
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

A Multi-Model AI-Driven GUI Framework for Dynamic User Adaptation

Yarne Dirkx
Scriptie ingediend tot het behalen van de graad van master in de informatica

2024
2025

PROMOTOR :

Prof. dr. Kris LUYTEN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

A Multi-Model AI-Driven GUI Framework for Dynamic User Adaptation

Yarne Dirkx
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Kris LUYTEN

Abstract

This thesis presents a multimodal AI-driven GUI framework for dynamic user interface adaptation, en-
abling real-time, personalised accessibility enhancements across platforms such as Flutter, SwiftUI, and
beyond. Designed for the health domain, the framework supports motor-impaired, visually impaired,
and hands free users by integrating touch, keyboard, voice, and gestures. At its core is Smart Intent
Fusion (SIF), a configurable multi-agent architecture powered by large language models (Google Gemini)
that fuses inputs, events, profiles, and interaction history to infer intent and propose targeted adap-
tations (e.g., button enlargement, contrast enhancement, navigation mode switching). The reasoning
combines rule-based logic for predictable, low-latency back-up responses with LLM-driven reasoning for
complex or ambiguous cases. Developer integration is provided through standardised JSON contracts
and a FastAPI backend. A feasibility study across six user profiles and 84 events shows that 97.5% of
suggested changes are accessibility-oriented with high internal coherence (DCI ≈ 0.995). In a balanced
configuration, median latency is 13.2s with 84.5% schema-valid outputs and 55% profile-action alignment;
a heavier configuration raises schema validity to 100% and alignment to 61%, at 36.1s median latency.
Corrective responses are near-perfect for common motor/voice issues (missed taps, slider overshoots,
voice commands) and weaker for gestures, indicating a clear path for improvement. The results demon-
strate practical, accessibility-focused adaptation with measurable trade-offs and lay groundwork for future
systems that can autonomously refactor UI code for richer, context-aware personalisation.

1

2

Acknowledgments

I would like to express my deepest appreciation to all those who have supported and guided me throughout
the course of my master’s thesis.

First and foremost, I am sincerely grateful to Prof. Dr. Kris Luyten, my thesis supervisor, for his
invaluable guidance, constructive feedback, practical tips, and continuous support.

My heartfelt gratitude extends to my family, especially my sister Phaedra, my brother-in-law Dennis,
and my parents for their unwavering support, patience, and help with proofreading.

I would also like to thank my fellow students for their encouragement, collaboration, and support during
this journey. Special thanks go to my two dogs, Tobias and Casper, whose company during countless
late-night coding sessions, and gentle reminders to take breaks helped keep me grounded.

Finally, I am thankful to my friends for their motivation, belief in my abilities, and for making this
challenging journey a rewarding one.

This work would not have been possible without the contribution and support of all these people, to
whom I am deeply grateful.

3

4

Nederlandse Samenvatting

Inleiding

Grafische gebruikersinterfaces (GUI’s) vormen de kern van hoe we dagelijks met technologie omgaan,
van smartphones tot websites en smartwatches. Deze interfaces maken complexe taken toegankelijk
door visuele elementen zoals knoppen, iconen en menu’s te gebruiken, in plaats van tekstgebaseerde
commando’s. Vóór de opkomst van GUI’s in de jaren 1980 waren command-line interfaces (CLI’s)
dominant, wat computing beperkte tot experts die commando’s moesten memoriseren. GUI’s hebben dit
veranderd door visuele metaforen te introduceren, waardoor technologie beschikbaar werd voor het brede
publiek. Ze vertalen ingewikkelde computertaken naar intüıtieve, visuele acties.

In de loop der jaren zijn GUI’s geëvolueerd van het klassieke WIMP-model (windows, icons, menus,
pointers) naar multimodale systemen die touch, stem, gebaren en zelfs ruimtelijke interacties in augmented
reality (AR) en virtual reality (VR) omvatten. Dit biedt rijkere en natuurlijkere interacties. Toch
blijven de meeste GUI’s statisch: ze volgen een one-size-fits-all aanpak, met dezelfde lay-out, gedrag
en visuele elementen voor alle gebruikers, ongeacht hun behoeften of context. Dit creëert barrières
in een diverse wereld, vooral voor gebruikers met toegankelijkheidsuitdagingen. Mensen met visuele
beperkingen worstelen met laag contrast of gebrek aan screenreader-ondersteuning, terwijl motorisch
beperkte gebruikers moeite hebben met kleine knoppen of precieze taps. Handsfree gebruikers, zoals in
medische contexten, hebben alternatieve invoermethoden nodig.

Gebruikers interacteren bovendien in variërende omgevingen – lawaaierig, felverlicht of onderweg – wat
interactie verder compliceert. Apparaten variëren in grootte en capaciteit, van smartwatches tot desktops,
maar toegankelijkheidsfuncties zijn vaak inconsistent. Dit benadrukt een kernuitdaging: hoe ontwerpen
we GUI’s die dynamisch aanpassen aan individuele toegankelijkheidsbehoeften en context, voor inclusieve
en efficiënte interactie?

Adaptieve gebruikersinterfaces (UI’s) passen zich dynamisch aan aan gebruikersbehoeften en contextuele
factoren. Ze wijzigen lay-out, gedrag of uiterlijk op basis van voorkeuren, vaardigheden en omstandighe-
den. Door multimodale invoer zoals touch, stem, gebaren en gaze te verwerken, bieden ze geperson-
aliseerde, inclusieve ervaringen, vooral voor diverse gebruikersgroepen. Een ’intelligente’ interface inter-
preteert complexe gedragingen autonoom en leert van interacties in real-time. Kunstmatige intelligentie
(AI), inclusief machine learning en grote taalmodellen (LLM’s), maakt dit mogelijk door invoer, UI-
context en gebruikersdata te verwerken.

LLM’s zoals GPT hebben natuurlijke taalverwerking gerevolutioneerd. Ze begrijpen context, leiden
intentie af en genereren menselijke reacties, ideaal voor multimodale interpretatie. In adaptieve UI’s
fungeren LLM’s als controllers die interacties vertalen naar aanpassingen, zoals het vergroten van knoppen
op basis van een stemcommando of aarzeling in gebaren. Ze kunnen zelfs UI-elementen genereren door
de interface als API te behandelen.

Ondanks onderzoek en technologie blijven adaptieve UI’s zeldzaam door implementatiecomplexiteit en
gebrek aan frameworks. Dit motiveerde deze scriptie, gëınspireerd op ideeën om UI’s als API’s te be-
handelen, bestuurd door intelligente modellen. LLM’s bieden potentieel, maar hebben uitdagingen zoals
latency, hallucinaties en gebrek aan specialisatie voor GUI-taken. Deze scriptie ziet LLM’s als contextbe-
wuste assistenten die, met begeleiding, UI-aanpassingen verbeteren.

5

6

Probleemstelling en Onderzoeksdoelen

De meeste applicaties zijn statisch en passen zich niet aan aan veranderende contexten of beperkingen.
Huidige adaptaties zijn cosmetisch, zoals aanpassing aan schermgrootte, maar pakken niet de diepere
uitdagingen aan van intentie, cognitieve staat of fysieke limieten in real-time. Het ontwerpen van adap-
tieve UI’s is ongewoon door technische moeilijkheden in modellering en gebrek aan frameworks. Real-
world interactie is chaotisch: kleine variaties zoals een miss-tap of omgevingsruis leiden tot divergenties,
wat regelgebaseerd ontwerp fragiel maakt.

Dit vereist systemen die nuances interpreteren, geschikt voor AI zoals LLM’s. Bestaande frameworks
integreren zulke modellen zelden voor real-time adaptatie, wat een kloof creëert tussen potentieel en
praktijk. Het primaire doel is een modulair, multimodaal AI-framework te ontwerpen, implementeren
en valideren voor dynamische UI-aanpassing, met focus op toegankelijkheid. Het gaat voorbij statische
designs met real-time, contextbewuste aanpassingen via hybride redenering.

Specifieke doelen:

1. Modulaire cross-platform architectuur ontwikkelen voor events over Flutter, SwiftUI en meer.

2. Multimodale invoerfuzie implementeren (touch, stem, gebaren).

3. Smart Intent Fusion (SIF) integreren: hybride engine voor aanpassingen.

4. Toegankelijkheidsgerichte aanpassingen leveren (vergroten, contrast, modi).

5. Ontwikkelaarvriendelijk integratiepad bieden via een soort basic SDK.

6. Performance evalueren via proof-of-concept en metrics.

Gerelateerd Werk

Multimodaal AI in gebruikersinterfaces (UI’s) omvat een evolutie van pointing devices, van traditionele
muisinteracties naar touch-gebaseerde systemen op mobiele apparaten, die precisie en intüıtie verbeteren
maar uitdagingen stellen voor gebruikers met beperkingen. Steminterfaces, zoals Siri en Alexa, intro-
duceren natuurlijke taalverwerking (NLP) voor handsfree bediening, terwijl gebaren en gaze-tracking
– gëıllustreerd door Kinect voor lichaamstracking en eye-tracking tools voor cursorcontrole – rijkere,
niet-contact interacties mogelijk maken, vooral in AR/VR-contexten.

Adaptieve GUI’s richten zich primair op toegankelijkheid, met systemen zoals SUPPLE (dat constraint-
optimalisatie gebruikt voor motorische calibratie en lay-outgeneratie) en GUIDe (dat gaze combineert met
keyboard of muis voor nauwkeurige targeting en scrolling). Uitdagingen liggen in het handhaven van con-
sistentie over modaliteiten, waar variërende inputs (bijv. touch vs. stem) kunnen leiden tot inconsistente
ervaringen, en in het balanceren van automatisering zonder gebruikerscontrole te verliezen.

Klassieke adaptieve technieken includeren responsive layouts, die media queries en breakpoints gebruiken
voor apparaatadaptatie (bijv. aanpassing aan schermgrootte en oriëntatie), en context-aware design
dat sensoren (locatie, licht, beweging) integreert voor omgevingsaanpassingen, zoals thema-switches in
donkere modi. Programmeerbare UI’s en frameworks bieden meer dynamiek: Reflow analyseert pixels
voor runtime lay-outwijzigingen, UICoder genereert code met LLM’s voor nieuwe UI-creatie, en RL-
gebaseerde adaptatie (reinforcement learning) leert van interacties om lay-outs en content te optimalis-
eren, vaak met gespecialiseerde hardware.

Gebruikersprofielgebaseerde UI’s, zoals XML-gebaseerde runtime systemen, maken dynamische beschri-
jvingen mogelijk, aangepast aan mobiele en embedded devices voor personalisatie op basis van voorkeuren
en capaciteiten. Multimodale fusie omvat architecturen zoals vroeg (feature-level) of laat (semantisch-
level) fusie, met eventmodellen die inputs standaardiseren voor coherente verwerking.

LLM’s als UI-controllers transformeren interfaces door ze als API’s te behandelen, waar modellen in-
tentie afleiden en acties uitvoeren; agents zoals ReAct (redeneren en handelen in loops) en AutoGPT
(autonome taakuitvoering) voegen autonomie toe. In gezondheidstoepassingen tonen chatbots voor cog-
nitieve gedragstherapie (bijv. Woebot voor depressie) of apps voor rugpijnbehandeling potentieel voor
gepersonaliseerde, multimodale zorg, met integratie van stem en gebaren voor therapie-ondersteuning.
Dit werk bouwt hierop door multimodale fusie te combineren met hybride AI (regels + LLM’s) voor

7

real-time, toegankelijkheidsgerichte adaptatie, overbruggend gaps in bestaande systemen zoals statische
generatie of beperkte modaliteiten.

Systeemontwerp en Architectuur

Het framework is opgebouwd rond een drie-laagse architectuur die modulariteit en schaalbaarheid prior-
iteert, met een duidelijke scheiding van verantwoordelijkheden om uitbreidbaarheid te garanderen. De
lagen zijn: de Frontend laag voor directe UI-interactie, de Input Adapter laag voor multimodale invo-
erverwerking, en de SIF Backend laag voor intentiefusie en adaptatiebeslissingen. Het ontwerp focust
primair op het gezondheidsdomein, waar het ondersteunt gebruikers met motorische beperkingen (bijv.
tremors of coördinatieproblemen), visuele beperkingen (bijv. laag zicht of kleurenblindheid) en hands-
free behoeften (bijv. in revalidatie of mobiele contexten), door aanpassingen te bieden die inclusiviteit
bevorderen zonder de kernfunctionaliteit te verstoren.

De Frontend laag, gëımplementeerd in frameworks zoals Flutter of SwiftUI, beheert de interface-elementen
zoals knoppen, sliders, toggles en navigatiecomponenten. Het ondersteunt aanpassingsniveaus op visueel
vlak (bijv. kleurcontrast verhogen of fonts vergroten) en interactief vlak (bijv. invoermodi schakelen
van touch naar stem). Deze laag vangt ruwe interactiegebeurtenissen op en past aanpassingen toe met
soepele animaties voor een naadloze gebruikerservaring, terwijl het ook profielinitialisatie handhabt via
een editor voor persoonlijke instellingen.

De Input Adapter laag fungeert als intermediair en standaardiseert diverse invoermodaliteiten – touch
(taps en swipes), keyboard (toetsaanslagen), stem (spraakherkenning via API’s) en gebaren (via sensoren
zoals accelerometer) – in een uniform JSON-formaat met velden zoals type, timestamp en confidence-
score. Dit zorgt voor consistente verwerking, onafhankelijk van het platform. Transport wordt beheerd
via WebSocket voor real-time, lage-latency events (ideaal voor continue interactie) en HTTP voor batch-
operaties zoals profielupdates, met automatische reconnects voor robuustheid.

De SIF Backend laag integreert alles door data te fuseren: het combineert gestandaardiseerde events
met profielcontext using regelgebaseerde logica voor snelle, deterministische reacties (bijv. automatis-
che knopvergroting bij detectie van een miss-tap) en LLM-redenering voor complexere gevallen (bijv.
ambiguë stemcommando’s interpreteren). Gebruikersprofielen modelleren beperkingen (impairments),
voorkeuren (bijv. hoge contrastmodus) en interactiegeschiedenis (logs van eerdere events) voor diep-
gaande personalisatie, opgeslagen in een database zoals MongoDB voor persistentie.

Dynamische aanpassingsmechanismen volgen een pipeline: inkomende events worden verwerkt, intentie
afgeleid (bijv. via heatmap-analyse van tap-patronen), en aanpassingen gegenereerd (bijv. knopvergroting
met factor 1.5 of contrastverhoging naar 4:1 ratio, in lijn met WCAG-richtlijnen). Een continue leerlus
integreert feedback door geschiedenis te analyseren en modellen te verfijnen, zodat aanpassingen evolueren
(bijv. progressieve optimalisatie bij herhaalde fouten). Ontwerpoverwegingen benadrukken modulariteit
(losse koppeling voor eenvoudige uitbreidingen, bijv. nieuwe modaliteiten toevoegen), schaalbaarheid
(asynchrone verwerking voor hoge loads) en privacy (data-redactie op device-niveau, minimale logging
van gevoelige inputs), met toekomstige extensies naar VR/AR via Unity. Dit zorgt voor een robuust,
developer-vriendelijk systeem dat statische UI’s omzet in adaptieve, contextbewuste interfaces.

Smart Intent Fusion (SIF)

Smart Intent Fusion (SIF) vormt het hart van het framework en is verantwoordelijk voor het intelligent
combineren van multimodale invoer met gebruikerscontext om intenties af te leiden en gepersonaliseerde
UI-aanpassingen voor te stellen. In essentie is SIF een geavanceerde redeneerengine die multimodale
signalen – zoals touch-events, stemcommando’s, gebaren en toetsaanslagen – fuseert met profielgegevens,
interactiegeschiedenis en UI-context. Dit resulteert in real-time aanpassingen die de toegankelijkheid
verbeteren, zoals het vergroten van knoppen voor motorisch beperkte gebruikers of het verhogen van
contrast voor visueel beperkten. SIF is ontworpen als een multi-agent architectuur, aangedreven door
grote taalmodellen (LLM’s) via de Google Gemini API, maar met een hybride aanpak om de beperkingen
van LLM’s te compenseren.

Theoretisch is SIF geworteld in multimodale fusieprincipes uit de HCI-literatuur. Multimodale fusie
kan vroeg (op feature-niveau, bijv. ruwe data van sensoren combineren) of laat (op semantisch niveau,

8

bijv. gëınterpreteerde intenties integreren) gebeuren. SIF kiest voor een late fusie om complexiteit te be-
heren: invoer wordt eerst gestandaardiseerd in een uniforme JSON-structuur voordat ze worden verwerkt.
Intentie-inferentie bouwt op modellen zoals ReAct (Reasoning and Acting), waarbij LLM’s redeneren over
context om acties te voorspellen. De hybride aanpak – regelgebaseerde logica voor eenvoudige, voorspel-
bare gevallen en LLM-redenering voor ambigue of complexe scenario’s – zorgt voor betrouwbaarheid.
Regels bieden lage latency (milliseconden), terwijl LLM’s diepere inzichten leveren, maar met mogeli-
jke vertraging (seconden). Dit hybride model voorkomt over-reliance op LLM’s, die vatbaar zijn voor
hallucinaties (fictieve outputs) of inconsistentie.

Gebruikersprofielen spelen een cruciale rol in SIF en structureren behoeften op een gestandaardiseerde
manier. Een profiel bevat velden zoals ”impairments” (bijv. ”motor” voor tremors, ”visual” voor laag
zicht), ”preferences” (bijv. voorkeur voor grote fonts of stemfeedback) en ”history” (een log van eerdere
interacties). Deze profielen bëınvloeden beslissingen door als context te dienen: voor een motorisch
beperkt profiel prioriteert SIF aanpassingen zoals knopvergroting of tremor-correctie. Leren van inter-
actiegeschiedenis gebeurt continu; SIF analyseert patronen, zoals herhaalde miss-taps, om toekomstige
aanpassingen te verfijnen. Dit creëert een feedbacklus waarbij het systeem personaliseert op basis van
evoluerende data, in lijn met ability-based design principes uit HCI, waar interfaces zich aanpassen aan
individuele capaciteiten in plaats van een standaard te forceren.

De modellering van multimodale invoerfuzie begint met standaardisatie: ruwe events (bijv. een touch-
tap met coördinaten en timestamp) worden omgezet in een JSON-formaat met velden zoals ”type”
(touch/voice/gesture), ”confidence” (een score van 0-1 voor betrouwbaarheid, bijv. spraakherkenning
accuracy) en ”timestamp”. Timing is essentieel; SIF gebruikt vensters (bijv. 500ms) om synchrone
inputs te groeperen, zoals een stemcommando tijdens een gebaar. Confidence-scores wegen inputs: een
lage confidence-touch (bijv. door tremor) triggert extra LLM-redenering. LLM’s worden ingezet voor
fusiebeslissingen, bijvoorbeeld door prompts zoals ”Gegeven deze events en profiel, leid intentie af en stel
aanpassingen voor”, wat resulteert in outputs zoals {”action”: ”enlarge button”, ”target”: ”submit”,
”value”: 1.5}.

Regelgebaseerde logica handelt eenvoudige gevallen: bijv. als een miss-tap wordt gedetecteerd (afstand
> threshold), vergroot de knop automatisch. Dit is deterministic en laag-latency, ideaal voor real-time.
Voor ambigüıteit schakelt SIF naar LLM’s, die context interpreteren (bijv. ”gebruiker aarzelt bij slider –
stel voice-control voor”). Heatmap-analyse voegt toe door interactiepatronen te visualiseren: herhaalde
taps rond een knop genereren een heatmap, die SIF gebruikt om hotspots te identificeren en lay-outs aan
te passen.

Multi-Agent SIF (MA-SIF) verfijnt dit door taken te splitsen in gespecialiseerde agents: de UI Agent
focust op visuele aanpassingen (bijv. contrast, lay-out), de Geometry Agent op ruimtelijke veranderingen
(bijv. knopgrootte, positie), en de Input Agent op modaliteitsswitches (bijv. van touch naar voice). Elke
agent ontvangt dezelfde input maar met een specifieke prompt, en genereert onafhankelijke voorstellen.
Een Validator Agent reconcileert outputs: het controleert op conflicten (bijv. overlappende acties),
valideert tegen een strikt JSON-schema (bijv. ”value” moet numeriek zijn binnen ranges), en mergeert
tot een finale set. MA-SIF is configureerbaar via een JSON-file, waar agents’ prompts, toegestane acties en
temperaturen (creativiteitsparameter, laag voor conservatief) worden gedefinieerd. Bijvoorbeeld: temper-
ature=0.2 voor deterministische outputs, thinking budget=500 tokens om redenering te beperken.

Prompt engineering is cruciaal voor LLM-prestaties. Principes includeren expliciete instructies (”Wees
conservatief, hallucineer geen targets”), gestructureerde formats (bijv. ”Output als JSON: actions: [type,
target, value]”), en ambigüıteit vermijden (geen disjuncties zoals ”A of B” die LLM’s verkeerd inter-
preteren). Strikte schemas dwingen validiteit af: ongeldige outputs worden verworpen en fallbacken
naar regels. Metrics evalueren SIF: latency (mediaan 13s voor MA-SIF), schema-validiteit (84.5% in
tests), correctheid (actie-alignment met profiel, 97.5% toegankelijkheidsgericht), en personalisatie (bijv.
% aanpassingen uniek per profiel).

Beperkingen van LLM-integratie zijn significant: latency door API-calls (seconden vs. ms voor regels),
hallucinaties (bijv. niet-bestaande targets), en tokenlimits (contextgrootte beperkt geschiedenis). Mogeli-
jke oplossingen: hybride fallbacks (regels eerst, LLM asynchroon), validatoren voor filtering, en caching
van bijvoorbeeld veelvoorkomende prompts. LLM-selectie (Gemini vs. GPT) balanceert kosten, snel-
heid en multimodaliteit. Toekomstige richtingen: autonome on-device agents met fine-tuned modellen
(bijv. getraind op UI-logs en WCAG-richtlijnen), integratie met RL voor leren van feedback, en vi-
suele UI-analyse (vision models voor screenshot-parsing) om context te verrijken zonder metadata. SIF

9

transformeert statische UI’s naar dynamische, intentiebewuste systemen, met een balans tussen snelheid,
intelligentie en betrouwbaarheid, cruciaal voor toegankelijkheidsgerichte toepassingen.

Implementatie van het Framework

De implementatie van het framework is gerealiseerd als een proof-of-concept: een Adaptieve Smart Home
Controller, een eenvoudige app die slimme apparaten (lamp, thermostaat, slot) beheert en dynamisch
aanpast op basis van gebruikersevents. Dit demonstreert de end-to-end workflow en portability over
platforms. De stack omvat Flutter voor de frontend (Dart-based, cross-platform UI), een Dart-adapter
voor inputverwerking, en een Python-backend met FastAPI voor SIF-logica. Ontwikkelomgeving: Flutter
SDK voor UI, Dart voor adapter, Python 3 met libraries zoals FastAPI, MongoDB-driver en Google
Gemini API-client.

De Frontend in Flutter beheert de UI-staat en interacties. Het bestaat uit scrollbare kaarten met min-
imalistische controls (toggle, slider, knop) en een mock-event rij voor testen (bijv. ”Miss Tap”, ”Voice
Command”). Events worden vastgelegd (bijv. tap-coördinaten, stemtekst) en doorgestuurd naar de
adapter. Aanpassingen worden toegepast via een state-model: bij ontvangst van JSON-outputs (bijv.
{”action”: ”enlarge button”, ”target”: ”submit”, ”value”: 1.5}) update de UI dynamisch met animaties
(bijv. AnimatedContainer voor soepele resizing). State wordt beheerd met Provider voor reactiviteit, en
profielen bootstrappen via een editor-scherm waar gebruikers impairments selecteren. Voor responsive-
ness: een loading-indicator (roterende gradient) tijdens backend-wachting, en partial results (regels eerst,
LLM later).

De Input Adapter in Dart fungeert als brug: het serialiseert ruwe events naar JSON, beheert trans-
port (WebSocket voor real-time events, HTTP voor profielbeheer), en callbackt aanpassingen terug naar
de frontend. Klasse-overzicht: AdaptiveUIAdapter met methods zoals sendEvent() en onAdaptation-
Received(). Interne representaties: Event (type, data, timestamp), Adaptation (action, target, value),
UserProfile (impairments, preferences). Extensibiliteit: nieuwe modaliteiten (bijv. gaze) toevoegen door
Event-subklassen. WebSocket-lifecycle includes reconnect-backoff voor robuustheid.

De SIF Backend in Python gebruikt FastAPI voor endpoints (/events via WebSocket, /profiles via HTTP)
en MongoDB voor persistentie (geschiedenis opslaan per user id). SIF/MA-SIF wordt gëımplementeerd
als async functions: events verrijken met profiel/geschiedenis, regels toepassen (bijv. if miss-tap: enlarge),
dan LLM-invocatie (Gemini met prompts uit config). Structured outputs via JSON-schemas, guardrails
tegen invaliditeit (validator parseert en filtert). Regel-fallbacks: hardcoded triggers (bijv. overshoot-
slider → voice-mode). Heatmap-analyse: accumuleer taps in een grid, detecteer clusters voor lay-out
shifts. Latency-handling: timeouts (5s), partial results (stuur regels direct). Security: CORS voor
frontend-origin, geen auth in prototype.

Profielen worden bootstrapped (default laden) en bewerkt via HTTP, met opslag in MongoDB voor
persistentie. Dynamische mechanismen: applyAdaptations() mapped acties naar widgets (bijv. en-
large → scale factor), met animaties voor UX. Conflicten: prioriteer (bijv. geometry > UI), onbekende
acties negeren. Real-time voorbeeld: miss-tap → regel-vergroting + LLM-suggestie (contrast boost),
toegepast na 13s mediaan. Backend-injectie interface (web-app) simuleert events/profielen, visualiseert
responses en geschiedenis voor debugging. Cross-platform voorbeeld in SwiftUI: minimal UI met state-
mapping, adapter via URLSession/WebSocket, events injecteren, toont portability met dezelfde JSON-
contracts.

Ontwerpbeslissingen benadrukken modulariteit (losse koppeling voor swaps), WebSocket voor lage-latency
events (vs. HTTP batch), MongoDB voor flexibele schema’s (JSON-docs), en hybride redenering (regels
voor basis, MA-SIF voor diepte). Uitdagingen: LLM-consistentie opgelost met validatoren en prompts;
performance met caching en batching; beveiliging met CORS en toekomstige auth (JWT). Testen met
incomplete modaliteiten via mocks; privacy via on-device redactie.

Deze implementatie bewijst de haalbaarheid: een schaalbaar, developer-vriendelijk framework dat statis-
che UI’s omzet in adaptieve, toegankelijke systemen, met focus op gezondheidstoepassingen.

Haalbaarheidsstudie

De evaluatie volgt een haalbaarheidsstudie om te verifiëren of de multimodale AI-gedreven adaptatiepi-
jplijn end-to-end werkt onder realistische interactiesporen en of dit nuttig is voor toegankelijkheid. Zes
uiteenlopende profielen werden gebruikt (motorisch, visueel, handsfree), elk met twee opeenvolgende runs

10

van zeven events (totaal 84): miss tap, slider miss, voice en gesture. Dit bootst real-world gebruik
na door directe fouten te combineren met een groeiende geschiedenis, zodat de tweede run voortbouwt
op de eerste voor contextueel leren.

De MA-SIF-configuratie (multi-agent, gebalanceerde instellingen) is getoetst op kernmetrics: schema-
validiteit (84,52% van de responsen voldoet aan het strikte JSON-schema; 100% passeert via de Valida-
tor), toegankelijkheidsaandeel (97,51% van alle acties is expliciet op toegankelijkheid gericht), en interne
samenhang (DCI ≈ 0,995). Latency in deze configuratie heeft een mediaan van 13,19 s; regels leveren
directe feedback, terwijl LLM-adaptaties asynchroon binnenkomen. Qua geschiktheid per eventtype is
ERA zeer hoog voor motor-gerelateerde fouten (miss tap en slider miss beide 100,00%), hoog voor
voice (97,22%) en laag voor gesture (8,33%). Per profiel varieert schema-validiteit van 71,43% (P3,
handsfree) tot 100,00% (P5, visueel+motor).

De discussie benadrukt sterke personalisatie – aanpassingen evolueren met geschiedenis (bijv. herhaalde
miss-taps leiden tot progressieve vergrotingen) – en tegelijk de beperkingen van de synthetische opzet:
geen echte gebruikers betekent beperkte gedragsvariatie en geen subjectieve feedback; latency is merk-
baar in snelle interacties. Conclusie: het systeem is haalbaar voor toegankelijkheidsverbetering met
hoge validiteit en alignment, maar vraagt vervolgwerk via gebruikersstudies en gerichte optimalisatie van
prompts, validatorbeleid en fallbacks.

Discussie en Toekomstig Werk

De implicaties reiken tot inclusieve HCI: statische interfaces verschuiven naar dynamische systemen die
zich tijdens gebruik aanpassen aan uiteenlopende behoeften, met duidelijke relevantie voor gezondheid-
scontexten (bijv. revalidatie-apps of stemgestuurde tools). Belangrijkste bijdragen zijn een modulaire
drie-laagse architectuur (Frontend, Input Adapter, SIF Backend), een hybride redeneringskern (regels +
multi-agent LLM’s met Validator) en een focus op concrete toegankelijkheidsaanpassingen (knopvergrot-
ing, contrast, moduswissels) via ontwikkelaarsvriendelijke JSON-contracten.

In vergelijking met gerelateerd werk onderscheidt dit framework zich door multimodale fusie en runtime-
adaptatie: t.o.v. SUPPLE (compile-time layout-optimalisatie met calibratie) biedt het runtime-fusie van
signalen; t.o.v. Reflow (pixel-gebaseerde layout) voegt het semantische intentieredenering toe; UICoder
(LLM-codegeneratie) werkt compile-time, terwijl dit werk bestaande live UI’s aanpast; RL-gebaseerde
systemen vragen vaak gespecialiseerde hardware en langere training.

Toekomstig werk omvat een gebruikersstudie met 12–18 deelnemers (4–6 per cluster) in een within-
subjects design (regels-only vs. regels+MA-SIF), met SUS, NASA-TLX, foutenpercentages en taaktij-
den in smart home-scenario’s met gëınduceerde beperkingen. Verdere stappen zijn overlays/OS-hooks
voor retrofit zonder codewijzigingen, een ontwikkelaars-SDK (Flutter/SwiftUI/Unity) met debug-tools
en WCAG-templates, en een UI-analyzer die widget trees of screenshots semantisch begrijpt (vision-
modellen) om context te verrijken. Uitbreiding van input omvat gaze-tracking, geavanceerde handtracking
en BCI. Autonome agents kunnen prompts en beleid dynamisch bijsturen en zichzelf valideren; een gespe-
cialiseerd, op logs en WCAG getraind on-device model verlaagt latency en verbetert privacy. Langeter-
mijn: integratie van RL voor continue optimalisatie met dual-mode adaptatie (compile-time defaults +
runtime tweaks).

Conclusie

Dit werk ontwikkelt een framework voor (nagenoeg) real-time multimodale UI-adaptatie met een sterke
toegankelijkheidsfocus. Smart Intent Fusion (SIF) combineert deterministische regels met LLM-gedreven
redenering in een multi-agent opzet met Validator en levert betrouwbare, contextbewuste aanpassingen
(bijv. elementen vergroten of naar stemmodus schakelen) binnen een modulaire, platformoverschrijdende
architectuur.

Bijdragen omvatten gestandaardiseerde JSON-contracten, ontwikkelaarsvriendelijke integratie en een hy-
bride engine die snelheid (regels, snelle paden) en intelligentie (LLM’s + Validator) in balans brengt.
Beperkingen zijn afhankelijkheid van externe LLM-API’s, een synthetische evaluatie (geen veldstudie) en
merkbare latency in multi-agent flows (mediaan 13,19 s). De evaluatie bevestigt haalbaarheid: 84,52%
schema-validiteit, 97,51% toegankelijkheidsgerichte acties en hoge interne samenhang (DCI ≈ 0,995) over

11

84 events en zes profielen; motor- en voice-cases scoren zeer hoog, terwijl gebaren de grootste verbetermo-
gelijkheid vormen. Een regels-only aanpak presteert niet beter, maar een rule fast path is praktisch (ca.
86% van de events heeft minstens één canonieke correctie): emit die onmiddellijk en laat MA-SIF + Val-
idator de volledige, profielbewuste set consolideren. Daarmee vormt dit werk een solide basis voor verdere
validatie met gebruikers en voor uitbreiding richting UI-bewuste context en on-device redenering.

12

Contents

1 Introduction 21
1.1 Background and Motivation . 21
1.2 Problem Statement . 22
1.3 Research Objectives . 23
1.4 Thesis Structure . 24

2 Related Work 25
2.1 Multimodal AI in User Interfaces . 25

2.1.1 Pointing Devices and Touch Interfaces . 25
2.1.2 Voice-Driven Interfaces . 26
2.1.3 Gesture and Gaze Integration . 26

2.2 Adaptive GUIs Across Modalities and Platforms . 26
2.2.1 Accessibility-Focused Adaptive GUIs (Desktop & Mobile) 27
2.2.2 Design Challenges for Adaptive GUIs Across Modalities 27

2.3 Classical Adaptive UI Techniques . 27
2.3.1 Responsive Layouts . 28
2.3.2 Context-Aware Design . 28

2.4 Programmable UIs . 28
2.4.1 Reflow . 28
2.4.2 UICoder . 29
2.4.3 User Interface Adaptation using Reinforcement Learning 29

2.5 User Profile built UIs . 30
2.5.1 XML-Based Runtime UI Systems . 30

2.6 Multimodal Fusion and Input Event Modeling . 31
2.6.1 Fusion Architectures . 31
2.6.2 Event Abstraction Models . 31

2.7 LLMs as UI Controllers . 32
2.7.1 Turning UIs into APIs . 32
2.7.2 Agents . 32

2.8 Health and Accessibility Applications . 33

3 System Design and Architecture 35
3.1 Introduction to System Design . 35
3.2 Overview of the System Architecture . 35

3.2.1 Accessibility Focus and Target User Groups . 37
3.2.2 Accessibility Grounding and Adaptation Rationale (WCAG 2.1/2.2) 38

3.3 Frontend Layer: UI Design and Interaction . 38
3.3.1 Interface Elements . 38
3.3.2 Adaptation Levels . 39

3.4 Input Adapter Layer: Multimodal Input Processing . 39
3.5 SIF Backend Layer: Smart Intent Fusion (SIF) . 40
3.6 User Profiles and Context Modeling . 41
3.7 Dynamic Adaptation Mechanisms . 41

3.7.1 Adaptation Pipeline . 41
3.7.2 Supported Adaptation Actions . 42
3.7.3 Continuous Learning and Feedback Loop . 42

13

14 CONTENTS

3.7.4 Design Considerations . 42
3.8 Chapter Summary . 42

4 Smart Intent Fusion (SIF) 45
4.1 Introduction to Smart Intent Fusion . 45
4.2 Theoretical Foundations of Smart Intent Fusion . 46

4.2.1 Multimodal Fusion . 47
4.2.2 Intent Inference . 47
4.2.3 Why Hybrid Works Best . 48
4.2.4 Connection to Accessibility . 48

4.3 User Profile and Context Integration . 48
4.3.1 User Profiles . 48
4.3.2 User Profile Structure . 49
4.3.3 How Profiles Affect Decisions . 49
4.3.4 Continuous Learning from History . 50
4.3.5 Role in Accessibility . 50

4.4 Modeling Multimodal Input Fusion . 51
4.4.1 Event Standardisation . 52
4.4.2 Timing and Confidence . 52
4.4.3 LLM Reasoning in Fusion Decisions . 53

4.5 Rule-Based Logic and LLM-Driven Adaptation . 53
4.5.1 Rule-Based Logic . 53
4.5.2 LLM-Driven Reasoning . 54
4.5.3 Hybrid Approach in SIF . 54
4.5.4 Heatmap Analysis . 55

4.6 Multi-Agent Smart Intent Fusion (MA-SIF) . 55
4.6.1 Why Multiple Agents? . 55
4.6.2 Agent Roles . 55
4.6.3 Adaptation Flow . 56
4.6.4 Dynamic Configuration . 57
4.6.5 Temperature and Thinking Budget . 58
4.6.6 Example in Action . 58
4.6.7 Benefits of the Multi-Agent Approach . 59

4.7 Prompt Engineering for LLMs in SIF . 59
4.7.1 LLM Prompt Design Principles . 59
4.7.2 Prompt Structure from sif config.json . 60
4.7.3 Disjunction Ambiguity in LLM Interpretation . 60
4.7.4 Balancing Model Parameters . 61
4.7.5 Avoiding Hallucinations and Bad Values . 61
4.7.6 Importance of a Strict JSON Schema . 61

4.8 Performance and Evaluation Metrics for AI Logic . 62
4.9 Limitations and Solutions of LLM Integration . 65

4.9.1 LLM selection . 65
4.9.2 Reliability and Latency Constraints . 65
4.9.3 Hallucinations and Invalid Output . 65
4.9.4 Token Limits and Context Size . 66
4.9.5 Validator Complexity . 66
4.9.6 Dependency on External APIs . 66

4.10 Future Directions for AI-Driven Adaptation . 66
4.11 Chapter Summary . 67

5 An Adaptive Multimodal GUI Framework using LLMs 69
5.1 Introduction to an Adaptive Smart Home Controller . 69
5.2 Development Environment . 70
5.3 Frontend (Flutter): Adaptive Smart Home Controller . 70

5.3.1 Responsibilities & Data Flow . 71
5.3.2 UI Composition & State Model . 71
5.3.3 Event & Adaptation Contract . 72
5.3.4 Responsiveness & Feedback . 73

CONTENTS 15

5.3.5 Profile Bootstrap & Editing . 73
5.3.6 Testing Harness: Mock Events & Input Capture 74
5.3.7 Summary . 74

5.4 Input Adapter (Dart): Transport, Serialization & Adaptation Callback 75
5.4.1 Class Overview . 75
5.4.2 Internal Representations of Event, Adaptation and User Profiles 75
5.4.3 Transport & Profile Management . 76
5.4.4 Extensibility Example . 77
5.4.5 Summary . 77

5.5 SIF Backend Layer: Implementation of Adaptation Logic 78
5.5.1 Webserver layout and endpoints . 78
5.5.2 Data persistence and history management . 78
5.5.3 Smart Intent Fusion and MA-SIF . 78
5.5.4 LLM invocation (Gemini) . 79
5.5.5 Structured outputs and guardrails . 80
5.5.6 Rule-based fallback and resilience . 80
5.5.7 Heatmap Analysis . 80
5.5.8 Latency, partial results, and error handling . 81
5.5.9 Security and CORS considerations . 81
5.5.10 Summary . 81

5.6 User Profile and Context Implementation . 81
5.7 Dynamic Adaptation Mechanisms Implementation . 82

5.7.1 Application Mechanics (State, Animation, Ordering) 82
5.7.2 Conflicts and Unknown Actions . 83
5.7.3 Real-Time Adaptation Example . 83

5.8 Backend Injection Interface . 85
5.8.1 Purpose and Scope . 85
5.8.2 Architecture and Data Flow . 85
5.8.3 Controls: Profiles and Events . 85
5.8.4 Adaptation Response View . 85
5.8.5 Interaction History Panel . 85
5.8.6 Operational Notes and Limitations . 86

5.9 Cross-Platform SwiftUI Example . 86
5.9.1 Purpose and Scope . 86
5.9.2 Adapter and Transport . 86
5.9.3 Minimal UI and State Mapping . 86
5.9.4 Event Injection . 86
5.9.5 Usage and Limitations . 87

5.10 Design Decisions . 87
5.10.1 Modularity Over Monolithic Design . 87
5.10.2 WebSocket for Real-Time vs. HTTP for Batch Processing 87
5.10.3 MongoDB for Persistent Storage . 88
5.10.4 Rule-Based Fallback with LLM Reasoning . 88
5.10.5 Multi-agent LLM reasoning (MA-SIF) vs single-agent LLM reasoning (normal SIF) 88

5.11 Implementation Challenges and Solutions . 89
5.11.1 LLM reliability and output consistency . 89
5.11.2 Performance under real-time constraints . 89
5.11.3 Safeguards against malicious or replay attacks . 89
5.11.4 Testing with incomplete modalities . 89
5.11.5 Security and trust boundaries . 89

5.12 Chapter Summary . 90

6 Feasibility Study 91
6.1 Study Overview . 91
6.2 Methodology . 91
6.3 Accessibility and Design Quality . 93

6.3.1 Profile–Action Alignment (PAA) . 93
6.3.2 Error to Response Appropriateness (ERA) . 93

16 CONTENTS

6.3.3 Mode Enablement for Hands free (MEH) . 93
6.3.4 Design Coherence Index (DCI) . 94
6.3.5 Global accessibility share and WCAG coverage . 94
6.3.6 Motor Benefit Proxy (Fitts law, analytic) . 94
6.3.7 Appropriateness by event type . 95
6.3.8 Stability across runs . 95
6.3.9 Specificity via profile swap . 96
6.3.10 Failure taxonomy (invalid cases) . 96
6.3.11 Rule-only sufficiency (proxy) . 97
6.3.12 Rule baseline vs. LLM (minimal vs. maximal) . 97
6.3.13 Micro-cases on P1 and P5 profiles . 98

6.4 Adaptation Performance (Latency) . 99
6.4.1 Overall summary . 99
6.4.2 Per profile outcomes . 99
6.4.3 Configuration comparison (all profiles) . 100

6.5 Discussion of Results . 100
6.6 Study Limitations . 101
6.7 Conclusion . 101

7 Discussion and Future Work 103
7.1 Overview . 103
7.2 Implications for Accessibility and HCI . 103
7.3 Key Findings and Contributions . 103
7.4 Comparison with Related Work . 104
7.5 Future Work . 105

7.5.1 Short-Term Improvements . 105
7.5.2 Research Directions . 106

8 Conclusion 107
8.1 Summary of the Work . 107
8.2 Summary of Contributions . 108
8.3 Limitations . 108
8.4 Lessons Learned . 108
8.5 Evaluation Results: Conclusion . 109
8.6 Self-Reflection and Reflection on the Work . 109
8.7 Final Remarks . 110

List of Figures

3.1 High-level architecture flow: frontend events are standardised and sent to the backend,
where reasoning fuses user context and generates adaptation outputs for the UI. 36

3.2 High-level flow of the Input Adapter Layer . 40
3.3 Adaptation pipeline flow. 42

4.1 Abstract event flow in Smart Intent Fusion: events from the Input Adapter are enriched
with profile/context, processed by rule-based and LLM/MA-SIF reasoning, and returned
as adaptation outputs to the frontend. 46

4.2 Multi-agent SIF adaptation flow: user events and profile/history are processed by spe-
cialised agents, validated, and merged into final adaptations. Fallbacks ensure robustness. 56

5.1 Frontend data flow: events to adapter; adaptations back to UI. 71
5.2 Smart Home Controller UI: scrollable device cards (Lamp, Thermostat, Lock) with mini-

malist controls and the mock event row (Miss Tap, Voice Command, Gesture). 71
5.3 Loading indicator: rotating gradient card border while waiting for backend. 73
5.4 Profile editor for accessibility needs and UI preferences. 74
5.5 Simplified UML-like diagram for AdaptiveUIAdapter. 75
5.6 High-level class diagram for Input Adapter Layer data structures. 76
5.7 Adapter WebSocket lifecycle with reconnect backoff. 76
5.8 Real-time adaptation applied after miss-tap event for visually impaired user. 84
5.9 Backend Injection Interface: configuration and live JSON visualization. 85
5.10 Example adaptation list before/after a pointing gesture event. 86
5.11 Example SwiftUI app before/after a miss tap event. 87

6.1 P1 (motor) miss tap. The adaptation enlarges the button and border, reducing target diffi-
culty. This aligns with P1’s needs and with the objective scores in Table 6.6 (PAA 50.88%,
ERA 57.14%, DCI 0.986). 98

6.2 P5 (visual+motor) slider miss. The adaptation increases slider size, text contrast and
more as seen by the notification in the app. This matches P5’s mixed needs and the strong
scores in Table 6.6 (PAA 77.42%, ERA 64.29%, DCI 1.000). 98

17

18 LIST OF FIGURES

List of Tables

3.1 Adaptations mapped to WCAG criteria and intent. 38

4.1 Exact agent settings for the three measured configurations. 63
4.2 Latency and correctness across configurations (sequential backend; user seq with default

profile and growing history). 63

5.1 Adaptation-to-widget mapping (from applyAdaptations). 73
5.2 Adapter endpoints used by adaptive ui adapter.dart. 76
5.3 MA–SIF agents, focus, allowed actions, and model settings (runtime configurable). 79
5.4 Rule triggers and conservative adaptations (fallback path). 80
5.5 Scope of adaptations in the Flutter implementation. 83

6.1 User profile mapping for evaluation runs. 91
6.2 MA-SIF (balanced) agent configuration. 92
6.3 Mapping of adaptation actions to accessibility categories. 92
6.4 Mapping of error events to acceptable corrective adaptations. 93
6.5 Fitts law proxy: relative reduction in index of difficulty for s=1.5. 94
6.6 Objective accessibility and design quality metrics by profile. 94
6.7 Overall accessibility targeted actions from the global action distribution. 94
6.8 Policy level WCAG coverage addressed by proposed adaptations. 95
6.9 ERA by event type (higher is better). 95
6.10 Stability across runs (Jaccard similarity of action and target sets). 95
6.11 Counterfactual PAA under profile swaps (mean over all swaps). 96
6.12 Invalid responses by profile (derived from client-side schema check of final payloads). . . . 97
6.13 Rule baseline vs. LLM by profile. Jaccard is set overlap of action names. 97
6.14 Overall feasibility results with MA-SIF (balanced). 99
6.15 Per profile schema validity and latency under MA-SIF (balanced). 99
6.16 Overall configuration comparison (lower latency is better; higher Schema-valid, PAA, ERA,

and DCI are better). 100
6.17 Per-profile configuration comparison (p50 latency, Schema-valid, PAA, ERA, and DCI). . 100

7.1 Comparison of related adaptive UI systems . 104

19

20 LIST OF TABLES

Chapter 1

Introduction

1.1 Background and Motivation

Whether it’s a smartphone app, a website, or a smartwatch, users primarily interact with technology
through graphical user interfaces (GUIs). These interfaces rely on visual elements such as icons, but-
tons, and menus to enable intuitive and efficient interaction, replacing the need for complex text-based
commands. Before GUIs became standard, users had to operate computers through command-line inter-
faces, requiring memorization of commands and technical know-how. This barrier limited computing to
experts. GUIs removed that limitation by introducing visual metaphors, opening up digital technology to
the general public. Since their introduction in the 1980s, GUIs have revolutionized how humans engage
with computers, transforming once-specialized machines into everyday tools. As the critical interface
layer between human and machine, GUIs translate complex computational tasks into accessible, visually
manageable actions.

Over the decades, GUIs have evolved far beyond their early desktop roots. From the classic WIMP model;
windows, icons, menus, and pointers, interfaces have expanded to include touch, voice, gesture, and even
spatial interactions in augmented and virtual reality. Today’s user interfaces are increasingly multimodal,
allowing for richer and more natural interactions. Yet, despite this evolution in interaction modalities,
the underlying structure of most GUIs remains largely static. Interfaces are typically designed with a
one-size-fits-all approach, offering the same layout, behavior, and visual elements to all users, regardless of
their needs or context. This static nature becomes a barrier in today’s increasingly diverse and dynamic
world, especially for users with accessibility challenges. People with visual impairments, motor difficulties,
or those who rely on hands-free interaction methods often struggle with standard interfaces that do not
adapt to their specific needs. For example, small buttons can be difficult to tap for users with tremors,
while low contrast or lack of screen reader support limits usability for visually impaired users. Moreover,
users interact with devices in various environments some noisy, some bright, some on the move, further
complicating interaction for those needing alternative input or output modalities. Devices range widely
in size and capabilities, from smartwatches and smartphones to desktop monitors and VR headsets,
but accessibility features often remain limited or inconsistent across platforms. This gap highlights a
key challenge in interface design: how can we create graphical user interfaces that dynamically adapt to
individual users’ accessibility needs and context, ensuring inclusive and efficient interaction for all?

Adaptive UIs are user interfaces that can adjust themselves dynamically to accommodate the user’s
accessibility needs and contextual factors. These interfaces are designed to intelligently modify their
layout, behavior or visual appearance based on individual user preferences, abilities, and environmental
conditions. By responding to multimodal inputs such as touch, voice, gestures, and gaze, adaptive UIs aim
to provide a more personalized, inclusive, and efficient user experience, especially for users with diverse
accessibility requirements. When we call an interface “intelligent” we mean it can perceive, interpret,
and respond to complex user behaviors and contexts autonomously. This level of responsiveness goes
beyond simple preset rules, necessitating systems that learn from user interactions and adapt close to
or in real-time. Artificial Intelligence (AI), especially advances in machine learning and large language
models, offers powerful tools to enable such intelligent adaptation. By processing multimodal inputs, UI
context and user data, AI-driven interfaces can dynamically tailor themselves to meet diverse user needs,
making accessibility more effective and seamless.

21

22 CHAPTER 1. INTRODUCTION

Large Language Models (LLMs) like GPT have revolutionized natural language understanding, processing
and generation. Their ability to comprehend context, infer intent, and produce human-like responses
makes them highly suitable for interpreting user intent, preferences, and even subtle cues from multimodal
inputs such as speech, gestures, or eye movements. In the context of adaptive UIs, LLMs can act
as intelligent controllers that translate diverse and complex user interactions into actionable interface
adaptations. For example, an LLM can understand a voice command like “make buttons bigger” or
interpret hesitation in gestures to trigger UI changes that enhance usability for motor-impaired users.
Furthermore, LLMs can dynamically generate or modify UI elements by turning the interface itself into
an API enabling on-the-fly customization that is both personalized and context-aware.

Despite growing research and technological capabilities, adaptive user interfaces remain rare in practical
use, often due to complexity in implementation and lack of robust frameworks. This gap motivated this
thesis, inspired in part by emerging ideas on treating UIs as APIs controlled by intelligent models, an
approach highlighted in recent discussions in the AI and HCI communities. Large Language Models
(LLMs), in particular, offer a promising interface for driving these intelligent UI adaptations due to
their ability to reason over context and user intent. However, current LLMs also come with challenges:
latency when used via APIs, potential for hallucinations, a lack of specialization for GUI reasoning or
code-generation tasks (for example, rewriting UIs at runtime). These limitations highlight the need for
a structured framework that can integrate intelligent models into adaptive UI systems while managing
their weaknesses effectively. Rather than seeing LLMs as perfect agents, this thesis treats them as
powerful, context-aware assistants that when properly guided and constrained, can significantly improve
how interfaces adapt to users’ real-time accessibility needs.

1.2 Problem Statement

Despite increasing attention on accessibility and personalization in user interfaces, most applications
remain static and poorly adapted to users’ changing contexts or abilities. While current interfaces can
adapt in high-level ways such as adjusting to screen size, orientation or theme, these adaptations are
mostly cosmetic. They do not address the deeper challenge of understanding and responding to the
user’s intent, cognitive state, or physical limitations in real time.

Designing truly adaptive UIs remains uncommon, in part due to the technical difficulty of modeling dy-
namic behavior and the lack of robust, general-purpose frameworks. Furthermore, real-world interaction
is often messy and unpredictable: small variations in input such as a mistap, delayed reaction, or en-
vironmental noise can result in significantly different needs or outcomes. This non-linearity mirrors the
principles of chaos theory, where minor initial differences lead to divergent results, making rule-based UI
design fragile.

Addressing this requires systems capable of interpreting nuanced, multimodal signals and adapting ac-
cordingly, a task well suited to modern AI techniques such as large language models (LLMs). Nevertheless
existing UI frameworks rarely integrate such models in a way that supports real-time, intelligent adap-
tation, leaving a significant gap between the potential of adaptive interfaces and their current practical
application.

1.3. RESEARCH OBJECTIVES 23

1.3 Research Objectives

The primary objective of this research is to design, implement, and validate a modular, multimodal AI-
driven framework for dynamic user interface (UI) adaptation, with a strong focus on accessibility and
personalization. The framework aims to move beyond static or one-size-fits-all designs by enabling real-
time, context-aware adaptations that respond to diverse user abilities, preferences, and situational needs.
It does so by combining multiple input modalities with hybrid reasoning, rule-based logic for predictable
low-latency responses, and large language model (LLM) reasoning for complex or ambiguous cases within
a unified architecture.

The overarching goal is to create a system that is both technically extensible and practically deployable
across different platforms, while demonstrating tangible accessibility benefits for key user groups, such
as motor-impaired, visually impaired, and hands-free users. This will be validated through a proof-of-
concept application and simulated evaluation metrics that assess accuracy, effectiveness, and usability
impact.

To achieve this goal, the following specific objectives are defined:

1. Develop a modular, cross-platform architecture: Design a three-layer framework (Frontend,
Input Adapter, and Backend) that can capture, standardize, and process interaction events across
Flutter, SwiftUI, and future platforms (e.g., Unity for VR/AR), using a shared JSON-based event
and adaptation format.

2. Implement multimodal input fusion: Support and combine inputs from touch, keyboard, voice,
gestures, and mock or future modalities (e.g., gaze tracking), enabling richer context capture for
adaptation decisions.

3. Integrate Smart Intent Fusion (SIF): Develop and integrate a hybrid reasoning engine that
fuses profile data, interaction history, and live events to generate targeted adaptations, blending
deterministic rules with multi-agent LLM reasoning.

4. Deliver accessibility-focused adaptations: Provide near real-time UI changes such as enlarging
targets, enhancing contrast, switching interaction modes, and adjusting layout or navigation flow,
driven by the needs of specific user groups.

5. Provide a developer-friendly integration path: Expose the framework as a basic and simple
SDK with clear contracts, minimal setup, and reusable patterns, allowing developers to retrofit
existing apps or build new ones without major rewrites.

6. Evaluate system performance and impact: Assess adaptation accuracy, quality, and latency
across different SIF configurations and user profiles through a feasibility study, identifying strengths
and areas for future improvement.

24 CHAPTER 1. INTRODUCTION

1.4 Thesis Structure

This section outlines the organization of the thesis to guide the reader through its content and structure.
The thesis is structured as follows:

• Chapter 1: Introduction
Introduces the research problem, motivation, and scope of the work. Defines the challenges of
static, non-adaptive UIs for accessibility and personalization, outlines the research objectives, and
presents the contributions of the thesis. Concludes with an overview of the thesis structure.

• Chapter 2: Background and Related Work
This chapter reviews the state-of-the-art in human-computer interaction (HCI), focusing on adaptive
user interfaces, multimodal input processing, and (AI-driven) personalization. It discusses existing
frameworks for accessibility, user profile built UIs and limitations of static UIs, and the role of large
language models (LLMs) in UI adaptation, positioning the proposed framework’s novelty.

• Chapter 3: System Design and Architecture
This chapter describes the overall architecture of the framework, including its three-layer design
(Frontend Layer, Input Adapter Layer, and Smart Intent Fusion Backend). Explains the role of each
layer, the JSON-based event and adaptation contracts, and how the system captures and processes
multimodal inputs. It also introduces the Smart Intent Fusion (SIF) architecture and adaptation
pipeline.

• Chapter 4: Smart Intent Fusion (SIF)
This chapter delves into the specifics of the Smart Intent Fusion (SIF) component, outlining its
architecture, the reasoning processes it employs, and how it integrates with the other layers of
the framework. It discusses the challenges of fusing diverse input modalities and the strategies
employed to ensure accurate and context-aware adaptations as well as dealing with hallucinations
from LLMs.

• Chapter 5: An Adaptive Multimodal GUI Framework using LLMs
This chapter presents the implementation of a proof-of-concept for the framework, covering the
Flutter-based “Adaptive Smart Home Controller” UI with touch, and simulated voice/gesture in-
puts, the input adapter layer’s JSON contract, and the SIF backend. A backend Flutter-based
interface is also introduced for developer insights and debugging.

• Chapter 6: Feasibility Study
This chapter discusses the evaluation setup, scenarios, results, and reflects on the implications and
limitations of the findings.

• Chapter 7: Discussion and Future Work
This chapter discusses the broader implications for accessibility and HCI, key findings, and com-
parison with related work. Addresses limitations and proposes future work, including on-device
reasoning, integrated visual UI understanding, federated learning, and expanding modality sup-
port.

• Chapter 8: Conclusion
This chapter summarises the thesis contributions and lessons learned from the development process.
Reflects on the evaluation results, revisits the research objectives, and outlines how this work can
inform future adaptive UI systems.

Chapter 2

Related Work

2.1 Multimodal AI in User Interfaces

User interfaces have evolved far beyond simple point-and-click paradigms. Modern systems increasingly
incorporate multimodal inputs, integrating different sensing and communication modalities such as
voice or speech commands, pen and touch interaction, eye tracking, and full-body gesture tracking. These
technologies aim to create more natural, flexible, and inclusive experiences [36]. Multimodal interfaces
aim to mirror human communication, which rarely relies on a single channel, thereby expanding the
possibilities for interaction and enabling more robust and adaptive user experiences.

A fundamental advantage of multimodal interfaces is their potential to improve accessibility and inclu-
sivity. For example, voice commands can be crucial for users with motor impairments, while gaze-based
control may assist users who cannot use their hands for input. Meanwhile, gestural input like in VR
settings can support contactless control, useful in medical environments, during physical rehabilitation
exercises or even astronaut training. Furthermore, the combination of modalities can reduce error rates
and cognitive load by providing redundant and complementary channels of communication, improving
user satisfaction and performance [36].

Historically, the field of multimodal interaction gained attention through early research prototypes com-
bining speech and pen input, which demonstrated that parallel and redundant channels lead to more
fluid interaction [36, 37]. In recent years, rapid advances in machine learning, especially deep learning,
have further enabled real-time recognition of speech, gestures, and gaze on consumer-grade hardware [27,
9].

2.1.1 Pointing Devices and Touch Interfaces

Before the rise of multimodal and intelligent input modalities, most user interfaces primarily relied on
pointing devices such as the mouse, trackball, and touchpad. Fitts’ law [16] and subsequent pointing
models formed the foundation for optimizing target sizes and layouts to reduce pointing time and er-
ror rates. Touchscreens expanded on these paradigms, introducing direct manipulation, gesture-based
scrolling and multi-touch interactions. Touch interfaces, now ubiquitous in smartphones and tablets,
benefit from intuitive mappings between finger movements and on-screen actions but also face challenges
related to occlusion, precision, and physical fatigue [44].

Recent research has introduced adaptive techniques, such as ”sticky” or magnetic cursor effects, which
are already in use today as normal or accessibility features on for example Apple devices. Which help
guide the pointer toward interactive elements, reducing effort and error, particularly for users with motor
impairments [10]. These principles guide contemporary accessibility enhancements and encourage ad-
vancements in multimodal environments. In this thesis, inspiration is drawn from those adaptive cursor
behaviors to inform dynamic UI element resizing and magnetic effects in multimodal contexts, bridging
classical pointing interactions with ”smart” AI-driven adaptations.

25

26 CHAPTER 2. RELATED WORK

2.1.2 Voice-Driven Interfaces

Voice interaction has become mainstream through virtual assistants like Amazon Alexa, Google Assis-
tant, and Apple’s Siri. These systems utilize automatic speech recognition (ASR) and natural language
processing (NLP) to interpret user commands and execute them on the device [21]. Voice input offers
hands-free accessibility benefits, particularly useful for users with mobility impairments or in multitask-
ing scenarios. However, it also presents challenges such as interpreting unclear or ambiguous speech,
addressing privacy concerns, and maintaining reliability in noisy environments [33]. Combining voice
with complementary modalities such as gestures or gaze tracking has been shown to improve disam-
biguation and user confidence [32]. Hybrid systems support error correction, implicit confirmation, and
increased interaction bandwidth [37], thereby enhancing overall usability.

2.1.3 Gesture and Gaze Integration

Gesture-based interactions enable users to control interfaces through hand and body movements, provid-
ing expressive and intuitive command options. Advances in computer vision techniques and frameworks
such as MediaPipe Hands and OpenPose have made real-time gesture recognition feasible on consumer-
grade hardware including desktops and mobile devices [27]. Eye tracking is another important modality,
capturing user attention and intention. It has been used to implement gaze-contingent interfaces where
UI elements respond dynamically to where users are looking, reducing physical effort and increasing in-
teraction speed [13]. The integration of gesture and gaze input creates a powerful multimodal system,
enabling users to point, select, and confirm actions more naturally. Studies indicate that combining these
modalities improves error tolerance and enhances overall user experience, especially in contexts where
precise manual input is difficult or limited, such as virtual reality environments [35, 7].

One of the most influential early systems that explored the practical use of gaze in everyday computing
contexts is the GUIDe project by Kumar and Winograd (2007) [23], which demonstrated how gaze could
be used as a lightweight augmentation of traditional input methods rather than a full replacement. Their
EyePoint technique introduced a refined two-step “look-press-look-release” interaction loop that allowed
for highly accurate gaze-based pointing by combining magnification with gaze refinement. Unlike previous
systems that relied solely on dwell-based activation, GUIDe’s use of keyboard-assisted targeting reduced
false activations (the “Midas Touch” problem) and allowed for precise user control.

They extended this principle to application switching (EyeExposé) and adaptive scrolling (EyeScroll),
showing that gaze input could become a viable interaction modality for able-bodied users if the design
balanced gaze with explicit control channels like hotkeys or contextual awareness. Importantly, EyeScroll
demonstrated adaptive scrolling speeds based on live gaze-driven reading behavior, which is a strong
precedent for personalization and multimodal input adaptation. These contributions illustrate how gaze
can serve as both a passive signal and an active intent channel, especially when fused with complementary
modalities like touch or speech [24].

2.2 Adaptive GUIs Across Modalities and Platforms

As user interfaces evolve to support an increasing variety of input modalities and devices, adaptive graph-
ical user interfaces (GUIs) have gained significant attention. Adaptive GUIs are designed to modify their
layout, behavior, and appearance dynamically in response to contextual information, user preferences, or
real-time interaction patterns. This adaptivity aims to enhance usability, accessibility, and personaliza-
tion across a wide range of platforms, from traditional desktop systems to mobile devices and immersive
virtual reality (VR) environments.

Adaptation can take many forms. For example, a GUI might increase button sizes for users with motor
impairments, change color schemes to improve contrast for users with visual impairments, or rearrange
content based on the user’s task context or dominant hand [18]. On desktop and mobile devices for
example, adaptivity has often focused on supporting accessibility and optimizing layouts for different
screen sizes or resolutions. Responsive design frameworks, which automatically adjust content and ele-
ment placement across devices, represent one form of early structural adaptivity. More advanced adaptive
systems might learn user habits over time and present solutions based on the users context by for example
integrating large language models (LLMs) and advanced AI reasoning.

2.3. CLASSICAL ADAPTIVE UI TECHNIQUES 27

2.2.1 Accessibility-Focused Adaptive GUIs (Desktop & Mobile)

Adaptive GUIs on conventional platforms personalize layout, component size, and interaction mechanics
to user ability and context. A canonical example is SUPPLE, which models devices, tasks, preferences,
and motor abilities to automatically generate alternative UIs e.g., larger widgets, altered control density,
or layout re-flow for users with limited range of motion [19]. Complementing such generation, Ability-
Based Design argues the system should adapt to people’s abilities (not vice-versa), yielding techniques like
dynamic gain adaptation for pointing, larger targets, and stabilization aids that improve accuracy without
burdening the user [45]. In everyday menus, empirical work shows that adaptable or carefully designed
adaptive structures can speed selection compared to static menus when they preserve predictability
and user control [14, 40]. More nuanced approaches such as ephemeral adaptation highlight predicted
items while maintaining spatial consistency to reduce visual search cost [15]. Together, these strands
illustrate how adaptive GUIs can enlarge controls, re-order or highlight options, and subtly modulate
input mechanics to deliver accessibility and personalization on desktop and mobile.

2.2.2 Design Challenges for Adaptive GUIs Across Modalities

Designing effective adaptive GUIs faces well-documented pitfalls. Classic guidance warns that opaque or
unpredictable adaptations erode trust; users need scrutability and control over what changes and why
[22, 14]. Visual stability matters: aggressive re-ordering can harm spatial memory, hence techniques that
preserve layout while cueing salience (e.g., ephemeral onset) are preferred [15]. Input-side adaptations
must be unobtrusive for non-target users yet beneficial for those who need them for instance, target-
agnostic cursor gain adjustments improve motor-impaired pointing while remaining neutral for others [46].
Finally, evaluating accessibility-oriented adaptations requires careful methodology and representative
sampling; recent surveys highlight gaps in reporting, participant diversity, and measures for motor-
impairment studies, issues framework’s standardized event contracts and profiles can help address [38].
Overall, successful systems balance transparency, user agency, visual consistency, and rigorous evaluation
to ensure adaptations help rather than hinder.

2.3 Classical Adaptive UI Techniques

Before the widespread use of artificial intelligence and machine learning in dynamic interfaces, adaptive
graphical user interfaces (GUIs) primarily relied on deterministic, rule-based strategies. These classical
approaches, while limited in personalization and flexibility, were instrumental in shaping the early land-
scape of user interface adaptation [34, 8]. They focused on fixed logic, device-specific configurations, and
contextual parameters defined explicitly by designers or developers. Although static by today’s standards,
these techniques addressed fundamental issues of usability, accessibility, and device heterogeneity.

One of the most foundational classical techniques is responsive layout design, which allows a user inter-
face to adjust its layout and elements based on screen size, orientation, and device type. This approach
is especially prominent in web and mobile design, where CSS media queries and related standards dy-
namically reposition and resize UI components to preserve usability across different platforms [30, 25].
Alongside responsive design, constraint-based layout systems offered deterministic ways to maintain re-
lationships among UI elements, enabling consistent resizing and alignment without learning from user
behavior [3]. While these methods improve accessibility and device compatibility, they do not adapt to
individual user behavior or preferences, the adaptations are driven solely by environmental conditions
like screen dimensions or device class.

Another key classical technique is context-aware UI adaptation, where the interface adjusts based on
predefined environmental or situational variables such as location, time of day, network connectivity, or
battery level. Seminal frameworks and surveys formalized what “context” is and how it can be used to
trigger if–then rules and proactive adjustments in applications [11, 4]. For example, a mobile app might
switch to a dark theme automatically at night or reduce update frequency on a metered connection.
These adaptations are typically rule-based rather than probabilistic, improving relevance and efficiency
but lacking the ability to learn from user interaction patterns over time.

Additionally, role-based adaptations were widely used in enterprise and healthcare applications to simplify
complex systems for distinct user groups. Interfaces were tailored to the responsibilities and permissions
of roles (e.g., administrator, clinician, student), exposing only the necessary features and layouts for

28 CHAPTER 2. RELATED WORK

each group and thereby reducing cognitive load [1, 26]. Such role-driven tailoring was predetermined by
organizational needs rather than inferred intent, exemplifying classical, deterministic adaptation.

2.3.1 Responsive Layouts

Responsive design emerged as a critical approach to address the rapid increase of different screen sizes
and devices, particularly with the rise of smartphones and tablets. Instead of creating separate fixed
interfaces for each device, responsive layouts allow a single design to automatically adjust its elements to
fit various screen dimensions and orientations based on core techniques like flexible grids, media queries,
and adaptive content strategies. Those enable dynamic resizing and rearrangement of UI elements [31].
In mobile development, declarative UI frameworks such as Flutter and SwiftUI adopt similar principles,
using constraints and reactive layouts that adapt hierarchically to screen changes. While originally
developed to support multiple screen sizes, responsive layouts also improve accessibility by allowing
users to zoom or scale interface components without breaking layout integrity. Despite their flexibility,
traditional responsive designs are typically static in behavior they do not react to real-time user behavior
or contextual signals beyond the device dimensions.

2.3.2 Context-Aware Design

Context-aware interfaces extend the notion of adaptation by responding to more complex environmental
and user-specific factors. Originating in ubiquitous and pervasive computing research, context-aware
design involves sensing parameters such as location, time of day, user activity, nearby devices, or even
physiological signals to modify interface behavior [39, 11]. For example, a context-aware mobile applica-
tion might switch to a dark theme automatically at night or suggest different UI shortcuts when the user
is driving versus sitting at a desk. In smart home systems, interfaces may change based on proximity sen-
sors or room occupancy data. Some adaptive systems also integrate user profiles and long-term behavior
patterns. For example, the SUPPLE system automatically generates personalized interfaces optimized
for a user’s specific motor abilities and preferences by solving optimization problems over interface layouts
with the effect of facilitating faster access and lower error [18]. Such rule-based or optimization-based ap-
proaches set the stage for later, more sophisticated AI-driven adaptations by highlighting the importance
of context and user modeling.

While classical techniques like responsive layouts and context-aware design lack the semantic understand-
ing and reasoning capabilities of modern AI systems, they provide robustness and predictability. They
form a crucial baseline against which the benefits of AI-enhanced adaptations can be evaluated. Further-
more, they remain relevant in many production systems due to their lower computational cost and easier
predictability for developers and designers.

2.4 Programmable UIs

Traditionally, user interfaces have been treated as static artifacts, closely tied to fixed layouts and hard-
coded interaction patterns. However, recent advances in computational understanding of user interfaces
propose a shift towards making UIs ”programmable” that is, representing them as dynamic, semantically
rich structures that can be analyzed, modified, and generated automatically. This paradigm enables in-
terfaces to become more flexible and adaptable, allowing developers and even AI systems to reason about
and transform UI elements in response to changing contexts, user needs, or platform constraints. Such
a programmable layer is essential for realizing fully adaptive, AI-driven interfaces that can personalize
experiences and improve accessibility in real time.

2.4.1 Reflow

A notable example of pixel-based UI adaptation is Reflow, introduced in Chapter 7 of Wu’s dissertation
on computational understanding of user interfaces [47]. Reflow proposes a system that automatically
refines and optimizes touch interactions in mobile applications using only pixel-level information, without
requiring access to the underlying application code or view hierarchy like a widget tree. The system
operates by first detecting UI elements from a screenshot using machine learning-based pixel analysis.
It then refines the layout based on a user-specific spatial difficulty map, which identifies the difficult-
to-access areas of the screen, derived from calibration tasks that capture individual motor abilities and

2.4. PROGRAMMABLE UIS 29

preferences. Finally, Reflow re-renders a modified version of the UI with optimized element positions and
sizes, ensuring that critical interactive components are easier to reach and select.

Reflow exemplifies how computational understanding of UIs at the pixel level can enable automated per-
sonalization and accessibility enhancements even in closed-source or inflexible applications. It illustrates
a promising direction for future adaptive systems that aim to provide user-specific improvements without
requiring cooperation from original app developers or extensive code modifications. This aligns directly
with the goals of AI-driven UI frameworks focused on dynamic, user-centered adaptation. Furtermore,
the user study showed an average increase of 9% in interaction speed as well as improved interaction
speeds by up to 17% [47].

2.4.2 UICoder

A further advancement in making user interfaces programmable is presented through UICoder, as de-
scribed in Chapter 8 of Wu’s dissertation on computational understanding of user interfaces [47]. While
earlier systems such as Reflow focused on pixel-level adaptations of existing applications, UICoder tackles
the challenge of generating high-quality UI code directly from textual descriptions using large language
models (LLMs). UICoder addresses two major limitations of previous code-generation approaches for
UIs: the scarcity of high-quality, self-contained UI code in existing datasets and the difficulty LLMs face
in incorporating visual or spatial feedback into their training. Rather than relying on manually curated
or external datasets, UICoder introduces an automated method to iteratively generate, filter, and refine
synthetic UI code datasets.

The system begins by prompting an existing LLM to generate large collections of UI code samples
(specifically SwiftUI, Apple’s coding framework) from textual descriptions. These outputs are aggressively
filtered and scored using compilers (to ensure syntactic correctness) and vision-language models (to
assess visual relevance), producing a refined dataset for further finetuning. By iteratively repeating
this cycle generation, filtering, and finetuning UICoder progressively learns to produce syntactically
correct and visually coherent UI code. Derived from the StarCoder family (which lacked extensive Swift
training data), UICoder ultimately generated around one million SwiftUI programs over five iterations.
Despite these constraints, it significantly outperformed all open-source baselines and approached the
performance of larger proprietary models in both automated and human evaluations. By leveraging
automated feedback instead of costly human annotations, UICoder demonstrates a scalable approach
to training LLMs for UI code generation. This method shows how generative models combined with
programmatic refinement loops can enable on-demand creation of high-quality, personalized UIs directly
supporting visions of adaptive and dynamically generated interfaces.

UICoder exemplifies the shift from static UI codebases toward dynamic, generatively defined interfaces.
In the context of AI-driven adaptive GUIs, such a capability enables systems to not only adjust existing
layouts but also generate entirely new interface code on demand, tailored to specific user preferences or
device contexts. This directly supports the vision of self-adaptive and user-personalized UI frameworks
proposed in this thesis.

2.4.3 User Interface Adaptation using Reinforcement Learning

Recent advances in programmable and adaptive user interfaces have explored the integration of machine
learning techniques particularly Reinforcement Learning (RL) to support real-time personalization and
dynamic behavior. A notable example is the doctoral work by Gaspar-Figueiredo (2023), which proposes
a UI adaptation framework that leverages RL in conjunction with physiological data to enhance user
experience (UX) [20].

In this framework, RL is used to determine optimal UI adaptations (e.g., layout or content adjustments)
by continuously interacting with the user and optimizing long-term reward signals. What sets this work
apart is the use of physiological signals such as eye tracking, EEG, or other biosignals as objective
measures of user response. This addresses a key limitation of traditional evaluation techniques that rely
on subjective self-reporting, which can introduce bias or fail to capture moment-to-moment changes in
experience.

The system learns from users’ physiological reactions and interaction behaviors to determine which adap-
tations are effective in improving usability and engagement. Over time, the interface becomes more
personalized and context-aware, reacting not only to explicit input but also to subtle cues from the

30 CHAPTER 2. RELATED WORK

user’s cognitive or emotional state. This approach exemplifies a new direction in programmable UIs:
systems that are not only defined by abstract models (e.g., UIML or USiXML) but are also capable
of learning and evolving through interaction. By combining adaptive logic, ML-driven decision-making,
and, biosignal-based feedback, such frameworks could serve as the basis for next-generation interfaces
especially in applications involving accessibility, cognitive load, or health and wellness.

2.5 User Profile built UIs

The increasing diversity of devices and user contexts has driven research into creating adaptable user
interfaces that are both device-independent and user-centered. A significant challenge arises in balancing
generalization so an interface works across multiple devices and personalization so it aligns with the
unique preferences and capabilities of individual users.

To address this, Luyten et al. [29] proposed a framework that combines high-level XML-based user inter-
face description languages (UIDLs), particularly UIML, with MPEG-21 Part 7 (Digital Item Adaptation)
user profiles. UIML (User Interface Markup Language) allows designers to abstract the UI from con-
crete implementations, enabling interfaces to be rendered differently depending on device constraints.
For example, a single abstract element like “choice from a range” can map to different widgets (slider,
list, or text input) depending on the target platform. In this approach, MPEG-21 user profiles capture
individual user preferences and requirements (e.g., accessibility needs, preferred interaction styles), which
can then dynamically guide the adaptation of the UI described in UIML. This enables the generation
of multi-device, personalized interfaces that are both broadly deployable and tailored to specific user
needs.

An implemented prototype demonstrated how combining UIML and MPEG-21-based user profiles allows
for seamless adaptation of UI layouts and interactions while minimizing design effort. By leveraging
abstract UI definitions and structured user profiles, this method enhances both accessibility and us-
ability across diverse platforms, making interfaces more ”granny-proof” and inclusive. This user-centric
adaptation model supports the vision of highly personalized digital experiences without sacrificing cross-
device compatibility, contributing an important step toward universal, accessible, and adaptable user
interfaces.

Early profile-based UI adaptation systems were often limited by the rigidity of XML-based markup
languages and the static nature of their user models. Profiles were typically loaded once and assumed
relatively stable user needs, which limited the ability to adapt interfaces dynamically over time or in
real-time scenarios.

However, these systems laid foundational groundwork for modern AI-augmented adaptation layers. For
instance, where MPEG-21 profiles might have been manually filled or gathered via forms, today’s systems
can infer similar parameters from behavioral data using machine learning. Similarly, abstraction principles
from UIML still resonate in declarative UI frameworks like Flutter, SwiftUI, or React Native, which
separate layout logic from presentation and enable device-responsive rendering.

These classical approaches remain valuable not only for historical understanding but also as a reminder
of the importance of modularity, abstraction, and structured user modeling in UI design principles that
continue to influence the development of multimodal, intelligent frontends today.

2.5.1 XML-Based Runtime UI Systems

One early precursor to programmable and adaptive UI systems was the use of XML-based runtime
user interface description languages, especially for resource-constrained mobile and embedded systems.
A notable example is the work by Luyten and Coninx (2001), who proposed a method that leverages
XML for describing UI components and Java for rendering them on mobile devices such as PDAs [28].
Their system allowed interfaces to be dynamically serialized, transmitted, and rendered on client devices
based on contextual variables such as the user’s role, device capabilities, and preferences. For example,
the interface for controlling a projector would differ depending on whether the user is a professor or a
technician, enabling personalized task-specific controls.

This work introduced several important ideas that prefigure modern programmable and adaptive UIs.
First, it treated UIs as dynamic data rather than static views, enabling runtime generation and adapta-
tion. Second, it used constraint-based filtering mechanisms to tailor UI components based on context.

2.6. MULTIMODAL FUSION AND INPUT EVENT MODELING 31

Third, it demonstrated that a separation between the UI’s description (in XML) and execution (in Java)
could support modular, reusable interface logic.

Although this approach predates current AI-powered frameworks, it exemplifies early efforts toward
what is now called adaptive or context-aware UI. Its emphasis on platform-independence, modularity,
and runtime flexibility directly anticipates features found in modern frameworks like Flutter, React, and
Unity UI especially when extended with AI-driven mediation and multimodal inputs.

2.6 Multimodal Fusion and Input Event Modeling

As user interfaces become increasingly multimodal, systems must handle diverse streams of input signals
in a coherent way. Multimodal fusion refers to the process of integrating these different input modalities
such as voice, touch, gaze, and gestures into unified semantic commands. This enables interfaces to
interpret combined user inputs more naturally and contextually, mirroring how humans often combine
speech and gestures in daily communication.

Closely related, input event modeling abstracts low-level raw data (like finger coordinates, gaze points, or
audio waveforms) into higher-level representations of user intent (such as “select”, “scroll”, or “confirm”).
This abstraction layer serves as an essential bridge between noisy sensor data and actionable interface
responses. By modeling input events at different levels of granularity from raw physical movements to
semantic-level intents systems can reason about user behavior, handle ambiguities, and provide more
robust feedback.

For example, in a health application, simultaneous voice and gaze inputs might be fused to allow a
patient to say “yes” while looking at a confirm button, providing redundancy that improves reliability for
users with motor or speech impairments. Similarly, in VR or AR, interpreting combined hand gestures
and head movements enables more precise object manipulation and scene navigation, which would be
challenging with single-modality input alone.

2.6.1 Fusion Architectures

Several architectures have been proposed to integrate multimodal inputs effectively [2]. Early fusion
approaches combine raw input data at a low level, for example merging voice and gesture signals before
any individual interpretation occurs. While this can enable richer context awareness, it often requires
precise synchronization and robust signal alignment, which can be technically challenging. On the other
hand, late fusion architectures process each modality independently to obtain intermediate interpretations
(such as recognized words or detected hand poses), and then merge these at a semantic level. This
approach tends to be more modular and easier to maintain, as each input channel can be improved or
swapped without affecting the others.

Hybrid fusion combines elements of both early and late strategies, allowing certain low-level signals to
be shared while keeping higher-level interpretation pipelines separate [5, 36]. Choosing an appropriate
fusion architecture is critical for ensuring fluid and error-tolerant interactions. For example, in an adaptive
health app, fusing gaze and speech can enable users with motor impairments to confirm commands more
easily. Similarly, in AR/VR settings, combining hand tracking with eye gaze supports natural object
selection and manipulation.

2.6.2 Event Abstraction Models

Once input signals are fused, systems must convert them into abstracted events that represent user
intent rather than raw movements or spoken words. Event abstraction models define a hierarchy of
events, from primitive input (e.g., ”finger tap at position x,y”) to higher-level semantic commands (e.g.,
”confirm selection”, ”scroll left”, or ”open menu”). This abstraction not only simplifies the logic needed
to respond to different input combinations but also improves the system’s adaptability across platforms
and devices. By mapping diverse physical actions to a common set of abstract commands, a single system
can support a broad range of user abilities and contexts.

Recent work in multimodal interaction design has emphasized the importance of flexible and extensible
event models that can incorporate new modalities without extensive re-engineering [6]. Moreover, in-
tegrating AI-driven models, such as large language models or gesture classifiers, can further enrich the
abstraction process by inferring user intentions from subtle or ambiguous input cues. Together, fusion

32 CHAPTER 2. RELATED WORK

architectures and event abstraction models form a foundation for building robust, adaptive, and inclusive
multimodal user interfaces. As systems continue to evolve, these techniques will play a crucial role in
creating personalized and accessible experiences across devices and environments.

A notable example of semantic event abstraction in real-world interfaces is the work of Dixon et al. [12],
who implemented a general-purpose, target-aware pointing enhancement based on the Bubble Cursor.
Their system uses pixel-level reverse engineering (via Prefab) to identify interface components and over-
lay interaction semantics onto them, allowing the system to interpret raw pointer movement as intent
to interact with semantically meaningful targets even when underlying applications do not expose ac-
cessibility metadata. This layered approach of separating visual identification from interaction intent
closely mirrors the goals of input event modeling in multimodal systems, especially in contexts where
event boundaries are ambiguous or where UI elements are rendered outside standard toolkits.

2.7 LLMs as UI Controllers

Recent advances in large language models (LLMs) have opened new opportunities for bridging natural
language and user interfaces. Traditionally, UI control has relied on explicitly designed event handlers and
rigid APIs, requiring precise user input or structured interaction patterns. LLMs, by contrast, enable
more flexible, high-level interactions that resemble natural human communication, which is especially
promising for non-expert users or contexts where accessibility is crucial.

By leveraging LLMs’ powerful capabilities in understanding and generating natural language, it becomes
possible to control user interfaces using text or voice instructions without needing predefined UI-specific
commands. For example, a user could ask an application to ”show me my upcoming appointments and
move the next one to next week,” and an LLM-based controller can parse this instruction, map it to the
appropriate UI actions, and execute them seamlessly.

This paradigm allows user interfaces to function more like intelligent agents rather than static interaction
surfaces, reducing cognitive load and lowering the technical barrier for interaction. Furthermore, LLM-
driven UI controllers can adapt to user-specific phrasing and preferences over time, learning from previous
interactions to provide more personalized and efficient support.

2.7.1 Turning UIs into APIs

One promising approach to LLM-driven interfaces is conceptualizing user interfaces as implicit APIs.
Instead of interacting with the UI through direct manipulation (e.g., clicking buttons, dragging elements),
the UI’s functionalities are abstracted into callable actions through an adapter layer that can be invoked
through language. This ”UI-as-API” perspective treats every interactive element and functionality as
an endpoint or command that can be described and triggered textually. As demonstrated in recent
research on program synthesis and UI automation like the UICoder referenced earlier [47, 43], LLMs can
be trained to translate high-level instructions into structured API calls or internal code representations.
This enables a two-layered interaction model: the LLM interprets free-form user instructions and maps
them onto the UI’s abstracted actions, which are then executed to update the visible interface.

A significant advantage of this model is that it can help unify interaction modalities. Whether a command
is given via voice, text, or even gesture-based language input, it is ultimately funneled into the same set of
abstracted API calls. This makes interfaces more robust to modality switching and enhances accessibility.
Moreover, turning UIs into APIs facilitates automation and integration with external services, enabling
systems to not only react to individual user commands but also orchestrate multi-step tasks and workflows
automatically. While challenges remain such as handling ambiguous instructions or ensuring robust
error handling and LLM hallucinations, this direction shows strong potential for creating more adaptive,
intelligent, and user-centered interfaces.

2.7.2 Agents

The rise of LLM-based agents represents a powerful evolution of user interface control beyond simple
command mapping. Unlike static UI controllers, agents leverage LLMs to autonomously interpret, plan,
and execute sequences of actions on behalf of users, effectively turning the interface into an intelligent
collaborator rather than a passive tool. These agents can reason about user goals, maintain conversa-
tional context, and dynamically choose the best sequence of interface actions to fulfill complex or vague

2.8. HEALTH AND ACCESSIBILITY APPLICATIONS 33

instructions. For example, an agent might respond to ”Help me prepare for my upcoming trip” by check-
ing the user’s calendar, suggesting packing lists, booking transportation, and even setting reminders all
without requiring the user to explicitly navigate each step.

Recent systems such as OpenAI’s GPT-based function calling, AutoGPT, or tools like Microsoft’s Copilot
and Google’s Duet illustrate how agents can operate over complex applications, combining high-level
reasoning with programmatic UI actions. In research, approaches like ReAct (Reasoning and Acting)
frameworks show how agents can chain thought processes (”chain-of-thought”) and API-level actions in
iterative loops, enabling them to verify outcomes and adapt their behavior [48]. Moreover, LLM-based
agents can incorporate user feedback continuously to refine their behavior, creating highly personalized
assistants that align closely with individual preferences and working styles.

To further enhance their adaptability, modern agents increasingly integrate environment modeling and
multimodal perception, enabling them to not only parse language but also interpret visual interfaces,
sensor data, and user gestures. Frameworks like SeeAct [49] and ViperGPT [41] have demonstrated how
combining vision-language models with action planning allows agents to operate UIs from visual input
alone clicking buttons, reading menus, or navigating unfamiliar applications much like a human would.
This opens doors to agent-driven interfaces for accessibility scenarios (e.g., voice or gaze-controlled UIs),
remote control of complex software, or even autonomous use of standard desktop/web applications.

2.8 Health and Accessibility Applications

Health and accessibility applications represent some of the most impactful and socially significant do-
mains for adaptive and intelligent user interfaces. As populations age and chronic health conditions
become more prevalent, digital health tools are increasingly critical for supporting independence, self-
management, and personalized care. Similarly, accessibility-focused interfaces help reduce barriers for
users with diverse abilities, ensuring equitable access to technology. Modern health applications lever-
age multimodal inputs and adaptive interfaces to create more engaging and supportive experiences. For
example, apps for physical rehabilitation frequently combine motion tracking (via cameras or wearable
sensors) with adaptive visual feedback to guide patients through exercises safely and effectively. Examples
include tools like Kaia Health [42] for musculoskeletal therapy and Reflexion for cognitive and physical
rehabilitation, which adjust exercise difficulty and feedback based on real-time performance data.

In the mental health domain, conversational agents and virtual coaches are becoming increasingly popular.
Applications like Woebot or Wysa utilize natural language processing to provide immediate, conversa-
tional mental health support. By continuously adapting their conversational style and recommendations
to the user’s emotional state and progress, these systems illustrate the power of dynamic, user-centered
design. Research has shown that such adaptive, agent-based interactions can improve adherence and pa-
tient outcomes [17]. Accessibility applications also demonstrate the importance of personalized, context-
aware interfaces. For users with visual impairments, screen readers and AI-powered image descriptions
enable rich content access. Gaze-based or switch-based interaction systems empower users with severe
motor disabilities to control complex interfaces using minimal input. Projects like Apple’s VoiceOver
and Microsoft’s Seeing AI show how integrating multimodal AI into accessibility solutions can drastically
improve daily usability and independence.

Furthermore, combining health and accessibility perspectives opens opportunities for fully personalized
assistive systems. For instance, an intelligent multimodal interface could dynamically adjust text sizes
and contrast for a user with low vision while also simplifying navigation for cognitive accessibility and
providing voice guidance tailored to the user’s speech patterns or preferences. Looking toward future
developments, advances in virtual reality (VR) and immersive technologies can further enhance these
assistive systems. In VR-based rehabilitation, for example, adaptive multimodal interfaces can create
engaging, safe, and highly individualized therapy environments, dynamically adjusting exercise difficulty,
feedback modalities, and visual cues to match each patient’s needs and progress. Such systems show
promise for applications ranging from motor skill recovery after stroke to anxiety reduction and pain
management.

34 CHAPTER 2. RELATED WORK

Chapter 3

System Design and Architecture

3.1 Introduction to System Design

The adaptive multimodal GUI framework developed in this thesis is designed to deliver personalized,
accessibility-focused interface adaptations in real time. It builds on the idea that different users have
different needs, and that these needs can change depending on context, device, and input modality.
By combining multiple input channels such as touch, voice, and gestures with AI-driven reasoning, the
framework can adapt interfaces in a way that is both responsive and context-aware.

The architecture follows a three-layer design. The frontend layer renders the user interface, captures user
interactions, and applies adaptations as instructed by the backend. The input adapter layer standardizes
events across modalities into a common JSON schema, ensuring consistent processing regardless of their
origin. The backend layer processes these events using Smart Intent Fusion (SIF), which combines rule-
based logic with multi-agent LLM reasoning to generate targeted adaptations. This layered approach was
chosen to ensure modularity, scalability, and extensibility for future modalities. By separating concerns
across layers, the framework can easily integrate new input methods or adapt to different platforms
without significant rework. Each layer can evolve independently, allowing for targeted improvements and
innovations.

This chapter presents the framework at a conceptual level, focusing on its architecture, data flow, goals
and key design principles. Detailed implementation aspects, such as widget properties, SIF, API routes,
or database queries, are deferred to Chapters 4 and 5.

3.2 Overview of the System Architecture

The framework follows a three-layer architecture that was chosen and designed to be modular, scalable,
and adaptable to diverse accessibility needs. Each layer has a clearly defined role and communicates with
the others through a common JSON-based event and adaptation format. This separation of responsi-
bilities makes it possible to extend or replace individual components without disrupting the rest of the
system, and ensures that adaptations can be applied consistently across platforms and modalities.

At the top, the Frontend Layer is responsible for rendering the user interface, capturing interactions,
and applying adaptations received from the backend. The input adapter layer sits between the frontend
and backend, converting raw interaction data from multiple modalities into the shared JSON schema so
that all events are processed in the same way. The backend layer implements the Smart Intent Fusion
(SIF) process, combining event data, user profiles, and recent interaction history to produce personalized
adaptation actions. The backend can rely on both deterministic rules and multi-agent LLM reasoning,
described in detail in Chapter 4. The system is built around a feedback loop. Each user interaction is
captured, processed, and logged along with the resulting adaptation. This log contributes to the user’s
profile and informs future adaptation decisions, allowing the interface to become progressively more
personalized over time.

To illustrate this flow in practice, consider a motor-impaired user attempting to press a “Lock” button. If
the tap misses its target, the event is sent through the adapter, recognised as a miss-tap, and forwarded

35

36 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

to the backend. SIF responds by generating an adaptation that increases the size and spacing of the
button. The frontend receives this instruction and animates the change in real time. For a hands-free
user, the process might begin with a spoken command to “turn on the lamp.” The voice input is captured,
standardised, and sent to the backend, which returns instructions to switch the UI into voice mode and
activate the lamp control.

Frontend Layer

Input Adapter Layer

Backend Layer

UI
Cards, Buttons, Sliders

Event Hooks
onTap / Voice / Gesture

Apply Adaptations
Size, Contrast, Navigation mode

Standardise Events
JSON schema

Transport
WebSocket / HTTP

Smart Intent Fusion (SIF)
Rules + LLM Fusion

Profile & History Adaptation Output
standardised JSON schema

interactions

raw inputs

in-process WebSocket

Figure 3.1: High-level architecture flow: frontend events are standardised and sent to the
backend, where reasoning fuses user context and generates adaptation outputs for the UI.

3.2. OVERVIEW OF THE SYSTEM ARCHITECTURE 37

The high-level architecture diagram (Figure 3.1) illustrates the event flow from the Frontend Layer,
where user interactions are captured, through the input adapter layer that standardizes events into a
JSON schema, and onward to the backend layer for Smart Intent Fusion (SIF) reasoning. Adaptation
outputs are sent back to the frontend via WebSocket for real-time UI updates, while HTTP endpoints
handle profile management and non-interactive operations. The diagram highlights clear separation
of responsibilities, modular extensibility for new modalities or reasoning agents, and platform-agnostic
communication, ensuring that the event-adaptation pipeline remains robust and easily extendable across
domains.

Key Design Principles:

• Modularity: Layers can be swapped or upgraded independently.

• Scalability: Async processing and MongoDB indexing handle high interaction volumes.

• Generalizability: Platform-agnostic design enables deployment in domains from smart homes to
healthcare.

• Accessibility Focus: All adaptations are guided by WCAG 2.1 and target motor-impaired, visu-
ally impaired, and hands-free users.

The most challenging aspect of this design is ensuring seamless communication between layers while
maintaining low latency for real-time adaptations, as well as carefully integrating LLMs as a central
component for processing and understanding user intents. This will bring challenges on its own such
as hallucinations or misinterpretations of user input. Making sure the LLM accurately captures user
intent and context is crucial for effective adaptations. Prompt engineering and careful design like fallback
options will be essential to mitigate these issues.

3.2.1 Accessibility Focus and Target User Groups

While the framework is general enough to support a wide range of adaptive UI scenarios, its design in
this thesis is intentionally centered on three key user groups: motor-impaired, visually impaired, and
hands-free users. These groups were chosen because they represent distinct accessibility challenges that
can be addressed effectively through multimodal interaction and real-time adaptation.

Motor-Impaired Users Motor impairments can make precise pointing, dragging, or rapid tapping
difficult. For these users, repeated failed attempts at interacting with a UI element (e.g., a small button)
can lead to frustration and reduced task completion rates. The framework addresses this by detecting
such patterns and applying adaptations like enlarging target sizes, increasing hitbox areas, or enabling
alternative input modes such as voice or gesture. These adaptations can be applied temporarily (for the
current session) or persistently (as part of the user’s profile), depending on the severity and frequency of
the interaction difficulties.

Visually Impaired Users Users with partial vision loss or low contrast sensitivity often struggle
with visual elements that rely on small fonts, thin borders, or subtle colour differences. Here, multimodal
fusion is key: the system can combine direct interaction data with profile information to infer when visual
feedback is insufficient, then automatically apply high-contrast themes, larger font sizes, or additional
visual cues such as highlighted borders. Because the framework operates in real time, these adaptations
can be triggered dynamically when needed, rather than requiring a static accessibility mode to be enabled
manually.

Hands-Free Users Some scenarios, whether due to physical impairment, temporary constraints (e.g.,
carrying items), or task context (e.g., sterile environments) require interfaces that can be operated without
direct touch. For these users, the framework supports voice, gesture, and potentially gaze-based inter-
actions. Multimodal fusion allows these input channels to work in combination, reducing ambiguity and
improving accuracy. For example, a voice command like “turn on the lamp” can be paired with a pointing
gesture to confirm the target device, speeding up the interaction and avoiding false positives.

Why These Groups? These three categories were selected because they cover a spectrum of accessibil-
ity challenges that benefit significantly from adaptive, multimodal design: precision (motor), perception
(visual), and modality flexibility (hands-free). Each presents distinct technical requirements for sensing,

38 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

reasoning, and adapting the interface, making them strong drivers for evaluating the framework’s capa-
bilities. By focusing on these groups, the system demonstrates how a single architectural approach can
address varied accessibility needs while remaining extensible to other user categories in future work.

3.2.2 Accessibility Grounding and Adaptation Rationale (WCAG 2.1/2.2)

SIF’s adaptation catalog is not arbitrary. Each action is chosen to operationalise specific WCAG success
criteria for motor, visual, or hands-free use. This anchors the framework in established guidance and
keeps it portable across platforms. Table 3.1 lists the core adaptations, their intent, and the criteria they
support.

Table 3.1: Adaptations mapped to WCAG criteria and intent.

Adaptation Rationale / User Need WCAG Support (2.1/2.2)

Increase button size /
hit area

Reduces miss-taps for motor-impaired
users; improves target acquisition on
touch

2.5.5 Target Size (Enhanced) (2.1);
2.5.8 Target Size (Minimum) (2.2)

Increase contrast (UI +
controls)

Improves legibility and component dis-
cernibility for low vision

1.4.3 Contrast (Minimum); 1.4.11
Non-text Contrast

Increase text size / scale Supports users with low vision and read-
ing difficulty without loss of content/-
function

1.4.4 Resize Text ; 1.4.10 Reflow (in-
directly, via responsive layouts)

Highlight focus / outline
targets

Makes focus location and actionable el-
ements clear for keyboard/assistive tech

2.4.7 Focus Visible; 2.4.13 Focus Ap-
pearance (Minimum) (2.2)

Switch to voice mode
(hands-free)

Provides an alternative input when
touch precision is poor or hands are un-
available

2.1.1 Keyboard (alternative input
availability); 2.5.1 Pointer Gestures
(avoid complex gestures)

Simplify layout / in-
crease spacing

Reduces cognitive and motor load; pre-
vents accidental activation of adjacent
controls

Supports 1.3.2 Meaningful Sequence;
contributes to 2.5.8 target spacing
(2.2)

Tooltips / contextual
hints

Aids discoverability and error recovery
without relying solely on vision or pre-
cision

3.3.1 Error Identification (indirect);
general usability aid aligned with
WCAG intent

How this is used in SIF. Profiles and recent history decide when to apply an adaptation; WCAG
mapping decides which adaptation is appropriate and safe by default. For example, repeated miss-taps
near a small control will raise hit area (2.5.5/2.5.8) and optionally increase contrast (1.4.11) if the profile
flags low vision. Hands-free profiles lower the threshold for switch mode: voice to satisfy alternative
input availability (2.1.1).

3.3 Frontend Layer: UI Design and Interaction

The Frontend Layer is the user-facing component of the framework, responsible for rendering an adap-
tive and personalized interface that adjusts dynamically to user needs. Designed for cross-platform
deployment, it captures multimodal interactions such as touch, keyboard, voice, or gestures and applies
adaptations returned from the backend in real time.

In this thesis, the frontend is demonstrated through the Adaptive Smart Home Controller, a deliberately
chosen example that offers both familiarity and a variety of interaction types. The smart home context
provides a set of clear, relatable tasks such as switching on a light or adjusting a thermostat that can
be adapted for users with motor, visual, or input-related impairments. This use case also highlights the
framework’s potential for deployment in other domains where accessibility is a priority.

3.3.1 Interface Elements

The frontend incorporates a set of core UI elements chosen to balance simplicity with the ability to
demonstrate a wide range of adaptations. Together, they form a complete interface that could plausibly
be used in real-world scenarios, while remaining portable across platforms. Conceptually, these elements
can be grouped into three categories:

3.4. INPUT ADAPTER LAYER: MULTIMODAL INPUT PROCESSING 39

1. Action controls: for example buttons or sliders, which allow users to manipulate device states or
settings.

2. Information displays: such as text labels, which convey device status or contextual feedback.

3. Organisational elements: such as cards or list views, which group related controls for clarity
and ease of navigation.

These categories were selected because they cover the most common interaction and accessibility chal-
lenges. Action controls benefit from size and spacing adjustments for motor-impaired users, information
displays can be adapted with text resizing or high-contrast themes for visually impaired users, and or-
ganisational elements help reduce cognitive load by presenting related controls together.

3.3.2 Adaptation Levels

For this thesis and its implementation, adaptations in the frontend can be understood at three conceptual
levels:

1. UI-Level Adaptations: which modify the appearance of visible elements to improve clarity or
ease of interaction.

2. Geometry-Level Adaptations: which adjust layout and spacing to reduce input errors or sim-
plify navigation.

3. Input-Level Adaptations: which alter the way users interact with the interface, for example by
switching to a voice-driven mode.

While the precise mechanics of how these adaptations are implemented, triggered and applied are de-
scribed in Chapter 5, the design principle remains the same: each change should be both functional and
clearly communicated to the user, reinforcing trust and improving interaction efficiency. These high-level
principles guide the implementation of the SIF framework, ensuring that adaptations are user-centered
and context-aware.

3.4 Input Adapter Layer: Multimodal Input Processing

The Input Adapter Layer acts as the middleware between the user-facing frontend and the reasoning
backend, it takes care of bidirectional communication between both layers. Its main role is to take raw
interaction data from any modality such as touch, keyboard, voice, or gestures and transform it into
a standardised format that the backend can process consistently and vice versa for the frontend. By
separating input capture from input interpretation, this layer allows the rest of the system to operate
independently of how the input was generated, making it easier to add new modalities in the future (see
Figure 3.2 for high-level flow diagram).

Central to this layer is the JSON Event Contract, architecturally this is exposed through the Adaptive
UIAdapter class, which defines the public interface for sending interaction data to the backend. The
primary entry point is the sendEvent(Event eventData)method. This method accepts an Event object,
the framework’s internal representation of a user interaction, and is responsible for enriching it with
contextual information before forwarding it to the backend.

The Event class acts as the architectural contract for interaction data. While its exact schema is defined
in the implementation (Chapter 5), at the design level it contains:

• Event type: the category of interaction, such as a tap, miss-tap, slider miss, or voice command.

• User ID: a unique identifier for the user interacting with the system.

• Timestamp: the time when the event occurred.

• Source modality: the origin of the event (touch, keyboard, voice, gesture, etc.).

• Target element: the UI element or control associated with the event.

• Coordinates: spatial information where applicable, for example the location of a tap.

• Confidence score: a value indicating the certainty of the detected intent.

40 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

• Metadata: optional context such as UI element type (e.g., button, slider) and more.

By enforcing this structure, the adapter guarantees that all events passed to the backend follow the same
rules, whether they come from Flutter, SwiftUI, or a future Unity-based frontend.

The adapter also handles profile verification and creation before sending events. This step ensures that
the backend always has a corresponding user profile for contextual reasoning. If the profile does not exist,
the adapter triggers its creation using default accessibility settings or a new user profile. These profiles are
also bound by a JSON contract to ensure consistency, this design is described in Chapter 4. Furthermore,
for low-latency adaptation feedback, events are transmitted via a persistent WebSocket connection, while
non-real-time operations such as profile updates, HTTP endpoints are used instead.

Lastly, the adapter manages adaptations returned by the SIF backend layer by listening to the WebSocket
channel. When the backend sends adaptation instructions, which is represented in its own JSON contract
(in more detail described later), the adapter maps it to an internal representation based off of the JSON
contract that can be easily processed by the frontend. This Adapter pattern design is deliberately chosen
and platform-agnostic. Although the current implementation is in Dart for Flutter, the architectural
pattern can be replicated in any language or platform by implementing the same sendEvent() contract
and adhering to the same event object structure. This separation means that adding a new modality, such
as eye tracking or brain-computer interfaces, only requires implementing the modality’s input capture and
mapping it to the existing Event format, no changes are needed to the backend or reasoning logic.

Touch

Keyboard

Voice

Gesture

Frontend Inputs

Event
timestamp, user id, target

JSON Contract

sendEvent(Event)

Transport
WS / HTTP

Input Adapter Layer

SIF Backend

Frontend Apply
Map adaptations

Output to UI

Backend

events

adaptations

in-process WebSocket HTTP

Figure 3.2: High-level flow of the Input Adapter Layer

3.5 SIF Backend Layer: Smart Intent Fusion (SIF)

The SIF backend layer is the reasoning core of the framework, responsible for turning raw user interactions
and contextual information into targeted UI adaptations. Operating behind the input adapter, it receives
events in the standard JSON contract format and turns them into an internal structured representation
(Event object), combines them with the user’s profile and recent interaction history. This forms the basis
for the LLM prompts, next it determines the most appropriate changes to apply to the interface using
LLM reasoning.

From an architectural perspective, this layer has two main responsibilities:

• Processing and interpretation: validating incoming events, interpreting their intent, and pri-
oritising them according to context.

• Adaptation generation: producing a set of structured adaptation actions in a JSON contract
that the frontend can apply directly.

The backend is designed to support multiple reasoning strategies. In its current form, it combines deter-
ministic rules with a multi-agent LLM process called Smart Intent Fusion. Rules handle straightforward
accessibility needs; for example, increasing button size after a miss-tap, while the LLM process enables
more context-aware adaptations that consider multiple factors simultaneously.

Although the underlying logic is covered in detail in Chapter 4, the architectural position of this layer is
central in this framework: it serves as the decision-making hub, fed by standardised events from the input

3.6. USER PROFILES AND CONTEXT MODELING 41

adapter, and returning validated adaptations to the frontend in near real time. This separation allows
the reasoning configuration to be changed easily; for example, by swapping models, refining prompts, or
integrating new agents without changing the structure of the rest of the framework.

3.6 User Profiles and Context Modeling

User profiles form the backbone of the framework’s personalisation capability. They store accessibility
preferences, interaction patterns, and contextual data that allow the system to adapt the interface to an
individual’s needs over time. The profile is not a static record, it evolves as the user interacts with the
system, incorporating both explicit configuration and implicit observations from their behaviour.

Architecturally, the profile contains three types of information:

• Static attributes: such as preferred font size, contrast settings, or dominant input modality,
which may be set during initial onboarding.

• Learned preferences: derived from patterns in the user’s interactions; for example, frequent
miss-taps on small controls may trigger a persistent increase in their size.

• Contextual data: including recent interaction history and device environment details, which help
the backend reason about the most appropriate adaptations in a given moment.

When a new event is processed, the backend combines it with the relevant profile and context data before
passing it to the reasoning logic. This ensures that adaptations are not just reactive to the most recent
input, but also informed by longer-term patterns and situational factors.

The architecture treats profiles as a shared resource between all layers:

• The input adapter ensures that the correct user profile is referenced with every event, as well as
creating or updating the profile when necessary.

• The backend updates profiles automatically as adaptations are applied or feedback is received.

• The frontend can query profile data to adjust default UI settings before any adaptations are
applied.

By integrating profile and context information into every stage of the adaptation pipeline, the framework
moves beyond static changes and supports continuous, data-driven personalisation. The specific data
schema, storage mechanisms, and update strategies are described in detail in Chapters 4 and 5.

3.7 Dynamic Adaptation Mechanisms

The dynamic adaptation mechanisms are the part of the framework responsible for translating reasoning
outputs from the backend into real-time, personalized changes for the user interface. Operating within
the SIF backend layer, they take standardised events from the input adapter, combine them with profile
and context data, and decide on the most suitable adaptation. These decisions are returned as structured
actions to the input adapter, which maps the JSON contract to an internal representation that is then
applied immediately by the frontend using callbacks.

At the architectural level, the adaptation process follows a continuous feedback loop. Every interaction
is captured, processed, and logged, with the resulting adaptations influencing how the interface behaves
in the future. This allows the system to progressively refine its responses, ensuring that changes are not
only reactive but also shaped by longer-term usage patterns.

3.7.1 Adaptation Pipeline

The adaptation pipeline follows a structured lifecycle from input capture to UI update, and can be viewed
as four main stages (Figure 3.3):

1. Event reception and context gathering: Inputs from any modality are captured, standardised,
and sent to the backend. The backend retrieves the associated user profile and recent history to
build a complete context for reasoning.

42 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

2. Intent interpretation: The backend analyses the combined event and context, using both deter-
ministic rules and LLM-based reasoning to infer the most likely user intent.

3. Adaptation Generation: A set of structured actions is produced, describing changes to be
applied to the interface. These may involve modifying the visual presentation, adjusting interaction
geometry, or altering input modes. SIF employs:

• Rule-Based Logic: Deterministic rules provide fast, reliable adaptations for common sce-
narios (mostly used for a reliable backup).

• LLM Reasoning: The AI model infers complex intents and generates creative adaptations
for the user.

• Heatmap Analysis: Simulated via history counts, prioritizes problems with frequently in-
teracted elements (e.g., repositioning elements after multiple taps).

4. Application and logging: The frontend applies the adaptations immediately, while the backend
logs both the event and its outcome for future learning.

Input Event
+ Context Gathering

Intent Interpretation
(rules + LLM)

Adaptation Generation
(actions)

Apply & Log
(UI update, logging)

Figure 3.3: Adaptation pipeline flow.

3.7.2 Supported Adaptation Actions

The framework supports a defined set of adaptation types that cover common accessibility needs. These
include scaling or spacing adjustments for improved touch accuracy, font and contrast changes for better
readability, and modality switches for hands-free interaction. The action set is deliberately kept broad
enough to handle varied contexts, yet constrained enough to ensure reliable rendering across platforms
(more details in Chapter 5).

3.7.3 Continuous Learning and Feedback Loop

A central design principle is that adaptations are not static changes. The system maintains a history
of recent interactions for each user, enabling it to identify recurring patterns such as frequent miss-taps
or repeated modality switches. When such patterns are detected, the backend can suggest persistent
adjustments; for example, permanently enlarging a frequently used UI element, reducing the need for
smaller repeated actions.

3.7.4 Design Considerations

• Accessibility Focus: All supported actions are chosen to address motor, visual, and input-related
impairments, ensuring that adaptations enhance rather than complicate interaction.

• Real-Time Performance: Low-latency communication ensures that adaptations are applied
quickly enough to feel seamless.

• Reliability: Rule-based logic ensures that adaptations continue to function even if LLM-based
reasoning is temporarily unavailable.

• Extensibility: The action set and event format are flexible enough to incorporate new adaptation
types and modalities in future deployments.

By combining immediate, context-aware changes with a persistent feedback loop, the dynamic adaptation
mechanisms give the framework its ability to evolve alongside the user’s needs, making it more effective
over time.

3.8 Chapter Summary

This chapter has presented the system design and architecture of the multimodal AI-driven framework for
dynamic UI adaptation, focusing on its ability to deliver personalized, accessibility-oriented solutions for

3.8. CHAPTER SUMMARY 43

motor-impaired, visually impaired, and hands-free users. The framework is built around a modular three-
layer architecture: the Frontend Layer, Input Adapter Layer, and SIF Backend Layer that enables the
seamless integration of multiple input modalities, including touch, voice, and gestures, and the delivery
of real-time UI adaptations.

The architectural design emphasises modularity, scalability, generalisability, and accessibility, creating
a solid foundation for extension into other domains such as healthcare and gaming. Communication
between layers is handled through WebSocket for low-latency updates and HTTP for reliable profile
and debugging operations, while MongoDB and a standardised JSON contract ensure scalability and
flexibility in storing and processing interaction data. Together, these elements provide a framework
capable of addressing real-world accessibility needs today.

44 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

Chapter 4

Smart Intent Fusion (SIF)

4.1 Introduction to Smart Intent Fusion

Smart Intent Fusion (SIF) is the central intelligence layer of the proposed multimodal AI-driven UI
adaptation framework, responsible for transforming raw, heterogeneous user input signals into concrete,
context-aware interface adaptations. Where the Frontend Layer renders the UI and the Input Adapter
Layer standardizes events, SIF performs the reasoning step. Architecturally, SIF occupies the central
position in the adaptation loop, receiving standardised events from the Input Adapter Layer, combining
them with user profile and context data, and returning validated adaptations back to the frontend for
immediate application. This placement ensures that every adaptation decision is both context-aware
and modality-agnostic, allowing the framework to maintain consistent behavior regardless of how the
interaction was initiated. It fuses current interaction data with user profiles, accessibility requirements,
and recent interaction history to infer the user’s underlying intent and translate this into actionable UI
changes.

The motivation for SIF stems from a simple but critical challenge in accessibility-focused HCI: users
rarely interact with a system through a single, perfectly clean input channel. Instead, interactions are
often multimodal, noisy, and incomplete. A motor-impaired user may miss-tap a button but also issue
a supporting voice command. A visually impaired user may attempt to activate a control by gesture
but with low confidence, relying on high-contrast cues to complete the action. Traditional rule-based
adaptive systems tend to process these signals independently, missing the opportunity to combine them
into a unified, more reliable understanding of the user’s goal.

SIF addresses this gap through a hybrid reasoning approach:

• Rule-based logic handles deterministic adaptations for example, “if miss tap on target → increase
size by 1.5×” ensuring baseline accessibility support and fast response times even without AI
availability.

• LLM-driven reasoning can process richer multimodal context and can propose creative or proac-
tive adaptations that go beyond fixed rules such as switching to voice mode after repeated input
struggles, or combining voice + gesture input to trigger a button instantly.

• Multi-Agent SIF (MA-SIF) extends this further by distributing reasoning across specialised LLM
agents (UI, Geometry, Input or more) and validating results through a dedicated Validator Agent
to reduce hallucinations and conflicting actions as well ensuring the necessary validation.

The SIF layer sits behind well-defined APIs:

• WebSocket endpoint /ws/adapt for low-latency, real-time adaptation suggestions.

• HTTP endpoints like /profile for profile management, or /full history for developer tooling
and debugging.

These endpoints use a strict JSON contract, making it easy for any frontend platform to connect and
work with the backend. This ensures that the system remains flexible and can handle different input
modalities.

45

46 CHAPTER 4. SMART INTENT FUSION (SIF)

A defining feature of SIF is its integration with persistent user profiles stored in MongoDB. These profiles
encapsulate three layers of information: static attributes such as preferred font size or contrast mode,
learned preferences derived from recurring interaction patterns, and contextual data including recent
history and environmental details. By merging these dimensions with each incoming event, SIF can make
decisions that are not only responsive to the user’s current action but also aligned with their long-term
accessibility needs. By fusing this profile data with incoming events, SIF maintains a continuous person-
alization loop progressively adapting the UI to match the user’s abilities and context over time.

For example:

• A profile with motor impaired: true will bias adaptations towards larger controls and simplified
layouts.

• Repeated history of slider misses may lead to permanent slider thumb enlargement.

• A hands-free preference can automatically promote voice/gesture-driven navigation in relevant con-
texts.

In the context of this thesis, SIF is not only an internal backend feature, it is the core research contribution.
The remainder of this chapter expands on the theoretical underpinnings of SIF, its integration with
user profiles and multimodal fusion, the prompt engineering strategies for guiding LLM behavior, the
architecture of its multi-agent extension, and the performance metrics used to evaluate its effectiveness.

Input Adapter Layer
(JSON event)

Profile & History
(MongoDB)

SIF Reasoning
(Rules + LLM + MA-SIF)

Adaptation Output
(JSON to adapter to Frontend)

event

enrich context

adaptation(s)

Figure 4.1: Abstract event flow in Smart Intent Fusion: events from the Input Adapter
are enriched with profile/context, processed by rule-based and LLM/MA-SIF reasoning, and
returned as adaptation outputs to the frontend.

4.2 Theoretical Foundations of Smart Intent Fusion

The idea behind Smart Intent Fusion is simple:
users don’t interact with a UI in one clean and perfect way. In real life, inputs are messy, mixed, and
often incomplete. A person might tap the wrong spot on a button, then say a voice command to make
sure it worked. Someone using gestures might point at something but not be perfectly accurate, so they
rely on extra visual cues to finish the task. A lot of current adaptive systems still process these signals

4.2. THEORETICAL FOUNDATIONS OF SMART INTENT FUSION 47

separately, and that means they miss the chance to combine them into a clearer picture of what the user
actually wanted.

Smart Intent Fusion tries to fix that by taking all the inputs together: touch, keyboard, voice, gestures
and mixing them with what the system already knows about the user (their profile, their history of
interactions, and their accessibility needs). This way, it can guess the real intent and adapt the UI in the
most helpful way.

4.2.1 Multimodal Fusion

In HCI, “multimodal fusion” just means combining different types of input to get a more reliable or richer
understanding of the user’s action.
This can be done in a few ways:

• Early fusion: merge the raw signals before interpreting them (e.g., combining the coordinates of
a tap with the audio of a voice command immediately).
→ Useful when two inputs happen at the exact same moment.

• Late fusion: process each input type separately first, then merge the interpreted results (e.g.,
“voice command = unlock” + “miss-tap near unlock button” → final decision = trigger Unlock
button).
→ This is where most SIF reasoning happens.

• Hybrid fusion: a mix of both, sharing some data early but also combining results later.
→ Used when one modality’s data can make another modality’s interpretation more accurate.

SIF uses the hybrid approach. The Input Adapter Layer already standardizes each input into a clean
JSON format, but the fusion step happens in the backend where the current event, past history, and
profile are all processed and fused together. This makes it possible to combine patterns like “miss-tap +
voice command” into one clear adaptation. In the overall architecture described in Chapter 3, this fusion
step is the bridge between raw input handling and adaptation generation. By sitting in the backend,
SIF can remain entirely modality-agnostic while still benefiting from the structured event format defined
by the Input Adapter Layer. This ensures that even when new input methods are introduced in the
future, the fusion logic can remain unchanged, relying on the same JSON schema and profile-context
pipeline.

4.2.2 Intent Inference

The main goal of SIF is not just to log inputs, but to figure out why the user did them. This is called
intent inference. In other words, we want the system to answer the question: “What was the user trying
to do?” If the system knows the intent, it can choose the best adaptation. The inference process is
always profile-aware. Each decision is informed by a combination of static preferences (such as font size
or contrast mode), learned patterns from past usage (such as repeated difficulty with sliders), and short-
term contextual data (such as the most recent interactions). This means that two users producing the
same input sequence could receive different adaptations if their profiles and histories differ, keeping the
interaction completely personalised.
For example:

• If the intent is to press “Unlock” but the user misses, the adaptation could be to enlarge the button
and trigger it right away.

• If the intent is to adjust a thermostat but the user struggles with the slider, the adaptation could
be to switch to voice control and increase the slider size.

This is where LLMs can help. They are good at reasoning about context, combining clues, and filling in
gaps when inputs are unclear. The downside is that they can be slow, be costly to run, and sometimes
“hallucinate” an answer that doesn’t make sense even if it’s not defined in the prompt. That’s why SIF
uses a hybrid approach:

• Rules handle clear, simple cases with instant feedback.

• LLM reasoning handles more complex or ambiguous cases.

48 CHAPTER 4. SMART INTENT FUSION (SIF)

4.2.3 Why Hybrid Works Best

A purely rule-based system is predictable but rigid. It can only respond to situations that were thought
of in advance. A purely LLM-based system is flexible but not always reliable, especially when it needs
to work in (close to) real-time for accessibility. By combining both:

• The rules guarantee that basic accessibility changes (like increasing size after a miss-tap) always
work. For example:

IF event_type == "miss_tap" AND profile.motor_impaired == true

THEN action = increase_button_size(target, 1.5)

• The LLM adds creativity and can adapt to situations the rules didn’t cover, like combining unusual
input patterns, proposing a mode switch for hands-free use or even something entirely new.

4.2.4 Connection to Accessibility

The whole point of this is to improve accessibility for different kinds of users:

• Motor-impaired: combine multiple input signals to avoid repeated failed attempts.

• Visually impaired: recognize when visual feedback is not enough and trigger higher-contrast or
bigger fonts automatically.

• Hands-free: allow combinations like voice + gesture to instantly activate actions.

In short, the theoretical base for SIF comes from multimodal fusion, intent inference, and hybrid reason-
ing. These ideas are not new in HCI, but this framework applies them with a strong focus on accessibility
and personalization, and makes them work in real-time with cross-platform UI code. For example, a
motor-impaired user who misses a lock button twice and then issues a voice command might trigger a
combined adaptation: the UI immediately enlarges the button for future taps, but also switches the inter-
face to voice-first mode for the current session. This ability to layer short-term fixes on top of long-term
adjustments is what makes SIF more than just a reactive system, it is a continuously learning adaptation
layer.

4.3 User Profile and Context Integration

For Smart Intent Fusion to be truly “smart,” it needs more than just the current event it is processing.
If SIF reacted to every tap, voice command, or gesture without knowing who the user is or how they
usually interact, it would behave like a generic accessibility script rather than a personalised adaptation
system. That’s why the user profile and interaction context form the backbone of the reasoning process.
They give SIF a sort of memory/personality, and the ability to adapt over time, not just in the moment.
When a new event comes in like a tap, miss-tap, voice command, or gesture, SIF doesn’t look at it in
isolation. It combines that event with:

1. The user profile – a stored record in MongoDB with accessibility flags, preferred modalities, and
UI settings.

2. Interaction history – the last 10 events that show patterns or repeated problems.

3. Current UI context – optional metadata about what’s on screen, where buttons are placed, and
their sizes.

This means SIF can make decisions that are personal and context-aware, not just reactive.

4.3.1 User Profiles

A user profile stores the information that makes one person’s interaction style different from another’s.
This can include accessibility needs (motor-impaired, visually impaired, hands-free preferred), preferred
input modalities, and baseline UI settings like font size, contrast mode, and button scale. It can be seen
as the memory of the system. When combined with a short history of recent interactions, this profile
turns SIF from a static decision engine into a continuous learning system.

4.3. USER PROFILE AND CONTEXT INTEGRATION 49

Without profiles, SIF could still make adaptations, however they would always be reactive and temporary.
For example:

• If a user with tremors keeps missing a button, the button might get enlarged for that session, but
as soon as they restart the app, it would shrink back.

• If a user prefers voice input, SIF wouldn’t know to automatically switch to voice mode when they
struggle with touch, instead it would have to come up on its own that this switch is needed for this
user.

Profiles ensure these adaptations stick and get better over time.

4.3.2 User Profile Structure

In the backend, each profile is a JSON document in the profiles collection of a MongoDB database.
It’s indexed by user id so the system can look it up instantly whenever a new event arrives. A typical
structure looks like this:

1 {
2 "user_id": "user_123",

3 "accessibility_needs": { "motor_impaired": true },
4 "input_preferences": { "preferred_modality": "voice" },
5 "ui_preferences": { "font_size": 16 },
6 "interaction_history": [

7 { "action":"increase_button_size", "target": "all", "value": 1.2 },
8 { "action":"increase_font_size", "target": "all", "value": 1.1 }
9]

10 }

Listing 4.1: Simplified User Profile Example

This design keeps it simple but flexible. Architecturally, each profile contains:

• accessibility needs: flags that tell SIF what kind of adaptations to prioritize.

• input preferences: helps the system decide which modality to switch to when needed.

• ui preferences: baseline visual parameters such as font size and contrast mode.

• interaction history: capped log of recent events to support continuous learning.

MongoDB’s indexing means the profile can be retrieved in milliseconds, even with a large user base, and
capped histories ensure lookups are fast.

4.3.3 How Profiles Affect Decisions

When an event comes in, the backend follows a clear process:

1. Load the profile from MongoDB using the user id. If it doesn’t exist yet, create a new default
profile.

2. Combine the event with the last few interactions from the history.

3. Pass the profile, history, and current event into the Smart Intent Fusion reasoning step.

This context completely changes how SIF decides on adaptations.

Some examples of influenced decisions:

Example 1: Motor-impaired user with repeated miss-taps
If the last three events in history are miss-taps on the same “Unlock/Lock” button, and motor impaired

is true in their profile, SIF might do two things at once:

50 CHAPTER 4. SMART INTENT FUSION (SIF)

1 [

2 {"action": "increase_button_size", "target": "button_unlock", "value": 1.5,

↪→ "reason": "Multiple miss-taps detected, enlarging button for better

↪→ accessibility"},
3 {"action": "highlight_border", "target": "button_unlock", "reason": "Increase

↪→ button visibility for the user"}
4]

Listing 4.2: Possible motor-impaired user adaptations

Without the profile, it might have just enlarged the button once and moved on.

Example 2: Hands-free preferred user A user with "hands free preferred": true points at a
device card (gesture) and says “turn on the lights.” SIF reasoning can fuse these into:

1 {
2 "action": "trigger_button",

3 "target": "button_light",

4 "reason": "Gesture pointing + voice ’Turn on the lights’ detected for

↪→ hands-free user",

5 "intent": "Activate Lights"

6 }

Listing 4.3: Hands-free user intent fusion

Because of the profile, SIF is confident enough to trigger the button immediately without asking for
physical confirmation.

4.3.4 Continuous Learning from History

Profiles are not static. Every interaction is logged in the interaction history and can influence future
decisions. The interaction context can be seen as the system’s short-term awareness. This makes SIF
a learning system:

• If a user keeps manually enabling high-contrast mode, the system can update contrast mode in
their profile so it’s always on by default.

• If increasing a button size significantly reduces miss-taps, that size can become the new permanent
baseline in ui preferences.

• If switching to voice mode solves repeated touch struggles, the profile can be updated to favor voice
by default.

This feedback loop means the user doesn’t need to “train” the system manually, it adapts naturally
as they use it. If SIF only looked at the current event, it would miss important patterns and make
short-sighted decisions. With profile + history + event combined:

• Adaptations can be proactive instead of reactive.

• The UI can stay consistent between sessions.

• The system can learn what really helps the user over time.

From an accessibility perspective, this is the difference between a generic interface that occasionally helps
and a personalised tool that feels like it understands the user.

4.3.5 Role in Accessibility

User profiles are the backbone of accessibility-focused adaptations in this framework. They act as a
persistent memory of the user’s abilities, preferences, and interaction challenges, enabling the system

4.4. MODELING MULTIMODAL INPUT FUSION 51

to make targeted, proactive adjustments rather than relying solely on short-term reactive changes. By
storing explicit accessibility flags alongside learned behavioral patterns, profiles allow SIF to tailor the
interface to an individual user in ways that are both short-term and long-term.

From an accessibility perspective, profiles influence SIF’s reasoning in three key user categories:

• Motor-Impaired Users: Profile flags such as motor_impaired: true prioritize adaptations that
reduce fine motor precision requirements. This can include:

– Enlarging touch targets (buttons, sliders) and increasing spacing to prevent accidental taps.

– Offering alternative modalities such as voice commands or keyboard navigation to bypass touch
interaction altogether.

– Retaining enlarged target sizes across sessions once repeated miss-taps are detected.

• Visually Impaired Users: When visual_impaired: true is set, adaptations aim to maximise
visual clarity. Examples include:

– Switching to high-contrast themes and bold color schemes to align with WCAG 2.1 contrast
requirements.

– Increasing font sizes and icon scales to meet text accessibility guidelines.

– Highlighting the active element with a strong focus border or magnified overlay to improve
navigation feedback.

• Hands-Free Users: Profiles with hands_free_preferred: true bias SIF towards non-touch
input modes, reducing physical interaction demands. Adaptations may involve:

– Automatically switching to voice or gesture navigation when interaction struggles are detected.

– Providing clear, speech-friendly UI labels and tooltips to improve command recognition accu-
racy.

– Simplifying layouts by reducing the number of visible controls at once, making it easier to
select elements through voice or gesture.

By embedding these accessibility considerations directly into the profile structure, SIF can reason in a
way that is both context-aware and user-specific. This allows the system to:

1. Anticipate needs before errors occur (e.g., pre-emptively enlarging critical controls for a motor-
impaired user on a small screen).

2. Ensure adaptations persist across sessions, avoiding the frustration of having to reconfigure acces-
sibility settings each time.

3. Combine profile knowledge with real-time interaction patterns, enabling nuanced decisions such as
“keep high contrast on by default, but also enable voice mode when the user is multitasking”.

4.4 Modeling Multimodal Input Fusion

Smart Intent Fusion doesn’t just take one input, it collects multiple inputs from different modalities
like touch, voice, gestures, and more. Then fuses them into a single, well-reasoned adaptation. This
process is called multimodal input fusion. Without fusion, the system would treat each event separately.
A miss-tap would trigger one adaptation, and a voice command would trigger another, without realising
both were aimed at the same action. With fusion, those two inputs can be combined into one confident
and more helpful response which saves time and reduces frustrations. Furthermore, the user profile and
interaction history also directly affect how this fusion works. A hands-free preferred user will have a lower
threshold for fusing gesture + voice, but a visually impaired user’s profile might cause SIF to always add
a “highlight” adaptation when triggering elements via voice, even if not strictly necessary. If history
shows repeated failures for a certain modality, its weight in fusion decisions can be reduced. For users
with impairments, every extra action is extra effort. Because of how the fusion is designed, it cuts down
on unnecessary steps so the UI adapts faster and smarter to the user’s needs.

52 CHAPTER 4. SMART INTENT FUSION (SIF)

4.4.1 Event Standardisation

Before any fusion can happen, the raw input needs to be standardised. Every frontend in the framework
Flutter, SwiftUI or a future VR client converts its local input data into the same JSON contract. This
is handled by the Input Adapter Layer as described earlier.

A standardised event looks like this:

1 {
2 "event_type": "miss_tap",

3 "source": "touch",

4 "timestamp": "2025-08-04T14:41:00Z",

5 "user_id": "user_123",

6 "target_element": "button_unlock",

7 "coordinates": {"x": 210, "y": 640},
8 "confidence": 0.8,

9 "metadata": {"UI_element": "button"}
10 }

Listing 4.4: Standardised Event Example

This contract ensures:

• Cross-platform compatibility: all clients speak the same “language” to the backend.

• Dynamic field names: fields like event type and target element can be extended and modified
without breaking existing logic.

• Extensibility: new modalities can be added (like gaze tracking) without breaking existing clients.

By the time the event reaches SIF, it doesn’t matter whether it came from a phone, desktop, or VR
headset, it always adheres to the same format for the backend. As said earlier SIF uses a hybrid approach
for multimodal input fusion. The Input Adapter handles basic pre-processing (similar to early fusion), but
the actual reasoning, deciding what adaptations to apply happens in the backend using late fusion.

Example: Touch + voice
Let’s say a motor-impaired user taps just to the right of the “Lock/Unlock” button and, within a second,
says “Unlock.” Individually, the miss-tap could trigger an enlargement of the button and the voice com-
mand could trigger the unlocking action. However, with multimodal fusion, the system can understand
that both inputs are related and prioritize the unlocking action while also enlarging the button for better
accessibility.

With SIF fusion, the system sees both in context:

1 [

2 {"action": "increase_button_size", "target": "button_unlock", "value": 1.5,

↪→ "reason": "Miss-tap detected near Unlock button"},
3 {"action": "trigger_button", "target": "button_unlock", "reason": "Voice

↪→ command ’unlock’ detected in combination with miss-tap"}
4]

Listing 4.5: Example of Multimodal Fusion

Now the button is both enlarged for future use and triggered immediately, reducing the number of actions
the user needs to take, simplifying the interaction which is useful for motor-impaired users.

4.4.2 Timing and Confidence

SIF’s LLM reasoning can also consider when and how confidently an input happened based on two
fields from the standardised event:

4.5. RULE-BASED LOGIC AND LLM-DRIVEN ADAPTATION 53

• Timing: events close together in time (e.g., within 1–2 seconds) are more likely to be related.

• Confidence: each modality can provide a confidence score (e.g., gesture detection might be 0.7
certainty). Lower confidence might require a second modality before acting.

For example, a low-confidence gesture to point at a button might do nothing alone, but if followed by a
high-confidence voice command naming that button, SIF can treat them as a combined intent.

4.4.3 LLM Reasoning in Fusion Decisions

While the fusion process benefits from deterministic rules for speed and reliability, one of the key inno-
vations of SIF is its ability to leverage LLM reasoning to interpret and combine multimodal inputs in a
context-aware way.

Once standardised events reach the backend, they are not processed in isolation. Each event is enriched
with:

• User profile data: accessibility flags, preferred modalities, and baseline UI settings.

• Interaction history: the most recent events, revealing repeated struggles or patterns.

• Contextual metadata: details about the UI state (e.g., which elements are visible), UI element
type, environment and more.

This enriched dataset is then included in the LLM prompt, allowing the model to reason comprehensively
about the user’s intent across modalities. For example, instead of treating:

• a low-confidence “point” gesture at a thermostat slider, and

• a voice command “set temperature to 22”

as separate actions, the LLM can infer that they describe the same goal and produce a single adapta-
tion:

1 {
2 "action": "adjust_slider",

3 "target": "slider_thermostat",

4 "value": 22,

5 "reason": "Gesture and voice command combined to adjust temperature"

6 }

By bringing together different types of input modalities, user’s preferences, and their recent actions, SIF
can suggest changes that are not only accurate but also anticipate what will help the user most. This
means the system can adapt quickly and make the interface easier to use based on what the user’s most
probable intent was.

4.5 Rule-Based Logic and LLM-Driven Adaptation

Smart Intent Fusion uses two very different ways to decide what adaptation to apply:

• Rule-based logic handles clear, deterministic cases where the system can apply a known adapta-
tion based on the event type and user profile. It is instant, and predictable.

• LLM-driven reasoning uses the Gemini API to process complex, multimodal contexts and pro-
pose creative adaptations that go beyond simple rules.

Both have strengths and weaknesses, which is why the framework combines them instead of choosing
one.

4.5.1 Rule-Based Logic

Rule-based logic works by matching incoming events to predefined conditions and applying a fixed re-
sponse.
For example:

54 CHAPTER 4. SMART INTENT FUSION (SIF)

� �
1 if event.event_type == "miss_tap":

2 return {"action": "increase_button_size", "target": event.target_element, "value": 1.5}� �
Advantages:

• Simplicity: Easy to implement and understand.

• Speed: Instantaneous responses to known events.

• Predictability: Consistent behavior for similar inputs and no risk of unintended consequences like
hallucinations.

• Baseline guarantee: Acts as a safety net so that critical accessibility features still work if the
LLM is unavailable, slow to respond, or returns unusable output.

Limitations:

• Can only handle cases explicitly programmed in advance.

• No ability to combine signals in creative ways.

• Doesn’t learn new patterns unless a developer updates the rules.

This means that while rule-based logic is fast and reliable, it can also be rigid and unable to adapt to
new situations without human intervention. In SIF, the rules are deliberately kept lightweight, mostly
as a mock or backup layer for LLM-driven reasoning.

4.5.2 LLM-Driven Reasoning

The LLM can reason about the event, user profile, and history together to try and infer the user’s intent
more deeply. It can make connections that rules would miss, such as:

• Combining a miss-tap with a voice command into a single action.

• Switching to a different modality when it detects repeated failure in the current one.

• Proposing multiple coordinated adaptations for one intent.

Advantages:

• Flexibility: Can adapt to new situations without explicit programming by the developer.

• Context-aware: Takes profile and history into account naturally.

• Learning: Can improve over time by learning from user interactions and feedback.

Limitations:

• Less predictable: May generate unexpected or irrelevant responses.

• Slower: Network call + reasoning time.

• Needs validation: Output must be checked more thoroughly before applying.

4.5.3 Hybrid Approach in SIF

In practice, SIF doesn’t fully choose between the two, it blends them:

1. Rules first: If the event matches a clear, high-confidence rule, apply it immediately, this is mostly
done in the frontend by the user profile.

2. LLM second: Use the model for complex or ambiguous cases, or to suggest extra adaptations
beyond the rules.

3. Timeout Fallback: If the LLM times out or fails, return rule-based or other LLM output only.

This ensures that basic accessibility features always work, while still allowing for creative, context-aware
adaptations when needed. In other words, the rules form the “floor” of the system (the minimum
guaranteed level of accessibility) while the LLM can raise the ceiling by adapting to more complex,

4.6. MULTI-AGENT SMART INTENT FUSION (MA-SIF) 55

ambiguous, or novel situations. Users are never left waiting for AI responses that might never come, and
the system remains responsive even in worst-case scenarios.

4.5.4 Heatmap Analysis

To further refine adaptation decisions, the backend can analyze interaction heatmaps derived from user
event logs. By aggregating tap coordinates and gesture paths, the system identifies problematic UI
regions (e.g., frequently missed buttons) and adapts layouts or element sizes accordingly. This data-
driven approach supports continuous improvement and personalization, especially for users with evolving
accessibility needs. By using tap frequency, the backend can suggest adaptations like repositioning
elements or enlarging hit areas, enhancing usability.

4.6 Multi-Agent Smart Intent Fusion (MA-SIF)

While a single LLM can process events and suggest adaptations, it often tries to “do everything” at
once. That makes it harder to constrain, more prone to hallucinations, less predictable and in some cases
slower (depending on workload). Multi-Agent Smart Intent Fusion (MA-SIF) solves this by splitting the
reasoning into specialised agents, each focused on one domain of UI adaptation, and then combining
their outputs through a Validator Agent. This design brings the benefits of modularity, parallelism, and
role-specific constraints, all of which improve reliability and make the system easier to maintain.

4.6.1 Why Multiple Agents?

SIF began with a single-agent LLM that handled UI changes, geometry edits, and input switching in
one pass. In practice, this made the prompt broad and brittle, and JSON outputs were less consistent.
Measured against the same event suite, the single-agent baseline achieved lower schema validity (cf.
Section 4.8) and was harder to constrain. MA-SIF addresses this by dividing work across focused agents
(UI, Geometry, Input) and routing all suggestions through a Validator Agent. The result is tighter
control over allowed actions, fewer duplicates, and higher parse reliability, at the cost of a small latency
increase. Furthermore, when one model is asked to handle UI changes, geometry adjustments, input
mode switching, and validation all at once, several problems appear:

• The prompt becomes long and vague.

• Allowed actions become harder to enforce and turn into hallucinations.

• Reasoning gets scattered between unrelated concerns.

By giving each agent a clear role, their prompts can be short, specific, and easy to maintain. For example,
the UI agent only ever sees actions like increase font size or increase contrast, while the Geometry
agent only deals with spatial changes like increase button size or adjust spacing. This separation
means that each agent can focus on its specific task without being distracted by unrelated concerns.
Parameters can be tuned independently for each agent, allowing for more precise control over their
behavior (e.g., lower temperature for Geometry, slightly higher for Input). Finally, debugging becomes
easier as each agent’s logic is contained and easier to follow.

4.6.2 Agent Roles

At a high level, MA-SIF in this thesis’s current configuration, consists of four specialised LLM agents:

1. a UI Agent for visual and interactive adaptations,

2. a Geometry Agent for spatial changes and layout simplification,

3. an Input Agent for modality switching and interaction simplification,

4. a Validator Agent for conflict resolution and accessibility compliance.

Each has a narrow focus, defined prompts, and a limited set of allowed actions, making their reasoning
predictable and easier to validate. They have clearly defined scopes of responsibility, and their roles are
deliberately narrow to keep prompts concise, outputs predictable, and debugging straightforward. The
UI Suggestion Agent is concerned purely with visual accessibility changes such as increasing font size,
toggling high-contrast mode, or displaying contextual tooltips. For example, when a visually impaired

56 CHAPTER 4. SMART INTENT FUSION (SIF)

user interacts with a dense text block, this agent might output an adaptation like increasing the global
font scale by 1.2×.

The Geometry Suggestion Agent deals with spatial layout changes and the physical dimensions of
interactive elements. It might recommend increasing the size of a button, expanding the hit area of a
slider, or adding extra spacing between cards in a list. For example, a motor-impaired user who repeatedly
misses a button may trigger an output to enlarge that specific button by 1.5× while keeping the rest of
the interface unchanged.

The Input Suggestion Agent focuses on modality switching and simplifying interaction pathways. It is
capable of suggesting transitions between touch, keyboard, voice, or gesture modes, as well as proposing
layout simplifications to reduce cognitive load. For instance, if a user struggles with touch but succeeds
with voice commands, this agent can suggest switching to voice-first navigation, potentially combined
with a reduced interface complexity.

Finally, the Validator Agent operates after all others have completed their reasoning. This is the
most computationally demanding role, as it must examine every proposed adaptation in detail, identify
and remove duplicates, verify that all actions are allowed, and ensure that no output falls outside safe
parameter ranges. It also resolves potential conflicts, such as two agents targeting the same element with
incompatible values. Because of the breadth of this responsibility, the validator uses a larger Gemini
model, a higher timeout of 30 seconds, and a dynamic thinking budget.

4.6.3 Adaptation Flow

When an event arrives at the backend, the fusion process begins by loading the user’s profile and recent
interaction history from MongoDB. This contextual data is then sent to each non-validator agent, along-
side the event itself. The prompt for each agent is tailored to its domain, ensuring that the LLM only
receives relevant instructions and the list of actions it is permitted to output.

Once each agent has processed the event, their suggestions are collected. Importantly, the system is
tolerant of partial failures, if one or more agents fail to return a result due to a timeout or API error,
the remaining agents’ outputs are still retained. These partial results are then passed to the Validator
Agent, which merges them into a coherent and conflict-free final adaptation set. Another possibility is
fusing LLM adaptations with rule-based suggestions to create a hybrid output when one or more agents
fail.

If the validator itself fails, either due to malformed output or a processing error, the system does not
discard all results. Instead, it falls back to returning the raw, unvalidated suggestions from the agents
since the output may still be more useful than rule-based alternatives. Only if all agents fail to produce
output does the framework revert to the rule-based mock fusion fallback. This layered approach ensures
that useful adaptations are preserved whenever possible, rather than being lost due to a single point of
failure.

User Events

User Profile
+ History

UI Agent
(Visual)

Geometry Agent
(Spatial)

Input Agent
(Modality)

Validator Agent
(Validate, Resolve)

Rule-Based Fallback

Combined Suggestions
(Validator Fail)

Final Adaptations

SIF

All fail

Success

Fail

Figure 4.2: Multi-agent SIF adaptation flow: user events and profile/history are processed
by specialised agents, validated, and merged into final adaptations. Fallbacks ensure robust-
ness.

4.6. MULTI-AGENT SMART INTENT FUSION (MA-SIF) 57

4.6.4 Dynamic Configuration

A key advantage of MA-SIF is that it is configured almost entirely through the sif config.json, making
it very adaptable without requiring backend code changes. Each agent’s behavior can be fine-tuned
individually including its allowed actions, model type, temperature, thinking budget, and timeout, simply
by editing the configuration file. This flexibility extends to the ability to add new agents or duplicate
existing ones with different focuses.

For instance, it is entirely possible to run two Geometry agents in parallel: one optimized for mobile
devices with smaller screens and one tuned for desktop layouts. Both would analyse the same event and
profile data but apply different heuristics in their prompts. The Validator Agent would then merge their
suggestions, resolving overlaps and conflicts automatically. This makes it possible to create specialised
agents for emerging modalities, such as gaze tracking in VR, without altering any core fusion logic.

This externalised configuration is particularly valuable in accessibility research, where rapid iteration is
needed. For example, during a live user study, the prompt for the UI Agent can be adjusted to emphasise
high-contrast themes over font scaling without redeploying the backend. Similarly, experimental agents
for new modalities such as gaze tracking or haptic feedback can be added in minutes, allowing researchers
or developers to test new adaptation strategies with minimal downtime.

1 {
2 "ui_agent": {
3 "model_settings": {
4 "model": "gemini-2.5-flash-lite",

5 "temperature": 0.2,

6 "thinking_budget": 0

7 },
8 "focus": ["visual adaptations"],

9 "allowed_actions": ["increase_size", "increase_contrast",

↪→ "reposition_element"],

10 "prompt": "Given the event data, suggest UI adaptations for accessibility.

↪→ Consider user profile and interaction history."

11 },
12 "geometry_agent": {
13 "model_settings": {
14 "model": "gemini-2.5-flash-lite",

15 "temperature": 0.2,

16 "thinking_budget": 0

17 },
18 "focus": ["spatial adaptations"],

19 "model": "gemini-2.5-flash-lite",

20 "allowed_actions": ["resize_element", "adjust_spacing", "simplify_layout"],

21 "prompt": "Analyze the UI layout and suggest spatial adaptations to improve

↪→ usability for motor-impaired users."

22 },
23 "validator_agent": {
24 "model_settings": {
25 "model": "gemini-2.5-flash",

26 "temperature": 0.3,

27 "thinking_budget": -1,

28 "timeout": 30

29 },
30 "allowed_actions": ["switch_to_voice", "interpret_gesture",

↪→ "recover_from_error", "increase_size", "increase_contrast",

↪→ "reposition_element","resize_element", "adjust_spacing", "simplify_layout"],

31 "prompt": "Validate proposed adaptations for conflicts, duplicates and

↪→ inconsistencies based on user context, events and interaction history."

58 CHAPTER 4. SMART INTENT FUSION (SIF)

32 }
33 }

Listing 4.6: Basic example of a 2-agent (+ validator) configuration

Each agent configuration above specifies its model, temperature, and thinking budget, which control
the LLM’s behavior and output style. The focus field describes the agent’s adaptation domain, while
allowed actions restricts the set of suggestions to ensure predictable outputs. The prompt guides the
agent’s reasoning, and is dynamically extended at runtime with the current event (see Chapter 5), user
profile, and interaction history. This enables agents to generate personalized adaptation suggestions
based on live user context, rather than relying solely on static instructions.

4.6.5 Temperature and Thinking Budget

Two key parameters control the behavior of each LLM agent in MA-SIF: temperature and thinking
budget.

Temperature determines the randomness and creativity of the model’s output. Lower values (e.g.,
0.2) make the agent more deterministic, producing consistent and predictable suggestions—ideal for
accessibility-focused UI changes where reliability is critical. Higher values (e.g., 0.7 or 1.0) increase
creativity and output diversity, but can introduce unpredictability or hallucinations, which may be un-
desirable for critical adaptations.

Thinking budget limits the number of reasoning steps or computational effort before the agent responds.
A budget of 0 results in minimal reasoning and fast, direct answers. Higher budgets allow the agent to
consider more factors, leading to more nuanced or complex suggestions. Negative values (e.g., -1) remove
the limit, enabling extensive reasoning, useful for roles like the Validator Agent, which must resolve
conflicts and ensure schema compliance.

Effect on Reasoning:

• Lower temperature and budget: Fast, predictable, and simple adaptations.

• Higher temperature and budget: More creative, thorough, and potentially complex adaptations,
but with increased unpredictability and latency.

In summary, temperature and thinking budget are critical for tuning agent behavior. Lower values
favor speed and reliability, making them suitable for accessibility-focused changes. Higher values enable
deeper reasoning and creativity, but may introduce unpredictability, which can be risky for critical UI
adaptations. The framework defaults to low temperature and minimal thinking budget for suggestion
agents, while the Validator Agent uses a higher budget and slightly increased temperature to ensure
robust validation.

4.6.6 Example in Action

Consider a user with both visual impaired: true and hands free preferred: true in their profile.
They attempt to turn on the lights by tapping near the “Turn on” button but miss slightly, then say
“Turn on the lights” almost immediately afterwards. The UI Suggestion Agent, informed by the user’s
visual impairment, recommends switching to high-contrast mode and displaying a tooltip to make it
easier to know the app’s workings next time. The Geometry Suggestion Agent identifies the repeated
miss and proposes increasing the button size. The Input Suggestion Agent recognizes the voice command
and suggests both switching to voice mode and triggering the button directly.

These suggestions are passed to the Validator Agent, which removes any duplicate increase button size

actions, ensures all parameters are sound, and merges the remaining actions into a single, ordered list.
The final adaptation set includes the contrast adjustment, the button enlargement, the tooltip display, the
voice mode switch, and the direct triggering of the button. All of these are applied in one update, making
the interface immediately more accessible and easier to use in future interactions with the possibility of
making them permanent for the user, by updating their profile.

This scenario also highlights MA-SIF’s integration with persistent profiles and recent history: because
the profile already records both visual impairment and a hands-free preference, the agents start from a

4.7. PROMPT ENGINEERING FOR LLMS IN SIF 59

position of context-awareness rather than guessing from scratch. The resulting adaptations are therefore
both reactive to the immediate miss-tap and proactive in aligning with the user’s long-term accessibility
needs.

4.6.7 Benefits of the Multi-Agent Approach

The multi-agent architecture provides several practical advantages. Reliability is improved because a
failure in one agent does not prevent others from giving valuable suggestions. The modularity of the
design makes it straightforward to maintain, as each agent can be modified or tuned independently
without risking regressions in unrelated areas. Running agents in parallel also improves responsiveness,
particularly when some suggestions can be applied even before all agents have finished processing.

Specialisation further enhances the quality of the output, as each agent’s prompt scope is narrow enough
to minimise irrelevant reasoning. The dynamic configuration system makes it possible to scale the number
of agents up or down, or to swap in different models, without any changes to the backend logic. This
adaptability is especially important in research and prototyping contexts, where requirements may change
quickly.

The practical implementation of MA-SIF including the sif config.json schema, example prompts, and
backend implementation is detailed in Chapter 5.

4.7 Prompt Engineering for LLMs in SIF

One of the most important parts of Smart Intent Fusion is how we talk to the LLM. Unlike a traditional
rule-based system, where logic is written explicitly in code, here the behavior of the LLM depends on
the instructions it receives, namely the prompt. If the prompt, by which the LLM is queried, is unclear,
missing context, or too open-ended, the output will either be wrong, inconsistent, or impossible to parse
in code. The LLM could also be more prone to hallucinations, which means it generates answers that
sound plausible but are actually incorrect or nonsensical. This means the design of the prompt, the model
parameters, and the output format all directly affect how useful and reliable the adaptations are. Even
though the prompts used in this framework are relatively simple compared to large fine-tuned systems,
they still follow a consistent structure and design philosophy that make them work for this use case.
In the architecture described in Chapter 3, each event passed to the SIF Backend Layer arrives already
standardised, enriched with metadata, and paired with relevant user profile and history context. The
following prompt engineering process simply embeds this structured data into the LLM request, ensuring
that reasoning always starts from the same reliable, modality-agnostic representation.

4.7.1 LLM Prompt Design Principles

Prompt engineering in this context is not just about getting a correct answer, it directly impacts acces-
sibility outcomes. A poorly constrained prompt could suggest adaptations that introduce visual clutter,
require unnecessary actions, or even reduce usability for the intended audience. By embedding accessi-
bility goals, WCAG criteria, and known user needs into the prompt, the LLM is guided toward changes
that genuinely improve the interface rather than merely altering it. The main objectives that flow from
this understanding when writing the SIF prompts were:

1. Be unambiguous: Avoid instructions that could be interpreted in multiple ways.

2. Enforce a strict JSON schema: The frontend and backend depend on predictable keys and
types.

3. Constrain actions: Only allow adaptations that are valid for the given agent type.

4. Tie reasoning to context: The model should always consider the event, user profile, and recent
history together.

The idea was to make the prompts as predictable as possible. In accessibility systems, consistency often
matters more than creativity or flexibility.

60 CHAPTER 4. SMART INTENT FUSION (SIF)

4.7.2 Prompt Structure from sif config.json

Each agent (UI, Geometry, Input) has its own prompt in sif config.json.
Here’s a shortened example from the UI agent:

1 {
2 "prompt": "You’re the UI suggestion Agent.

3 Analyze user event: {event_json}

4 User profile: {profile_json}

5 Recent history (last 10 events): {history_json}

6 Suggest UI adaptations as JSON in the strict format.

7 Each suggestion must include ’intent’, ’reason’, and at least a ’value’ and

↪→ ’mode’ field. Value must be a reasonable number (e.g., 1.2) with at most

↪→ one decimal place, and represents a scaling value unless stated otherwise

↪→ in the metadata (e.g. font size). Target can be ’all’ or specific elements."

8 }

Listing 4.7: Example UI Agent Prompt

The important elements here are:

• Role definition: explicitly stating the agent’s focus (“UI suggestion Agent”).

• Context injection: inserting the current event, profile, and history as JSON strings.

• Output constraints: telling the model exactly what keys and value types are allowed.

• Value rules: restricting numeric ranges so the model doesn’t output absurd sizes.

The complete prompt set, agent-specific instructions, and their runtime configuration are detailed in the
codebase of this thesis.

4.7.3 Disjunction Ambiguity in LLM Interpretation

During testing, it was observed that LLMs can misinterpret logical connectors such as or and and. For
example, the instruction:

“The adaptation must include a value or a mode field.”

was intended to mean at least one of these fields is required for this action type. However, the model
sometimes treated this as an exclusive choice (only one allowed) or as fully optional (neither required),
even in cases where one was necessary. This can result in incomplete adaptations. This behavior aligns
with the well-known inclusive–exclusive disjunction ambiguity described in requirements engineering and
computational linguistics, where natural language “or” lacks explicit semantic constraints and is prone
to misinterpretation.
For example:

• {"action": "increase_button_size", "target": "lamp", "value": 1.23}: requires value but
not mode.

• {"action": "switch_mode", "target": "all", "mode": "voice"}: requires mode but not value.

• {"action": "highlight_button_border", "target": "button"}: valid with neither, as neither
field is relevant for this adaptation.

Having both fields is rather uncommon, but not impossible. This should handled further by the frontend
and depends on the developer’s implementation choices. Even with this type of prompt engineering, it
sometimes still returns a mode field when a value field would be more appropriate, and vice versa. To
reduce misinterpretation, prompts should explicitly state inclusive meaning when a field is required, such
as:

4.7. PROMPT ENGINEERING FOR LLMS IN SIF 61

“The adaptation must at least include a value and a mode field, depending on the action type.”

This minimises the risk of missing required parameters due to inclusive-exclusive disjunction ambigu-
ity.

4.7.4 Balancing Model Parameters

Even with a well-written prompt, model behavior on the prompt is strongly affected by:

• Model: The specific architecture and training of the model can influence its understanding and
generation capabilities.

• Temperature: how random the outputs are. Lower values (0.2-0.3) are better for consistent JSON.

• Thinking budget: how many reasoning steps the model takes before output. Too low, and it may
skip checks; too high, and it can slow down or get stuck.

• Timeout: waiting time before falling back to mock or rule-based logic.

The Validator Agent especially needs more time and budget because it has a heavier job. This includes
more complex reasoning and validation tasks like checking for inconsistencies in the adaptation or checking
every adaptation against allowed actions, as well as removing irrelevant adaptations or merging duplicates.
In my testing, the validator with a low thinking budget and temperature often hung or exceeded acceptable
latency to respond, which is not ideal for real-time adaptations. The goal was to stay under a timeout of
max. 30 seconds for the Validator Agent and 15 seconds for the Suggestion Agents.

4.7.5 Avoiding Hallucinations and Bad Values

One common risk with LLM-driven adaptations is hallucination, where the model invents an action,
target or value that doesn’t exist within the scope of the app. To reduce this:

1. The allowed actions list is always clearly included in the prompt.

2. Targets are validated against the current UI state before applying them as well as by the Validator
Agent.

3. A list of focus items is included to guide the model’s attention and provide additional context to
minimize irrelevant outputs.

4. Prompt clearly states the required fields and their expected values as well as adhering to the allowed
actions and JSON contract.

Even so, the validator sometimes has to fix agent mistakes.
For example, if the geometry agent outputs:
{"action": "increase_button_size", "target": "button_unlock"}
The validator can correct it to:
{"action": "increase_button_size", "target": "button_unlock", "value": 1.5}

4.7.6 Importance of a Strict JSON Schema

Another critical safeguard against hallucinations and malformed outputs is the use of a strict response
json schema in the LLM API call (in this case Gemini). This schema explicitly defines:

• The structure of the output object.

• The allowed fields, their types, and descriptions.

• The required fields and conditional requirements (e.g., either value or mode must be present
depending on the action type).

By embedding this schema in every LLM request, the backend ensures that:

1. Any response not matching the schema has a higher probability of being rejected before it reaches
the frontend.

2. Missing critical parameters (such as value for size changes) are caught early.

62 CHAPTER 4. SMART INTENT FUSION (SIF)

3. Developers integrating the framework can rely on predictable keys, reducing integration errors.

4. The LLM is gently “steered” towards valid outputs, as many LLM APIs use the schema as a
structural hint during generation.

The schema used in this framework is shown below:

1 {
2 "type": "object",

3 "properties": {
4 "adaptations": {
5 "type": "array",

6 "items": {
7 "type": "object",

8 "properties": {
9 "action": { "type": "string",

10 "description": "The type of UI adaptation to perform" },
11 "target": { "type": "string",

12 "description": "UI element or component to apply the adaptation to,

↪→ ’all’ is allowed" },
13 "value": { "type": "number",

14 "description": "Numeric multiplier for size changes (e.g., 1.5 for

↪→ 50% larger)" },
15 "mode": { "type": "string",

16 "description": "Interaction or visual mode to switch to (e.g.,

↪→ ’voice’)" },
17 "reason": { "type": "string",

18 "description": "Why this adaptation was suggested" },
19 "intent": { "type": "string",

20 "description": "Inferred user intent based on the event" }
21 },
22 "required": ["action", "target", "reason", "intent"],

23 "oneOf": [

24 { "required": ["value"] },
25 { "required": ["mode"] }
26]

27 }
28 }
29 },
30 "required": ["adaptations"]

31 }

Listing 4.8: SIF LLM Output JSON Schema

This schema directly supports accessibility and safety goals: by preventing incomplete or semantically
invalid adaptations from being applied, it reduces the risk of unpredictable UI behavior. Combined with
the Validator Agent, it forms a two-layer defence. Furthermore, schema validation stops malformed data
at the source, while semantic validation ensures that even structurally valid adaptations are contextually
appropriate.

4.8 Performance and Evaluation Metrics for AI Logic

This section measures the end-to-end behavior of the SIF and MA-SIF pipelines: Flutter client → Web-
Socket → FastAPI → LLM agents → validator → client. The backend processes one event at a time
(sequential), so the reported latencies reflect a full round-trip with model inference on the critical path.
All runs used the same user identifier (user seq). On the very first event, no profile existed, so the server

4.8. PERFORMANCE AND EVALUATION METRICS FOR AI LOGIC 63

created a default profile; subsequent events appended to the profile’s interaction history (capped at
10). Qualitatively, later responses carried slightly richer rationales, consistent with the growing history
window.

Method

Two lightweight probes were run:

1. WebSocket round-trip: a minimal ping-pong to capture end-to-end transport + processing over-
head.

2. Deterministic event suite: rotation over tap → miss tap → voice → gesture, repeated over
a short sequence.

Each response was classified as:

• validated by validator (final list produced by the validator),

• combined agent suggestions (validator failed; raw agent outputs returned),

• mock rule fallback (all agents failed; rule engine response).

The strict JSON output schema used in the backend was enforced to compute “schema-valid %”. To
avoid artificial timeouts during heavier MA-SIF runs, client keep-alive pings were disabled. Run sizes
were intentionally small (6-10 events) due to API free-tier limits; the goal is to surface architectural
trends, not saturate the service.

Configurations

Table 4.1: Exact agent settings for the three measured configurations.

Config Agent Model Temperature Thinking Budget Timeout (s)

SIF (single agent) SIF agent gemini-2.5-flash 0.2 dynamic (-1) api-default

MA-SIF (balanced)

UI agent gemini-2.5-flash-lite 0.2 0 15
Geometry agent gemini-2.5-flash-lite 0.2 0 15
Input agent gemini-2.5-flash-lite 0.2 0 15
Validator gemini-2.5-flash 0.3 dynamic (-1) 30

MA-SIF (heavy)

UI agent gemini-2.5-flash 0.2 2048 30
Geometry agent gemini-2.5-flash 0.2 2048 30
Input agent gemini-2.5-flash 0.2 2048 30
Validator gemini-2.5-flash 0.3 2048 30

Results

Table 4.2: Latency and correctness across configurations (sequential backend; user seq

with default profile and growing history).

Config WS p50 WS p90 WS max Suite p50 Suite p90 Suite max Schema-valid n
(ms) (ms) (ms) (ms) (ms) (ms) (%)

SIF (single agent) 8240.99 9913.63 10649.21 8261.86 12034.12 12914.24 40.0 10
MA-SIF (balanced) 9969.99 11151.80 11164.61 10988.27 14659.71 15234.09 70.0 10
MA-SIF (heavy) 26875.99 27613.81 32009.47 27229.24 30443.48 31347.16 100.0 10

Legend. WS p50/p90/max: WebSocket round-trip latency percentiles and maximum (ms).
Suite p50/p90/max: end-to-end latency percentiles and maximum for the deterministic event
suite (ms). Schema-valid: share of responses that passed JSON schema validation (%). n:
number of events.

Across all runs 0% combined agent suggestions and 0% mock rule fallback was observed: the validator
returned a final list for every event. In the heavy configuration, some individual agent calls failed (API-
side), yet the validator still produced a valid final list, so external behavior stayed stable. (Table 4.2)

64 CHAPTER 4. SMART INTENT FUSION (SIF)

Note: in earlier exploratory tests, fallbacks mainly appeared when the free-tier quota was hit or the
validator timed out, which did not occur here. Furthermore, during this evaluation it was observed that
the validator agent in the MA-SIF heavy config accepted more suggestions from the agents than in the
other more balanced config.

Interpretation

The following patterns can be observed:

• Moving from SIF (single agent) to MA-SIF (balanced) increases median latency from ∼8.3 s
to ∼11.0 s, but schema validity jumps from 40% to 70%. Even with zero thinking budget on the
specialist agents, the validator is pulling its weight.

• MA-SIF (heavy) pushes median latency to ∼27.2 s, but schema validity reaches 100%, and the
reason/intent fields become noticeably richer and more proactive.

• The short history window helps later events rationales get slightly better as context accumulates,
although the biggest quality gain clearly comes from the validator’s (higher) thinking budget.

Practical read: For accessibility-centric flows, a sensible pattern is:

1. Immediate, local rules for fast feedback (e.g., enlarge target, boost contrast).

2. MA-SIF in the background for the smarter, profile-aware follow-ups (e.g., switch to voice,
simplify layout).

This preserves responsiveness while still getting the benefits of multi-agent reasoning.

Limitations

The runs were kept small (6-10 events) due to free-tier limits, so statistical power is modest—though
the differences are large and consistent. The backend is sequential, so times reflect worst-case per-event
latency with LLM on the critical path. The event suite is deterministic; other UI states can nudge
absolute times, but the overall trade-off (latency ↔ schema quality) is expected to hold.

Implications for the Framework

Overall, the numbers back the architecture: MA-SIF + a capable validator improves output predictability
and schema adherence; latency is tunable via thinking budgets, model choices and timeouts.

Recommended deployment profiles:

• Tiered response: apply deterministic local adaptations instantly; let MA-SIF deliver deeper,
profile-aware changes a few seconds later.

• Balanced default: gemini-flash-lite for UI/geometry/input agents (thinking budget=0, timeout=
15s); gemini-flash validator with dynamic thinking and timeout=30s.

• Heavy mode (opt-in): enable larger validator thinking budgets for flows that demand airtight
structure and richer rationale (e.g., clinical or regulated settings). Expect ∼2–3× latency vs. bal-
anced.

Guidelines for Model Optimization:

• Enhanced Accuracy and Reduced Schema Errors: Prioritize increasing the validator thinking
budget for optimal cost-effectiveness.

• Reduced Latency: Utilize gemini-flash-lite agents with zero thinking time and set a validator
timeout cap.

• Comprehensive Explanations: Increment validator thinking budget first, followed by agent
budget, while maintaining low temperatures (0.2-0.3).

4.9. LIMITATIONS AND SOLUTIONS OF LLM INTEGRATION 65

Failure handling Even with some agent API errors, the validator still made valid final lists. Returning
other agent adaptations when the validator fails will provide a great fallback while the mock rule fallback
is still the best backup for quota or timeout problems on all agents, although both are barely used in
normal situations.

Conclusion Use MA-SIF for better quality and consistency, but only deal with the slower latency
when it’s a necessity. Adding local rules will help keep the UI smooth for accessibility needs. As profiles
and histories get bigger, there will be small but steady improvements in the reasoning quality over time,
although the validator’s budget is still the main way to control accuracy. Using the gemini-pro model
could potentially improve adaptations even further in important scenarios.

4.9 Limitations and Solutions of LLM Integration

Large Language Models make Smart Intent Fusion far more capable than any static rule set, but they also
introduce new dependencies, performance constraints, and reliability issues. In this thesis, all reasoning
was powered by the Gemini API, and while this enabled rapid development, it also shaped both the
strengths and weaknesses of the final system.

4.9.1 LLM selection

Gemini was chosen as the sole LLM provider for this framework for a mix of practical and technical
reasons. The generous free tier and large input/output token limits allowed for frequent iteration without
cost becoming a limiting factor. The API provided access to both smaller, faster models (used for the UI,
Geometry, and Input agents) and larger, reasoning-focused models such as gemini-2.5-flash or even
pro (used for the Validator Agent). This made it possible to optimize speed where possible and allocate
more resources to roles that needed deeper analysis.

Gemini’s handling of structured JSON output was also an advantage, as Smart Intent Fusion depends on
predictable schema-compliant responses. While this project did not directly benchmark other models like
GPT-5 or Grok, partly to keep the system stable during development and partly because Gemini’s free
tier already covered the thesis’s usage without cost. Stability was important for building and testing MA-
SIF without constantly adjusting prompts and entire agents for different model behaviors. However, it
also means that all testing and performance observations in this chapter are specific to Gemini’s runtime
behavior, and the results may differ if another LLM were used.

4.9.2 Reliability and Latency Constraints

A constant challenge was balancing response quality with the speed needed for near real-time accessibility.
Smaller “lite” models returned in fractions of a second and were ideal for the three suggestion agents.
The Validator Agent, however, required the larger gemini-2.5-flash model to perform more complex and
reliable checks across multiple agent outputs. The trade-off was that validation could sometimes become
the slowest part of the pipeline, especially with its increased timeout (30 seconds) and dynamic thinking
budget. Network latency or temporary API slowdowns in the agents could lead to fewer suggestions
being returned for a given event. In those cases, partial results were still applied rather than waiting or
retrying for a full set.

4.9.3 Hallucinations and Invalid Output

Even with strict prompts and explicit allowed-action lists, hallucinations still appeared in the output.
These took the form of actions outside the approved set, targeting elements that did not exist, or pro-
ducing unreasonable scaling values (for example, value: 10). The Validator Agent was able to remove or
correct most of these before they reached the frontend, but this came at the cost of extra processing time
and complexity. Without validation, such outputs could have caused visual glitches or broken layouts,
especially in geometry-related adaptations. The Input Adapter Layer or the Frontend itself, should as a
fallback also have extra validation checks.

66 CHAPTER 4. SMART INTENT FUSION (SIF)

4.9.4 Token Limits and Context Size

Gemini’s token allowance was one of the main reasons for choosing it, but token limits were still a factor.
Each agent’s prompt included the current event, the user profile, and the last few events from history,
all in JSON format. In cases where the history was long or metadata verbose, this could approach the
model’s input size limit. The solution was to truncate history in those cases, ensuring that the event
and profile data always took priority, even if it meant losing some recent context. Furthermore the token
limit per minute and per day also limited the number of requests that could be made, which is why the
framework was designed to handle partial failures gracefully and still return useful adaptations even if
some agents timed out or exceeded limits.

4.9.5 Validator Complexity

The Validator Agent is both the most important and the most resource-intensive part of MA-SIF. It
merges outputs from multiple agents, removes duplicates, corrects invalid values, resolves conflicting
suggestions, and ensures the final adaptations list passes schema validation. This workload made it prone
to timeouts when handling a large number of adaptations at once. Increasing the thinking budget and
timeout reduced these failures but also increased total response time, creating a constant balance between
reliability and speed.

4.9.6 Dependency on External APIs

Finally, using an external LLM API means the framework is dependent on network availability and the
stability of the provider. If the Gemini API is unavailable or returns errors, the system falls back to
the rule-based logic. While this ensures baseline functionality, it also removes the more context-aware
reasoning that makes Smart Intent Fusion valuable. In a production setting, this could be mitigated with
on-device models or by integrating multiple LLM providers as backups.

4.10 Future Directions for AI-Driven Adaptation

While Smart Intent Fusion in its current form is functional and effective for the scenarios tested in
this thesis, it is still a first iteration of what an AI-driven, multimodal UI adaptation system could be.
The underlying architecture, especially the multi-agent design and the strict JSON-based API contract,
was deliberately built with future extensions in mind. Several directions could significantly expand its
capabilities and make it more adaptive and autonomous.

One natural evolution is the introduction of visual context through image, vision-based or even at runtime
UI analyzer models. Currently, SIF relies on structured metadata from the frontend to understand the
UI state. In future versions, a lightweight computer vision model could take periodic screenshots of
the interface and produce a semantic map of UI elements, their sizes, positions, and visual contrasts.
This map could then be passed to the LLM alongside the existing event, profile, and history data. The
advantage of this approach is that the AI would be reasoning over actual UI layouts, rather than relying
on the frontend to describe them accurately which can cause misinterpretations. This opens the door to
truly context-aware adaptations. For example, increasing the size of the smallest actionable element on a
crowded screen, even if it hasn’t yet caused an interaction error or accurately reposition elements closer
to the user’s focus.

Another promising direction is integrating user feedback into the adaptation loop. At present, SIF
updates the user profile implicitly, based on interaction patterns or the user itself. A future version could
prompt the user after significant adaptations with a quick, accessible feedback mechanism (“Was this
change helpful?”). This feedback could be stored alongside interaction history and used by the LLM to
adjust its decision-making over time.

There is also scope for dynamic, UI-level code changes driven directly by the LLM. Currently, SIF works
within a fixed set of allowed actions and values prone to some hallucinations. This could be expanded so
that the LLM can modify layout constraints, create new UI elements, or reorganise screens entirely with
safeguards in place to prevent breaking the interface. The LLM could use its own ”hallucinations” to
provide creative solutions for layout issues or user interactions. This would take SIF from an adaptation
system to a full UI changing layer, capable of designing new interactions on demand.

4.11. CHAPTER SUMMARY 67

Finally, the framework could explore multi-model, multi-provider reasoning and threading. At present,
all reasoning is performed by Gemini and run sequentially, which simplifies development but limits the
diversity and speed of outputs. Future versions could run agents across different LLM providers and
threads or even mix LLMs with specialised non-language models (e.g., reinforcement learning agents for
adaptation strategies), with the Validator Agent controlling and validating the final output. This would
provide extra resilience against provider outages and allow different models to play to their strengths, as
well as a strong speed improvement when asynchronous processing is implemented. Every agent could
potentially run in its own thread or process and joined by the validator, allowing for true parallelism and
faster overall response times.

4.11 Chapter Summary

This chapter presented Smart Intent Fusion (SIF) as the core reasoning layer of the adaptive framework.
SIF combines multimodal inputs, user profiles, and recent interaction history to deliver personalised,
context-aware UI adaptations. A hybrid approach of rule-based logic and LLM-driven reasoning ensures
both reliability and flexibility, allowing essential accessibility features to work instantly while enabling
more complex, context-sensitive changes.

The multi-agent architecture (MA-SIF) was introduced, with specialised agents for UI, geometry, and
input adaptations, and a Validator Agent responsible for merging and cleaning outputs. This design
improves reliability, supports partial fallbacks, and can be dynamically reconfigured via sif config.json.
Prompt engineering emerged as a critical factor in ensuring valid, schema-compliant LLM output, with
careful wording required to avoid logical misinterpretations.

Limitations of LLM integration including latency, occasional hallucinations, and reliance on a single
provider, were mitigated through strict validation and fallback mechanisms. Finally, the chapter outlined
future directions for SIF, such as adding visual UI context, integrating user feedback, enabling deeper UI
changes, and exploring on-device AI models.

Overall, Smart Intent Fusion was presented not just as an algorithm, but as a modular, extensible smart
reasoning layer designed to work across platforms, adapt to different users, and remain robust in the face
of LLM unpredictability. It is the component that turns multimodal input into meaningful, personalised
adaptations for reshaping the interface to fit the user.

68 CHAPTER 4. SMART INTENT FUSION (SIF)

Chapter 5

An Adaptive Multimodal GUI
Framework using LLMs

5.1 Introduction to an Adaptive Smart Home Controller

The Adaptive Smart Home Controller 1 is the practical proof-of-concept used to implement and validate
the multimodal AI-driven GUI framework presented in this thesis. It serves as a concrete example of how
the framework’s concepts, introduced in Chapter 3, can be applied in a real, interactive application. The
Smart Home Controller simulates the control of typical household devices such as lights, thermostats,
and door locks. While the devices themselves are virtual, the process of capturing inputs, interpreting
them through the backend with user profiles and history, and applying adaptive changes to the interface
is authentic and functionally representative of a real deployment.

The choice for a smart home context was deliberate. It offers a relatable and real-life use case structured
set of interaction scenarios that cover a range of UI components, buttons, sliders, text elements which are
central to accessibility-focused adaptations. Furthermore, it reflects real-world situations where users may
have diverse abilities and input preferences. For example, a motor-impaired user might need larger buttons
to avoid frequent miss-taps, while a visually impaired user may benefit from higher-contrast modes and
enlarged text. By embedding these scenarios into a single, unified application, the Smart Home Controller
provides a manageable but representative testbed for the framework’s adaptive capabilities.

The system adheres to the three-layer architecture established in earlier chapters. The frontend layer, im-
plemented in Flutter (adaptive ui app.dart), renders the interface, captures user interactions, and ap-
plies adaptation instructions as they are received from the backend. The Input Adapter Layer (adaptive
ui adapter.dart) acts as a middleware component, converting raw inputs from multiple modalities
into the framework’s JSON-based event format and ensuring user profiles are retrieved or updated before
events are transmitted. The backend layer (backend.py), built with FastAPI, Gemini API and Mon-
goDB, implements the Smart Intent Fusion (SIF) process. This includes both deterministic, rule-based
adaptations and multi-agent LLM-driven reasoning (MA-SIF), combining event data, user profiles, and
interaction histories to produce targeted adaptation actions.

It is important to note that this first iteration does not yet incorporate every capability described in the
framework’s long-term vision. Certain modalities, such as gesture recognition, are currently simulated
through mock events to keep the implementation focused on the adaptation pipeline rather than input
hardware integration. Throughout this chapter, each component is discussed in detail, with a clear
distinction made between fully implemented functionality, simulated elements, and features that remain
as future work.

1The codebase containing implementation and evaluation data of this thesis can be found at: https://github.com/

YarneD-1952226/A-Multimodal-AI-Driven-GUI-Framework-for-Dynamic-User-Adaptation

69

https://github.com/YarneD-1952226/A-Multimodal-AI-Driven-GUI-Framework-for-Dynamic-User-Adaptation
https://github.com/YarneD-1952226/A-Multimodal-AI-Driven-GUI-Framework-for-Dynamic-User-Adaptation

70 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

5.2 Development Environment

The development environment for the Adaptive Smart Home Controller was chosen to support rapid
prototyping, cross-platform deployment, and straightforward integration with the multimodal adaptation
framework described in earlier chapters. It needed to provide a fast feedback loop during implementation,
flexibility in UI design, and robust backend capabilities to support real-time Smart Intent Fusion. The
final setup reflects a balance between practical constraints such as available hardware, time and technical
requirements namely WebSocket support, database persistence, and LLM integration.

Flutter was selected for the frontend because of its ability to produce visually consistent applications
across desktop, mobile, and web from a single codebase. The framework’s reactive UI model and com-
posable widget system made it straightforward to create adaptive components whose properties such as
size, color, and layout can be updated dynamically in response to backend instructions. Flutter’s hot
reload feature also significantly reduced iteration time, which proved essential for testing the frequent,
small adjustments needed when refining adaptation behaviors.

The backend is implemented in Python using FastAPI, chosen for its simplicity, asynchronous request
handling, and native WebSocket support. FastAPI’s lightweight structure allowed the project to keep the
adaptation pipeline transparent and easily modifiable, while still offering the performance needed for real-
time interactions. MongoDB was selected as the database because its document-based structure aligns
directly with the JSON contracts used throughout the framework. It stores user profiles, interaction
histories, and adaptation logs without the need for complex schema migrations, making it well-suited for
iterative development.

Development and primary testing took place on macOS 15.6, with additional runs on Windows 11 to
confirm cross-platform compatibility. Both environments used Visual Studio Code with the Flutter and
Dart plugins for frontend work, and Python tooling for backend development. This combination made it
possible to run and debug both layers side-by-side, with the frontend communicating directly to a locally
hosted backend via WebSocket and HTTP.

For clarity, the main environment components were as follows:

• Operating System: macOS 15.6 (primary), Windows 11 (secondary testing)

• Frontend Framework: Flutter SDK 3.7.0 or higher

• Programming Languages: Dart 2.19.0+ (frontend), Python 3.9+ (backend)

• Backend Framework: FastAPI with Uvicorn ASGI server

• Database: MongoDB 6.0+ for persistent profile and interaction history storage

• IDE: Visual Studio Code with relevant Flutter/Dart and Python extensions

• Communication: WebSocket for real-time adaptation updates, HTTP for profile management
and batch operations

• Version control: Git, with the repository hosted on GitHub for collaboration and version tracking.

While this configuration is sufficient for the current implementation, it is also designed to be portable. The
backend can be deployed to cloud environments without modification, and the frontend can target iOS,
Android, or desktop platforms simply by recompiling or adjusting the build configuration. This flexibility
ensures that the same codebase can serve as both a research prototype and a potential foundation for
future production-ready systems.

5.3 Frontend (Flutter): Adaptive Smart Home Controller

The frontend of the Adaptive Smart Home Controller is implemented in Flutter and serves as the primary
user-facing component of the framework. Its role is to render the interface, capture user interactions across
multiple modalities, and apply adaptation actions received from the backend in real-time. Although
the backend is responsible for reasoning about what adaptations to make, the frontend is where these
adaptations become visible to the user and directly influence usability.

5.3. FRONTEND (FLUTTER): ADAPTIVE SMART HOME CONTROLLER 71

5.3.1 Responsibilities & Data Flow

The Flutter frontend (AdaptiveSmartHomeApp → SmartHomeScreen) renders the device cards, captures
user interactions (live touch; voice/gesture mocked), and applies backend-issued adaptations in real-time
via a WebSocket callback. The AdaptiveUIAdapter is constructed with a user ID and a callback; when
the backend responds with a list of UIAdaptation items, the frontend updates reactive state maps and
triggers lightweight animations. (Figure 5.1)

Flutter UI
(text, sliders, buttons)

Input Adapter
(Event JSON)

Backend
(SIF/MA-SIF)

UIAdaptation[]

user event WebSocket

WS replyapplyAdaptations()

Figure 5.1: Frontend data flow: events to adapter; adaptations back to UI.

5.3.2 UI Composition & State Model

The UI is a scrollable list of device cards with minimalist controls each representing a smart home device
such as a lamp, thermostat or a door. These cards contain core interactive elements, including buttons
for on/off actions, sliders for settings such as temperature, and labels for contextual information. (Figure
5.2)

Figure 5.2: Smart Home Controller UI: scrollable device cards (Lamp, Thermostat, Lock)
with minimalist controls and the mock event row (Miss Tap, Voice Command, Gesture).

The UI is intentionally minimalist, focusing on clarity and accessibility. Each device card (Lamp, Thermo-
stat, Lock) presents its controls in a clean, uncluttered layout: large buttons for toggling states, sliders for
adjustments, and concise status labels. The design prioritizes high visual contrast and generous spacing,
making it easier for users with motor or visual impairments to interact. Adaptations such as increased
button size, font scaling, or contrast changes are immediately reflected in the UI, with smooth animations

72 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

to reinforce feedback. A persistent mock event row below each card allows users (or testers) to simu-
late miss-taps, voice commands, or gestures, demonstrating how the interface responds and adapts in
real-time. This modular structure ensures that accessibility enhancements are both visible and intuitive,
supporting a wide range of user needs without overwhelming the interface.

5.3.3 Event & Adaptation Contract

Event (frontend→backend). Events carry modality and UI context:

1 {
2 "eventType": "miss_tap", // e.g., touch, voice, gesture, miss_tap, ...

3 "source": "touch", // modality

4 "target": "lamp", // lamp | thermostat | lock

5 "metadata": { "UI_element": "button" } // or slider, + command/gesture fields

6 }

Listing 5.1: Event structure

Note. The Dart Event uses camelCase fields (e.g., eventType, targetElement); the adapter serializes to
snake case for the JSON contract.

This event will later be enriched with other required fields in the Input Adapter Layer, such as timestamp
and user id.

Adaptation (backend→frontend). The backend replies with a list of atomic actions:

1 [

2 { "action": "increase_button_size", "target": "lamp", "value": 1.2 },
3 { "action": "increase_font_size", "target": "all", "value": 1.15 },
4 { "action": "increase_contrast", "target": "all" },
5 { "action": "show_tooltip", "target": "lamp", "value": "Try a longer press" }
6]

Listing 5.2: Adaptation example actions

Adaptations received from the backend after being processed by the Input Adapter Layer are applied
immediately using Flutter’s reactive state management, This is handled in the applyAdaptations(...)
callback function. For example, a increase button size action triggers an AnimatedScale widget up-
date, enlarging the targeted button over a short animation to make the change more noticeable without
disrupting the user’s flow. Similarly, a increase contrast action adjusts the application’s color scheme
by updating theme parameters, while text-related adaptations update font sizes dynamically. Further-
more, when these adaptations reach the frontend, a brief highlight at the top of the application, indicates
the changes being applied. This direct mapping between adaptation actions and Flutter widget properties
allows the frontend to respond flexibly to a wide range of changes without requiring hardcoded layouts.
See Table 5.1 for details.

5.3. FRONTEND (FLUTTER): ADAPTIVE SMART HOME CONTROLLER 73

Table 5.1: Adaptation-to-widget mapping (from applyAdaptations).

Action Target Effect in UI

increase button size device or all Scales button via buttonScales[target] (ani-
mated).

increase button border device or all Doubles border thickness in elementBorders.
increase slider size device or all Multiplies slider scale in sliderSizes.
increase font size (global) Multiplies all entries in fontSizes.
increase contrast (global) Switches to high-contrast theme via

switchToHighContrastTheme().
adjust spacing device or all Scales spacing in elementSpacing.
show tooltip device Floating SnackBar with helper text.
switch mode (global) Records navigation-mode change (placeholder for

future).
trigger button lamp/lock Toggles deviceStatuses (On/Off, Locked/Un-

locked).
simplify layout (global) Sets simplifiedLayout=true to reduce clutter.

5.3.4 Responsiveness & Feedback

While awaiting adaptations, the active card displays a rotating gradient border implemented via the
AnimatedGlowBorder widget. This subtle animation serves as a visual indicator of system latency,
signaling to users that their input is being processed and an adaptation is forthcoming. By using a
non-intrusive glowing effect, the interface maintains user engagement without causing distraction or
interrupting ongoing interactions (see Figure 5.3). This approach is particularly beneficial for accessibility,
as it provides clear feedback for users who may rely on visual cues to understand system status.

Figure 5.3: Loading indicator: rotating gradient card border while waiting for backend.

5.3.5 Profile Bootstrap & Editing

On first run, the frontend checks if a profile exists; if not, it creates a default profile and persists it via the
adapter. A bottom-sheet editor (ProfileEditorSheet) allows the ability to edit accessibility flags and
UI preferences (font size, button size) of the user, see figure 5.4, then calls updateProfile(...).� �
1 if widget is initialized then

2 adapter := AdaptiveUIAdapter(user_id, adaptation_callback)

3 if adapter.checkProfile(user_id) then

4 profile_data := adapter.getProfile(user_id)

5 user_profile := parseProfile(profile_data)

6 else

7 user_profile := UserProfile(

8 accessibility_needs=default,

9 input_preferences=default,

10 ui_preferences=default,

11 interaction_history=[]

12)

13 adapter.updateProfile(user_profile)

14 end if

74 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

� �
Listing 5.3: Profile initialization logic

Figure 5.4: Profile editor for accessibility needs and UI preferences.

5.3.6 Testing Harness: Mock Events & Input Capture

To validate the end-to-end pipeline without physical input hardware, a mock panel triggers miss tap,
voice command, and gesture events per device. Each button constructs an Event with modality, target,
and UI context and sends it via adapter.sendEvent(...). This keeps the architecture ready for real
speech/gesture modules later, while staying reproducible for the study.

When a user presses on an mockup event in the test panel underneath each device, the frontend captures
the event along with metadata such as the element’s type for UI context, the interaction type, and any
other relevant parameters. This data is sent through the Input Adapter Layer, which standardizes the
event into the framework’s JSON contract before forwarding it to the backend via WebSocket. The choice
of WebSocket ensures that adaptations can be returned and applied in near real-time, a critical require-
ment for maintaining a smooth user experience in accessibility scenarios. The power of the framework
lies in the ability to set the event type, source, and others, dynamically based on user interactions,
since the backend will use LLM-reasoning to interpret these events in context. While the fields are bound
by the JSON contract to standardize events (for modularity and consistency), the actual values can be
highly contextual and dynamic.

Input Capture: The frontend layer captures raw inputs from multiple modalities, including touch,
voice, and gestures. Each modality is handled through specific Flutter widgets and event listeners:

• Touch: Taps or miss-taps on buttons/sliders, detected via Flutter’s GestureDetector or onPressed
callbacks. Miss-taps are mocked but extensible to hover or real misstap detection like MouseRegion
or Listener widgets, to create a ”detection bounding box”.

• Voice: Commands like “Turn on lamp” or “Unlock door”, mocked for this thesis but extensible to
libraries like speech_to_text or Web Speech API.

• Gestures: Hand movements (e.g., point, swipe) via mock events, with future support for Medi-
aPipe.

5.3.7 Summary

Overall, the Adaptive Smart Home Controller (adaptive ui app.dart) demonstrates how the frontend
layer of the framework can be implemented in a way that is both platform-independent and responsive
to dynamic adaptation instructions. By separating UI rendering from adaptation logic and using the

5.4. INPUT ADAPTER (DART): TRANSPORT, SERIALIZATION & ADAPTATION CALLBACK75

Input Adapter Layer as a bridge, the application remains modular, making it easier to extend or replace
individual components without affecting the overall system.

5.4 Input Adapter (Dart): Transport, Serialization & Adapta-
tion Callback

The adapter bridges the Flutter frontend and the SIF backend by (i) serializing internal Event ob-
jects into the JSON event contract, (ii) handling low-latency transport via WebSocket for adapta-
tions, and (iii) managing user profiles over HTTP. This section focuses on the concrete implementa-
tion in adaptive ui adapter.dart: the class surface, serialization choices, transport lifecycle, and the
onAdaptations callback function into the frontend. See Chapter 3 for the high-level event schema and
field definitions.

5.4.1 Class Overview

AdaptiveUIAdapter

+ baseUrl : String

+ wsUrl : String

+ userId : String

+ onAdaptations : Function

+ channel : WebSocketChannel?

+ connecting : bool

+ connect()

+ disconnect()

+ sendEvent(e)

+ checkProfile()

+ createProfile(p)

+ updateProfile(p)

+ sendEyeTrackingEvent(target, gazeCoords)

Figure 5.5: Simplified UML-like diagram for AdaptiveUIAdapter.

In the current implementation (Figure 5.5), the adapter intercepts mock events generated by the frontend,
such as missed button presses, missed slider adjustments, or simulated voice commands. Each event is
enriched with metadata, including the user’s identifier, a timestamp, the type of interaction, and any
target element references. The adapter then converts this information into the JSON event contract,
further defined in Chapter 3, which serves as the standard interface between the frontend and backend.
This contract includes fields for event type, source modality, target element, coordinates if applicable,
confidence level, time stamp, user id and additional metadata such as the spoken command in the case
of voice input.

5.4.2 Internal Representations of Event, Adaptation and User Profiles

The adapter defines core Dart classes for representing interaction events, user profiles, and adaptation
actions. The Event class encapsulates all relevant fields such as event type, source modality, target ele-
ment, etc., ensuring every interaction is consistently structured and easily serializable to the backend’s
JSON contract (see figure 5.6 for schema details). Similarly, UIAdaptation models adaptation instruc-
tions received from the backend, while UserProfile maintains accessibility needs, preferences, and recent
history. These unified data structures guarantee reliable, type-safe communication between frontend and
backend, simplify integration, and support extensibility for future modalities or adaptation types.

76 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

Event

+ eventType : String
+ source : String
+ targetElement : String?
+ coordinates : Map?
+ confidence : double
+ metadata : Map
+ timestamp : String
+ userId : String

+ Event(...)
+ toJson() : Map

UserProfile

+ userId : String
+ accessibilityNeeds : Map
+ inputPreferences : Map
+ uiPreferences : Map
+ interactionHistory : List

+ UserProfile(...)
+ toJson() : Map

UIAdaptation

+ action : String
+ reason : String
+ target : String
+ mode : String?
+ value : dynamic

+ UIAdaptation(...)
+ toJson() : Map
+ fromJson(Map) : UIAdaptation

Figure 5.6: High-level class diagram for Input Adapter Layer data structures.

5.4.3 Transport & Profile Management

Before forwarding an event, the adapter queries the backend via HTTP to check whether a profile exists
for the given user. If no profile is found, it prompts the frontend to initiate a profile creation request,
using default parameters or pre-filled accessibility preferences where available. This mechanism prevents
situations where adaptation requests are processed without the necessary user context, which could lead
to ineffective or even counterproductive UI changes.

Communication with the backend is handled primarily through WebSocket for low-latency adaptation
feedback. HTTP requests are used for profile management, batch operations, and other non-real-time
interactions. This division ensures that profile updates and administrative tasks do not interfere with
the responsiveness of live adaptations, see table 5.2 for details.

Table 5.2: Adapter endpoints used by adaptive ui adapter.dart.

Purpose Method/Proto Path

Realtime adaptations WebSocket /ws/adapt

Check profile exists GET /profile/{user_id}

Create profile POST /profile

Update profile POST /profile

WebSocket Lifecycle & Error Handling:

Disconnected Connecting Open
connect() onOpen

ping/pong

Figure 5.7: Adapter WebSocket lifecycle with reconnect backoff.

In adaptive ui adapter.dart:

• On open: subscribe to messages and (optionally) flush any queued events.

• On message: parse JSON array/object, convert to UIAdaptation list, invoke onAdaptations.

• On error/done: close channel.

• Keep-alive via ping/pong: Keep-alive via ping/pong is handled at the protocol level; the adapter
does not send explicit pings.

5.4. INPUT ADAPTER (DART): TRANSPORT, SERIALIZATION & ADAPTATION CALLBACK77

Sending Events:

When the frontend is ready to send an event, it calls the sendEvent function from the adapter, which
enriches the event data with metadata (e.g., user id, timestamp), serializes it into JSON, and sends it
over the WebSocket connection.

1 void sendEvent(Event eventData) {

2 eventData.timestamp = DateTime.now().toIso8601String();

3 eventData.userId = userId;

4 channel!.sink.add(jsonEncode(eventData.toJson()));

5 }

Listing 5.4: sendEvent: serialize and send over WS

Receiving Adaptations:

When the adapter receives adaptations from the backend in the WebSocket channel, the adapter processes
the JSON and converts them in a UIAdaptation list. This list is then passed to the onAdaptations fron-
tend callback function. This function is responsible for updating the UI based on the received adaptation
data, see Section 5.3.3 for more details on this process.

Profile Management:

Profile management is mostly done by the frontend, with the Input Adapter Layer providing all the nec-
essary functions and ensuring that every user interaction is contextualized with the correct accessibility
preferences and history. Before sending any event to the backend, the frontend (as described earlier)
checks whether a profile exists for the current user by calling checkProfile(). If no profile is found,
it creates one using createProfile(UserProfile p), which serializes the profile data and posts it to
the backend. Updates to the profile, such as changes in accessibility needs or UI preferences, are han-
dled by updateProfile(UserProfile p), which issues a POST request with the updated profile JSON.
These functions guarantee that the backend always receives events enriched with up-to-date user context,
supporting personalised adaptation and continuous learning.

5.4.4 Extensibility Example

As proof-of-concept for the extensibility of the framework, a gaze event hook was implemented that
incorporates eye-tracking data into an event. This demonstrates how easily new input modalities can be
integrated into the existing architecture.

1 void sendEyeTrackingEvent(String target, Map<String,double> gazeCoords) {

2 sendEvent(Event(

3 eventType: ’eye_tracking’,

4 source: ’gaze’,

5 targetElement: target,

6 coordinates: gazeCoords,

7 confidence: 1.0,

8));

9 }

Listing 5.5: Gaze event hook (testing harness)

Note: This can either be done in the frontend or directly in the adapter, depending on the specific
requirements of the application. For demonstration purposes, the gaze event hook was implemented in
the adapter, while the frontend would be a more logical place for it in a production setting.

5.4.5 Summary

The adapter is fully wired for touch events and for mocked voice/gesture events triggered from the
frontend’s test panel, enabling end-to-end validation without external hardware. The adapter treats

78 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

mocked and real events identically, so integrating actual speech/gesture modules later is a frontend-
only change. By isolating serialization, profile checks, and transport here, the frontend stays focused on
rendering, and the backend receives consistent inputs. The same adapter design can be reused in SwiftUI
or other platforms with minimal changes to the method surface and JSON contract.

5.5 SIF Backend Layer: Implementation of Adaptation Logic

The backend implements the decision-making core of the framework. It receives standardized events
from the adapter, fuses them with user profiles and recent interaction history, and returns concrete
adaptation actions for the frontend to apply. The service is written in Python using FastAPI, with
Uvicorn for serving requests and MongoDB for persistent storage of profiles and logs. WebSocket is used
for low-latency, bidirectional communication during interaction, HTTP is used for profile management
and auxiliary endpoints.

5.5.1 Webserver layout and endpoints

The application exposes a WebSocket endpoint, /ws/adapt, that accepts JSON events matching the
contract introduced earlier. Each message is parsed into a Pydantic Event model, the user profile is
loaded from MongoDB, and the event, profile, and short history window are passed to the Smart Intent
Fusion routine. The resulting adaptation list is returned on the same socket, allowing the frontend
to update the UI immediately. For non-interactive operations the backend offers POST /profile for
profile creation, GET /profile/user id for retrieval, and a small set of diagnostic endpoints such as GET
/full history and GET /modalities. Profile writes use FastAPI BackgroundTasks, which keeps the
interaction path responsive while updates are persisted asynchronously.

Startup & Runtime

For local runs, the service is started via a small shell script (start backend processes.sh) that prepares
a venv, checks MongoDB, and runs Uvicorn with explicit WebSocket keepalive settings:� �
1 uvicorn backend:app --reload --host 0.0.0.0 --port 8000 \

2 --ws websockets --ws-ping-interval 60 --ws-ping-timeout 180� �
Listing 5.6: Backend startup (excerpt)

This configuration enables reliable long-lived WS sessions during interactive testing, and eases startup of
all the different services.

5.5.2 Data persistence and history management

MongoDB stores user profiles in a profiles collection and event–adaptation pairs in a logs collection.
Profiles are indexed by user id to allow direct lookups during interaction. Each time an event is processed
the backend appends a compact JSON representation to the profile’s interaction history, capped to a
small sliding window. This keeps the prompt context focused on recent behavior while avoiding unneces-
sary growth in the database. For redundancy, a JSONL file mirrors the log entries during development,
which simplifies offline inspection or debugging purposes when the database is reset.

5.5.3 Smart Intent Fusion and MA-SIF

The fusion step supports two paths. A multi-agent configuration, MA-SIF, is the default. It loops over
a set of specialised LLM agents, UI, Geometry, and Input, each prompted with the current event, the
user profile, and a short history via runtime injection (for more details see Chapter 4), defined in the
sif config.json. These agents propose structured adaptations in their domain, for example increasing
button size, adjusting spacing, switching input mode, or triggering a button when intent is clear. Their
outputs are then passed to a dedicated Validator agent that consolidates, filters, and normalises the
suggestions into a final list. The validator removes duplicates, corrects out-of-range values, and ensures
that every adaptation conforms to the allowed action set and includes a target and either a value or a
mode and more. See Table 5.3 for the current agent configuration.

5.5. SIF BACKEND LAYER: IMPLEMENTATION OF ADAPTATION LOGIC 79

A single-agent SIF path is also available. It produces a complete adaptation list in one call and is useful
when quick iteration is preferable over agent specialisation. Both paths share the same I/O schema,
which keeps the frontend indifferent to which reasoning strategy is currently set to active.

Current Agent Configuration (MA-SIF balanced) (from sif config.json)

Agent Focus (examples) Allowed actions Model / params

UI suggestion increase font sizes; enable
contrast mode; stronger
button borders; tooltips

increase font size,
increase contrast,
increase button border,
show tooltip

gemini-2.5-flash-lite,
temp=0.2, timeout=15 s,
thinking budget=0

Geometry spacing; button size; slider
size; simplify layout

increase button size,
increase slider size,
adjust spacing,
simplify layout

gemini-2.5-flash-lite,
temp=0.2, timeout=15 s,
thinking budget=0

Input mode switching; trigger
buttons

switch mode,
trigger button

gemini-2.5-flash-lite,
temp=0.2, timeout=15 s,
thinking budget=0

Validator consolidate + validate all
suggestions

all actions above gemini-2.5-flash,
temp=0.3, timeout=30 s,
thinking budget=-1

Table 5.3: MA–SIF agents, focus, allowed actions, and model settings (runtime config-
urable).

Runtime defaults:

• Default model settings:

– UI/Geometry/Input use gemini-2.5-flash-lite with a temperature of 0.2, a 15 s timeout
and thinking budget of 0 (no thinking).

– Validator uses gemini-2.5-flash with a temperature of 0.3, a 30 s timeout and thinking
budget of -1 (dynamic).

• Whitelisting: Each agent is restricted to an allowed action set ; Validator allows the union set
only.

• Schema enforcement: Responses must match the JSON schema (response json schema); non-
conforming replies trigger fallback.

• Low temperature + narrow prompts: Specialist prompts reduce creative drift and injection
surface.

• Timeouts: Per-agent time budgets ensure the loop returns within interaction thresholds.

5.5.4 LLM invocation (Gemini)

For each event, the backend invokes Gemini per specialist agent (UI, Geometry, Input) and then once for
the Validator, in sequence. Each call is single-shot (no streaming) with a strict JSON response contract.
Requests are composed as follows:

Request composition:

• Context blocks: event json, profile json (accessibility flags, preferences), and history json

(recent 10 interactions). These are injected into the Agent’s prompt at runtime, as mentioned
earlier.

• Agent preamble: a short, role-specific instruction and focus items plus an explicit allowed action
set (whitelisting).

• Output contract: instructed to return only a JSON envelope {"adaptations":[...]} (no prose).

80 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

Generation configuration (per call).

• Model/temperature: UI, Geometry, Input use gemini-2.5-flash-lite at T=0.2; the Validator
uses gemini-2.5-flash at T=0.3 (see sif config.json).

• Response format: response mime type=application/json with a JSON Schema that enforces
types, fields, and that either value (numeric) or mode (categorical) is present.

• Budgets: per-agent timeout ≈ 15 s; Validator timeout ≈ 30 s. Calls are sequential by design to
keep rate-limits predictable and simplify partial results.

• Determinism: low temperatures, single candidate, narrow prompts; agents propose domain-
scoped adaptations, Validator consolidates/filters to the final set.

Failure handling. If a specialist agent times out or returns invalid JSON, its suggestions are omitted;
the Validator runs on whatever is available. If validation still fails schema checks or time outs, the
backend emits the available adaptation or conservative rule-based adaptations as a fallback.

5.5.5 Structured outputs and guardrails

To reduce hallucinations and schema drift, the backend requests JSON-typed responses from the LLM
with an explicit schema and allowed actions, as described earlier in Chapter 4. The prompt defines
required fields, expected types, and a one-of constraint that demands either a numeric value or a cat-
egorical mode. Agent prompts are intentionally narrow, which improves determinism. The validator
prompt is broader, since it must adjust conflicting suggestions and justify final choices. Despite these
controls, invalid outputs still occur occasionally. However, the schema can be enforced at two distinct
levels: by the agents and by the validator. This dual-level approach makes it easier for the validator to
ensure that the agents’ adaptations are compliant. Furthermore, it has a defensive layer that falls back
to simple rules if all LLM validation fails. The output schema will produce an adaptation of the following
format:
{"adaptations":[{"action":"...","target":"...","value\mode":...,"reason":"...","intent":"..."}]}

5.5.6 Rule-based fallback and resilience

A lightweight rule engine acts as a safety net when LLM calls time out or the provider is unavailable.
This rule engine comes into action when all the suggestion agents fail (no output). It covers essential
accessibility behaviors, for example increasing button size after a miss-tap, switching to voice for users
flagged as motor-impaired, or enabling high-contrast mode for visually impaired profiles. These rules
are intentionally conservative, they guarantee progress without surprising the user, and they keep the
implementation usable in environments with unstable connectivity.

Fallback rules (summary)

Table 5.4: Rule triggers and conservative adaptations (fallback path).

Trigger Adaptation(s)

Miss tap (event type="miss tap")
or slider miss

increase button size on target (default 1.3); in-
tent=“difficulty hitting target”.

Profile indicates motor impairment increase button size on all; intent=“Improve accessibil-
ity”.

Profile indicates visual impairment increase contrast on all; intent=“improve visibility”.
Voice command detected
(event type="voice")

switch mode to voice on all.

5.5.7 Heatmap Analysis

Due to time constraints, heatmap analysis is not implemented. This is a potential area for future work,
as understanding user interaction patterns and frequent touch points, could further enhance the system’s
adaptability. Heatmap analysis has a big potential in the repositioning of UI elements based on the

5.6. USER PROFILE AND CONTEXT IMPLEMENTATION 81

heatmap data, this could improve accessibility for users with specific needs like gesture-based inputs.
Since the repositioning of elements is not supported in this first iteration, the focus remains on immediate
adaptation strategies, which made heatmap analysis out of scope.

5.5.8 Latency, partial results, and error handling

The WebSocket loop is designed to return something useful as quickly as possible. Agent calls run in
sequence within short time budgets. If one agent fails to respond, the validator operates on the remaining
suggestions rather than waiting indefinitely. The backend aims to keep per-event processing below the
threshold where users notice a lag on interaction, which is important for accessibility, particularly when
enlarging targets immediately after an error. In practice, most adaptations are returned quickly by
the smaller suggestion agents, while validation can become the slowest step in complex scenes. When
validation exceeds its budget the backend returns the best available subset, then continues to append the
event to the user’s history so future interactions benefit from the context.

5.5.9 Security and CORS considerations

During development the backend enables permissive CORS to simplify local testing across platforms.
Profiles are keyed by user id rather than personal data. For production deployment, stricter origins,
authentication, and encryption would be required. These measures are outside the scope of this prototype,
but the separation of concerns in the current design makes them straightforward to add.

5.5.10 Summary

In its current form the backend delivers a complete adaptation pipeline: events arrive over WebSocket,
profiles and short history windows are loaded from MongoDB, MA-SIF produces structured suggestions,
a validator consolidates them, and the result is returned to the frontend within a single interaction
loop. When LLM reasoning is unavailable, conservative rules ensure the interface remains usable. This
combination of multi-agent reasoning, strict schemas, and rule-based fallbacks gives the system both
flexibility and reliability, which is essential for accessibility-focused adaptations.

5.6 User Profile and Context Implementation

The user profile and context subsystem was implemented as a dedicated data service in the SIF backend,
designed to persist accessibility needs, interaction preferences, baseline UI configurations, and a capped
history of recent events. MongoDB serves as the primary storage layer, with the profiles collection
indexed on user id as described earlier for constant-time retrieval during event processing.

When a new event is received via the WebSocket (/ws/adapt), the backend queries the profile store
using the supplied user id. If no profile exists, the profile will be created and added to the MongoDB
using insert one before continuing, otherwise the profile will be retrieved using find one or updated
using update one, ensuring that all adaptation decisions are made in a contextualized environment.
This retrieval step is synchronous, guaranteeing that the most recent committed profile is available to the
reasoning pipeline before any LLM or rule-based evaluation occurs. Interaction history is maintained using
MongoDB’s $push with $slice operators to append the incoming event while capping the array length
at 10 entries for efficiency. This rolling history provides the SIF agents with temporal context, enabling
progressive personalization; for example, recognising a pattern of repeated miss-taps and proactively
switching to voice mode. Updates to the history are performed asynchronously to avoid blocking real-
time adaptation.

Profile documents are structured as JSON as described in Chapter 4, containing four key sections:
accessibility needs (boolean capability flags), input preferences (preferred modality and fallback
order), ui preferences (default font size, button scale and more), and interaction history (recent
event log). This schema strikes a balance between simplicity and extensibility, allowing new fields to be
added without migration overhead.

To optimise performance and safety, all profile mutations are atomic, relying on MongoDB transactions
to prevent race conditions when simultaneous events and updates occur. Adaptation logs are stored
separately in the logs collection and mirrored to a local adaptation log.jsonl file, supporting offline
analysis and reproducibility of evaluation results. Furthermore, if a profile update is in-flight during an

82 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

event, the backend uses the latest committed profile, mitigated by client-side checks (waiting for POST

/profile success) and server-side transactions.

This implementation ensures that every adaptation decision, whether produced by a static rule or the
multi-agent LLM pipeline, is grounded in the user’s persisted profile and immediate interaction context,
enabling consistent, personalised, and stateful UI behavior across sessions.

5.7 Dynamic Adaptation Mechanisms Implementation

The dynamic adaptation mechanism is the final stage in the adaptation pipeline, where decisions made
by the backend are translated into immediate and visible changes in the user interface. In the current im-
plementation, this process is tightly integrated with Flutter’s reactive widget system, allowing adaptation
actions to be applied without forcing full UI rebuilds or navigation resets.

When the backend sends an adaptation list over the WebSocket connection, the frontend parses each
action and routes it to the relevant UI element. Actions are defined in the strict JSON schema described
earlier, containing the action type, a target identifier, a value or mode, and a human-readable reason
and intent it inferred from the adaptation. This standardisation allows the same adaptation handler to
process diverse actions without requiring modality-specific logic.

The framework applies a predefined set of accessibility-oriented actions (see Table 5.1 for the concrete
widget mappings used by the Flutter implementation). These adaptation actions form the cornerstone of
the framework’s accessibility-driven approach, addressing diverse user needs in the Adaptive Smart Home
Controller. Each action is carefully designed to align with WCAG 2.1 guidelines, ensuring inclusivity
for motor-impaired users (e.g., larger buttons/sliders, increased spacing), visually impaired users (e.g.,
high-contrast modes, highlighted borders), and hands-free users (e.g., tooltips, mode switching).

5.7.1 Application Mechanics (State, Animation, Ordering)

• State deltas. Element-scoped actions update per-element maps (e.g., buttonScales[target],
elementBorders[target]), while global actions flip flags or theme variables (increase contrast,
switch mode).

• Animation semantics. Size and spacing changes use lightweight implicit animations (AnimatedScale,
AnimatedContainer) with short durations to make changes perceivable without disrupting inter-
action.

• Ordering. Adaptations are applied in the order received; the backend validator guarantees a
coherent, non-overlapping set. On receipt, the active card’s glow border stops and controls are
re-enabled.

The application of adaptations begins with a lookup to determine whether the target element ex-
ists in the current view. If it does, the corresponding widget state is updated directly. For exam-
ple, an increase button size action adjusts the scale factor property of the button widget, and an
increase font size action updates the text style parameter. Where appropriate, changes are animated
using Flutter’s AnimatedScale or AnimatedContainer to make the transition noticeable without dis-
tracting the user. This animation step is particularly important for accessibility, as it helps the user
understand that the interface has been modified intentionally. The loading indicator displayed around
the card being interacted is now also triggered to stop playing.

Adaptations that affect the entire interface, such as increase contrast or switch mode, are handled at
the application theme level. Contrast adjustments update the color palette by replacing the primary and
background colors with higher-contrast alternatives, while mode switches alter the active input modality,
for example switching from touch to voice. These global changes are propagated across all widgets
automatically through Flutter’s state management, ensuring consistency without manually updating
each element (see table 5.5 for an overview).

5.7. DYNAMIC ADAPTATION MECHANISMS IMPLEMENTATION 83

Table 5.5: Scope of adaptations in the Flutter implementation.

Global (theme/state) increase contrast, switch mode, simplify layout,
increase font size (all)

Element-scoped increase button size, increase button border,
increase slider size, adjust spacing, show tooltip,
trigger button

Not all adaptations are implemented with live modality inputs. For demonstration purposes, actions
triggered by voice or gesture events are generated from simulated events in the frontend’s test panel in
each device card, like was mentioned earlier. However, these simulated actions follow the same processing
path as real events, which means that integrating actual input sources in the future will require no changes
to the adaptation mechanism itself.

5.7.2 Conflicts and Unknown Actions

The validator resolves conflicts server-side; the frontend applies the resulting set atomically in a single
frame. If duplicate actions target the same element, the last write wins within the frame. Unknown or
ill-typed actions are logged and ignored, preserving UI stability.

5.7.3 Real-Time Adaptation Example

To illustrate the framework’s adaptation capabilities, consider a scenario where a visually impaired user
with voice preference attempts to interact with the Smart Home Controller. The user profile contains
the following settings:

1 {
2 ...

3 "accessibility_needs": { "visual_impaired": true },
4 "input_preferences": { "preferred_modality": "voice" },
5 "ui_preferences": { "font_size": 16, "button_scale": 1.1 }
6 }

Listing 5.7: User profile for visually impaired user, shortened

Event Trigger: The user attempts to activate the lamp by tapping its button but misses the target
due to the button’s insufficient size relative to their visual and motor coordination needs. This generates
a miss tap event on the lamp target, which is captured by the frontend and sent through the Input
Adapter Layer to the SIF backend.

SIF Reasoning Process: The backend combines the miss-tap event with the user’s profile and recent
interaction history. The MA-SIF agents analyze the situation:

• UI Agent: Recognizes visual impairment flags and suggests contrast and font improvements

• Geometry Agent: Identifies the miss-tap pattern and recommends button enlargement and border
enhancement

• Input Agent: Notes voice preference and triggers the intended action while suggesting mode
awareness

• Validator Agent: Consolidates suggestions and ensures compatibility

Adaptation Response: The backend returns five coordinated adaptations:

1. Font size increase (lamp): Scale text by 1.2× for better readability given visual impairment

2. Button size increase (lamp): Enlarge the lamp button by 1.2× to reduce future miss-taps

84 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

3. Contrast enhancement (global): Switch to high-contrast mode across the entire interface

4. Button border enhancement (lamp): Strengthen the lamp button border for better visual
definition

5. Direct button activation (lamp): Trigger the lamp immediately via voice command, fulfilling
the user’s intent despite the miss-tap

Validator Agent Reasoning: The Validator accepted all (5 out of 5) adaptations from the suggestion
agents, following this reasoning:

• Font size increase (lamp): User has visual impairment and has previously missed taps on the
lamp button, suggesting difficulty in seeing the target.

• Contrast enhancement (global): User has visual impairment, and increasing contrast can im-
prove visibility of UI elements.

• Button border enhancement (lamp): User has visual impairment and has previously missed
taps on the lamp button, suggesting difficulty in accurately targeting the button.

• Button size increase (lamp): The user has a visual impairment and has recently missed tapping
the lamp button twice. Increasing the button size will make it easier to interact with.

• Direct button activation (lamp): User has repeatedly missed tapping the lamp button, indicat-
ing a potential difficulty with precise touch interactions. The current miss-tap command to turn on
the lamp suggests a preference for hands-free operation. Triggering the button via voice command
is a suitable adaptation.

Visual Impact: The transformation (see figure 5.8) demonstrates the framework’s accessibility-focused
approach. The originally small lamp button (standard size) becomes significantly more prominent through
size scaling and border enhancement. Text elements throughout the interface are enlarged to improve
readability, while the high-contrast theme ensures better visibility for users with visual impairments. The
lamp is also activated immediately, fulfilling the user’s original intent despite the initial miss-tap.

Personalization Benefits: This example illustrates how the framework moves beyond generic acces-
sibility settings to deliver contextual, profile-aware adaptations. Rather than applying a one-size-fits-all
solution, the system combines the user’s declared visual impairment with their interaction behavior
(miss-tap) and stated preferences (voice modality) to produce a coordinated set of improvements that
address both immediate needs (completing the lamp activation) and future interactions (persistent size
and contrast improvements). The adaptation occurred within the framework’s typical latency range
(∼13 seconds median), allowing the user to continue interacting while improvements are applied progres-
sively. This demonstrates the practical viability of near real-time, AI-driven adaptation for accessibility
enhancement.

Before: standard interface with small
targets

After: enlarged targets, enhanced con-
trast, stronger borders

Figure 5.8: Real-time adaptation applied after miss-tap event for visually impaired user.

5.8. BACKEND INJECTION INTERFACE 85

5.8 Backend Injection Interface

5.8.1 Purpose and Scope

This lightweight Flutter tool exposes a direct interface to the SIF backend for debugging and evaluation.
It lets a researcher inject or edit profiles and events, send them to the backend over WebSocket/HTTP, and
immediately inspect the returned {adaptations:[...]} along with the server-side interaction history
per user. It is separate from the end-user UI and optimized for fast iteration.

5.8.2 Architecture and Data Flow

On launch the app opens a WebSocket to ws://localhost:8000/ws/adapt and listens for JSON replies
containing an adaptations array. Profile updates are sent via HTTP POST /profile, while the history
panel pulls entries from GET /full history. Incoming WS frames are decoded and the adaptations

list is rendered; after each reply the tool refreshes history via HTTP to keep the view in sync.

5.8.3 Controls: Profiles and Events

The left column edits the profile (free-form JSON or prefilled “Motor Impaired” / “Hands-Free”), visu-
alizing key blocks like accessibility needs and input preferences. The right column edits the event
(free-form JSON or predefined “Miss-Tap on Play”, “Voice Play Command”, “Gesture Point”). Both
editors pretty-print JSON and show an iconized summary (user, modality, target). This enables fast A/B
of context vs. input without leaving the app (see figure 5.9 for an example).

Figure 5.9: Backend Injection Interface: configuration and live JSON visualization.

5.8.4 Adaptation Response View

Pressing Get Suggestions sends the current event (after posting the profile), shows a spinner, then lists
each adaptation with an action-specific icon and a compact, human-readable summary (e.g., “Switch
to voice mode” or “Increase contrast”). The mapping covers common actions such as switch mode,
increase contrast, trigger button, simplify layout, and geometry actions. Unknown actions fall
back to a generic renderer, keeping the tool resilient to backend experiments (see figure 5.10 for an
example).

5.8.5 Interaction History Panel

The bottom card fetches history from the backend and renders each entry (timestamp, user, event
type/source) plus the associated adaptations. This provides a quick audit trail to verify that profile
changes affect subsequent suggestions and to spot repeated error patterns (e.g., consecutive miss-taps).
A “Clear History” button resets the local view; history retrieval is refreshed after each WS reply to keep
causality visible.

86 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

Figure 5.10: Example adaptation list before/after a pointing gesture event.

5.8.6 Operational Notes and Limitations

The app assumes a running backend at localhost:8000. Profile JSON is posted verbatim; there is no
schema validation beyond backend checks. The WS channel is established once on init; a commented re-
connection helper is included for future hardening. Timeouts and transport errors are surfaced minimally
to keep the UI uncluttered. This is created as a developer tool and is not intended for end-users.

5.9 Cross-Platform SwiftUI Example

5.9.1 Purpose and Scope

This minimal SwiftUI app demonstrates that a thin, platform-native adapter plus a small view layer
are sufficient to integrate with the SIF backend. It mirrors the Flutter contract: create (or fetch) a
user profile over HTTP, stream events over WebSocket, and apply the returned {adaptations:[...]}
envelope to the UI state. The example targets iOS/macOS (Swift 5.7+, iOS 15+) and may require ATS
exceptions for local HTTP/WS during development.

5.9.2 Adapter and Transport

The AdaptiveUIAdapter is an ObservableObject that (i) ensures the profile exists via GET /profile/

{user id} and POST /profile, (ii) opens a URLSessionWebSocketTask to /ws/adapt, and (iii) exposes
sendEvent() and an onAdaptations callback for the UI. Incoming frames are decoded from a wrapped
Envelope{adaptations:[...]} into an array of Adaptation. On receive errors it reconnects after
a short delay, keeping the session resilient for local testing and debugging. Events are encoded with
JSONEncoder.convertToSnakeCase, matching the backend’s snake case contract.

5.9.3 Minimal UI and State Mapping

AdaptiveUIApp wires the adapter into the environment and renders a single ContentView that shows
a lamp card, a few “send event” buttons, and a live list of the most recent adaptations (see fig-
ure 5.11 for a before-after example). The view holds a small set of reactive states buttonScale,
borderWidth, highContrast, fontScale, spacing, and tooltip, that the apply() function updates
based on action/target/value/mode. Concretely: increase button size multiplies buttonScale, in-
crease font size scales text, increase contrast toggles a high-contrast color scheme, increase button border
sets a visible outline, adjust spacing scales inter-control spacing (clamped), show tooltip surfaces the
model’s reason string, and trigger button toggles the lamp state. This mirrors the Flutter mapping but
proves the contract is UI-framework agnostic.

5.9.4 Event Injection

Three buttons generate representative events: a miss-tap (event type="miss tap" with coordinates), a
simple voice command (event type="voice" with metadata.command), and a local tap. The miss-tap

5.10. DESIGN DECISIONS 87

and voice paths serialize to JSON and are sent over WS; the tap path is stubbed to flip local state,
emphasizing that production UIs would simply send the tap event the same way.

5.9.5 Usage and Limitations

On launch, the adapter creates a minimal default profile when needed, connects WS, and begins listening.
Pressing “Miss-tap” or “Voice” triggers a backend roundtrip; the adaptation list below the card updates
immediately and apply() mutates view state. The demo intentionally omits persistence and complex
navigation; its goal is to show that the SIF contract (profile endpoints, WS envelope, action names) can
be integrated cleanly into SwiftUI with ≈ a hundred lines of adapter+view code.

Figure 5.11: Example SwiftUI app before/after a miss tap event.

5.10 Design Decisions

The design of the Adaptive Multimodal GUI Framework using LLMs reflects a series of deliberate choices
aimed at balancing accessibility, performance, scalability, extensibility, and ease of integration. These
decisions were made with the primary goal of delivering near real-time, personalised adaptations for
motor-impaired, visually impaired, and hands-free users, while ensuring that the framework remains
modular and adaptable to future platforms and domains.

5.10.1 Modularity Over Monolithic Design

Decision: The framework adopts a modular three-layer architecture (Frontend, Input Adapter, SIF
Backend) with clear separation of concerns, connected through a standardized JSON contract.

Reasoning:

• Flexibility: Each layer can be updated or replaced independently, enabling deployment across
different platforms such as Flutter, SwiftUI, or future platforms without reworking the entire system.

• Extensibility: The JSON contract in the Input Adapter Layer allows new modalities (e.g., eye
tracking) to be integrated without modifying backend logic.

• Developer accessibility: Modularity simplifies integration, requiring minimal code for event
handling and adaptation application.

5.10.2 WebSocket for Real-Time vs. HTTP for Batch Processing

Decision: The framework uses WebSocket (/ws/adapt) for real-time event processing and adaptation
delivery, with HTTP (/full history, /profile) for debugging, developer tooling and profile manage-
ment.

Reasoning:

• Low Latency: WebSocket enables fast and bidirectional sending of data like adaptations (e.g.,
scaling a button after a miss-tap).

88 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

• Reliability: HTTP supports robust profile updates (POST /profile), ideal for non-real-time sce-
narios or debugging.

• Accessibility: Real-time feedback enhances usability for motor-impaired or hands-free users, where
delays could disrupt interaction.

5.10.3 MongoDB for Persistent Storage

Decision: MongoDB is used for storing user profiles, interaction history, and adaptation logs, with
user id indexing and capped history arrays (10 events).

Reasoning:

• Scalability: MongoDB’s NoSQL design and indexing ensure fast queries for large user bases,
critical for real-world deployment.

• Flexibility: JSON-like documents align with the framework’s JSON contract, simplifying pro-
file/history storage.

• Continuous Learning: Retaining a limited history supports adaptive behavior, such as making
permanent size adjustments after repeated miss-taps.

5.10.4 Rule-Based Fallback with LLM Reasoning

Decision: SIF combines rule-based logic (e.g., if miss tap then increase size) with LLM reasoning
for creative adaptations, with rules as a fallback for LLM failures or time-outs, since LLMs can have high
respond latencies.

Reasoning:

• Reliability: Rules ensure deterministic adaptations (e.g., button enlargement for miss-taps) when
LLM responses are unavailable or hallucinate.

• Novelty: LLM enables context-aware, proactive suggestions (e.g., switch_mode: voice for hands-
free users), advancing beyond static rules.

• Accessibility: Hybrid approach ensures consistent support for motor-impaired, visually impaired
users (e.g., high-contrast text).

5.10.5 Multi-agent LLM reasoning (MA-SIF) vs single-agent LLM reasoning
(normal SIF)

A key architectural decision in the framework is the adoption of multi-agent LLM reasoning (MA-SIF)
over a single agent LLM approach (normal SIF). In the single agent SIF model, one LLM is responsible
for interpreting all input events and generating adaptation actions. While this simplifies integration and
reduces system complexity, it can limit the granularity and specialization of adaptation logic, especially
as the diversity of user needs and input modalities grows.

MA-SIF, by contrast, distributes reasoning across multiple specialized LLM agents, each focused on a
distinct domain such as UI adaptations, geometry/layout changes, input modality management, and
validation. This separation of concerns enables each agent to leverage tailored prompts, domain-specific
knowledge, and focused reasoning strategies, resulting in more nuanced and context-aware adaptation
suggestions. The validator agent further ensures that outputs from other agents are coherent, non-
conflicting, and accessibility-compliant.

The multi-agent approach offers several advantages:

• Scalability: New agents can be added to address emerging modalities or adaptation domains
without disrupting existing logic.

• Extensibility: Prompts and allowed actions can be updated independently for each agent, sup-
porting rapid iteration and domain-specific improvements.

• Robustness: Specialized agents reduce the risk of LLM hallucinations or conflicting adaptations,
as validation is enforced before application.

5.11. IMPLEMENTATION CHALLENGES AND SOLUTIONS 89

• Personalization: Agents can incorporate user profiles and history more effectively, enabling tar-
geted adaptations for motor-impaired, visually impaired, or hands-free users.

5.11 Implementation Challenges and Solutions

Developing the Adaptive Smart Home Controller exposed several practical challenges, ranging from LLM-
specific issues to general real-time system concerns. These were addressed through a mix of architectural
decisions, fallback mechanisms, and compromises designed to keep the prototype functional and reliable
under varying conditions.

5.11.1 LLM reliability and output consistency

One of the most persistent challenges was ensuring that the multi-agent LLM pipeline returned valid,
schema-compliant output. Despite strict prompts and an explicit allowed-actions list, hallucinations still
occurred, producing unsupported actions, targeting non-existent elements, or returning unreasonable val-
ues such as excessively large scaling factors. These errors risked breaking the layout or producing jarring
visual changes. To mitigate this as described earlier, a validator agent was introduced to consolidate and
correct suggestions before they reached the frontend. However, this validation step added extra latency
and still could not guarantee complete protection against invalid values, making additional frontend-side
checks a sensible next step for future versions.

5.11.2 Performance under real-time constraints

Adaptation latency was a critical factor for usability, particularly in accessibility scenarios where delayed
feedback can reduce trust in the system. Smaller LLM models were assigned to the suggestion agents
to keep their execution time within fractions of a second, while the validator, which required more
context and reasoning, used a larger model with a higher timeout budget. Even so, occasional slowdowns
occurred due to network latency or provider-side delays. The backend was therefore designed to apply
partial results if all agents did not respond in time, ensuring that at least some adaptations reached the
user quickly.

5.11.3 Safeguards against malicious or replay attacks

In its current form, the system does not include strong safeguards against replay attacks or intentionally
crafted events designed to trigger disruptive adaptations. This is acceptable in a controlled research
environment but would require strict validation and authentication for production deployment. Mea-
sures such as signing WebSocket messages, verifying sequence numbers, and rejecting stale or malformed
events would be necessary to prevent exploitation as well as extra protections in the adapter or fron-
tend. Furthermore is user id hijacking, where an attacker submits events under a different user’s profile
possible, since no user id checks are done on returning adaptations. Future mitigations such as imple-
menting user id verification and event signing will be necessary to address these vulnerabilities. This
was intentional for the scope and development time constraints of this research.

5.11.4 Testing with incomplete modalities

Live gesture tracking and voice inputs were not integrated in this iteration, which meant that related
adaptations had to be tested using simulated events. While this allowed the adaptation logic to be
validated end-to-end, it did not account for the noise, recognition errors, or latency introduced by real
input devices. Future work will need to focus on replacing these simulated events with actual input
sources to fully evaluate performance in realistic conditions.

5.11.5 Security and trust boundaries

In its current implementation state, the backend accepts connections from any origin and does not require
authentication for profile creation or event submission. Currently a pure localhost setup is implemented
for the entire backend. This was a deliberate decision to speed up testing across platforms, but would need
to be replaced with stricter CORS rules, token-based authentication, and access control in production.
Without these measures, the system is vulnerable to unsolicited adaptation requests from external sources.

90 CHAPTER 5. AN ADAPTIVE MULTIMODAL GUI FRAMEWORK USING LLMS

Furthermore, some config files such as sif config.json do not have the necessary validation checks in
the backend, while the validator agent is necessary, nothing stops it from being removed.

5.12 Chapter Summary

This chapter has detailed the implementation of the Adaptive Smart Home Controller as the primary
proof-of-concept for the multimodal AI-driven GUI framework. The system was realised as a three-layer
architecture, consisting of a Flutter-based frontend for rendering and applying adaptations, an Input
Adapter Layer for standardising and transmitting events, and a FastAPI-based backend implementing
multi-agent Smart Intent Fusion with MongoDB for persistent profile and history storage.

Key implementation aspects included the construction of a dynamic adaptation pipeline capable of ap-
plying size, contrast, modality, and content changes in real-time, and the use of a strict JSON schema to
maintain consistency between layers. While some modalities such as voice and gesture inputs were sim-
ulated for demonstration purposes, the system was designed so that integrating real devices will require
minimal architectural changes.

The prototype also faced practical challenges, including LLM output validation, latency management,
security considerations, and the absence of certain safeguards against malicious or replayed events. These
were addressed through a combination of a validator agent, conservative rule-based fallbacks, partial-result
handling, and a modular design that isolates critical components.

In its current state, the implementation demonstrates that the framework can deliver personalised,
accessibility-focused adaptations in a responsive and modular manner, even under the constraints of
a prototype environment. The next chapter evaluates this implementation through a feasibility study,
assessing its responsiveness, adaptability, and practical potential in simulated real-world scenarios.

Chapter 6

Feasibility Study

6.1 Study Overview

The evaluation follows a feasibility study design to check whether the multimodal AI-driven adaptation
pipeline works end to end under realistic interaction traces, and whether it does so in a way that is useful
for accessibility. Concretely:

1. Adaptation validity: Does the backend return schema-valid adaptation objects across different
profiles and modalities?

2. Accessibility relevance: Do adaptations match user needs (motor, visual, hands free) and ob-
served errors (for example miss tap, slider miss)?

3. Latency: What is end-to-end response time (p50/p90/max) under the chosen backend configura-
tion?

6.2 Methodology

Profiles and runs. Six user profiles (P0–P5) were selected to cover baseline, single-need, and combined
needs:

• P0 (Baseline): No specific accessibility needs.

• P1 (Motor): Larger touch targets; keyboard preferred.

• P2 (Visual): Larger font and higher contrast preferred.

• P3 (Hands free): Voice and gesture preferred.

• P4 (Motor + Hands free): Combined motor support and voice preference.

• P5 (Visual + Motor): Combined visual and motor support.

For each profile, two runs were executed to allow a small history to build. Each run used the same
seven-event sequence (14 events per profile, 84 total); see Table 6.1.

Table 6.1: User profile mapping for evaluation runs.

Profile Declared needs

P0 Baseline (no declared needs)
P1 Motor, keyboard preferred
P2 Visual, larger font
P3 Hands free preferred, voice modality
P4 Motor + Hands free, voice modality
P5 Visual + Motor, voice modality

91

92 CHAPTER 6. FEASIBILITY STUDY

Event suite. The suite mixes errors and successful attempts across modalities and targets (lamp,
thermostat, lock):

• miss tap on buttons (lamp, lock),

• slider miss with overshoot (thermostat),

• voice commands (turn on, unlock, adjust),

• gesture inputs (point/select).

This combination triggers typical accessibility challenges (tap precision, slider control, and mode switch-
ing).

Backend configuration and metrics. All traces used the MA-SIF (balanced) configuration (Ta-
ble 6.2). Each event’s response was checked for schema validity; the classification path and client-side
latency (p50/p90/max) were logged. Analysis scripts flatten JSONL logs to CSV and compute objective
metrics.

Table 6.2: MA-SIF (balanced) agent configuration.

Agent Model Thinking budget Temperature Timeout (s)

UI gemini-flash-lite 0 0.2 15
Geometry gemini-flash-lite 0 0.2 15
Input gemini-flash-lite 0 0.2 15
Validator gemini-flash -1 0.3 30

Hardware and Environment: All experiments in this thesis were executed on a single development
machine in a controlled home environment (none to low network contention). Latency is end-to-end from
event send to response received on the client. Hardware configuration:

• Hardware: MacBook Pro, M1 Max 10-core CPU, 32GB RAM

• Software: macOS 15.6 (Sequoia), Python 3.9+

• Environment: Localhost + Gemini external API calls

Operational definitions. Schema-valid means the response conforms to the adaptation schema
(valid action names, parameters in bounds, resolvable UI targets, and consistency checked by the Valida-
tor). Latency is measured as ∆t = trecv − tsend.

Objective scoring rules. All quality metrics are computed deterministically from the logs using fixed
contracts and allowed actions. Two lookup tables are used:

(i) Action → Accessibility Category

Table 6.3: Mapping of adaptation actions to accessibility categories.

Action Accessibility Category

increase button size Motor

increase button border Motor

increase slider size Motor

adjust spacing Motor

increase font size Visual

increase contrast Visual

switch mode (voice or gesture) Hands-free

trigger button (from voice intent) Hands-free

6.3. ACCESSIBILITY AND DESIGN QUALITY 93

(ii) Error Event → Acceptable Corrective Adaptations

Table 6.4: Mapping of error events to acceptable corrective adaptations.

Error Event Acceptable Corrective Adaptations

miss tap increase button size, increase button border,

adjust spacing, switch mode:voice

slider miss increase slider size, adjust spacing

voice (command) switch mode:voice, trigger button (if intent clear)

gesture (point/select) switch mode:gesture, trigger button (if intent clear)

These tables are grounded in the schema and rule-based fallbacks, which makes the assessment replicable
and objective.

6.3 Accessibility and Design Quality

This section reports effectiveness before latency, using objective, log-derived metrics. Effectiveness is as-
sessed by quantifying how well the adaptation pipeline produces accessibility-relevant, profile-aligned, and
internally coherent UI changes in response to realistic interaction traces. Metrics such as Profile–Action
Alignment (PAA), Error to Response Appropriateness (ERA), Mode Enablement for Hands free (MEH),
and Design Coherence Index (DCI) are computed directly from adaptation logs, enabling reproducible
and objective evaluation. These results provide a detailed view of the system’s accessibility impact and
personalization quality prior to analyzing performance characteristics such as latency.

6.3.1 Profile–Action Alignment (PAA)

Definition. PAA is the share of accessibility actions whose category matches the active profile’s needs
(motor, visual, hands free):

PAA =
#{cat(a) ∈ needs(p)}

#{accessibility actions}
× 100%.

Result. Across non baseline profiles (P1–P5), and using the top five actions per profile, PAA is approx-
imately 55%. Combined-need profiles show higher alignment (P4 80.00%, P5 77.42%) than single-need
profiles that are underrepresented by the event suite (P2 34.69%, P3 28.00%); see Table 6.6.

6.3.2 Error to Response Appropriateness (ERA)

Definition. ERA is the share of error or modality events that received at least one acceptable corrective
adaptation:

ERA =
#{error events with ≥ 1 corrective adaptation}

#{error events}
× 100%.

Result. ERA ranges from 50.00% to 64.29% per profile (for example P5 64.29%), indicating that about
one half to two thirds of these events contain a corrective action from the predefined set (Table 6.6).

6.3.3 Mode Enablement for Hands free (MEH)

Definition. MEH is the share of events in which a hands free path is explicitly enabled or used
(switch mode:voice|gesture or voice trigger button).

MEH =
#{events with switch mode:voice|gesture or accepted trigger button via voice}

#{events}
× 100%.

Result. MEH equals 57.14% for hands free profiles P3 and P4, indicating frequent enablement of non
touch paths; values are lower for profiles where hands free is not a primary need (Table 6.6).

94 CHAPTER 6. FEASIBILITY STUDY

6.3.4 Design Coherence Index (DCI)

Definition. DCI quantifies the absence of contradictions and duplicates within a single response:

DCI = 1− #(conflicts + duplicates)

#suggestions
.

Result. DCI is high across profiles (mean ≈0.995), which indicates internally consistent, non redundant
suggestions (Table 6.6).

6.3.5 Global accessibility share and WCAG coverage

Overall, 97.51% of all actions are accessibility targeted (352/361), see Table 6.7. The policy level coverage
in Table 6.8 shows that proposed adaptations address SC 2.5.5 (Target Size), SC 1.4.3 (Contrast), and
SC 1.4.4 (Resize Text). This is coverage, not a conformance audit.

6.3.6 Motor Benefit Proxy (Fitts law, analytic)

Rationale: When targets are enlarged by a factor s (for example s=1.5), the Fitts law index of difficulty
changes from log2(

D
W + 1) to log2(

D
sW + 1). For representative D/W ratios, a 1.5× size increase yields

the following theoretical reductions:

Table 6.5: Fitts law proxy: relative reduction in index of difficulty for s=1.5.

D/W 2 4 8 12 16

Reduction (%) 22.9 19.3 16.0 14.3 13.3

This gives an interpretable proxy for expected motor effort reduction when applying increase button size

or increase slider size.

Table 6.6: Objective accessibility and design quality metrics by profile.

Profile PAA (%) ERA (%) MEH (%) DCI Acc. actions

P0 0.00 50.00 57.14 0.982 61/62
P1 50.88 57.14 57.14 0.986 58/60
P2 34.69 50.00 42.86 1.000 54/55
P3 28.00 50.00 57.14 1.000 57/58
P4 80.00 50.00 57.14 1.000 53/54
P5 77.42 64.29 57.14 1.000 69/72

Table 6.7: Overall accessibility targeted actions from the global action distribution.

Metric Value

Total actions 361
Accessibility targeted 352
Share (%) 97.51

Aggregate aligned % across P1–P5 (top-5 actions) 63.72

6.3. ACCESSIBILITY AND DESIGN QUALITY 95

Table 6.8: Policy level WCAG coverage addressed by proposed adaptations.

Profile SC 2.5.5 Target Size SC 1.4.3 Contrast SC 1.4.4 Resize Text

P0
P1
P2
P3
P4
P5

6.3.7 Appropriateness by event type

This analysis reports Error to Response Appropriateness (ERA) per event type using the same acceptable
corrective sets defined in this chapter. The 95% confidence intervals use the Wilson method.

Table 6.9: ERA by event type (higher is better).

Event Count ERA (%) CI (binomial, 95%) Notes

miss tap 24 100.00 [86.20, 100.00] motor fixes prevalent
slider miss 12 100.00 [75.75, 100.00] slider size/spacing
voice 36 97.22 [85.83, 99.51] mode confirmation
gesture 12 8.33 [1.49, 35.39] mode confirmation

Interpretation. ERA is very high for motor related errors: miss tap and slider miss both reach
100% with lower confidence bounds of 86.20% and 75.75% respectively. This indicates that the current
rule and validation policy reliably proposes acceptable fixes such as larger targets, thicker borders, and
increased spacing for these error modes. Voice commands also achieve a high ERA (97.22%), showing
consistent mode confirmation and intent execution.

Gesture events show a low ERA (8.33%) with a wide interval due to the smaller sample size. This suggests
that gesture handling is under specified relative to other modalities. In practice, gesture inputs often
require additional disambiguation or confirmation to translate intent into a safe corrective action that
passes validation. This requires more sophisticated gesture recognition and handling capabilities, which
are outside the scope of this framework.

Overall, Table 6.9 shows that the policy handles motor errors and voice input effectively, while gesture
interaction remains the main opportunity for improvement. This aligns with the personalization results
in Table 6.6, which indicate lower alignment for hands free and visual oriented profiles when gesture is
involved.

6.3.8 Stability across runs

To examine consistency, the adaptation sets of run 1 and run 2 are compared at the same event indices.
Stability is measured as Jaccard similarity over action and target pairs at each index; values range from
0 (no overlap) to 1 (identical sets). Table 6.10 reports results for the first five events (E1 to E5) and the
mean per profile.

Table 6.10: Stability across runs (Jaccard similarity of action and target sets).

Profile E1 E2 E3 E4 E5 Mean

P0 0.11 0.12 0.22 0.20 0.14 0.16
P1 0.12 0.00 0.33 0.00 0.00 0.09
P2 0.11 0.00 0.40 0.00 0.14 0.13
P3 0.12 0.00 0.40 0.00 0.00 0.11
P4 0.40 0.14 0.40 0.17 0.17 0.26
P5 0.50 0.11 0.67 0.12 0.57 0.39

96 CHAPTER 6. FEASIBILITY STUDY

Interpretation. Stability is highest for the combined needs profile P5 (mean 0.39) and moderate for
P4 (0.26). These values indicate that many core adaptations repeat between runs for users with multiple
declared needs, which matches the global action mix (frequent motor and visual aids). Stability is lower
for P1 to P3 (means 0.09 to 0.16). This reflects greater sensitivity to immediate context for single need
profiles, where small differences in errors and interaction history can yield different yet still acceptable
suggestions. The per event pattern also varies: E3 and E5 show higher overlap for several profiles,
while E2 and E4 show lower overlap, which suggests that certain indices in the sequence encourage more
exploratory adaptations.

Overall, the stability analysis suggests a balanced behaviour: adaptations remain consistent where com-
bined needs call for recurring aids, and remain flexible where recent context should dominate. Very high
stability is not always desirable because a responsive system should adapt to recent errors and history.
The pattern in Table 6.10 is consistent with this goal: profiles with combined needs preserve a stable
core of adaptations across runs, while single need profiles show more variation around that core.

6.3.9 Specificity via profile swap

A counterfactual analysis re-scores each response against the needs of a different profile (profile swap).
Across swaps, PAA drops by 6.35 points on average (Table 6.11), which indicates that adaptations are
tuned to the active profile rather than generic.

Table 6.11: Counterfactual PAA under profile swaps (mean over all swaps).

Profile Original PAA (%) Swap PAA (%)

P1 53.70 50.00
P2 34.69 52.55
P3 28.00 55.00
P4 80.00 43.00
P5 77.42 41.53

Interpretation. Specificity is strongest for combined needs (P4 and P5), where swap PAA falls by
37.00 and 35.89 points. This shows that the chosen adaptations align with those profiles and do not
generalise to other needs. P1 shows a small drop (3.70 points), suggesting moderate specificity. P2 and
P3 increase under swaps, which reflects the event suite bias toward motor and hands free aids: when their
actions are re-scored against other profiles’ needs, more of them count as aligned. To raise specificity
for single need profiles, the validator can apply stronger need weighting and add gentle penalties for
off-need actions, and the event suite can include more visual and gesture specific signals so that on-need
adaptations dominate.

6.3.10 Failure taxonomy (invalid cases)

By design, the SIF Validator returns only accepted adaptations; rejection reasons are not exposed in the
response envelope. As a result, the logs do not support a fine-grained taxonomy of failure modes. Invalid
responses are still measurable at the client by re-validating the final payload against the adaptation
schema. Across all events, the invalid share is 15.48% (derived from Table 6.15). Table 6.12 reports the
per-profile distribution.

6.3. ACCESSIBILITY AND DESIGN QUALITY 97

Table 6.12: Invalid responses by profile (derived from client-side schema check of final
payloads).

Profile Invalid (count) Invalid (%)

P0 3 21.43
P1 2 14.29
P2 2 14.29
P3 4 28.57
P4 2 14.29
P5 0 0.00

Total 13 15.48

Interpretation. The highest invalid share appears for the hands free profile (P3), which aligns with
other indicators that gesture and voice affordances are less fully specified in the current action menu and
rules. The combined visual+motor profile (P5) shows no invalids, which is consistent with the strong
alignment and stability observed for that profile.

6.3.11 Rule-only sufficiency (proxy)

For each event, the returned actions were checked against the acceptable corrective sets defined for that
event type (Section 6). In 85.71% of cases, a rule-only ”fast path”1 would have produced at least one
acceptable action (aggregate from Table 6.9: 24+12+35+1 = 72 hits over 84 events). This suggests that
a staged design with a fast path followed by the Validator can lower median latency while preserving most
coverage. A practical policy is to route obvious patterns (for example miss tap→ target enlargement and
spacing; slider miss → larger slider) through the fast path, while leaving ambiguous or gesture-driven
cases to the Validator. This division keeps deterministic corrections quick and consistent, and reserves
multi-agent reasoning for the smaller set of events where context and history matter most.

6.3.12 Rule baseline vs. LLM (minimal vs. maximal)

This analysis compares a deterministic rule baseline against the final LLM adaptations at the action–name
set level. Two variants are used: (i) minimal rules that apply one canonical fix per event type, and (ii)
maximal rules that include all acceptable fixes for that event type. Similarity is measured with Jaccard
set overlap; the table also reports the baseline’s own PAA. A top–5 action mask per profile matches the
PAA style used elsewhere.

Table 6.13: Rule baseline vs. LLM by profile. Jaccard is set overlap of action names.

Profile Jaccard (min) Jaccard (max) Exact (max) Rule PAA (min %) Rule PAA (max %)

P0 0.27 0.32 0.00 0.00 0.00
P1 0.27 0.37 0.00 42.86 55.56
P2 0.24 0.29 0.00 0.00 0.00
P3 0.26 0.34 0.00 57.14 44.44
P4 0.28 0.37 0.07 100.00 100.00
P5 0.21 0.37 0.00 33.33 50.00

ALL 0.25 0.35 0.01 – –

Interpretation. Moving from minimal to maximal rules increases overlap with the LLM (mean Jaccard
from 0.25 to 0.35 overall), while exact set matches remain rare (1% overall). This is expected because
the LLM often proposes multi–action bundles and tuned parameters that go beyond the canonical rule
set. The rule baseline’s PAA is highest for the combined needs profile (P4), which aligns with frequent
motor and hands free fixes in the event suite; P2 remains at 0% due to the limited visual–focused rules
in this baseline. For P3, PAA decreases under the maximal variant because the rule set adds motor fixes
that do not align with hands free needs, increasing the denominator without increasing hands free hits.

1This fast path is a predefined rule based action that can be used instead of the AI logic.

98 CHAPTER 6. FEASIBILITY STUDY

Event counts are identical across profiles (Table 6.1), so differences stem from action selection rather than
sample size.

Conclusion. Rules provide useful coverage for obvious corrections and can raise overlap when broad-
ened, but they do not replicate the LLM’s multi–action composition, parameter choices, or personaliza-
tion. This supports a staged design: route simple patterns through rules for speed, and rely on the LLM
and Validator for complex, ambiguous, or profile–sensitive cases. Differences in rule PAA total across
profiles reflect variant choice (minimal vs. maximal) and the top–5 mask rather than unequal event
counts.

6.3.13 Micro-cases on P1 and P5 profiles

Before (P1, lamp) After: larger button and border

Figure 6.1: P1 (motor) miss tap. The adaptation enlarges the button and border, reducing
target difficulty. This aligns with P1’s needs and with the objective scores in Table 6.6
(PAA 50.88%, ERA 57.14%, DCI 0.986).

Before (P5, thermostat) After: larger slider and higher contrast text

Figure 6.2: P5 (visual+motor) slider miss. The adaptation increases slider size, text
contrast and more as seen by the notification in the app. This matches P5’s mixed needs
and the strong scores in Table 6.6 (PAA 77.42%, ERA 64.29%, DCI 1.000).

6.4. ADAPTATION PERFORMANCE (LATENCY) 99

6.4 Adaptation Performance (Latency)

Latency is reported separately from accessibility and design quality to avoid conflation of speed with
effectiveness. The same MA-SIF (balanced) configuration and client-side ∆t are used.

6.4.1 Overall summary

Across 84 events and six profiles (Table 6.14):

• Schema-valid outputs: 84.52% of events,

• Classification path: 100% via Validator,

• Latency: p50 13.19 s, p90 17.13 s, max 21.10 s.

Table 6.14: Overall feasibility results with MA-SIF (balanced).

Metric Value

Events (total) 84
Users (total) 6
Schema-valid outputs (%) 84.52
Validated by Validator (%) 100.00
Latency p50 (s) 13.19
Latency p90 (s) 17.13
Latency max (s) 21.10

The most frequent actions were:

• switch mode (87): often recommending voice mode.

• increase button size (74), increase button border (69), increase font size (66).

• increase slider size (28), increase contrast (19).

• Less frequent: trigger button (9), adjust spacing (9).

Because multiple suggestions can be attached to one event, action counts exceed the number of events.
Top targets were the lamp, thermostat, and lock, with miss-taps most often on lamp and lock (by
design).

Interpretation: The system strongly prioritizes motor-related support (larger targets, borders, spac-
ing) and modal switching to voice when it detects tap/slider errors, exactly the pattern that is needed
for motor-impaired and hands-free users. Vision-related support (font size and contrast) also appears
consistently, but is less prominent than motor support in this trace.

6.4.2 Per profile outcomes

Validity and latency per profile are in Table 6.15. Latency sits in the 11.8–16.0 s p50 band, with a
predictable tail.

Table 6.15: Per profile schema validity and latency under MA-SIF (balanced).

Profile Declared needs Valid (%) p50 (s) p90 (s) max (s)

P0 Baseline 78.57 16.02 20.23 21.10
P1 Motor 85.71 13.19 16.78 17.43
P2 Visual 85.71 13.65 16.46 19.04
P3 Hands free 71.43 11.82 14.68 16.49
P4 Motor + Hands free 85.71 13.63 15.76 17.91
P5 Visual + Motor 100.00 12.70 16.25 16.60

100 CHAPTER 6. FEASIBILITY STUDY

Observations:

• Highest validity appears for combined needs (P5), likely because the event suite provides strong,
consistent signals (miss-taps + slider overshoot) that align with the rules and model prior for
motor/visual support.

• Lowest validity is P3 (hands-free) at 71.43%. Even though P3 shows the best latency, hands-free
preference alone may result in fewer structural UI changes (e.g., fewer size/contrast edits), and the
Validator may reject marginal suggestions more often. This indicates room to enrich the hands-free
policy (e.g., more explicit voice/gesture affordances and confirmation prompts).

• Latency is in the 11.8–16.0 s p50 band across profiles under the MA-SIF (balanced) config. The
spread between p50 and p90 (≈ 3–4 s) suggests predictable tail behavior, with a single global max
near 21 s.

6.4.3 Configuration comparison (all profiles)

For clarity, Config A denotes MA-SIF (balanced) and Config B denotes MA-SIF (heavy). The
comparison aggregates all six profiles (P0–P5) across both runs. Table 6.16 reports overall latency and
quality, and Table 6.17 breaks results down by profile.

Table 6.16: Overall configuration comparison (lower latency is better; higher Schema-valid,
PAA, ERA, and DCI are better).

Config p50 (s) Schema-valid (%) PAA (%) ERA (%) DCI

MA-SIF (balanced) 13.19 84.52 55.22 97.62 0.99
MA-SIF (heavy) 36.06 100.00 61.45 98.81 1.00

Table 6.17: Per-profile configuration comparison (p50 latency, Schema-valid, PAA, ERA,
and DCI).

Profile Config p50 (s) Schema (%) PAA (%) ERA (%) DCI

P0 MA-SIF (balanced) 16.02 78.57 0.00 100.00 0.98
P0 MA-SIF (heavy) 34.42 100.00 0.00 100.00 0.99
P1 MA-SIF (balanced) 13.19 85.71 50.88 100.00 0.99
P1 MA-SIF (heavy) 34.92 100.00 65.31 100.00 0.99
P2 MA-SIF (balanced) 13.65 85.71 34.69 85.71 1.00
P2 MA-SIF (heavy) 36.55 100.00 40.98 92.86 1.00
P3 MA-SIF (balanced) 11.82 71.43 28.00 100.00 1.00
P3 MA-SIF (heavy) 34.67 100.00 29.17 100.00 1.00
P4 MA-SIF (balanced) 13.63 85.71 80.00 100.00 1.00
P4 MA-SIF (heavy) 40.75 100.00 100.00 100.00 1.00
P5 MA-SIF (balanced) 12.70 100.00 77.42 100.00 1.00
P5 MA-SIF (heavy) 38.54 100.00 77.05 100.00 1.00

Interpretation. MA-SIF (heavy) improves Schema-valid output (100.00% vs 84.52%) and raises PAA
(61.45% vs 55.22%), with small gains in ERA and a near-perfect DCI, at the cost of much higher latency
(36.06 s vs 13.19 s, about 2.7× slower). Gains are most visible for P1 and P4 where motor and hands
free needs dominate; P5 remains similar, and P3 increases only slightly. In practice, the balanced setting
is suitable for interactive adaptation, while the heavy setting is better for post-interaction or batch
adaptation where stronger alignment and stricter validation justify the extra delay.

6.5 Discussion of Results

Effectiveness. The system focuses almost entirely on accessibility: 97.51% of all actions are ac-
cessibility targeted (Table 6.7). Internal coherence is high across profiles (DCI ≈ 0.995; Table 6.6).
Appropriateness is strong for motor and voice inputs: miss tap and slider miss reach 100% ERA

6.6. STUDY LIMITATIONS 101

and voice 97.22%, while gesture remains low at 8.33% (Table 6.9). In the configuration comparison,
MA-SIF (heavy) reaches 100.00% schema-valid outputs and slightly higher ERA and DCI than the
balanced setting (Table 6.16), confirming that stricter aggregation and checking can push quality to the
top end.

Personalization. Profile–Action Alignment (PAA) is moderate overall (∼55% on top–5 actions) and
higher for combined-need profiles (P4, P5), which matches the event suite that emphasises motor errors
and mode switching (Table 6.6). MA-SIF (heavy) increases PAA from 55.22% to 61.45% overall (Ta-
ble 6.16) and produces the largest gains where motor and hands free needs dominate (P1, P4; Table 6.17).
Some potential improvements include:

1. Weighted validator scoring: Rank candidates higher when their category matches the active
need, and apply gentle penalties for off-need actions.

2. Lightweight feedback signals: Log accept, undo, and reversion in the client and feed these rates
back as simple weights to prefer actions users keep.

3. Richer hands free affordances: Add confirmation prompts, focus hints, and voice-first navi-
gation so that acceptable sets are available more often, lifting both ERA and PAA for hands free
profiles.

Latency. MA-SIF (balanced) achieves a median of 13.19 s versus 36.06 s for MA-SIF (heavy) (Ta-
ble 6.16). The balanced path is more suitable for interactive adaptation, while the heavy path offers
stricter outputs for post-interaction or batch contexts. The rule-only sufficiency proxy in Section 6.3.7
and the fast-path analysis indicate that ∼86% of events contain at least one corrective action that a
simple rule can provide. A staged design is therefore practical: route obvious patterns directly through a
rule path and keep the Validator for consolidation, while leaving ambiguous or gesture-driven events to
full multi-agent reasoning.

6.6 Study Limitations

• Feasibility focus. The evaluation uses structured traces; no human-subject (user) study is in-
cluded.

• Trace coverage. The suite is representative but not exhaustive; real use may show different dwell
and timing patterns.

• Configuration scope. Two configurations are compared (balanced and heavy). Other variants
(for example single-agent SIF or different model budgets) are not explored here.

• Action menu scope. The allowed actions form a compact, WCAG-oriented set. This is developer
realistic, but it may bias coverage toward needs with generic remedies and does not balance action
counts across profiles.

• Validator transparency. Rejection reasons are not logged by design, which limits a fine-grained
taxonomy of invalid cases; client-side schema checks are used instead.

• Environment. Results reflect a single-machine setting with Gemini API calls; other deployments
may shift latency.

6.7 Conclusion

The framework delivers valid, accessibility-focused, and coherent adaptations. Objective metrics in Sec-
tion 6.3 show strong accessibility focus and high internal coherence, with moderate personalization that
improves under the heavier configuration. The configuration comparison (Tables 6.16 and 6.17) makes
the trade-off explicit: MA-SIF (heavy) raises schema validity and PAA at a substantial latency cost, while
MA-SIF (balanced) keeps latency acceptable for asynchronous interaction. The analyses by event type
and run stability indicate clear next steps: add need-weighted validator scoring, integrate lightweight
user feedback, and extend hands free affordances. These directions increase personalization and keep the
schema-based, reproducible evaluation intact, strengthening the case for multimodal, AI-driven adapta-
tion in real-world interfaces.

102 CHAPTER 6. FEASIBILITY STUDY

Chapter 7

Discussion and Future Work

7.1 Overview

This chapter interprets the results of this thesis in the broader context of accessibility and human-
computer interaction (HCI), linking the implemented framework to existing research and real deployment.
It first discusses implications for adaptive interface design, then summarises key findings and contrasts
them with related work. Limitations and threats to validity are addressed explicitly. The chapter
closes with a focused future work,spanning near-term engineering improvements and longer-term research
directions, including on-device, autonomous adaptation.

7.2 Implications for Accessibility and HCI

Combining deterministic rules with multi-agent, LLM-driven reasoning (SIF/MA-SIF) shows that multi-
modal interaction signals can be translated into personalised adaptations during live use. In the feasibility
study over 84 events and six user profiles, the system produced 84.5% schema-valid responses with
a median latency of ∼13 s, and all responses were passed through the Validator Agent for consis-
tency. Hands-free profiles trailed slightly in validity, indicating where focused improvements are war-
ranted.

For accessibility, this reduces manual configuration and supports users with motor, visual, or hands-free
needs by learning from interaction patterns over time. For HCI, the results indicate a generalisable path
towards runtime, cross-platform adaptivity that spans UI, geometry, and input modalities. The hybrid
approach also offers a pragmatic design trade-off: fast, predictable fallbacks via rules for common cases;
flexible LLM reasoning when context is ambiguous. The caveat is increased complexity in orchestrating
two reasoning pipelines and managing latency.

7.3 Key Findings and Contributions

This research contributes to both practical system design and conceptual models for multimodal adaptive
UIs:

1. Framework Architecture: A modular, three-layer architecture separating input capture, event
standardisation, and reasoning, enabling portability across Flutter, SwiftUI, and future platforms
(e.g., Unity).

2. Smart Intent Fusion (SIF): A hybrid engine combining deterministic rules for guaranteed ac-
cessibility fallbacks with LLM-driven reasoning for complex scenarios.

3. Multi-Agent Extension (MA-SIF): Specialised agents for UI, geometry, and input, validated
by a dedicated Validator Agent to reduce conflicts and hallucinations.

4. Developer-Focused Integration: Standardised JSON contracts and generalised methods for
event sending, adaptation handling, and profile management.

103

104 CHAPTER 7. DISCUSSION AND FUTURE WORK

5. Accessibility Impact (Empirical): In the dataset, 97.5% of suggestions directly supported
motor, visual, or hands-free needs; median latency remained acceptable for asynchronous adaptation
(∼13 s).

7.4 Comparison with Related Work

SUPPLE [18] SUPPLE demonstrated the value of generating optimised interfaces for specific motor
abilities, but relied primarily on constraint-solving over predefined UI descriptions. In contrast, the
framework presented in this thesis performs real-time adaptation during active use, using multimodal
interaction signals fused by a hybrid rule-based and LLM-driven reasoning process. Whereas SUPPLE
required a calibration phase, the proposed approach continuously refines adaptations based on interaction
history.

Reflow [47] Reflow’s pixel-based UI adaptation enables closed-source applications to be optimised
without access to source code, but operates primarily at the visual layout level and does not incorporate
higher-level semantic reasoning or multimodal fusion. The framework presented here incorporates profile-
and history-driven adaptations across UI, geometry, and input modalities, and supports integration for
both new and existing applications through standardised JSON contracts.

UICoder [47] UICoder automates the generation of UI code from textual descriptions, enabling rapid
interface creation. The approach taken in this work is complementary rather than competitive: whereas
UICoder generates new interfaces at compile time, the proposed framework adapts existing live interfaces
at runtime, guided by multimodal context and inferred user intent.

GUIDe [23] GUIDe’s gaze-augmented interaction techniques illustrate the potential of combining
modalities for improved accuracy and reduced activation errors. This framework generalises that prin-
ciple by supporting arbitrary modality combinations (e.g., voice + touch, gaze + gesture) and applying
them within a cross-platform adaptation pipeline.

Reinforcement Learning-based UI Adaptation [20] Reinforcement learning approaches can per-
sonalise UIs over time using physiological feedback, but often require specialised sensing hardware and
extended training periods. The framework presented in this thesis prioritises lightweight integration and
immediate adaptation using LLM reasoning, while retaining the potential to incorporate reinforcement
learning techniques in future iterations.

Table 7.1 summarises key differences between the framework and representative related work.

Table 7.1: Comparison of related adaptive UI systems

System Modalities Sup-
ported

Reasoning
Method

Adaptation Scope Extensibility

SUPPLE Single modality (mo-
tor calibration)

Constraint optimisa-
tion

Layout generation
(compile-time)

Requires redesign for
new modalities

Reflow Any (pixel-based
only)

Visual analysis +
rules

Layout changes only
(runtime)

Limited; no semantic
adaptation

UICoder N/A (code genera-
tion)

LLM code synthesis New UI creation
(compile-time)

Extendable via
prompt tuning

GUIDe Gaze + keyboard/-
mouse

Rule-based Targeting and
scrolling (runtime)

Limited to gaze/-
pointing

RL-based UI
Adaptation

Depends on sensors Reinforcement learn-
ing

Layout, content
(runtime)

Requires specialised
hardware

This work Touch, voice, ges-
ture, keyboard (+ ex-
tensible)

Hybrid rules + multi-
agent LLM

UI, geometry, input
modes (runtime)

High; JSON con-
tracts + config-based
agents

7.5. FUTURE WORK 105

7.5 Future Work

While the framework in its current first iteration form demonstrates the feasibility of (close to) real-
time, multimodal adaptive UI adaptation, several opportunities exist to expand its capabilities, improve
its performance, and extend its reach into new domains. Future work can be divided into short-term
engineering improvements (such as SDK packaging and support for additional modalities) and long-term
research directions (such as autonomous, on-device reasoning agents capable of compile-time and runtime
adaptation).

7.5.1 Short-Term Improvements

Improved Gesture Support

The evaluation revealed that gesture events achieved only 8.33% ERA (Table 6.9), significantly lower
than touch-based interactions (100%) and voice commands (97.22%). This limitation stems from insuffi-
cient disambiguation mechanisms and limited gesture-specific adaptations in the current action set.

To address this, future iterations should implement a gesture disambiguation pipeline that includes brief
confirmation prompts (e.g., ”Point to confirm?”) and fallback routing to voice modality when gesture
recognition confidence is low. Additionally, extending the acceptable action sets with gesture-specific af-
fordances such as focus outlines, dwell-to-activate mechanisms, and spatial targeting hints would improve
appropriateness.

Enhanced Personalization for Single-Need Profiles

While combined-need profiles (P4, P5) achieved strong Profile-Action Alignment scores, single-need
profiles showed moderate performance, with P2 and P3 achieving 34.69% and 28.00% PAA respec-
tively (Table 6.6). This indicates room for improvement in tailoring adaptations to specific accessibility
needs.

The solution involves implementing need-weighted scoring within the Validator Agent, where adaptations
matching the active profile’s declared needs receive higher priority. The rule fallback engine could be
implemented in a similar way for a higher overall effectiveness. Additionally, integrating lightweight
user feedback mechanisms (accept, undo, revert actions) would provide continuous learning signals to
refine personalization over time. These improvements should target a +10 point increase in PAA for
underperforming profiles while maintaining high Design Coherence Index (DCI ≥ 0.99).

Latency Reduction for Interactive Use

Current median latency of 13.19s for MA-SIF (balanced) configuration, while acceptable for asyn-
chronous adaptation, could benefit from optimisation for more responsive interaction. The heavy config-
uration’s 36.06s median latency further emphasizes the need for speed improvements.

A staged approach would route obvious patterns (miss-tap → larger target, slider overshoot → larger
slider) through a fast rule-based path, followed by MA-SIF consolidation for complex cases. Caching
frequently suggested adaptations and implementing selective on-device classification for path selection
could further reduce response times. The target is achieving p50 ≤ 8s while maintaining current schema
validity and ERA performance.

SDK Development and Cross-Platform Support

To facilitate adoption, the framework requires packaging as developer-friendly SDKs for Flutter, SwiftUI,
Unity/VR, and web platforms. These SDKs should include pre-built adapter components, standard-
ised integration patterns, debugging tools, and comprehensive documentation with accessibility-focused
examples.

The SDK should also support offline modes using lightweight, on-device models for basic adaptations when
cloud connectivity is unavailable. This addresses both privacy concerns and deployment constraints in
sensitive environments.

106 CHAPTER 7. DISCUSSION AND FUTURE WORK

7.5.2 Research Directions

Visual UI Understanding and Semantic Analysis

Current reasoning relies on developer-provided metadata about UI elements and their relationships.
Integrating computer vision capabilities would enable the system to analyse live interface screenshots,
understanding spatial layouts, colour schemes, element hierarchies, and accessibility violations without
requiring manual annotation.

This visual understanding could be implemented using fine-tuned vision transformers or CLIP-like models
trained on UI datasets. The analyser would complement existing metadata with real-time visual context,
enabling more nuanced adaptations such as repositioning elements based on visual density or adjusting
contrast based on actual colour relationships.

Specialised AI Models for UI Adaptation

Moving beyond general-purpose LLMs towards domain-specific models trained on UI interaction logs,
accessibility guidelines (WCAG), and adaptation effectiveness data would improve both accuracy and
efficiency. These models could be fine-tuned for specific contexts (healthcare, gaming, productivity) and
optimised for on-device deployment.

Such specialisation would reduce dependence on external APIs, improve privacy, and enable faster re-
sponse times. The models could incorporate reinforcement learning from user feedback to continuously
improve adaptation strategies.

Comprehensive User Studies

While the feasibility study demonstrates technical capability, validating real-world effectiveness requires
comprehensive user studies with participants who have actual accessibility needs. A properly powered
study should recruit N=12-18 participants across three groups: motor-impaired (4-6 participants), visu-
ally impaired (4-6 participants), and hands-free users (4-6 participants).

The study design should employ a within-subjects comparison, testing participants on both rule-based
adaptations and the full MA-SIF pipeline using realistic smart home control scenarios. Objective mea-
sures would include task completion time, error rates, and adaptation acceptance rates, while subjective
measures would capture perceived usefulness through validated instruments such as the System Usability
Scale (SUS) and NASA Task Load Index (TLX).

Critically, participants should include individuals with lived experience of the target accessibility con-
straints rather than simulated impairments. This ensures that findings reflect genuine usability improve-
ments and adaptation preferences. Such studies would provide essential evidence for the framework’s
practical impact beyond technical feasibility, while identifying refinements needed for real-world deploy-
ment based on authentic user experiences.

Extended Modality Support

Future work should expand input modality support to include eye tracking for hands-free navigation,
advanced gesture recognition using depth sensors or computer vision, and brain-computer interfaces for
users with severe motor impairments. Each new modality requires careful integration with the existing
event standardisation pipeline and adaptation logic.

Particular attention should be paid to multimodal fusion strategies that can intelligently combine signals
from multiple simultaneous inputs, handling confidence weighting and temporal alignment to produce
coherent user intent inference.

Privacy-Preserving and Federated Learning

As the framework collects rich interaction data including multimodal inputs and adaptation effectiveness,
implementing privacy-preserving techniques becomes crucial. Federated learning approaches could enable
model improvement across users without centralising sensitive data, while differential privacy techniques
could protect individual interaction patterns. On-device processing capabilities should be expanded to
minimise data transmission requirements, with selective cloud processing only for complex reasoning tasks
that exceed local computational capacity.

Chapter 8

Conclusion

8.1 Summary of the Work

This thesis designed and evaluated a multimodal AI-driven GUI framework that adapts user interfaces
in near real-time. The goal was to support personalized and accessible experiences, especially in health
contexts where users may have motor, visual, or hands free constraints. The framework captures touch,
keyboard, voice, and gesture inputs and turns them into concrete adaptation actions via Smart Intent
Fusion (SIF).

The architecture has three modular layers: an Input Adapter that standardises events and handles
basic management, a SIF Backend that combines rules with LLM-driven reasoning, and a Frontend
that renders the UI and applies adaptations. A key addition is Multi-Agent SIF (MA-SIF): separate
specialists for UI, geometry, and input, with a Validator Agent to reconcile and validate outputs. This
setup reduced hallucinations, improved reliability, and stayed easy to configure through an external
JSON file. SIF first started from a single-agent LLM and moved to MA-SIF after seeing prompt creep
and uneven JSON adherence; splitting roles plus validation made outputs more predictable without
sacrificing adaptability.

Research Objectives and Outcomes To reach the overall goal, six concrete objectives were set.
Each is briefly restated with its outcome.

1. Develop a modular, cross-platform architecture. A three-layer framework (Frontend, Input
Adapter, Backend) was implemented with a shared JSON-based event and adaptation format. It
integrates with Flutter today and keeps a clear path for SwiftUI and Unity through the same
contracts.

2. Implement multimodal input fusion. Touch, keyboard, voice, and gesture inputs are supported
and logged in a unified event schema. The pipeline fuses these with profile data and history, enabling
context-aware adaptations across modalities.

3. Integrate Smart Intent Fusion (SIF). A hybrid engine was built that blends deterministic
rules with multi-agent LLM reasoning (MA-SIF). The Validator Agent enforces schema, removes
duplicates, and prevents conflicts, which yields high internal coherence (DCI ≈ 0.995; Table 6.6).

4. Deliver accessibility-focused adaptations. The system consistently proposes accessibility ac-
tions: 97.51% of all suggestions target motor, visual, or hands free needs (Table 6.7). Typi-
cal changes include enlarging targets, increasing contrast and font size, and switching interaction
modes.

5. Provide a developer-friendly integration path. The framework exposes simple contracts and
reusable patterns; adapters apply changes on the client with minimal glue code. Configuration lives
in JSON and can be swapped without redeploying the app.

6. Evaluate system performance and impact. A feasibility study over 84 events across six
profiles assessed adaptation quality and latency. In the balanced configuration, median latency
is 13.19 s, schema-valid outputs 84.52%, and profile–action alignment (top five actions) 55.22%.

107

108 CHAPTER 8. CONCLUSION

A heavier configuration raises schema-valid to 100.00% and PAA to 61.45%, at 36.06 s median
latency (Tables 6.16–6.17).

8.2 Summary of Contributions

1. Modular, cross-platform architecture: Designed to work across Flutter and SwiftUI, with a
clear path to future platforms such as Unity/VR through shared JSON contracts.

2. Smart Intent Fusion (SIF): A hybrid engine that mixes deterministic rules with multi-agent
LLM reasoning for ambiguous cases.

3. MA-SIF extension: Specialist agents (UI/geometry/input) plus a Validator Agent for conflict
resolution and schema adherence, yielding high coherence (DCI ≈ 0.995).

4. Developer-friendly integration: Consistent contracts for events, adaptations, and profiles; min-
imal glue code; configuration in JSON.

5. Accessibility focus (empirical): 97.51% of actions are accessibility targeted; strong perfor-
mance on common motor/voice issues and moderate personalization that improves under the heavy
configuration.

8.3 Limitations

Current limitations include:

• LLM API dependency: Cloud models require connectivity and are subject to quota and avail-
ability.

• Synthetic evaluation: Results come from structured profiles and tasks; a user study is still needed
to capture acceptance and perceived control.

• UI context awareness: Reasoning relies on predefined metadata; there is no live semantic un-
derstanding of layouts yet.

• Latency: Multi-agent LLM reasoning adds seconds of delay, which may not suit highly time-critical
flows.

• Privacy and cost: Multimodal logging can be sensitive and cloud inference can be costly; pro-
duction systems need strict telemetry controls and efficiency measures.

These constraints make the current prototype best suited for exploratory deployments rather than safety-
critical settings. Dependence on a cloud LLM introduces availability risks; if the model stalls or rate-
limits, behaviour regresses to rules. The evaluation, while systematic, is based on scripted scenarios and
may miss edge cases. Without a live UI model, layout nuances can be overlooked. Latency is noticeable
for highly interactive flows. Finally, rich logging raises privacy and cost concerns. Near-term mitigations
include progressive enhancement (rules first, MA-SIF second), batching and caching, rate-aware fallbacks,
on-device redaction, and a UI analyser to bridge the context gap.

8.4 Lessons Learned

• Hybrid > pure AI. Rules keep the interface responsive; MA-SIF adds smarter, profile-aware
changes moments later.

• Schemas are leverage. Stable JSON contracts made the system portable and easy to debug as
components evolved.

• Prompts and validation matter. Constraint-focused prompts plus a Validator Agent improved
output quality and reduced contradictions.

• Simulation helps. Synthetic profiles and events were enough to tune latency limits, prompts, and
fallback behaviour before involving real users.

• Modularity reduces risk. Loose coupling made it straightforward to swap models and modalities
and points to a clear path toward UI-aware vision and on-device reasoning.

8.5. EVALUATION RESULTS: CONCLUSION 109

8.5 Evaluation Results: Conclusion

The Adaptive Smart Home Controller shows that the framework can deliver valid, accessibility-focused
adaptations in near real-time. Across 84 events and six profiles, the balanced configuration reached
84.52% schema-valid responses (i.e., final payloads that pass the strict JSON schema), with 100% of
responses flowing through the Validator Agent. 97.51% of suggested actions were accessibility targeted
(Table 6.7), and internal coherence was high (DCI ≈ 0.995; Table 6.6).

Effectiveness is strong on common motor and voice cases: missed tap and slider overshoot reached 100%
ERA, and voice command 97.22%; gestures remain the main opportunity for improvement (8.33%;
Table 6.9). Personalization is moderate overall (PAA 55.22% on the top five actions) and highest
for combined needs (P4, P5), which aligns with the action mix. Latency under MA-SIF (balanced) is
13.19 s median (p90 17.13 s, max 21.10 s), which suits asynchronous adaptation. The heavier configu-
ration increases schema validity to 100.00% and raises alignment to 61.45% at 36.06 s median latency
(Tables 6.16–6.17), making the trade-off explicit.

A rules-only engine did not outperform this setup. Overlap with the final LLM+Validator sets was limited
(Jaccard ∼0.25–0.35 overall; exact matches ∼1%), and rules missed multi-action bundles and need-aware
choices (Table 6.13). That said, a rule fast path is still useful: in about 86% of events there is at least
one canonical corrective action available (aggregated from Table 6.9), so emitting that immediately and
letting the Validator consolidate afterwards can lower median latency without sacrificing quality.

Overall, the combination of rules + MA-SIF + validation produced predictable outputs without sacrificing
adaptability. The next step is a small, focused user study to measure acceptance and perceived control,
and to validate that the balanced configuration offers the right quality–latency point in practice. Beyond
that, UI-aware action variants and light feedback signals are expected to lift personalization for single-
need profiles while keeping coherence and latency within bounds.

8.6 Self-Reflection and Reflection on the Work

This project taught me how to turn an ambitious idea about multimodal adaptive interfaces into a
working system through many small steps. I learned that a hybrid approach works best. Simple rules
keep the interface responsive, while LLM reasoning adds context aware changes. Stable JSON contracts
were a key part of the design because they gave every layer a shared language and made testing and
extension much easier. I also learned to write clear prompts and to validate every result with a strict
schema so that the output stays reliable and useful.

I solved core challenges such as standardising events across input types, using WebSocket for fast feedback
and HTTP for profile management, and reducing hallucinations with a multi agent setup and a strong
Validator Agent. Some things were out of scope for now, such as live semantic understanding of the UI,
very low latency on device models, and large user studies. Because of these limits the system is ready for
exploration and demos rather than strict time critical or safety critical use.

This work also provided me with insights into future directions. A UI analyser that uses visual input or
a widget tree would let the backend reason over the real screen. Light domain specific models that run
on device could lower latency a lot. Studies with people who have motor or visual impairments would
show real effects and acceptance. Privacy by design logging and redaction at the edge would make the
system safer for sensitive data.

My process improved as I narrowed the scope. By iterating on a small end to end pipeline from adapter
to backend to frontend I got faster feedback and clearer priorities. Simulated profiles and scripted events
were enough to tune latency budgets, prompts, and fallbacks before involving real users. I also made
progress measurable with schema checks, logging, and small comparisons instead of guesswork.

I learned that I work well between research and engineering. I enjoyed turning ideas like MA-SIF and
its agents into robust code. I also learned to avoid trying to do everything at once. A focused first
version and clear contracts helped me move fast without losing quality. I became more precise in writing
prompts, planning for failure with timeouts and fallbacks, and stating privacy and cost assumptions. I
also learned to accept uncertainty since LLM systems do not always behave in predictable ways. By
evaluating the system more and more, I came to the conclusion that this has real potential for improving
user experience.

110 CHAPTER 8. CONCLUSION

Looking back, the main aims were met. The system delivers near real-time adaptations, fuses multimodal
intent, and stays friendly for developers. Rules give quick feedback and MA-SIF adds richer changes.
The main gaps are latency and deep context awareness. These are not failures but a roadmap. On device
inference, semantic UI analysis, and real world studies are the next steps.

8.7 Final Remarks

This thesis shows that Smart Intent Fusion, in a multi-agent setup with a Validator, delivers reliable,
accessibility-focused adaptation at interactive pace. In the six-profile, 84-event study, almost all sugges-
tions targeted accessibility goals (97.51%), internal coherence was high (DCI ≈ 0.995), and the balanced
configuration kept median latency near 13 s. Effectiveness was near-perfect on common motor/voice
cases (missed tap, slider overshoot, voice command), with gestures marked as the main opportunity for
refinement.

A key outcome is that a rules-only policy did not outperform this architecture. Overlap with the final
LLM+Validator sets stayed modest (Jaccard ∼0.25–0.35; exact matches ∼1%), and rules missed multi-
action bundles and need-aware choices that lift personalization. At the same time, the data support a
practical compromise: in ∼86% of events there is at least one canonical rule fix available, so a fast path
can emit that immediately while MA-SIF and the Validator consolidate the full, profile-aware adaptation
a moment later. In short, rules help with speed; the hybrid pipeline wins on coverage, composition, and
alignment.

Looking ahead, there is some work to do: package the adapter and contracts as SDKs (Flutter, SwiftUI,
future Unity/VR), add offline and privacy-preserving modes, and ground decisions in real UI context via
widget trees and vision. A small user study with motor-, visual-, and hands free participants will turn
feasibility into user-level evidence (acceptance, perceived control). Beyond that, UI-aware action variants
and light feedback signals can raise personalization for single-need profiles without sacrificing coherence
or latency.

Treat UIs as programmable surfaces, fuse multimodal intent, and validate before acting. With that recipe,
interfaces move from static screens to adaptive systems that are personalized, inclusive, and resilient to
the diversity of human interaction.

References

[1] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. “Integrating adaptive user interface capabilities
in enterprise applications”. In: Companion Proceedings of the 36th International Conference on
Software Engineering (ICSE). ACM, 2014, pp. 487–490. doi: 10.1145/2568225.2568230.

[2] Pradeep Atrey et al. “Multimodal fusion for multimedia analysis: A survey”. In: Multimedia Syst.
16 (Nov. 2010), pp. 345–379. doi: 10.1007/s00530-010-0182-0.

[3] Greg J. Badros, Alan Borning, and Peter J. Stuckey. “The Cassowary Linear Arithmetic Constraint
Solving Algorithm”. In: ACM Transactions on Computer-Human Interaction 8.4 (2001), pp. 267–
306. doi: 10.1145/504704.504705.

[4] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. “A survey on context-aware sys-
tems”. In: International Journal of Ad Hoc and Ubiquitous Computing 2.4 (2007), pp. 263–277.
doi: 10.1504/IJAHUC.2007.014070.

[5] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal Machine Learning:
A Survey and Taxonomy. 2017. arXiv: 1705.09406 [cs.LG]. url: https://arxiv.org/abs/1705.
09406.

[6] Richard A. Bolt. ““Put-that-there”: Voice and gesture at the graphics interface”. In: Proceed-
ings of the 7th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’80. Seattle, Washington, USA: Association for Computing Machinery, 1980, pp. 262–270. isbn:
0897910214. doi: 10.1145/800250.807503. url: https://doi.org/10.1145/800250.807503.

[7] Andreas Bulling et al. “Gaze interaction in the post-WIMP world”. In: May 2012, pp. 1221–1224.
isbn: 9781450310161. doi: 10.1145/2212360.2212428.

[8] Gaëlle Calvary et al. “A Unifying Reference Framework for Multi-Target User Interfaces”. In:
Interacting with Computers 15.3 (2003), pp. 289–308. doi: 10.1016/S0953-5438(03)00010-9.

[9] Ananya Choudhury, Anjan Talukdar, and Kandarpa Sarma. “A Review on Vision-Based Hand
Gesture Recognition and Applications”. In: Aug. 2015, pp. 261–286. doi: 10.4018/978-1-4666-
8493-5.ch011.

[10] Andy Cockburn, Carl Gutwin, and Jason Alexander. “Improving Pointing Performance by Mixing
Control and Display Space: Control-Display Gain and Magnetic Pointer Fences”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy: ACM, 2008,
pp. 129–138. doi: 10.1145/1357054.1357074.

[11] Anind K. Dey. “Understanding and using context”. In: Personal and Ubiquitous Computing 5.1
(2001), pp. 4–7. doi: 10.1007/s007790170019. url: https://doi.org/10.1007/s007790170019.

[12] Morgan Dixon, James Fogarty, and Jacob Wobbrock. “A general-purpose target-aware pointing en-
hancement using pixel-level analysis of graphical interfaces”. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’12. Austin, Texas, USA: Association for Com-
puting Machinery, 2012, pp. 3167–3176. isbn: 9781450310154. doi: 10.1145/2207676.2208734.
url: https://doi.org/10.1145/2207676.2208734.

[13] Andrew T. Duchowski. Eye Tracking Methodology: Theory and Practice. 3rd ed. eBook ISBN: 978-
3-319-57883-5, Published: 24 May 2017, Softcover ISBN: 978-3-319-57881-1, Published: 07 June
2017, Number of Pages: XL, 366, Number of Illustrations: 71 b/w illustrations, 62 illustrations in
colour. Cham: Springer Cham, 2017. isbn: 978-3-319-57881-1. doi: 10.1007/978-3-319-57883-5.
url: https://link.springer.com/book/10.1007/978-3-319-57883-5.

[14] Leah Findlater and Joanna McGrenere. “A Comparison of Static, Adaptive, and Adaptable Menus”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’04).
ACM, 2004, pp. 89–96. doi: 10.1145/985692.985704.

111

https://doi.org/10.1145/2568225.2568230
https://doi.org/10.1007/s00530-010-0182-0
https://doi.org/10.1145/504704.504705
https://doi.org/10.1504/IJAHUC.2007.014070
https://arxiv.org/abs/1705.09406
https://arxiv.org/abs/1705.09406
https://arxiv.org/abs/1705.09406
https://doi.org/10.1145/800250.807503
https://doi.org/10.1145/800250.807503
https://doi.org/10.1145/2212360.2212428
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.4018/978-1-4666-8493-5.ch011
https://doi.org/10.4018/978-1-4666-8493-5.ch011
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1145/2207676.2208734
https://doi.org/10.1145/2207676.2208734
https://doi.org/10.1007/978-3-319-57883-5
https://link.springer.com/book/10.1007/978-3-319-57883-5
https://doi.org/10.1145/985692.985704

112 REFERENCES

[15] Leah Findlater et al. “Ephemeral Adaptation: The Use of Gradual Onset to Improve Menu Selection
Performance”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’09). ACM, 2009, pp. 1655–1664. doi: 10.1145/1518701.1518956.

[16] Paul M. Fitts. “The information capacity of the human motor system in controlling the amplitude
of movement”. In: Journal of Experimental Psychology 47.6 (1954), p. 381. doi: 10.1037//0096-
3445.121.3.262.

[17] Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. “Delivering Cognitive Behavior Ther-
apy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Con-
versational Agent (Woebot): A Randomized Controlled Trial”. In: JMIR Ment Health 4.2 (June
2017), e19. issn: 2368-7959. doi: 10.2196/mental.7785. url: http://www.ncbi.nlm.nih.gov/
pubmed/28588005.

[18] Krzysztof Gajos and Daniel S. Weld. “SUPPLE: automatically generating user interfaces”. In:
Proceedings of the 9th International Conference on Intelligent User Interfaces. IUI ’04. Funchal,
Madeira, Portugal: Association for Computing Machinery, 2004, pp. 93–100. isbn: 1581138156.
doi: 10.1145/964442.964461. url: https://doi.org/10.1145/964442.964461.

[19] Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock. “Automatically Generating Personal-
ized User Interfaces with SUPPLE”. In: Artificial Intelligence 174.12–13 (2010), pp. 910–950. doi:
10.1016/j.artint.2010.05.005.

[20] Daniel Gaspar-Figueiredo. Learning from Interaction: User Interface Adaptation using Reinforce-
ment Learning. 2023. arXiv: 2312.07216 [cs.SE]. url: https://arxiv.org/abs/2312.07216.

[21] Matthew B. Hoy. “Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants”. In:Medical
Reference Services Quarterly 37.1 (2018). PMID: 29327988, pp. 81–88. doi: 10.1080/02763869.
2018.1404391. eprint: https://doi.org/10.1080/02763869.2018.1404391. url: https:
//doi.org/10.1080/02763869.2018.1404391.

[22] Anthony Jameson. “Adaptive Interfaces and Agents”. In: The Human-Computer Interaction Hand-
book: Fundamentals, Evolving Technologies and Emerging Applications. Ed. by Julie A. Jacko and
Andrew Sears. Lawrence Erlbaum Associates, 2003, pp. 305–330. isbn: 0805838384.

[23] Manu Kumar and Terry Winograd. “GUIDe: gaze-enhanced UI design”. In: CHI ’07 Extended
Abstracts on Human Factors in Computing Systems. CHI EA ’07. San Jose, CA, USA: Association
for Computing Machinery, 2007, pp. 1977–1982. isbn: 9781595936424. doi: 10.1145/1240866.
1240935. url: https://doi.org/10.1145/1240866.1240935.

[24] Manu Kumar and Terry Winograd. “GUIDe: gaze-enhanced UI design”. In: GUIDe: Gaze-enhanced
UI Design, CHI: Conference on Human Factors in Computing Systems. Apr. 2007, pp. 1977–1982.
doi: 10.1145/1240866.1240935.

[25] H̊akon Wium Lie et al. Media Queries Level 3. Tech. rep. W3C Recommendation. World Wide Web
Consortium (W3C), 2012. url: https://www.w3.org/TR/mediaqueries-3/.

[26] Yi-Jung Lin and Stuart Speedie. “Role-Based and Adaptive User Interface Designs in a Telederma-
tology Consult System: A Way to Secure and a Way to Enhance”. In: AMIA Annual Symposium
Proceedings. American Medical Informatics Association, 2003, p. 913. url: https://pmc.ncbi.
nlm.nih.gov/articles/PMC1480225/.

[27] Camillo Lugaresi et al. MediaPipe: A Framework for Building Perception Pipelines. 2019. arXiv:
1906.08172 [cs.DC]. url: https://arxiv.org/abs/1906.08172.

[28] Kris Luyten and Karin Coninx. “An XML-Based Runtime User Interface Description Language for
Mobile Computing Devices”. In: Interactive Systems: Design, Specification, and Verification. Ed. by
Chris Johnson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–15. doi: 10.1007/3-
540-44664-0_1. url: https://doi.org/10.1007/3-540-44664-0_1.

[29] Kris Luyten, Kristof Thys, and Karin Coninx. “Profile-Aware Multi-Device Interfaces: An MPEG-
21-Based Approach for Accessible User Interfaces”. In: (2005). doi: 10.14236/ewic/AD2005.5.

[30] Ethan Marcotte. Responsive Web Design. A List Apart, Issue 306. 2010. url: https://alistapart.
com/article/responsive-web-design/.

[31] Ethan Marcotte. “Responsive Web Design”. In:A List Apart 306 (2010). url: https://alistapart.
com/article/responsive-web-design.

[32] Jerzy Mizeraczyk et al. “A Method for Underwater Wireless Data Transmission in a Hydroacoustic
Channel under NLOS Conditions”. In: Sensors 21.23 (2021). issn: 1424-8220. doi: 10 . 3390 /
s21237825. url: https://www.mdpi.com/1424-8220/21/23/7825.

[33] Florian Mueller and Damon Young. “10 Lenses to Design Sports-HCI”. In: Foundations and Trends®
in Human–Computer Interaction 12.3 (2018), pp. 172–237. issn: 1551-3955. doi: 10.1561/1100000076.
url: http://dx.doi.org/10.1561/1100000076.

https://doi.org/10.1145/1518701.1518956
https://doi.org/10.1037//0096-3445.121.3.262
https://doi.org/10.1037//0096-3445.121.3.262
https://doi.org/10.2196/mental.7785
http://www.ncbi.nlm.nih.gov/pubmed/28588005
http://www.ncbi.nlm.nih.gov/pubmed/28588005
https://doi.org/10.1145/964442.964461
https://doi.org/10.1145/964442.964461
https://doi.org/10.1016/j.artint.2010.05.005
https://arxiv.org/abs/2312.07216
https://arxiv.org/abs/2312.07216
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1080/02763869.2018.1404391
https://doi.org/10.1145/1240866.1240935
https://doi.org/10.1145/1240866.1240935
https://doi.org/10.1145/1240866.1240935
https://doi.org/10.1145/1240866.1240935
https://www.w3.org/TR/mediaqueries-3/
https://pmc.ncbi.nlm.nih.gov/articles/PMC1480225/
https://pmc.ncbi.nlm.nih.gov/articles/PMC1480225/
https://arxiv.org/abs/1906.08172
https://arxiv.org/abs/1906.08172
https://doi.org/10.1007/3-540-44664-0_1
https://doi.org/10.1007/3-540-44664-0_1
https://doi.org/10.1007/3-540-44664-0_1
https://doi.org/10.14236/ewic/AD2005.5
https://alistapart.com/article/responsive-web-design/
https://alistapart.com/article/responsive-web-design/
https://alistapart.com/article/responsive-web-design
https://alistapart.com/article/responsive-web-design
https://doi.org/10.3390/s21237825
https://doi.org/10.3390/s21237825
https://www.mdpi.com/1424-8220/21/23/7825
https://doi.org/10.1561/1100000076
http://dx.doi.org/10.1561/1100000076

REFERENCES 113

[34] Brad A. Myers, Scott E. Hudson, and Randy Pausch. “Past, present, and future of user interface
software tools”. In: ACM Transactions on Computer-Human Interaction 7.1 (2000), pp. 3–28. doi:
10.1145/344949.344959.

[35] Francisco R. Ortega et al. “Gesture elicitation for 3D travel via multi-touch and mid-Air systems
for procedurally generated pseudo-universe”. In: 2017 IEEE Symposium on 3D User Interfaces
(3DUI). 2017, pp. 144–153. doi: 10.1109/3DUI.2017.7893331.

[36] Sharon Oviatt. “Ten myths of multimodal interaction”. In: Commun. ACM 42.11 (Nov. 1999),
pp. 74–81. issn: 0001-0782. doi: 10.1145/319382.319398. url: https://doi.org/10.1145/
319382.319398.

[37] Sharon Oviatt, Rachel Coulston, and Rebecca Lunsford. “When do we interact multimodally?
cognitive load and multimodal communication patterns”. In: Proceedings of the 6th International
Conference on Multimodal Interfaces. ICMI ’04. State College, PA, USA: Association for Computing
Machinery, 2004, pp. 129–136. isbn: 1581139950. doi: 10.1145/1027933.1027957. url: https:
//doi.org/10.1145/1027933.1027957.

[38] Zhanna Sarsenbayeva et al. “Methodological Standards in Accessibility Research on Motor Impair-
ments: A Survey”. In: ACM Computing Surveys 55.7 (2022), pp. 1–35. doi: 10.1145/3543509.

[39] Bill N. Schilit and Marvin M. Theimer. “Context-aware computing applications”. In: IEEE Work-
shop on Mobile Computing Systems and Applications (1994), pp. 85–90. doi: 10.1109/WMCSA.
1994.16.

[40] Andrew Sears and Ben Shneiderman. “Split Menus: Effectively Using Selection Frequency to Orga-
nize Menus”. In: ACM Transactions on Computer-Human Interaction 1.1 (1994), pp. 27–51. doi:
10.1145/174630.174632.

[41] Dı́dac Suŕıs, Sachit Menon, and Carl Vondrick. ViperGPT: Visual Inference via Python Execution
for Reasoning. 2023. arXiv: 2303.08128 [cs.CV]. url: https://arxiv.org/abs/2303.08128.

[42] T. R. Toelle et al. “App-based multidisciplinary back pain treatment versus combined physiotherapy
plus online education: a randomized controlled trial”. In: NPJ Digital Medicine 2.1 (May 2019),
p. 34. doi: 10.1038/s41746-019-0109-x.

[43] Bryan Wang, Gang Li, and Yang Li. “Enabling Conversational Interaction with Mobile UI using
Large Language Models”. In: Proceedings of the 2023 CHI Conference on Human Factors in Com-
puting Systems. CHI ’23. Hamburg, Germany: Association for Computing Machinery, 2023. isbn:
9781450394215. doi: 10.1145/3544548.3580895. url: https://doi.org/10.1145/3544548.
3580895.

[44] Daniel Wigdor and Dennis Wixon. Brave NUI World: Designing Natural User Interfaces for Touch
and Gesture. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011. isbn: 0123822319.

[45] Jacob O. Wobbrock et al. “Ability-Based Design: Concept, Principles, and Examples”. In: ACM
Transactions on Accessible Computing 3.3 (2011). doi: 10.1145/1952383.1952384.

[46] Jacob O. Wobbrock et al. “The Angle Mouse: Target-Agnostic Dynamic Gain Adjustment Based on
Angular Deviation”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09). ACM, 2009, pp. 1401–1410. doi: 10.1145/1518701.1518912.

[47] Jason Wu. “Computational Understanding of User Interfaces”. In: (Aug. 2024). doi: 10.1184/
R1 / 26485132 . v1. url: https : / / kilthub . cmu . edu / articles / thesis / Computational _

Understanding_of_User_Interfaces/26485132.
[48] Shunyu Yao et al. ReAct: Synergizing Reasoning and Acting in Language Models. 2023. arXiv:

2210.03629 [cs.CL]. url: https://arxiv.org/abs/2210.03629.
[49] Boyuan Zheng et al. GPT-4V(ision) is a Generalist Web Agent, if Grounded. 2024. arXiv: 2401.

01614 [cs.IR]. url: https://arxiv.org/abs/2401.01614.

https://doi.org/10.1145/344949.344959
https://doi.org/10.1109/3DUI.2017.7893331
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/319382.319398
https://doi.org/10.1145/1027933.1027957
https://doi.org/10.1145/1027933.1027957
https://doi.org/10.1145/1027933.1027957
https://doi.org/10.1145/3543509
https://doi.org/10.1109/WMCSA.1994.16
https://doi.org/10.1109/WMCSA.1994.16
https://doi.org/10.1145/174630.174632
https://arxiv.org/abs/2303.08128
https://arxiv.org/abs/2303.08128
https://doi.org/10.1038/s41746-019-0109-x
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/1952383.1952384
https://doi.org/10.1145/1518701.1518912
https://doi.org/10.1184/R1/26485132.v1
https://doi.org/10.1184/R1/26485132.v1
https://kilthub.cmu.edu/articles/thesis/Computational_Understanding_of_User_Interfaces/26485132
https://kilthub.cmu.edu/articles/thesis/Computational_Understanding_of_User_Interfaces/26485132
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614

	Introduction
	Background and Motivation
	Problem Statement
	Research Objectives
	Thesis Structure

	Related Work
	Multimodal AI in User Interfaces
	Pointing Devices and Touch Interfaces
	Voice-Driven Interfaces
	Gesture and Gaze Integration

	Adaptive GUIs Across Modalities and Platforms
	Accessibility-Focused Adaptive GUIs (Desktop & Mobile)
	Design Challenges for Adaptive GUIs Across Modalities

	Classical Adaptive UI Techniques
	Responsive Layouts
	Context-Aware Design

	Programmable UIs
	Reflow
	UICoder
	User Interface Adaptation using Reinforcement Learning

	User Profile built UIs
	XML-Based Runtime UI Systems

	Multimodal Fusion and Input Event Modeling
	Fusion Architectures
	Event Abstraction Models

	LLMs as UI Controllers
	Turning UIs into APIs
	Agents

	Health and Accessibility Applications

	System Design and Architecture
	Introduction to System Design
	Overview of the System Architecture
	Accessibility Focus and Target User Groups
	Accessibility Grounding and Adaptation Rationale (WCAG 2.1/2.2)

	Frontend Layer: UI Design and Interaction
	Interface Elements
	Adaptation Levels

	Input Adapter Layer: Multimodal Input Processing
	SIF Backend Layer: Smart Intent Fusion (SIF)
	User Profiles and Context Modeling
	Dynamic Adaptation Mechanisms
	Adaptation Pipeline
	Supported Adaptation Actions
	Continuous Learning and Feedback Loop
	Design Considerations

	Chapter Summary

	Smart Intent Fusion (SIF)
	Introduction to Smart Intent Fusion
	Theoretical Foundations of Smart Intent Fusion
	Multimodal Fusion
	Intent Inference
	Why Hybrid Works Best
	Connection to Accessibility

	User Profile and Context Integration
	User Profiles
	User Profile Structure
	How Profiles Affect Decisions
	Continuous Learning from History
	Role in Accessibility

	Modeling Multimodal Input Fusion
	Event Standardisation
	Timing and Confidence
	LLM Reasoning in Fusion Decisions

	Rule-Based Logic and LLM-Driven Adaptation
	Rule-Based Logic
	LLM-Driven Reasoning
	Hybrid Approach in SIF
	Heatmap Analysis

	Multi-Agent Smart Intent Fusion (MA-SIF)
	Why Multiple Agents?
	Agent Roles
	Adaptation Flow
	Dynamic Configuration
	Temperature and Thinking Budget
	Example in Action
	Benefits of the Multi-Agent Approach

	Prompt Engineering for LLMs in SIF
	LLM Prompt Design Principles
	Prompt Structure from sif_config.json
	Disjunction Ambiguity in LLM Interpretation
	Balancing Model Parameters
	Avoiding Hallucinations and Bad Values
	Importance of a Strict JSON Schema

	Performance and Evaluation Metrics for AI Logic
	Limitations and Solutions of LLM Integration
	LLM selection
	Reliability and Latency Constraints
	Hallucinations and Invalid Output
	Token Limits and Context Size
	Validator Complexity
	Dependency on External APIs

	Future Directions for AI-Driven Adaptation
	Chapter Summary

	An Adaptive Multimodal GUI Framework using LLMs
	Introduction to an Adaptive Smart Home Controller
	Development Environment
	Frontend (Flutter): Adaptive Smart Home Controller
	Responsibilities & Data Flow
	UI Composition & State Model
	Event & Adaptation Contract
	Responsiveness & Feedback
	Profile Bootstrap & Editing
	Testing Harness: Mock Events & Input Capture
	Summary

	Input Adapter (Dart): Transport, Serialization & Adaptation Callback
	Class Overview
	Internal Representations of Event, Adaptation and User Profiles
	Transport & Profile Management
	Extensibility Example
	Summary

	SIF Backend Layer: Implementation of Adaptation Logic
	Webserver layout and endpoints
	Data persistence and history management
	Smart Intent Fusion and MA‑SIF
	LLM invocation (Gemini)
	Structured outputs and guardrails
	Rule‑based fallback and resilience
	Heatmap Analysis
	Latency, partial results, and error handling
	Security and CORS considerations
	Summary

	User Profile and Context Implementation
	Dynamic Adaptation Mechanisms Implementation
	Application Mechanics (State, Animation, Ordering)
	Conflicts and Unknown Actions
	Real-Time Adaptation Example

	Backend Injection Interface
	Purpose and Scope
	Architecture and Data Flow
	Controls: Profiles and Events
	Adaptation Response View
	Interaction History Panel
	Operational Notes and Limitations

	Cross-Platform SwiftUI Example
	Purpose and Scope
	Adapter and Transport
	Minimal UI and State Mapping
	Event Injection
	Usage and Limitations

	Design Decisions
	Modularity Over Monolithic Design
	WebSocket for Real-Time vs. HTTP for Batch Processing
	MongoDB for Persistent Storage
	Rule-Based Fallback with LLM Reasoning
	Multi-agent LLM reasoning (MA-SIF) vs single-agent LLM reasoning (normal SIF)

	Implementation Challenges and Solutions
	LLM reliability and output consistency
	Performance under real-time constraints
	Safeguards against malicious or replay attacks
	Testing with incomplete modalities
	Security and trust boundaries

	Chapter Summary

	Feasibility Study
	Study Overview
	Methodology
	Accessibility and Design Quality
	Profile–Action Alignment (PAA)
	Error to Response Appropriateness (ERA)
	Mode Enablement for Hands free (MEH)
	Design Coherence Index (DCI)
	Global accessibility share and WCAG coverage
	Motor Benefit Proxy (Fitts law, analytic)
	Appropriateness by event type
	Stability across runs
	Specificity via profile swap
	Failure taxonomy (invalid cases)
	Rule-only sufficiency (proxy)
	Rule baseline vs. LLM (minimal vs. maximal)
	Micro-cases on P1 and P5 profiles

	Adaptation Performance (Latency)
	Overall summary
	Per profile outcomes
	Configuration comparison (all profiles)

	Discussion of Results
	Study Limitations
	Conclusion

	Discussion and Future Work
	Overview
	Implications for Accessibility and HCI
	Key Findings and Contributions
	Comparison with Related Work
	Future Work
	Short-Term Improvements
	Research Directions

	Conclusion
	Summary of the Work
	Summary of Contributions
	Limitations
	Lessons Learned
	Evaluation Results: Conclusion
	Self-Reflection and Reflection on the Work
	Final Remarks

