginals.random$

provID [1:11] ,

567 function(x) inla.emarginal(exp , x))

568 ggplot(BE_581. shp_prov)+geom_sf(aes(fill=re.hosp1))+

569 scale_fill_gradient2(

570 midpoint=1,low="blue",mid="white",high="red"

571 )+

572 theme_bw()

573

574 # Posterior temporal trend

575
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576 temporal.RW <- lapply(covid.hosp.rw2.1A$marginals.random$week_ID ,

577 function(X){marg <- inla.tmarginal(function(x) exp(x), X)

578 inla.emarginal(mean , marg)})

579 temporal.IID <- lapply(covid.hosp.rw2.1A$marginals.random$week_id.1,

580 function(X){marg <- inla.tmarginal(function(x) exp(x), X)

581 inla.emarginal(mean , marg)})

582 # Convert to numeric vectors

583 temporal.RW.vals <- unlist(temporal.RW)

584 temporal.IID.vals <- unlist(temporal.IID)

585

586 # Create week index

587 week_index <- seq_along(temporal.RW.vals)

588

589 # Combine into a data.frame

590 temporal_df <- data.frame(

591 week = week_index ,

592 RW = temporal.RW.vals ,

593 IID = temporal.IID.vals

594 )

595

596 # Plot both CAR and IID on the same plot

597 ggplot(temporal_df , aes(x = week)) +

598 geom_line(aes(y = RW, color = "RW")) +

599 geom_line(aes(y = IID , color = "IID")) +

600 scale_color_manual(values = c("RW" = "blue", "IID" = "red")) +

601 labs(

602 title = "Temporal␣Trend:␣RW␣vs␣IID",

603 x = "Week",

604 y = "exp(mean)",

605 color = "Temporal␣Effect"

606 ) +

607 theme_minimal(base_size = 14)

608
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609 Posterior exceedance probability

610 csi.case <-covid.case.rw2.2A$marginals.random$provID [1:11]

611 a <- 0

612 # Ensure the column is a numeric vector (not a list)

613 BE_581. shp_prov$prob.csi.case <- unlist(

614 lapply(csi.case , function(x) {1 - inla.pmarginal(a, x)})

615 )

616 # Create categorical variable

617 BE_581. shp_prov <- BE_581. shp_prov %>%

618 mutate(prob_cat = cut(prob.csi.case ,

619 breaks = c(0, 0.2, 0.8, 1),

620 labels = c("0 0 .2␣(Unlikely)",

621 "0.2 0 .8␣(Uncertain)",

622 "0.8 1 ␣(Likely)"),

623 include.lowest = TRUE))

624

625 # Plot with discrete fill

626 ggplot(BE_581. shp_prov) +

627 geom_sf(aes(fill = prob_cat)) +

628 scale_fill_manual(

629 values = c("0 0 .2␣(Unlikely)" = "blue",

630 "0.2 0 .8␣(Uncertain)" = "grey80",

631 "0.8 1 ␣(Likely)" = "red"),

632 name = "P(RR␣>␣1)"

633 ) +

634 theme_bw()

635 #Code for extracting the space -time interaction probability

636 BE_581. shp <- st_read("BE_581. shp")

637 # Group by province ID and dissolve polygons

638 BE_581. shp <- BE_581. shp[order(BE_581. shp$C_PROVI) ,]

639 BE_581. shp_prov <- BE_581. shp %>%

640 group_by(C_PROVI) %>%

641 summarise(geometry = st_union(geometry)) %>%
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642 ungroup ()

643 #Space -Time Interaction

644 delta <- data.frame(delta=covid.hosp.rw2.1A$summary.random$ID.prov.week

[,2],week_ID=data.set$week_ID,provID=data.set$provID)

645 delta.matrix <- matrix(delta[,1], nrow(BE_581. shp_prov) ,52,byrow=FALSE)

646 rownames(delta.matrix)<- delta[seq_len(nrow(BE_581. shp_prov)) ,3]

647 #Space time probability >1

648 a=0

649 inlaprob.delta <-lapply(covid.hosp.rw2.1A$marginals.random [[4]], function

(X){

650 1-inla.pmarginal(a, X)

651 })

652 pp.delta <-unlist(inlaprob.delta)

653

654 pp.cutoff.interaction <- c(0 ,0.2 ,0.8 ,1)

655 pp.delta.matrix <- matrix(pp.delta , nrow(BE_581. shp_prov) ,52,byrow=FALSE

)

656 pp.delta.factor <- data.frame(C_PROVI=BE_581. shp_prov$C_PROVI)

657 for(i in 1:52){

658 pp.delta.factor.temp <- cut(pp.delta.matrix[,i],breaks=pp.cutoff.

interaction ,include.lowest=TRUE)

659 pp.delta.factor <- cbind(pp.delta.factor ,pp.delta.factor.temp)

660 }

661 colnames(pp.delta.factor)<- c("C_PROVI",seq(1,52))

662

663 View(pp.delta.factor)

664 #Maps

665 BE_581. shp_prov <- cbind(BE_581. shp_prov , pp.delta.factor)

666 BE_581. shp_prov_sp <- sf::as_Spatial(BE_581. shp_prov)

667

668 trellis.par.set(axis.line=list(col=NA))

669 spplot(obj=BE_581. shp_prov_sp, zcol="X1", col.regions=gray (2.5:0.5/3),

main="Hosp -21W1:Space␣time␣probability␣RR >1",par.settings=list(
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fontsize=list(text =10)))

670 trellis.par.set(axis.line=list(col=NA))

671 spplot(obj=BE_581. shp_prov_sp, zcol="X15", col.regions=gray (2.5:0.5/3),

main="Hosp -21W15:Space␣time␣probability␣RR >1",par.settings=list(

fontsize=list(text =10)))

672 trellis.par.set(axis.line=list(col=NA))

673 spplot(obj=BE_581. shp_prov_sp, zcol="X30", col.regions=gray (2.5:0.5/3),

main="Hosp -21W30:Space␣time␣probability␣RR >1",par.settings=list(

fontsize=list(text =10)))

674 trellis.par.set(axis.line=list(col=NA))

675 spplot(obj=BE_581. shp_prov_sp, zcol="X45", col.regions=gray (2:0/2),main=

"Hosp -21 W45:Space␣time␣probability␣RR >1",par.settings=list(fontsize=

list(text =10)))

Table 4: Estimates of model fitted to infection - 2020 data
Parameter Mean Std. Error UCI LCI

(Intercept) 1.212 0.222 0.833 1.706
CUMUL_vacc_rate 2.36× 10−39 5.76× 10−36 −1.34× 10−7 −2.27× 10−12

Stringency_Index 0.998 0.0030 0.992 1.004
CUMUL_vacc_rate:Stringency_Index 1.158 0.659 0.350 2.867

Table 5: Estimates of model fitted to infection - 2020 data
Parameter Mean SD UCI LCI

(Intercept) 1.2071 0.2211 0.8304 1.6996
CUMUL Vaccination 23.6926 606.2359 −2.63× 1027 −4.44× 1022

Stringency_Index 0.9978 0.0030 0.9919 1.0038

Table 6: Log transform estimates of model fitted to infection (Using 2020 data)
Parameter Mean Std. Error 2.5% CrI 97.5% CrI

(Intercept) 1.043 0.0092 1.025 1.062
CUMUL_vacc_rate 26.918 679.567 −2.76× 1027 −4.65× 1022
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