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Abstract

Media streaming has rapidly become the dominant form of internet traffic, with livestreaming
emerging as a particularly demanding use case due to its low latency and large-scale distri-
bution requirements. Existing protocols often fail to provide both scalability and low-latency
support, motivating the development of the emerging Media over QUIC (MoQ) protocol. How-
ever, debugging complex transport protocols such as QUIC and MoQ presents significant chal-
lenges.

This thesis investigates how structured logging and visualization can support the analysis and
debugging of MoQ. Building on the qlog logging standard, QUIC logging was extended with
MoQ-specific events through a custom logging library. To analyze this data, mog-vis was
developed, a visualization application inspired by qvis but tailored to MoQ’s characteristics.
The application includes adaptations of an existing visualization as well as novel approaches
designed to highlight MoQ’s scalability and low-latency support.

A series of demonstrations shows how the visualizations reveal inefficiencies in packetization,
identify packet loss, expose network topology issues, and evaluate relay functionality. The
results confirm that structured logging combined with targeted visualizations provides valu-
able insights into MoQ’s operation, enabling the detection of implementation and deployment
issues.

The thesis concludes that structured logging and visualization are effective tools for advanc-
ing the analysis and debugging of MoQ. Future work could expand logging and visualization
capabilities by adding MoQ-specific events and enhancing or creating visualizations.



Samenvatting

Introductie

Mediastreaming is de afgelopen jaren een dominante vorm van internetverkeer geworden, een
trend die door de COVID-19-pandemie is versneld. On-demand streaming en livestreaming
vormen de grootste categorieén van dataverkeer in zowel vaste als mobiele netwerken, waarbij
livestreaming in recente jaren vooral bij sportevenementen sterk is toegenomen. Lage latentie
en hoge schaalbaarheid zijn hierbij cruciale eisen, waar bestaande protocollen vaak niet volledig
aan voldoen.

Het Media over QUIC (MoQ) protocol is in ontwikkeling om zowel lage latentie als efficiénte
schaalbaarheid te bieden, maar het debuggen van dergelijke complexe protocollen is uitdagend.
In dit kader kunnen glog (gestandaardiseerd loggen van netwerk events) en qvis (visualisatie
van QUIC-implementaties) waardevolle ondersteuning bieden. Deze thesis richt zich op het
toepassen van qlog-gebaseerde logging en visualisaties om de analyse en debugging van MoQ te
verbeteren, met nieuwe MoQ-specifieke logevents en visualisaties die zowel schaalbaarheid als
latentie visueel duidelijk maken.

De centrale onderzoeksvragen zijn:

1. Hoe kunnen qlog-gebaseerde logging en visualisatietechnieken de analyse en debugging
van MoQ ondersteunen, met specifieke aandacht voor:

(a) Schaalbaarheid van MoQ
(b) Lage latentie
(¢) Gebruik van QUIC binnen MoQ

2. Op welke wijze kunnen visualisaties problemen in MoQ-implementaties en -deployments
blootleggen, zoals:

(a) Inefficiénte packetization
(b) Pakketverlies

(¢) Topologieproblemen

Low-Latency Livestreaming

Low-latency livestreaming vereist het minimaliseren van vertragingen die ontstaan tijdens het
volledige mediaproces, van opname tot weergave. Latentie wordt ingedeeld in verschillende
categorieén, van hoog (> 45 s) tot near-real-time (< 100 ms). Belangrijk is het onderscheid
tussen startup delay (vertraging bij het starten van de stream) en end-to-end (E2E) latentie
(vertraging vanaf opname tot weergave).

De end-to-end latentie bestaat uit drie hoofdcategorieén:
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e Media Content Preparation Latency (MCPL): vertragingen bij media-acquisitie, -encodering,
-packaging en -ingest. Belangrijke factoren bevatten de codec-keuze, segmentlengte, en
encryptie.

e Media Content Delivery Latency (MCDL): netwerkvertraging, inclusief CDN-distributie
en last-mile levering van de CDN edge naar clients. Optimalisatie vereist onder andere
snelle caching.

e Media Content Consumption Latency (MCCL): vertragingen door de mediaplayer zelf,
zoals buffering, decoderen, licentieophaling en bitrate-aanpassing. Bij slecht geoptimaliseerde
spelers kan dit tot 50% van de totale E2E latentie uitmaken.

Bestaande Protocollen

Er bestaan veel protocollen voor livestreaming, maar elk heeft beperkingen die lage latentie en
schaalbaarheid bemoeilijken.

e HLS/DASH: hoge latentie door verschillende factoren zoals head-of-line blocking, schaalt
heel goed dankzij HTTP.

e LL-HLS/LL-DASH: lagere latentie, hoge request rate.
o WebRTC: zeer lage latentie, moeilijker om te schalen, vaak kwaliteitsverlies.

o WebRTC Data Channels: flexibiliteit in data, complexe implementatie, zelfde schaal-
baarheidsproblemen als WebRTC.

o RTMP: lage latentie, niet langer in gebruik voor mediadistributie door andere problemen
zoals beveiliging.

Media over QUIC

MoQ is een protocol in ontwikkeling door de MoQ IETF-werkgroep, bedoeld voor lage-latentie
mediaoverdracht zoals livestreaming, online gaming en media-conferencing. Het protocol richt
zich niet alleen op datatransport, maar ook op encoderen, packaging en mediaplayer-optimalisatie.
Deze thesis legt de nadruk op het loggen en visualiseren van het effectieve transportproto-
col.

MoQ heeft een gelaagde structuur, van onder naar boven:
e QUIC: onderliggend transportprotocol.
o WebTransport: zorgt voor browsercompatibiliteit.
o MoQ Transfork: eigenlijke transportprotocol.
e Karp: media playlist en container.

e Applicatie: bijvoorbeeld een livestreaming-app.

QUIC

QUIC biedt voordelen ten opzichte van TCP en WebRTC, zoals onafhankelijke streams om
buffering en vertraging te verminderen, connectie IDs om roaming en NAT-rebinding te onder-
steunen, en flexibele congestion control voor lage-latentie toepassingen. Het protocol is beveiligd
met TLS, inclusief encryptie van headers en bescherming tegen spoofing.

WebTransport

WebTransport is vereist voor browserondersteuning en maakt het mogelijk om meerdere uni-
of bidirectionele streams te gebruiken en data out-of-order te ontvangen, waardoor polling,
zoals in HTTP, overbodig wordt en browserclients efficiént live media kunnen ontvangen. Een



nadeel is dat WebTransport sessies een QUIC-verbinding delen met andere sessies en HT'TP/3-
verkeer.

MoQ Transfork

MoQ Transfork is het transportprotocol bovenop QUIC dat is ontworpen voor live media stream-
ing via CDNs naar een divers publiek met verschillende latentie- en kwaliteitsvereisten. Het
protocol is media-agnostisch, zodat tussenliggende nodes zoals relays of CDNs belangrijke data
kunnen prioriteren en doorsturen zonder kennis van codecs, containers of encryptie. Het werkt
volgens een publish/subscribe-principe waarbij endpoints media publiceren op basis van abon-
nementen.

De structuur van Mo(Q Transfork is als volgt:
e Session: connectie tussen client en server, verzendt Tracks aan de hand van hun pad.
e Track: serie van Groups, worden elk onafhankelijk geleverd en gedecodeerd.
e Group: serie van Frames, worden elk in volgorde geleverd en gedecodeerd.
e Frame: payload, representeert een moment in de tijd.

Hoe applicatiedata wordt opgesplitst in Tracks, Groups en Frames is de verantwoordelijkheid
van de ontwikkelaar.

Prioritering is cruciaal bij netwerkcongestie: belangrijke media worden eerst geleverd, terwijl
minder belangrijke data kan worden “uitgehongerd”. Mo(Q Transfork gebruikt bidirectionele
streams voor controle (Session, Announce, Subscribe, Fetch, en Info) en unidirectionele streams
voor data (Group).

Het protocol definieert specifieke berichten zoals SESSION_CLIENT, SESSION_SERVER, ANNOUNCE,
SUBSCRIBE, GROUP en FRAME, die respectievelijk sessies initiéren, Tracks aankondigen, abon-
nementen starten, Groups ophalen en data overdragen. Relays en CDNs implementeren alleen
MoQ Transfork, niet de medialaag. Het uithongeren van lagere-prioriteits streams onder-
steunt verschillende latentiedoelen en netwerkcondities zonder dat streams volledig worden
gedropt.

Karp

Karp is de medialaag van het protocol, gebaseerd op de WebCodecs API. Het is geoptimaliseerd
voor low-overhead livestreaming en bestaat uit een catalogus (JSON-bestand met metadata over
tracks en live updates) en een container (header rond codec-data met timestamp). Kijkers lezen
eerst de catalogus en abonneren zich vervolgens op de gewenste Tracks.

Applicatie

De applicatie is de bovenste laag en omvat alle toepassingen van live media. MoQ ondersteunt
standaard audio- en videodistributie; andere mediavormen kunnen via aangepaste Tracks wor-
den toegevoegd. Dit biedt de voordelen van MoQ Transfork zonder de implementatie helemaal
zelf te moeten doen; enkel het delta-encoderen van de media in Groups en Frames moet worden
geregeld.

Logging
qlog

glog is een uitbreidbaar, gestructureerd loggingformaat voor netwerkprotocollen dat standaard-
isatie biedt en data-uitwisseling vergemakkelijkt. Het ondersteunt verschillende serialisatie-
formaten zoals JSON en CSV en is ontworpen om logconsumptie efficiént en uitbreidbaar te
maken. glog is hiérarchisch opgebouwd:



e Logbestand: bestaat uit metadata over het bestand, zoals een titel en een beschrijving,
en een aantal Traces.

e Trace: bevatten events van één datastroom vanaf één vantage point, inclusief een lijst van
events en gemeenschappelijke velden.

e Event: bevatten minstens de tijd, naam en data specifiek voor het type event, en kunnen
extra velden bevatten zoals group ID en systeeminformatie.

QUIC qlog Definities

De IETF werkt naast het hoofdloggingschema van qlog ook aan glog-eventdefinities voor ver-
schillende protocollen, waaronder QUIC. De “QUIC event definitions for glog” draft beschrijft
deze events en bijbehorende metadata voor het kernprotocol QUIC en enkele extensies.

In de implementatie worden alleen de packet_sent en packet_received events gebruikt; de
overige 32 gedefinieerde events worden niet behandeld. De 34 QUIC qlog-events zijn verdeeld
in vier categorieén:

e Connectivity: 8 events over de verbindingstoestand (start, sluiting, updates van connectie
ID).

e Transport: 17 events over datatransport (versturen, ontvangen, drop, acknowledgment
van pakketten).

e Security: 2 events over updates van cryptografische sleutels.
e Recovery: 7 events over detectie van pakketverlies en congestion control.

Deze qlog events kunnen zeer gedetailleerde en hiérarchische data bevatten. De packet_sent
en packet_received events bevatten vergelijkbare gegevens, zoals de packet header, ingesloten
QUIC frames en ondersteunde QUIC-versies.

Media over QUIC qlog Definities

Deze thesis definieert een eigen set glog-events voor MoQ Transfork, omdat de officiéle MoQ
Transport glog-definities nog niet beschikbaar waren tijdens de implementatie. De events zijn
geinspireerd door QUIC- en HTTP/3-events en richten zich alleen op berichten die tussen MoQ-
endpoints worden verzonden. Voor elk berichttype is er een created-event (bij het aanmaken)
en een parsed-event (na ontvangst).

De belangrijkste events omvatten onder andere:
e stream: nieuwe MoQ stream aanmaken/parsen.
e session_started_client / session_started_server: starten van een MoQ Session.
e announce / announce_please: bekendmaking van Tracks.
e subscription_started / subscription_update: beheer van abonnementen op Tracks.
e info / info_please: Trackinformatie opvragen.

e group / frame: verzenden van Group- of Framedata.

Logging Implementatie

De thesis implementeert een Rust glog-library voor MoQ Transfork en QUIC. De library ge-
bruikt een singleton zodat events via statische functies kunnen worden aangemaakt en gelogd,
en ondersteunt Rust features per protocol zodat alleen relevante code wordt gecompileerd.
Voor QUIC-events is een caching-mechanisme toegevoegd om events over meerdere functies
heen correct samen te stellen. Als serialisatieformaat wordt JSON Text Sequences gebruikt,
wat streambaar en eenvoudig te verwerken is.



Voor QUIC is ervoor gekozen alleen de packet_sent en packet_received events te loggen.
Deze events bevatten alle verzonden data en geven inzicht in de interactie tussen MoQ en QUIC.
Direct loggen bij verzending of ontvangst was niet mogelijk vanwege encryptie en de manier
waarop Quinn pakketten opbouwt, wat verspreid is over meerdere functies en bestanden. Om dit
op te lossen is caching toegevoegd. Events kunnen worden bijgewerkt naarmate frames aan het
pakket worden toegevoegd en worden uiteindelijk gelogd bij verzending of na decryptie.

Om events van dezelfde MoQ Session te koppelen, werd een tracing ID toegevoegd aan het
SESSION_CLIENT-bericht, zodat beide endpoints een gedeelde waarde hebben. Daarnaast is een
extra veld main_role toegevoegd aan de Trace, dat aangeeft wat de hoofdrol van elk endpoint
is, zoals publisher, subscriber of relay. Door de structuur van de logging library waren er verder
weinig aanpassingen nodig. Het resultaat is dat de logs van zowel QUIC als MoQ worden
samengevoegd in één bestand per endpoint.

Deze loggingstructuur maakt het mogelijk gedetailleerde qlog-bestanden te produceren, die
vervolgens in visualisatietools kunnen worden geanalyseerd.

Visualisaties

qvis

qvis is een toolsuite voor het visualiseren van QUIC en HTTP/3 die qlog-bestanden kan im-
porteren. De toolsuite bevat meerdere pagina’s met verschillende visualisaties: een sequentie-
diagram toont het verkeer tussen client en server met packet_sent en packet_received events
als pijlen. Een congestion pagina visualiseert verzonden, verloren en bevestigde data en geeft
informatie over flow control, congestion window en RTT, terwijl een multiplexingpagina laat
zien hoe gegevens van meerdere streams over tijd worden verzonden. De packetizationpagina il-
lustreert welke frames en streamgegevens in elk pakket zijn opgenomen, en een statistiekentabel
geeft een overzicht van metrieken zoals event-aantallen en frame-types. Veel visualisaties zijn
interactief en bieden extra details bij hover. qvis stelt ontwikkelaars in staat om zowel algemene
hypotheses als diepgaandere analyses te maken, en de brede adoptie in de QUIC-community laat
zien dat qlog en qvis effectief zijn voor debugging en het verbeteren van implementaties.

Visualisatie Implementatie

moq-vis is een webgebaseerde applicatie ontwikkeld voor het visualiseren van qlog-bestanden
van meerdere endpoints, gericht op het analyseren van MoQ’s schaalbaarheid en low-latency
ondersteuning. De visualisaties omvatten een netwerkgraaf voor het overzicht van endpoints en
connecties, latentiegrafieken om latentie te analyseren en een sequentiediagram voor endpoint-
en protocolinteracties. Alle visualisaties zijn interactief.

De netwerkgraaf biedt een overzicht van endpoints en hun verbindingen, gebaseerd op groep ID’s
uit de glog Traces. Nodes worden geidentificeerd met bestandsnamen en visueel onderscheiden
door iconen op basis van hun rol (publisher, subscriber, pubsub, relay). Verbindingen tussen
nodes worden weergegeven als interactieve edges die geselecteerd kunnen worden om specifieke
connecties te analyseren in andere visualisaties. De grafiek ondersteunt drag, zoom en pan,
waardoor zowel kleine als grote netwerken overzichtelijk blijven.

Het sequentiediagram in moq-vis toont chronologisch events binnen geselecteerde verbindingen.
Events zijn verbonden om datastromen zichtbaar te maken, en alleen geselecteerde verbindingen
worden weergegeven om het diagram leesbaar te houden. Events worden langs verticale assen
per endpoint geplaatst. Om overlap tussen MoQ- en QUIC-events te voorkomen, worden MoQ-
berichten als semi-transparante blokken weergegeven, terwijl QUIC-events erboven blijven. Alle
events zijn interactief met modal windows voor details. Kleuren geven type aan, en toggle
knoppen boven het diagram laten toe om QUIC- of MoQ-events aan- of uit te zetten.

De latentiegraficken geven inzicht in de latentie van QUIC-verbindingen en MoQ Sessions,



belangrijk voor low-latency livestreaming. Voor elke geselecteerde verbinding wordt een grafiek
gemaak waarbij de x-as de tijd sinds het begin van de verbinding toont en de y-as de latentie in
milliseconden. De grafieken zijn interactief: in- en uitzoomen en pannen is mogelijk, en tooltips
bij hover tonen exacte waarden van de geplotte data. Twee toggles laten afzonderlijk QUIC-
en MoQ-data aan- of uitzetten.

Evaluatie

moq-vis is getest met drie demo’s:
e Eenvoudige topologie: één publisher, één relay, één subscriber.
e Zelfde topologie, maar met packet loss.
e Complexere topologie: twee publishers, drie subscribers en twee relays.

Bij de eerste demo viel op dat MoQ vaak meerdere kleine QUIC-pakketten verzendt in plaats
van data te bundelen. Zo worden verschillende MoQ-berichten apart verpakt, terwijl een andere
connectie dezelfde data in één pakket verstuurt. Dit gedrag veroorzaakt extra protocol-overhead
door de headers van UDP en QUIC. De oorzaak hiervan is nog onduidelijk, mogelijk ligt het
aan de Quinn-implementatie of aan hoe MoQ met Quinn samenwerkt. Het sequentiediagram
blijkt echter een effectief hulpmiddel om deze inefficiénties te identificeren.

Bij de demo met packet loss wordt duidelijk hoe QUIC verloren pakketten opnieuw verzendt, ter-
wijl MoQ tijdelijk hogere latentie ervaart. Dit veroorzaakt opvallende latentie spikes voor MoQ,
terwijl de QUIC-latentie relatief stabiel blijft. Ook bij abrupt be€indigen van verbindingen gaan
de laatste Frames soms verloren, waardoor meerdere cycli van probe- en retransmit-pakketten
volgen. De visualisatie maakt dit gedrag zichtbaar en benadrukt het effect van packet loss op
de vertraging van MoQ-berichten.

De netwerkgraaf biedt een snelle visuele weergave van de netwerkstructuur, wat handig is om
de werkelijke topologie te vergelijken met de verwachte. Zo kan een niet-verbonden node in
een subnet direct worden opgemerkt, waardoor gericht debuggen mogelijk wordt. Momenteel
toont de netwerkgraaf alleen verbindingen tussen nodes en geen individuele events van een node
in het sequentiediagram. Ook onderscheidt de graaf geen meerdere connecties tussen dezelfde
twee nodes: alle verbindingen worden samengevoegd tot één edge. Dit kan later verbeterd
worden.

Bij het inspecteren van het sequentiediagram tussen twee relays in de derde demo bleek dat
events van drie verschillende Mo(Q Sessions (drie QUIC-connecties) overlappen in tijd. De
huidige implementatie houdt geen rekening met meerdere gelijktijdige sessies, waardoor som-
mige blokken slecht worden weergegeven en QUIC-events onder MoQ-events verdwijnen. Ver-
beteringen in de rendering-logica van het sequentiediagram zijn nodig om dit probleem op te
lossen.

Conclusie

Ten slotte kunnen we concluderen dat glog-gebaseerde logging en visualisaties effectief zijn
voor het analyseren en debuggen van MoQ-verkeer. De netwerkgraaf, latentiegraficken en
sequentiediagram bieden samen zowel een overzicht van de topologie als gedetailleerde inzichten
in berichtenstromen, latentie en protocolgedrag. Visualisaties maken inefficiénte packetization,
pakketverlies en topologieproblemen zichtbaar. Hoewel verbeteringen mogelijk zijn tonen de
resultaten aan dat qlog-gebaseerde technieken een waardevol hulpmiddel vormen voor het be-
grijpen, analyseren en verbeteren van MoQ-implementaties en -deployments.
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Chapter 1

Introduction

Media streaming has become a dominant form of internet traffic in recent years. The COVID-19
pandemic accelerated this trend: in March 2020, global streaming hours increased by almost
21% in just two weeks [Conviva, 2020).

The 2024 Global Internet Phenomena Report (GIPR) highlights the scale of this shift. On-
demand streaming accounts for 54% of downstream traffic in fixed networks, such as Fiber
to the Home (FTTH), while livestreaming contributes 14%. Together, they represent the two
largest categories of downstream data. Similar figures are observed in mobile networks such
as 4G, where on-demand streaming constitutes 57% and livestreaming 7% of traffic, ranking
first and third, respectively. In fixed networks, most traffic originates from platforms such as
YouTube and Netflix, while in mobile networks, short-form content from social media platforms
like Facebook and TikTok dominates [AppLogic Networks, 2024].

The 2025 GIPR reports an even stronger trend toward livestreaming, particularly for sporting
events. Major streaming platforms, including Amazon Prime, Peacock, and Netflix, began
broadcasting exclusive sports content in 2024, and investments in livestreaming have continued
across the industry. This trend is expected to continue. In Q4 2024, the ten highest-traffic
days in the US all coincided with livestreamed sporting events, with traffic spikes of 30-40%
observed during broadcasts |[AppLogic Networks, 2025]. These findings clarify that streaming
is central to today’s internet usage, with livestreaming becoming more important.

Low latency is a critical factor for livestreaming. Sports fans demand to see the action as close
to real time as possible, and interactive livestreams, such as Twitch streams, depend on fast
responses for better viewer interactions. Scalability is equally important, particularly during
major events attracting millions of viewers. During the live broadcast of the Mike Tyson vs.
Jake Paul boxing match on Netflix, watched by 60 million households, viewers reported freezing,
buffering, and resolution issues [West, 2024]. These complaints were also visible in the traffic of
X, formerly Twitter, which surged when viewers encountered the streaming issues during the
event |[AppLogic Networks, 2025|.

Existing livestreaming protocols often fall short, struggling to combine low latency with efficient
scalability or lacking standardization. This led to the creation of a new protocol, named Media
over QUIC (MoQ) |Curley, 2025a]. MoQ), still under development, aims to provide both low
latency and efficient scalability for livestreaming of media by building directly on QUIC [Iyengar
and Thomson, 2021] as its transport protocol. Creating a new protocol is challenging because
network protocols, particularly complex ones like QUIC, are difficult to debug.

This is where qlog [Marx et al., 2025a] and qvis [Marx, 2024] become relevant. glog is an
emerging standard that defines a structured logging schema for network protocols, while qvis is
a visualization toolsuite developed to aid in debugging QUIC and HTTP/3 implementations.
By logging standardized events and representing them visually, qlog and qvis have already been
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used to identify and fix issues across multiple QUIC stacks. Their success demonstrates the
potential of structured logging and visualization for debugging complex protocols.

This thesis aims to improve MoQ debugging using structured logging and visualizations inspired
by qlog and qvis. It introduces qlog-based logging for QUIC and MoQ by using predefined QUIC
events [Marx et al., 2025b] and defining new MoQ-specific events. These logs are then used
to create visualizations. Initial inspiration for the visualizations came from qvis. One of the
visualizations is also present in qvis but has been adapted to fit MoQ better. The others are
novel visualizations introduced to highlight MoQ’s scalability and low-latency support.

The research questions this thesis seeks to answer are:

1. How can qlog-based logging and visualization techniques support the analysis and debug-
ging of MoQ?

(a) How can MoQ’s scalability be effectively represented in visualizations?
(b) How can MoQ’s low-latency support be captured and illustrated?
(¢) How can MoQ’s use of QUIC be visualized to highlight protocol behavior?

2. In what ways can visualizations reveal issues in MoQ implementations and deployments?
(a) How can inefficient packetization be identified and analyzed through visualizations?
(b) How can packet loss be seen in the visualizations?
(c) How can topology issues be identified?

The structure of this thesis is as follows. Chapter [2] introduces the foundations of low-latency
livestreaming, explains relevant concepts, reviews existing protocols, and describes MoQ. Chap-
ter [3] discusses the upcoming qlog standard and its integration with QUIC and MoQ using a
custom library. Chapter [4] discusses qvis and presents moq-vis, the implementation of custom
MoQ visualizations. Chapter [f] evaluates moq-vis through a series of demos. Finally, Chapter 6]
summarizes the findings and outlines directions for future work.



Chapter 2

Low-Latency Livestreaming
Foundations

Achieving low-latency livestreaming is a complex challenge, as latency can arise from many
sources. This chapter lays the groundwork for understanding latency and livestreaming pro-
tocols. It begins by introducing key concepts related to streaming and latency, followed by a
detailed breakdown of end-to-end (E2E) latency. Next, the capabilities of existing protocols to
attain low latency and efficient scalability are examined. Finally, the inner workings of MoQ
are described in detail.

2.1 Streaming and Latency Concepts

The term ‘low-latency livestreaming’ will frequently appear throughout this thesis; therefore,
it is important to establish a clear and precise understanding of what it exactly entails. This
section will begin by briefly discussing what livestreaming precisely means. It will then examine
the notion of latency, discuss the various latency thresholds, and outline what is commonly
regarded as ‘low latency.” Finally, the section will provide an overview of the full E2E latency,
identifying the various delay sources contributing to overall streaming latency.

[Bentaleb et al., 2025 define ‘streaming’ as “the continuous transmission of media such as

video, audio and metadata from a server to a client and its simultaneous consumption by the
client”. An important word in this definition is “simultaneous”; if the media were downloaded
entirely before playing it, it would not be considered streaming.
Livestreaming is the streaming of live content, linear and personal broadcasts, and surveillance
videos. Live content refers to events happening in real time, such as live sporting events and live
news. Linear broadcasts include television programs consisting of live as well as prerecorded
content. TV channels might stream live sports and/or prerecorded movies or shows, but this
prerecorded content is still streamed in real time, so it falls under livestreaming. Personal
broadcasts refer to content captured live from personal devices, like smartphones and PCs.
Surveillance videos include live video from devices such as security cameras [Bentaleb et al.,
2025).

Latency is the amount of time between the capture of media and its playback. Latency can
range from a handful of milliseconds to a minute or more. The following subdivision of latency,
suggested by [Bentaleb et al., 2025|, shows five categories, ranging from the highest to the
lowest amount of latency:

1. High latency: 45 or more seconds. Such high latency can be obtained when the scalability
and robustness of the streaming service are more important.

14
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2. Typical latency: between 10 and 45 seconds. The latency of most services using HTTP
adaptive streaming, which is discussed in Section lies in this range.

3. Low latency: between one and 10 seconds. Broadcast television’s latency falls within this
range. This level of latency is required to have a similar user experience to broadcast TV.

4. Ultra-low latency: between 100 milliseconds and a second. Interactive experiences need
ultra-low latency, including live commentary, online gambling, and auctioning.

5. Near-real-time latency: less than 100 milliseconds. Videoconferencing, cloud gaming, and
remote control of hardware are examples of applications requiring near-real-time latency.

Other sources are similar but are stricter on low latency, categorizing it between one and five
seconds of latency [Zenoni, 2025,|OptiView, 2018§].

An important distinction is the difference between startup delay and latency, two independent
streaming metrics. Startup delay is defined as “the time lag from when the client joins a live
stream (i.e., the viewer presses PLAY) until it begins to play out the media.”. At the same
time, latency is “the time lag from when a media frame is captured until the same frame is
played out” [Bentaleb et al., 2025]. The startup delay only affects the beginning of a media
player’s playback, while the latency is a persistent element throughout the playback (although
it is possible for latency to further increase or decrease during playback) |Bentaleb et al.,
2025).

2.2 End-to-End Latency

Latency is not just the network delay; there is more to it than meets the eye. The complete E2E
latency has to be considered. The definition given at the beginning of the previous paragraph
is that of E2E latency. The whole media delivery process, everything between media capture
and playback, must be considered. Every part contributes to the E2E latency, some more than
others. There are three main categories, defined by |[Bentaleb et al., 2025, into which the E2E
latency can be subdivided:

1. Media Content Preparation Latency
2. Media Content Delivery Latency
3. Media Content Consumption Latency

These will be discussed in more detail in the rest of this section. Figure [2.1] shows these
categories and the latency sources that form them.

2.2.1 Media Content Preparation Latency

The Media Content Preparation Latency (MCPL) consists of multiple latency sources relating
to acquiring and preparing media for distribution. [Bentaleb et al., 2025 subdivides the MCPL
into the following latencies:

1. Acquisition latency: usually negligibly small, will not be discussed further.

2. Encoding latency: contribution depends on the media type; in the case of video encod-
ing, this is often the most significant contributor to the MCPL due to video encoding’s
complexity. Other factors influencing encoding latency include codec choice, the content’s
complexity, target quality, and encoding parameters.

3. Packaging latency: involves encapsulating the encoded media into one or more delivery
formats. A factor that could potentially increase this latency further is the encryption of
the encoded content.

4. Ingest latency: latency of uploading the packaged media and potentially extra necessary
data (depending on the chosen protocol) to an origin server for distribution.
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The following paragraphs will detail these latency sources (apart from the acquisition la-
tency).

Encoding Latency

To improve streaming performance, every codec should have a high compression ratio, which
reduces bandwidth and storage, high visual quality, low complexity, and fast processing. Apart
from codec selection, suitable parameters must be chosen for the encoding, including the bitrate
ladder, and Group of Pictures (GoP) and segment size |[Bentaleb et al., 2025].

The bitrate ladder refers to the different bitrate-resolution pairs in which the video is encoded
and can be streamed. Table displays an example bitrate ladder. The amount and exact
choices of bitrate-resolution pairs may increase encoding complexity and, in turn, increase
latency. On the other hand, multiple well-chosen bitrate-resolution pairs might lead to better
bitrate adaptation in streaming clients, leading to a better user experience (e.g., streaming at
a lower resolution on a small phone screen, or being able to switch to a lower bitrate in bad
network conditions). These trade-offs make bitrate ladder selection an important but non-trivial
task [Bentaleb et al., 2025].

Resolution Bitrate

416x234 145 kb/s
640x360 365 kb/s
768x432 730 kb/s
768x432 1100 kb/s
960x540 2000 kb/s
1280x720 4500 kb/s
1920x1080 6000 kb/s
1920x1080 7800 kb/s

Table 2.1: Bitrate ladder example [Apple, 2018§]

Video encoding works by encoding all the video frames. Some frames are encoded to be inde-
pendent of other frames, called keyframes. A video decoder can use keyframes as a starting
point. Other frames depend on these keyframes but are smaller in size. GoP duration refers to
the interval between keyframes.

Large videos are divided into multiple smaller videos that are several seconds long and called
segments. In order for rate adaptation to work well so that switching to a different bitrate-
resolution pair happens as unnoticeably as possible, every segment needs to begin with a
keyframe. This means that every segment consists of at least one GoP.

A low GoP duration means more keyframes, which reduces encoding efficiency and increases
the amount of data to be downloaded. A small segment size also means a low GoP duration,
this leads to the consequences already discussed. Lengthy segment sizes lead to fewer intervals
at which rate adaptation can happen, which increases the likelihood of buffering when network
conditions worsen. High GoP durations also mean longer segment sizes, including the ensuing
consequences. Again, these parameters must be considered carefully, and trade-offs must be
made [Bentaleb et al., 2025].

Packaging Latency

Packaging is the process of encapsulating the media into various delivery formats. Since not
all devices and browsers support the same protocols, support for multiple formats is necessary
to reach most of the audience. Packaging the content into multiple delivery formats can add
a significant amount of latency. In case of a much more widely used format than others, a
mitigation can be used that initially packages the content only into the popular format and,
when necessary, repackages this media into another format at the network edge. This way, there
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is minimal packaging latency. Content Delivery Networks (CDNs) benefit from this since they
need to deliver just a single format (better caching and bandwidth utilization might reduce
latency further) [Bentaleb et al., 2025].

Another solution would be to combine delivery formats. This is done by the Common Media
Application Format (CMAF) standard as an attempt to converge and simplify delivery formats
[Bentaleb et al., 2025|.

Another step in the packaging process is encryption for content protected by Digital Rights
Management (DRM) and/or encryption to protect against fingerprinting or tampering with the
data [Bentaleb et al., 2025].

Ingest Latency

Ingest is the transmission of the packaged data to an origin server so that the content is ready
to be retrieved. The resulting latency of this step is dependent on the protocol being utilized.
Protocols such as WebRTC prioritize low latency, while other protocols, like SRT, tend to have
higher latency but better media quality |Bentaleb et al., 2025].

2.2.2 Media Content Delivery Latency

The Media Content Delivery Latency (MCDL) is exclusively comprised of network latency, as
it represents the portion of total latency attributable to the transmission of media content from
the origin server to the client. [Bentaleb et al., 2025] decompose the MCDL further into the
following components:

1. CDN distribution latency: propagation of media through the CDN.

2. Last-mile delivery latency: media propagation from the CDN edge to client devices.

CDN Distribution Latency

CDNs are necessary to handle requests coming from a large number of media players. Several
factors can reduce the CDN distribution latency. First, opt for a CDN provider that provides
server locations close to clients and supports the necessary technologies for low-latency trans-
port. The CDN provider should also serve live content from memory instead of disk since
reading from memory is noticeably faster, and minimize cache misses. In order to do this,
effective caching policies and prefetching decisions need to be developed. Caching policies refer
to the ruleset applied by CDNs to store data. At the same time, prefetching decisions are the
techniques CDNs use to fetch data from the origin server before a client requests that data in
order to be prepared and boost cache hits. In the context of low-latency livestreaming, this is
incredibly complex due to the time restraints |[Bentaleb et al., 2025].

CDNs also need to be able to handle ‘flash crowds.” These are defined as “sudden and significant
increases in the number of media players” by [Bentaleb et al., 2025]. Flash crowds occur
commonly when many clients start watching a livestream at the same time. CDNs should be
designed to handle these sudden surges in clients while minimizing the load on the origin server
and keeping latency as low as possible [Bentaleb et al., 2025].

Last-Mile Delivery Latency

The last bit of network latency comes from delivering the media from the CDN edge via an
access network to clients’ devices. These access networks include institution, home, and cellular
networks provided by local Internet Service Providers (ISPs) [Bentaleb et al., 2025].

2.2.3 Media Content Consumption Latency

The Media Content Consumption Latency (MCCL) is the product of the media player’s tasks.
Media players want to ensure smooth playback; they do this by buffering multiple seconds of
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media before starting playback. In the context of low-latency livestreaming, this is an undesir-
able amount of added latency. Thus, adapting the media player for low-latency livestreaming
is essential. Otherwise, the media player could be responsible for up to 50% of the E2E la-
tency [Bentaleb et al., 2025].

The media player’s functionality is not as simple as downloading the media, decoding it, and
rendering the video. Other tasks include rate adaptation, buffering, playhead positioning,
license/key fetching, decryption, and decoder priming. Fetching the decryption keys from the
licensing server and priming the video and audio decoders are examples of two tasks that need to
be done before decoding and rendering can even start. These steps could add even more latency.
Furthermore, other modules such as bandwidth measurement, playback speed control, buffer
management, and bitrate selection schemes should be redesigned for low-latency livestreaming
in order to improve latency further [Bentaleb et al., 2025|.

2.3 Existing Protocols

Numerous existing protocols allow livestreaming of data; this raises the question of why these
are not used. However, each protocol exhibits one or more limitations that render it subop-
timal for achieving low-latency livestreaming with efficient scalability. In this section, we will
examine several of these protocols and analyze their respective shortcomings. Non-standardized
protocols will not be discussed here. Figure 2.2 visualizes the latency of a number of protocols,
including the ones discussed in this section. Table 2:2] at the end of this section provides an
overview of the discussed protocols.

Identifying where the latency sources of these protocols contribute to E2E latency is often
challenging. Some latency sources vary depending on how the protocol is configured and used,
rather than being inherent to the protocol itself. For example, encoding latency is influenced
by factors such as the selected bitrate ladder, GoP size, and segment size, which are typically
configurable rather than fixed.

STREAMING LATENCY AND INTERACTIVITY CONTINUUM
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Figure 2.2: Latency of numerous streaming protocols |Zenoni, 2025

2.3.1 HLS/DASH

HLS (HTTP Live Streaming) and DASH (Dynamic Adaptive Streaming over HTTP) are two
different HAS (HTTP Adaptive Streaming) protocols often put together as ‘HLS/DASH’ be-
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cause of their resemblance. They are also the only two remaining HAS protocols in use; others
have become obsolete [Bentaleb et al., 2025]. These protocols work by splitting up large video
files into smaller videos that are several seconds long and serving these smaller videos over
HTTP.

This study will talk more specifically about HLS since this is a publicly available RFC, while
DASH is an ISO standard behind a paywall. HLS defines media playlists as text files containing
URIs to media segments, the smaller video files that, when played sequentially, will form the
larger video. Also defined are master playlists, which include a set of variant streams, which are
different versions of the same content, such as versions with different bitrates, different video
formats, or different resolutions. Master playlists can also specify a set of renditions or alternate
versions, like audio in multiple languages or recordings from various camera angles
May, 2017]. A simple schematic representation can be seen in Figure

The HLS client will first download the playlist file (using HTTP). List shows an example
of an HLS master playlist file with URISs to different media playlists based on bandwidth. After
that, the client will determine which variant to start playing (if there are variants) and which
rendition (again, if these exist) based on certain conditions (like network status) and personal
preferences (e.g., English audio). The protocol supports encryption, livestreaming, and dynamic
adaptation. Livestreaming is supported by adding new media segments to the media playlists;
this does require frequent redownloads of the playlist file. Dynamic adaptation is supported
by switching to another variant (if available) during playback (e.g., your network conditions
worsen, so the client dynamically adjusts by changing to a variant with a lower bitrate) [Pantos

and May, 2017].

Low
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Figure 2.3: Schematic representation of a simple HLS master playlist [Synchronous,

2021
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#EXTM3U

#EXT-X-STREAM-INF :BANDWIDTH=1280000, AVERAGE-BANDWIDTH=1000000
http://example.com/low.m3u8

#EXT-X-STREAM-INF : BANDWIDTH=2560000, AVERAGE-BANDWIDTH=2000000
http://example.com/mid.m3u8

#EXT-X-STREAM-INF :BANDWIDTH=7680000, AVERAGE-BANDWIDTH=6000000
http://example.com/hi.m3u8

#EXT-X-STREAM-INF :BANDWIDTH=65000,CODECS="mp4a.40.5"
http://example.com/audio-only.m3u8

Listing 2.1: Example of an HLS master playlist file which has multiple variants with
different bitrates [Pantos and May, 2017|

HLS/DASH works perfectly for VODs (Video On Demand: pre-existing video like Netflix movies
or YouTube videos), but using it for livestreaming raises some issues. The biggest issue is la-
tency. HLS/DASH has many sources of latency. For example, segments must be fully completed
before being added to the playlist; the player must poll for playlist updates rather than receiving
them directly from the server; and segments are downloaded sequentially instead of in parallel.
All the latency sources accumulate to a total latency of around five seconds (in Twitch’s case,
after optimizations) |[Luke Curley, 2022].

One of the most significant latency factors is HT'TP’s transport protocol: TCP. TCP delivers
data reliably and in order, which can lead to head-of-line blocking. During network congestion,
the available throughput may fall below the media bitrate. Because the sender continues to
transmit at this higher rate, the total bitrate passing through the router exceeds its capacity,
which causes packets to build up in queues and ultimately results in buffering. The HLS/DASH
player has built-in Adaptive Bit Rate (ABR) algorithms, which can detect when the throughput
gets too low or buffering happens, and switch to a lower bitrate. The problem is that this is
only possible after the current segment has finished downloading (segments are multiple seconds
long); this might take a while with the worsened network conditions [Luke Curley, 2023b].
The latest HTTP version, HTTP/3, replaces TCP with QUIC, which runs on top of UDP.
However, it is not as simple as just replacing older HTTP versions with the newest one; this
approach will not yield far greater results. Each HLS/DASH segment request will still be sent
sequentially. More adjustments will have to be made |[Luke Curley, 2023b].

HLS/DASH achieves excellent scalability by leveraging the existing HTTP infrastructure. This
ecosystem already includes widespread client and server support, as well as optimized CDNs
[Luke Curley, 2023b]. HTTP itself scales efficiently because it is stateless, uses well-established
addressing and authentication/authorization schemes, easily traverses middleboxes, and bene-
fits from low-cost caching infrastructure |[Bentaleb et al., 2025].

2.3.2 LL-HLS/LL-DASH

LL-HLS and LL-DASH are low-latency variants of their respective protocols. They both try to
achieve lower latency by dividing a media segment into smaller chunks and delivering it as soon
as the first chunk is available. The client can then begin rendering the segment when it receives
the first chunk. Subsequently, more chunks are sent to the client as they are produced [Zhang
et al., 2021].

This section will discuss LL-HLS in more depth. LL-HLS still uses its playlist files, which
are frequently updated with new partial segments (chunks) as the stream goes on. Partial
segments are listed separately in the playlist file, and clients send separate requests for each
partial segment. Playlist files are requested only once—at the beginning of the connection.
Afterward, the client will receive updates, which are much smaller in size, instead of the whole
playlist file(s). These are not the only added features, but the most notable ones [Bentaleb
et al., 2025).

The partial segments help reduce latency immensely compared to regular HLS. Latency can be
reduced from the length of a segment (in HLS) to the length of a partial segment (in LL-HLS),
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from multiple seconds to a few hundred milliseconds |[Zhang et al., 2021]. Figureshows how
these partial segments affect LL-HLS. Traditional HLS has the choice to start playing Segment
B when joining the livestream to minimize the startup delay, or to wait for Segment C to finish
to minimize the latency. The same applies to LL-HLS, but the usage of the partial segments
significantly reduces the latency in the first scenario, and the startup delay in the second sce-
nario, compared to HLS.

However, the partial segments are still served over HTTP, so TCP is still the underlying trans-
port protocol. All the drawbacks of using TCP that were discussed in Section[2:3:1]also apply to
the low-latency variant. Lower latency is achievable with LL-HLS/LL-DASH, but head-of-line
blocking and video buffering will still happen during congestion [Luke Curley, 2023b].
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Figure 2.4: Difference between HLS and LL-HLS regarding segments |[Karthikeyan,
2022

Like HLS, LL-HLS can utilize the existing HT'TP infrastructure to scale efficiently. However, the
approach introduces additional overhead compared to traditional HLS. To achieve low latency,
clients must request each partial segment separately. The shorter the length of these partial
segments, the more requests must be sent. On top of this, clients will also need to request
playlist updates frequently. LL-HLS thus has a much higher request rate than regular HLS.
Livestreaming events with many viewers, and thus many concurrent clients with high request
rates, can cause significant strain on the CDN and network service providers

2020)].

2.3.3 WebRTC

WebRTC is not a standalone protocol but rather a protocol suite or framework that leverages
various protocols under the hood. It provides a set of APIs designed to facilitate the real-time
transfer of media and generic application data between devices, using real-time communication
protocols [Jennings et al., 2024, |Perkins et al., 2021} Alvestrand, 2021]. Figure shows an
overview of the protocols employed by the WebRTC media stack. Secure Real-time Transport
Protocol (SRTP) is used to transport the actual real-time media between the clients, while
Datagram Transport Layer Security (DTLS) ensures that the real-time media is encrypted. In-
teractive Connectivity Establishment (ICE), Session Traversal Utilities for NAT (STUN), and
Traversal Using Relays around NAT (TURN) are needed to establish a peer-to-peer connection
between WebRTC clients [Alvestrand, 2021]. Lastly, all this communication happens (prefer-
ably) on top of UDP since it’s faster, and latency is a big concern with real-time communication.
TCP can be used in case UDP is unavailable or restricted [MDN web docs, 2025¢].
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RTCPeerConnection | DataChannel
XHR SSE WebSocket SRTP SCTP
HTTP 1.x/2.0 Session (DTLS) - mandatory
Session (TLS) - optional ICE, STUN, TURN
Transport (TCP) Transport (UDP)
Network (IP)

Figure 2.5: WebRTC protocol stack, the part under RTCPeerConnection is the media
stack |Grigorik, 2013|

WebRTC is primarily designed for video conferencing, with a strong emphasis on minimizing
latency. However, this focus often results in significant reductions in media quality. This
behavior works very well for its intended purpose, but the hard-coded quality compromise
is generally not something most livestreaming media applications desire. Consequently, this
behavior can lead to a suboptimal user experience in such scenarios. Adapting WebRTC to suit
specific use cases better is challenging, as its configurable modes are limited and may not meet
the requirements of all applications |Luke Curley, 2023c].

WebRTC was designed with a peer-to-peer architecture in mind. As a result, each sending peer
must encode independent streams for all receiving peers. This approach requires a dedicated
encoder for each stream, leading to significant resource consumption. Consequently, the archi-
tecture does not scale effectively to accommodate a large number of participants, as is shown
in Figure [Petrangeli et al., 2018|Petrangeli et al., 2019].

Scalability can be improved through the use of Selective Forwarding Units (SFUs). These com-
ponents receive streams from all peers and determine which streams should be forwarded to
which peers, this is shown in Figure The logic governing these forwarding decisions is
left to the application developer using WebRT'C [Petrangeli et al., 2018|Petrangeli et al., 2019].
However, this custom functionality also introduces challenges for scalability. Determining where
to forward the streams is a complex task. Additionally, a single SFU cannot effectively handle a
large number of users. To address this, multiple SF'Us must be deployed, each requiring knowl-
edge of the network topology and the locations of all participants. This is another non-trivial
problem that adds further complexity to the system [Luke Curley, 2023c], Figure shows an
example of how such a structure might look.

2.3.4 WebRTC Data Channels

WebRTC data channels work slightly differently than the WebRTC media stack discussed in
the previous section (Section . As shown in Figure data channels use SCTP instead
of SRTP. SCTP (Stream Control Transmission Protocol) is a reliable transport protocol de-
signed to operate on top of connectionless packet networks, like IP. Some of its features include
user data transfer with acknowledgments and without duplication, the possibility of multiple
streams, and optional bundling of multiple user messages into a single SCTP packet. The proto-
col lies somewhere between TCP and UDP since it was developed because TCP was considered
too limiting, and SCTP has more built-in features than UDP [Stewart et al., 2022].

WebRTC does not run SCTP directly over IP but runs SCTP over DTLS over UDP. SCTP over
DTLS provides confidentiality, source authentication, and transfers with integrity protection.
Additionally, DTLS over UDP and ICE enables middlebox traversal. Data channels consist
of one incoming SCTP stream and one outgoing SCTP stream; this allows for bidirectional
communication. Furthermore, data channels have several properties in each direction; the most
important ones are whether to use reliable or unreliable transport, whether message delivery is
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Figure 2.6: WebRTC peer communication ﬂVoximplant, 2020'

in-order or out-of-order, and a priority |[Jesup et al., 2021].

Data channels are able to improve upon the video quality of the media stack since they allow
any data to be sent. They are not bound to the same aggressive quality reduction. However, the
logic governing the sending and receiving of data is the application developer’s responsibility
since the data channel API does not provide this functionality [MDN web docs, 2025a]. The
resulting latency is partly dependent on the usage of the data channels.

have attempted to implement a low-latency livestreaming solution using Web-
RTC data channels. They use unreliable SCTP streams (unordered, without retransmissions)
and try to fit one MP4 fragment in each SCTP message (if a fragment is too large to fit, it
gets split up) with some metadata. The receiver checks the validity of the MP4 fragment and
pushes it to the decoder if an accompanying keyframe is available; otherwise, the receiver waits
for the next keyframe whilst dropping other messages. Caching fragments and waiting for past
keyframes would have led to an increase in latency. Their paper shows some pros and cons of
this approach. Their solution can take advantage of pre-existing WebRT'C and media playback
APIs already available in the browser. However, SCTP’s congestion control makes data chan-
nels susceptible to latency if the receive buffer is not large enough for the desired throughput.
In order to achieve high throughput and low transmission delay, very low network latency or a
large enough receive buffer is required (which is browser-dependent) |[Diaz et al., 2024].

[Luke Curley, 2023c| also attempted to use data channels. He tried sending each video frame
as an unreliable message. Due to fundamental flaws with SCTP, this did not end up working.
Breaking the frames into multiple unreliable messages below the MTU size did work, but this
was not an ideal solution. The most important reasons are that every packet gets acknowl-
edged, even though it is unreliable, and a custom SCTP implementation is required, which is
unavailable in browsers.

Regarding scalability, data channels suffer from the same issues as the WebRTC media stack
since the same underlying peer-to-peer architecture also applies to data channels; this was
discussed in Section 2.3.31

2.3.5 RTMP

RTMP (Real-Time Messaging Protocol) is a protocol developed by Adobe that provides bidi-
rectional message service over a reliable transport protocol, such as TCP. RTMP supports
parallel streams of video, audio, and data messages between peers. The protocol also offers
the ability to assign priorities to different message classes, which might influence the order in
which messages are sent to the underlying transport protocol. RTMP defines multiple types
of messages, including data, audio, video, and command messages. Data messages are used
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Figure 2.7: WebRTC multiple SFUs example |Zhao, 2022

to send metadata or user data, and audio and video messages carry audio and video data,
respectively. Command messages perform operations when sent to the peer; these operations
affect the connection itself or an open stream. Commands on the connection include ‘connect’
(requests connection to a server application), ‘call’ (executes remote procedure calls at the
receiver), and ‘createStream’ (creates a stream to publish audio, video, and metadata on).
Stream commands include ‘play’, ‘pause’; and ‘publish’ (allows clients to publish a named
stream to the server, which any client can play) [Zenoni, 2025|.

Since the first two letters of RTMP stand for Real-Time, the protocol is expected to have
low latency. This is indeed the case, although its latency of around five seconds is not as
low as other real-time protocols, such as WebRTC . As with HLS/DASH and
LL-HLS/LL-DASH, TCP is the underlying transport protocol, which means this protocol also
suffers from the same head-of-line blocking problem already discussed in Section [2.3.1} Then
again, these buffering problems are limited since RTMP divides streams into small chunks

[Yuzzit, 2025]|.

RTMP suffers from some other issues. Many endpoints no longer support playing media over
RTMP since Flash was proprietary, vulnerable to cyber attacks, and deprecated in modern
browsers [Bentaleb et al., 2025]. Furthermore, the protocol has issues passing through firewalls
and is not ideal for adaptive bitrate streaming [Yoss, 2022].

However, it is still used for ingest (transport of video from encoder to streaming server) be-
cause of the protocol’s simplicity, compatibility, and low latency . Consequently,
RTMP’s scalability is no longer an important concern for the protocol since its only use now
is as an ingest protocol. The streaming server transcodes the data into another protocol, like

HLS or WebRTC, for distribution to clients [Yoss, 2022].




Latency Scalability Use Cases
HLS/DASH
/ — Has to wait for full segments to complete ~ + Utilizes existing HTTP infra- e VOD streaming
— Polling: cannot get directly from server structure e Livestreaming (when la-
— Segments are downloaded sequentially + HTTP scales well tency is not a concern)
— Head-of-line blocking can cause buffering [Digital Samba, 2024
— Bitrate changes can only happen after fin-
ishing a segment
LL-HLS/LL-
DASH / Only has to wait for partial segments to + Utilizes existing HTTP infra- e Low-latency livestreaming
complete structure
— Head-of-line blocking can cause buffering + HTTP scales well
— Higher request rate than HLS/DASH
WebRTC

WebRTC Data
Channels

RTMP

+

Near real-time latency

Aggressive latency minimization causes
poor media quality

Limited configuration available

Allows any data to be sent, does not have
the same media quality reduction

Requires custom sending and receiving logic
(which partly affects latency)

Receive buffer size (browser-dependent) can
influence latency (depending on desired
throughput)

SCTP has fundamental flaws

Low latency
Head-of-line blocking can cause buffering

Peer-to-peer: does not scale well
Scaling using SFUs requires complex

custom functionality

Peer-to-peer: does not scale well
Scaling using SFUs requires complex

custom functionality

— No longer used for media distribution

Video conferencing

Low latency streaming
File sharing

Internet of Things |Aboba,
2023

Video conferencing

Low latency streaming
File sharing

Internet of Things [Aboba,
2023

Livestreaming (less since
Flash deprecation)
Ingesting streams [Zenoni,

2025

Table 2.2: Overview of the discussed protocols: latency, efficient scalability, and (a subset of) use cases with associated pros and cons
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2.4 Media over QUIC

The Media over QUIC (MoQ) protocol, as proposed by the MoQ TETF working group, aims to
enable low-latency media delivery with efficient scalability. It is intended to support a range
of use cases, including livestreaming, online gaming, and media conferencing. At the time of
writing, MoQ remains under active development, with draft versions of the standard being
published periodically. The final specification is anticipated to be completed in the coming
years |Internet Engineering Task Force, 2022].

MoQ is not just the data transfer protocol, as discussed earlier in Section the whole media
delivery process influences the latency. Steps such as encoding and packaging, and components
like the media player, are also important to optimize for low latency. The data transfer protocol
is just a single part, albeit important. However, since the remainder of this thesis focuses on
logging and visualizing the actual transport protocol, this part will be discussed in more detail
than the others.

2.4.1 Working Group Goals

The MoQ working group describes MoQ as “a simple low-latency media delivery solution for
ingest and distribution of media.” It is meant to be efficiently scalable and supported in
both browsers and non-browser endpoints, and use cases include livestreaming, gaming, and
media conferencing. The focus lies on building protocol mechanisms for media publication
and ways to identify and receive the media. This media will be mapped to underlying QUIC
mechanisms (streams and/or datagrams) to be sent over the network, hence the name ‘Media
over QUIC’ |Internet Engineering Task Force, 2022|.

The goals for the common protocol for publishing media for ingest and distribution to support,
as defined by [Internet Engineering Task Force, 2022], are:

e at least one media format,
e an interoperable way to indicate what media, and which format it is in, is being sent,
e strategies for rate adaptation and
e cache-friendly media mechanisms.
The goals for the mechanism that names and receives media to enable are:
e requests for the server to send media related to a given point in the stream and
e the option to select the desired encoding (such as language and bitrate).

Another goal is to specify a simple method for authentication to relays or servers so clients
can transmit or receive media. The media will be encrypted at the transport layer through
the encryption mechanisms built into QUIC. End-to-end encryption will be possible in certain
use cases, but the keys will not be available to relays, only to media sources and consumers.
However, the relays can access the necessary metadata for actions such as caching and making
forwarding decisions. That metadata will be authenticated and end-to-end integrity-protected
[Internet Engineering Task Force, 2022].

2.4.2 Protocol Architecture

MoQ consists of multiple layers that each have their own function. The layering here is impor-
tant for the protocol to be flexible |[Luke Curley, 2024b]. An important thing to note is that two
layers have multiple versions, which are shown in the enumeration below. The rest of this thesis
and the implementation will not use the IETF version, but will focus on another version. This
decision stems from the fact that the IETF working group often engages in extensive debates
over protocol details, which can take considerable time to resolve. Moreover, the group tends
to prioritize the transport protocol over the media layer [Luke Curley, 2024a]. As a result, it
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is more interesting to develop logging and visualization tools for an alternative version of the
protocol that evolves more rapidly in order to provide insightful feedback and highlight issues
with the protocol so that it can be improved. These findings could then be shared with the
IETF working group to inform and potentially influence the development of the official spec-
ification [Curley, 2025a]. The rest of this thesis will go into more detail about Luke Curley’s
fork of MoQ. Ordered from the bottom to the top, as explained by |[Luke Curley, 2024b)], these
layers are:

1. QUIC: underlying transport protocol.

2. WebTransport: needed for browser compatibility.

3. MoQ Transport/MoQ Transfork: actual transport protocol.

4. Warp/Karp: media playlist and container.

5. Application: application that uses MoQ for low-latency livestreaming.

The following paragraphs will detail these layers further.

QUIC

As discussed earlier in Section TCP is a reliable and ordered transport protocol, which
can cause head-of-line blocking and, subsequently, buffering of media. Head-of-line blocking is
a problem that has been known for years, and multiple protocols have attempted to fix this
problem, including HTTP. QUIC has a solution involving shared state and independent streams.
The shared state includes encryption, congestion control, and flow control; this is shared for the
entire connection. The independent streams have their own state on top of the shared state and
can be created, delivered, and closed in parallel; these operations have minimal overhead [Luke
Curley, 2024b).

Another useful QUIC feature is the connection IDs. TCP uses the 4-tuple (source IP, source
port, destination IP, destination port) to identify connections so incoming packets can be for-
warded correctly to the proper socket/connection. TCP’s approach causes some problems
nowadays. When roaming and thus switching networks, the source IP and port combination
will change. This also causes TCP’s 4-tuple to change, meaning the server cannot identify
the connection anymore. The server will discard packets since the source is unknown, and the
connection will end. The application on the client side needs to detect the severed connection
and retry, creating a new connection and resending all lost requests. Applications could proac-
tively reconnect when detecting a switch in the network instead of waiting for the connection
to timeout. However, this is not possible with NAT rebinding. NAT can rebind the address
transparently. If this happens, the application will not know about it, and the connection will
appear to hang [Luke Curley, 2023a].

WebRTC uses the 2-tuple (destination IP, destination port), which means the source IP and
source port can change without ending the connection to the WebRTC server. However, this
raises another issue. Each connection on the server requires opening a unique port. The prob-
lem is that corporate firewalls block almost every port for security reasons, severely limiting
the number of connections that can be opened [Luke Curley, 2023a].

UDP is a connectionless protocol that simply sends the data to the specified destination without
having to maintain any connection state [Kurose and Ross, 2016).

In order to avoid having the same problems TCP and WebRTC have, QUIC employs connection
IDs. Connection IDs are data blobs chosen by the receiver and are sent in the header of all
QUIC packets. Multiple connection IDs can be used, and they can be issued and retired at
will. In the case of roaming, the source IP and port will change, but the connection ID will
not. This change will lead QUIC to validate the new path, which is done to prevent spoofing
attacks, before switching to that path. QUIC itself does all of this; that way, the application
using QUIC does not need to do anything, unlike TCP applications, which need to develop the
measures discussed earlier. The same happens in the case of NAT rebinding. The cost of this
is only one RTT, which is needed to verify the new path. QUIC uses the same port for all
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connections, port 443 (UDP). Since HTTPS runs on this port, it is one of the few ports often
allowed to be open. QUIC clients can even use the same IP and port for all of their outgoing
connections [Luke Curley, 2023a].

A secondary usage of connection IDs is in load balancing. Since the receiver chooses the
connection IDs, which have unbounded length, any information can be encoded in them. This
makes it possible to do a multitude of interesting things with them; there is even a draft
dedicated to these possibilities [Duke et al., 2025]. However, attention must be paid to overhead
and security. Attaching a connection ID of a kilobyte might not be the best idea, and since the
connection ID is plaintext data, caution must be taken so it is encrypted or unguessable [Luke
Curley, 2023a].

Furthermore, QUIC takes privacy and security very seriously. Encryption via TLS is required,
and even the packet headers are encrypted, so middleboxes cannot inspect or modify packets.
The server can sign connection IDs; this way, the client is unable to tamper with them or spoof
them. Hence, cooperating routers are able to detect abusive packets and drop them before they
reach the server. This action is stateless and can be done in hardware efficiently |[Luke Curley,
2023a].

Another advantage of QUIC is its congestion control. This is modeled after TCP but has
minor important differences, such as the unique packet numbers in all QUIC packets, even for
retransmissions. The most significant difference between TCP and QUIC congestion control is
that TCP is implemented in the kernel. This means that the TCP implementation is difficult or
impossible to modify. In most (or even all) cases, the default TCP congestion control algorithm
is loss-based, which suffers from bufferbloat. These loss-based congestion control algorithms
work poorly for low-latency applications. QUIC is not implemented in the kernel, which makes
it possible to change between congestion control algorithms; it is even possible to write and use
a custom algorithm. This allows existing algorithms to be adapted more effectively to specific
use cases |[Luke Curley, 2023a.

The choice of building a new protocol on top of QUIC instead of UDP comes from QUIC’s fea-
tures, including those discussed in the previous paragraphs, QUIC’s availability in the browser,
and QUIC’s many implementations. MoQ wants to gain the most out of QUIC’s features for
delivering live media [Luke Curley, 2024b).

WebTransport

WebTransport is a browser API that can be seen as an updated version of WebSockets. The
WebSockets API allows two-way communication between client and server so that polling is not
required to receive a response from the server. WebTransport supports multiple streams, uni-
directional streams, and out-of-order delivery. Reliable transport is achieved by using streams,
while unreliable transport happens via UDP-like datagrams [MDN web docs, 2025d,MDN web
docs, 2025b]. WebTransport essentially exposes QUIC in the browser, which means HTTP does
not need to be used for browser support. The advantage of this is that the server can send
data whenever it is ready, instead of the client constantly having to poll for new data. The
content being live media worsens the HTTP problem since the client first needs to know what
to request, which is difficult when the content does not exist at that point. Using HTTP also
raises the issue of having to handle the contribution and distribution of media separately, since
contribution goes from client to server, while distribution goes from server to client. Having
QUIC available in the browser eliminates these issues. However, WebTransport is not a perfect
solution; one disadvantage is that the WebTransport session shares a QUIC connection with
other WebTransport sessions and HTTP/3 requests |[Luke Curley, 2024b].

MoQ Transfork

MoQ Transfork is the actual transport protocol built on top of QUIC (MoQ Transport in the
IETF version). This layer is central to the thesis since most of the logging happens here.
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For that reason, MoQ Transfork will be discussed in great detail in the following paragraphs.
However, given the rapid evolution of the protocol, the following explanation may not fully
represent the current implementation.

MoQ Transfork is a transport protocol designed to facilitate the delivery of live media streams
over CDNs to a diverse audience with varying latency and quality requirements, encompassing
the full spectrum from real-time interaction to VOD scenarios. The protocol is media-agnostic,
enabling intermediate nodes, such as relays and CDNs, to prioritize and forward critical data
even under degraded network conditions, without requiring awareness of the underlying codecs,
container formats, or the encryption status of the content. Its flexibility allows it to serve as a
foundational layer for higher-level protocols, which define the specific mechanisms for encoding
and transmitting various forms of live content, including video, audio, and messaging [Curley,
2025a]. The protocol makes use of the publish/subscribe workflow: endpoints producing media
publish this data in response to subscriptions from one or more endpoints [Nandakumar et al.,
2025].

MoQ Transfork consists of the following;:
e Session: connection between client and server, transmits Tracks by their path.
e Track: a series of Groups, each independently delivered and decoded.
e Group: a series of Frames, each delivered and decoded in order.
e Frame: payload, represents a single moment in time.

Figure shows a visual representation of this hierarchical structure. The exact way in which
data is split into tracks, groups, and frames is the responsibility of the application developer.
In order to provide robust and generic one-to-many data transmission, MoQ Transfork, in turn,
manages the caching and delivery of this data by applying rules specified within headers. This
architecture supports generic one-to-many distribution while maintaining robustness even in
latency-sensitive use cases [Curley, 2025a).

Sessions consist of a QUIC connection between a client and a server and are established after
the MoQ Transfork handshake. Sessions are intended to be chained together using relays. This
way, broadcasters can establish sessions with the CDN ingest edge, while viewers can establish
their own sessions with CDN distribution edges. While MoQ Transfork sessions operate hop-by-
hop, application developers should design the applications using MoQ to be end-to-end |Curley,
2025a].

A Track is defined as a sequence of Groups, each uniquely identified by a path. A single
MoQ Transfork session can support the publication and subscription of multiple, potentially
unrelated, tracks. Track paths are composed of a series of string segments used to route sub-
scriptions to the appropriate publisher. The application is responsible for defining the structure
and encoding of these paths. Within a given session, each Track path must be unique [Curley,
2025a).

The publisher may advertise track availability through an ANNOUNCE message, enabling sub-
scribers to discover relevant tracks dynamically based on a prefix. Subscribers also define the
order and priority of their subscriptions, providing hints to the publisher about which Tracks
should be delivered first in the event of network congestion. This prioritization mechanism is es-
sential for maintaining an acceptable quality of experience under degraded network conditions.
It is the core reason that QUIC is able to support low-latency, real-time communication |Curley,
20254

A Group constitutes an ordered sequence of Frames within a Track. Each Group is transmitted
over a dedicated QUIC stream, which may be closed upon completion, reset by the publisher, or
cancelled by the subscriber. During an active subscription, multiple Groups may be delivered
concurrently, and the Frames within these groups are delivered reliably and in the correct order
due to QUIC streams. However, Groups themselves may arrive out of order or may not arrive
at all, and the application must be capable of handling such scenarios [Curley, 2025a].
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Figure 2.8: Visual representation of the hierarchical structure of MoQ Transfork

Subscribers can issue FETCH requests for specific Groups starting at a specified byte offset. This
functionality, similar to an HTTP request, can be employed to do things such as recover from
partial delivery failures |Curley, 2025a].

A Frame is a data payload within a Group; it represents a data chunk of a known size. Frames
should represent a single moment in time and avoid buffering so as not to increase the latency
[Curley, 2025a].

Media protocols can only be classified as “live” if they maintain functionality under conditions
of degraded network congestion. MoQ Transfork addresses this requirement by prioritizing the
most important media, while less important media are starved [Curley, 2025a].

The subscriber signals the relative importance of individual Tracks, Groups, and Frames; the
publisher attempts to obey these signals to the extent possible. Subscribers convey priority
through two mechanisms: Track Priority and Group Order. Either endpoint may drop any
starved data so as not to block the livestream [Curley, 2025a].

In scenarios where a publisher, such as a relay node, serves multiple concurrent sessions, pri-
oritization should be handled per session. For instance, one subscriber may want low-latency
livestreaming with a preference for audio, whereas another may prioritize reliable playback while
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having muted audio. In such cases, relays may propagate subscriber preferences upstream. How-
ever, in the event of conflicts, the publisher’s preferences should serve as a tiebreaker |Curley,
2025a].

MoQ Transfork runs on top of WebTransport, so creating a connection involves the QUIC, Web-
Transport, and MoQ Transfork handshakes. The MoQ Transfork handshake involves opening
a Session Stream and sending a SESSION_CLIENT message to the server, after which the server
replies with a SESSION_SERVER message. These messages contain version negotiation and ex-
tension negotiation. This session remains active until either endpoint decides to close or reset
the Session Stream |Curley, 2025a).

All MoQ Transfork streams are QUIC streams, but contrary to QUIC, MoQ Transfork does
not allow half-open bidirectional streams. If one endpoint terminates the send direction of a
stream, the peer must also terminate their send direction of that stream. Stream termination
can happen in two ways: by closing the send direction gracefully (STREAM frame with the FIN bit
set), or by resetting the send direction (RESET_STREAM frame), which immediately terminates
the stream [Curley, 2025a).

MoQ Transfork makes extensive use of QUIC’s parallel streams feature. Every transactional
action gets a dedicated stream. Transactions are terminated if their respective streams are
closed. Each stream starts with a STREAM_TYPE (1 byte to indicate the stream type) |Curley,
2025a).

The following streams are bidirectional; these are primarily control streams:

e Session: created by the client.

e Announce: created by the subscriber.
e Subscribe: created by the subscriber.
e Fetch: created by the subscriber.

e Info: created by the subscriber.

The only unidirectional stream used for data transmission is the Group Stream, which is created
by the publisher [Curley, 2025a].

Session Streams are designated for all session-level messages within a MoQ Transfork connec-
tion. Only a single Session stream is opened per WebTransport session, and closing this stream
closes the MoQ Transfork session. Upon establishing a QUIC/WebTransport session, the client
is required to open a single Session Stream immediately [Curley, 2025a)].

At the start of the Session Stream, the client transmits a SESSION_CLIENT message, which com-
municates the supported protocol versions and extensions. If at least one version is supported,
the server responds with a SESSION_SERVER message, thereby completing the handshake pro-
cess. Following this initial exchange, both endpoints are expected to send SESSION_UPDATE
messages when appropriate, for instance, to signal substantial changes in session characteristics
such as bitrate [Curley, 2025a).

Subscribers may optionally initiate an Announce Stream to discover tracks whose identifiers
match a specified prefix. This mechanism is not mandatory; applications may alternatively
determine track paths through out-of-band methods |[Curley, 2025a].

The stream is started by the subscriber sending an ANNOUNCE_PLEASE message. In response,
the publisher transmits ANNOUNCE messages for each matching track. Each ANNOUNCE message
contains one of these three statuses:

e active: a matching track is currently available.
e ended: a previously active track has become unavailable.
e live: all currently active tracks have been sent.

Tracks initially appear with an ended status and may transition between active and ended
over time. The live status applies to the entire stream rather than to individual tracks.
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The publisher should send this once all active ANNOUNCE messages have been delivered. The
subscriber should interpret the live status as a signal that all the current announcements have
been received [Curley, 2025a).

Prefix matching is performed part by part. For instance, a prefix of ["meeting"] would match
a track path such as ["meeting", "1234"], but not ["meeting-1234"]. It is the application’s
responsibility to encode prefixes unambiguously, such as avoiding that the same value can be
encoded in multiple ways [Curley, 2025a)].

Multiple Announce Streams may be used concurrently, potentially with overlapping prefixes.
Each stream receives its own copy of each ANNOUNCE message in such cases [Curley, 2025a].

To request a specific Track, a subscriber opens a Subscribe Stream. This process begins with
the subscriber opening an Info Stream and sending a SUBSCRIBE message, which may be fol-
lowed by any number of SUBSCRIBE_UPDATE messages. The publisher must respond with an
INFO message, followed by zero or more SUBSCRIBE_GAP messages. If the publisher is unable to
serve the subscription at any point, it may reset the stream [Curley, 2025a].

The publisher must deliver a complete Group Stream or a corresponding SUBSCRIBE_GAP mes-
sage for each Group within the specified subscription range. Consequently, the publisher must
send a SUBSCRIBE_GAP message if a Group Stream is reset. The subscriber should close the sub-
scription once all of the GROUP and SUBSCRIBE_GAP messages have been received. Conversely,
the publisher may close the subscription after the subscriber has successfully acknowledged all
the messages |Curley, 2025a].

Fetch Streams can be opened by the subscriber in order to receive a single Group starting at
a specified offset. This mechanism is primarily intended for recovery scenarios, such as when a
stream is abruptly terminated, resulting in the truncation of a Group [Curley, 2025a].
Subscribers start a Fetch Stream with a FETCH message, followed by zero or more FETCH_UPDATE
messages. In response, the publisher must transmit the contents of the corresponding Group
Stream, beginning at the specified offset after the GROUP message. This transmission includes
any subsequent FRAME messages. The Fetch Stream remains active until it is explicitly closed
by both endpoints or reset by either endpoint [Curley, 2025a].

Subscribers may open an Info Stream to request information about a specific Track explic-
itly. However, this is typically unnecessary, as such information is provided in response to a
SUBSCRIBE request. Subscribers must send an INFO_PLEASE message at the start of the Info
Stream. The publisher is then required to either respond with an INFO message or reset the
stream. Both endpoints must subsequently close the stream |[Curley, 2025a].

In response to a Subscribe Stream, the publisher generates Group Streams. Each Group Stream
must begin with a GROUP message and may be followed by zero or more FRAME messages. A
Group may contain no FRAME messages, which could indicate a gap in the associated track.
Similarly, individual FRAME messages may carry empty payloads, potentially signaling a gap
within the Group itself. Both the publisher and the subscriber may reset the Group Stream at
any point. In the event that a Group Stream is reset, the publisher must send a corresponding
SUBSCRIBE_GAP message on the related Subscribe Stream [Curley, 2025a).

MoQ Transfork transmits the following messages, defined in |[Curley, 2025a], between end-
points:

e STREAM_TYPE: short header to indicate the type of the stream.

e SESSION_CLIENT: sent by the client to initiate the session, contains supported versions
and extensions.

e SESSION_SERVER: response of the server to SESSION_CLIENT, contains selected version
and extensions.

e SESSION_UPDATE: used to send the estimated bitrate of the QUIC connection.

e ANNOUNCE: sent by the publisher to advertise a Track.
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e ANNOUNCE_PLEASE: sent by the subscriber to request ANNOUNCE messages matching the
given Track prefix.

e SUBSCRIBE: sent by the subscriber to start a subscription to a Track.
e SUBSCRIBE_UPDATE: sent by the subscriber to modify a subscription.

e SUBSCRIBE_GAP: sent by the publisher to indicate it is not able to serve a Group for a
given SUBSCRIBE.

e INFO: sent by the publisher in response to SUBSCRIBE or INFO_PLEASE, contains informa-
tion about the given Track.

e INFO_PLEASE: sent by the subscriber to request an INFO message.
e FETCH: sent by the subscriber to request a (partial) Group from a given Track.
e FETCH_UPDATE: sent by the subscriber to modify a FETCH request.

e GROUP: sent by the publisher, includes information about the given Group, belonging to
a certain subscription.

e FRAME: sent by the publisher, contains a payload at a specific point in time.

Generic relays and CDNs should only implement MoQ Transfork, not the media layer. The
MoQ Transfork headers provide sufficient information to facilitate optimal caching and fan-out,
even under network congestion. The payload remains opaque to the transport layer, allowing
applications to encode arbitrary content, including encrypted media or non-media data [Luke
Curley, 2024b].

A crucial concept in MoQ Transfork is the mapping of live media to MoQ Transfork. A crit-
ical consideration when mapping is how to handle congestion. In certain scenarios, such as
conference calls, pausing and buffering are undesirable, which means some data needs to be
dropped. Regarding video, the decision was made to skip frames until the next keyframe, in
other words, until the start of the next GoP (which was briefly discussed in Section . For
this reason, GoPs are mapped to Group Streams in MoQ Transfork. The underlying QUIC
stream provides reliability, ordering, and prioritization. This enables fine-grained control over
packet transmission under constrained network conditions, ensuring that the most important
groups, such as recent audio, are delivered first. In contrast, less important media, like older
video, will be starved or potentially cancelled |[Luke Curley, 2024b].

This prioritization method is also compatible with varying latency targets. MoQ Transfork
does not drop streams; instead, it starves lower-priority streams. Viewers who tolerate higher
latency, such as those watching VODs, use larger playback buffers. This way, there is more time
for network starvation recovery and, thus, recovery for the starved lower-priority groups. QUIC
streams are only canceled if the user decides to skip forward in the playback |Luke Curley,
2024b).

Karp

Karp is the media layer of the protocol (Warp in the IETF version) and is modeled after the
WebCodecs API [Luke Curley, 2024b]. The WebCodecs API is a browser API that allows
developers to gain low-level access to individual video stream frames and audio chunks. This
enables developers to have complete control over media processing [MDN web docs, 2024].
Karp contains only the necessary metadata to initialize a decoder and render a frame, and is
optimized for low-overhead livestreaming. It consists of a catalog and a container [Luke Curley,
2024b).

The catalog is JSON data that describes the media tracks, an example of which is shown in
Listing The catalog file is similar to the playlist files in HLS. It is delivered over a MoQ
Transport track, which is commonly named catalog.json. This JSON blob contains all the
available broadcast tracks and their metadata, including audio, video, and alternative renditions
of the media. The catalog itself is a live track, so that it can be updated with live media. Like
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with other tracks, viewers subscribe to the catalog and receive updates to this file via groups or
frames. As a result, tracks can be added or removed live. When joining the livestream, viewers
first subscribe to the catalog, parse the catalog to determine the desired tracks, and subscribe
to the chosen individual media tracks [Luke Curley, 2024b).

{
"video": [{
"track": {
"name": "480p",
"priority": 2
},
"codec": "avcl.64001f",
"resolution": {
"width": 1280,
"height": 720
1,
"bitrate": 3000000
// etc
3,
}

Listing 2.2: Example of a Karp catalog file; it shows information for MoQ Transport,
the used codec, the video resolution, and the maximum bitrate in bits per second |Luke
Curley, 2024b)|

The container is a simple header around codec data. The header of the current version only
contains a 1-8 byte presentation timestamp. This will be updated in the future to support more
functionality, such as information surrounding encryption. However, future additions will be
kept simple to minimize the overhead |[Luke Curley, 2024b).

Application

The final layer is the application; this could be anything involving live media. MoQ is able
to provide audio and video delivery; other media delivery requires custom implementation.
This can be done with a custom track, such as a track for delivering chat messages between
people. This approach gains all the advantages of MoQ Transport without having to implement
it from scratch; the only remaining task is to delta-encode the desired media into groups and
frames [Luke Curley, 2024b|.

2.4.3 Addressing Known Problems

To conclude this chapter, this section will examine known problems with the protocols discussed
in Section and how MoQ addresses these.

Head-of-line blocking is a problem in all the discussed protocols that rely on TCP as their
underlying transport protocol. However, the severity of its impact varies across protocols. QUIC
avoids head-of-line blocking when using multiple streams, since QUIC streams are ordered,
reliable, and independent. In the event of packet loss, only streams containing data in the
lost packet are blocked and have to wait for a retransmission. Meanwhile, other streams can
continue without interruption. However, if a single QUIC packet carries data from multiple
streams, all those streams will be blocked when packet loss occurs. Therefore, implementations
are advised to minimize the number of streams per packet while maintaining transmission
efficiency (avoiding underfilled packets) [Iyengar and Thomson, 2021].

Since MoQ maps Group Streams (thus QUIC streams) to GoPs and uses stream prioritization
to starve older media, head-of-line blocking and consequent buffering can be avoided. When
packet loss occurs and data of the current GoP is lost, chances are that the next GoP is already
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on its way before the current one is retransmitted. The stream continues, and the retransmitted
GoP data gets starved and potentially cancelled [Luke Curley, 2024b).

HLS/DASH has long media segments (multiple seconds long), which have to be completed
before they can be sent (adding the long segment duration to the latency) and have to be fully
downloaded before being able to switch to a different bitrate (problematic during congestion)
[Luke Curley, 2022].

Each MoQ segment corresponds to a single GoP in size. GoP size varies by application, but is
typically 0.5 - 2 seconds long [Samis, 2020]. Since MoQ segments are mapped directly to Group
Streams and MoQ streams use QUIC streams, multiple segments can be retrieved in parallel
[Luke Curley, 2024b]. MoQ segments have the advantage of not having to be downloaded
entirely before switching the bitrate. The protocol can start a new subscription to the Track
with the desired bitrate and close the existing subscription.

HTTP, a request/response protocol, always needs the client to poll for data. Consequently,
HLS/DASH and LL-HLS/LL-DASH do this too since they run on top of HT'TP. The client
must request every media segment before the server can send it.

QUIC allows both endpoints to create unidirectional or bidirectional streams on which an
arbitrary amount of data can be sent. The data in unidirectional streams is carried from the
stream’s creator to the other endpoint, while bidirectional streams allow either endpoint to send
data to the other [Iyengar and Thomson, 2021].

None of the MoQ Transfork streams requires data to be polled; data can be sent whenever it
is available. Since there is no data polling in MoQ, the protocol does not have the issues that
arise with polling, such as a high request rate, like in LL-HLS/LL-DASH, due to short segment
sizes |Curley, 2025a].

WebRTC’s hard-coded quality compromise to achieve lower latency is absent in MoQ since the
protocol caters to multiple latency and quality targets [Curley, 2025a]. However, if specific ap-
plications require the same quality compromise to attain lower latency, this can be implemented
in the application using MoQ.

Scaling WebRTC with SFUs presents several challenges, primarily because the transport layer,
which uses RTP, is tightly coupled with the application layer, which also relies on RTP. To
maintain compliance with WebRTC specifications, SFUs often resort to hacky workarounds.
As a result, many services develop custom SFU implementations tailored to their specific ap-
plication requirements |[Luke Curley, 2024b].

As previously mentioned in Section [2:4.2] MoQ avoids this by decoupling the media and the
transport layer. MoQ Transfork headers only contain the necessary information needed for
optimal caching and fan-out. This allows any data to be encoded in the payload; it can be
encrypted and does not necessarily have to be media [Luke Curley, 2024b].



Chapter 3
Logging

The first step to visualize network protocols, and in this case, MoQ specifically, is to log what
happens at each endpoint that is involved. These logs can contain a tremendous amount of in-
formation, which in turn can be parsed to create visualizations that facilitate the debugging and
analysis of the logged network protocols. This chapter examines the emerging qlog standard, its
applicability to protocols such as QUIC and MoQ), the development of a logging library based
on qlog, and the modifications made to existing QUIC and MoQ Transfork implementations to
incorporate qglog-based logging functionality.

3.1 qlog

glog is an extensible structured logging format designed for use with network protocols. It
allows easy data sharing in order to facilitate debugging and analysis of the logged network
protocols. All glog logging schemas are independent of serialization formats, which allows all
logs to be exported to various data formats, such as JSON and CSV. At the time of writing,
qlog is still under active development [Marx et al., 2025a).

Endpoint logging can be particularly useful in understanding the behavior of applications using
network protocols, especially when protocol data is encrypted. In order to do endpoint logging,
many applications utilize their own custom, non-standard logging format. These custom logging
formats hinder the development of universal analysis tools that parties with access to logs can
use [Marx et al., 2025a].

The primary objective of qlog is to define a set of standardized features and default character-
istics that logging files should include in order to facilitate the development of generic, reusable
tools. These tools can then process and analyze logs generated by various protocols and use
cases [Marx et al., 2025a].

3.1.1 Main Logging Schema

glog is designed to be a streamable, flexible event-based logging format where event data and
metadata are stored together. It is meant to reduce overhead for the log producer (protocol
implementations), but at the cost of increasing the complexity for the log consumers (tools using
logs). Furthermore, it is designed to be extensible, pragmatic, aggregation- and transformation-
friendly. An example of this is that events can be tagged to specific contexts (using group_ids).
qlog achieves this using a log file, traces, and events hierarchy. Log files can contain multiple
traces, and each trace can contain multiple events [Marx et al., 2025a). This concept is visualized

in Figure [3:1]
The qlog draft defines two schemas: QlogFile for use with non-streamable file formats, and
QlogFileSeq for use with streamable file formats. Since the rest of this thesis uses QlogFileSeq,

37
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Log file

Trace

Trace

Figure 3.1: Visual representation of the hierarchical structure of glog

this explanation will not further discuss QlogFile. The intention of a log file is to hold a
collection of related events. Log files contain a file schema, serialization format, optionally a title
and description, and a trace. The file schema is a URI that refers to the concrete log file schema.
The qlog draft defines two values for the file schema: urn:ietf:params:qlog:file:contained
and urn:ietf:params:qlog:file:sequential. The former is meant to be used with non-
streamable file formats, while the latter is intended to be used with streamable file formats.
The serialization format field contains the file format used for serialization, such as JSON or
CSV |[Marx et al., 2025a).

The qlog draft describes a trace as “a log of a single data flow collected at a single location
or vantage point.” For instance, when logging QUIC, a trace contains events associated with
a single QUIC connection, recorded from the perspective of either the client or the server.
Traces contain not only a list of events, but also the event schemas, and optionally a title,
a description, common fields, and a vantage point. The event schemas are URIs identifying
concrete event namespaces; this is needed to determine where each logged event of that trace is
defined, since different sets of events can be defined for the same protocol. The common fields
field allows data that is identical to all events in the trace to be logged in one place. That way,
the identical fields do not have to be logged explicitly for each event. All fields in the common
fields are optional, and they consist of a path, time format, reference time, group ID, and any
number of custom fields. These fields will be discussed in the following paragraph. The vantage
point describes the origin point of a trace. This can be the client, the server, or an observer
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somewhere between the client and the server [Marx et al., 2025a].

Events are logged at a specific point in time and encapsulate detailed information relevant to
the particular logging use case. The qlog draft does not define individual events since these
are protocol-specific, but does define several fields that all events have in common, regardless
of the protocol. These fields are the time, the name, the event data, optionally a path, time
format, group ID, and some system information; on top of this, any number of custom fields
can be added. The time field contains a timestamp that indicates when an event occurred; its
value is relative to a chosen reference time and the time format. The name field of an event
is the concatenation of the namespace identifier, a colon, and the event type identifier. This
value must be globally unique to avoid name collisions with other events from other schemas.
An example of such an event name would be quic:packet_sent where quic is the namespace
identifier of the event schema urn:ietf:params:qlog:events:quic. The data field contains
the data of a specific event; the writers of the events choose the exact data included in this
field. The time format field specifies whether the time of an event is relative to an epoch value
(part of the reference time) or to the time of the previously logged event (delta-encoded value).
The path field makes it possible to associate an event with a network path; the exact content
of this field is left to implementers, but a possible value is the 4-tuple of source and destination
addresses. The group ID field allows events to be grouped together by assigning them the
same group ID. Use of this field is optional, and its specific semantics are left to individual
implementations. The system information field can be utilized to log system-specific details,
which allows the process ID, processor ID, and thread ID of the system running the protocol
to be logged [Marx et al., 2025a]. Listing shows an example of a glog event.

' "time": 1553986553572,
"name": "quic:packet_sent",
"data": { ... I},
"group_id": "127ecc830d98f9d54a42c4£0842aa87e181a",
"time_format": "relative_to_epoch",
"ODCID": "127ecc830d98f9d54a42c4£0842aa87e181a"
}

Listing 3.1: Example of a generic glog event serialized as JSON [Marx et al., 2025a]

Since JSON is not a streamable file format, because new events cannot be appended at the
end of the log file, JSON Text Sequences (JSON-SEQ) can be used for QlogFileSeq [Marx
et al., 2025a]. JSON Text Sequences are very similar to regular JSON but are streamable.
This format works by having any number of JSON texts (valid JSON blobs) prefixed with a
Record Separator character (0x1E), and suffixed with a Line Feed character (0x04). Appending
to JSON Text Sequences works by simply appending the Record Separator, then appending
the JSON data, and finally appending the Line Feed [Williams, 2015]. Instead of the trace
containing a list of events, QlogFileSeq appends each new event to the end of the JSON-SEQ
file, an example of this is shown in Listing [3.2] Unlike the non-streamable format, all the
appended events belong to the same trace, which means that all log files using this format can
only hold a single trace [Marx et al., 2025a].
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// list of qlog events, serialized in accordance with RFC 7464,
// starting with a Record Separator character and ending with a
// newline.

// For display purposes, Record Separators are rendered as <RS>

<RS>{
"file_schema": "urn:ietf:params:qlog:file:sequential",
"serialization_format": "application/qlog+json-seq",
"title": "Name of JSON Text Sequence qlog file (short)",
"description": "Description for this trace file (long)",
"trace": {

"common_fields": {
"group_id":"127ecc830d98f9d54a42c4£f0842aa87e181a",
"time_format": "relative_to_epoch",
"reference_time": {

"clock_type": "system",
"epoch": "1970-01-01T00:00:00.000Z"
3,
3,
"vantage_point": {
"name" : "backend-67",
"type":"server"

s
"event_schemas": ["urn:ietf:params:qlog:events:quic",
"urn:ietf:params:qlog:events:http3"]
}
}
<RS>{"time": 2, "name": "quic:parameters_set", "data": { ... } }
<RS>{"time": 7, "name": "quic:packet_sent", "data": { ... } }

Listing 3.2: Example of a qlog file using JSON Text Sequences as its serialization
format [Marx et al., 2025a

The qlog draft also defines a raw info datatype. This contains raw information and can be
helpful during the tuning of packetization behavior or determining the overhead of encoding.
This datatype should remain empty if not required, since it can take up considerable space
and impact privacy and security. The raw info contains three optional fields: a length value,
a payload length value, and the raw data displayed as a hexadecimal string. The length value
refers to the complete length of the logged entity in bytes; this includes potential headers and
trailers. The payload length value refers to the length of the logged entity’s payload, which does
not include headers or trailers. The data field is a hexadecimal string of the raw representation
of the entire logged entity. If the data field is truncated for privacy or security reasons, length
and payload length values should still represent the actual lengths, not the truncated ones.
However, these are general definitions for this datatype; the exact usage of the fields depends
on the use case [Marx et al., 2025a].

Finally, the draft defines a QLOGFILE environment variable that can be utilized to specify the
path where the qlog file should be saved [Marx et al., 2025a].

3.1.2 QUIC qlog Definitions

Apart from working on the main logging schema of qlog, the IETF is also already working on
its qlog event definitions for several protocols, including QUIC. The “QUIC event definitions
for qlog” draft describes these glog event definitions and their associated metadata for the
core QUIC protocol and various QUIC extensions. The draft registers the quic namespace
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with event schema URI urn:ietf:params:qlog:events:quic [Marx et al., 2025b]. Like many
others cited in this thesis, this document is under active development and thus still a work in
progress.

The draft recommends using QUIC’s Original Destination Connection ID (ODCID), which is
chosen by the client when starting a connection with the server and does not change during the
connection, as the group ID to link events to the correct connection [Marx et al., 2025b).

Since the implementation only uses the packet_sent and packet_received events, the reason-
ing behind this decision will be explained in more detail in Section the other events will
not be discussed. The draft [Marx et al., 2025b] defines 34 qlog events for the QUIC protocol,
subdivided into the following categories:

e Connectivity: events concerning the QUIC connection state, which include when a con-
nection starts, closes, and updates the connection ID. This category contains eight events.

e Transport: events concerning data transport, which include when a packet is sent, re-
ceived, dropped, and acknowledged. This category contains seventeen events.

e Security: events concerning updates to cryptographic keys. This category contains two
events.

e Recovery: events concerning packet loss detection and congestion control, which include
when congestion state is updated, when a packet is deemed as lost, and when data is
marked for retransmission after packet loss has been detected. This category contains
seven events.

Before discussing the packet_sent and packet_received events, it is important to explain the
structure of QUIC packets. QUIC packets start with a header. The header has a long and a
short form; the long header is used during connection establishment, while the short header is
used after the connection is established. The long header data includes the packet type, the
used QUIC version, the destination connection ID, the source connection ID, and a payload
specific to the packet type, among other fields. The short header data includes the destination
connection ID, the packet number, and a payload, among other fields. Furthermore, QUIC
includes version negotiation packets, which are similar to long-header packets in structure but
do not fully conform to the long header format. These are sent by the server when it does
not support the QUIC version selected by the client. Version negotiation packets include the
QUIC version (always set to 0), the destination connection ID, the source connection ID, and
a number of supported QUIC versions, among other fields [Iyengar and Thomson, 2021]. The
other fields of these headers and the version negotiation packets are not discussed here as they
are irrelevant to this thesis.

According to [Tyengar and Thomson, 2021], the packet type of the long header refers to one of
the following packet types:

e Initial: first packets sent by the client and server. The type-specific payload, which is
still part of the header, of these packets contains a token, the packet number, and the
payload.

e 0-RTT: allows clients to send application data before the server has responded to the
client’s initial packet in certain circumstances. The type-specific payload of these packets
contains the packet number and the payload.

e Handshake: sent after the first server response. The type-specific payload of these packets
contains the packet number and the payload.

e Retry: can be sent by the server during the handshake to validate the client’s address.
The type-specific payload of these packets contains a token.

The short header does not include a packet type since these headers only carry 1-RTT packets,
which are sent after the handshake [Iyengar and Thomson, 2021].
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The destination and source connection IDs are instances of connection IDs |[Iyengar and Thom-
son, 2021]; these were discussed in more detail in Section m

Packet numbers in QUIC are not just integers; they are divided into three packet number
spaces: the initial, handshake, and application data space. Each of these spaces starts with
packet number 0. The initial space contains all initial packets, the handshake space all hand-
shake packets, and the application data space all 0- and 1-RTT packets. Version negotiation
and retry packets do not carry packet numbers [Iyengar and Thomson, 2021].

Tokens in initial and retry packets are opaque data blobs used for address validation [Iyengar
and Thomson, 2021].

Finally, the payload of QUIC packets contains a sequence of frames. They begin with a frame
type and are then followed by type-dependent fields. Some frames have multiple frame types;
this is done so that frame-specific flags can be encoded in the frame type. The QUIC RFC [Iyen-
gar and Thomson, 2021] defines the following frames:

e PADDING: used to increase the packet size of an initial packet to the minimum required
size or to protect against traffic analysis. They carry no additional data.

e PING: used to check if peers are still alive or reachable. They carry no additional data.

e ACK: used to acknowledge the reception of packets. They contain the packet number of the
largest acknowledged packet, the delay of the acknowledgment (in ps), ranges of packets
that alternate between a range of packets that have not been acknowledged (gap) and
a range of packets that have been acknowledged, and Explicit Congestion Notification
(ECN) information.

e RESET_STREAM: used to terminate the sending side of a stream abruptly. They contain the
ID of the terminated stream, an application protocol error code indicating the termination
reason, and the final size of the stream in bytes.

e STOP_SENDING: used to inform the peer that incoming data on the stream will get dis-
carded, thus requesting the peer to stop sending data on that stream. They contain the
ID of the stream and an application protocol error code.

e CRYPTO: used to transmit cryptographic handshake messages. They contain a byte offset
for the data in the stream, the length of the data in this frame, and the cryptographic
message data.

e NEW_TOKEN: used to send a new token to the client that can be used in an initial packet
for a future connection. They contain the new token.

e STREAM: used to carry stream data. The frame type of this frame has multiple values since
it encodes an OFF, LEN, and FIN bit. The OFF bit indicates if an offset field is present,
the LEN bit indicates whether a length field is present, and the FIN bit is set if the stream
has ended. The absence of the offset field implicitly means an offset of 0, and the absence
of the length field indicates that there are no further frames; the packet ends with the
stream data. They contain the stream ID, the offset and length fields based on their
corresponding bits, and the stream data.

e MAX_DATA: used to limit the amount of data that can be sent on the entire connection.
They contain this data limit in bytes.

e MAX_STREAM_DATA: used to limit the amount of data that can be sent on the given stream.
They contain the stream ID and the data limit for this stream.

e MAX_STREAMS: used to limit the total number of uni- or bidirectional streams that may be
opened on the connection; every stream counts towards this limit, even closed ones. The
frame type has multiple values since it encodes the stream type (uni- or bidirectional) in
its value. These frames only contain this limit.

e DATA_BLOCKED: used to indicate to the receiver that the sender has extra data to be sent,
but is blocked by the maximum amount of data on the entire connection. They contain
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this data limit.

e STREAM_DATA_BLOCKED: used to indicate to the receiver that the sender has extra data
to be sent on the given stream, but is blocked by the maximum amount of data on that
stream. They contain the stream offset at which the blocking happened.

e STREAMS_BLOCKED: used to indicate to the receiver that the sender needs to open a new
stream, but is blocked by the stream limit. The frame type has multiple values since it
encodes the stream type (uni- or bidirectional) in its value. These frames only contain
this stream limit.

e NEW_CONNECTION_ID: used to provide alternative connection IDs to the peer. They contain
the sequence number of the new connection ID, a field indicating which connection IDs
should be retired, the new connection ID, and a stateless reset token to use with the new
connection ID. The stateless reset token is used to end the connection if an endpoint is
unable to access the connection state.

e RETIRE_CONNECTION_ID: used to indicate that the sender of this frame will no longer use
a connection ID that he had received earlier from its peer. They only contain the sequence
number of the retired connection ID.

e PATH_CHALLENGE: used to check if the peer is reachable or to validate the path during
connection migration. They only contain 8 bytes of arbitrary data.

e PATH_RESPONSE: used to respond to a PATH_CHALLENGE frame. They contain the 8 bytes
of arbitrary data sent in the PATH_CHALLENGE frame.

e CONNECTION_CLOSE: used to inform the peer that the connection is being closed. The
frame type has multiple values since it encodes the type of the error (QUIC error/no
error, or application error) in its value. They contain an error code, the frame type that
caused the error in case of a QUIC error, and optionally a reason phrase that provides
extra information.

e HANDSHAKE_DONE: used to confirm the handshake to the client. They carry no additional
data.

Additionally, the DATAGRAM frame defined in RFC 9221 as an extension to the QUIC protocol
is included in the QUIC qlog definitions. This frame is used to transmit application data
unreliably. The frame type has multiple values since it encodes a LEN bit with the same
functionality as the LEN bit of the STREAM frame. These frames contain the length of the data
based on the value of the LEN bit and the actual application data [Pauly et al., 2022].

The packet_sent and packet_received events are very similar; the only differences are the
extra boolean value in the packet_sent event indicating whether the packet is an MTU probe
packet, and the possible values for the trigger, indicating what triggered the packet being
sent or received. The common data of these events includes the packet header, the embedded
QUIC frames, a stateless reset token in case the packet is a stateless reset packet, a list of
supported QUIC versions for a version negotiation packet, the raw info of the packet, and the
datagram ID. Only the packet header is required; the rest is optional or only included in certain
scenarios [Marx et al., 2025b].

The packet header contains the packet type, the packet type bytes if the packet type is unknown,
the packet number if the packet has one, several flags including the spin bit, a token in case of
an initial or retry packet, the packet length if type of the packet is initial, handshake, or 0-RTT,
the used QUIC version, and the source and destination connection IDs. All of these values,
except for the packet type, are optional or only included in some cases |Marx et al., 2025b).
The packet type can have the value ‘initial’, ‘handshake’, ‘O-RTT’, ‘1-RTT’, ‘retry’, ‘version
negotiation’, ‘stateless reset’, or ‘unknown’ [Marx et al., 2025b].

Tokens include a token type, token details, and the token’s raw info. All of these token fields
are optional. The token type can be ‘retry’ from a retry packet or ‘resumption’, which is used
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to resume a connection. The token details field can contain any key-value pairs, since any value
can be encoded in the token, these encoded values can be optionally reflected in this field [Marx
et al., 2025b].

The packet length contains the sum of the length of the packet number and the payload [Marx
et al., 2025b].

Connection IDs in qlog are displayed as hexadecimal strings [Marx et al., 2025b).

The QUIC qlog draft has qlog definitions for all QUIC frames defined in RFC 9000, the DATAGRAM
frame defined in RFC 9221, and an ‘unknown’ type for unrecognized frame types. Each frame
has a required frame type field with the same value as the frame’s name (but in lowercase)
and an optional raw info field. The following list provides an overview of each frame and the
additional data it carries [Marx et al., 2025b]:

e PADDING: carries no additional data.
e PING: carries no additional data.

e ACK: carries the acknowledgment delay (in ms), the acknowledged ranges, and ECN-related
fields. The acknowledged ranges field is a list of ranges, where each range is one or two
numbers. A range of one number contains the only acknowledged packet number of that
range. In a range of two numbers, the first is the lowest acknowledged packet number,
while the second is the highest acknowledged packet number in that range. All of these
fields are optional.

e RESET_STREAM: carries the stream ID, an application error code, the error code bytes if
the error code has the value ‘unknown’, and the final size of the stream (in bytes). All
fields, except for the error code bytes, are required.

e STOP_SENDING: carries the stream ID, an application error code, and the error code bytes
if the error code has the value ‘unknown’. All fields, except for the error code bytes, are
required.

e CRYPTO: carries the offset and the length of the cryptographic message data. Both of these
fields are required.

e NEW_TOKEN: carries only the required token field. The value of this field contains a token;
the contents of a token were described in the previous paragraph.

e STREAM: carries the stream ID, the offset and length of the stream data, and a fin boolean
that is assumed to be false when absent. Only the fin value is optional, but always present
since it has a default value.

e MAX_DATA: only carries the required maximum value.

o MAX_STREAM_DATA: carries the stream ID and the maximum value. Both of these fields
are required.

e MAX_STREAMS: carries the stream type and the maximum value for that stream type. Both
of these fields are required. The stream type is either ‘unidirectional’” or ‘bidirectional’.

e DATA_BLOCKED: only carries the limit at which the blocking occurred. This field is required.

e STREAM_DATA_BLOCKED: carries the stream ID and the limit. Both of these fields are
required.

e STREAMS_BLOCKED: carries the stream type and the limit. Both of these fields are required.

e NEW_CONNECTION_ID: carries the sequence number, a field indicating which connection
IDs should be retired, the connection ID length, the connection ID, and a stateless reset
token. The stateless reset token is displayed as a hexadecimal string. All fields except
for the connection ID length and the stateless reset token are optional. The length of the
connection ID is optional since this field is primarily used when the entire connection ID
cannot be logged due to privacy reasons, for instance.
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e RETIRE_CONNECTION_ID: only carries the sequence number of the retired connection ID.
This field is required.

e PATH_CHALLENGE: only optionally carries the 8 bytes of arbitrary data as a hexadecimal
string.

e PATH_RESPONSE: only optionally carries the 8 bytes of arbitrary data from the PATH_CHALLENGE
frame.

e CONNECTION_CLOSE: carries the error space, the error code, the error code bytes if the
error code has the value ‘unknown’; the reason text, the reason bytes when the reason
text is not UTF-8 or the endpoint decides not to decode the reason text, and the frame
that triggered the error if it is a transport error. The error space is either ‘transport’
or ‘application’. The error code can be a transport error, a cryptographic error, or an
application error. All of these fields are optional.

e HANDSHAKE_DONE: carries no additional data.
e DATAGRAM: only carries an optional length field.
e UNKNOWN: only carries the required frame type bytes.

Some QUIC packets can be coalesced into a single UDP datagram, which potentially reduces
the number of datagrams needed to finish the handshake and start the sending of data [Iyengar
and Thomson, 2021]. The datagram ID field can be used to track which packet was included
in which datagram, thus seeing which packets were coalesced into the same datagram [Marx
et al., 2025b].

As can be seen from the definitions given here, these qlog events can contain deep hierarchies
of detailed data.

3.1.3 Media over QUIC qlog Definitions

This thesis defines its own set of MoQ Transfork glog definitions since they were not defined
elsewhere at the time of writing. MoQ Transport does have glog definitions [Pardue and Engel-
bart, 2025], but these were first introduced after the custom event definitions were developed
for this thesis; at the time of implementation, these were not yet published. Even at the time of
writing, only two drafts have been released, so the development of these logging events is still
very early. The custom MoQ Transfork event definitions have thus not been based on the MoQ
Transport ones, but have some similarities. The events defined in this thesis were inspired by
the QUIC and HTTP/3 events [Marx et al., 2025bl[Marx et al., 2024].

This thesis only defines events based on the messages sent between MoQ endpoints. Since the
current version of MoQ Transfork does not define many different message types, and to keep
it simple, every message type has two events: a ‘created’ and a ‘parsed’ event, based on some
HTTP/3 events. The ‘created’ events are emitted when the MoQ endpoint creates the message
to be sent to its peer, and the ‘parsed’ events are emitted after receiving and parsing a message
from a peer. The following events are defined in this thesis; all of these have a _created and
a _parsed suffix, which have been omitted here since the contained data is equal for both
versions:

e stream: emitted when creating/parsing a new MoQ stream. They only contain the stream
type, which can be ‘session’; ‘announced’, ‘subscribe’; ‘fetch’; ‘info’; or ‘group’.

e session_started_client: emitted when creating/parsing a SESSION_CLIENT message.
They contain a list of supported versions, a list of IDs of possible extensions, and a tracing
ID since WebTransport does not expose QUIC’s ODCID.

e session_started_server: emitted when creating/parsing a SESSION_SERVER message.
They contain the selected version and the IDs of the chosen extensions.
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session_update: emitted when creating/parsing a SESSION_UPDATE message. They only
contain the estimated bitrate of the underlying QUIC connection.

announce_please: emitted when creating/parsing an ANNOUNCE_PLEASE message. They
only contain the prefix of Tracks of which ANNOUNCE messages are requested.

announce: emitted when creating/parsing an ANNOUNCE message. They contain an an-
nounce status and Track suffixes to indicate the status of specific Tracks matching the
prefix of the ANNOUNCE_PLEASE message. The announce status can have the value ‘ended’,
‘active’, or ‘live’.

subscription_started: emitted when creating/parsing a SUBSCRIBE message. They
contain the subscribe ID, the Track path, the Track priority, the Group order, the Group
minimum, and the Group maximum. The subscribe ID is a unique identifier for the
subscription. The Track path refers to the Track on which the subscription is requested.
The priority value is the subscription’s priority; subscriptions with higher priorities are
transmitted first during congestion. The Group order can be ascending, descending,
or the default set by the publisher and refers to the order in which Groups should be
transmitted. With ascending Group order, Groups will be played in the order they are
sent, while with descending Group order, the latest Groups will be played to stay live. The
Group minimum refers to the minimum Group sequence number to retrieve; a value of 0
means the latest Group. The Group maximum refers to the maximum Group sequence
number to retrieve; a value of 0 means to continue the subscription indefinitely.

subscription_update: emitted when creating/parsing a SUBSCRIBE_UPDATE message.
They contain updated values for an existing subscription’s Track priority, Group order,
Group minimum, and Group maximum.

subscription_gap: emitted when creating/parsing a SUBSCRIBE_GAP message. They
contain the starting Group, the Group count, and an error code. The starting Group is
the sequence number of the first Group that the publisher cannot serve. The Group count
is the number of additional Groups that cannot be served after the starting Group.

info: emitted when creating/parsing an INFO message. They contain the Track priority,
latest Group, and Group order of the Track specified in the INFO_PLEASE message. The
latest Group is the sequence number of the latest available Group of that Track. The
Group order refers to the default Group order set by the publisher.

info_please: emitted when creating/parsing an INFO_PLEASE message. They only con-
tain the Track path.

fetch: emitted when creating/parsing a FETCH message. They contain the Track path,
Track priority, Group sequence, and Frame sequence. The Group sequence is the sequence
number of the Group to be fetched. The Frame sequence is the sequence number of the
first Frame to be fetched; all Frames after this Frame are also fetched.

fetch_update: emitted when creating/parsing a FETCH_UPDATE message. They only
contain the Track priority.

group: emitted when creating/parsing a GROUP message. They contain the subscribe ID
and the Group sequence number.

frame: emitted when creating/parsing a FRAME message. They only contain the Frame
payload, represented by the raw info datatype defined in the main qlog draft [Marx et al.,
2025a].

The meaning of all the explained fields is defined by [Curley, 2025a], and all of these fields are
required.

The MoQ Transport event definitions draft does not define separate ‘created’ and ‘parsed’
events for each message. However, it employs a style similar to HTTP/3’s event definitions,
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where more generic ‘created’ and ‘parsed’ events are defined with message details in the event
data. Most of the differences between the Mo(Q Transport events and the events defined in this
thesis are because of the structural difference of the events and the differences between the two
protocols [Pardue and Engelbart, 2025]. The remainder of this discussion will highlight the
similarities between these sets of events, but will not discuss the differences further since these
are mainly protocol differences.

The MoQ Transport events include the control_message_created and control_message_parsed
events. Both contain the same data, including a stream ID, the length, the message, and the
raw info. Only the stream ID and the message are required. The message is an instance of
one of the possible control messages defined in the draft. These include ClientSetupMessage,
ServerSetupMessage, Announce, Subscribe, SubscribeUpdate, and Fetch, among others.
The ClientSetupMessage datatype contains data similar to the session_started_client
events defined in this thesis. The same applies to the ServerSetupMessage datatype and
session_started_server events, the Announce datatype and announce events, the Subscribe
datatype and subscription_started events, the SubscribeUpdate datatype and subscription_update
events, and the Fetch datatype and fetch events [Pardue and Engelbart, 2025|.

3.2 Implementation

This section begins by presenting the implementation of a custom logging library that imple-
ments the main logging schema of glog [Marx et al., 2025a], incorporates the QUIC qlog draft
events [Marx et al., 2025b|, and extends support to include the MoQ Transfork events defined
as part of this thesis. Subsequently, the modifications made to the Quinn QUIC implementa-
tion |Ochtman and Saunders, 2025|, which is used within the MoQ Transfork implementation,
called mog-rs [Curley, 2025b], to integrate qlog support via the custom logging library, are
described. Finally, analogous changes made to the MoQ Transfork implementation are dis-
cussed.

3.2.1 Logging Library

The logging library is written in the Rust programming language since Quinn and moq-rs, the
codebases to which logging must be added, are written in Rust. There is an existing qlog
library in Rust, simply called qglog |Cloudflare, 2025a], that was written as part of Cloudflare’s
QUIC implementation, named quiche [Cloudflare, 2025b|. The decision was made not to use
this library since the initial focus was on logging Mo(Q Transfork events, and this functionality
had to be added regardless. Furthermore, the main logging schema is not very extensive and is
well described by the qlog draft, which made it relatively easy to translate to Rust. This was
further aided by not implementing everything in the draft, but only the necessary parts for this
thesis. Only the sequential file schema is used since the only supported serialization format is
JSON Text Sequences. For the purposes of this thesis, it was not useful to support multiple
serialization formats, and JSON Text Sequences was a better choice than JSON since it’s a
streamable format and still easy to serialize and parse using existing JSON libraries. Therefore,
the file_schema and serialization_format variables are hard-coded to the only supported
values. Other time formats than the relative to epoch one, with the epoch being ‘1970-01-
01T00:00:00.000Z’, are also unsupported since other time formats with variable epochs would
not add much value to this thesis. Finally, incorporating QUIC qglog events into the library,
similar to the integration of qlog’s main logging schema, is relatively straightforward, owing to
the clear and detailed specification provided in the draft. The same implementation approach
used for the MoQ events can be applied to support QUIC events as well.

The goal of the library was to keep logging simple so as not to have to modify a lot of code
in the existing QUIC and MoQ Transfork libraries. For this reason, the library uses a static
glog writer that acts like a singleton, which means static functions can be called to log events
instead of having to create an object that needs to be passed to every function in which logging
needs to happen. This way, codebases using the library do not have to be extensively modified
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to add glog support. Furthermore, the library provides static functions for constructing events
of each type, requiring only the specific data relevant to the corresponding event. Rust allows
features to be defined. Features are a conditional compilation mechanism that allows code to
only be compiled when its corresponding feature is enabled [Rust, 2025]. The logging library
is structured in a way that every set of events, the QUIC and MoQ Transfork events in this
case, is bound to a feature. By enabling only the QUIC feature, QUIC libraries can include
support for QUIC-specific logging without incorporating code related to other protocols, for
instance. Furthermore, event schemas are added to the list of event schemas based on whether
their corresponding feature is enabled.

The library uses the QLOGFILE environment variable to specify where to save the glogfile, but
also to enable logging. By not specifying the QLOGFILE variable, logging is disabled without
having to alter the protocol implementation.

The library provides two necessary static functions to start adding qlog support: log_file_details()
and log_event (). The former is called once in the application using the protocol to be logged.
This function requires users to specify the necessary glog file details. It allows the user to
specify a title and description for the file and the contained trace, the vantage point, and any
custom fields. Listing shows an example of the usage of this function. The log_event ()
function is called in the protocol implementation whenever an event needs to be logged. This
function expects an event, which can be created using the static functions mentioned earlier.
These functions log the file and event data to the specified glog file by first writing the Record
Separator character to the file buffer, then using the serde library to serialize the data to JSON
and appending it to the file buffer, and finally writing the Line Feed character to support
the JSON Text Sequences format. One of the MoQ demos included in the mog-rs repository
used for testing the logging and visualization implementations is a clock application, which is
a simple example application where a publisher sends the current time to any subscribers each
second. Since this command-line application runs indefinitely, it needs to be exited with Ctrl
+ C. The disadvantage of this is that Rust’s built-in file buffer does not write its contents to
the file when exiting the program this way. To solve this issue, the file buffer gets flushed after
every event. To lessen the impact of writing each log directly to the file while the protocol is
running, this operation gets delegated to a different thread. However, this creates the issue
that events that are logged almost simultaneously, in the same millisecond, thus having the
same timestamp, can potentially be logged in the wrong order. Events logged in the wrong
order, but at a different timestamp, can be sorted back in the right order. An example of the
log_event () function is shown by Listing [3.4]

QlogWriter::log_file_details(
Some ("MoQ Clock Logs".to_string()),
None,
Some ("Publisher".to_string()),
Some("Logs from the publisher’s perspective".to_string()),
Some (VantagePoint: :new(
Some ("clock-pub".to_string()),
VantagePointType: :Client,
None
),
None
)3
Listing 3.3: Example from the MoQ clock demo application of how the qlog file details
can be logged
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let event = Event::moq_subscription_started_created(
request.id,
request.path.to_vec(),
request.priority.try_into() .unwrap(),
request.group_order as u64,
request.group_min,
request.group_max,
tracing_id

)

QlogWriter: :log_event(event);

Listing 3.4: Example from the MoQ Transfork protocol of how events can be logged

The approach of creating events using a static function worked for the MoQ Transfork imple-
mentation, but did not work for QUIC since Quinn’s logic concerning the sending and receiving
of packets is split into multiple functions, and even multiple files. In order to support logging
these events, caching methods were added to the logging library. This allows events to be cre-
ated when the first data of the event is available, events can then later be updated when extra
data is available, and can finally be logged when completed. Section [3.2.2] will go into more
detail about this.

3.2.2 QUIC Logging

While implementing qlog in QUIC, the decision was made only to log the packet_sent and
packet_received events. The reasoning is that these two events contain all the data sent over
the connection, which helps see how MoQ and QUIC interoperate. Some of the other events,
such as connection_started and version_information, can be derived from the data in the
packets. The remaining events are helpful, but not as valuable to log as the packet_sent and
packet_received events. This way, the focus lies on logging these two events.

Adapting the Quinn QUIC library to add qlog logging was initially challenging due to the
size of the codebase and never having looked at this source code before. The first step here
was understanding the structure of the code and getting to know what roughly happens in
each file. During this process, it became clear that simply creating events and calling the
log_event () function would not work for the packet_sent and packet_received events.
The packet_sent event cannot be logged immediately before invoking the operating system
kernel’s UDP send function, as that stage has already encrypted the packet(s) encapsulated
within the UDP datagram. Similarly, for the packet_received event, upon receipt of a UDP
datagram, the enclosed packet(s) remain encrypted and therefore cannot yet be logged. In both
cases, logging must occur at a later point, after decryption for incoming packets, or prior to
encryption for outgoing packets has taken place. Logging elsewhere was not feasible due to
Quinn’s packetization functionality. Quinn’s logic concerning the building of packets is split up
into multiple functions and even multiple files, and the headers and frames are directly encoded
into a byte buffer when they are added to the packet. There is no point where all the packet
data is available in one place. The ability to cache QUIC events was added to the logging
library to fix this issue.

The caching functionality works by keeping a hash table of QUIC packets. For this to work,
a unique key is needed for each packet, which is why it combines the ODCID and the packet
number. The packet number includes the packet number space (initial, handshake, or applica-
tion data) since packets in different spaces can have the same number. When the header for a
new packet gets constructed, an incomplete packet_sent event is created and cached in this
hash table. This can still be done by calling a static function and not having to keep any addi-
tional state in the protocol implementation. Afterward, when other functions add frames to the
packet, these frames are added to the event by searching the hash table for the cached packet
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and updating it (this functionality is implemented in the logging library). Finally, when send-
ing the packet via a UDP datagram, a call to the logging library is made to remove the packet
from the cache and actually log it. Logging of the packet_received event works similarly.
This implementation approach required only the construction of the logging data, invoking the
appropriate caching and logging functions, and modifying a few functions to accept the ODCID
and packet number as additional arguments to enable correct logging behavior in the Quinn
protocol. However, two additional issues arose. First, a sent packet’s header does not initially
contain the correct length since frames have not been added yet. This is fixed by updating
the length value right before encryption happens. The second one is that the timestamp of
the received event needs to be cached along with the packet instead of being generated when
logging, so this value is also cached with each received packet.

The focus here was on logging each packet and the frames contained in its payload, which is why
some extra data is not logged at the time. This data includes, among other fields, the datagram
ID, the sent/received trigger of a packet, and the header flags. An additional small change that
was made involved the logging of PADDING frames. Instead of logging these separately, the
length field of its raw info variable is set to the number of PADDING frames, so as not to clutter
the logs with these frames since some packets can contain hundreds of them.

3.2.3 Media over QUIC Logging

As with Quinn, adding glog support to the MoQ Transfork implementation was initially chal-
lenging. However, it was less complicated since the protocol is still in early stages and the
codebase is less extensive than the Quinn one. After understanding the structure and knowing
where messages are sent, it was reasonably straightforward to add glog support.

The only problem was that the WebTransport API does not expose the ODCID, which meant
finding another way to link events to the same connection on the MoQ layer. A stable ID is
accessible on each endpoint, but this turned out to be the memory address of the connection,
which is a different value on each endpoint. During a conversation with Luke Curley, the
developer of the mog-rs implementation, about this issue, he suggested adding a tracing ID to
the SESSION_CLIENT message since a value shared with both endpoints needs to be negotiated.
This way, the client can choose a random ID both sides use. The tracing ID is implemented as
a 64-bit unsigned integer encoded to a variable integer. Variable integers use 2 bits to denote if
the integer is 1, 2, 4, or 8 bytes. This means that, for a 64-bit integer, 62 bits are used for the
actual integer value, which is why the tracing ID is generated as a random integer between 0 and
202 1. Adding the tracing ID to the SESSION_CLIENT message has one minor issue. A Session
stream is opened before the SESSION_CLIENT and SESSION_SERVER messages are exchanged.
When logging the creation and parsing of this stream, the tracing ID is not yet available.
This is solved by caching these logs until the logs for creating or parsing the SESSION_CLIENT
message are created, which happens directly after opening the Session stream. The group ID of
the stream_created or stream_parsed logs is then updated with the correct tracing ID, after
which they are actually logged, followed by the logs of the SESSION_CLIENT message.

In order to aid the visualizations, a main_role was added to the custom fields of the trace’s
common fields. It is intended to clarify what each MoQ endpoint mainly does. Its possible values
are ‘publisher’; ‘subscriber’, ‘pubsub’, and ‘relay’. For instance, a streamer on a platform like
Twitch is mainly a publisher since they publish videos on the website, but will also subscribe
to their viewers’ chat. The viewers are mainly subscribers since they mostly consume the
content published by the streamer, but can publish their own data by sending chat messages.
Participants in an online meeting, using platforms such as Google Meet or Zoom, mainly both
publish and subscribe (‘pubsub’) since they publish their own webcam and microphone output,
but also subscribe to the video and audio of other participants. Relays are essentially subscribers
and publishers, but with a specific functionality of forwarding the subscribed data, which is
why they have their own category. The functionality of this additional main_role field will be
discussed in Section
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Eventually, not a lot of the existing moq-rs code needed to be adapted due to the structure of
the logging library. Apart from adding the tracing ID and calling the logging functions, only
a handful of functions required the tracing ID as an additional parameter. Additionally, a few
dependencies needed to be adjusted. The WebTransport library used by the MoQ Transfork
implementation employs Quinn for QUIC support. This dependency needed to be changed to
the Quinn fork with qlog support. After this, the WebTransport dependency in mog-rs needed
to be adjusted to the version with qlog support in QUIC. To test whether logging works, logging
was added to the clock and relay applications in the mog-rs repository. This was done by simply
calling the log_file_details() function and setting the QLOGFILE environment variable, as
described in Section The final result of adding qlog support to MoQ and QUIC is that
logs of both protocols are written to a single file for each endpoint. To illustrate this, an excerpt
from one of the generated glog files is shown in Listing It also shows the tracing ID and
how the group ID is set to this value to link logs to the same MoQ session.
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// The Record Separator byte is represented here as <RS>

<RS>{
"time": 1749752980574,
"name": "quic-10:packet_sent",
"data": {
"header": {
"quic_bit": true,
"packet_type": "1RTT",
"packet_number": 6,
"dcid": "1370a84baa3f095a"
1,
"frames": [
{
"frame_type": "stream",
"stream_id": 4,
"offset": O,
"length": 3,
"fin": false

1,
"is_mtu_probe_packet": false
3,
"group_id": "046b03a70b43866ccaea2e04al2bc52a8d037426"
}
<RS>{
"time": 1749752980574,
"name": "moq-transfork-03:stream_created",
"data": {
"stream_type": "session"
3,
"group_id": "3562649542218034601"
}
<RS>{
"time": 1749752980574,
"name": "mog-transfork-03:session_started_created",
"data": {
"supported_versions": [
4278955268
1,
"extension_ids": [],
"tracing_id": 3562649542218034601
3,
"group_id": "3562649542218034601"
X

Listing 3.5: Excerpt from a generated qlog file with both MoQ and QUIC logs
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Visualization

The ability to generate qlog files containing events from both QUIC and Mo(Q enables the
creation of various insightful visualizations. Such visualizations can reveal MoQ’s scalability,
low-latency support, and relationship with QUIC. The glog data serves as the foundation for
generating the desired visualizations. This chapter examines qvis, a toolsuite designed to vi-
sualize QUIC and HTTP/3. Afterward, the development of an application able to construct
visualizations based on the generated MoQ and QUIC logs, named moq-vis, is discussed.

4.1 qvis

qvis is a QUIC and HTTP/3 visualization toolsuite [Marx, 2024] capable of importing qlog files,
among other formats, and served as the inspiration for mog-vis. Its home page allows users to
load files, including examples provided by the tool itself. The second page presents a sequence
diagram depicting the traffic between a QUIC client and server. Each endpoint is represented
by a vertical axis along which events are positioned according to their timestamp. packet_sent
and packet_received events are visualized as arrows connecting the two endpoints, annotated
with details such as the packet number space, packet number, and the frames contained in the
packet’s payload. Other events appear as labels alongside the corresponding axis. Clicking on an
arrow annotation or event label opens a modal window containing the full event details [Marx,
2024). An example of a qvis sequence diagram is shown in Figure

The third page displays congestion-related information. This includes a chart showing the
sent data over time, when that data was acknowledged, which data was lost, as well as the
connection- and stream-level flow control limits, the congestion window, and the bytes in flight.
Another chart on this page shows the Round-Trip Time (RTT) over time [Marx, 2024], as
illustrated in Figure [£.2]

The fourth page visualizes multiplexing behavior [Marx, 2024], which refers to how data from
multiple parallel QUIC streams is transmitted over time. Data may be transmitted sequentially
or in chunks scheduled via Round-Robin (RR) |[Marx et al., 2020]. An example is shown in

Figure [4.3]

The fifth page focuses on packetization, illustrating which frames and which streams’ data are
packed into each QUIC packet, as in Figure[£.4] Finally, the sixth page contains a statistics table
summarizing metrics such as the number of events and the counts of each QUIC frame type.
Many of these visualizations are interactive, revealing additional information on hover [Marx,
2024).

Developers can form hypotheses about potential issues using general-purpose tools such as
the sequence diagram and statistics table. More specialized views, such as the congestion,
multiplexing, and packetization charts, allow for deeper investigation. The adoption of glog

53
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and qvis within the QUIC community demonstrates the technology’s value; 12 of the 18 active
QUIC stacks support qlog. Multiple problems in different QUIC implementations have already
been detected and resolved using glog and qvis, demonstrating their effectiveness in improving
debugging capabilities [Marx et al., 2020].

4.2 Implementation

This section presents the implementation of mog-vis, a visualization application designed to
load and analyze qlog files from multiple endpoints, generating visual representations based
on the information contained in the traces. MoQ is designed to support scalable and low-
latency livestreaming; these characteristics are reflected in the visualizations. Scalability is
represented through a network graph (Section , while low-latency aspects are captured
in the latency charts (Section . In addition, a sequence diagram is included to visualize
protocol-level interactions (Section @ All visualizations are designed to be interactive, so
as not to overwhelm users with too much information on the screen. Additional details about
traces, specific events, or other data are available on demand. A minor drawback of qvis is
that it contains interactive elements without any visual indication of their interactivity. In
contrast, mog-vis makes interactivity apparent by highlighting elements on hover and changing
the mouse cursor.

Following the example set by qvis, the decision was made to implement moqg-vis as a web-based
application, ensuring accessibility without requiring users to install additional software. Due
to the complexity and custom nature of the visualizations, the D3 library was selected for its
expressiveness and flexibility in building interactive data-driven graphics. In order to keep the
visualization code maintainable and modular, the application uses the React framework, which
supports the development of reusable components . React integrates effectively
with D3 [D3, 2025]. The application is structured using Next.js [Next.js, 2025, a React-
based framework that facilitates efficient web application development. Styling is done using
Tailwind CSS |Tailwind CSS, 2025|, further enhanced with UI components, such as toggle
buttons and file inputs, from Flowbite 7 enabling a polished user interface
without spending too much time on styling. All code is written in TypeScript to improve
type safety and maintainability. The latest version of moq-vis is currently hosted on GitHub

Pages |Grispen, 2025].
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4.2.1 File Import

Before the qlog data can be visualized, it must first be imported into the application. The
homepage of mog-vis provides an input field that allows users to upload qlog files directly.
Additionally, a set of buttons is provided for loading predefined demo files, enabling users to
explore the visualizations without the need to generate or supply their own qlog data. Below
these elements, a list of the currently imported files is displayed. Each file must have a unique
name; duplicate file names are ignored to ensure distinguishable traces, as each file corresponds
to a single trace in the sequential file schema. An example of the homepage with several
imported files is shown in Figure |4.5

mog-vis: Media over QUIC Visualizations Files  Sequence  Charls

Import files

[ srovee. [ERTIRm

Only .sglog files are currently supported
Files won't be uploaded to the server

Import demo files

Import clock demo files Import clock with packet loss demo files Import large clock demo files

Imported files
() clockl1_pub.sglog () clock2_pub.sglog D clocks_relayl.sq... () clocks_relay2.sg...
() clock1_subl.sqlog () clock1_sub2.sql... D clock2_sub.sglog

Figure 4.5: mog-vis homepage with several imported files

File import is immediately followed by a parsing step. The raw contents of each glog file are
split using the Record Separator byte, and each resulting segment is parsed as an individual
JSON object using JavaScript’s built-in JSON parser. The application defines TypeScript
representations of the relevant data structures as specified in the glog main logging schema
[Marx et al., 2025a], the QUIC qlog events [Marx et al., 2025b], and the MoQ Transfork events
defined in this thesis. This type mapping enables strong typing and direct access to event
fields during visualization, and it facilitates early detection of malformed events, such as those
missing required fields.

Each imported file is represented as an interactive block in the file list. This block contains
the file’s name, a toggle button, and a delete button. The toggle button allows users to enable
or disable the file’s inclusion in the visualizations. Toggling a file triggers a re-render of all
visualizations on the page to reflect the updated file set. The delete button removes the file
from the list and, by extension, from all visualizations. If the file is needed again after deletion,
it must be reimported. Clicking anywhere else on the block opens a modal window displaying
the file details for the selected file, including its title and the common fields of the trace.

4.2.2 Network Graph

The network graph visualization aims to provide a high-level overview of all endpoints and the
connections between them, as inferred from the qglog traces. This representation offers insight
into the overall topology of the network and helps identify the connectivity of each endpoint,
including whether an endpoint is connected at all. Since MoQ Transfork is designed to scale
using relays in CDNs, this visualization is particularly valuable for understanding how endpoints
are interconnected. Figure shows an example of the network graph in moqg-vis.

The underlying data structure for the network graph is constructed using the set of enabled,
imported glog files. Group IDs from each trace are compared to identify which traces share the
same group identifier, indicating a connection between the associated endpoints. Connections
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Figure 4.6: Example of a network graph with some selected connections, annotations
in red were added afterward

are formed by linking the two corresponding nodes that contain only the glog events relevant to
their respective sides of the connection. Subsequently, an initial layout is computed to assign
default positions to each element in the graph. This layout is designed to offer a readable and
organized view immediately upon rendering, minimizing the need for manual adjustments. To
enhance usability for both small and large-scale networks, the graph supports zooming and
panning, allowing users to adapt the view to fit the screen comfortably.

FEach node in the graph is represented by an icon and a textual identifier. Since each endpoint
produces a single trace per qlog file, the filename is used as the node’s identifier. Icons are
assigned based on the custom main_role field to distinguish endpoint roles visually. Publishers
are represented with a desktop computer icon, subscribers with a monitor icon, pubsub end-
points with a laptop icon, and relays with a server icon. Nodes were initially color-coded by
role to provide additional differentiation. However, this approach was abandoned because it
made the graph visually overwhelming. Nodes remain draggable, allowing users to rearrange
the layout if the default positioning does not provide the best overview.

Edges in the graph represent connections between two endpoints as identified in the qlog traces.
Their start and end positions are dynamically calculated based on the current positions of the
two nodes they connect. Furthermore, edges are interactive: selecting an edge highlights it
in green and adds the corresponding connection to either the sequence diagram or the latency
charts, depending on the current page. Deselecting an edge reverts its color to gray and removes
it from the visualizations. Figure [£.6] shows a number of selected connections. The ability to
select which connections to visualize supports focused analysis. This is especially important
in the context of MoQ’s scalability. In large networks with many endpoints and connections,
visualizing all connections simultaneously in the sequence diagram or the latency charts would
be overwhelming, and it would make the visualizations more challenging to analyze. Therefore,
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allowing users to choose which connections to analyze ensures that the visualizations remain
interpretable.

4.2.3 Sequence Diagram

The sequence diagram is designed to provide a detailed overview of all the events occurring
within the selected connections. Events are displayed chronologically, with the earliest at the top
and the most recent at the bottom. Where applicable, related events across endpoints, such as a
packet_sent and a corresponding packet_received event, are connected visually to illustrate
the flow of the connection. The top of a sequence diagram can be seen in Figure 4.7 Another
reason for not visualizing all connections in the network by default is that some endpoints, such
as relays, could have more than two connections. This decision avoids visual clutter, as each
endpoint can only clearly display a maximum of one connection to its left and one connection
to its right in the diagram layout without introducing overlap. As such, users must explicitly
select which connections to visualize via the network graph.

Sequence diagram

() Show QUIC events
() Show Media over QUIC events

clock_pub.sglog relay.sglog clock_sub.sglog

@
15

Figure 4.7: Example of the top of a sequence diagram showing two connections be-
tween three endpoints, the packets shown contain the QUIC handshake data (the right
connection has not started yet)

The internal data structure of the sequence diagram is built based on the user’s current selection
of connections. Each event is assigned an event number, which determines its vertical placement
along the corresponding endpoint’s axis. These numbers are calculated such that events with
identical timestamps are rendered on the same horizontal level, where possible. An exception
to this arises when two events with the same timestamp are emitted by the same endpoint,
resulting in overlapping events. This layout optimization makes it visually more apparent when
events happen simultaneously and reduces the amount of vertical space needed. When the set
of selected connections is modified, either by adding or removing a connection via the network
graph, the event layout must be recalculated. Adding a new connection may insert events that
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belong in the middle of other events in the diagram, while removing a connection leaves unused
vertical space. Recomputing event numbers upon each change ensures visual consistency and
compactness but introduces additional computational overhead.

The sequence diagram consists of one vertical axis per endpoint, labeled at the top with the file-
name corresponding to the endpoint’s glog file. Events belonging to each endpoint are rendered
along these axes based on their event numbers and are categorized into three types: regular
events, message events, and half message events. Each type is visualized differently:

e Regular events are standalone and rendered as blocks on the axis with the event name
and timestamp displayed alongside. These are currently not used since all logged events
are message events.

e Message events are associated with a counterpart on the opposite endpoint, such as ‘cre-
ated” and ‘parsed’ event pairs in MoQ. These are visualized with an event block and a
timestamp on both axes belonging to the endpoints involved in the message. The event
blocks are similar to the regular events, but they omit the name since the name is placed
on an arrow connecting the event blocks. The arrow shows the direction of the message
flow (for instance, by going from the ‘created’ to the ‘parsed’ event). These events can be
seen in Figure [£7]

e Half message events occur when a counterpart of a message event is missing. If the ‘cre-
ated’ event is absent, a question mark is shown at the arrow’s origin, signaling potentially
missing log data. An example of this is shown in Figure [f.8a] If the ‘parsed’ event is
missing, a cross is displayed at the arrowhead to indicate potential data loss, such as from
packet loss. This variant is displayed in Figure

41
Packet_sent

41

42

288
X

.- »-
.-

? .-
.- .-

(a) Half message event with the ‘created’ event missing (b) Half message event with the ‘parsed’ event missing

Figure 4.8: The two kinds of half message events

A special visualization form is used to visualize MoQ message events due to an overlap between
MoQ and QUIC message events. This overlap commonly arises when a MoQ message is cre-
ated, after which a QUIC packet is sent, the QUIC packet is then received, and finally, the MoQ
message is parsed. If visualized with traditional arrows, this pattern leads to excessive overlap,
making it difficult to see what exactly is happening. This overlap is shown in Figure [£.94]
To address this, Mo(Q message events are alternatively displayed as semi-transparent blocks
spanning from the ‘created’ to the ‘parsed’ events between the axes of both endpoints of the
connection. The background is made semi-transparent to create a visual distinction when mul-
tiple MoQ events overlap. Embedded arrows on the solid top and bottom borders of the blocks
indicate message flow. Block widths vary slightly to distinguish overlapping MoQ messages
further. QUIC events are rendered on top of the blocks to make them still accessible. This
block format also aids in understanding which QUIC events occurred during the transmission
of a given MoQ message, as any QUIC events falling within the block’s bounds are considered
to have happened during that time span. However, it is worth noting that some QUIC packets
may coincidentally be logged during that interval, such as packets containing only ACK frames.
Figure [£.9b] shows this alternative display of MoQ messages.
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Figure 4.9: The same sequence of events visualized in two different ways
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All of the events within the sequence diagram are interactive. Clicking regular events, the small
event blocks of message events and half message events, and the arrows of half message events
opens a modal window displaying the raw qlog data for that event. Clicking the arrows of
message events or the transparent blocks of Mo(Q message events opens a modal window sum-
marizing both related events and providing additional metadata such as latency. An example
of this summary can be seen in Figure

The colors bound to each event are dependent on the event type. QUIC events are rendered
in green, while MoQ events are colored based on the stream type in which they occur. Session
stream messages are dark blue, announce stream messages are dark purple, subscribe stream
messages are light purple, info stream messages are orange, fetch stream messages are pink,
and group stream messages are yellow. The exact color codes used for the MoQ streams are
from a data visualization color palette generator [Learn UI Design, 2018].

Finally, two toggle buttons located above the diagram allow the user to enable or disable
the rendering of QUIC and Mo(Q events, respectively. Each toggle causes the diagram to be
re-rendered to either introduce or remove the corresponding events. When QUIC events are
disabled, MoQ events default to the simpler arrow representation instead of blocks, as the
added context provided by the block format becomes unnecessary, and the use of arrows is
clearer.

4.2.4 Latency Charts

The latency charts are designed to provide an overview of the latency characteristics of estab-
lished QUIC connections and MoQ sessions. This visualization is particularly relevant in the
context of MoQ, which aims to support low-latency livestreaming scenarios. By visualizing the
latency, users are able to assess the performance of connections and identify potential issues.
Two example charts are shown in Figure

The charts are generated based on the connections selected in the network graph. A connection
pair is formed for each selected connection, consisting of the QUIC connection data and the
corresponding Mo(Q session data. Subsequently, a separate latency chart is then created for
each connection pair. Each chart is labeled with a title indicating the endpoints involved in the
respective connection. The left and bottom axes are labeled clearly to indicate the displayed
information and their respective units. The x-axis shows the elapsed time since the start of the
connection, while the y-axis represents the latency in milliseconds. Tick marks with numerical
values are included along both axes to aid interpretation.

Latency values are derived by calculating the time difference between paired ‘created’ and
‘parsed’ events. The x-coordinate (time) for each data point is determined by the normalized
timestamp of the ‘created’ event, which is defined as the time elapsed since the first event of
that connection. The y-coordinate (latency) corresponds to the time difference between the
‘created’ and ‘parsed’ events. Each latency chart presents this data as a sequence of circular
data points. A line is drawn between consecutive points to illustrate the progression of latency
over time.

The latency charts are also interactive. Users can zoom and pan along the x-axis, enabling both
high-level overviews and detailed inspection of specific time intervals. As the user zooms or
pans, the tick marks and their corresponding values on the x-axis dynamically update to reflect
the current viewport. When the cursor hovers over a data point, the point is slightly enlarged
for emphasis, and a tooltip is displayed. This tooltip provides precise information about the
corresponding latency value and timestamp. This interactivity is shown in the second chart
of Figure .11] To enhance interpretability, two toggle buttons are provided to independently
control the visibility of QUIC and MoQ latency data. These toggles are color-coded to match
the data points they correspond to and thus also serve as a visual legend. When toggling
visibility, the axis ranges remain fixed to prevent visual shifts in the data layout.
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Message summary

"time_sent": 1749752980448,
"time_received": 1749752980488,
"latency": "4@ ms",
"name": "quic-1@:packet_sent / quic-10:packet_received",
"data": {
"header": {
"quic_bit": true,
"packet_type": "1RTT",
"packet_number": 1,
"deid": "6@Tc4990f3ea@bs82"
3,
"Frames": [
{
"frame_type": "handshake_done"
I
{
"frame_type": "ack",
"ack_delay": 115,
"acked_ranges": [
[
e,
1

"frame_type": "crypto",
"offset": 0,
"length": 162

"frame_type": "retire_connection_id",
"sequence_numbexr": @

1)
"ig_mtu_probe_packet": false

by
"group_id": "@46b@3ar0b43866ccacaZe@dallbcb2a8d@37426"

Figure 4.10: Example of a message summary showing the sent time, received time,
latency, names of both events, and the common data



4.2. IMPLEMENTATION

Latency charts
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Chapter 5

Evaluation

The visualization application, mog-vis, is evaluated using three demonstration scenarios. The
first demo features a simple topology consisting of one publisher, one relay, and one subscriber.
The second demo replicates this setup but introduces packet loss. The third demo models
a more complex scenario, comprising two publishers and three subscribers, two of which are
subscribed to the first publisher and the third to the second publisher, as well as two relays.
In this configuration, the first relay connects to both publishers and the second relay, while
the second relay forwards data to all three subscribers. The last demo is the one shown in

Figure

All demos utilize the clock application from moq-rs. In this application, a publisher initially
sends the current date in the format “YYYY-MM-DD hh:mm:” (without the seconds) at the
start of a subscription or at the beginning of a new minute. Thereafter, the current seconds value
is transmitted every second. Video data is not used in these demos, as the subscribers operate
over mog-web, which employs WebAssembly to run MoQ Transfork’s Rust implementation
within the browser. Due to browser security restrictions, it is not possible to directly create or
write to files without user interaction. Since logging occurs exclusively in the MoQ Transfork
and QUIC layers, which have no knowledge of the data contained in Frames, and the use of
video would primarily impact the volume of transmitted data, the decision was made to use the
clock application for evaluation. Furthermore, video streams tend to generate a large amount
of qlog data at high speed, and mog-vis is currently a proof of concept that is not optimized
for handling large-scale qlog datasets. All demos were generated with the help of clumsy |[Tao,
2022], a network manipulation tool that enables the introduction of artificial latency and packet
loss. In these scenarios, clumsy was used to simulate latency in all demos and to introduce packet
loss in the second demo.

5.1 Inefficient Packetization

One of the observations from the first demo is that MoQ frequently sends multiple QUIC
packets in rapid succession rather than aggregating the data into a single packet. This behavior
is clearly visible in the GROUP and FRAME messages of the left connection in Figure [5.1

In this example, the first QUIC packet contains only the 3-byte payload of the INFO message.
The second packet initiates a new QUIC stream via WebTransport and contains the 3-byte
WebTransport unidirectional stream header solely. The third packet carries just a single byte
of application data, representing the stream type of the new Group Stream. The fourth packet
contains the Group header, which is 2 bytes in this case. The fifth packet holds the length and
data of the first frame, which is the current date string without the seconds. This string is 17
characters long, encoded in 17 bytes, plus one byte for the length field, yielding 18 bytes of
data in total. The sixth packet contains the length and data of the second frame, two second
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characters, resulting in 3 bytes including the length byte. The remaining two packets contain
only acknowledgments.

As shown by the timestamps in the figure, all of these packets are sent within two milliseconds.
In contrast, the right-hand connection in Figure transmits all the same data, except for
the INFO message payload, totaling 27 bytes, in a single QUIC packet (the first packet on the
right contains only acknowledgments and is sent earlier). Similar behavior is observed when the
second Group Stream is initiated: in this case, the left connection sends only two QUIC packets.
One with all the metadata of the new Group Stream and the closure of the previous one, and
another with the complete date string split into two frames. Meanwhile, the connection on the
right splits this data across multiple packets in the same way as the first scenario.

The sequence diagram further indicates that this is not explicitly defined behavior: in some
cases, multiple MoQ messages are sent within one or two packets. Similar patterns are seen for
other message types, such as SESSION_CLIENT and SUBSCRIPTION_STARTED, though it is most
apparent in the example above.

The drawback of this behavior lies in the significant protocol overhead it introduces. In many of
these cases, the MoQ messages contain only a few bytes of application data. Each 1-RTT QUIC
packet uses a short header, and, since short-header packets lack a length field, they cannot be
coalesced into a single UDP datagram [Iyengar and Thomson, 2021]. Consequently, each packet
incurs the additional overhead of a UDP header and the headers of lower-layer protocols.

Whether this originates from the Quinn implementation or from how Mo(Q Transfork inter-
acts with Quinn remains unclear and requires further investigation. Nonetheless, this finding
demonstrates that the sequence diagram is an effective tool for identifying unwanted behavior,
an important first step toward resolving problems.

5.2 Packet Loss

When analyzing the sequence diagram of the demo with packet loss, it becomes apparent how
QUIC handles lost packets while MoQ continues operating normally. This process is illustrated

in Figure [5.2]

In this example, MoQ Frame data is sent but lost in transit (first packet). After approximately
160 milliseconds without receiving an acknowledgment, the sender transmits two packets, each
containing only three PADDING frames. The receiver then acknowledges the receipt of three
packets sent prior to the lost packet and the two packets sent after it. Upon receiving these
acknowledgments, the sender detects the packet loss and retransmits the lost packet. Since
QUIC does not reuse packet numbers within a given packet number space, the retransmission
is assigned a new packet number [Iyengar and Thomson, 2021]. The first retransmission is also
lost, triggering the same process again. The second retransmission is successfully delivered,
allowing the Frame data to be parsed and the corresponding block in the visualization to be
closed.

This retransmission behavior is defined in [Iyengar and Swett, 2021]. When an acknowledgment
for ack-eliciting packets is not received within a specified time interval, a Probe Timeout (PTO)
occurs, prompting the sender to transmit one or two probe datagrams. These probe datagrams
must contain ack-eliciting packets, defined in [Iyengar and Thomson, 2021] as QUIC packets
containing frames other than ACK, PADDING, and CONNECTION_CLOSE, which trigger the recipient
to send an acknowledgment.

In the observed example, however, the probe packets contain only PADDING frames and thus
should not be ack-eliciting. Nevertheless, the packets are acknowledged immediately, as seen
from the timestamps. The most plausible explanation is that these packets also include an
IMMEDIATE_ACK frame, which is an ack-eliciting frame type defined in [Iyengar et al., 2025], an
RFC draft extending QUIC. Quinn already implements IMMEDIATE_ACK, but these frames are
not currently logged in qlog, as they are not (yet) part of the QUIC qlog specification.
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g

Figure 5.1: The left connection sends several small QUIC packets, the right connection
groups them together in one QUIC packet
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Packet loss during Mo(Q message transmission significantly increases the latency of these mes-
sages. While QUIC reliably retransmits lost data, MoQ must wait until the missing data arrives.
Consequently, QUIC’s measured latency remains relatively stable, whereas MoQ’s latency de-
pends on how quickly QUIC recovers from the loss. This effect is visible in Figure where all
QUIC packets have latencies of around 40 milliseconds, while the corresponding Frame block
spans approximately 500 milliseconds.

The latency charts make this effect even clearer. As shown in Figure [5.3] packet loss during
MoQ message transmission is visible as distinct latency spikes. These spikes indicate the added
time MoQ must wait for QUIC’s retransmission process to complete.

Latency charts
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Figure 5.3: Increased MoQ latency during packet loss

Similar behavior is observed in the other two demos when connections are terminated abruptly
at the end (by pressing Ctrl 4+ C in the console). In the first demo, the final Frame sent by the
relay to the subscriber is never received. The QUIC packet carrying this Frame is marked as lost
because the subscriber closed the connection before the packet arrived. Approximately 140 ms
later, the relay transmits two QUIC packets containing three PADDING frames and, presumably,
an IMMEDIATE_ACK frame. When no acknowledgment is received within roughly 260 ms, the
relay retransmits two new QUIC packets with the same frames. This process repeats a third
and final time after about 510 ms without acknowledgment. The third instance of this process
is the final one in this case, since the relay was closed manually as well, not necessarily because
Quinn limits it to three attempts. Note that the time interval between each instance of this
process approximately doubles with each repetition.

5.3 Network Graph Connections

The network graph provides a quick visual overview of the network’s structure. One practi-
cal use case is comparing the actual network layout to the expected topology. For example,
Figure shows a network consisting of a small subnet with two nodes, a larger subnet with
seven nodes, and a single node not connected to any other nodes. If the unconnected node
were supposed to be linked to the relay of the small subnet, the network graph would make this
immediately apparent, allowing more in-depth debugging to follow.

Currently, it is not possible to display the events of an individual node in the sequence diagram,;
only connections can be visualized. Adding node-level visualizations to the sequence diagram
could enhance debugging by revealing, for instance, that connection attempts were made but
the packets were never received.

A current limitation is that the network graph does not distinguish between multiple connections
between the same two nodes. An edge is drawn if there is at least one connection between the
nodes, and all such connections are represented as a single edge. As a result, the sequence
diagram will display all connections between those nodes. On the other hand, the latency
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charts will only display one of them. This is an issue that can be improved by adapting the
graph to show multiple connections.

Network graph
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Figure 5.4: Network graph showing two separate subnets and an unconnected node
(nodes are manually rearranged; not the default layout)

5.4 Multiple MoQ Sessions

When inspecting the sequence diagram between the two relays in the third demo, there seemed
to be a bug with the visualization of the MoQ message event blocks. A closer examination
revealed that the issue was caused by events from three distinct MoQ sessions, corresponding
to three separate QUIC connections—overlapping in time. The current implementation does
not account for multiple simultaneous sessions when calculating block widths or determining
event ordering.

As a result, some overlapping blocks are rendered with identical widths, while certain QUIC
events end up positioned beneath MoQ event blocks, making them difficult to interact with.
Both of these issues are illustrated in Figure [5.5]

Addressing this problem will require improvements both in the network graph, as discussed in
Section [5.3] and in the sequence diagram’s rendering logic to properly handle multiple sessions
when the user chooses to display more than one.

5.5 Relay Functionality

The functionality of the relays is most clearly demonstrated in the third demo. In this scenario,
there are two publishers, with subscribers to both, requiring the relays to forward application
data from both publishers.

The relays’ behavior becomes clear when viewing the end-to-end events from the first publisher
to the first subscriber, as shown on the network graph in Figure First, the relays establish
a connection with each other. Next, the publisher initiates a MoQ session with the first relay
and announces the available Tracks. The first relay forwards this announcement to the second
relay, which in turn sends the same announcement back to the first relay, even though the first
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Figure 5.5: Current visualization issues when displaying multiple concurrent MoQ
sessions

relay already originated this information. Whether this is intentional or an oversight requires
further investigation.

Because the sequence diagram displays all events between two endpoints, announcements from
the second publisher are also visible between the two relays, even when the second publisher’s
connection is not explicitly displayed here. While this behavior may be unwanted when focusing
strictly on an end-to-end subscription, it can help analyze relay interactions.

After the announcement phase, the subscriber connects to the second relay and starts a sub-
scription to the first publisher’s Track. This subscription request is forwarded over both relays
to the publisher. The publisher then sends data in FRAME messages, which are forwarded hop-
by-hop to the subscriber. Between the relays, the sequence diagram also reveals subscriptions
and data from the second publisher. For example, when the first publisher sends a FRAME, the
second relay forwards two: one from the first publisher and one from the second publisher. This
is illustrated in Figure [5.6

Finally, note that the subscription from the other subscriber to the first publisher is not trans-
mitted between the relays in this case, since the second relay already receives that data and
can forward it directly to both subscribers.



5.5. RELAY FUNCTIONALITY

7398

7399

-

frame

7444

7444

7444

7444

res ()

the subscriber

7444

7444

frame

7476

7476

7476

7478

7478

7476

7476

frame

>
7653
7567 . W

Figure 5.6: End-to-end data flow starting from the publisher, over the relays, towards

71

7626

7626



Chapter 6

Conclusion

This thesis investigated using qlog-based logging and visualization techniques to analyze and
debug MoQ traffic. The focus was on visualizing MoQ’s scalability, latency behavior, and its use
of QUIC to achieve these goals. The developed visualizations were evaluated through multiple
demonstration scenarios. The results of these evaluations provide the answers to the research
questions.

For clarity, the research questions are restated below:

1. How can qlog-based logging and visualization techniques support the analysis and debug-
ging of MoQ?

(a) How can MoQ’s scalability be effectively represented in visualizations?
(b) How can MoQ’s low-latency support be captured and illustrated?
(¢) How can MoQ’s use of QUIC be visualized to highlight protocol behavior?

2. In what ways can visualizations reveal issues in MoQ implementations and deployments?
(a) How can inefficient packetization be identified and analyzed through visualizations?
(b) How can packet loss be seen in the visualizations?
(c) How can topology issues be identified?

To address the first question:

The evaluation demonstrates that qlog-based visualizations can provide both a broad and de-
tailed perspective on MoQ’s operation. The network graph gives an immediate overview of the
network’s topology, scaling effectively from simple two-node setups to more complex deploy-
ments containing multiple relays, publishers, and subscribers. Latency charts make it possible
to spot patterns over time, capturing not only MoQ’s low-latency operation under normal con-
ditions but also deviations caused by retransmissions. Users can zoom and pan to focus on
specific time windows for a more granular examination. The sequence diagram offers an event-
level view, showing the message flow of a connection, MoQ’s interaction with QUIC, and event
metadata. Importantly, these tools are interconnected: the network graph can be used to select
specific connections for deeper inspection in the latency charts and sequence diagram, allowing
a gradual zoom from high-level topology down to individual packets and frames. Together,
these tools offer high- and low-level perspectives on MoQ’s inner workings, enabling in-depth
analysis and debugging.

For the second question:

Inefficient packetization is visible in the sequence diagram when multiple QUIC packets, each
carrying only a few bytes, are sent in rapid succession, as described in Section [5.1] Packet
loss is revealed when packet_sent events occur without being acknowledged, marked by red
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crosses in the diagram; when these packets carry MoQ data, corresponding latency spikes also
appear in the latency charts, as indicated in Section Topology issues are detected via the
network graph, which makes missing or unexpected connections quickly noticeable, as shown

in Section .3

While the current visualizations already enable valuable insights, they are not without limita-
tions. Improvements could include better handling of multiple MoQ sessions in the sequence
diagram (Section and better connection differentiation in the network graph (Section [5.3)).
Nonetheless, the work presented here forms a solid foundation, demonstrating that glog-based
approaches can be a powerful aid in analyzing, debugging, and improving MoQ implementations
and deployments.

6.1 Future Work

Future work primarily involves enhancing existing visualizations, logging additional qlog events,
and introducing new types of visualizations.

The network graph could be improved by displaying the number of MoQ sessions between any
two endpoints and allowing users to select each individual connection. This would give finer
control over what is displayed in the sequence diagram and latency charts. Another valuable
addition would be the ability to show the end-to-end flow of subscriptions on the graph directly.
Such a feature would immediately make it clear which subscribers are connected to which
publishers and what subscriptions each relay handles. Providing an option to select specific
subscriptions for visualization would also enable users to isolate and examine particular end-
to-end flows in greater detail.

The current set of MoQ-specific qlog events is limited to messages exchanged between MoQ end-
points. Expanding this to include events related to adaptive bitrate (ABR) decisions, congestion
control state changes, and other protocol-level information would give a more complete view of
MoQ’s behavior. This additional data could also enable the creation of new visualization types,
such as charts correlating bitrate changes with network conditions or visual representations of
congestion window dynamics, similar to qvis.

6.2 Self-Reflection

Overall, I am satisfied with the outcome of this project and the insights gained. The visualiza-
tions developed meet the core objectives of the thesis, and the evaluation demonstrates their
value for analyzing and debugging MoQ. Working closely with the implementation significantly
deepened my understanding of various protocols, especially QUIC and MoQ, which proved in-
valuable when interpreting the logged data. This project was the largest I have worked on so
far, and managing its scope was challenging but ultimately rewarding.

At the start, the writing process felt difficult, as I have never considered it one of my strong suits.
The hardest part was often translating my thoughts into clear words. However, as the thesis
progressed, writing became easier. Initially, I read many papers and RFCs, marking important
paragraphs for later reference. In hindsight, it would have been better to immediately integrate
these insights into the thesis, as I sometimes forgot the exact reason I marked a passage or the
specific point I wanted to emphasize.

Looking back, I would also approach the workflow differently. Too much emphasis was placed
on developing the implementation first, followed by writing the thesis. This created a separation
between the technical work and the documentation process, meaning that some insights had
to be rediscovered or rephrased later. Starting the writing process earlier and working in
parallel with the implementation would have allowed knowledge to be captured immediately,
making both the thesis writing smoother and the implementation more focused. This parallel
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approach might also have revealed missing features or requirements earlier, improving the final
result.

Despite these challenges, I am happy with both the technical achievements and the personal
growth this project brought. It strengthened my technical expertise, improved my writing, and
gave me valuable experience in managing a large and complex research project from start to
finish.
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