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Abstract

In modern healthcare, early identification and prevention of serious health problems are crucial.
Increasingly, research focuses on developing artificial intelligence models capable of detecting
and predicting health risks based on a person’s medical history and current condition.

Within the context of cardiovascular health, Al models play an important role in predict-
ing risks such as atrial fibrillation, sinus tachycardia, sinus arrhythmia, and other conditions.
Traditionally, neural networks are often applied to patient ECGs to predict or recognise ar-
rhythmias.

This thesis investigates the effectiveness of block-term tensor regression (BTTR) using CP De-
composition as an alternative to neural networks. BTTR is still an emerging research technique
and has not yet been widely adopted, but it shows promise. Unlike neural networks, BTTR uses
multi-linear algebra (multiway decoding) and is able to capture relationships between different
dimensions of the data. This is useful as ECG data is often structured as a big 3D tensor.
Furthermore, it offers a more interpretable ”glass-box” approach, which could help medical
research in the future.

Because this technique is relatively new, its accuracy in predicting cardiovascular health risks
remains uncertain. Therefore, this thesis is a case study, aiming to develop the most effective
BTTR model for predicting cardiovascular risks using ECG data. The performance of BTTR is
evaluated to determine its usefulness within this research domain. Specifically, we mainly focus
on atrial fibrillation, but the same techniques could be used with other arrhythmias.






Acknowledgements

In this section, I would like to thank two people. First, my co-supervisor and mentor, Dr. Ir.
Axel Faes, a postdoctoral researcher in Biomedical Data Sciences at UHasselt. The topic was
originally his, as he conducts research in Block-Term Tensor Regression, and he kindly offered it
to me. He guided me throughout the entire process by having short meetings every two weeks.
In doing so, he supported me from the initial research phase, through development, and finally
during the writing of the thesis. He was always supportive and helpful, and remained positive
even when classification results were disappointing.

Secondly, I would like to thank Prof. Dr. Stijn Vansummeren, a professor of Computer Science
at the Data Science Institute of Hasselt University. He was my official promotor, overseeing the
thesis. Although our contact was limited, as this work was more closely related to Dr. Axel
Faes’s research area, I appreciated his positive feedback and advice during the intermediate
presentation.






Summary

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, with ar-
rhythmias such as atrial fibrillation (AF) representing a major concern due to their potential to
trigger life-threatening events like stroke and heart failure. Early detection of such conditions
is vital, yet traditional methods often fall short, particularly because arrhythmias tend to occur
sporadically and may remain asymptomatic until they reach a dangerous stage. This unpre-
dictable nature is especially problematic: arrhythmic episodes may not occur during routine
medical check-ups, and individuals without noticeable symptoms are unlikely to seek medical
attention, allowing the condition to go undiagnosed and untreated for extended periods.

While wearable ECG devices and continuous monitoring devices have already improved de-
tection rates using Artificial Intelligence (AI), most current systems focus on identifying ar-
rhythmias as they happen. Ideally, you want to predict these arrhythmias, allowing for timely
intervention, reducing the likelihood of life-threatening outcomes. Predicting arrhythmic events
in advance, especially from otherwise normal sinus ECGs, remains a significant challenge. Al,
and in particular neural networks, have shown promise in detecting arrhythmias, as well as pre-
dicting future arrhythmias from current sinus rhythms. These models are excellent at learning
subtle patterns in complex data but suffer from limited interpretability and high computational
demands.

This thesis investigates whether an alternative approach, known as Block-Term Tensor Regres-
sion (BTTR), can address these issues. BTTR is based on tensor decomposition techniques,
which allow for the modelling of multi-dimensional data such as ECGs in a structured and in-
terpretable way. Unlike deep learning models, BT'TR is closer to a ‘glass-box’ system, meaning
it can show insights into which patterns it sees. This makes it more suitable for clinical use
where interpretability and transparency are essential.

For this thesis, we will answer the following research question: ”How effective is Block-
Term Tensor Regression in detecting and predicting atrial fibrillation from multi-
lead ECG, and how can its pipeline be optimised for best performance?”.

So specifically, the main goal of this research is to evaluate the effectiveness of BTTR in two
tasks: (1) classifying AF from raw ECGs, and (2) predicting the risk of future AF episodes based
on healthy ECG segments. While neural networks dominate current approaches, BTTR may
provide a viable and interpretable alternative for ECG-based diagnostics and prediction.

The main idea behind the methodology is to break down complex ECG signals into smaller,
meaningful components or patterns, and then use those as input for classification and prediction
models.

To do this, we use a technique called tensor decomposition, which simplifies complex multi-
dimensional data like ECGs. A commonly used method is CP decomposition, which breaks
the data into a set of repeating patterns (called latent factors or components) found across the
input data. The result is a set of factor matrices that describe how strongly each pattern is
expressed in each dimension: samples, time and leads.

Specifically, the sample factor matriz shows how much each sample expresses each pattern,
the time factor indicates which points in time are most relevant to each pattern, and the lead



factor captures which ECG leads contribute most to each pattern. This yields a compact and
interpretable representation of the original signals, helping us better understand the underlying
structure of the data.

A more advanced version of this technique, Block Term Decomposition, allows for more
flexibility by capturing richer patterns by allowing components to be combined in more com-
plex ways. We mention it for context, but keep things simple by focusing on CP decomposi-
tion.

Once these patterns are extracted, and we know which ECG samples contain which patterns,
we use classification models to learn which patterns belong to which classes, and ultimately
make predictions and classify unseen data. These models include:

e Logistic regression, a basic method for binary classification.
¢ Random forest, which combines many decision trees for better accuracy.

e XGBoost, a more powerful version that builds trees step by step and adjusts them to
reduce mistakes.

As mentioned, BTTR is applied to ECG signals, which measure the electrical activity of the
heart. Each heartbeat shows up as a set of waves: the P wave, QRS complex, and T wave.
Changes in these waves can point to problems like atrial fibrillation, a common irregular
heartbeat where normal rhythm is disrupted.

So to summarise, we break ECGs into patterns, turn those patterns into features, and use them
to classify heart rhythms, all while keeping the process interpretable and manageable.

There have been numerous studies related to the classification and prediction of atrial fibril-
lation (AF). While our focus lies on Block Term Tensor Regression (BTTR), it’s useful to
understand existing approaches to AF detection and prediction in order to compare them to
our method.

Early work like that of Wu et al. [1] used handcrafted features extracted from short, single-lead
ECGs to detect early-stage AF. They extracted RR intervals and used Intrinsic Time-scale
Decomposition (ITD) to compute entropy-based features. These features were used to train an
SVM classifier. Their method performed well on short segments, reporting 95% accuracy, 96%
specificity, and 93% sensitivity on Physionet data [2]. However, it relies heavily on handcrafted
features and only uses single-lead data.

In contrast, deep learning methods such as those by Kachuee et al. [3] and Pyakillya et al. [4]
avoid feature engineering by training convolutional neural networks directly on ECG signals.
Kachuee et al. also applied transfer learning by reusing learned features for a different classi-
fication task. These models also achieved strong results of approximately 95% accuracy, but
depend on large labelled datasets and often lack interpretability. Most of them work on beat-
level classification, not on 10-second rhythms.

Furthermore, there have also been a few studies focusing on the prediction of AF, notably those
by Attia et al. [5] and Gruwez et al. |6]. Both works explored the possibility of detecting atrial
fibrillation from ECGs recorded during sinus rhythm, addressing the clinical challenge that AF
often occurs unpredictably and without symptoms, making it difficult to capture using standard
screening methods.

Attia et al. developed a deep learning model using convolutional neural networks (CNNs) to
analyse 10-second, 12-lead ECGs from a large retrospective dataset at the Mayo Clinic. Their
model achieved an AUC of 0.87 using a single ECG, increasing to 0.90 when multiple ECGs
per patient were included. Gruwez et al. extended this approach using data from Belgian
hospitals, training their own CNN on over 490,000 ECGs from Hospital Oost-Limburg. Their
model achieved similarly strong results, with AUROC values of 0.87 on internal validation and
0.86 on an external dataset from Ziekenhuis Maas en Kempen.



Both studies demonstrate that subtle atrial abnormalities related to AF can be detected even
when patients are in normal sinus rhythm, enabling earlier diagnosis and potential stroke pre-
vention. Both share the problem of interpretability due to the use of neural networks. Despite
this limitation, the results show that AI models can uncover subtle patterns in healthy ECGs,
indicating risk of AF, that are not visible to clinicians.

Compared to these works, our approach also focused on AF classification and prediction using
10-second, 12-lead ECGs. However, instead of relying on deep neural networks, we employed
BTTR (Block Term Tensor Regression), which offers greater interpretability and requires less
data to train effectively. This choice makes the classification problem more challenging, but po-
tentially more informative and practical for real-world clinical applications where transparency
and data efficiency are critical.

This study employs an experimental approach to evaluate the performance of a simple Block
Term Tensor Regression (BTTR) algorithm for classifying ECG signals and predicting arrhyth-
mias. The work begins with a diagnostic classification task, which is simpler, to optimise
preprocessing, tensor decomposition, and model selection, establishing a robust pipeline. This
pipeline is then adapted for prognostic prediction, which predicts future atrial fibrillation (AF)
from ECGs that appear normal at recording. The primary modification for the prognostic task
lies in data sampling, with the remainder of the methodology largely unchanged.

The methodology includes selecting relevant ECG data, preprocessing signals to enhance qual-
ity, and applying CANDECOMP /PARAFAC (CP) tensor decomposition to extract meaningful
patterns in an unsupervised manner. These latent patterns serve as features for supervised ma-
chine learning models. Multiple classification algorithms are tested and their hyperparameters
optimised via grid search. Model performance is evaluated using accuracy metrics to interpret
results.

BTTR operates in two main stages: first, unsupervised tensor decomposition identifies shared
latent patterns across ECG recordings. Second, a supervised classifier learns to distinguish
heart rhythms based on these patterns. but firstly, we need data.

We use the PTB-XL dataset from Physionet [2}/7,/8], which contains over 21,000 annotated
12-lead ECG recordings. For this study, only recordings labelled as normal sinus rhythm (SR)
or atrial fibrillation (AF) are included. Other metadata such as patient age or sex is excluded
to focus solely on ECG-derived features.

Again, two related tasks are addressed: diagnostic classification (differentiating AF from SR)
and prognostic prediction (predicting future AF from normal ECGs). Prognostic prediction is
more challenging, as the ECGs do not contain obvious arrhythmia signs, only subtle indica-
tors. Sampling strategies differ accordingly: classification uses all SR and AF recordings, while
prediction uses SR recordings from patients who develop AF within one month alongside SR
recordings from patients without AF episodes in the dataset, as proposed by Attia et al [5].
However for this task, we do have to take into account that there will be some label noise. Some
AF events might be unrecorded, resulting in sinus rhythms of that patient being wrongfully
classified as healthy. Overall, both tasks mostly only differ in sampling in labelling, meaning
our methodology is mostly the same for both tasks.

Before we start decomposition, our raw clinical ECG signals require preprocessing to mitigate
issues such as baseline drift, amplitude variability, high-frequency noise, and high sampling
rates, which can distort tensor decompositions or bias them towards high-amplitude signals.
Various preprocessing pipelines were evaluated, focusing on centring, amplitude scaling, and
noise reduction. Effectiveness was evaluated via visualisations, reconstruction errors, and cor-
relations of latent factors with rhythm labels.

For normalisation, global min-max scaling was initially tested, which scales the entire tensor to
[0,1] based on global extrema. However, this failed to equalise effective signal ranges, allowing
large-amplitude ECGs to dominate decomposition. Per-signal min-max normalization, scaling
each signal independently to [0,1], mitigated this issue and improved decomposition quality by



balancing sample contributions. Per-sample normalisation across leads was also evaluated but
found ineffective.

Denoising steps were crucial and included:

e A high-pass Butterworth filter (cutoff 0.5 Hz) to remove baseline wander without phase
distortion.

e A 50 Hz notch filter to suppress power line interference.

e Wavelet denoising to reduce high-frequency noise while preserving essential waveform
features.

These steps consistently enhanced decomposition outcomes and were incorporated into all
pipelines with careful parameter tuning to avoid loss of subtle predictive information.

To reduce computational burden and redundancy from the original 500 Hz sampling (5000 points
per 10-second recording), decimation was applied. This consists of a low-pass filtering followed
by downsampling every n-th point, while avoiding aliasing. For classification, decimation by a
factor of 20 preserved essential patterns, for prognostic prediction, we had to be more careful
in order not to lose subtle features.

Other techniques, such as standardisation and per-signal max-absolute normalisation, were
explored but did not improve decomposition quality, often introducing undesirable variability
or ineffective scaling.

The final preprocessing pipeline thus consists of denoising, per-signal min-max normalisation,
and decimation. Alternative tested methods either degraded performance or offered no bene-
fits.

For decomposition, we initially considered Block Term Decomposition (BTD), due to its ability
to factorise tensors into higher-rank blocks capturing complex relationships. However, there is
not yet a widely accepted optimisation approach, and no implementation in Python. Since we
aimed to assess the effectiveness of BTTR on our use case, rather than research BTD optimi-
sation, we chose CANDECOMP /PARAFAC (CP) decomposition, a simpler, well-established
technique that decomposes tensors into sums of rank-1 components. CP is computationally
efficient, well-supported in Python (Tensorly library), and allows reproducible analyses. Both
techniques aim to decompose an input tensor into patterns and latent factors, meaning our
same developed methodology could also be applied to BTD.

CP decomposition was performed using Tensorly’s decomposition.parafac on downsampled
tensors approximately sized (1000(samples), 250( Hertz*seconds), 12(leads)). The rank param-
eter, controlling the number of latent factors, was varied between 4 and 12, with ranks below
4 causing underfitting and above 12 exceeding memory limits, with improvements plateauing
around rank 8. The algorithm was run with up to 20 iterations (n-iter_max) and a tolerance
of 1 x 107> for convergence, initialised using the ’svd’ method for stability and speed. Factor
normalisation was enabled for interpretability, orthogonalisation was disabled to avoid restrict-
ing the solution space, and a small L2 regularisation (12_reg = 10~2) improved class separation,
increasing performance.

In order to evaluate our decomposition, we used correlation metrics to assess how well the ex-
tracted latent factors relate to the rhythm labels. Specifically, we computed Pearson correlation
coefficients, which measure the strength of linear relationships between the latent components
and the target classes. This allowed us to quantify how effectively the decomposition separated
AF from sinus rhythms. Pearson correlation served as our primary evaluation metric due to its
simplicity, interpretability, and direct indication of how strongly each component aligns with
the classification task. Now that we know which components are the best features to differen-
tiate the classes, component selection can be performed. Components with correlations above
0.1 were considered useful. Strong correlations exceeded 0.2.



Furthermore, we visualised the factor matrices to show how each pattern is influenced by the
samples, time points, and ECG leads. This helps us see when and where important features
appear in the data, making the method more interpretable than deep neural networks, which
do not easily reveal what they have learned.

CP decomposition results in factor matrices for samples, time, and leads. For classification,
only the sample factor matrix (size samples x R) was used, representing each ECG’s association
to the latent patterns. Time and lead factors supported interpretability but were excluded from
classifiers.

Latent factor values, typically varying between +10, were scaled to [0,1] using MinMaxScaler
from scikit-learn to avoid model bias from feature magnitude differences.

Polynomial feature expansion and Principal Component Analysis (PCA) were tested to capture
nonlinear feature interactions and reduce dimensionality /noise, respectively. However, these
techniques did not result in significant performance improvements and were therefore excluded
from the final pipeline for simplicity and efficiency.

The sample matrix was split into training and testing sets (80/20 ratio), stratified by labels.
The training set was always kept balanced in order not to prioritise the majority class while
predicting. For testing we used 2 approaches: a balanced distribution and a more natural
real-life distribution.

We evaluated Logistic Regression, Random Forest, and XGBoost classifiers, selecting models
based on performance and tuning hyperparameters through grid search. The model performance
was evaluated via cross-validation. Cross-validation metrics include accuracy, precision, recall,
confusion matrix, and F1l-score averaged across folds. However, since cross-validation assumes
consistent data distributions, we couldn’t use it as an evaluation on a naturally distributed test
set. In this case, we trained and tested the model using a single train-test split.

To summarise our experiments, we first investigated the impact of different preprocessing set-
tings on the classification task. We tested various combinations of denoising thresholds, wavelet
decomposition levels, and decimation factors, while keeping all other parameters fixed. We
found that the choice of preprocessing techniques in general had a much larger impact than the
specific parameter values. Our final setup, using wavelet denoising at level 3 with a threshold
of 7 and a decimation factor of 20, consistently led to better correlation results.

We then moved on to study the effect of the decomposition rank and ¢y regularisation. Here,
we observed that stronger regularisation generally improved correlation with the rhythm labels,
while higher ranks tended to reduce it. However, when we evaluated these settings in an actual
classification task, the results proved otherwise. We found that higher ranks combined with
moderate regularisation yielded the best performance, particularly when using Logistic Regres-
sion as the classifier. This suggests that while strong regularisation may enhance correlation,
it does not necessarily lead to better classification.

Finally, we applied the same process to the prediction task, with a specific focus on optimising
the preprocessing stage, as this is where we expected differences compared to classification.
Since the patterns related to future AF in SR ECGs are very subtle, we tested lower decimation
factors and found that reducing the amount of downsampling improved results.

For the classification task, our best model achieved an average accuracy of around 65%, with
balanced overall performance. However, a more detailed analysis showed the model performed
better on SR samples (precision 88%, recall 62%) than on AF samples (precision 32%, recall
69%). This may be due to greater variability in the AF class, while SR signals appear more
uniform.

In the more challenging prediction task, where the goal was to predict future AF from normal-
looking SR signals, we obtained an accuracy of approximately 59%. Despite the modest score,
this is still above chance level, suggesting that subtle indicators of AF may indeed be present
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in early SR signals. These results highlight the potential of our BTTR approach, even in
data-scarce settings.

A number of key findings emerged from our study:

e Increasing the /5 regularisation parameter improved latent factor correlations but did not
improve classification, suggesting it captured common but less discriminative patterns.

e The decomposition step was the most crucial: once meaningful latent factors were ex-
tracted, even simple classifiers such as logistic regression performed strongly

e Contrary to correlation values, higher decomposition ranks improved classification per-
formance by introducing additional information.

e Preprocessing techniques, especially amplitude scaling, denoising, and decimation, had a
major impact and were crucial to get good results.

Compared to related work, our classification results fall short of reported accuracies up to
95% using handcrafted features or deep learning on the same PTB-XL dataset. Similarly,
prediction tasks on large private datasets reported accuracies around 79%, while we reached
59%. Nevertheless, our method provides interpretability and requires far less data, showing
promise as a lightweight and explainable alternative.

This thesis explored how tensor decomposition can be used to extract meaningful and inter-
pretable features from ECG signals for both classification and prediction of AF. Although we
did not achieve state-of-the-art performance, we demonstrated that BTTR can reveal latent
structure in ECG data that supports clinically relevant tasks, even with limited data.

A key lesson was the importance of preprocessing. Early experiments suffered from poor decom-
position due to neglecting signal scaling, denoising, and proper evaluation metrics. Initially, we
focused on minimising reconstruction error, which did not align with downstream classification
goals. Switching to correlation-based evaluation revealed more relevant features.

Another important insight was the central role of decomposition. Rather than focusing on opti-
mising classifiers, we found that once a strong latent structure was available, even simple models
sufficed. This suggests that good features matter more than complex modelling, especially in
small-data settings.

From a technical standpoint, this project deepened our understanding of tensor methods applied
to waveform data, particularly how preprocessing and parameter tuning impact decomposition.
On the research side, it highlighted the importance of selecting appropriate evaluation metrics
and carefully testing each stage of the pipeline. Interestingly, some of our most valuable insights
came not from high accuracy but from understanding what didn’t work and why.

As for our final thoughts, we started this thesis with the research question: ”How effec-
tive is Block-Term Tensor Regression in detecting and predicting atrial fibrilla-
tion from multi-lead ECG, and how can its pipeline be optimised for best perfor-
mance?”

Looking back, we can conclude that for now, Block-Term Tensor Regression is not as effective as
deep neural networks for this task. However, the method shows potential. We have shown that
it is possible to apply this approach to both the detection and prediction of atrial fibrillation
from ECG data, and that it can produce useful results.

One of the main advantages we experienced is that the model offers some level of interpretability
through the decomposition visualisations. While we cannot yet draw concrete conclusions from
these visualisations, they give an idea of what might be possible in the future. Another benefit
is that BTTR seemed to perform reasonably well even with a limited amount of data. For
example, in the prediction task we only had 42 positive samples, but the model still reached an
accuracy of 59%.
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In summary, while BTTR does not currently outperform deep learning models in terms of
raw accuracy, it offers useful properties such as interpretability and better performance with
small datasets, while still giving results. This makes it an interesting approach for future
research.

This future research could explore Block Term Decomposition, which may capture more com-
plex latent patterns than CP decomposition. Applying this approach to larger, more diverse
datasets could improve both classification and prediction performance. Additionally, incorpo-
rating heartbeat-level features, such as RR intervals, into the tensor representation may provide
further improvements, especially in detecting early signs of AF.
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Samenvatting

Hart- en vaatziekten (HVZ) blijven wereldwijd de belangrijkste doodsoorzaak, waarbij aritmieén
zoals atrial fibrillation (AF) een grote zorg zijn vanwege hun potentieel om levensbedreigende
gebeurtenissen zoals beroertes en hartfalen te veroorzaken. Vroege detectie van dergelijke aan-
doeningen is van vitaal belang, maar traditionele methoden schieten vaak tekort, vooral omdat
aritmieén de neiging hebben sporadisch op te treden en asymptomatisch kunnen blijven totdat
ze een gevaarlijk stadium bereiken. Deze onvoorspelbare aard is bijzonder problematisch: arit-
mische episodes treden mogelijk niet op tijdens routine medische controles, en personen zonder
merkbare symptomen zullen waarschijnlijk geen medische hulp zoeken, waardoor de aandoening
ongediagnosticeerd en onbehandeld blijft gedurende lange perioden.

Hoewel draaghare ECG-apparaten en continue monitoringapparaten de detectiepercentages al
hebben verbeterd met behulp van Kunstmatige Intelligentie (AI), richten de meeste huidige
systemen zich op het identificeren van aritmieén op het moment dat ze zich voordoen. Idealiter
wilt u deze aritmieén voorspellen, waardoor tijdige interventie mogelijk is, en de kans op levens-
bedreigende uitkomsten wordt verminderd. Het vooraf voorspellen van aritmische gebeurtenis-
sen, vooral vanuit verder normale sinus-ECG’s, blijft een aanzienlijke uitdaging. Al en in het
bijzonder neurale netwerken, hebben veelbelovende resultaten getoond in het detecteren van
aritmieén, evenals het voorspellen van toekomstige aritmieén vanuit de huidige sinusritmes.
Deze modellen zijn uitstekend in het leren van subtiele patronen in complexe gegevens, maar
lijden onder beperkte interpreteerbaarheid en hoge computationele eisen.

Deze thesis onderzoekt of een alternatieve benadering, bekend als Block-Term Tensor Regressie
(BTTR), deze problemen kan aanpakken. BTTR is gebaseerd op tensor decompositie tech-
nieken, die het mogelijk maken om multidimensionale gegevens zoals ECG’s op een gestruc-
tureerde en interpreteerbare manier te modelleren. In tegenstelling tot deep learning modellen
is BTTR dichter bij een ’glass-box’ systeem, wat betekent dat het inzichten kan tonen in welke
patronen het ziet. Dit maakt het geschikter voor klinisch gebruik waar interpreteerbaarheid en
transparantie essentieel zijn.

Voor deze thesis zullen we de volgende onderzoeksvraag behandelen: ”Hoe effectief is Block-
Term Tensor Regressie in het detecteren en voorspellen van atrial fibrillation vanuit
multi-lead ECG’s, en hoe kan de pipeline worden geoptimaliseerd voor de beste
prestaties?”

Het hoofddoel van dit onderzoek is dus om de effectiviteit van BTTR te evalueren in twee
taken: (1) het classificeren van AF vanuit ruwe ECG’s, en (2) het voorspellen van het risico op
toekomstige AF-episodes op basis van gezonde ECG-segmenten. Hoewel neurale netwerken de
huidige benaderingen domineren, kan BTTR een levensvatbaar en interpreteerbaar alternatief
bieden voor ECG-gebaseerde diagnostiek en voorspelling.

De kern van de methodologie is het opsplitsen van complexe ECG-signalen in kleinere, betekenisvolle
componenten of patronen, en deze vervolgens te gebruiken als invoer voor classificatie- en voor-
spellingsmodellen.

Hiervoor gebruiken we een techniek genaamd tensor decompositie, die complexe multidimen-
sionale gegevens zoals ECG’s vereenvoudigt. Een veelgebruikte methode is CP decompositie,
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die de gegevens opsplitst in een set van herhalende patronen (de zogeheten latente factoren of
componenten) die over de invoergegevens heen worden gevonden. Het resultaat is een set fac-
tormatrices die beschrijven hoe sterk elk patroon wordt uitgedrukt in elke dimensie: samples,
tijd en leads.

Specifiek toont de sample factormatriz hoeveel elk sample elk patroon uitdrukt, de tijdsfactor
geeft aan welke tijdspunten het meest relevant zijn voor elk patroon, en de leadfactor vangt op
welke ECG-leads het meest bijdragen aan elk patroon. Dit levert een compacte en interpreteer-
bare representatie van de originele signalen op, wat ons helpt de onderliggende structuur van
de gegevens beter te begrijpen.

Een meer geavanceerde versie van deze techniek, Block Term Decompositie, maakt meer
flexibiliteit mogelijk door rijkere patronen vast te leggen, doordat componenten op complexere
manieren kunnen worden gecombineerd. We vermelden het voor context, maar houden de zaken
eenvoudig door ons te richten op CP decompositie.

Zodra deze patronen zijn geéxtraheerd en we weten welke ECG-samples welke patronen bevat-
ten, gebruiken we classificatiemodellen om te leren welke patronen tot welke klassen behoren,
en uiteindelijk om voorspellingen te doen en ongeziene gegevens te classificeren. Deze modellen
omvatten:

e Logistic regression, een basis methode voor binaire classificatie.
e Random forest, die veel beslisbomen combineert voor betere nauwkeurigheid.

e XGBoost, een krachtigere versie die bomen stap voor stap bouwt en aanpast om fouten
te verminderen.

Zoals vermeld, wordt BTTR toegepast op ECG-signalen, die de elektrische activiteit van
het hart meten. Elke hartslag verschijnt als een reeks golven: de P-golf, QRS-complex en T-
golf. Veranderingen in deze golven kunnen wijzen op problemen zoals atrial fibrillation, een
veelvoorkomende onregelmatige hartslag waarbij het normale ritme wordt verstoord.

Dus samengevat, we splitsen ECG’s in patronen, zetten die patronen om in kenmerken, en
gebruiken ze om hartritmes te classificeren, dit alles terwijl het proces interpreteerbaar en
beheersbaar blijft.

Er zijn talrijke studies uitgevoerd met betrekking tot de classificatie en voorspelling van AF.
Hoewel onze focus ligt op Block Term Tensor Regression (BTTR), is het nuttig om bestaande
benaderingen voor AF-detectie en AF-voorspelling te begrijpen om ze te kunnen vergelijken
met onze methode.

Eerder werk, zoals dat van Wu et al. [1], gebruikte handmatig gemaakte features, geéxtraheerd
uit korte, single lead ECG’s, om beginnende AF te detecteren. Ze extraheerden RR-intervallen
en gebruikten Intrinsic Time-scale Decomposition (ITD) om op entropie gebaseerde kenmerken
te berekenen. Deze kenmerken werden gebruikt om een SVM-classificeerder te trainen. Hun
methode presteerde goed op korte segmenten, met een gerapporteerde nauwkeurigheid van
95%, specificiteit van 96% en gevoeligheid van 93% op Physionet-data [2]. Het is echter sterk
afhankelijk van handmatig gemaakte kenmerken en gebruikt alleen éénkanaals gegevens.

Daarentegen vermijden deep learning-methoden, zoals die van Kachuee et al. [3] en Pyakillya
et al. [4], feature engineering door convolutionele neurale netwerken direct op ECG-signalen te
trainen. Kachuee et al. pasten ook transfer learning toe door geleerde kenmerken te herge-
bruiken van een andere classificatietaak. Deze modellen behaalden ook sterke resultaten van
ongeveer 95% nauwkeurigheid, maar zijn afhankelijk van grote gelabelde datasets en missen
vaak interpreteerbaarheid. Verder classificeren ze op hartslag-niveau, niet op ritmes van 10
seconden.

Bovendien zijn er ook enkele studies geweest die zich richtten op de voorspelling van AF, met
name die van Attia et al. [5] en Gruwez et al. [6]. Beide werken onderzochten de mogelijkheid
om AF te detecteren aan de hand van ECG’s die tijdens sinusritme waren opgenomen, en
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pakten de klinische uitdaging aan dat AF vaak onvoorspelbaar en zonder symptomen optreedt,
waardoor het moeilijk te detecteren is met standaard screeningsmethoden.

Attia et al. ontwikkelden een deep learning-model met behulp van convolutionele neurale
netwerken (CNN’s) om 10-seconden, 12-lead ECG’s te analyseren uit een grote privé dataset
vanuit de Mayo Clinic. Hun model behaalde een AUC van 0,87 met één enkele lead, wat toe-
nam tot 0,90 wanneer meerdere leads per patiént werden opgenomen. Gruwez et al. breidden
deze aanpak uit met gegevens uit Belgische ziekenhuizen, waarbij ze hun eigen CNN trainden
op meer dan 490.000 ECG’s van Ziekenhuis Oost-Limburg. Hun model behaalde vergelijkbaar
sterke resultaten, met AUC-waarden van 0,87 bij interne validatie en 0,86 op een externe dataset
van Ziekenhuis Maas en Kempen.

Beide studies tonen aan dat subtiele atriale afwijkingen gerelateerd aan AF kunnen worden
gedetecteerd, zelfs wanneer patiénten in normaal sinusritme zijn, wat een eerdere diagnose en
potentiéle beroertepreventie mogelijk maakt. Beide delen het probleem van interpreteerbaarheid
door het gebruik van neurale netwerken. Ondanks deze beperking tonen de resultaten aan dat
Al-modellen subtiele patronen in gezonde ECG’s kunnen ontdekken die wijzen op het risico op
AF, die niet zichtbaar zijn voor clinici.

Vergeleken met deze werken richtte onze aanpak zich ook op AF-classificatie en AF-voorspelling
met behulp van 10-seconden, 12-kanaals ECG’s. Maar in plaats van te vertrouwen op diepe
neurale netwerken, gebruikten we BTTR, (Block Term Tensor Regression), wat een grotere inter-
preteerbaarheid biedt en minder gegevens vereist om effectief te trainen. Deze keuze maakt het
classificatieprobleem uitdagender, maar potentieel informatiever en praktischer voor klinische
toepassingen in de echte wereld, waar transparantie en data-efficiéntie cruciaal zijn.

Deze studie maakt gebruik van een experimentele aanpak om de prestaties te evalueren van een
eenvoudig Block Term Tensor Regressie (BTTR) algoritme voor het classificeren en voorspellen
van aritmieén zoals AF. Ons werk begint met een diagnostische classificatietaak, die eenvoudiger
is, om preprocessing, tensor decompositie en modelselectie te optimaliseren en zo een robuuste
pipeline te creéren. Deze pipeline wordt vervolgens aangepast voor prognostische voorspelling,
die toekomstige atrial fibrillation voorspelt op basis van ECG’s die er tijdens de opname normaal
uitzien. De belangrijkste wijziging voor de prognostische taak ligt in de datamonstering, waarbij
de rest van de methodologie grotendeels ongewijzigd blijft.

De methodologie omvat het selecteren van relevante ECG-gegevens, het voorbereiden van sig-
nalen om de kwaliteit te verbeteren, en het toepassen van CANDECOMP/PARAFAC (CP)
tensor decompositie om betekenisvolle patronen te extraheren. Deze latente patronen dienen als
kenmerken voor supervised machine learning-modellen. Meerdere classificatiealgoritmes worden
getest en hun hyperparameters geoptimaliseerd via een grid search. De modelprestaties worden
geévalueerd met behulp van nauwkeurigheidsmetrieken om de resultaten te interpreteren.

BTTR werkt in twee hoofdfasen: eerst identificeert de unsupervised tensor decompositie
terugkomende latente patronen in ECG-opnames. Ten tweede leert een supervised classifi-
catiemodel hartritmes te onderscheiden op basis van deze patronen, maar eerst hebben we data
nodig.

We gebruiken de PTB-XL dataset van Physionet [2,/7}[8], die meer dan 21.000 geannoteerde 12-
lead ECG-opnames bevat. Voor deze studie zijn alleen opnames gelabeld als normaal sinusritme
(SR) of atrial fibrillation (AF) opgenomen. Andere metadata zoals patiéntleeftijd of geslacht
zijn uitgesloten om ons uitsluitend te richten op ECG-afgeleide kenmerken.

Zoals eerder benoemd, worden er 2 gerelateerde taken aangepakt: diagnostische classificatie
(differentiéren van AF en SR) en prognostische voorspelling (voorspellen van toekomstige AF
op basis van normale ECG’s). Prognostische voorspelling is uitdagender, omdat de ECG’s
geen duidelijke aritmie-tekenen bevatten, alleen subtiele indicatoren. Beide taken verschillen
in hun sampling strategie: classificatie gebruikt alle SR~ en AF-opnames, terwijl de predictie
SR-opnames gebruikt van patiénten die binnen één maand AF zullen ontwikkelen, naast SR-
opnames van patiénten zonder AF-episodes in de dataset, zoals voorgesteld door Attia et al [5].
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Voor deze taak moeten we echter rekening houden met label noise. Sommige AF voorkomens
kunnen ongeregistreerd blijven, wat resulteert in sinusritmes van die patiént die ten onrechte
als gezond worden geclassificeerd. Over het algemeen verschillen beide taken voornamelijk
in sampling en labelling, wat betekent dat onze methodologie voor beide taken grotendeels
hetzelfde is.

Voordat we beginnen met decompositie, vereisen onze ruwe klinische ECG-signalen prepro-
cessing om problemen zoals baseline wander, amplitudevariabiliteit, hoge frequentie ruis en
sampling rate te verminderen, die tensor decomposities kunnen vertekenen of beinvloeden ten
gunste van signalen met hoge amplitude. Verschillende preprocessing-pipelines werden geéval-
ueerd, met de nadruk op centreren, amplitudeschaling en ruisonderdrukking. De effectiviteit
werd geévalueerd via visualisaties, reconstructie errors en correlaties van latente factoren met
ritmelabels.

Voor normalisatie werd aanvankelijk globale min-max schaling getest, die de gehele tensor
schaalt naar [0,1] op basis van globale extrema. Dit slaagde er echter niet in om effectieve
signaalranges gelijk te maken, waardoor ECG’s met grote amplitude de decompositie domi-
neerden. Per-signaal min-max normalisatie, waarbij elk signaal onafhankelijk naar [0,1] werd
geschaald, verminderde dit probleem en verbeterde de decompositiekwaliteit door de bijdragen
van samples in evenwicht te brengen. Per-sample normalisatie over leads werd ook geévalueerd,
maar bleek ineffectief.

Ruisonderdrukking was cruciaal en omvatte:

e Een high-pass Butterworth-filter (cut-off frequency 0,5 Hz) om baseline wander te verwi-
jderen zonder fasevervorming.

e Een 50 Hz notch-filter om powerline interference te onderdrukken.

o Wavelet-denoising om hoge frequentie ruis te verminderen met behoud van essenti€le
waveforms.

Deze stappen verbeterden consequent de decompositieresultaten en werden opgenomen in alle
pipelines met zorgvuldige parametertuning om verlies van subtiele voorspellende informatie te
voorkomen.

Om de rekenlast en redundantie van de oorspronkelijke 500 Hz sampling (5000 punten per
10-seconden opname) te verminderen, werd decimation toegepast. Dit bestaat uit een low-
passfilter, gevolgd door downsampling van elk n-de punt, terwijl aliasing wordt vermeden.
Voor classificatie behield decimation met een factor 20 essentiéle patronen, voor de predictie
moesten we voorzichtiger zijn om geen subtiele kenmerken te verliezen.

Andere technieken, zoals standaardisatie en per-signaal max-absolute normalisatie, werden on-
derzocht, maar leidden niet tot significante prestatieverbeteringen en werden daarom uit de
uiteindelijke pipeline verwijderd voor eenvoud en efficiéntie.

De definitieve preprocessing-pipeline bestaat dus uit denoising, per-signaal min-max normal-
isatie en decimering. Alternatieve geteste methoden verminderde de prestaties of boden geen
voordelen.

Voor de decompositie overwogen we aanvankelijk Block Term Decomposition (BTD), vanwege
het vermogen om tensors te factoriseren in hogere-rangs blokken die complexe relaties vast-
leggen. FEr is echter nog geen algemeen geaccepteerde optimalisatiebenadering, en geen im-
plementatie in Python. Aangezien we de effectiviteit van BTTR op onze use case wilden
beoordelen, in plaats van onderzoek te doen naar BTD-optimalisatie, kozen we voor CAN-
DECOMP/PARAFAC (CP) decompositie, een eenvoudigere, goed ingeburgerde techniek die
tensors decomposeert in sommen van rang-1 componenten. CP is computationeel efficiént,
goed ondersteund in Python (Tensorly-bibliotheek), en maakt reproduceerbare analyses mo-
gelijk. Beide technieken hebben als doel een invoertensor te decomponeren in patronen en
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latente factoren, wat betekent dat onze ontwikkelde methodologie ook op BTD kan worden
toegepast.

CP-decompositie werd uitgevoerd met Tensorly’s decomposition.parafac op gedownsamplede
tensors met een geschatte grootte van (1000(samples), 250(Hertz * seconden), 12(leads)). De
rankparameter, die het aantal latente factoren bepaalt, varieerde tussen 4 en 12, waarbij rangen
onder de 4 leidden tot onderfitting en boven de 12 de geheugenlimieten overschreden, waarbij
verbeteringen afvlakten rond rang 8. Het algoritme werd uitgevoerd met maximaal 20 iter-
aties (n_iter max) en een tolerantie van 1 x 1075 voor convergentie, geinitialiseerd met de
’svd’-methode voor stabiliteit en snelheid. Factor-normalisatie werd ingeschakeld voor inter-
preteerbaarheid, orthogonalisatie werd uitgeschakeld om beperking van de solution space te
voorkomen. Verder paste we een kleine L2-regularisatie (12_reg = 1073) toe, wat de klassen-
scheiding verbeterde, wat op zijn beurt dan weer de prestaties verhoogde.

Om onze decompositie te evalueren, gebruikten we correlatiemetrieken om te beoordelen hoe
goed de geéxtraheerde latente factoren verband houden met de ritmelabels. Specifiek berek-
enden we Pearson correlatiecoéfficiénten, die de sterkte van lineaire relaties tussen de latente
componenten en de doelklassen meten. Dit stelde ons in staat om te kwantificeren hoe effectief
de decompositie AF scheidde van sinusritmes. Pearson correlatie diende als onze primaire eval-
uatiemetriek vanwege de eenvoud en directe indicatie van hoe sterk elk component de labels
scheidt. Nu we weten welke componenten de beste kenmerken zijn om de klassen te onder-
scheiden, kan component selectie worden uitgevoerd. Componenten met correlaties boven 0,1
werden als nuttig beschouwd. Sterke correlaties overschreden 0,2.

Bovendien visualiseerden we de factormatrices om te laten zien hoe elk patroon wordt beinvloed
door de samples, tijdspunten en ECG-leads. Dit helpt ons te zien wanneer en waar belangrijke
kenmerken in de gegevens verschijnen, waardoor de methode interpreteerbaarder is dan diepe
neurale netwerken, die niet direct onthullen wat ze hebben geleerd.

CP-decompositie resulteert in factormatrices voor samples, tijd en leads. Voor classificatie
werd alleen de sample-factormatrix (grootte samples x Rank) gebruikt, die de associatie van
elke ECG met de latente patronen vertegenwoordigt. Tijd- en leadfactoren droegen bij tot de
interpreteerbaarheid, maar zijn niet nuttig voor de classificatie.

Deze latente waarden, die typisch variéren tussen £10, werden geschaald naar [0,1] met be-
hulp van MinMaxScaler van scikit-learn om feature bias door verschillen in magnitude te
voorkomen.

Polynomial feature expansion en Principal Component analysis (PCA) werden getest om niet-
lineaire interacties vast te leggen en respectievelijk dimensionaliteit/ruis te verminderen. Deze
technieken resulteerden echter niet in significante prestatieverbeteringen en werden daarom
uitgesloten van de uiteindelijke pipeline voor eenvoud en efficiéntie.

De sample-matrix werd gesplitst in een trainings- en testset (80/20 verhouding), stratified
op labels. De trainingsset werd altijd gebalanceerd gehouden om de meerderheidsklasse niet
te bevoordelen tijdens het voorspellen. Voor de testen gebruikten we 2 benaderingen: een
gebalanceerde verdeling en een meer natuurlijke, realistische verdeling.

We evalueerden Logistic regression, Random Forest en XGBoost-classifiers, waarbij we mod-
ellen selecteerden op basis van prestaties en hyperparameters afstemden via grid search. De
modelprestaties werden geévalueerd via cross-validation (CV). Cross-validation metrieken om-
vatten accuracy, precision, recall, confusion matrices en Fl-scores, uitgemiddeld over de CV
folds. Aangezien CV echter een consistente data distributie veronderstelt, konden we het niet
gebruiken als evaluatie op een natuurlijk verdeelde testset. In dit geval trainden en testten we
het model met behulp van een enkele train-test splitsing.

In onze experimenten hebben we eerst de impact van verschillende preprocessing parameters op
de classificatietaak onderzocht. We testten verschillende combinaties van ruisonderdrukking-
thresholds, wavelet-decompositie-levels en decimation-factoren, terwijl alle andere parameters
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constant werden gehouden. Uiteindelijk werd het duidelijk dat de keuze van preprocessing-
stechnieken over het algemeen een veel grotere impact had dan de specifieke parameterwaarden
hiervan. Onze uiteindelijke opzet, met behulp van wavelet-ruisonderdrukking op niveau 3 met
een drempel van 7 en een decimation-factor van 20, leidde consequent tot betere correlatiere-
sultaten.

Vervolgens hebben we het effect van de decompositierang en /s-regularisatie bestudeerd. Hier
zagen we dat sterkere regularisatie over het algemeen de correlatie van latente factoren met
de ritmelabels verbeterde, terwijl hogere rangen deze neigden te verminderen. Toen we deze
instellingen echter in een daadwerkelijke classificatietaak evalueerden, bleken de resultaten an-
ders. We vonden dat hogere rangen in combinatie met matige regularisatie de beste prestaties
opleverden, met name bij gebruik van Logistic Regression als classifier. Dit suggereert dat
hoewel sterke regularisatie de correlatie kan verbeteren, dit niet noodzakelijkerwijs leidt tot
betere classificatie.

Ten slotte hebben we hetzelfde proces toegepast op de predictie taak, met een specifieke focus op
het optimaliseren van de preprocessing, aangezien we hier verschillen verwachtten ten opzichte
van classificatie. Aangezien de patronen gerelateerd aan toekomstige AF in SR ECG’s erg
subtiel zijn, testten we lagere decimation-factoren en constateerden we dat het verminderen
van de decimation de resultaten verbeterde.

Voor de classificatietaak behaalde ons beste model een gemiddelde nauwkeurigheid van ongeveer
65%, met een gebalanceerde algehele performance. Een meer gedetailleerde analyse toonde
echter aan dat het model beter presteerde op SR-samples (precision 88%, recall 62%) dan op
AF-samples (precision 32%, recall 69%). Dit kan te wijten zijn aan een grotere variabiliteit in
de AF-klasse, terwijl SR-signalen uniformer lijken.

In de meer uitdagende predictie-taak, waarbij het doel was om toekomstige AF te voorspellen
uit normaal ogende SR-signalen, behaalden we een nauwkeurigheid van ongeveer 59%. Ondanks
de bescheiden score, ligt dit nog steeds boven het toevalsniveau, wat bevestigt dat subtiele indi-
catoren van AF inderdaad aanwezig kunnen zijn in SR-signalen. Deze resultaten benadrukken
het potentieel van onze BTTR-aanpak, zelfs wanneer data schaars is.

Er kwamen een aantal belangrijke bevindingen uit onze studie naar voren:

e Het verhogen van de /s-regularisatieparameter verbeterde de correlaties van latente fac-
toren, maar verbeterde de classificatie niet, wat suggereert dat het sterke, maar minder
onderscheidende patronen vastlegde.

e De decompositiestap was het meest cruciaal: zodra betekenisvolle latente factoren waren
geéxtraheerd, presteerden zelfs eenvoudige classifiers zoals Logistic regression zeer goed.

e In tegenstelling tot correlatiewaarden, verbeterden hogere decompositierangen de classi-
ficatieprestaties door aanvullende informatie te introduceren.

e preprocessingstechnieken, met name amplitude-scaling, ruisonderdrukking en decimation,
hadden een grote impact en waren cruciaal voor goede resultaten.

In vergelijking met gerelateerd onderzoek, waarin met handmatig geconstrueerde kenmerken
of deep learning op dezelfde PTB-XL-dataset nauwkeurigheden tot 95% werden gerapporteerd,
blijven onze classificatieresultaten achter. Op dezelfde manier rapporteerden voorspellingstaken
op grote private datasets nauwkeurigheden van ongeveer 79%, terwijl wij slechts 59% bereikten.
Niettemin biedt onze methode interpreteerbaarheid en vereist het veel minder gegevens, wat
veelbelovend is als lichtgewicht en interpreteerbaar alternatief.

Deze thesis onderzocht hoe tensor decompositie kan worden gebruikt om betekenisvolle en inter-
preteerbare kenmerken te extraheren uit ECG-signalen voor zowel classificatie als voorspelling
van AF. Hoewel we geen state-of-the-art prestaties behaalden, toonden we aan dat BTTR la-
tente structuren in ECG-gegevens kan onthullen die klinisch relevante taken ondersteunen, zelfs
met beperkte gegevens.
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Een belangrijke les was het belang van preprocessing. Eerdere experimenten leden onder slechte
decompositie door het negeren van signaalschaling, ruisonderdrukking en geschikte evaluatieme-
trieken. Aanvankelijk richtten we ons op het minimaliseren van reconstructie-error, wat niet
resulteerden in een goede classificatie. Overstappen op correlatiegebaseerde evaluatie onthulde
wel relevantere kenmerken.

Een ander belangrijk inzicht was de centrale rol van decompositie. In plaats van ons te richten op
het optimaliseren van classifiers, vonden we dat zodra een sterke latente structuur beschikbaar
was, zelfs eenvoudige modellen volstonden. Dit suggereert dat goede kenmerken belangrijker
zijn dan complexe modellering, vooral in omgevingen met weinig gegevens.

Vanuit technisch oogpunt heeft dit project ons begrip verdiept van decompositie methoden op
ECG signalen, met name hoe preprocessing en parameter tuning de decompositie beinvloeden.
Aan de onderzoekszijde benadrukte het het belang van het selecteren van geschikte evaluatieme-
trieken en het zorgvuldig testen van elke fase van de pipeline. Interessant is dat sommige van
onze meest waardevolle inzichten niet voortkwamen uit hoge nauwkeurigheid, maar uit het
begrijpen van wat niet werkte en waarom.

Uiteindelijk zijn we deze thesis begonnen met de onderzoeksvraag: ” Hoe effectief is Block-
Term Tensor Regressie in het detecteren en voorspellen van atrial fibrillation vanuit
multi-lead ECG’s, en hoe kan de pipeline worden geoptimaliseerd voor de beste
prestaties?”

Terugkijkend kunnen we concluderen dat Block-Term Tensor Regressie vooralsnog niet zo ef-
fectief is als diepe neurale netwerken voor deze taak. De methode toont echter potentieel. We
hebben aangetoond dat het mogelijk is om deze benadering toe te passen op zowel de detectie
als de voorspelling van atrial fibrillation uit ECG-gegevens, en dat het nuttige resultaten kan
opleveren.

Verder hebben we ook de voordelen van deze techniek ervaren. Bijvoorbeeld dat het model
in zekere mate een interpreteerbaarheid biedt door middel van de decompositievisualisaties.
Hoewel we nog geen concrete conclusies uit deze visualisaties kunnen trekken, geven ze wel
een idee van wat in de toekomst mogelijk zou kunnen zijn. Een ander voordeel is dat BTTR
redelijk goed leek te presteren, zelfs met een beperkte hoeveelheid gegevens. Zo hadden we in de
predictie taak slechts 42 positieve samples, maar bereikte het model toch een nauwkeurigheid
van 59%.

We kunnen dus concluderen dat, hoewel BTTR momenteel niet beter presteert dan deep
learning-modellen wat betreft pure nauwkeurigheid, het nuttige eigenschappen biedt zoals inter-
preteerbaarheid en relatief goede prestaties met kleine datasets. Dit maakt het een interessante
benadering voor toekomstig onderzoek.

Dit toekomstige onderzoek zou in plaats van CP decompositie, Block Term Decomposition kun-
nen verkennen, die complexere latente patronen kan vastleggen dan CP decompositie. Verder
zou het toepassen van deze benadering op grotere, meer diverse datasets de classificatie- als de
predictie prestaties kunnen verbeteren. Bovendien kan het opnemen van kenmerken op hartslag-
niveau, zoals RR~intervallen in de tensorrepresentatie, verdere verbeteringen opleveren, vooral
bij het detecteren van vroege tekenen van AF.
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Chapter 1

Introduction

1.1 Background & Context

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, responsible for
millions of deaths annually. In 2019 alone, an estimated 17.9 million people lost their lives to
CVDs, accounting for 32% of all global deaths. [9]

Among these, atrial fibrillation (AF) stands out as a prevalent and serious cardiac arrhythmia.
AF causes the heart’s upper chambers (atria) to beat chaotically and rapidly, significantly
increasing the risk of life-threatening cardiovascular events such as stroke and heart failure,
thereby contributing substantially to the overall CVD mortality burden. [10]

Many of these conditions, including heart attacks, arrhythmias, and heart failure, develop
gradually and may remain asymptomatic until they suddenly reach an advanced stage, at
which point treatment options can be limited and the risk of serious complications or death
is significantly higher. Early detection is therefore crucial to allow for timely intervention,
reducing the likelihood of life-threatening outcomes. [11]

Firstly, we need arrhythmia detection, but there are some challenges. Certain risk factors, such
as high blood pressure and cholesterol levels, can indicate an increased likelihood of developing
arrhythmias, but they do not provide a direct diagnosis. The only definitive way to detect
an arrhythmia is through ECG recordings that capture an irregular heart rhythm in real-time.
However, this presents a major challenge: arrhythmias are often intermittent and unpredictable,
meaning they may not occur during a routine check-up.

One approach to address this issue is Holter monitoring, where a patient wears a portable ECG
device that records heart activity over an extended period, usually between 24 hours and a
week. While this increases the chances of detecting an arrhythmia, it remains impractical and
expensive. Modern wearable devices, such as smartwatches, provide continuous ECG monitor-
ing, but their capabilities are still limited to classification. They can detect arrhythmias only
when they occur, but cannot predict them in advance.

This is a critical limitation: if an arrhythmic event is not captured, it remains undiagnosed.
Since many arrhythmias occur sporadically and without symptoms, relying solely on ECGs
that capture these events leaves a large diagnostic gap. This is where Artificial Intelligence
(AI) plays a role.

AT has already significantly improved ECG analysis, enabling faster, more accurate, and au-
tomated detection of heart conditions such as atrial fibrillation, sinus arrhythmia, and other
cardiac abnormalities. Traditional ECG interpretation relies on expert analysis, which can be
time-consuming and prone to errors. Al models, particularly machine learning and deep learn-
ing techniques, can efficiently analyse large amounts of ECG data, identifying complex patterns
that may be difficult for humans to detect.
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Al-driven ECG analysis offers several advantages. Unlike doctors, who are prone to human
error and not always available, AT provides consistent, real-time analysis. This technology is
already integrated into hospitals, Holter monitors, and smartwatches, improving accessibility
and efficiency.

However, the current use of Al in ECG analysis is primarily focused on detecting existing
arrhythmias rather than predicting future events. Most AI models classify heart rhythms only
when an arrhythmic episode is present, meaning they do not address the core issue: the lack of
available arrhythmic ECGs for training and diagnosis.

To overcome this challenge, a different approach is needed—one that analyses normal (sinus)
ECGs to predict the likelihood of an upcoming arrhythmic event. By identifying subtle patterns
in otherwise healthy ECGs, Al could detect early warning signs that may not be obvious
to human experts. This would enable early intervention, bridging the gap between reactive
detection and proactive prevention.

Among Al approaches, neural networks, especially deep learning models such as convolutional
neural networks (CNNs), have become the dominant method for ECG analysis. Their ability
to automatically learn features from raw ECG signals makes them highly effective. CNNs
excel at recognizing spatial patterns in ECG waveforms, making them well-suited for ECG
classification.

1.2 Problem statement

Neural networks dominate ECG analysis because they outperform traditional methods in terms
of accuracy, robustness, and scalability. They can detect subtle arrhythmias, classify ECG sig-
nals into different categories, and even predict future cardiac events based on normal ECGs.
However, they come with significant challenges. One major drawback is their black-box na-
ture—neural networks process ECG inputs and produce predictions or classifications without
providing insight into why a particular decision was made. This lack of interpretability makes
it difficult for doctors and researchers to trust or understand the model’s reasoning. Addition-
ally, neural networks require substantial computational resources, making them less practical
in certain real-world applications.

These limitations have led to ongoing research into more interpretable alternatives, such as
Block-Term Tensor Regression (BTTR). BTTR is a relatively new technique based on tensor
decompositions and regression, offering several advantages. First, it provides more transparency
into how it processes data, making it closer to a glass-box model rather than an opaque black-
box. Second, it is particularly well-suited for capturing complex relationships between multiple
dimensions of the data, which could be beneficial for ECG analysis.

1.3 Research Objectives & Approach

In this thesis, we answer the research question: "How effective is Block-Term Tensor
Regression in detecting and predicting atrial fibrillation from multi-lead ECG, and
how can its pipeline be optimised for best performance?”

We explore the effectiveness of BTTR, in predicting atrial fibrillation (AF) using normal,
healthy ECGs. By focusing on predictive analysis rather than mere classification, we aim
to determine whether BTTR can provide an interpretable and efficient alternative to neural
networks for the early detection of arrhythmias. We assess whether BTTR can achieve com-
parable accuracy to existing studies that use neural networks for the same task. Additionally,
we evaluate its performance using sensitivity, specificity, and the confusion matrix for a com-
prehensive comparison. A side note is that we weren’t always able to conduct this on the same
datasets, which may influence the comparison. Despite this limitation, the findings contribute
valuable insights into the potential of BTTR for ECG-based arrhythmia prediction.
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1.4 Thesis Structure

First, in Chapter 2 (Background), we provide essential background information. This is nec-
essary to understand the key concepts and algorithms that were not developed as part of this
work but are foundational to it. In particular, we introduce the decomposition technique and
the regression methods employed in our study, as both are central to our methodology.

Subsequently, we present Chapter [3| (Related Work), offering a broad overview of previous
research in this domain. This includes studies on ECG classification, arrhythmia prediction,
and applications of tensor decompositions such as BTD and BTTR. This chapter serves to
position our work within the existing body of literature and highlight how our approach differs
or builds upon prior studies.

Chapter 4| (Methodology) then describes the overall design of our approach. We outline how the
data is preprocessed, how the decomposition and regression techniques are applied, how decom-
position flows into regression and how features are selected, and how these steps are integrated
into a complete analysis pipeline. This section is intended to give the reader a clear conceptual
understanding of our strategy before implementation-specific details are introduced.

Following this, Chapter [5| (Implementation) provides a more technical and detailed description
of how the methodology was realised in practice. This includes choices related to software,
libraries, parameter settings, computational resources, and any challenges encountered during
development.

Then in Chapter |§| (Results and Ewvaluation), we present the outcomes of our experiments.
Quantitative performance metrics, such as classification accuracy or prediction error, can be
used to assess the effectiveness of our approach. We also include visualisations and qualitative
interpretations where relevant.

Next, Chapter |z| (Discussion) reflects on these results. We explore the implications of our
findings, address potential limitations, and suggest possible explanations for any unexpected
behaviour. Lastly, we talk about all the lessons that were learned in this work.

Finally, Chapter 8] (Conclusion) summarises the main findings of this work. We revisit the orig-
inal objectives and highlight the key results that emerged from our methodology. This chapter
also reflects on the extent to which these objectives were achieved, and briefly restates the effec-
tiveness and limitations of the proposed approach. In addition, we suggest possible directions
for future research, including improvements to the methodology and alternative decomposition
or regression strategies.
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Chapter 2

Background

This chapter is dedicated to reviewing the foundational concepts necessary for understanding
the subsequent chapters. It mainly focuses on the core methodologies employed by BTTR,
namely decomposition and regression. In this chapter, we delve into the mathematical concepts
behind these techniques to ensure a comprehensive understanding. Additionally, we briefly
discuss some basic ECG knowledge, although we didn’t explore this in detail, as it is not
essential for this study.

2.1 Tensor Decomposition

Tensor decomposition is a core concept in BTTR. There are various types of tensor decompo-
sition methods, but in this thesis, we focus primarily on CP Decomposition (CPD), commonly
referred to as CP decomposition. This technique can be seen as a special and simplified case
of Block Term Decomposition (BTD), which is the general decomposition method used in the
Block Term Tensor Regression (BTTR) model that we study in this work. We start by explain-
ing CP Decomposition, then we explain the broader concept of BTD.

2.1.1 CP Decomposition

In essence, CANDECOMP/PARAFAC (CP) decomposition approximates a high-dimensional
input tensor by expressing it as a sum of R rank-1 tensors. Each of these rank-1 tensors identifies
and represents a fundamental pattern in the data, also referred to as a latent component.
Intuitively, each component captures a distinct structure or motif that’s repeatedly observed
across the dataset.

This decomposition not only reveals what patterns exist but also quantifies how strongly each
pattern is expressed across all dimensions of the tensor. For example, in our case, the original
tensor has dimensions samples x time(H z) x leads. After decomposition, the factor matrices al-
low us to interpret which patients express each pattern the most, when in time (e.g., early or late
in the ECG signal) a pattern occurs, and in which leads the pattern is most prominent.

For instance, the CP model might show that a certain latent pattern appears mostly at the
start of an ECG, is dominant in a specific group of leads, and is strongly present in a particular
subset of patients. This joint interpretation across all modes enables a rich and interpretable
understanding of the hidden structure in the dataset.

To give a more formal definition: A rank-1 tensor can be constructed as the outer product of N
vectors, where N is the dimension of the data. In our case, we form such a tensor using three
vectors corresponding to samples, time, and leads. Each vector captures the contribution or
intensity of a shared latent pattern across one of these dimensions.

29



30 CHAPTER 2. BACKGROUND

The samples vector has a length equal to the number of ECG recordings or instances (denoted
as s). Each element indicates the degree to which the underlying latent pattern is present in
that particular ECG sample.

The time vector has a length equal to the number of time points in each recording. For example,
with a 10-second recording sampled at 500 Hz, this results in a vector of length 5000. Each value
reflects how strongly the latent pattern is expressed at that specific moment in time.

The leads vector corresponds to the number of ECG leads, with each entry indicating how
prominently the latent pattern is manifested in each lead.

The outer product of these three vectors yields a rank-1 tensor, which captures a separable
component of the overall ECG signal in terms of samples, time, and leads. A sum of two such
tensors gives a rank-2 approximation (two patterns). The original data tensor can be considered
to have very high or full rank, as it contains many different patterns. In other words, you would
need almost infinite Rank-1 tensors in order to get the original tensor exactly.

The goal of CP decomposition is to find a rank-R tensor, formed by the sum of R rank-1
tensors, that approximates the original tensor as closely as possible, using only R*N vectors,
see Figure This reduction enables us to capture the essential latent structure of the data
in a compact and interpretable form.

Let us now proceed to the formal definition of the CP decomposition.

R
X =~ Z)\Tar®br®cr (2.1)

r=1

Explanation of symbols:

e X: the original third-order tensor, typically of size P x T' x L (e.g., patients X time x
leads).

e R: the rank of the decomposition, i.e., the number of components (patterns).

e \,.: scalar weight associated with the r-th component (optional, sometimes absorbed into
one of the vectors).

e a, € R”: vector for the first mode (e.g., patients) of component 7.
e b, € RT: vector for the second mode (e.g., time) of component 7.
e ¢, € RE: vector for the third mode (e.g., leads) of component 7.

e ®: outer product operator, producing a rank-1 tensor from three vectors.
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Figure 2.1: A mathematical visualisation of a CP decomposition. [12]

To compute this decomposition in practice, one commonly used method is Alternating Least
Squares (ALS). This is an iterative optimisation algorithm that updates one factor matrix at
a time while keeping the others fixed. More specifically, ALS cycles through each mode (e.g.,
samples, time, leads) and solves a least-squares problem to update the corresponding factor
matrix, given the current estimates of the other modes.
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Intuitively, ALS tries to minimise the reconstruction error between the original tensor X and
its CP approximation by refining the factor matrices iteratively. Despite its simplicity and ease
of implementation, ALS can converge slowly and may get stuck in local minima. However, it
remains one of the most widely used algorithms for decomposition due to its interpretability
and scalability to large datasets.

The output consists of a set of R rank-1 tensors, or equivalently, R sets of IV vectors—one set
for each latent factor. These tensors can be reorganised into factor matrices, one for each mode
(dimension) of the original data tensor. In our case, the data has three modes: ECG samples
x Time x Leads.

To construct the samples factor matriz, we stack all R sample vectors (one per latent factor)
into a matrix of shape s X R, where s is the number of ECG samples. Each row corresponds to
a sample, and each column corresponds to a latent factor. The entries in this matrix indicate
the degree to which each ECG sample expresses each of the R latent patterns.

Similarly, we can form factor matrices for the time and lead dimensions, capturing how each
time point and each lead contributes to the various latent factors.

2.1.2 Block Term Decomposition

Block Term Decomposition (BTD) is a generalisation of the CP decomposition where a low-
rank Tucker block replaces each rank-1 term. This allows more expressive modelling of tensor
data by capturing local structures within each term. |13]

For a third-order tensor 7 € R!*7/*K the BTD can be written as:

R
T ~ ZS’“ x1 U, X9 V,. x3 W,

r=1

where: - S, € RE-XMrxXNr g 5 small core tensor of rank-(L,, M,, N,.), - U, € RI*Lr 'V, €
R7*Mr - and W, € REXNr are the factor matrices for the r-th block. [13]

Each term in the sum represents a localised Tucker decomposition, allowing the model to capture
complex and heterogeneous patterns within the data. In contrast to CP, where each term is
strictly rank-1, BTD supports a richer representation by using a multilinear low-rank block per
term.

Figure[2:2] visualises this concept, showing how the tensor 7 is approximated by a sum of Tucker
blocks built from factor matrices and core tensors.

In this thesis, BTD is introduced for completeness, as it represents a more general framework
encompassing CP as a special case. However, we primarily focus on CP-based models such
as mPSTD, ACE, and ACCoS due to their balance between expressiveness and computational

feasibility.
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Figure 2.2: A mathematical visualisation of Block Term Decomposition [14]
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2.2 Regression models

In this section, we provide a brief overview of the regression models used in this work. These
include logistic regression, random forest, and XGBoost. While all of them can be used for
classification tasks, they differ significantly in how they model the data and handle complex-

1ty.

2.2.1 Logistic Regression

Logistic regression is a linear model commonly used for binary classification. It estimates
the probability that a given input belongs to a particular class using the logistic (sigmoid)

function:
1

1+ exp(—w'x —b)

Ply=1]x) =

where w is a weight vector and b is a bias term. Logistic regression is simple, interpretable,
and works well when the relationship between the features and the target is approximately
linear. [15]

2.2.2 Random Forest

Random forest is an ensemble learning method that builds multiple decision trees during train-
ing and outputs the class that is the mode of the classes predicted by individual trees. It
introduces randomness by bootstrapping data samples and by selecting random subsets of fea-
tures at each split. Compared to logistic regression, it can capture more complex patterns and
interactions in the data, but it is less interpretable. [16]

2.2.3 XGBoost

XGBoost (Extreme Gradient Boosting) is another ensemble method, based on gradient boosting
of decision trees. Unlike random forest, which builds trees independently, XGBoost builds trees
sequentially to correct the errors of previous trees. It includes various optimisations such
as regularization and efficient handling of missing data. XGBoost typically achieves higher
accuracy than random forest in many tasks but can be more sensitive to hyperparameters.
il

2.3 Block Term Tensor Regression

As mentioned before, BTTR is a combination of a tensor decomposition and a regression tech-
nique. As for the decomposition, we specifically use CP Decomposition as a simplified version
of Block Term Decomposition (BTD), but the same concepts apply to a complete BTD.

The decomposition output is structured into IV factor matrices, one for each mode of the data
tensor. In our case, we focus on the ECG samples factor matriz, as it encodes the relationship
between individual samples and the latent factors. This matrix effectively serves as a feature
representation of the samples and is therefore suitable for use in regression tasks.

The other two factor matrices, corresponding to time and leads, do not provide sample features
and are thus not directly useful for regression. However, they play an important role in the
interpretability of the latent components, as they reveal how each latent pattern is distributed
across time and leads.

2.4 Electrocardiograms (ECGs)

An electrocardiogram (ECG) is a signal that measures the electrical activity of the heart over
time. It is used to detect and monitor different heart conditions. A typical ECG signal, like in
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Fig consists of repeating patterns called heartbeats or rhythms. Each rhythm contains a
set of characteristic waves: the P wave, QRS complex, and T wave. [18]

e P wave: represents the atrial depolarisation, or in simple terms, the electrical activity
that causes the atria (upper heart chambers) to contract.

e QRS complex: shows the depolarisation of the ventricles, the main pumping chambers
of the heart. This is usually the most prominent part of the ECG.

e T wave: reflects the repolarisation of the ventricles, meaning the recovery phase after a
contraction. [18]

Each of these waves has a typical shape and timing, and changes in them can indicate heart
problems. There are different types of rhythms, and not all are healthy. For example, in a
normal sinus rhythm, all the waves appear in a regular pattern. In contrast, arrhythmias are
irregular rhythms.

In atrial fibrillation for example, the rhythm becomes chaotic and the P waves appear to be
absent. [19]

Q
S

Figure 2.3: A healthy ECG waveform. [20]
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Chapter 3

Related work

This chapter explores various related research topics, specifically focusing on the classification
and prediction of atrial fibrillation. Both aspects are of interest; as such, our investigation begins
with classification before advancing to prediction. Although we didn’t use most techniques
discussed in the topics, and instead focus on Block Term Tensor Regression (BTTR), exploring
these works can give us valuable insights and allow us to do interesting comparisons within
the same research domain. Additionally, we examine BTTR-related works, which may not
necessarily incorporate ECG data. We do this in order to get a better view to what it is
capable of.

3.1 Early AF Detection Using Pattern Recognition

The first work we describe is named: ”Pattern recognition and automatic identification of
early-stage atrial fibrillation, by Wu et al. (2020)” [1]. This work presents a method for
the automatic detection of early-stage atrial fibrillation (AF) using short-duration, single-lead
ECG signals. Their main goal is to enable out-of-hospital and real-time AF detection, especially
targeting short and paroxysmal episodes that are often missed in clinical settings due to their
unpredictable nature. To address this, the authors move away from traditional rhythm analysis
methods that rely on long ECG recordings or multi-lead data. [1]

The proposed Al pipeline consists of several steps. First, RR intervals are extracted from
the ECG using the Pan—Tompkins algorithm, which means that they extract one heartbeat
out of the 10-second sample. These heartbeats are then processed using Intrinsic Time-scale
Decomposition (ITD), a data-driven method that decomposes the signal without requiring
predefined basis functions. From the ITD output, three handcrafted features are computed:
intrinsic energy, intrinsic frequency entropy, and intrinsic time entropy. These features aim to
capture the irregularity and complexity of AF. A support vector machine (SVM) is trained on
these features to classify between AF and sinus rhythm. [1]

The model achieves high performance on PhysioNet data, reporting 95% accuracy, 96% speci-
ficity, and 93% sensitivity. A key strength of the approach is its ability to operate on very
short ECG segments of just 1 rhythm, as well as only needing 1 lead, making it suitable for
simple wearable or mobile applications. However, the reliance on handcrafted features may
limit adaptability to broader datasets. Furthermore, the use of only single-lead ECG input,
while practical, could restrict diagnostic richness in more complex clinical cases. What is in-
teresting is the extraction of RR intervals, resulting in a segmentation into heartbeats. This
is not something we did, as rhythms span over multiple beats and it might be valuable to see
the complete context in order to correctly classify AF. However, the big downside of not doing
this segmentation is the amount of data and the noise, making it more challenging for the
model. [1]
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Therefore, in this study, we aimed to utilise larger samples with multiple beats and 12 leads.
This increases the complexity and presents a greater challenge. Nonetheless, this approach
holds the potential to result in significant medical insights in the future.

3.2 Deep Transfer Learning for ECG Classification

The next work, named: "ECG Heartbeat Classification: A Deep Transferable Representation,
by Kachuee et al. (2018)” |3], proposes a deep learning framework for the classification of
ECG heartbeats and the transfer of learned representations to other related cardiovascular
tasks. The primary objective of their work consists of two parts: first, to achieve accurate
heartbeat classification into arrhythmia categories, following the AAMI EC57 standard. Second,
to explore whether the representations learned from this task can be reused for a different but
related problem: myocardial infarction (MI) detection. This could be a solution to limited
labelled data in many clinical tasks, offering a transferable model that could generalise across
multiple cardiac conditions.

The authors design a deep residual convolutional neural network trained on beats extracted
from the MIT-BIH Arrhythmia Database. Their preprocessing pipeline includes beat segmen-
tation using R-peak detection, amplitude normalisation, and fixed-length beat windowing. After
training on arrhythmia classification, they extract deep feature representations from the final
convolutional layer and reuse them to train a lightweight MI classifier using data from the PTB
Diagnostic ECG Database. Only the final layers of the MI classifier are retrained, while the
rest of the network is frozen, demonstrating a transfer learning setup.

Results show strong performance: the arrhythmia classifier reaches an average accuracy of
93.4%, and the transferred model for MI classification achieves 95.9% accuracy. One limitation
is that while the representations appear generalisable between arrhythmia and MI tasks, the sys-
tem’s dependence on large training data for the source task may still be a barrier in low-resource
applications. Additionally, again the method does not yet incorporate multi-lead information,
which could enhance diagnostic performance in more complex clinical settings.

Although transfer learning is a very useful and interesting concept, it’s not directly relevant to
our work, as it is a big research topic on itself, and not our focus. However, the classification
is relevant. The researchers chose for a deep learning methodology, widely recognised for its
effectiveness, and achieved strong results. However, our focus is to investigate whether BTTR
might serve as an effective approach to address this problem. Another notable difference is that
this involves a heartbeat classification issue, as opposed to a rhythm classification issue. Thus,
there is a partial comparability to the previously addressed subject, where segmentation led to
working with individual beats.

3.3 Deep Learning for ECG Classification

The work ”Deep Learning for ECG Classification, by B Pyakillya et al.” [4] also addresses
the challenge of creating an effective arrhythmia classifier, using only a single short-lead ECG.
The authors highlight the limitations of traditional machine learning algorithms that rely on
heuristic hand-crafted or engineered features. They mention that a key problem with this
approach is the potential failure to identify the most appropriate features from ECG signals for
accurate classification.

To overcome these limitations, they propose using deep learning architectures. In their method-
ology, the initial convolutional layers function as feature extractors, automatically learning rel-
evant representations from the raw ECG data. These convolutional layers are followed by fully
connected layers, which perform the final classification of the ECG signals.

The study utilised a dataset of ECG recordings categorised into four classes: normal sinus
rhythm, arrhythmic, other rhythm, and noisy. To address the issue of imbalanced data, where
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the majority of recordings belonged to the normal sinus rhythm category, they performed data
augmentation techniques. These techniques included multiplying existing ECGs by shifting time
values and unifying ECG lengths by duplicating time-series values. Standard preprocessing,
such as subtracting the mean and dividing by the standard deviation, was also applied to the
time-series data. The deep learning architecture consisted of 1D convolutional layers, max-
pooling, dropout, Global Average Pooling, and fully connected layers, culminating in a softmax
layer for classification.

The results of their experiments showed that the proposed deep learning solution could effec-
tively classify ECG signals, even with unstructured and unbalanced data. They achieved a best
validation accuracy of approximately 86

3.4 AF detection on patients during sinus rhythm

This next work, named: ”An artificial intelligence-enabled ECG algorithm for the identification
of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome
prediction, by Attia et al. (2019)” [5] has been very eye-opening, as it shows that AF signs can
be found in sinus rhythms, hence we can predict AF from sinus rhythms.

This work was performed by researchers from the Mayo Clinic in Rochester, where they devel-
oped an artificial intelligence-enabled electrocardiograph (ECG) algorithm to identify patients
with atrial fibrillation during periods of normal sinus rhythm. Their motivation behind this
work is the same as ours, being the clinical challenge that AF is often asymptomatic and unpre-
dictable, making it difficult to detect with regular ECG screenings. Their goal was to provide
a non-invasive, cost-effective, and scalable method to improve AF diagnosis, particularly in
patients at risk for stroke due to undetected arrhythmias.

The study used a convolutional neural network (CNN) architecture on standard 10-second, 12-
lead ECG recordings from a large private dataset collected at the Mayo Clinic. The dataset
consists over 649,000 ECGs from more than 180,000 patients, split into training, validation,
and testing sets. The network was trained to detect subtle structural changes in the atria
indicative of a history of AF, despite the ECG showing normal sinus rhythm at the time of
recording. The methodology included using eight out of twelve independent ECG leads and
applying deep learning techniques like residual blocks and ReLU activations for robust feature
extraction.

The results showed promising performance: using only a single ECG, the model achieved an
AUC of 0.87, with approximately 79% accuracy, sensitivity, and specificity. Incorporating
multiple ECGs per patient increased the AUC to 0.90, showing that these additional leads
include additional information. These results significantly outperform traditional methods like
CHA2DS2-VASc scoring or short-term Holter monitoring in terms of predictive accuracy and
convenience. However, despite strong overall performance, the model’s F1 score remained mod-
est (around 39-45%), partly due to class imbalance and the inherent difficulty of the prediction
task.

This research is very promising for the field of medical research. However, the issue of ex-
plainability remains, as the use of a neural network results in it operating as a ’'black box’,
thus providing limited insights in what the model has learned. Understanding what the neural
network identifies in sinus rhythms that indicate signs of atrial fibrillation (AF) would be very
valuable. Unfortunately, the neural network currently lacks this capacity. Such challenges are
the reason for the growing importance of explainable Al within machine learning, which is one
of the reasons we tried using BTTR instead of Neural Networks. Another challenge they faced,
which we faced as well, is the possibility that some false positives actually reflect undiagnosed
AF, highlighting the challenge of correct labelling in such studies. Nonetheless, they still achieve
high accuracy.
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3.5 AF detection using sinus rhythm ECGs

A similar study is the following: ”Detecting Paroxysmal Atrial Fibrillation from an Electrocar-
diogram in Sinus Rhythm”, conducted by Gruwez et al. (2023) [6]. They had the same motiva-
tion and goal as the previous work by the Mayo Clinic, which was the detection of paroxysmal
AF from sinus rhythm recordings. Thereby contributing to stroke prevention through earlier
diagnosis. They approached the problem the same way, using all leads, but used different data.
Being raw ECG data from Hospital Oost-Limburg (ZOL) in Genk, Belgium, where they col-
lected over 494,000 ECGs in SR from 142,310 patients. The data was split into training (70%),
validation (10%), and testing (20%) sets. As proposed by Attia et al. the algorithm was built
using convolutional neural networks, implemented in Keras and trained on a Spark cluster. The
input data consisted of eight independent ECG leads sampled at 500 Hz.

When tested on the first ECG in SR of each patient, the model achieved an AUROC of 0.87 and
an AUPRC of 0.48, with accuracy, sensitivity, and specificity all around 78%. These results were
comparable to the original Attia model, despite being trained on different data. Furthermore,
Gruwez et al. performed an external validation using a dataset from Ziekenhuis Maas en
Kempen (ZMK), including over 70,000 ECGs from 26,000 patients. The model maintained
a strong performance (AUROC 0.86), showing generalisation across institutions. However, in
populations with lower AF prevalence, metrics like AUPRC and F1 score decreased, highlighting
limitations in positive predictive value under screening conditions.

A key strength of this work is its rigorous validation in a different healthcare system and
dataset, addressing concerns about generalisability, a common issue in Al healthcare appli-
cations. Nonetheless, the study faced the same limitations related to retrospective labelling
based solely on ECG database records, which may have misclassified some AF cases. Also, full
interpretability of the DNN remains unresolved, as Neural Networks act as black boxes. Still,
the findings again confirm that Al can identify subtle atrial fibrillation signs in ECGs and may
assist clinics and smartwatches in diagnosing people with AF in normal circumstances.

3.6 Block-Term Tensor Regression for Neural Signal Pre-
diction

We now describe ”Single finger trajectory prediction from intracranial brain activity using Block-
Term Tensor Regression with fast and automatic component extraction, by Faes et al.” as a first
work regarding decomposition. [21]

Trajectory prediction is a critical aspect of human-computer interaction (HCI) and neuropros-
thetics, with a growing research focusing on predicting hand and finger movement trajectories.
Single-finger trajectory prediction, in particular, has gained attention due to its potential ap-
plications in enhancing the performance of assistive devices, prosthetics, and advanced HCI
systems.

Previous efforts in decoding finger movement trajectories from ECoG signals have primarily
relied on conventional machine learning techniques such as sparse and linear regression models,
Gaussian processes, CNNs, Random Forests, and LSTMs.

While these methods have good results, they often ignore the intrinsic multi-dimensional struc-
ture of ECoG data. Recent developments in multiway tensor-based approaches, such as Tucker,
CP decompositions and Block Term decomposition, have attempted to address this by pre-
serving the spatial dimensions of brain signals. Notably, Higher-Order Partial Least Squares
(HOPLS) regression has showed improved prediction accuracy over traditional techniques but
remains limited by the requirement of manually selected model parameters and fixed tensor
ranks.

To overcome these limitations, some methods have incorporated automatic rank estimation
through Bayesian learning, pruning strategies, or information-theoretic criteria like MDL. How-
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ever, these still often require high computational costs. This thesis builds on and extends
these methods by introducing the Block-Term Tensor Regression (BTTR) framework equipped
with automatic component extraction and rank selection (ACE/ACCoS), enabling fast, robust,
and accurate decoding of single-finger trajectories from intracranial recordings, and achiev-
ing improved prediction performance over both conventional and state-of-the-art tensor-based
approaches.

The Block-Term Tensor Regression (BTTR) framework achieved the highest Pearson correla-
tion scores for predicting single-finger trajectories in the BCI Competition IV dataset, out-
performing linear regression, Random Forests, CNNs, LSTMs, and HOPLS. It trained signifi-
cantly faster than HOPLS, making it more suitable for time-sensitive applications. The use of
structured tensor components (via ACE and ACCoS) provided interpretability, revealing the
spatiotemporal-frequency components contributing to motor decoding. ACE reduced model
complexity by removing irrelevant components, while ACCoS improved predictive power by
selecting the most relevant ones. Regularisation through marginalisation helped prevent over-
fitting, especially with a small number of components. Overall, BTTR proved to be a robust,
efficient, and interpretable method for decoding motor trajectories from ECoG data, highlight-
ing the benefits of exploiting the multiway structure of ECoG signals. The component selection
strategy retained relevant patterns, offering better performance than black-box models like deep
neural networks without sacrificing efficiency or transparency, making it a promising approach
for future brain—computer interface systems.

3.7 Generalised Tensor Decomposition for Neural Data

The paper ”Generalised Canonical Polyadic Tensor Decomposition, by Hong, Kolda, and Duer-
sch (2020)” [22] represents a significant contribution that enhances the applicability of the
classic CP decomposition. The primary objective of this work is the development of a Gen-
eralised Canonical Polyadic (GCP) tensor decomposition method. What makes this approach
interesting is its ability to perform CP decomposition using a variety of ”loss functions”, in-
stead of just reconstruction error. This is particularly valuable as it enables the application of
CP decomposition to a wider range of data types. The authors provide a robust framework
for calculating gradients and handling missing data, thereby facilitating the use of standard
optimisation techniques to fit the model.

The methodology of this paper extends the familiar CP decomposition by generalising its objec-
tive function. This allows for the fitting of the CP model to data according to various statisti-
cally motivated loss functions. Optimisation is performed via a gradient-based approach, which
offers a more flexible alternative compared to the commonly used Alternating Least Squares
(ALS) method for CP. To demonstrate the versatility of GCP, the authors apply it to several
real-world scenarios. For our work, a particularly relevant example is their analysis of neural
activity in mice. This specific dataset, derived from calcium imaging of the mouse prefrontal
cortex, is structured as a third-order tensor with dimensions such as 'neuron X time X trial’
(for instance, 282 neurons across 111 time points over 300 trials). The decomposition of this
data gives interpretable patterns and factors that reveal neural assemblies, temporal dynamics
within individual trials, and how these patterns vary across different trials.

Ultimately, this work strongly highlights the efficiency of CP decomposition for extracting
meaningful, latent patterns from complex, multi-dimensional biological data. This is the case
for both neural signals, as shown in their paper, and for our own ECG data. Furthermore, it
also really highlights the interpretability of decomposition models like CP.
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3.8 Other Applications of CP Decomposition

3.8.1 Chemistry and Spectroscopy

In analytical chemistry, labs often use spectroscopy to figure out what’s inside a substance.
This involves shining different kinds of light on a material and recording how it responds.
Here, CP decomposition is used to identify and measure the specific chemical compounds,
or ”ingredients,” within such a mixture. It works by taking the combined signals from the
mixture and separating them into distinct patterns for each individual component. This means
you can accurately analyse these substances, even if you don’t know exactly what’s in the mix
beforehand. 23]

3.8.2 Recommender Systems and Data Mining

CP decomposition is also used in recommendation systems (like those suggesting movies or
products) and for general data analysis. In these fields, the data often represents interactions
across several different categories. For example, which user likes which genre of movies, at
what day of the week. CP is effective at understanding all these relationships at the same time,
seeing how various factors influence each other simultaneously. This capability ultimately leads
to more accurate recommendations and a better grasp of complex user behaviour or system
dynamics. [24]

3.8.3 Signal Processing and Blind Source Separation

In signal processing, CP decomposition offers significant help with a challenge called Blind
Source Separation (BSS). For example, you might have recordings where several signals are all
mixed together, like different people speaking in one audio file, or various biological activities
picked up by a single sensor. BSS is the technique for separating these combined signals to
recover their original signals. [25]
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Methodology

4.1 Research Approach

This study follows an experimental approach to assess how effective a simple BTTR algorithm
can be for ECG classification and arrhythmia prediction.

To structure our investigation, we first focused on a diagnostic classification task, as this is
conceptually simpler and allowed for systematic experimentation with preprocessing, decom-
position, and model selection. Starting with classification enabled us to explore what worked
best in terms of signal preparation and parameter choices. Once we identified a well-performing
pipeline, we adapted it for the prognostic prediction task, which primarily involved changing the
sampling strategy to match the temporal setup required for forecasting rather than diagnosing.
The rest of the pipeline remained largely unchanged, benefiting from the insights gained during
the classification phase.

The methodology itself consists of several key stages: selecting appropriate ECG data, apply-
ing signal preprocessing, and using CANDECOMP /PARAFAC (CP) tensor decomposition to
extract meaningful patterns from the data. We evaluate the influence of various decomposition
parameters and rank selection strategies.

Following tensor decomposition, automated feature selection and preprocessing techniques are
applied to the sample factor matrix to reduce dimensionality and enhance signal quality. Sev-
eral machine learning classification algorithms are then tested and compared in terms of their
predictive performance. We systematically explore different hyperparameter configurations for
these models using a grid search.

Finally, performance is assessed using standard accuracy metrics, and visualisation techniques
are used to interpret the decomposition results and gain insights into the model’s behaviour.
This approach ensures a comprehensive investigation of each component involved in ECG clas-
sification and prediction using tensor-based representations.

4.2 BTTR Overview

In this section, we give a broad overview of the full pipeline used in this work, referred to
as BTTR, which stands for Block Term Tensor Regression [21]. Each part of this method is
explored in more detail in the sections that follow.

BTTR combines two key steps: first, an unsupervised decomposition of the ECG signals to
extract useful patterns, and second, a regression or classification model that uses those patterns
to predict the heart rhythm.

41
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We start with a large set of ECG recordings. These are first preprocessed to clean up noise and
prepare them for further analysis. Once the data is ready, we apply a tensor decomposition
technique that automatically finds a number of recurring patterns across all ECGs. The goal
is to represent each ECG as a combination of these shared patterns. This step is completely
unsupervised: the model does not use any label information while finding these patterns.

Once the patterns are extracted, we move to the second stage. Now that each ECG has been
reduced to a set of pattern values, we look at how these relate to the known heart rhythm labels
(e.g. AF or SR). We train a supervised model on these values to learn the relationship between
patterns and rhythm type.

In the end, this allows us to take a new, unseen ECG, reduce it to the same set of pattern values,
and use the trained model to predict which heart rhythm it most likely belongs to.

This technique is powerful because it creates a low-dimensional, interpretable representation of
the ECGs while still achieving strong classification performance. It works fully unsupervised
at first, and only later uses the labels to map patterns to outcomes, which makes it especially
interesting for biomedical data where interpretability and structure matter.

4.3 Dataset

4.3.1 PTB-XL ECG

The data that was used in this work was the PTB-XL ECG database from PhysioNet, a large
publicly available electrocardiography dataset. [2,7,/8]

The PTB-XL ECG dataset is one of the largest publicly available ECG datasets, developed
and published by a collaborative team of researchers affiliated with institutions in Germany
and the United Kingdom. It consists of 21,799 ECG recordings, each 10 seconds long and
sampled at 500 Hz. Each recording is a 12-lead ECG, meaning all standard leads were recorded
(I, II, 111, aVL, aVR, aVF, V1-V6), providing the maximum amount of information. These
raw waveform ECGs were collected between October 1989 and June 1996 at the Physikalisch-
Technische Bundesanstalt (PTB) in Germany, using Schiller AG devices.

Each recording was annotated by up to two cardiologists, who labelled the rhythms using
so-called ECG statements. More specifically, there are 71 different possible ECG statements
conforming to the SCP-ECG standard. These include diagnostic, form, and rhythm statements,
covering all essential information required for interpretation.

In addition, each record includes pseudo-anonymised metadata, such as age, sex, height, and
weight. Basic information about the recording itself, such as the date, recording site, and device
type is also provided. Furthermore, as stated by PhysioNet, the dataset includes extensive
supplementary data, including demographic details, infarction characteristics, likelihoods for
diagnostic ECG statements, and annotated signal properties.

The PTB-XL ECG dataset is the most widely used dataset by researchers for developing ma-
chine learning algorithms in the field of ECG analysis. The only real alternative would be col-
laborating directly with a hospital to access clinical data, which is often difficult due to privacy
concerns and limited availability. One of the main advantages of using a widely adopted dataset
like PTB-XL, used in a lot of related works, is that it allows for easier comparison between
different algorithms. This made it an obvious and straightforward choice for our project.

4.3.2 Dataset structure

The dataset is thoroughly structured into multiple files and folders. At the top level, we can
first of all find the ”ptbxl_database.csv” file and the ”scp_statements.csv” file.

The database file contains all relevant information for each ECG recording, including the as-
signed SCP-ECG codes like AFIB (atrial fibrillation) and SR (sinus rhythm). Each ECG
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recording is typically associated with multiple such codes, where each code corresponds to a
diagnostic statement defined in the scp_statements.csv file.

These codes and statements follow the SCP-ECG (Standard Communications Protocol for
Computer-Assisted Electrocardiography) standard [26], a European specification for storing
and exchanging ECG data. This standard defines how various components, including waveform
signals, patient metadata, and diagnostic information, are formatted and encoded.

The diagnostic statements describe the medical conditions or abnormalities identified in the
ECG. They are encoded using short SCP-ECG codes such as SR for sinus rhythm or AFIB
for atrial fibrillation. Since a single ECG can exhibit multiple rhythm types or abnormalities,
multiple diagnostic statements may be assigned to a single recording. In addition to these
coded labels, each recording is also accompanied by a human-readable description of the find-
ings.

In total, 71 unique statements (and hence codes) are defined in the scp statements file.

These statements contain information like the diagnostic and its discription, the rhythm type,
diagnostic class and subclass and so on.

In addition to the CSV metadata files, the dataset also includes the actual ECG waveform
recordings. These are provided in two separate directories: records500 and records100. The
records500 directory contains the original recordings sampled at 500 Hz, while records100 con-
tains a downsampled version of the same data at 100 Hz.

Each of these directories is further divided into 22 subdirectories named 00000, 01000, 02000,
..., up to 21000. Each subdirectory contains up to 1,000 ECG recordings, organized to efficiently
manage the large dataset size. Every ECG recording consists of two files:

A id.r.dat file, which contains the raw 12-lead ECG signal in binary format.

A corresponding id_Ir.hea file, which is a header file storing metadata such as sampling fre-
quency, lead configuration, and signal calibration parameters for each channel. These are
technical details that we did not use.

Finally, a Python script is provided to facilitate the extraction of all ECG recordings from the
dataset’s folder structure.

4.3.3 Used data

As is clear by now, the dataset is very extensive, containing a large amount of metadata and
detailed rhythm annotations. However, not all of this information was relevant for our work.
Personal metadata such as age and sex is often included in predictive models for arrhythmias
like atrial fibrillation (AF), since men are more prone to AF and its prevalence increases with
age. These features can therefore contribute to predictive performance.

Nevertheless, the aim of our project was to rely exclusively on the ECG signals themselves. The
motivation behind this choice was to develop an algorithm capable of accurately detecting or
predicting AF purely from ECG data, which directly reflects the electrical activity of the heart,
rather than relying on indirect demographic indicators like age or sex, which are not diagnostic
on their own.

That said, we did require some metadata. The metadata file also included fields such as
patient ID, ECG ID, and recording time. Furthermore, we also needed the SCP-ECG codes,
as these form our labels. For our purposes, we focused exclusively on the SCP-ECG codes
relevant to our classification and prediction task: SR, indicating a healthy sinus rhythm, and
AFIB, indicating atrial fibrillation. Only recordings labelled with one of these two codes were
included in our dataset. We did not make use of the detailed diagnostic statements or textual
descriptions, our only requirement was to identify which recordings corresponded to SR and
which to AFIB. In total, out of 21799 recordings, 16782 recordings were labelled with SR, and
1587 with AFIB.
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4.4 Diagnostic Classification vs. Prognostic Prediction

As mentioned, we address two related but fundamentally different tasks: diagnostic classifi-
cation and prognostic prediction. While both involve processing ECG signals to detect atrial
fibrillation (AF), the nature of the input data and the clinical goal differ significantly.

The diagnostic classification task involves identifying whether a given ECG recording shows
atrial fibrillation (AF) or a normal sinus rhythm (SR). In this task, the presence of AF is already
relatively visible in the signal, and the objective is to correctly label it. This task is considered
less complex, as AF and SR often show clear differences in rhythm and morphology.

In contrast, the prognostic prediction task requires identifying the future risk of AF from ECG
recordings that currently show only healthy sinus rhythms. The goal is to detect subtle patterns
or early indicators in seemingly normal ECGs that may suggest a patient is likely to develop
AF in the near future. This task is significantly more challenging, as the signals do not show
obvious signs of arrhythmia that are visible to the eye of a doctor. However, previous studies
have shown that ECGs recorded days or weeks before an AF episode can already contain subtle
signs of AF, which can be found using deep learning models.

Ultimately, both tasks reduce to the same fundamental goal: identifying patterns in ECG signals
that can distinguish between two classes. In the case of diagnostic classification, these patterns
separate recordings that visibly contain AF from those that do not. For prognostic prediction,
the challenge is to detect more subtle patterns that differentiate between sinus rhythms from
patients who will later develop AF and those who will not. Despite the difference in signal
complexity, the underlying methodology remains the same, consisting of decomposing the signal,
extracting informative features, and training classifiers to recognise these patterns.

This is why most of the development and experimentation could initially focus on the easier
classification task and later be applied to prediction with different sampling. Since the exper-
imentation was done in the context of classification, most chapters are explained from that
perspective. However, you can keep in mind that the methodology applies to both tasks. Any
differences, such as in sampling, are clearly mentioned.

4.5 Sampling

Now that we have collected our data from the PTB-XL ECG dataset, we applied targeted
sampling to extract the relevant data for our two tasks. As previously mentioned, the initial
filtering step involved discarding any ECG recordings that did not contain either an SR or AF
label. From this point, the sampling process diverged depending on the specific task.

4.5.1 Task-Specific Data Labelling and Sampling Strategies

For the classification task, the sampling procedure is straightforward. We selected all recordings
that were labelled with either SR (sinus rhythm) or AFIB (atrial fibrillation) codes. These
served as the two target classes for binary classification: SR-labelled ECGs were assigned class
0, and AF-labelled ECGs were assigned class 1.

In contrast, the prediction task required a more complex sampling strategy. The objective here
is to predict future AF onset based solely on sinus rhythm ECGs, meaning all input signals
appear normal at the time of recording. We defined two classes:

Healthy (0): patients who did not have any AF recordings in the dataset. For this group, we
collected all their SR-labelled ECGs.

At risk (1): patients who did have at least one AF-labelled recording. From these patients, we
extracted only their SR-labelled ECGs recorded within one month prior to their earliest AF
episode. This resulted in only 42 samples.
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This sampling strategy ensures that both classes contain ECGs appearing in sinus rhythm, but
only one class is known to precede an AF episode. This subtle distinction is central to the
difficulty of the prognostic prediction task and reflects the real-world challenge of detecting risk
based on apparently normal ECG signals.

An important thing to be aware of however, is that although we labelled certain patients as
healthy based on the absence of AF-labelled ECGs in the dataset, it is important to acknowledge
a potential source of bias. The fact that no AF episode was recorded does not necessarily mean
that the patient never experienced atrial fibrillation. It is entirely possible that a patient had
AF episodes that simply were not recorded during his visits at the hospital.

This introduces a limitation in the dataset: some ECGs that are labelled as healthy sinus
rhythms may in reality belong to patients with undiagnosed or unrecorded AF. As a result, the
distinction between healthy and at-risk patients may not be perfectly clean, and the ”"healthy”
class may contain mislabelled samples. This type of misclassification is a form of label noise, and
unfortunately, it cannot be fully resolved given the available data. It is an inherent limitation
in many real-world clinical datasets and should be considered when interpreting the results and
evaluating the model’s predictive performance.

4.5.2 Class Balance, Sample Distribution and Sample Sizes

Now that we’ve filtered out all unusable ECGs and assigned the correct labels, we need to take
a final sample to pass into the decomposition step. At this point, the dataset still contains too
many ECGs, and we also want to control the ratio between class 0 and class 1.

Ideally, we aim for a balanced class distribution going into decomposition. This is important
because our training set later on will also be balanced, and we want to preserve as much relevant
data as possible for that stage. Depending on the test strategy, however, we sometimes prefer
a more natural, real-world class distribution in the test set. This gives a better indication of
how the model might perform in practice. In those cases, we can still apply undersampling
later on, when we split the features into a training and testing set, to deal with the class
imbalance during classification. Hence, even in this case, we choose for a balanced distribution
into decomposition, because the test set needs the most amount of data.

For the prediction task, we are more limited: only 42 samples are available for class 1 (the risk
class). To make the most of the data, we include a larger number of class 0 samples during the
decomposition step. Later on, we choose a training distribution of 32/32 and a test distribution
of 40/10 (class 0/class 1). This setup ensures that we always test on a more realistic, imbalanced
distribution, as we want to evaluate the model on as much test data as possible.

The remaining class 1 samples, just 32 in total, are used for training. To keep the training set
balanced, we also limit class 0 to 32 samples. This means the amount of training data for the
prediction task is very small. However, one of the strengths of BTTR is its ability to uncover
meaningful patterns, even when working with limited data.

Now that we had established our distribution strategy, we still needed to decide on the appro-
priate sample size for the classification task, where we have too much data. This process was
largely experimental. We started with 100 samples per class, and gradually increased this up to
500 samples. As a final step, the labelled samples are shuffled to ensure a random distribution
of classes throughout the dataset.

4.6 ECG Preprocessing

Before performing tensor decomposition, it is essential to preprocess the ECG signals to improve
both data quality and decomposition performance. Raw ECGs collected from clinics often suffer
from several issues, such as baseline drift, varying amplitude scales, high-frequency noise and
excessively high sampling rate. without preprocessing, these problems can degrade the quality
of the decomposition by introducing distortions or causing certain samples to dominate due
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to scale differences. To address this, we applied a series of preprocessing steps that prevent
samples from dominating the decomposition because of bigger amplitudes, reduce noise without
discarding subtle predictive features and lower the sample rate without losing signal patterns.
These operations not only improve signal comparability across samples, but also promote better
low-rank approximation and pattern extraction during the decomposition stage. [27]

We experimented with a variety of preprocessing pipelines, each composed of multiple tech-
niques, to investigate how ECG signals should be prepared in order to obtain a high-quality
tensor decomposition. Specifically, we explored which aspects of the signals are most important:
for instance, whether it is beneficial for all ECGs to fluctuate around zero, whether all signals
should be scaled to a common range (i.e., having the same global minimum and maximum), or
whether amplitude differences between signals should be preserved. [27]

To evaluate the effectiveness of each preprocessing pipeline, we used several strategies. First,
we visualised the ECGs after each preprocessing step to validate that it does what we expect
and to ensure we were not introducing excessive transformations. Next, we performed ten-
sor decomposition and evaluated its quality using the reconstruction error and the Pearson
correlation coefficient between the original and reconstructed signals, as a second measure of
reconstruction error.

In addition, we evaluated how well the decomposed latent factors captured label-relevant in-
formation. In other words, how well both rhythm types are getting separated. For this, we
computed both Pearson and Spearman correlation coefficients between the latent components
and the labels, allowing us to quantify the relationship between the decomposition and the
underlying ECG classes. Finally, we visualised the latent factors themselves by plotting the
vectors that make up each rank-1 component of the decomposition. These evaluation metrics
evaluate the quality of the decomposition, hence they are discussed in more detail in the de-
composition section. However, we use them to evaluate the preprocessing as well, as the quality
of the decomposition is strongly influenced by the chosen preprocessing strategy.

We first explain all the preprocessing techniques we tested (and possibly used), along with how
each one affected the decomposition. After that, we’ll walk through how we arrived at the final
preprocessing pipeline.

4.6.1 ECG normalisation

There are a lot of normalisation techniques that we tested. The basic known normalisation is
(global) min-max normalisation: [28]

X — min(X)

= max(X) — min(X)

What happens with global min-max normalisation is that all values in the tensor are scaled
to fall between 0 and 1, based on the global minimum and maximum across the entire tensor.
The goal of this is to keep amplitude comparisons, since all samples are shifted and scaled by
the same values, while bringing everything into the same scale, which is usually beneficial for
machine learning models.

However, there’s a catch. Even though all samples are technically in the [0, 1] range, their
effective ranges can still vary a lot. Some samples might have signals that peak near 1 after
normalisation, while others might only go up to 0.2, effectively placing them in a much smaller
subrange like [0, 0.2]. This still leads to significant range differences between samples.

Even though this technique doesn’t actually bring all ECGs to the same range in practice, it
does preserve relative amplitude differences between samples. From a medical perspective, this
can be useful, for example if one type of rhythm tends to have larger amplitudes than the other.
But there are other things to keep in mind. First of all, it could be problematic to compare
amplitudes across patients, as these can be skewed by using different machines or sensors that
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are calibrated differently. The other major disadvantage is that, in practice, signals still lie in
different ranges, which is often undesirable in machine learning.

In our experiments, we found that these differences indeed had a major impact on the decom-
position. ECGs with large amplitudes (close to 1 after normalisation) ended up dominating
the decomposition. As shown in Figure most of the latent factors were shaped primarily
by those signals. We saw this clearly when visualising the sample factor of the decomposi-
tion, where we see the outliers. The reconstruction error was also poor in this case, similar to
what we observed before applying any normalisation, when amplitude variations were naturally
present.

Weighing the advantage of preserving amplitude comparisons against the drawback of sensor-
related variability in amplitudes could be a valid discussion. However, since we found that the
decomposition struggles with large amplitude differences, we conclude that, in practice, it is
better to bring all signals into the same range.
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Figure 4.1: Decomposition influenced by outliers.

[29]

To address this issue, we applied per-signal normalisation. In this approach, the minimum and
maximum are computed for each individual signal, and the normalisation is applied using those
values. As a result, every signal is effectively scaled to lie between 0 and 1. This removed
the large range differences we observed before, and we found that the decomposition results
improved significantly. As shown in Figure [£.2] all samples now influence the decomposition.
Although this method no longer allows for comparison of peak heights between signals, re-
search showed that the overall shape or pattern of the signal often contains more meaningful
information about the rhythm types. [30]
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Figure 4.2: All samples contribute to the decomposition.

[29)

We also experimented with per-sample normalisation. In this case, we took the minimum and
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maximum across all twelve leads of a single sample and used these values to normalise all the
leads of that sample. The idea behind this was that there might be useful information in the
relative peak heights across leads, and we hoped that the resulting range differences would not
cause problems for the decomposition. However, just like with global normalisation, the results
were poor.

How to interpret these visualisations is explained in Section

4.6.2 Denoising

As mentioned, ECGs frequently suffer from various types of noise. First, there is baseline
wander [31], a low-frequency shift in the ECG’s baseline, typically caused by respiration, body
movement, or poor contact between the electrodes and the skin.

Another common type is power line interference, which appears as a sinusoidal disturbance,
usually around 50 to 60 Hz, introduced by nearby electrical devices or inadequate shielding.
Finally, ECGs can also be affected by very high-frequency noise, often resulting from elec-
tromagnetic interference, muscle contractions, or internal electronic noise from the recording
equipment.

Such disturbances can obscure or distort clinically relevant features of the ECG, particularly
the morphology of the P wave, QRS complex, and T wave, which are crucial for distinguishing
between different rhythm types. [32]

To address this, we apply denoising to reduce or eliminate irrelevant fluctuations while preserv-
ing the original shape and timing of the waveform. This improves both visual interpretability
and machine learning performance. Clean signals enable more accurate feature extraction and
lead to better decomposition results. If noise dominates the signal, latent factor models may
capture spurious patterns instead of the underlying rhythms, resulting in poor reconstruction
and weak label correlation.

By reducing noise, we ensure that the decomposition captures the true structure of the ECG,
making the subsequent analysis more reliable and meaningful.

The only real risk with denoising is removing too much of the signal. This is unlikely to be
a problem for our classification task, as the differences between SR and AF are very obvious.
However, for the prediction task, the signs of AF are often very subtle and not clearly visible
to the eye. That’s why, for this task, we are careful not to remove too much of the high
frequencies.

Now, in order to denoise, we use three functions. The first one removes baseline wander. To
remove baseline drift from the ECG signals, we apply a high-pass Butterworth filter to each
signal in the tensor. Baseline drift is a low-frequency noise that slowly shifts the baseline of the
ECG over time, often caused by breathing or movement. The filter removes these slow trends
by blocking frequencies below a certain cut-off (in our case, 0.5 Hz), while keeping the rest of
the signal intact. [31]

We design a second-order Butterworth filter with a cut-off of 0.5 Hz, which is a common choice
for eliminating baseline wander. The filtering is done using the filtfilt function from SciPy [33],
which applies the filter forward and backwards, ensuring no phase shift is introduced and
preserving the shape of the waveform. This is applied to each signal individually, meaning each
lead for each ECG sample, so that the result is a clean signal with the baseline centred more
stably around zero. [34]

Secondly, we remove power line interference by applying a notch filter at 50 Hz, which is the
typical frequency of electrical noise. The notch filter is designed to specifically target and
suppress this frequency, while leaving the rest of the signal unaffected. This helps to clean up
the signal without distorting the actual rhythms. [35]

Lastly, we denoise the high-frequency noise using wavelet denoising. This technique breaks
down the ECG signal into different frequency components using a so-called wavelet transform.
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Figure 4.3: Baseline wander filter.

After this, it identifies which parts of the signal are likely to be noise. These are typically
the small, rapid fluctuations, which are removed by a thresholding step. Once this is done, the
signal is reconstructed from the remaining components. Again, this method effectively keeps the
important features of the ECG while filtering out the unwanted high-frequency noise.
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Figure 4.4: wavelet denoising and notch filter.

As mentioned, we experimented thoroughly with different preprocessing steps, exploring which
techniques to use, which combinations worked best, and which to avoid. However, it quickly
became clear that denoising is essential, as we observed that denoising consistently improved
the quality of the decomposition, which is why we applied it in every case. That said, we
did carefully experiment with the degree of denoising, especially for our prediction task, where
overly aggressive denoising could risk removing subtle but important patterns.

4.6.3 Decimation

The next step is decimation, which is a specific form of downsampling designed to reduce
data size while preserving the essential structure of the signal. In our dataset, the sampling
frequency is 500 Hz, meaning each 10-second ECG recording contains 5000 data points. This
is a substantial amount of information, much more than typically necessary to represent a
signal. Having this many data points not only increases computational cost but also complicates
decomposition, as the model must process a lot of redundant information. Therefore, we reduce
the number of samples per signal.

Suppose we want to bring this down to 1000 values. A naive approach would be to take only the
first 1000 samples, but this would cut off a large part of the signal. Another common method is
to take every fifth sample, but this risks introducing aliasing, where high-frequency components
are misrepresented as lower frequencies, distorting the signal.

The most appropriate approach for ECG signals is decimation, which performs downsampling
in a more informed way. Before reducing the number of samples, a low-pass filter is applied to
the signal. This filter removes high-frequency components that cannot be preserved when the
sampling rate is lowered. The cut-off frequency is determined according to the Nyquist—Shannon
sampling theorem , which states that the sampling rate must be at least twice the highest
frequency component in the signal to avoid aliasing. After this filtering step, we can safely drop
samples by taking every n-th sample without losing meaningful signal structure.
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This method preserves the key morphology and rhythm of the ECG while reducing the amount
of data, making the decomposition both more efficient and more robust.

This is another preprocessing step that we included in every pipeline, as downsampling is known
to be very useful. The only risk is downsampling too much, which could result in the loss of
important signal structure, especially for our prediction task. That is why we experimented
with different downsampling factors.

For classification, we concluded that a factor of 10 was acceptable. When inspecting the signals,
we noticed that some very minor high-frequency details were removed, but no essential patterns
needed for classification were lost.

For prediction, we had to be more careful. We couldn’t rely on just visualising the signals,
since the hints of AF in SR rhythms are too subtle to detect with the naked eye. To determine
a suitable downsampling factor, we analysed decomposition errors and correlation coefficients.
Based on these results, we found that a factor of 4 provided a good balance.
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Figure 4.5: A decimation with factor 5 and 10.

4.6.4 Others

We looked further into some other preprocessing techniques, which is explained in this subsec-
tion. However, these did not make the final pipeline, which is why we don’t go too much into
detail.

The first one is standardisation, which gives the signal a mean of 0 (hence the signal fluctuates
around 0) and a standard deviation of 1. The reason we didn’t use it, is that this again, in
practice puts different signals in different ranges.
Standardisation only worked after per signal normalisation, but in this case, standardisation
added no value any more.
T —p
o

z =

The next thing we tried was per-signal max-absolute normalisation.

Earlier, we established that per-sample normalisation was useful for bringing all signals into a
common range of [0,1], making them easier to compare and process. However, one limitation
of this approach is that it doesn’t centre the signals around zero, meaning the signals remain
entirely non-negative. In our case, this raised the question: could decomposition perform
better if the signals fluctuated around zero, meaning their baseline sits at zero rather than
being entirely above it?

Simply shifting normalised signals to be zero-centred would again cause inconsistencies in the
range between signals, defeating the purpose of normalisation. Therefore, we needed a method
that not only centres signals around zero but also scales them uniformly, so each signal remains
within the same bounds.
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This exact combination is not straightforward to achieve. Usually, you must choose between
zero-centring or range-scaling. However, we found a compromise: per-signal max-absolute
normalisation.

This technique processes each signal (i.e., each lead in each sample) separately by dividing it by
its maximum absolute value. The idea is to scale the signal based on its largest deviation from
zero, which theoretically should bring it into the range [-1,1]. However, in practice, this doesn’t
happen cleanly, unless the signal is perfectly symmetric. Either the minimum or the maximum
value will dominate, meaning the resulting range doesn’t span the full [-1,1]. Instead, signals
end up in skewed ranges like [-0.7,1] or [-1,0.5].

This subtle shift already breaks the assumption of uniform scaling across signals. So while max-
absolute normalisation brings the signals closer to being centred and scaled, it still introduces
enough variability in the range to cause unwanted side effects.

Final pipeline

In the end, it quickly became clear which preprocessing steps were necessary and which weren’t.
The final pipeline ended up being first denoise, applying all discussed denoising techniques, then
min-max normalisation per signal, and lastly a decimation. The other discussed techniques
didn’t make any difference, or made it significantly worse.

4.7 Decomposition

4.7.1 Decomposition choice

Initially, we explored Block Term Decomposition (BTD) [13] as a possible method for decom-
posing our tensor. BTD factorises the input tensor into higher-rank blocks, which in theory
capture complex internal relationships between the modes of the data more effectively than
simpler approaches such as CP or Tucker decomposition. However, despite this potential, BTD
is not widely used in practice, primarily due to its complexity.

In contrast to CP or Tucker, BTD requires more advanced optimisation techniques. Com-
mon approaches include Gauss-Newton methods or block variants of Alternating Least Squares
(ALS) [13,39], but there is currently no widely accepted standard. As a result, popular Python
libraries such as Tensorly or SciPy do not offer support for BTD. These libraries prioritise al-
gorithms that are well understood, computationally stable, and broadly supported, which BTD
has not yet achieved.

There are some public BTD implementations available in MATLAB, but these are also not yet
fully developed or optimised. We considered using MATLAB, but doing so would mean carrying
out most of the remaining machine learning pipeline in MATLAB as well, in order to maintain
consistency. While this is possible, it does not align with the aim of this case study.

Our goal is not to improve or invent new algorithms, but rather to investigate how existing
methods can best be applied and combined within a specific use case. Employing BTD would
shift our focus towards research on the decomposition method itself, which is already an active
area of investigation [13,/39]. Instead, we chose to work in Python, where modern machine
learning tools are readily available, allowing us to concentrate on integration and evaluation,
rather than algorithm development.

In summary, we did not use BTD because it is not mature enough in Python, and because
using it would turn our study from an applied exploration into algorithmic research, which is
beyond the intended scope.

One of the more widely used tensor decomposition methods is CANDECOMP/PARAFAC (CP)
decomposition [12]. Like BTD, its goal is to factorise a tensor into components that capture
meaningful structure. However, while BTD decomposes the tensor into blocks of higher rank,
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CP restricts the decomposition to a sum of rank 1 tensors. This makes CP conceptually simpler
and computationally more efficient.

Although this constraint may limit its ability to model complex inter-mode relationships com-
pared to BTD, CP is significantly easier to optimise. It benefits from well-established algorithms
and is supported in Python through libraries such as Tensorly, which offer stable and efficient
implementations.

This practicality is the main reason we chose to use CP. While it may not capture structure as
richly as BTD could, it still allows us to explore the essential principles of tensor decomposition
in a robust and reproducible way.

Furthermore, because the underlying ideas of CP and BTD are related, both aiming to extract
meaningful low-rank structure from tensors, our results and methodology could potentially be
adapted to BTD in the future. Once BTD matures and a widely accepted, optimised standard
is available in Python, much of our pipeline could be transferred or extended with minimal
modification.

4.7.2 CP Decomposition

To perform CPD, we used the decomposition.parafac function from Tensorly v0.8.1 in Python
[40].

The input in this function is our preprocessed tensor, so it used to be (6428, 5000, 12), but after
sampling and downsampling (decimation), this usually (depending on the exact factors and
ratio) becomes something like (1000,500,12). The function takes in a lot of arguments, which
we all tested.

Rank

The most important parameter is the rank, which determines the number of latent factors the
decomposition produces, hence the number of rank-one tensors or patterns the algorithm will
attempt to extract. Determining a suitable value required experimentation.

We focused mainly on ranks between 4 and 12. Values below 4 consistently failed to capture
sufficient structure, while 12 was the upper limit our local machine’s memory could handle.
We also tested higher ranks using a Kaggle notebook with increased RAM and GPU support,
but observed no noticeable improvement beyond rank 12. In most cases, ranks above 8 yielded
diminishing returns, which confirmed that continuing on our own hardware was feasible.

Iterations and tolerance

Two other important parameters are 'n_iter_maz’ (max iterations) and ‘tol’ (tolerance). The
'n_iter _maz’ parameter sets the maximum number of iterations the algorithm will perform.
The tolerance parameter defines the minimum required decrease in reconstruction error between
iterations. If the improvement falls below this threshold, the algorithm is considered to have
converged and will stop early. If the error never decreases by less than 'tol’, the algorithm will
simply run for the full number of iterations defined by 'n_iter_max’.

Using too few iterations can lead to underfitting, meaning the decomposition might not capture
enough of the underlying structure. On the other hand, using too many iterations could result in
overfitting, where the model starts to capture noise instead of meaningful patterns, potentially
harming generalisation. However, in our case, overfitting seemed less of a concern, as the noise
had already been largely filtered out. Moreover, once the reconstruction error starts to plateau,
further iterations are unlikely to capture much more, including noise.

We experimented with various values for the tolerance. Other studies often use tolerances
between le — 4 and le — 8. In our tests, the decomposition never reached a decrease smaller
than le — 5 within the first 50 iterations. Typically, the error dropped below le —4 after about
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10 iterations. Although most of the improvement occurred within the first 10 iterations, we
noticed that many papers accept smaller improvements and allow more iterations [41]. Based
on this, we chose a tolerance of le — 5 and a maximum of 20 iterations, which provided a good
balance between efficiency and performance.

Initialisation

Another important parameter is init, which determines how the initial factor matrices are
chosen before the decomposition process begins. There are a few options: 'random’, 'svd’, or
passing a custom CPTensor. Using 'svd’ means the factor matrices will be initialised using
singular value decomposition, which often leads to faster and more stable convergence. In our
case, we chose 'svd’ as it gave more reliable results compared to random initialisation.

Normalise factors

The next parameter in the CP decomposition is ‘normalize_factors’. When this is set to True,
each factor matrix is normalised so that the columns have unit norm. This means the strength
of each component is fully captured by the weights vector. When it is set to False, the weights
are simply all ones, and the scale is instead kept inside the factor matrices.

In our case, we noticed that enabling or disabling this parameter did not affect anything in
practice. The reconstruction error stayed exactly the same, and the features we extracted from
the factors gave the same correlation scores. This makes sense, since normalising or not only
shifts the scaling between the weights and the factor matrices, but does not change the overall
structure or approximation of the tensor. Also, since correlation is scale-invariant, the absolute
scale of the factors does not matter for the classification task.

So technically, it does not make a difference whether this is enabled or not. However, we
chose to enable it, simply because it is good practice. It makes the weights interpretable, as
they reflect the overall strength of each component. It also makes the factor matrices easier
to work with later on, especially if we want to compare different decompositions or do further
analysis.

Orthogonalise

The orthogonalise parameter orthogonalises the factor matrices during decomposition when set
to True. This means the columns of the factor matrices will be forced to be orthogonal to each
other, so that every component captures something completely different and independent from
the others.

In theory, this can be useful if we want to guarantee that there is no overlap between com-
ponents. However in practice, it can actually limit the decomposition, because it restricts the
space in which the algorithm can search for a good solution. Forcing them to be orthogonal
might result in a worse reconstruction.

In our experiments, enabling this parameter led to slightly worse results in both reconstruction
error and classification performance. This suggests that the natural structure in our data
benefits from allowing some overlap between components. For that reason, we left orthogonalise
disabled.

Regularisation

The next parameter in the CP decomposition is '12,.e¢g’. This stands for L2 regularisation, and
it adds a penalty term to the loss function during decomposition that discourages large values
in the factor matrices. Specifically, it adds the squared L2 norm (i.e., sum of squares) of all
factor matrix entries, multiplied by the value of [2,.eg, to the reconstruction error. The idea is
to prevent overfitting by encouraging smaller and more stable values in the factors. [42]
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By default, this parameter is set to None, meaning no regularisation is applied. In many
cases, especially when the tensor is not too noisy or the rank is well-chosen, no regularisation
is used. However, when the data is noisy, high-dimensional, or the rank is relatively high
compared to the tensor size, enabling L2 regularisation can help avoid overfitting and improve
generalisation.

In our case, since we’re working on ECG classification, a task where the signal is relatively clean
but the features can be subtle and high-dimensional, we experimented with different values for
12,eg. We found that adding a small amount of regularisation (e.g., {2,eg = le — 3) improved
classification performance. It also led to more stable factor matrices between runs, which was
useful for interpretability.

Setting [2,eg too high quickly improved the correlation, but degraded the quality of the classi-
fication. The model became too constrained and failed to capture important structure in the
ECG signals, leading to higher reconstruction error and worse classification results. This con-
firms that while L2 regularisation can be beneficial, it should be used cautiously, and usually
with small values.

Overall, we kept [2,.eg enabled with a low value, as it gave a slight improvement in robustness
and interpretability, without noticeably hurting performance. It also helped reduce variance
across decompositions, which is useful when comparing or averaging factors across subjects or
time windows.

We further discussed the tuning of this parameter in Chapter [6]

Linesearch

Lastly, we discuss the 'linesearch’ parameter. When this is enabled, a line search step is added
to the ALS (Alternating Least Squares) optimisation after each update of the factor matrices.
The idea behind this is to improve convergence by adaptively choosing a step size that minimises
the reconstruction error along the update direction. [43]

By default, this parameter is set to False. In most typical use cases, especially when the data
is not extremely ill-conditioned or when the decomposition rank is moderate, ALS without line
search already converges well and reliably. That’s why many implementations leave this off
unless specifically needed.

The line search adds a small computational overhead, since it needs to evaluate the objective
function at different step sizes. However, in theory it can help avoid some of the oscillations
or slow convergence that can happen in standard ALS, especially in cases where the tensor is
large, sparse, or difficult to decompose due to its structure.

In our experiments, enabling line search did not change the final reconstruction error or classifi-
cation accuracy significantly. Convergence was sometimes slightly faster in terms of iterations,
but the overall runtime was actually a bit longer due to the overhead of the line search itself.
So practically, it made no real difference for our task.

That being said, it’s still useful to know that this option exists. If we were dealing with noisier
or larger tensors, or if ALS started to diverge or get stuck, enabling line search could help.
But in our ECG classification setting, where the tensors were well-behaved and the rank was
moderate, ALS converged reliably without needing any step size tuning.

So we left 'linesearch’ disabled. It added complexity without clear benefits, and the results,
both in terms of decomposition quality and correlation coefficients, stayed the same.

4.7.3 Visualisation of CP Decomposition Components

To get an intuitive view of what the CP decomposition has learned, we visualise the latent
factors for each component. Since we decompose into R (Rank) components and our tensor
has 3 modes, being samples, time (Hertz), and leads, this results in a matrix with R rows and
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3 columns. where Rank is 4. Each ’cell’ in this matrix shows a vector: it is the r-th column
of the factor matrix for that mode, corresponding to component r. Each row represents one
component across all three modes, and each column shows how that component is expressed
along one specific dimension. See Figure for an example, where Rank is 4, and each class
has 100 samples.

This is also the part where CP decomposition becomes more interpretable than many black-
box models like neural networks. For example, you can look at a single component and see in
which time regions this pattern is active, and in which leads it appears most. This allows for
more insight into what kind of ECG pattern that component is capturing, when it happens and
where it shows up in the 12-lead signal. In theory, this opens the door to clinically meaningful
interpretation.

However in this work, we found that the interpretability remains limited. Especially the time
factor often contains high-frequency noise or fluctuations that are hard to interpret directly.
Still, the fact that such a structure exists and can be visualised at all is already a promising
aspect. It shows that interpretability is possible by using decomposition, even if it is not fully
realised here yet.

For the sample mode, we also use colour to differentiate the binary labels, one colour for each
class. This gives a rough first impression of whether a certain component might help to separate
the two classes. In most cases, this separation is not clearly visible just by eye. Therefore, we
turned this into a formal metric using correlation. described in the next section on feature
selection. So while the visualisation doesn’t immediately reveal strong class differences, we will
show that these differences do exist once properly quantified.

It is important to remember that the decomposition is an unsupervised learning technique,
meaning it does not use the labels of the samples during the decomposition itself. The only
thing we do is keep track of the labels of the samples before decomposition, and reattach them
to the sample mode afterwards. This allows us to evaluate how well the decomposition has
implicitly separated the two classes, without ever having access to the label information during
training.

This idea is the core of the whole technique: if certain patterns in the data, captured as
components in the decomposition, appear more strongly in one class than the other, then the
factor values for the sample mode will reflect this. These factor values can then be used as
features for a regression model to predict the class. In Figure [f.6] we can already see early signs
of this. For example, in Factor 0, the red (AF) samples tend to have higher values, while in
Factor 3, the blue (SR) samples dominate. This visual separation is not always clear-cut, but
it shows that the decomposition starts to uncover class-relevant structure, and that’s exactly
what we built on in the next step.

4.8 Feature selection

After the CP decomposition, we obtain a set of latent factors. To reiterate for our case, these
consist of one factor matrix per mode, with the sample mode factor matrix containing the
representations for each individual ECG recording. Each column in this matrix corresponds to
one component, and each row to one sample. In other words, this matrix describes how much
each pattern (latent factor) is found in each sample. These components serve as features for
our classification model.

However, not all components are equally useful. Some might capture patterns unrelated to
the labels, or mostly reflect noise. Therefore, we apply a feature selection step to determine
which of the CP components separate the labels the most, and hence are most informative
for classification. So, the goal is to rank or filter these latent factors based on how well they
separate the binary labels.

To do this, we use correlation-based metrics. Previously, we already used Pearson correlation
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Figure 4.6: A visualisation of a decomposition with separation of labels.

[29)

as a way to evaluate the quality of the preprocessing and decomposition. In this section, we
formally explain what these correlation coefficients mean, how they work, and how they help
in selecting features. We focus on two types: Pearson and Spearman correlation.

4.8.1 Pearson Correlation

The Pearson correlation coefficient  between two variables x and y is defined as: |44]

Cov(m y) (@i —2)(y — b))
Oa0y \/Zl V(2 = 2230 (yi — §)?

(4.1)

Here, z and § are the sample means of  and y, and o, o, are the corresponding standard
deviations.

We already mentioned Pearson before to evaluate how well the CP decomposition works, but
we now define it more formally and explain how to interpret it. Intuitively, Pearson measures
whether two variables tend to increase or decrease together in a linear way. In our case, x refers
to the values for one CP component across all samples (i.e., one column of the sample factor
matrix), and y refers to the binary labels of those samples.

Since our labels are binary (0 or 1), the correlation measures whether higher values in this
factor are associated with class 1 or class 0. So, a positive Pearson correlation means that
as the component value increases, the probability of class 1 increases. A negative correlation
means that higher values in this factor are associated with class 0. A correlation close to 0
means there is no linear relationship.

This gives us an idea of whether a latent factor might help separate the classes, which is why
we use Pearson. Not only to evaluate the quality of the decomposition, but also to assess the
quality of preprocessing and to select relevant features for classification.

4.8.2 Spearman Correlation

The Spearman correlation coefficient p is defined similarly to Pearson, but instead of working

with raw values, it computes the Pearson correlation between the **ranked** values of the
variables: [45]
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Here, R(z;) and R(y;) are the ranks of x; and y; in their respective vectors, and R,, Ry are
the mean ranks.

The general intuition is the same as with Pearson: we want to know if a latent factor helps
separate the two classes. The difference is that Spearman does not assume a linear relationship,
but a monotonic one. It checks whether higher values of one variable tend to correspond to
higher (or lower) values of the other, regardless of the exact shape of the relationship.

In theory, Spearman is useful to detect relationships that are not strictly linear but still mono-
tonic. So we include it to double-check whether Pearson might miss something due to its linear
assumption. However, in practice, we never observed a case where Spearman revealed some-
thing that Pearson did not. This suggests that the relationships between latent factor values
and labels in our data are mostly linear. This is what we would expect, as the x-axis of our
sample matrix is a discrete sample ID, not a continuous value.

4.8.3 Component selection

After performing extensive testing of the CP decomposition across various configurations, and
manually inspecting the resulting Pearson correlations between the sample-mode latent factors
and the binary labels, we consistently observed a small subset of components achieving a cor-
relation above 0.1. The highest values were typically slightly above 0.2, while others tended
to fall below 0.1. Based on this repeated observation, we empirically determined a Pearson
correlation threshold of 0.1. [46]

This threshold was chosen as a compromise: high enough to ensure that selected components
show at least a weak linear relationship with the labels, but low enough to retain multiple
relevant factors. While 0.1 may seem low, it is statistically significant and meaningful in the
context of noisy biomedical signals and unsupervised tensor decompositions. We therefore
automated the feature selection process to retain only those components whose sample-mode
factors have a Pearson correlation above 0.1, to be used as input features for the classification
model. [46]

4.9 Feature preprocessing

Now that the CP decomposition has been performed, we obtain three factor matrices: one for
each mode, samples, time (Hz), and leads. These matrices have shapes samples samples x R,
time x R, and leads x R, where R is the number of components (or rank). Each column in
these matrices corresponds to a latent factor, and the values indicate how strongly each sample,
time point, or lead is associated with that factor.

However, from this point on, we only make use of the sample factor matrix. Again, this matrix
contains, for each ECG recording (i.e., each sample), a set of R values that describe how strongly
that sample is associated with each of the R patterns found during decomposition.

These values act as a compressed representation or feature vector for each sample, essentially
summarising the ECG in terms of the discovered latent factors. Since our goal is to classify the
samples (e.g. AF or SR), we only need to know how each sample relates to the patterns, not
when or where those patterns occur within the signal. The time and lead factor matrices are
important for interpretability and analysis of the decomposition itself, but they are not used as
input to the classifier.

So, moving forward, the sample factor matrix serves as the feature matrix for classification and
feature selection: each row is a sample, each column is a latent feature.
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Normally, before applying any machine learning classifier, the preprocessing of the input features
is a crucial step that requires careful consideration. In our case, however, the CP decomposition
already acts as a significant preprocessing step, transforming raw ECGs into a lower-dimensional
latent space. As a result, there is limited room for additional preprocessing.

4.9.1 Normalisation

Still, we observed that the resulting latent factor values, used as features for classification, can
vary considerably in scale, typically within a range of approximately £10, though this can differ
per factor. Since many classification models are sensitive to feature scale, each feature must
contribute equally to the decision boundary. For this reason, we apply a normalisation step
using the MinMaxScaler from the scikit-learn library [47]. This scaler independently rescales
each feature (i.e., each column in the sample factor matrix) to lie within the range [0, 1], based
on the minimum and maximum values observed for that feature across all samples.

4.9.2 Polynomial Features and PCA

In our experiments with linear classification models such as logistic regression, we explored using
both Polynomial Features and Principal Component Analysis (PCA) as preprocessing
steps. For this we used the decomposition.PCA and preprocessing.PolynomialFeatures
functions from the scikit-learn library [47)

The idea behind polynomial features is to generate additional features by combining the original
ones in non-linear ways. For instance, if we start with two features, 1 and xo, and apply a
degree-2 polynomial transformation, we obtain a new feature set: [ry, x2, 2%, X172, 3]
This allows a linear model to capture more complex non-linear patterns and curved decision
boundaries, which would otherwise be impossible using only the original features.

However, this generates an exponential number of features. That is why we also apply PCA,
a dimensionality reduction technique. It transforms the data into a new set of uncorrelated
variables, called principal components, which are ordered by the amount of variance they cap-
ture in the original data. The main goals of PCA are to reduce noise, eliminate redundancy,
and potentially improve generalisation, especially when dealing with high-dimensional feature
spaces.

However, after applying both techniques in several tests, we observed little to no improvement
in model performance. The polynomial transformation did not significantly improve accuracy,
likely because the relationships between features were already mostly linear.

As a result, and to keep our models and pipelines simpler and more efficient, we generally
choose to leave out both polynomial feature expansion and PCA in our final workflows.

4.10 Classification models

After dividing these features into a train and test set, like explained in subsection [£.5.2] we can
start training a classification model. We trained several classification models to classify ECG
samples, with the main ones being Logistic Regression, Random Forest, and XGBoost. Each
of these models is briefly explained in the following subsections. The final model choice was
based on empirical performance, which is discussed in more detail in the Results and Evaluation
section. The parameters are handled using a grid search, which is explained further in results
and evaluation, Chapter [6]

4.10.1 Logistic Regression

We use LogisticRegression from scikit-learn [47] to classify the samples based on their
latent features. This model outputs a probability score between 0 and 1, representing the
likelihood of the sample belonging to class 1. A threshold of 0.5 is used to convert this into
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a binary decision. Logistic regression models a linear decision boundary, which makes it a
natural first choice for classification when the data is expected to be (at least partially) linearly
separable. [15]

The main parameters include:

e penalty: Specifies the regularisation used. Options include ’12’ (default), which helps
prevent overfitting.

e C: Inverse of regularisation strength. Smaller values imply stronger regularisation.
e solver: Algorithm used for optimisation, such as *1bfgs’, >saga’, or ’liblinear’.
e max_iter: Maximum number of iterations taken for the solver to converge.

Logistic regression is well-suited to our use case because it provides a simple yet effective
baseline. If strong performance is achieved with this model, it confirms that the decomposition
has uncovered a meaningful and separable structure in the data.

4.10.2 Random Forest

Random Forest is an ensemble method that builds multiple decision trees [48] and aggregates
their predictions, usually through majority voting. This approach reduces the risk of overfitting
compared to a single decision tree and improves overall robustness. [16]

In our case, although we are not dealing with high-dimensional data, Random Forest remains
a strong candidate because of its ability to model non-linear relationships and interactions
between features, without requiring any special scaling or preprocessing. This flexibility makes
it well-suited to the latent factor features produced by our tensor decomposition.

We use the implementation from scikit-learn [47], with the following key parameters:
n_estimators: the number of trees in the forest.
max_depth: limits the depth of the trees to prevent overfitting.

min_samples_split, min_samples_leaf: define the minimum number of samples required to
split an internal node or be a leaf.

max_features: how many features to consider when looking for the best split.

4.10.3 XGBoost

XGBoost, short for Extreme Gradient Boosting, is a powerful ensemble learning method based
on decision trees. Unlike Random Forest, which builds trees independently, XGBoost builds
them sequentially, where each new tree focuses on correcting the errors made by the previous
ones. This boosting strategy often leads to improved performance. |17]

The main parameters we considered include:
e n_estimators — the number of boosting rounds or trees,
e learning rate — controls how much each tree contributes to the final prediction,
e max_depth — the maximum depth of each tree,
e subsample — the fraction of training samples used for each tree to reduce overfitting,
e colsample_bytree — the fraction of features used per tree.

XGBoost can be a strong choice for our task because of its ability to model complex, non-linear
relationships between features and labels, while also including built-in regularisation to prevent
overfitting. To implement this, we used the XGBoost Python Package. [17]



60 CHAPTER 4. METHODOLOGY

4.11 Model Evaluation

To evaluate our models, we use two approaches: cross-validation and a held-out test set.
Cross-validation is generally preferred, as it avoids bias introduced by a specific train-test split.
With cross-validation, we evaluate the model based on the average accuracy, precision, recall,
confusion matrix, and F1-score across all folds.

However, a limitation of cross-validation is that the training and validation splits always follow
the same distribution. This makes it unsuitable when we want to train on a balanced dataset
while testing on a naturally imbalanced one. In such cases, we evaluate the model on a separate
test set.

This natural test set is used to simulate real-world conditions by preserving the natural class
distribution. We apply the trained model to the test set and evaluate the predictions using a
confusion matrix, along with class-specific precision, recall, and F1-score.

4.12 Experimental Setup

This work was conducted using Python v3.10.8, primarily through Jupyter Notebooks (.ipynb)
for experimentation and exploratory analysis. Additional functionality and reusable compo-
nents were implemented in Python scripts (.py). All development took place in Visual Studio
Code v1.100.0. A complete overview of the Python libraries used is provided in the Implemen-
tation section.

All experiments were conducted on a local machine running Windows 11, equipped with an
11th Gen Intel® Core™ i5-1135G7 CPU at 2.40 GHz and 16 GB of RAM. No dedicated GPU
was used for this work. The computational resources were sufficient for all tasks, including
tensor decompositions, model training, and evaluation.
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Implementation

In this chapter, we explain all the code that is relevant to the work, following the same general
structure as outlined in the methodology chapter. For each part of the methodology, we show
and explain the corresponding implementation, providing the necessary code and highlight-
ing how it connects to the described approach. All libraries used during implementation are
mentioned and discussed where relevant.

5.1 Libraries

The following Python libraries were used throughout the project for data manipulation, machine
learning, decomposition, signal processing, and visualisation:

tensorly 0.8.1 [40]

e scikit-learn 1.5.2 [47]
e scipy 1.13.0 |33

e PyWavelets 1.7.0 [49]

o numpy 1.26.4 [50]

e pandas 2.2.3 [51]

e seaborn 0.13.2 [52]

e matplotlib 3.8.4 [53]

e xgboost 3.0.0 [17]

o widb 4.3.0 [54]

5.2 Dataset loading and labelling

As a first step, we define the function get_Y to load the metadata file from the PTB-XL dataset
and enrich it with two additional label columns. This entire process is implemented using the
Pandas library [51], by loading the CSV file into a Pandas DataFrame for efficient manipulation
and analysis. The first column, rhythm, is used for the classification task. It is derived from
the scp_codes column, which contains a dictionary of diagnostic labels per ECG sample. The
extraction is done using the helper function extract_rhythm, which labels the entry as SR if the
dictionary contains the key SR, as AF if it contains AFIB, and VA otherwise. This step isolates
the most relevant rhythm indicators for our analysis.

61
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def extract_rhythm (code_dict):
if ’AFIB’ in code_dict:
return ’AF’
elif SR’ in code_dict:
return 'SR’
else:
return 'OTHERS’
def get_Y (path="data/ptbxl/’):
Y = pd.read_csv (path+’ptbxl_database.csv’)
Y = Y.reset_index ().set_index (’ecg_-id )
Y = Y.rename (columns={"index’: ’row_id’})
Y.scp_codes = Y.scp-codes.apply(lambda x: ast.literal_eval(x))

Y[ ’'rhythm’] = Y[ ’scp_codes’].apply(extract_rhythm)

The second label column, health_status, is constructed to support the prediction task. To
get this, we identify patients who had both sinus rhythm (SR) and atrial fibrillation (AF)
recordings. If a sinus rhythm occurred within one month prior to an AF episode for a given
patient, we label that SR recording as unhealthy. In contrast, patients with only SR recordings
and no history of AF are labelled as healthy. All remaining records are marked as unknown.
These labels provide the basis for downstream tasks related to rhythm classification and patient
health prediction.

In order to realise this, we now extend the get_Y function to construct the health_status
label. We begin by identifying all patient_ids who have both SR and AF records, stored
in the variable patients_with both. From this subset, we extract the corresponding SR and
AF samples into separate tables named sinus_rhythms and af_rhythms, respectively. These
tables are then merged on patient_id, resulting in a combined table merged containing all
combinations of SR and AF recordings for each of these patients.

Each row in the merged table now contains two columns for recording date: one for the SR
rhythm and one for the AF rhythm. We convert both columns to the appropriate datetime for-
mat and compute the difference in days between them, stored in a new column called time_diff.
We then filter this table to retain only those rows where the SR recording occurred within 31
days before the AF recording. From these filtered results, we extract the ecg_ids corresponding
to SR recordings and remove duplicates, as the same SR may appear in multiple AF pairings
due to the merge.

Next, we identify the healthy samples. These are all SR records from patients who do not
appear in the patients_with both set. Le., patients who have never had an AF episode in the
dataset.

With both sets of ecg_ids (healthy and unhealthy) defined, we return to the original DataFrame
and update the health_status column accordingly, flagging the identified rows as either
healthy or unhealthy.

af = Y[Y[ 'rhythm’'] = ’AF’ ][ ’patient_id’]. unique ()
st = Y[Y[’'rhythm’'] = 'SR’ ][ ’patient_id ’]. unique ()
patients_with_both = np.intersectld (sr, af)

# Filter the DataFrame for sinus rhythms (SR) of these patients
sinus_rhythms = Y[(Y[ 'rhythm’] = ’SR’) &
(Y[ patient_-id’].isin (patients_with_both))]
# Get non—sinus rhythm records for these patients
af_rhythms = Y[(Y[ ’rhythm’] = ’AF’) &
(Y[ 'patient_id ’].isin (patients_with_both))]
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# Merge sinus and non—sinus rhythms on patient_id
merged = pd.merge(
sinus_rhythms.reset_index (),

af_rhythms [[ "patient_id’, ’recording_-date’]],
on=’patient_id ’,
suffixes=("_sr’, ’_nsr’),

)

# Convert recording_date columns to datetime
merged [ "recording_date_sr’] =

pd.to_datetime (merged|[’recording_date_sr’], errors=’coerce’)
merged [ "recording_date_nsr’] =

pd.to_datetime (merged [’ ’recording_date_nsr’], errors=’coerce’)
merged [ 'time_diff’] = (merged[’recording_date_nsr’] —

merged [ 'recording_date_sr’]).dt.days
filtered_sinus_rhythms = merged [( merged [’ time_diff’] >= 0) &

(merged [’ time_diff’] <= 31)]
unhealthy = filtered_sinus_rhythms.drop_duplicates(subset="ecg_id’)

# get al patient ids who nevel had a non—sinus rhythm
patients_with_only_sinus_rhythms =

Y[ Y[’ patient_id ’].isin (patients_with_both) & (Y[’ ’rhythm’] = ’SR’)]
[’patient_id ’|. unique ()
healthy_sinus_rhythms = Y[(Y[ ’rhythm’] = ’SR’) &

(Y[ patient_-id’].isin(patients_-with_only_sinus_rhythms))]. reset_index ()

# Add a column to Y to mark if it is healthy or unhealthy

Y[ health_status’] = ’unknown’ # Default value
Y.loc[Y.index.isin (healthy_sinus_rhythms|’ecg_id’]), ’'health_status’]
= ’healthy’
Y.loc[Y.index.isin (unhealthy|[’ecg_-id’]), ’health_status’] = ’unhealthy’
return Y

5.3 Data sampling

Now that this function is defined, we can use it to obtain our DataFrame and draw a sample
from it. We illustrate this for the classification task, where we select samples labelled as SR
and AF from the rhythm column. The same procedure applies to the prediction task, where
samples are selected based on the health_status column, distinguishing between healthy and
unhealthy cases.

From this DataFrame, we require three pieces of information: the ecg_id (used as the table
index), the rhythm label, and the row_id. The row_id is particularly important, as it maps each
entry in the DataFrame to its corresponding sample in our ECG tensor.

In this example, we randomly select 100 samples from each class using Pandas’ sample func-
tion, concatenate the subsets, and shuffle the combined set with frac=1. We then extract the
row_ids to use as indices when accessing the corresponding ECG data from the tensor. Addi-
tionally, we store the ecg_ids separately so we can later reference the exact ECG records used
for our classification. Finally, we also keep the corresponding class labels, which are used for
decomposition visualisation.

df = get_Y ()
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df = df [[’rhythm’, ’row_id ’]]
SR_df = df[df[’rhythm’] = 'SR’ ].sample (100, replace=False)
AF_df = df[df[’rhythm’] = ’AF’].sample (100, replace=False)

df = pd.concat ([SR_df, AF_df]).sample(frac=1)

indices = df.row_id.to_numpy ()

np.save (”output/index_output.npy”, df.index.to_numpy())
labels = df[’rhythm’]

5.4 Load Tensor

This function, provided by PTB-XL [2,|7,|8], is used to load the raw ECG signals.

The function load_raw_data takes three arguments: the dataframe df (the metadata csv file),
a sampling rate (defaulting to 500 Hz), and a path to the directory containing the ECG
recordings.

Depending on the desired sampling rate, it selects the appropriate filenames from the dataframe:
filename_1r for 100 Hz or filename hr for 500 Hz. It then reads each ECG recording using
the rdsamp function from the wfdb library. This function returns a tuple (signal, meta) for
each file, where we only keep the signal part.

All signals are collected into a list and then converted into a single NumPy array before being
returned.

def load_raw_data(df, sampling_rate=500, path=’data/ptbxl/’):
if sampling_rate = 100:
data = [wfdb.rdsamp (path+f) for f in df.filename_lr]
else:
data = [wfdb.rdsamp (path+f) for f in df.filename_hr]
data = np.array ([signal for signal, meta in data])
return data

We can now load the tensor and apply sampling to it using our indices variable. This way, the
resulting tensor only contains the selected samples, in preparation for the decomposition.

tensor = load_raw_data (df, 500)
X = tensor[indices|]

5.5 ECG preprocessing

5.5.1 Denoising

We define a function denoise_tensor which applies denoising to the entire ECG tensor. The
function begins by initialising a new tensor, denoised_tensor, using np.zeros_like to match
the shape of the input tensor. It then iterates over all patients and leads, calling our denoise
function on each individual signal (i.e., one lead from one patient). The denoised signal is then
stored in the corresponding position in the new tensor. This approach ensures that each signal
is processed independently while preserving the original tensor structure.

def denoise_tensor (tensor, threshold_factor=>5.0):
patients , time, leads = tensor.shape
denoised_tensor = np.zeros_like (tensor)

# Iterate over patients and leads
for p in range(patients):
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for 1 in range(leads):
denoised_tensor[p, :, 1] = denoise(tensor[p, :, 1],
threshold_factor=threshold_factor)
return denoised_tensor

We now define our denoise function that performs signal denoising in several steps. It takes a
single ECG signal and applies a combination of baseline correction, notch filtering, and wavelet
denoising.

First, the baseline drift is removed using the remove_baseline_drift_signal function, which applies
a high-pass filter. After this, a notch_filter is applied to remove powerline interference, typically
at 50 or 60 Hz, depending on the region.

Next, we use PyWavelets to decompose the signal using wavelet decomposition with the sym4
wavelet up to level 4. This breaks the signal into multiple frequency bands. High-frequency
components (the detail coefficients) are then denoised using soft thresholding. The threshold
is calculated as the standard deviation of the finest-level detail coefficients multiplied by a
constant threshold_factor, which determines the aggressiveness of the denoising.

Finally, the signal is reconstructed from the modified coefficients using inverse wavelet trans-
form, resulting in the denoised signal.

def denoise(ecg_signal, fs=500, threshold_factor=5.0):
ecg_filtered = remove_baseline_drift_signal (ecg_signal , fs=fs)
ecg_filtered = notch_filter (ecg_signal , fs=fs)

# Wavelet decomposition

wavelet = ’sym4’
level = 4
coeffs = pywt.wavedec(ecg_filtered , wavelet, level=level)

# Thresholding high—frequency detail coefficients
threshold = np.std(coeffs[—1]) * threshold_factor
coeffs_denoised = |
pywt.threshold (¢, threshold, mode=’soft’) if i != 0 else c
for i, ¢ in enumerate(coeffs)

]

# Reconstruction
denoised_signal = pywt.waverec(coeffs_denoised , wavelet)

return denoised_signal

The function remove_baseline drift_signal then removes baseline drift from a single ECG
signal. Baseline drift is a low-frequency noise typically caused by patient movement or respira-
tion and can distort ECG interpretation.

This function uses the butter and £filtfilt functions from the SciPy library (scipy.signal)
to apply a high-pass Butterworth filter.

First, it calculates the normalised cut-off frequency by dividing the chosen cut-off (default 0.5
Hz) by the Nyquist frequency, which is half the sampling frequency (fs). Then, it creates
the filter coefficients using butter, and finally applies the filter to the signal using filtfilt.
This function performs zero-phase filtering by processing the signal in both forward and reverse
directions, avoiding phase distortion.

def remove_baseline_drift_signal (signal, cutoff=0.5, fs=500, order=2):
nyquist = 0.5 * fs
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normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='high’, analog=False)
return filtfilt (b, a, signal)

Lastly, we look into our notch_filter function to remove powerline interference from an ECG
signal. This kind of noise typically occurs at 50Hz (in Europe) or 60Hz (in other regions), and
can strongly affect ECG analysis if not filtered out.

This function uses the iirnotch and £iltfilt functions from the SciPy library (scipy.signal).

The iirnotch function designs a notch filter with a centre frequency of 50Hz and a quality
factor Q, which controls the sharpness of the notch (with a default of 30.0). The filter coefficients
are then used by £filtfilt to apply zero-phase filtering, ensuring that the signal is not phase-
distorted.

This effectively removes narrow-band interference from the ECG signal while preserving the
underlying waveform.

def notch_filter (signal, fs=500, freq=50.0, Q=30.0):
b, a = iirnotch (wO=freq, Q=Q, fs=fs)
return filtfilt (b, a, signal)

5.5.2 Min Max normalisation

For our normalize_per_ecg min max function, we follow the same approach as in denoise_tensor,
where we iterate over all individual ECG signals in the tensor. This time, however, we apply
min-max normalisation rather than denoising.

For each signal, we compute its minimum and maximum values using NumPy’s min and max
functions. We then apply the standard min-max scaling formula, as described in the method-
ology chapter, to scale the signal values to a range between 0 and 1.

def normalize_per_ecg_min_max(ecg_-tensor , range.min=—1, range_ max=1):
# Ensure the tensor is a numpy array
ecg_tensor = np.array(ecg_tensor)

# Initialize an array for the normalized tensor
normalized_tensor = np.zeros_like(ecg_tensor)

# Loop through each patient and lead
for patient_idx in range(ecg_tensor.shape[0]):
[2]):

for lead_idx in range(ecg_tensor.shape
signal = ecg_tensor[patient_idx, :, lead_idx]
signal_min = np.min(signal)
signal_max = np.max(signal)

# Avoid division by zero if signal is flat
if signal max > signal _min:

normalized_tensor [patient_idx , :, lead.idx] = (
(signal — signal_min) / (signal_-max — signal_min)
* (range_max — range_min) + range_min

)

else:
# If the signal is flat , set to the midpoint
# of the desired range
normalized_tensor [patient_idx , :, lead_idx]
= (range_max + range_min) / 2
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return normalized_tensor

5.5.3 Decimation

Our last relevant preprocessing function is downsample_decimate, where we use the decimate
function from the scipy.signal module to perform this operation. It applies an anti-aliasing
low-pass filter before downsampling to preserve the signal quality and prevent distortion. The
zero_phase=True argument ensures that the phase of the signal is not shifted by the filtering
process.

The function loops over each sample in the ECG tensor and applies the decimation along the
time axis (axis 0). Finally, the resulting list is converted back to a NumPy array.

def downsample_decimate (ecg_tensor, factor):
return np.array ([decimate(signal , factor, axis=0, zero_phase=True)
for signal in ecg_tensor])

Now that we defined the needed functions, we can preprocess our tensor.

X = denoise_tensor (X)
X = normalize_per_ecg_min_max (X)
X = downsample_decimate (X, factor=10)

5.6 CP Decomposition

We now input our tensor X into the parafac function to perform CP decomposition. This
is done using the parameters described in Chapter [4] (Methodology). The output consists of
the factor matrices, a set of component weights, and the reconstruction error. Although these
weights are typically used to scale the components, often by multiplying them back into the
factor matrices, we leave out this step, as we normalise the factor matrices later. In that case,
the weights become redundant.

(weights, factors), errors = parafac(X)
A = factors[0]

B = factors[1]

C = factors [2]

factors = (A, B, C)

5.6.1 Visualisation

To better understand the decomposition results, we write a function called plot_factors_with_labels
[29], which takes the factors, the labels (e.g., sinus rhythm or atrial fibrillation), and the number
of dimensions we want to show.

Each factor corresponds to a mode of the tensor: patients, time, and leads. The function
creates a subplot grid where each row shows one component and each column shows one of the
modes.

For the patient mode, we use a scatter plot. Each point is coloured based on the patient’s
label (blue for sinus rhythm, red for atrial fibrillation or ventricular arrhythmia). For the other
modes, we use line plots to show the variation of each component over time or leads.

This way, we can visually inspect whether the extracted factors show a structure that aligns
with the known labels, helping us interpret what the decomposition is capturing.

def plot_factors_with_labels(factors, labels, d=3):
a = factors
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rank = a[0].shape[1]

fig , axes = plt.subplots(rank, d, figsize=(8, int(rank *x 1.2 + 1)))

factors_name = ["Patients”, ”"Time”, ”"Leads”] if d = 3
else ["Time”, ”"Features”]

# Normalize labels for consistent plotting (0 = blue, 1 = red)
colors = np.array ([ ’blue’, ’red’])[labels.astype(int)]

zip (factors [:d], axes.T)):
ind])
factor.T, axs)):

for ind, (factor, axs) in enumerate(
axs|[—1].set_xlabel (factors_name |
for i, (f, ax) in enumerate(zip (
sns.despine (top=True, ax=ax)
# Scatter points for binary labels
if ind = 0:
ax.scatter (range(len(f)),
f, c=colors, alpha=0.6, s=10, label="Labels”)
else: # Line plot for other dimensions
ax.plot (f)
axes[i, 0].set_ylabel(”Factor-” + str(i))

labels = labels.replace(’SR’, 0).replace(’AF’, 1)
plot_factors_with_labels(factors, labels, d=3)

5.6.2 Correlation

To evaluate the relationship between the extracted patient factors and the labels, we compute
the Pearson correlation coefficient for each factor. This is done by comparing each column of
the patient factor matrix A with the label vector. The result is a correlation score and a p-value
for each factor, indicating how strongly that factor linearly separates the labels. These values
are then printed to help assess which factors may carry relevant information.

correlations = np.array ([pearsonr (A[:, i], labels) for i in
range (A.shape [1])])

for i, (corr, pval) in enumerate(correlations):
print ({” Factor-{i}:-Pearson-correlations-=-{corr:.4f},
ffffffff p—value-=-{pval:.4g}”)

5.7 classification

5.7.1 Preprocessing and sampling

The code first binarises the class labels by assigning 0 to 'SR’ and 1 to the other labels, which
is AF. Then, it uses MinMaxScaler from the sklearn.preprocessing library [47] to scale the input
matrix X (in this case, the samples factor matrix A from the decomposition) to the [0,1] range.
The data is then split using the custom natural_split function, which creates a training set with
a balanced class distribution (80% of the data), and a test set with a natural class imbalance
(test ratio of 4.0 between class 0 and class 1), based on the specified random state.

labels = labels.apply(lambda x: 0 if x = ’SR’ else 1)
Y = labels.to_numpy ()
norm_scaler = MinMaxScaler ()
A = norm_scaler. fit_transform (X)
X _train, y_train, X_test, y_-test = natural_split(
A, Y, rs=randomsstate, train_size=0.8, test_ratio=4.0)
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As mentioned, the function natural_split creates a train-test split where the training set is bal-
anced across classes, and the test set follows a specified class imbalance (controlled by test_ratio).
It first shuffles the data per class, then selects equal numbers of samples per class for training.
For the test set, it selects as many samples as possible while maintaining the desired ratio (e.g.,
4:1 for class 0 vs class 1). The function returns the split feature and label sets for training and
testing.

def natural_split (X, Y, rs=42, train_size=0.8, test_ratio=4.0):
np.random. seed (rs)

# Get indices per class
class_0_indices = np.where(Y = 0)
class_1_indices = np.where(Y = 1)[0]

# Shuffle

np.random. shuffle (class_0O_indices)
np.random. shuffle (class_1_indices)

# Total samples per class (assumed equal)
N = min(len(class_0_indices), len(class_1_indices))

# Determine number of train samples per class
train_samples_per_class = int(train_size x N)

# Remaining for test
class_O_remaining = N — train_samples_per_class

class_1_remaining = N — train_samples_per_class

# Determine test samples from each class to match ratio

max_test_1 = class_1_remaining

max_test_0 = class_O_remaining

# Solve for z such that class_0O_test = test_ratio * class_1_test
class_1_test = min(max_test_1, int(max_test_.0 / test_ratio))
class_0_test = int(test_ratio * class_1_test)

# Slice indices

class_0_train = class_O_indices [:train_samples_per_class]
class_1_train = class_1_indices [:train_samples_per_class]
class_0_test = class_O_indices |

train_samples_per_class:train_samples_per_class + class_0_test]
class_1_test = class_1_indices]|

train_samples_per_class:train_samples_per_class + class_1_test]

# Combine indices
train_indices = np.concatenate ([class_O_train , class_1_train])
test_indices = np.concatenate ([class_0O_test , class_1_test])

# Shuffle combined sets
np.random. shuffle (train_indices)
np.random. shuffle (test_indices)

# Subset data
X _train, y_train = X[train_indices], Y[train_indices]
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X_test, y_test = X[test_indices], Y[test_indices]
return X _train, y_train, X_test, y_test

If we want a balanced test set, we can just use the train_test_split(X, Y, test_size=0.2) function
from sklearn [47].

5.7.2 Models

Next we train our model using our train data, which is done in the code below. This code
performs a grid search with 5-fold cross-validation to find the best hyperparameters for a Lo-
gisticRegression model. The best parameters are then used to create and train a new model.
This process is the same for RandomForestClassifier and XGBClassifier.

model = LogisticRegression (random_state=randomsstate)
model = GridSearchCV (model, param_grid_rf, cv=5, scoring=’accuracy’)
model. fit (X_train, Y_train)

print (” Beste-parameters:”, model.best_params.)
print (” Beste-score:”, model. best_score_)

model = LogisticRegression (random_state=randomsstate , params...)

5.7.3 Test

The following code is used to evaluate the trained model on the test set. It prints the overall
accuracy, a classification report with precision, recall and F1 score for each class, and the
confusion matrix.

y-pred = model. predict (X_test)

accuracy = accuracy-score(Y_test, y_pred)
print (” Accuracy:”, accuracy)
print(classification_report (Y_test, y_pred))
print (confusion_matrix (Y_test, y_pred))

5.7.4 Cross validation

This part performs 5-fold stratified cross-validation on the training set. Multiple scoring metrics
are defined, and the average scores across folds are computed. This provides a more robust
estimate of the model’s performance.

scoring = {
"precision_macro’: make_scorer(precision_score , average=’macro’),
"recall_macro’: make_scorer(recall_score, average=’'macro’),
"fl_macro’: make_scorer(fl_score, average=’macro’),
"accuracy ': make_scorer(accuracy._score)

}

cv = StratifiedKFold (n_splits=5, shuffle=True, random_state=rs)

scores = cross_validate (model, X_train, Y_train, cv=cv, scoring=scoring)
print (’
print
print
print

"Avg-precision:”, scores[’test_precision_macro’].mean())
"Avg-recall:”, scores|[’test_recall_macro’].mean())
"Avg-F1:”, scores[’test_fl_macro’].mean())
7Avg-accuracy:”, scores[’test_accuracy’].mean())

e N e



Chapter 6

Results and Evaluation

In this chapter, we present the final results concerning our model and parameter choices, as
well as the overall model performance.

Most tests are performed within the classification task, as we had more data available for this,
which makes the results more reliable. Additional results for the prediction task are presented
at the end of this chapter.

6.1 Preprocessing

We begin by examining the impact of several preprocessing parameters in our final signal pro-
cessing pipeline for our classification task. These include the denoising threshold, the wavelet
decomposition level, and the decimation factor. In Table we show four heatmaps, one for
each decimation factor, showing the average absolute correlation (in percentage) for various
combinations of denoising threshold and wavelet level. These results are further summarised in
Table [6.2] which also includes the corresponding reconstruction error for the top 5 configura-
tions, which remained very consistent.

In these experiments, all other parameters were kept constant. This includes setting the random
state to 42 in both the sampling functions and the CP decomposition. The CP decomposition
was performed with a fixed rank of 8 and an {5 regularisation parameter of 2. These tests were
performed on 100 random samples of each class.

Overall, we observe that variations in these preprocessing parameters have a relatively small
effect on the decomposition outcome. In contrast, the choice of preprocessing techniques them-
selves had a significant influence. As described earlier in the methodology, alternative ap-
proaches led to almost no meaningful correlation, in contrast to this pipeline, which consistently
produced interpretable and relevant components.

6.2 Decomposition Rank and Regularisation

We now take a closer look at the two most important parameters for the decomposition: Rank
and L2 regularisation. For these experiments, we use the optimal ECG preprocessing setup
described earlier. This includes level 3 wavelet denoising with a threshold of 7 and decimation
by a factor of 20. All other settings, such as the sampling rate and random state, remain the
same as in the preprocessing stage.

Looking at the results in Table we observe that the average absolute correlation increases
as we apply stronger L.2 regularisation. In contrast, higher Rank values tend to reduce the cor-
relation. When we examine the summary in Table which highlights the best combinations
based on correlation, we notice that the reconstruction errors are generally worse than those
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Table 6.1: Heatmaps for average correlation values over threshold and wavelet level,
per decimation factor.

(a) Decimation = 2 (b) Decimation = 5
Threshold Threshold
Level 3 5 7 Level 3 5 7
3 16.8 15.4 14.9 3 16.7 15.2 14.7
4 15.8 15.7 14.9 4 15.1 16.6 14.6
5 154 15.0 17.0 5 179 174 17.2
(c) Decimation = 10 (d) Decimation = 20
Threshold Threshold
Level 3 5 7 Level 3 5 7
3 145 16.7 16.8 3 13.9 13.7 19.3
4 16.8 15.8 17.1 4 15.0 17.6 17.2
5 16.7 15.8 14.0 5 16.5 16.8 16.0

Table 6.2: Top 5 parameter combinations by average correlation

Threshold Level Decimation Correlation Reconstruction Error

7 3 20 0.193 0.604
3 ) 5) 0.179 0.632
5 4 20 0.176 0.605
) 5 5 0.174 0.632
7 5 5 0.172 0.632

from the preprocessing experiments, where we used Rank 8 with an L2 regularisation of 2.0.
However, since our main goal is to feed these decompositions into a classification task, corre-
lation is more relevant than reconstruction error. This makes the higher-correlation settings
more favourable, even if they result in slightly less accurate reconstructions.

6.3 Model Performance over Rank and Regularisation

Now that we have determined the optimal decomposition parameters, we move on to the clas-
sification task, where we try to find our optimal model. For this, we apply all previously found
settings for preprocessing: wavelet denoising at level 3 with a threshold of 7, a decimation factor
of 20.

Also, we use a balanced dataset with a total of 500 samples per class, 400 for training and 100
for testing.

We chose not to rely solely on the previously determined decomposition parameters, which
favoured low rank and high regularisation. Instead, we re-evaluate a range of ranks and reg-
ularisation values across three different classification methods. This time, we evaluate the
configurations based on classification metrics rather than correlation, using cross-validation.
The goal is to investigate whether high average correlation truly translates to strong classifi-
cation performance, and to determine if low-rank, high-regularisation settings indeed give the
best results.

The second goal is to find the best classifier, comparing three classification models: Logis-
tic Regression, Random Forest, and XGBoost. To determine the best configuration for each
model, we used a grid search. As a result, the optimal parameters were as follows. For
RandomForestClassifier, we used bootstrap=True, max _depth=10, min_samples_leaf=5,
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Table 6.3: Correlation values over L2 Regularisation and Rank.

L2 Regularisation

Rank 1le-6 1le-5 1le4d 1le-3 1le2 1lel 1.0 20 5.0 10.0
4 155 156 144 152 141 148 17.0 209 199 25.0
) 148 13.7 164 142 132 135 16.6 185 22.0 25.0
6 13.1 122 133 141 12.0 10.0 164 16.7 21.6 25.0
7 12.7 133 116 11.7 11.6 10.7 16.7 16.2 21.7 24.9
8 113 106 11.1 11.7 10.8 11.2 143 15.6 20.8 24.3
9 87 103 11.7v 11.0 103 123 15.1 16.2 189 23.6
10 10.8 11.7 10.3 10.7 11.1 9.5 15.6 151 18.6 23.5
11 82 102 94 100 92 114 150 163 19.9 232
12 85 11.6 87 84 99 89 13.7 150 16.5 224

Table 6.4: Top 5 parameter combinations for decomposition by average correlation

Threshold Level Correlation Reconstruction Error

10.0 4 0.250 0.863
10.0 6 0.250 0.826
10.0 5 0.250 0.843
10.0 7 0.249 0.811
10.0 8 0.243 0.799

min_samples_split=2, and n_estimators=100.

For XGBClassifier, the best configuration was colsample_bytree=0.7, gamma=0,

learning rate=0.01, max_depth=3, n_estimators=50, reg_alpha=0,

reg_lambda=0, scale_pos_weight=1, and subsample=0.7. Lastly, for LogisticRegression,
the best parameters were C=1, max_iter=100, penalty=’12’, and solver=’saga’.

Upon examining the results of the grid search, we observed that varying these parameters led to
very similar outcomes. Therefore, we chose to keep these parameters fixed in order to simplify
the analysis and focus on those that had a more significant impact. In this case, the rank,
regularisation strength, and model choice.

Whereas in earlier experiments we used a fixed random state of 42, we now repeat the classifi-
cation using five different random states: 42, 26, 87, 36, 14. We then average the results. This
is because the classification process is more sensitive to randomness, due to factors such as the
train-test split, undersampling, shuffling, model training, and the cross-validation procedure,
where we all use a random state. Note that we also still do the sampling, preprocessing and
decomposition steps with these random states.

In Table we present three heatmaps for each classifier: the top one shows accuracy, while the
two below display the F1 scores for each class. Then, in Table[6.6] we list the four configurations
with the highest accuracy from Table[6.5] along with their confusion matrices and precision and
recall values for each class. In both tables, all results are averaged over the random states and
cross-validation folds, except for the confusion matrix values, which are summed.

We can see that Logistic Regression delivers the best results. It’s also clear that the low
rank and high regularisation, which gave the best average correlation, do not produce the
best classification outcomes. Generally, higher ranks tend to give better results, while low to
moderate regularisation performs best.

Additionally, the model’s predictions are consistent across both classes, with precision and recall
values remaining well balanced.
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Then, in Table we present the same four optimal models as before. This time, however,
they are evaluated on a test set that reflects a more natural, real-world class distribution,
with 100 samples for class 0 and 25 samples for class 1. Since this test set does not support
cross-validation, each model was trained and tested once per random state without performing
multiple folds.

We still observe roughly the same accuracy levels; however, the confusion matrix and precision
and recall scores are no longer balanced. The model now predicts class 0 more reliably than
class 1.

6.4 prediction

We now dive into the prediction task. Most of the previous findings also apply to this, which
is why we didn’t repeat all steps. The main thing we were interested in was the preprocessing,
as we expected a difference in optimal parameters here. With classification, we downsampled
our data by a factor 20, however in this case we assumed downsampling this much would mean
losing the subtle patterns we are looking for in this case, which is why we reperformed the tests
for the optimal preprocessing parameters: denoising threshold, the wavelet decomposition level,
and the decimation factor.

In these tests, we kept other parameters constant, learning from previous tests. We chose a
Rank 8 decomposition with a regularisation of 0,1. For sampling, we only have 42 class 1
samples. Because we want a balanced training set, and an unbalanced test set, we went for 32
training samples per class. For the test set, we went for 40 class 0 and 10 class 1 samples.

These results can be seen in Table [6.8] where we can again see 4 heatmaps, one for each
decimation value, with each heatmap being the accuracy for denoising threshold over wavelet
decomposition.

Subsequently, in Table[6.9] we give an overview of the top 4 configurations from Table[6.8] based
on accuracy, showing the confusion matrices and precision and recall for each class.
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Table 6.5: Heatmaps per model showing accuracy and class-specific F1 scores across
regularisation and rank.
(a) xgb — Accuracy
L2 Regularisation
Rank 1e-05 1e-03 1le-01 1 10
4 57.2
6 56.9
8 57.3
10 57.4
(b) xgb — F1 Class 0 (c) xgb — F1 Class 1
L2 Regularisation L2 Regularisation
Rank 1e-05 1e-03 1le-01 1 10 Rank 1e-05 1e-03 1le-01 1 10
4 63.9 62.0 6¢
6 64.5 61.9

8 65.0 62.8
10 64.9 64.6

(d) RandomForest — Accuracy

L2 Regularisation

Rank 1e-05 1e-03 1le-01 1 10

4
6
8
10
(e) RandomForest — F1 Class 0 (f) RandomForest — F1 Class 1
L2 Regularisation L2 Regularisation
Rank 1e-05 1e-03 1le-01 1 10 Rank 1e-05 1le-03 1le-01 1 10
4
6
8
10
(g) LogisticRegression — Accuracy
L2 Regularisation
Rank 1e-05 1e-03 1e-01 1 10
4 58.4
6 58.3
8 58.3
10 58.1
(h) LogisticRegression — F1 Class 0 (i) LogisticRegression — F1 Class 1
L2 Regularisation L2 Regularisation
Rank 1e-05 1le-03 1le-01 1 10 Rank 1e-05 1le-03 1le-01 1 10
4
6
8
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Table 6.6: Top 4 Models: Confusion Matrix and Precision / Recall per Class

LogisticRegression, Rank=10, A\ = 1e-05, Accuracy=64.5%

Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 1611 (TP) 889 (FN) Precision  64.5% 64.4%
Actual 1 888 (FP) 1612 (TN) Recall 64.5% 64.5%

LogisticRegression, Rank=06, A = 1e-05, Accuracy=64.4%

Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 1614 (TP) 886 (FN) Precision  64.4% 64.6%
Actual 1 893 (FP) 1607 (TN) Recall 64.5% 64.3%

LogisticRegression, Rank=6, A = 0.1, Accuracy=64.4%

Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 1614 (TP) 886 (FN) Precision  64.3% 64.6%
Actual 1 896 (FP) 1604 (TN) Recall 64.4% 64.2%

LogisticRegression, Rank=8, A = 0.1, Accuracy=64.4%

Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 1603 (TP) 897 (FN) Precision  64.4% 64.1%

Actual 1 885 (FP) 1615 (TN) Recall 64.3% 64.6%
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Table 6.7: Top 4 Models tested over a natural test set: Confusion Matrix and Precision
/ Recall per Class

LogisticRegression, Rank=10, A = 1e—05, Accuracy=63.5%

Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 311 (TP) 189 (FN) Precision  88.7% 31.9%
Actual 1 39 (FP) 86 (TN) Recall 62.2% 68.8%
LogisticRegression, Rank=06, A\ = 1e—05, Accuracy=64.6%
Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 319 (TP) 181 (FN) Precision  88.8% 32.3%
Actual 1 40 (FP) 85 (TN) Recall 63.8% 68.0%
LogisticRegression, Rank=06, A\ = 1le—01, Accuracy=64.3%
Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 317 (TP) 183 (FN) Precision  88.7% 32.1%
Actual 1 40 (FP) 85 (TN) Recall 63.4% 68.0%
LogisticRegression, Rank=8, A = 1e—01, Accuracy=63.8%
Confusion Matrix Precision / Recall
Pred 0 Pred 1 Class 0 Class 1
Actual 0 316 (TP) 184 (FN) Precision  88.1% 31.7%
Actual 1 42 (FP) 83 (TN) Recall 63.2% 66.4%

Table 6.8: Heatmaps for prediction accuracy (in %) values averaged over 5 random
states, per decimation factor.

(a) Decimation = 1 (b) Decimation = 2
Threshold Threshold
Level 3 5 7 Level
3 3
4 4
5 5
(¢) Decimation = 4 (d) Decimation = 8
Threshold Threshold
Level 3 5 7 Level 3 5 7
3 3
4 4
5 5
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Table 6.9: Top 4 prediction Models: Confusion Matrix and Precision / Recall per Class

Decim=2, Level=4, T =7, Accuracy=59.6%

Confusion Matrix Precision / Recall
Pred0 Pred1 Class 0 Class 1
Actual 0 119 (TP) 81 (FN) Precision  85.6% 27.3%
Actual 1 20 (FP) 30 (TN) Recall 59.5% 60.0%

Decim=2, Level=5, T =7, Accuracy=59.6%

Confusion Matrix Precision / Recall
Pred 0 Pred1 Class 0 Class 1
Actual 0 119 (TP) 81 (FN) Precision  85.6% 27.3%
Actual 1 20 (FP) 30 (TN) Recall 59.5% 60.0%

Decim=38, Level=4, T =7, Accuracy=59.2%

Confusion Matrix Precision / Recall
Pred 0 Pred1 Class 0 Class 1
Actual 0 117 (TP) 83 (FN) Precision  86.2% 27.1%
Actual 1 19 (FP) 31 (TN) Recall 58.5% 62.0%

Decim=2, Level=5, T =5, Accuracy=58.4%

Confusion Matrix Precision / Recall
Pred 0 Pred1 Class 0 Class 1
Actual 0 117 (TP) 83 (FN) Precision  84.8% 26.1%

Actual 1 21 (FP) 29 (TN) Recall — 585%  58.0%



Chapter 7

Discussion

In this chapter, we take a closer look at the results from our experiments. We begin with a
brief summary of the main outcomes for both the classification and prediction tasks.

Next, we reflect on several important observations, focusing on model behaviour, parameter
influence, and decomposition quality.

Finally, we compare our results with those from related work.

7.1 Overview of Results

Our best model for the classification task achieved an average accuracy of around 65% across
multiple random seeds, with average recall and precision values being roughly similar. However,
a more detailed look at the per-class metrics with a natural test set distribution revealed an
imbalance in performance. The model consistently classified the SR class (class 0) much more
accurately than the AF class (class 1). SR precision was around 88%, and a recall of 62%,
indicating that the model was relatively confident and correct when predicting SR. In contrast,
the AF class suffered from lower precision (averaging around 32%), but still good recall (around
69%), due to frequent false positives and overall weaker separation.

While these results were somewhat lower than we initially hoped for, especially when compared
to some related works, the results are still promising, especially considering the SR classifica-
tion.

For the prediction task, which attempted to predict the risk of future AF based on seemingly
normal sinus rhythms, the best models reached an accuracy of around 59%. While modest,
these results are consistently above chance level (50%), even with limited data. This supports
earlier findings in related works using neural networks that signs of AF can be present in SR, and
shows that our decomposition-based approach was able to extract some of this structure.

These results aren’t ready yet for medical use, and we can name two main reasons for these
weak results. First of all, the data, which was especially a problem for the prediction task, as
there were very few SR rhythms in the dataset that occurred at most one month before an AF
signal from the same patient.

A second issue could be the use of CP decomposition, compared to a complete Block Term De-
composition. A well-defined and properly implemented BTD, which isn’t available yet, could
capture many more relationships between the leads, potentially resulting in better separa-
tion.
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7.2 Key Findings and Interpretation

One of the most notable observations from the classification results was the difficulty in correctly
identifying AF rhythms, considering the difference in results between both classes. A likely
explanation is that SR patterns tend to be more uniform, whereas AF signals are more irregular
and variable across samples, making them harder to generalise.

One of the most important insights we gained during the decomposition and classification
process was the influence of the L2 regularisation parameter. We found that higher values of
this parameter led to better separation between classes in the latent space, as seen in stronger
average correlation patterns in the factor matrices. This makes sense, as L2 regularisation
reduces overfitting by penalising large weights, encouraging the model to focus more on the
overall structure of the signal rather than on sample-specific noise.

However, despite improving correlation, a higher regularisation did not lead to better clas-
sification results. Interestingly, this was the only parameter for which improved correlation
did not translate to higher classification accuracy — something that went against our initial
expectations.

This suggests that strong regularisation helps identify common structures that distinguish the
classes, but these structures may not be distinct enough from each other. In other words, the
extracted patterns may highlight similar or overlapping aspects of the signal, reducing their
usefulness for fine-grained classification. On the other hand, with lower regularisation, the class
separation in terms of correlation may be slightly worse, but the resulting latent patterns are
more diverse and complementary. This increased variety provides richer and more discriminative
information for the classifier, ultimately improving classification performance.

Alongside the increase in regularisation, we also observed a rise in reconstruction error, despite
the improved correlation. This further supports the idea that the latent factors may not have
improved as much as the correlation values initially suggested, indicating that higher correlation
does not necessarily translate to more informative or higher-quality components.

Throughout this work, it became clear that the decomposition was the most decisive step in
the entire pipeline. Without a meaningful latent structure in the factor matrices, the classifiers
struggled to separate the classes, even after extensive tuning. However, once the decomposition
provided a good separation, classification performance improved noticeably. After that, further
optimising the classification models or selecting different ones had only a minor impact, even
simple models like logistic regression performed just as well as more complex ones. This suggests
that most of the actual "learning” happened during the tensor decomposition, not during the
classification stage.

In Fig.[6.5] we even observed that Logistic Regression consistently yielded the best results. This
futher confirms that our features (the samples factor matrix) are linearly separable, meaning
a simple classifier like Logistic Regression is the best choice. This outcome is expected, given
that the x-axis of this matrix does not represent a continuous signal, but rather discrete sample
indices.

As seen in Figure we further noticed that using a smaller rank generally led to higher
average absolute correlations between the latent factors and the labels. This is likely because
with fewer latent factors, the model focuses on capturing the most dominant patterns. As
we increased the rank, additional, less prominent patterns were included, which lowered the
average correlation.

However, despite this drop in average correlation, we saw in Table [6.5] that classification per-
formance actually improved. This suggests that even the lower-correlation latent factors still
carried useful information for the task. The key insight here is that while correlation can be a
helpful indicator of decomposition quality, relying solely on the average correlation across dif-
ferent rank values can be misleading. Extra latent components might individually have weaker
correlation, bringing the average down, but still meaningfully contribute to better classifica-
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tion.

Lastly, one of our earliest insights came from preprocessing. We found that scaling the ECG
signals to a consistent value range across patients was essential. Without it, the decomposition
algorithm failed to identify shared patterns across samples, due to amplitude variation domi-
nating the variance.

Other preprocessing steps, less dominant but also proved useful, were denoising and decimation.
The key insight here was that these steps always improved results, hence they always had to be
included in the pipeline. However, this was only the case when applied with care. When done
too aggressively, the results dropped due to them removing important aspects of the signal.
However, as seen in Fig we can safely apply a decimation factor of 20 and a denoising
threshold of 7.

7.3 Comparison with Related Work

From the related works discussed in Chapter [3] we can only make a fair comparison with studies
that used the same dataset. First, we consider Farly AF Detection Using Pattern Recognition
by Wu et al. |1], outlined in Section Like our classification task, they performed AF
detection using the PTB-XL dataset [2]. However, their methodology differed significantly:
they used only a single ECG lead and applied RR segmentation, resulting in simpler input
data. Using Intrinsic Time-scale Decomposition and three handcrafted signal features, they
achieved an accuracy of 95%, specificity of 96%, and sensitivity of 93%.

Another comparable study is Deep Learning for ECG Classification by Pyakillya et al. [4],
discussed in Section [3:3] They also performed rhythm classification, using a deep learning
approach, and achieved a best validation accuracy of approximately 86%.

Both of these results outperform our classification task, which achieved an accuracy of only
65%. However, our work demonstrates that BTTR is a promising technique, and with further
development, it could become a competitive approach.

For the prediction task, comparison is more difficult, as no related work used the PTB-XL
dataset. Instead, they worked with private hospital data. The first relevant study is AF
Detection on Patients During Sinus Rhythm by Attia et al. [5], discussed in Section which
achieved an accuracy of 79%. Another is AF Detection Using Sinus Rhythm ECGs by Gruwez
et al. [6], reviewed in Section which achieved an accuracy of 78%. Both used similar deep
learning approaches.

Again, these results are higher than ours, where we achieved 59% accuracy in the prediction
task. However, we only had 42 samples in the risk class, which makes the task significantly
more challenging. Despite the lower performance, we showed that AF signs are still present in
SR rhythms, using an alternative and less established approach compared to neural networks,
which further shows the potential of BTTR.
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Chapter 8

Conclusion

This thesis explored how tensor decomposition can be used to extract meaningful latent features
from ECG data for the classification and prediction of atrial fibrillation. While the results did
not outperform state-of-the-art neural networks, the approach provided valuable insights into
how tensor methods can support medical diagnosis.

8.1 Our experiences

At the start, we underestimated the importance of signal preprocessing. We moved too quickly
into decomposition and tried to optimise it, but the results remained disappointing. Because of
this, we misinterpreted several experimental outcomes, assuming certain methods didn’t work,
when in fact the input data was just not prepared well enough. It was only after diving deeper
into preprocessing that the decomposition started to improve. From that point onward, we
could finally begin to explore decomposition strategies in a meaningful way.

Another early limitation was our evaluation strategy. We initially focused only on reconstruction
errors, and at one point even reconstructed the tensor using the learned factor matrices to
compare the original and reconstructed signals visually. However, these signals often weren’t
similar, and we realised that visual similarity is not necessarily a good proxy for useful latent
structure. The approach wasn’t effective and risked misleading conclusions.

Once we added a classifier to the pipeline, performance was still poor, being random guessing.
We tried optimising various models and parameters, but nothing worked. It was only when we
started measuring correlations between the latent factors and the labels that we discovered why:
there was almost no meaningful information in the decomposed features at that stage. Then
we came across correlation metrics, which finally gave us a useful signal to guide optimisation.
It was from this point on that we began to see actual classification performance.

This also further highlighted one of our key takeaways from the project: the decomposition
step was the most decisive in the entire pipeline. Instead of spending too much time tuning
classifiers, we learned that everything depends first on the quality of the features and improving
decomposition had a much bigger impact than anything we did later on in the pipeline.

Looking back, the process itself was just as important as the final results, as some of these
insights and approaches might help future work. This project further taught us how to approach
problems when there is no clear or well-defined path. It required critical thinking, creative
experimentation, and a willingness to go back and question earlier assumptions when there was
no progress.

In the end, while the classification and prediction accuracy may not seem impressive on paper,
the pipeline we developed showed that it is possible to extract meaningful, interpretable struc-
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ture from ECG data using tensor decomposition, without deep neural networks. That alone
is a powerful insight, especially for future research where interpretability, simplicity, or limited
data availability are important constraints.

8.2 Lessons Learned

Technically, I became familiar with tensor decomposition methods and how they can be applied
to waveform data. I also learned how important preprocessing is when working with such
signals, and how even small signal inconsistencies can disrupt an entire pipeline. These were
things I underestimated at first, but now see as essential.

In terms of research design, one of the key lessons was the importance of choosing the right
evaluation metrics. For example, I initially focused on reconstruction error without considering
whether that truly captured the information I needed for classification. It took several failed
experiments to realise that correlation with the labels was a more relevant indicator in this
context.

I also learned how critical it is to think modularly when building a pipeline. Instead of tuning
everything at once, I learned to isolate each step (preprocessing, decomposition, classification)
and test them independently, which saved time and clarified where problems were coming
from.

Finally, I’ve come to see that not everything depends on how high the final accuracy is. Some
of the most valuable parts of this work were the gained insights, even when things didn’t work
as expected.

8.3 Final thoughts

We started this thesis with the research question: "How effective is Block-Term Tensor
Regression in detecting and predicting atrial fibrillation from multi-lead ECG, and
how can its pipeline be optimised for best performance?”

Looking back, we can conclude that for now, Block-Term Tensor Regression is not as effective as
deep neural networks for this task. However, the method shows potential. We have shown that
it is possible to apply this approach to both the detection and prediction of atrial fibrillation
from ECG data, and that it can produce useful results.

One of the main advantages we experienced is that the model offers some level of interpretability
through the decomposition visualisations. While we cannot yet draw concrete conclusions from
these visualisations, they give an idea of what might be possible in the future. Another benefit
is that BTTR seemed to perform reasonably well even with a limited amount of data. For
example, in the prediction task we only had 42 positive samples, but the model still reached an
accuracy of 59%.

In summary, while BTTR does not currently outperform deep learning models in terms of
raw accuracy, it offers useful properties such as interpretability and better performance with
small datasets, while still giving results. This makes it an interesting approach for future
research.

8.4 Future work

Seeing the results in accuracy, recall and precision, especially for our prediction task, it is clear
that there remains significant room for improvement.

First of all, we recommend applying this methodology to a complete Block-Term Decomposition
in the future, once a well-defined implementation becomes available. The same approach can
be reused, as both decomposition techniques are similar in intuition and operation, with BTD
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offering a higher-dimensional representation by capturing more relationships between the tensor
modes.

Furthermore, with regard to the prediction task, future work could explore applying this method
to a clinical dataset within a hospital setting, where a larger number of patients with AF also
have SR rhythms recorded. This would allow for a richer dataset and potentially lead to more
reliable results.

Another possible direction for future work is the use of RR segmentation, which was applied in
several related works. This would allow the model to work with individual heartbeats instead
of the full 10-second ECG segment. One way to do this is to use just one beat per sample,
which simplifies the data and could help focus on beat-specific patterns. Alternatively, RR
segmentation could still be used while keeping multiple beats from the same sample together.
These beats could then be treated as an extra dimension in the input tensor. This might help
structure the data more clearly, as it allows the model to look at separate heartbeats within
the context of the full rhythm, without needing to completely reconstruct the entire 10 seconds
at once.
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