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Abstract

Blind image deconvolution asks to unmix two unknowns, the latent sharp scene and the blur
kernel (point-spread function, PSF), from a single, already degraded photograph. The problem
is famously ill-posed: many image—kernel pairs can reproduce the same observation, and naive
optimisation often collapses to trivial answers |1, [2]. This thesis addresses the challenge from a
deep-learning perspective tailored to astronomy, where diffraction and atmospheric turbulence
routinely veil faint structures and an explicit PSF is rarely measured.

Two complementary neural routes are investigated. First, SelfDeblur, a zero-shot method
pairing an encoder—decoder “image generator” with a fully connected “kernel generator”, is
employed. Both networks are trained solely on the test image, with architectural biases acting
as deep priors that steer optimisation away from the delta-kernel pitfall while enforcing physical
constraints via soft-max normalisation of the kernel.

Second, a supervised Convolutional Neural Network (CNN) pipeline is developed to regress
PSFs and blur kernels directly, with the explicit goal of supplying accurate kernel estimates for
subsequent non-blind deconvolution and recovering the latent image, typically the primary focus
of blind deconvolution systems. Therefore, a modular data engine augments high-resolution
natural photographs, convolves them with a diverse library of synthetic and telescope-derived
PSFs (Gaussian, Moffat, Airy-disk, and real telescope kernels), and injects controlled noise
to mimic acquisition conditions. Two network variants, a lightweight convolution-attention
encoder and a fully connected regressor, enable systematic evaluation of how inductive bias,
depth, and a two-stage loss schedule (MSE warm-up followed by SSIM refinement) impact
stability and the identifiability challenge.

These investigations reveal several insights. First, deep-prior methods such as SelfDeblur seem
capable of recovering realistic PSFs without external training data, albeit with considerable
computational overhead. Second, feed-forward regression offers orders-of-magnitude speedups
but risks mode collapse, frequently reverting to an average blur when strong structural cues are
absent. Finally, the results demonstrate that the interplay between network architecture and
the staged loss schedule is crucial, and only specific combinations enable effective latent-image
recovery.

By clarifying these trade-offs and pinpointing the factors that alleviate the ill-posedness of blind
deconvolution, this work offers valuable insights for designing more robust deblurring pipelines
and could guide future efforts to recover sharper details from heavily blurred images.
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Chapter 1

Introduction

1.1 Problem statement and research questions

In modern imaging systems, a variety of factors such as optical aberrations, atmospheric tur-
bulence, finite-aperture effects (which induce diffraction artefacts, namely the ring-like ripples
and attendant loss of resolution caused by wave interference at the aperture edge), and detector
imperfections, inevitably degrade the sharpness and fine-scale detail of a captured scene.

Mathematically, one often expresses the resulting observation y as
y=k® r+n,

where z is the latent sharp image, k is the so-called Point Spread Function (PSF) that encodes
how a single point of light is spread by the system, ® denotes two-dimensional convolution,
and n models additive noise. Restoring x from y therefore requires simultaneously “undo-
ing” the blur imparted by k and suppressing the noise n. This process is typically known as
deconvolution.

A fundamental difficulty arises from the fact that the PSF & is usually unknown. This un-
certainty transforms the straightforward non-blind deconvolution problem into blind decon-
volution, where both the latent image and the blur kernel must be estimated from the same
observation. Without accurate knowledge of k, inversion techniques struggle to recover fine
detail, and naive approaches often amplify noise or produce artifacts. Consequently, blind
deconvolution remains a notoriously ill-posed problem, demanding more robust and adaptive
strategies to reliably restore high-quality images.

Traditional methods like Wiener and Richardson—Lucy deconvolution have long served as bench-
marks in the field. Wiener deconvolution [3], based on the Wiener filter, operates efficiently
in the frequency domain but requires exact knowledge of both the PSF and the noise power
spectrum. Richardson—Lucy deconvolution, independently introduced in two papers |4} 5], is an
iterative maximum-likelihood algorithm that enforces non-negativity and is somewhat more tol-
erant of mild PSF mismatches (e.g., via early stopping or simple regularization), which explains
its popularity in astronomical imaging.

However, both Wiener and unmodified Richardson—Lucy deconvolution fundamentally presup-
pose a known PSF; they do not estimate the blur kernel and thus cannot directly address blind
deconvolution, where k£ must be recovered alongside the latent image z. In the setup of this
thesis, where the PSF is entirely unknown, these classical techniques suffer from severe ill-
posedness, ringing artifacts, and convergence to trivial solutions, motivating the development
of more robust, data-driven approaches.

Furthermore, recent advances in deep learning ([6], [7]), particularly through CNNs, have
opened new avenues for addressing these challenges. By learning complex blur representations
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1.2. MATHEMATICAL BACKGROUND

directly from data, CNN-based approaches offer a promising alternative to traditional iterative
deconvolution methods. In numerous practical settings, a single dataset may encompass multi-
ple distinct point-spread functions, none of which can be directly observed. Estimating such a
set of kernels purely from blurred images is notoriously ill-posed because any image—kernel pair
that shares the same convolution can masquerade as a solution. This thesis introduces a flexible
experimental pipeline for training and evaluating multiple models, with the primary objective of
estimating unknown blur kernels rather than directly restoring latent images alongside the blur
kernels. This pipeline, together with selected model architectures, is evaluated for its ability to
estimate this unknown blur kernel. Additionally, SelfDeblur [8] is examined as a representative
blind-deconvolution technique. Subsequent chapters present the pipeline’s overall architecture,
detail the implementation of chosen model variants, explore the inner workings of SelfDeblur,
and assess their potential to enhance image restoration in practical applications.

Drawing on the foregoing motivation and rationale, this thesis addresses three principal research
questions:

e Can a CNN be designed to accurately learn and estimate multiple convolution kernels
solely from blurred images, despite the intrinsic ambiguities of the convolution process?

e What architectural modifications or training strategies (e.g., regularization techniques,
loss functions) are required to mitigate the identifiability probler.rﬂ in blind deconvolution?

e Can the SelfDeblur algorithm be adapted (through changes in kernel parameterization,
training data augmentation, or regularization) to recover a wider range of blur kernels
than the predominantly motion-blur kernels studied in the original work, and can it do
so effectively on astronomical imaging data?

Lastly, the structure of this thesis is organized as follows: this chapter continues with a brief
summary of the research questions and key concepts. Chapter [2|is dedicated exclusively to Self-
Deblur, the only blind-deconvolution method reviewed in this thesis. Chapter [3] then outlines
the proposed methodology, detailing the underlying framework, datasets, and experimental
pipeline. Chapter [ presents and discusses the experimental results. Finally, Chapter [5] con-
cludes the thesis by summarizing the main findings, noting limitations, and suggesting directions
for future research.

1.2 Mathematical background

To ground the reader in fundamentals, the next section provides the mathematical background
for convolution, deconvolution, the delta kernel and blind deconvolution.

Convolution is a mathematical operation that combines two functions to produce a third
function describing how the shape of one is modified by the other. In signal and image processing
[9], it models the action of a kernel (or impulse response) that is “slid” across the input, with
their pointwise products summed at each position. Mathematically, the continuous convolution
of functions f and g is defined as

(f*g)(t) = [ Y ) gl — 1) dr

In imaging applications, this continuous form is discretised over pixels. If x[é, j] is the true
scene and k[m,n] the point-spread function (PSF), then

(kx2)[i,j] = Zk[m,n]x[l —m,j—n,

m,n

1The identifiability problem refers to the fact that multiple (z, k) pairs can generate the same blurred obser-
vation y = k * x, making the true image—kernel pair non-unique.



CHAPTER 1. INTRODUCTION

which precisely captures how each scene point is “smeared” into its neighbourhood by the optics
and sensor.

A degenerate case of blur is given by the delta kernel, defined as

] — {1, (m.n) = (0,0),

0, otherwise.

Convolving any image x with § leaves it unchanged, i.e. ()[4, j] = «[¢, j]. Blind-deconvolution
methods must guard against this trivial solution, which mathematically corresponds to a kernel
that explains no blur.

Given an observed image corrupted by blur and noise,
y=k® r+n,

classical (non-blind) deconvolution assumes that k is known and recovers x by solv-
ing
& =argmin ||k *z — y|3 + A ®(z),
T

where ®(z) is a regulariser (e.g. Tikhonov or total variation) and A > 0 balances data fidelity
against the prior. In contrast, blind deconvolution estimates both image and kernel via

(&, k) = argmin ||k 2 — y[5 + A2 () + 7V (k),

where W(k) encodes kernel priors (e.g. non-negativity, unit sum, sparsity). Because many (z, k)
pairs can explain the same y, this joint problem is severely ill-posed, and specialised algorithms
are required.

1.3 Kernels and their archetypes

Kernels are typically implemented as small, two-dimensional arrays of real numbers when
applied to a sampled image, but the coefficients themselves can be generated by sampling a
continuous function of two variables (often separable, e.g. a Gaussian) rather than specified
one-by-one [9, Sec. 3.4.4, Example 2]. The size of this kernel (e.g. 3 x 3 or 5 x 5) defines the
neighbourhood of pixels around each target pixel that will contribute to the new, filtered value.
Each coefficient in the kernel acts as a weight that determines how strongly the corresponding
neighbour in the input image influences the output pixel. A simple example of how this works
can be seen in Figure which depicts a 3 x 3 filter kernel centred on a pixel: each of the nine
kernel weights w(r, ¢) is multiplied by the corresponding neighborhood pixel f(z 4,y + c); the
products are summed, and this single value replaces the central pixel as the kernel slides across
the entire image.

In more general terms, when applying a kernel to an image through a linear spatial filtering
process, one effectively performs a sum-of-products operation. Conceptually, the kernel is “po-
sitioned” over a region of the image so that its centre aligns with the pixel being updated.
Each kernel coefficient is then multiplied by the corresponding image pixel intensity within
the kernel’s coverage. These products are summed, and the resulting value is assigned to the
output image at that central pixel location. By sliding the kernel systematically over every
valid position in the image, a new, filtered image is produced. This procedure can emphasize
or suppress specific image features (such as edges, noise, or smooth regions) depending on the
chosen kernel values.

Mathematically, if f denotes the original image, w the kernel, and g the filtered image, the
operation at a pixel (x,y) is typically expressed as:

1 1

g(xay)zz Z w(r,c)f(m—r,y—c).

r=—1lc=-1



1.8. KERNELS AND THEIR ARCHETYPES

assuming a 3x3 kernel. This equation is the strict convolution of a 3 x 3 kernel with image f:
the minus signs (or, equivalently, the pre-flipped kernel indices) implement the required 180°
rotation of the kernel before the sum-of-products step. If the minus signs are dropped, the
operation becomes correlation. In practice many texts use the term “convolution” for both,
because the two coincide whenever the kernel is spatially symmetric.

Because each kernel coefficient can be chosen to highlight or suppress specific frequency com-
ponents of the image, kernels are key to tasks such as smoothing (where coefficients might all
be positive and sum to 1), sharpening (where negative coefficients highlight transitions), and
edge detection (where the kernel emphasizes intensity gradients). The concept of “sliding” the
kernel across the entire image, systematically multiplying and summing local neighborhoods,
underpins the vast majority of linear filtering techniques in digital image processing.

K]mugu origin
[T -
Kernel origin —.~] -\

& / H\
Magnified view showing filter kernel
i Filter kernel] .~ | coetficients and corresponding pixels

. - Il in the image
4 /
Image pixels J /
W wi(=1,0)

wil,=1) | w0 wii 1) | Filter kemel, w(s.z)

wi 1,0)

AN

Kernel coefficients

Pixel values under kernel L

when it 1 centered on (x, v)

Figure 1.1: Illustration of linear spatial filtering with a 3 x 3 kernel. The image coor-
dinate origin is at the top left, while the kernel is drawn with its origin at the centre for
convenience; this choice is common but not required, and kernels need not be spatially
symmetric. Pixels are rendered as square tiles solely to make the neighbourhood covered
by the kernel easy to see. This image and caption were adapted from the aforementioned
book: "Digital Image Processing, Global Edition’ Eﬂ

Kernel archetypes encompass a wide array of filters; however, academic literature (ﬂgﬂ, )
typically highlights three primary types: smoothing (low-pass) filters, sharpening (high-pass)
filters, and edge detection (derivative) filters.

Smoothing kernels, sometimes called low-pass filters, are designed to reduce high-frequency
variations such as noise or sudden changes in intensity. By blending or “averaging” neighboring
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CHAPTER 1. INTRODUCTION

values, they provide a gradual transition between pixel intensities and effectively remove fine
details. Common examples include the Gaussian kernel, which applies a weight based on the
distance from the center pixel to achieve a softly blurred appearance, and simpler kernels like
box or averaging filters, which distribute equal weighting among all neighbors in a specified
neighborhood. Figure displays an example of using a Gaussian Kernel to smooth out an
image in the first row.

Kernel values

(a) Gaussian kernel (b) After smoothing

Kernel values

(c) Original image (d) High-boost kernel (e) After sharpening

Kernel values

- 0.00Q1.00 000

—41.00 1.00

0.00)1.00 000

(f) Derivative kernel (g) After edge-detection

Figure 1.2: Examples of three common kernel archetypes applied to the same base
image. Top row: Gaussian smoothing. Subfigure (a) shows the Gaussian kernel and (b)
the smoothed output. Middle row: High-boost sharpening. Subfigure (c) shows the
original input image, (d) the sharpening kernel, and (e) the sharpened output. Bottom
row: First-derivative edge detection. Subfigure (f) shows the derivative kernel and (g)
the edge-highlighted result.

Sharpening kernels, known as high-pass filters, work in the opposite way. Their goal is to
refine sudden intensity changes and fine details in an image by responding to high-frequency
information. These filters typically perform some form of subtraction of a blurred version of

8



1.4. KEY CONCEPTS AND DEFINITIONS

the image from the original, which emphasizes edges while leaving uniform areas relatively
unchanged. The result is a visually heightened contrast around boundaries, making features
such as object edges more prominent. In practice, sharpening kernels are often used to restore
clarity to slightly blurred images or to enhance texture in photographic and scientific applica-
tions. These kinds of kernels are commonly referred to as Sharpen Kernel, High-Boost Kernel or
Laplacian Filter [9] (when it is centred around a Laplacian-like pattern, e.g. 4- or 8-connected
neighbours summing to zero). Figure shows an example of this sharpening effect caused by
a kernel of this category in the second row.

Edge detection (or derivative kernels) seek to isolate the structural transitions within an image
by highlighting regions of rapid intensity change. The most common examples include Sobel,
Prewitt, and Laplacian filters. Sobel and Prewitt kernels compute approximate gradients in
the horizontal and vertical directions, thereby revealing edges with particular orientations.
Laplacian filters, in contrast, capture second-order changes in intensity, making them sensitive
to both vertical and horizontal transitions simultaneously. These derivative-based filters form
the basis of many higher-level vision tasks, such as object recognition and feature extraction,
because they help to delineate important shapes and contours. This effect is demonstrated in
the third row of Fig.

In essence, smoothing filters soften data by reducing spatial variation, sharpening filters em-
phasize detail by highlighting transitions, and edge detection filters extract and underscore
boundaries. The choice of a kernel type depends on the processing goal; whether the intention
is to remove noise and irregularities, emphasise subtle features, or zero in on the object outlines
that define an image’s structure.

1.4 Key Concepts and Definitions

Blind deconvolution [1] addresses the problem of recovering both the original (sharp) image
and the blur kernel when the latter is unknown. This inverse problem is ‘blind’ because the
blur kernel (or filter) is not available a priori. Owing to the fact that different combinations
of kernels and inputs can produce the same output, blind convolution is an ill-posed inverse
problem.

Point Spread Function (PSF) describes how an imaging system responds to an idealised
point source of light [11]. In practical terms, it characterises the blurring introduced by factors
such as optical aberrations, diffraction, and motion during the acquisition process. In deconvo-
lution problems, and throughout this thesis, the PSF plays the role of the convolution or blur
kernel, and its accurate estimation is critical for reconstructing the true underlying scene from
the observed (blurred) data. In astronomical imaging, the presence of a PSF is dictated by
the fundamental physics of light propagation and the limitations of optical systems [12]. For
example, in ground-based telescopes, atmospheric turbulence introduces rapid, random fluctu-
ations in the refractive index along the light path, causing light from a point source to spread
out rather than concentrate at a single pixel.

When viewed through the lens of Kernel Archetypes, the PSF aligns with the smoothing (or low-
pass) class of filters. Because a PSF merely redistributes light, its coefficients are non-negative
and normalised so that they sum to unity, preserving the total incoming flux while spreading
it over several pixels. In effect, the PSF reduces abrupt intensity transitions in much the same
way as common smoothing kernels (e.g., Gaussian or box filters). Physically, this behaviour
stems from fundamental optics and sensor limitations in telescopes or cameras, which suppress
high-frequency components and let lower-frequency features dominate. Figure [I-3]displays this
effect, highlighting the similarity between a PSF kernel and a smoothing kernel. Crucially, a
PSF is normalised (its non-negative coefficients sum to one) because it represents how a single
point source of light is merely redistributed, not amplified or attenuated. This normalisation,
grounded in the energy-conservation physics of optical systems, distinguishes a genuine PSF
from a generic (and not necessarily normalised) smoothing mask. The reader can observe the

9



CHAPTER 1. INTRODUCTION

close resemblance to a Gaussian blur in Fig.

Kernel values

(a) Original image without PSF (b) Illustration of the point (c) Resulting image after apply-
blurring. spread function (PSF) kernel. ing the PSF kernel.

Figure 1.3: Example of how a point spread function (PSF) acts as a smoothing kernel.
Subfigure (a) shows the original input, (b) visualizes the PSF, and (c) demonstrates the
blurred output image.

(a) Original image (b) First kernel (¢) Blurred result (kernel 1)
(d) Blurred result (kernel 1) for (e) Second (identity-variant) ker- (f) Blurred result (kernel 2)
comparison nel

Figure 1.4: Illustration of the “identity” problem in blind deconvolution. Top row:
Original image (a), blur kernel 1 (b), and its blurred result (c). Bottom row: Same
blurred image (d), blur kernel 2 (e), and its result (f). Despite distinct kernels, outputs
are nearly identical.
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1.4. KEY CONCEPTS AND DEFINITIONS

Identifiability problem refers to the fact that the forward model mentioned previously
y=k ® x+n,

is many-to-one: distinct pairs (x,k) can produce exactly the same observation y. Typical
ambiguities include (i) scale (ak*x/a = y); (ii) spatial shift (a shifted kernel convolved with an
oppositely shifted image yields the same result); and (iii) symmetry (e.g. flipping both image and
kernel). Because the mapping is not injective, a unique solution cannot be recovered without
imposing extra assumptions, constraints or regularisers (sparsity, smoothness, non-negativity,
unit-sum, etc.).

Figure illustrates this non-uniqueness: a single base image is convolved with two different,
mis-aligned kernels, yet the two blurred outputs are visually (and numerically) almost identi-
cal. Only additional prior knowledge could reveal which (z, k) pair is the most likely to have
generated the observed blur.

11



Chapter 2

Related Work

Although the literature on blind deconvolution spans many classical and learning-based meth-
ods, this section (and consequently this thesis) primarily focuses on SelfDeblur |8]E| as a text-
book example of zero-shot neural blind deconvolution. Examining its joint optimization of deep
image and kernel generators, its Softmax-constrained priors, and its implicit handling of the
highly ill-posed nature of the problem provides a clear understanding of the core workflows
and inductive biases typical of this technique, knowledge that directly informs the proposed
extensions.

2.1 Introduction

SelfDeblur is a neural blind-deconvolution method introduced to address key limitations of
both classical optimization-based and learning-based approaches in image restoration. Tra-
ditional maximum-a-posteriori (MAP) [13| [14] frameworks approach blind deconvolution by
seeking the latent image x and blur kernel k& that maximise their joint posterior probability
given the observed blurry image y:

(#, k) = argmax p(z, k [ y),

Applying Bayes’ rule and assuming that « and k are conditionally independent with respect to
y yields

p(z,k|y) o ply | = k)p(z)p(k),

where p(y | 2, k) enforces data fidelity, while p(z) and p(k) encode prior beliefs about natural
images and physically plausible kernels. Some works instead write the optimization as

(&, k) = argmax p(x | y) p(k | y),

which is algebraically equivalent once the same likelihood—prior factorization is substituted for
each posterior term. In every formulation the problem is ill-posed because both x and k are
unknown; without informative priors it collapses to trivial solutions such as the delta (identity)
kernel. Handcrafted regularisers (gradient sparsity, patch self-similarity, low-rank constraints,
and the like) can prevent this collapse but struggle to represent the diversity of real-world
imagery. This shortcoming motivates data-driven approaches such as SelfDeblur, which learn
image and kernel priors implicitly from deep-network architectures instead of relying solely on
expert-designed regularisation.

2This summary is primarily based on the original SelfDeblur paper by Ren et al. |8], with emphasis on the
aspects most relevant to this work.
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2.2. METHOD

Simultaneously, deep-learning methods trained on external datasets can struggle to generalise
when confronted with very large or highly diverse blur kernels, particularly if the blur is spa-
tially non-uniform or the noise statistics differ from those seen during training. In real-world
scenes, spatially non-uniform blur arises when different image regions undergo distinct blurring
(due to depth variations, complex camera motion or lens aberrations) rather than a single,
consistent point-spread function across the frame. Modelling and inverting such locally vary-
ing kernels introduces a further layer of complexity that neither the original SelfDeblur paper
nor the present work tackles. Addressing spatially non-uniform blur would require region-wise
kernel estimation (or depth-aware modelling) and substantially greater computational effort.
Therefore, to keep the scope tractable, this thesis assumes a spatially invariant blur kernel in
all experiments and leaves non-uniform deconvolution to future investigation.

Building on these limitations, SelfDeblur reframes blind deconvolution by exploiting deep priors
(the implicit structural biases of convolutional network architectures) rather than relying on
large external datasets or hand-crafted regularization terms. In practice, SelfDeblur optimizes
two generators directly on a single blurred image in a self-supervised manner, jointly recovering
both the latent image and the blur kernel from that sole input. Crucially, this single-image opti-
mization alleviates the ill-posedness of blind deconvolution by parameterizing and constraining
both outputs through neural networks: the asymmetric autoencoder for the image inherently
favours natural-image statisticsﬂ while the fully-connected kernel network employs a softmax
output layer to enforce non-negativity and unit-sum constraints, making collapse to the trivial
delta kernel unlikely (though not impossible) under gradient descent. This data-efficient strat-
egy removes the need for external training data or extensive hyperparameter tuning while still
guiding recovery toward plausible, data-consistent solutions.

Next, this thesis delves into the SelfDeblur methodology, examining how its design addresses
these limitations.

2.2 Method

— |
P — \\:_: o
l Forward  Backward L] ]
[ ] [ ] -
L ] L ] i
> gl]bn‘f(gk(zk)®GX(zx)ﬁy) T : = : ‘.-_é
Ik Ty -]
o 0 5
' 7\ * o z
Z, Encoder Decoder ]
heal -_J 9 B
- - — > .
gx ng aGA Gk

Figure 2.1: A global overview of the proposed method in 'Neural Blind Deconvolution
Using Deep Priors’, also known as ’SelfDeblur’.

From a theoretical standpoint, SelfDeblur frames blind deconvolution as unconstrained neural
optimization, where two deep generators (one for the latent image and one for the blur kernel)
are jointly learned using only the observed blurred input. In Figure 2.3] the left-hand branch,
G, is an asymmetric encoder—decoder network with skip connections. Random noise z, is
fed into this network, which outputs a candidate latent image G, (z;). Because its architecture

SEmpirical regularities observed in photographs, such as sparse, heavy-tailed gradient distributions, local
patch self-similarity, and structured textures typical of real-world scenes.
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CHAPTER 2. RELATED WORK

favours natural image statistics |15} [16], G, tends to generate images resembling plausible clean
scenes, even though it does not rely on external training data. These design choices (convolu-
tional layers, skip connections, and multi-scale encoders) bias the network toward generating
structured, coherent images rather than random noise.

In particular, at each decoding stage ¢, the previous decoder output D) is upsampled (e.g.
by transposed convolution or bilinear interpolation) to produce

DW — Up(D(Hl)),

matching the spatial dimensions of the encoder activation E(). These two feature maps are
then concatenated along the channel dimension,

(D B,

where || denotes channel-wise concatenation. Finally, the combined tensor is processed by the
decoder block Dec®) (typically two 3 x 3 convolutions plus a nonlinearity) to yield

DO = Dec“)([f)“) [ E(f)])_

By fusing coarse, context-rich features with fine spatial details at every scale, G, reconstructs
both global structure and local textures, guiding it toward visually plausible image-like out-
puts.

On the right-hand side, G, is a simple, fully connected network that also begins with random
noise, zx. However, to ensure valid kernel constraints, such as those required for a PSF, Self-
Deblur applies a Softmax activation at the final layer of Gy. In doing so, each forward pass of
Gr(#x) yields a blur kernel (or PSF) that remains valid throughout the optimization.

These two outputs are convolved (®) and compared to the blurred input y via a data-fidelity
term, typically the squared /5 error:

1Gx(2k) ® Gu(22) — y||2

Depending on the noise level or other considerations, SelfDeblur may include an additional total
variation (TV) regulariser [17] on G(z,) to help suppress amplified noise. The TV penalty is
defined as

2

TV(u) = ) \/(um,j - uz‘,j)2 + (g1 —uiy)
i.j

which penalises rapid intensity fluctuations and thereby discouraging spurious high-frequency
noise while still allowing true image edges to remain sharp. Incorporating this term yields the
composite objective

Jnin | Gr(z1) © Galze) — yls + ATV (Galz2)),

where the first term enforces data fidelity (matching the blurred output to the observation) and
the TV term imposes smoothness to prevent overfitting to noise. The scalar A > 0 balances
these two goals and is typically chosen in proportion to the estimated noise level (e.g. A = 0.10),
ensuring stable, plausible reconstructions.

Crucially, optimization proceeds by gradient descent on the parameters of both Gy and G,. At
each iteration, the forward pass predicts a blur kernel and a latent image, and the backward
pass determines the gradients of the loss £ with respect to the networks’ parameters. This step
updates G so that the generated image better explains the content of y under the current blur,
and updates G}, so that the kernel moves closer to correctly modelling the blurring process. Since
G, is enforced to output non-negative, normalised values via Softmax, no separate constraints
or projection steps are needed; as described earlier, the model naturally adheres to the usual
physical assumptions about blur kernels.
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2.8. LOSS METRICS FOR TRAINING THE NETWORKS

This “zero-shot” training (where the only training sample is the blurred image itself) hinges on
the idea that these neural generators impose deep priors on both the image and the kernel. The
skip connections, convolutional structure, and learned parameters in G, steer it toward outputs
that look like clean images, while G, which is a fully connected layer with a Softmax prior,
yields plausible kernels. As optimization proceeds, both networks progressively refine their
estimates. Through iterative updates, one obtains the recovered latent image G, (z,) and the
estimated kernel Gj(zx) without ever resorting to a hand-crafted prior or an external training
set.

2.3 Loss Metrics for training the networks

SelfDeblur starts by minimizing the pixel-wise Mean Squared Error (MSE)H for the initial
iterations (for instance, the first 1,000 out of 5,000). MSE is defined as

N
Lot (G, G) = §;§j[(0k@k>@>ax@x»i—-y42

where (G (2x) ® Gz (22)), is the i-th pixel of the model’s blurred reconstruction, y; is the corre-
sponding pixel of the observed image, and N is the total number of pixels. By penalising large
per-pixel deviations, this loss refines the coarse alignment between the generators’ outputs and
the blurred input, encouraging rapid convergence towards a plausible baseline solution.

After this initial phase, the optimisation switches to the Structural Similarity Index Measure
(SSIM)H by defining the adapted SSIM loss as

Essim(G:caGk) =1 — SSIM(G}C(Z]C)Q?G;E(ZQ;), y)

This “one minus SSIM” loss emphasises perceptual similarity in luminance, contrast and struc-
ture, guiding the network to restore features critical for visual perception. By focusing on lumi-
nance, contrast, and structural consistency, SSIM more closely mimics human visual perception
than simple pixel-wise errors. To illustrate this, Figure [2.2] demonstrates SSIM’s sensitivity to
image degradation by applying increasing levels of Gaussian blur to a single base image. The
leftmost panel shows the original image. Under a mild blur (o = 2.0, centre), SSIM between
the blurred and original images is 0.830 while MSE remains low at 0.0022, indicating that most
structural content is preserved. In contrast, an extreme blur (o = 8.0, right) reduces SSIM to
0.462 and increases MSE to 0.0142, reflecting a substantial loss of edges and texture. The con-
current decline in SSIM and rise in MSE underscore SSIM’s closer alignment with perceptual
similarity and structural coherence as image quality deteriorates. These loss functions improve
training, but they do not fully resolve the core ill-posedness of blind deconvolution, a challenge
the ensuing discussion tackles via Softmax constraints.

4Here the standard MSE, % Zf\lzl(ml — &;)2, is adapted by treating the model’s blurred output (Gk(zk) ®
Gm(zgc)) as the reconstruction & and the observed image y as the reference x. In the case of SelfDeblur, the
values z; are fixed (they always come from the same observed image), so the reference does not change during
optimization.

5The structural similarity index (SSIM) between two images a and b is defined as

(2papp + C1) (2044 + C2)

SSIM(a,b) = .
@9 = G+ i3+ 00 +07+Co)

where piq, up are the mean intensities, 0'(217 0'13 their variances, o, their covariance, and C7,Cs small constants
for numerical stability.
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Mild Blur (0=2.0) Extreme Blur (0=8.0)
SSIM: 0.830 SSIM: 0.462

Original Image MSE: 0.0022 MSE: 0.0142

Figure 2.2: Demonstration of SSIM sensitivity: as Gaussian blur increases (o rising
from left to right), SSIM declines while MSE grows, reflecting the metric’s response to
image degradation.

2.4 Ill-posedness and Softmax Constraints

Blind deconvolution is fundamentally ill-posed: infinitely many (z,k) pairs can generate the
same blurry image y. SelfDeblur mitigates this by parameterising the blur kernel via a Softmax
layer in the kernel generator Gi. Concretely, let fi be the network that produces unnormalised
logits @ = fi(zx). Then the kernel entries are given directly by

exp(fr(zr)i)
> exp(fr(zr);)

[Gr(z1)], = Softmax(fx(zx)), =

automatically enforcing [Gk(zk)]i >0and ), [Gy (Zk)]z = 1. Although a delta kernel (all mass
at a single pixel) remains mathematically possible, it will only minimise the data-fidelity term
when the blurred input y itself is nearly identical to the latent sharp image (i.e. almost no blur).
In most realistic scenarios, an identity kernel simply transmits noise and artefacts instead of

explaining them through convolution, leading to a large residual and high loss.

Transitioning from a nearly uniform 25x25 kernel (where each entry is initially ~ 1/625) to a
true delta kernel requires exponentiating one logit far above hundreds of others. Under gradient
descent on an MSE or SSIM objective, such an extreme reconfiguration is very unlikely: small
gradient updates tend instead to shape the kernel toward the true blur pattern present in the
data.

Thus, the Softmax parameterisation, together with the deep-prior architecture and the fidelity
loss, steers optimisation toward physically plausible kernels rather than trivial identity solutions.
An interesting avenue for investigation is to determine the specific conditions under which
SelfDeblur may nonetheless converge to a delta kernel, and to evaluate the consistency and
robustness of its optimisation; the experiments presented in this thesis include such tests to
characterise this behaviour.

Having detailed SelfDeblur’s mechanics, this work now considers its suitability for the specific
context and its integration into the thesis.
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Gaussian Noise Kernel
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Figure 2.3: Comparison of a randomly initialised Softmax output (“Gaussian Noise
Kernel”, left) and the delta kernel (“Identity Kernel”, right). Moving from a diffuse dis-
tribution (values = 1/625) to a single-spike distribution (value 1.0) requires a substantial
shift in the Softmax logits, which gradient descent will avoid unless the data fidelity term
strongly favours the identity solution.

2.5 SelfDeblur and the topic of this thesis

In the context of PSF estimation for astronomical data, SelfDeblur’s reliance on Gaussian-
like kernels (a natural match for the diffraction-limited blurs often encountered in telescopes)
suggests it could perform well in restoring fine details of faint celestial objects. Because the
model treats the kernel as learnable parameters passed through a Softmax layer (thus ensuring
physical validity), it can adapt to wide ranges of blurring patterns without requiring additional
handcrafted constraints. Many astrophysical imaging scenarios involve approximately Gaussian
kernels (e.g., from telescope diffraction or atmospheric turbulence), and SelfDeblur’s capacity for
large, diffuse kernels means it can capture the outer wings of a PSF more reliably than simpler,
smaller-window methods. Consequently, when integrated into this thesis, SelfDeblur appears
well-suited to produce robust reconstructions and kernel estimates, potentially recovering subtle
structures that are crucial for scientific interpretation. Section [4] presents the experiments and
results of this approach. However, before those empirical findings are detailed in Chapter 4,
Chapter 3 outlines the supervised methodology and corresponding processing pipeline developed
for this study.
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Chapter 3

Approach

3.1 Dataset, Augmentation and Batches

This chapter details the proposed supervised method, contrasting with the methodology of
SelfDeblur and serving as an intermediate step towards deconvolution. It begins by describing
the dataset and data-augmentation strategy (Section 3.1), followed by the overall pipeline design
(Section 3.2), the types of blur kernels used (Section 3.3), the model architecture (Section 3.4)
and, finally, the hyperparameter-tuning strategy (Section 3.5).

A dataset of high-resolution natural images (all images share a size of 512x512 pixels) was used
as diverse source material for subsequent blur synthesisﬂ The landmark sub-directory offers a
wide range of real-world scenes (urban fagades, landscapes, and architectural details) ensuring
that a broad spectrum of synthetic blur kernels can be evaluated across heterogeneous visual
content. Representative examples are shown in Figure [3.1] illustrating the typical scenes under
consideration.

(a) Dataset Example 1. (b) Dataset Example 2. (c) Dataset Example 3.

Figure 3.1: Dataset Examples

Although the complete “130 K” landmark subset supplies substantial diversity, loading the
entire collection onto a Graphics Processing Unit (GPU) in a single pass is infeasible. Accord-
ingly, a two-tier sampling strategy is employed. First, a deterministic 60 % / 20 % / 20 % split
partitions the data into training, validation and held-out test sets. At the start of each train-
ing epoch, a modest proportion of the training images (typically 5-10 %) is randomly selected
to form a sequence of mini-batches that fits comfortably within memory and runtime limits.

6Kaggle landmark subset, “130 K Images 512 x 512”
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3.2. PIPELINE DESIGN

Because the sampling relies on a fixed random seed, the exact pools are reproducible, while
successive epochs still expose the network to fresh images drawn from the broader training set.
This batching scheme retains the diversity of the full dataset yet keeps each run tractable; by
contrast, SelfDeblur processes only a single image and therefore does not encounter the same
data-handling constraint.

After sampling, each image is augmented on-the-fly using a deliberately minimal set of trans-
formations. To avoid interpolation artefacts, rotations are limited to exact multiples of 90° (90°,
180°, 270°). Random horizontal and vertical flips are applied, and brightness is scaled within
+20 %. Crucially, Gaussian-noise injection and other pixel-level manipulations are excluded, as
such noise could interact unpredictably with the diverse blur kernels applied later and confound
the learning signal. All operations preserve the native 512 x 512 resolution, ensuring that aug-
mented images remain free of resampling artefacts. With this policy (roughly a 3x expansion
in unique appearances) the resulting variation seems adequate to mitigate over-fitting while
maintaining clean, blur-only degradations for the regression task. Augmentation is disabled on
validation and test splits so that evaluation always reflects unaltered photographs.

Training proceeds with shuffled mini-batches of 16-32 images, each paired with its own randomly
drawn blur kernel. This size was chosen empirically: smaller batches introduced high-variance
gradients, whereas batches much larger than 32 images exceeded GPU memory. Within every
batch, images, augmentation parameters, and kernel types are sampled independently, ensuring
that the network sees a heterogeneous mixture of scenes and blur patterns at every optimisa-
tion step. Combined with gradient accumulation and an adaptive learning-rate schedule, this
design yields stable convergence while remaining within a single-GPU memory footprint. These
considerations (sub-sampling for throughput, rich augmentation for robustness, and carefully
balanced batch sizes) form the backbone of the data pipeline that feeds the kernel-regression
network. After preparing a diverse, manageable training set through careful batching and aug-
mentation, the following subsection elaborates on this batch-based pipeline setup and then
outlines the design of the training pipeline that uses these data.

3.2 Pipeline Design

Dataset Augmentation Generate Convolution Training Result
Kernel(s)

|=> B8] =>

Figure 3.2: Schematic overview of the blur-kernel estimation pipeline. Starting from
high-resolution raw images, data augmentation (rotation, flips, brightness/contrast jit-
ter) is applied, then randomized blur kernels are generated. Each augmented image is
convolved with its kernel to produce the blurred input, which is fed into a CNN-based
regression model. The network should learn to predict the original blur kernel, yielding
the recovered kernel as the final output.

Following the sampling and augmentation stages described in the previous section, the process-
ing pipeline (illustrated in a flowchart in Figure encompasses all steps from raw images
to predicted blur kernels. The chart illustrates the path of one image throughout the pipeline.
First, the input images are passed through the augmentation module, which randomly applies
the transformations (rotation, flip, brightness/contrast jitter) described above. This yields an
augmented batch of images with increased variability. Next, each augmented image is convolved
with a randomly generated blur kernel, producing the final blurred image received by the net-
work. A library of two kernel types (detailed in Section is maintained, and for each image
one kernel is sampled at random, thereby simulating a seemingly wide range of blur effects. The
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convolution operation is implemented in the spatial domain, treating each kernel as a blur ker-
nel (for example, the point-spread function) applied to a 2-D image signal. This step ensures
that the model’s input data consist of realistically blurred images with known ground-truth
kernels. After convolution, each blurred image is paired with its kernel (the kernel serves as the
regression target for that sample). These image—kernel pairs are then fed into the supervised
learning model. The CNN-based model takes the blurred 512 x 512 image as input and predicts
the corresponding kernel (e.g. a 32 x 32 grid of weights) as output. Thus, the pipeline converts
raw images into training pairs and, through different kinds of models, produces a predicted ker-
nel, emphasising a regression approach in which continuous kernel values are estimated directly
rather than classified, since the goal is to estimate the exact blur filter.

This end-to-end pipeline allows the model to learn the mapping from image blur patterns to
the underlying kernel and the modular design also facilitates experimentation; for example,
new kernel types may be swapped in or augmentation adjusted without altering the core model
training, simply by modifying the parameters used to execute the pipeline. The pipeline is
executed initially in a straightforward serial manner, and can be parallelized across batches for
efficiency once validated. Structuring the workflow in this sequential yet well-defined manner
ensures reproducibility and a clear separation of concerns between data preparation, convolution
and learning.

A strictly sequential, modular layout was selected because it improves debuggability, repro-
ducibility, and tunability. Each module can be executed in isolation, allowing intermediate
artefacts (such as augmented images, blurred outputs, or predicted kernels) to be inspected
whenever unexpected behaviour arises. The linear structure also supports automatic check-
points; for example, the blurred images produced by the convolution stage can be cached and
reused in subsequent experiments, eliminating the need to recompute them and thereby accel-
erating development cycles. Finally, all critical hyper-parameters (including sample fraction,
augmentation rate, kernel library, batch size, learning-rate schedule, and loss-term weights) are
surfaced through a single configuration file. Consequently, the pipeline follows a plug-and-play
strategy: individual stages can be parallelised or swapped without touching surrounding code
(for instance, replacing the backbone with a deeper network, substituting a lightweight variant,
or introducing an alternative kernel generator) thereby shortening testing cycles substantially.
The result is a pipeline that is straightforward to maintain and extend yet remains efficient
enough to scale from single-GPU prototypes to larger multi-GPU deployments. Accordingly,
the following section introduces the blur kernel types incorporated into the pipeline.

3.3 Kernel Generation and Types
3.3.1 Empirical PSFs (E-PSF)

Two main families of blur kernels are incorporated: empirical PSFs (E-PSF) extracted from
measured instrument data and analytic PSFs (A-PSF) generated via the Photutils interface.
E-PSF kernels are pre-computed point-spread functions derived from astronomical instruments
such as the Spitzer and Herschel telescopes. Following the framework of Aniano et al. (2011)[18],
disparate instrument PSFs are matched to a common resolution by Fourier-domain deconvo-
lution. A Wiener-filter regularisation step suppresses high-frequency noise, and each kernel is
subsequently normalised to conserve total flux, ensuring that convolution preserves integrated
intensity. The resulting convkern files, publicly released through NASA/IPAC, span a wide
variety of instrument PSFs and can be loaded directly as FITSE or NumPy arrays for spatial-
domain convolution.

"The Flexible Image Transport System (FITS) is the de-facto standard format for astronomical images and
associated metadata.
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3.8. KERNEL GENERATION AND TYPES

Figure 3.3: Example of an empirical PSF (E-PSF) kernel, illustrating the characteristic
ripple pattern typical of this family.

3.3.2 Analytic PSFs (A-PSF)

The PSF subpackage of Photutils supplies a suite of analytic two-dimensional PSF models,
each implemented as a subclass of Astropy’s Fittable2DModel and normalised so that the
analytical integral over the entire plane equals the specified total flux. Although the toolbox
can generate many distinct PSF kernels, only three model types (Gaussian2D, Moffat2D, and
AiryDisk2D) are displayed here to give the reader an idea of what these kernels can look like.
Further information on Photutils is available onlind®|

(a) Gaussian2D kernel. (b) Moffat2D kernel. (c) AiryDisk2D kernel.

Figure 3.4: Examples of analytic A-PSF kernels.

The Gaussian2D (Figure model represents a symmetric bell-shaped curve, defined by its
total flux, centre coordinates (xo, yo), full width at half maximum along the x and y axes, and
an optional rotation angle . When sampled over the grid, it produces a smooth, isotropic or
anisotropic blur without diffraction artefacts.

The Moffat2D model (Figure captures PSFs with a sharp core and extended wings, which
are characteristic of atmospheric seeing in ground-based telescopes. It is parameterised by
amplitude (or flux), centre position, v (controlling the core width), and « (governing how
rapidly the wings fall off). This profile often provides a more realistic fit to real-world stellar
images affected by turbulence.

The AiryDisk2D model (Figure implements the diffraction-limited PSF of a circular aper-
ture. It is defined by its amplitude, centre, and disk radius, and yields the familiar pattern of a
bright central peak surrounded by concentric faint rings due to diffraction. This model allows
the optical blurring seen in space-based and high-quality ground-based imaging systems to be
simulated. The reader will notice the similarities between the AiryDisk2D model and the kernel
shown in the E-PSF section.

Within the pipeline, each of these models is sampled across a range of plausible parameters
to generate a diverse set of A-PSFs. Each kernel array is evaluated on the chosen grid size,

8https://photutils.readthedocs.io/en/latest/user_guide/psf.html
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clipped to non-negative values, and renormalised to unit sum, ensuring energy conservation and
compatibility with the regression framework.

3.4 Model Architecture

Two distinct model variants were explored for kernel regression. The first begins with a shallow
convolutional encoder: two 3 x 3 Conv2D layers (with 32 and 64 filters, respectively, and
Rectified Linear Unit (ReLU) activations) preserve spatial dimensions via “same” padding and
extract local blur features. A 1 x 1 Conv2D attention layer then produces a spatial mask that
is multiplied element-wise with the feature maps, helping the network emphasise regions most
indicative of the underlying kernel. Global average pooling collapses the attended feature maps
into a 64-dimensional vector, which is passed through a 256-unit dense bottleneck before a final
fully-connected decoder reshapes the output into a 32 x 32 kernel via a tanh activation. This
design leverages convolutional layers for local pattern extraction while retaining the flexibility
of a dense network to regress arbitrary continuous kernel values.

input_layer (InputLayer) convi (Conv2D) conv2 (Conv2D) gap (GlobalAveragePooling2D) bottleneck (Dense) kernel_out (Dense)

Output shape: (None, 512, 512, 1) Output shape: (None, 512, 512, 32) Output shape: (None, 512, 512, 64) Output shape: (None, 64) Output shape: (None, 256) Output shape: (None, 1024)

Figure 3.5: Global overview of the CNN architecture integrated into the pipeline. Only
the principal layers are shown; intermediate and auxiliary layers (e.g. the attention layer)
have been omitted to keep the diagram readable.

As a contrast, a “pure NN” variant was implemented in which all convolutional layers are re-
moved and the 512 x 512 input is flattened into a single vector. This vector is fed directly
into one or more dense layers before producing the 32 x 32 kernel output. While empirical
evaluation remains pending, theoretical expectations suggest that this all-dense architecture,
because it forgoes translation invariance and local receptive fields, would require substantially
more parameters, train more slowly, and be more susceptible to over-fitting on limited data.
Nevertheless, exploring a pure NN baseline remains instructive: it offers a clear point of com-
parison for assessing the gains afforded by convolutional structure, is trivial to implement and
adapt to different input resolutions, and may reveal scenarios where global, non-local feature
combinations suffice. In addition, the simplicity of this design makes it an attractive starting
point for rapid prototyping, and any observed performance gaps can directly quantify the value
of the inductive biases present in more sophisticated models.

3.5 Hyperparameter Tuning Strategy

The pipeline exposes a concise set of hyper-parameters that govern three successive stages: data
preparation, model optimisation, and loss balancing. This section enumerates several of these
variables, indicates the workflow component affected, and summarises the qualitative effect of
increasing or decreasing each value. These descriptions frame the search space; concrete choices
and empirical results are presented in Chapter[dl The list is not exhaustive; rather, it serves as a
representative sample illustrating how the tuning procedure prioritises, balances, and integrates
the most influential hyper-parameters.

Hyperparameter choices rarely act in isolation: adjusting one often shifts the optimal setting
for another. For example, a higher augmentation rate, which broadens the data distribution,
may necessitate a modest increase in learning rate to maintain convergence speed, whereas very
small batch sizes tend to benefit from gradient-accumulation steps to stabilize updates.

Furthermore, adopting conservative, standard defaults from image-regression practice (initial
learning rate n ~ 5 x 1074, batch size = 16, loss-term weights a : 8 : v = 0.3 : 0.2 : 0.5),
hyperparameter adjustments are made only when training instability arises (as indicated by

22
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diverging loss curves). In such cases, the learning rate is reduced or the effective batch size is
increased via gradient accumulation before any architectural changes are considered. To balance
numerical accuracy against structural fidelity, the SSIM weight is raised if overall intensity is
well-reproduced but fine ring patterns are missed, whereas the MAE weight is increased if global
amplitude drifts. Finally, batch size, augmentation rate, and epoch budget are always chosen to
conform to available GPU memory and wall-time constraints, providing a principled framework
for systematic hyperparameter search.

Stage Hyperparameter Role in the pipeline Qualitative impact when
tuned
Data prep. Sample fraction Portion of the landmark  Higher values enlarge scene
corpus drawn each epoch diversity but lengthen epochs;
lower values shorten epochs at the
risk of over-fitting.
Augmentation rate Number of augmented Increasing boosts appearance
copies per raw image variability (higher GPU cost);
decreasing yields faster I/O but
less variation.
Kernel-library size  Distinct PSF's available A larger library exposes the model
during convolution to more blur shapes; a smaller one
biases training toward a limited
subset.
Optimisation Model depth & size Number of hidden layers Increasing depth (more layers) and

Weight-decay (L2
penalty \)

Adam B

(momentum)

and units per layer

Strength of the ¢
regulariser on all
trainable weights

Exponential decay rate
for the first-moment
estimate in Adam

width (more neurons per layer)
expands representational capacity,
helping the network learn
input-specific mappings and avoid
collapse;

Higher A shrinks weights toward
zero, spreading representational
capacity and avoiding trivial
constant mapping; lower A\ allows
large weights to dominate, which
can exacerbate collapse.

Lower f; (e.g. 0.8—0.9) makes
updates more responsive to recent
gradients, helping escape flat
constant-output basins; higher (51
(e.g. 0.95—0.99) yields smoother
updates but may trap in local
constant modes.

Loss balance

MAE weight «

Cosine weight

SSIM weight v

Emphasis on pixel-wise
accuracy

Emphasis on global
alignment

Emphasis on perceptual
structure

Higher « tightens numeric match;
lower « lets structural terms
dominate.

Increasing 8 enforces overall
shape; decreasing (3 relaxes that
constraint.

Higher ~ preserves ring patterns
and anisotropy; lower v shifts
focus to numeric losses.

Table 3.1: Principal parameters, their roles, and the qualitative effects of tuning each.

In summary, the methodology and models have been defined; Chapter 4 will evaluate their
performance through a series of experiments.
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Chapter 4

Experiments and Results

As previously mentioned in Chapter 2, SelfDeblur introduces a zero-shot neural optimisation
framework in which coupled deep-image and kernel generators implicitly capture image and PSF
priors. In Chapter 3, a modular supervised pipeline was designed to augment high-resolution
photographs, synthetically blur them via PSF convolution, and employ CNN-based regressors
to predict the underlying kernels. Therefore, this chapter brings those two threads together by
first subjecting SelfDeblur to a series of controlled studies: beginning with a loss-function ab-
lation, then probing stability under different initialisations, noise levels and custom benchmark
kernels (including the Levin dataset), and finally demonstrating performance on real astro-
nomical PSFs. Thereafter, the thesis turns to the pipeline experiments, where a lightweight
convolution—attention encoder is compared against a fully-connected regressor across the same
diverse blur scenarios. In doing so, the deep-prior methodology of SelfDeblur is validated and
the generalisation and practical applicability of the supervised pipeline are assessed.

4.1 SelfDeblur Experiments
4.1.1 Loss-function ablation: Pure MSE, Pure SSIM and Hybrid

The three optimisation variants differ only in how the loss function is composed during training;
the network architecture and all other hyper-parameters remain identical. Pure MSE keeps the
objective strictly pixel-wise throughout the whole run, forcing the model to minimise

Lysk = mse(out_y, y)
for every iteration. Pure SSIM replaces that objective by the perceptual surrogate
Lssmy = 1 — ssim(out_y, y),

so that the gradient is driven entirely by structural similarity at every step. The hybrid variant
starts with the numerically stable MSE to obtain a coarse alignment, then switches to the
structure-aware SSIM once the solution is close enough; in practice the switch occurs after 1000
iterations, implemented as

if step < 1000:
total_loss

else:
total_loss

mse (out_y, y) % pixel-wise phase

1 - ssim(out_y, y) % perceptual phase

Thus the hybrid schedule combines the fast, stable convergence of MSE in the early stage with
the perceptual sharpening encouraged by SSIM in later iterations, whereas the pure variants
rely on a single error signal from start to finish.
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4.1. SELFDEBLUR EXPERIMENTS

To assess SelfDeblur’s two outputs, complementary criteria are assigned to each. For the recov-
ered image & the emphasis on pixel-level fidelity is conveyed by the peak-signal-to-noise ratio
(PSNR),
2552
PSNR(z, ) = 101 (7>
(,2) 810\ MSE(z, 2)

while perceptual structure is captured by SSIM, which is sensitive to local contrast and edge
coherence but largely indifferent to harmless global shifts in intensity. PSNR is preferred over
raw MSE because its decibel scale yields interpretable figures and prevents a few high-energy
pixels from dominating the score. The recovered kernel k is compared with its ground-truth
counterpart k8" through the MSE (reflecting the importance of matching absolute amplitudes)
and through the Maximum of Normalised Convolution (MNC) [19],

k @ ket )’

I. 1.8t _
MNC(k, k )«—max(”fﬂuznkgt||2

which peaks at unity only when the two kernels coincide up to scale and translation, thereby
gauging their structural overlap. Together PSNR and SSIM provide a balanced view of numeri-
cal and perceptual accuracy for images, whereas MSE and MNC offer the same dual perspective
for kernels.

Before discussing the outcomes, the test data used in these experiments is described. The
experiments were executed on the following inputs: Figure[4.I]shows the base image, and Figure
shows the used kernels which are 8 in total. The base image has a resolution of 255x255
and the kernels have varying resolutions, in between the ranges 13x13 and 23x23.

Figure 4.1: Levin benchmark test image (255 x 255 px): a grayscale cut-out of children
playing in a sandbox. Used as the base observation for all SelfDeblur experiments.

() (b) (©) (d)

(e) (f) (8) (h)
Figure 4.2: Eight linear motion-blur kernels from the Levin et al. (2009) blind-
deconvolution benchmark dataset [1].
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Table 4.1: Performance metrics for recovered images and kernels based on the pure

MSE method.
Kernel PSNR (dB) | SSIM | MSE | MNC
Kernel 1 31.17 0.9087 | 13.4100 | 0.7488
Kernel 2 20.88 0.6299 | 23.4637 | 0.5888
Kernel 3 24.58 0.8084 | 23.6800 | 0.6279
Kernel 4 18.49 0.4561 | 18.3086 | 0.8767
Kernel 5 26.44 0.8513 | 26.5799 | 0.6539
Kernel 6 20.21 0.6316 | 16.3696 | 0.4953
Kernel 7 19.63 0.5916 | 14.6503 | 0.7572
Kernel 8 20.18 0.6124 | 17.9414 | 0.9421
Averages 22.70 0.6863 19.30 0.7113

Prior to examining the results, some clarification of the tables in this subsection is required.
PSNR and SSIM quantify the fidelity of the recovered images relative to the base image shown in
Figure 4.1; conversely, MSE and MNC assess the accuracy of the estimated kernels against the
ground-truth kernels. Each row denotes the kernel used for convolution (for example, “Kernel
4” corresponds to kernel (d) in Figure 4.2). Finally, the coloured formatting does not identify
column-wise extremes but rather highlights metric pairs: one colour for PSNR & SSIM and
another for MSE & MNC, with a marginal emphasis on SSIM and MNC owing to their greater
sensitivity to structural similarity.

Table summarises the outcome when SelfDeblur is optimised with a pure MSE objective.
Averaged over the eight blur instances, the reconstruction attains 22.7dB in PSNR and 0.69
in SSIM, signalling an overall reduction in pixel error (when compared to the other tables in
this subsection) but only moderate perceptual quality. The per-kernel scores, however, reveal
pronounced variability. The small, nearly isotropic Kernel 1 is handled very well (31.17dB,
SSIM 0.91), whereas the broader, strongly anisotropic Kernel 4 yields a mere 18.49dB and an
SSIM of 0.46. A similar spread is seen in the kernel domain: although the mean kernel MSE
stands at 19.3, the MNC still averages 0.71, and for Kernel 8§ the structural overlap almost
reaches the ideal value (MNC 0.94) despite a sizeable amplitude error (MSE 17.9).

These contrasts hint at a clear pattern. A loss that is strictly pixel-based copes well with
compact kernels but deteriorates as soon as the blur occupies a larger footprint or introduces
strong directional structure. In other words, the performance gap between kernels hints at a
marked sensitivity of SelfDeblur to the specific blur kernel involved: the method converges to
numerically sound yet perceptually over-smoothed images for wide or anisotropic kernels, while
delivering sharper results when the underlying point-spread function is narrow and symmet-
ric.

Table 4.2: Performance metrics for the eight kernels based on the pure SSIM method.

Kernel PSNR (dB) | SSIM | MSE | MNC
Kernel 1 15.60 0.3593 | 23.3906 | 0.7341
Kernel 2 19.07 0.4803 | 27.4048 | 0.7595
Kernel 3 22.49 0.5998 | 24.7289 | 0.7211
Kernel 4 16.27 0.3653 | 20.7641 | 0.9170
Kernel 5 21.38 0.6147 | 30.7811 | 0.5376
Kernel 6 15.63 0.2579 | 20.7279 | 0.5607
Kernel 7 15.36 0.2412 | 25.2382 | 0.6634
Kernel 8 16.55 0.4130 | 21.9452 | 0.8144
Average 17.79 0.4164 24.37 0.7135

As a further illustration of loss-schedule effects, Table reports the results when SelfDeblur
is driven solely by an SSIM objective from the first iteration. The reconstructed images exhibit
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relatively low fidelity, with a mean PSNR of 17.79dB and an SSIM of 0.416. Kernel estimates
also suffer, yielding an average MSE of 24.37 and an MNC of 0.7135, although Kernel 4 still
achieves a high structural match (MNC 0.9170).

Moreover, the degradation is systematic rather than anecdotal. All kernels that benefited
under the pixel-based loss now suffer substantial drops (Kernel 1 loses over 15.5dB in PSNR,
Kernel 7 around 4.3 dB) and no kernel exhibits an unequivocal gain. These observations suggest
that an initial MSE phase plays a stabilising role: by supplying strong, spatially distributed
gradients it guides the network towards a coarse alignment of image and kernel before the
more discriminative but less informative SSIM term refines perceptual detail. Omitting this
phase leaves the optimisation dominated by SSIM’s highly non-convex landscape, where early
gradients are weak and frequently lead to sub-optimal basins.

Because the pure-SSIM configuration seems to underperform across nearly every metric and
every blur instance, it likely will not offer any clear advantages for the forthcoming astronom-
ical experiments. Therefore, the tests done in Subsection [4.1.5] concentrate on the pure-MSE
and hybrid objectives, which together span the practical trade-off between pixel fidelity and
structural robustness.

Table 4.3: Performance metrics for the eight kernels based on the Hybrid method.

Kernel PSNR (dB) | SSIM | MSE | MNC
Kernel 1 28.05 0.8626 | 15.80 | 0.6585
Kernel 2 20.08 0.5744 | 19.84 | 0.6362
Kernel 3 23.78 0.7659 | 24.78 | 0.5972
Kernel 4 19.66 0.5249 | 18.11 | 0.9324
Kernel 5 23.57 0.7684 | 30.95 | 0.6834
Kernel 6 17.61 0.4435 | 15.61 | 0.6304
Kernel 7 19.60 0.5526 | 12.83 | 0.7549
Kernel 8 19.28 0.5415 | 17.47 | 0.9168
Average 21.45 0.6292 | 19.42 | 0.7262

Finally, the hybrid schedule (optimising with MSE for an initial coarse-alignment phase and
switching to SSIM once the estimate has stabilised) produces a metric profile that is subtly
different, rather than unequivocally better or worse, than the pure-MSE counterpart (Table.
Average PSNR and SSIM fall slightly (22.70dB — 21.45dB and 0.686 — 0.629), reflecting a
modest relaxation of pixel-wise accuracy, but this loss is offset by a small rise in the average
kernel-overlap score (MNC 0.711 — 0.726) and, more importantly, by a clear narrowing of the
spread across individual blur cases. Kernels that previously posed difficulties (particularly the
wide, directional fourth kernel) benefit from the later SSIM phase, gaining structural coherence
in both image and kernel space, while kernels that were already handled well under pure MSE
surrender only a few decibels of PSNR.

In practice, the two training regimes (one optimized with MSE loss and the other with the hy-
brid loss function) offer complementary strengths. Pure MSE seems to preserve the highest pixel
fidelity when the blur kernel is compact and isotropic, whereas the hybrid objective may offer
greater robustness once the point-spread function becomes broader or more anisotropic. How-
ever, in real astronomical imaging the ground truth is unavailable, so one cannot directly com-
pare PSNR or SSIM to the ground truth. Instead, selection must rely on blind-deconvolution
diagnostics to infer which reconstruction is most plausible. Nonetheless, the experimental re-
sults indicate that tailoring the loss schedule to PSF morphology can enhance reconstruction
reliability under realistic, ground-truth-free conditions.
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4.1.2 Robustness and stability tests (ill-posedness)

To probe how SelfDeblur handles the inherent ill-posedness of blind deconvolution, ten inde-
pendent optimisation runs are launched on ezactly the same blurred observation. Each run
receives the identical input pair: the 255 x 255 scene shown in Figure [4.1] convolved with the
19 x 19 point-spread function of Figure (a), but starts from a fresh random initialisation
of the generator weights and input noise. Because the method is stochastic and the underlying
optimisation landscape is known to contain many local minima, repeating the experiment under
identical external conditions offers a direct test of robustness and stability: if the algorithm con-
sistently converges to comparable images and kernels, the implicit deep priorﬂ guide it toward
a well-defined basin; large dispersion, by contrast, would imply sensitivity to initialisation and
thus limited practical reliability. In the analysis that follows, dispersion across the ten outputs
is quantified in the kernel space (MSE and MNC).

Table 4.4: MSE and MNC over ten independent runs (highlighted: best in green, worst
in red). PSNR and SSIM (metrics normally used to assess reconstructed-image fidelity)
are omitted here, as the focus is exclusively on kernel reconstruction.

Run MSE | MNC
Run 1 11.5596 | 0.7123
Run 2 12.8781 | 0.7158
Run 3 12.6704 | 0.7284
Run 4 21.8144 | 0.7775
Run 5 9.0499 | 0.7236
Run 6 16.7895 | 0.6360
Run 7 13.1247 | 0.7531
Run 8 22.1135 | 0.7618
Run 9 18.2964 | 0.7473
Run 10 | 16.8200 | 0.7470
Average | 15.5117 | 0.7303

From Table 4.4 it is evident that the ten runs converge to broadly similar kernel estimates.
Numerical pixel accuracy (MSE) spans a modest band (from 9.0 to 22.1 with a mean of 15.51)
while structural overlap (MNC) remains tightly grouped around 0.73, never dropping below
0.64 and peaking at 0.78. The worst-amplitude case (Run 8) still aligns structurally almost
as well as the best-overlap run, and conversely the lowest-overlap run (Run 6) shows only a
mid-range MSE. Such clustering suggests that random initialisation rarely drives the optimiser
into qualitatively different basins: most runs recover essentially the same kernel geometry, with
residual spread confined chiefly to scale and fine-detail amplitudes.

To illustrate this variability, Figure visualises the dispersion already hinted at in Table[4.4]
The left-hand boxplot shows that the kernel-wise MSE varies more broadly across runs, with
the inter-quartile range spanning nearly 6 units and the whiskers extending from just under
9 to slightly above 22. In other words, the exact pixel amplitudes of the estimated kernels
are sensitive to the stochastic elements of the algorithm, such as random weight initialisation
and the initial noise inputs. By contrast, the right-hand plot reveals that the MNC scores
cluster tightly around 0.74: aside from a single mild outlier, every run lies within a window
of £0.03. Such consistency indicates that SelfDeblur almost always locks onto the correct
structure of the point-spread function even when the fine-scale amplitudes fluctuate. Because a
faithful geometric match is the principal requirement for accurate non-blind deconvolution, this
stability suggests that the method will, in practice, converge to a reconstruction that remains
reasonably close to the unknown ground-truth image.

9Implicit deep priors denote the structural biases inherent to the deep-image and kernel generators (e.g.
convolutional autoencoders and fully-connected kernel networks), which tend to produce natural-image statistics
and physically plausible PSF's without explicit regularisation; see Chapter 2, where SelfDeblur’s use of deep priors
is first introduced.
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Figure 4.3: Box-and-whisker plots of kernel error (MSE, left) and structural overlap
(MNC, right) over ten independent SelfDeblur runs. The narrow spread in MNC contrasts
with the wider spread in MSE, illustrating that the algorithm reliably recovers the kernel’s
overall shape but exhibits run-to-run variation in pixel-exact amplitudes.

(a) Base (b) Run 4 (c) Run 6

Figure 4.4: Comparison of the ground-truth kernel (a) with the reconstruction from
the best run (b, Run 4) and the worst outlier (c, Run 6), as identified in Figure [4.3]s box-
and-whisker plots; the pronounced pixel-level discrepancies in (c) illustrate the extent of
variability under stochastic initialization.

As illustrated in Figure these statistical trends correspond to clear visual differences: the
reconstruction from the best run (Run 4) closely reproduces both the shape and amplitudes of
the ground-truth kernel, whereas the worst outlier (Run 6) preserves overall geometry but ex-
hibits pronounced pixel-level deviations. Consequently, the examples in Figure 4.4 corroborate
the quantitative variability observed in the box-and-whisker plots of Figure [4.3

As a further visual complement to the box-plot analysis in Figure Figure [4.5] presents three
views of the ten recovered kernels: (a) the max-projection overlay, (b) the pixel-wise average,
and (c) the absolute difference between overlay and mean. Panel (a) demonstrates that even
when all ten kernels are overlaid, no estimate exhibits a radically different structure or spurious
sub-structure, confirming the absence of alternative convergence modes. Panel (b) then reveals
a sharply defined diagonal streak that matches the ground-truth PSF in Figure (a), with no
stray lobes or secondary maxima. Finally, panel (c) highlights the pixel-wise amplitude vari-
ability, isolating areas where individual optimisations deviate most from the mean. Together,
these triplets confirm that SelfDeblur reproducibly converges to the same kernel geometry, with
run-to-run randomness affecting only moderate intensity variations.
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Overlay (max projection) Average Differential (Overlay - Average)

(a) Overlay of all ten kernels (b) Pixel-wise average. (c) Difference between overlay
(max projection). and mean.

Figure 4.5: Three views of kernel reconstructions across ten independent runs (cf. Figure
4.3). Panel (a) shows the max-projection overlay, emphasising regions of consistent vs.
variable energy; panel (b) plots the mean estimate, which highlights the stable kernel
structure; and panel (c) displays the pixel-wise difference between overlay and mean,
marking areas where stochastic initialisation produces the largest deviations. A common
greyscale colourbar (right) ensures that intensity levels are directly comparable across

panels.
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Figure 4.6: Forward-model consistency across ten independent runs, plotted as PSNR
(horizontal axis) versus SSIM (vertical axis) between each synthetic observation §; and
the fixed input y. Once more, Run 6 emerges as an outlier, whereas the remaining runs
achieve relatively high and consistent reconstruction metrics.

Furthermore, Figure closes the loop on the forward model by plotting PSNR against SSIM
for each reconvolution y; = fci ® Z;. Had the optimisation settled into qualitatively different
minima, the points would scatter broadly; instead, they form a compact cluster between ap-
proximately 25-32 dB PSNR and 0.86-0.95 SSIM, with only Run 6 appearing as a clear outlier
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at 22 dB/0.74 SSIM. Thus, despite stochastic initialisation and the theoretical existence of in-
finitely many (x, k) pairs that explain the data, SelfDeblur consistently yields forward-model
outputs of nearly indistinguishable fidelity. This reinforces the earlier conclusions from the
kernel overlay and boxplots: the algorithm robustly recovers the essential blur structure and
delivers reconstructions that are, for practical purposes, interchangeable.

(a) Groundtruth image y. (b) Recovered latent image Z4. (¢) Recovered kernel k.

Figure 4.7: Input—output identity test for run 4 under near-noise-free conditions: (a)
the blurred observation y, (b) the reconstructed latent image ¢4, and (c) the correspond-
ing kernel k4, which collapses to four central pixels.

Finally, Figure presents a stress-test for the classic blind-deconvolution failure mode: when
the observation is virtually noise-free, the data fidelity term alone admits the trivial solution in
which the recovered image matches the blurred input and the kernel collapses to an identity-like
spike. Under otherwise identical conditions but with additive noise reduced to a negligible level,
SelfDeblur indeed drifts toward this outcome. Panel (c) shows the recovered k4 with structure
confined to four central pixels rather than a true delta impulse, while panel (b) confirms that 24
is almost indistinguishable from the input in panel (a). The presence of four bright pixels hints
at a minute residual blur or premature termination of optimisation. Therefore, although the
deep-prior framework remains stable under typical noise levels encountered in practice, explicit
regularisation (such as the TV penalty introduced in Section 2.2) or at least an accurate noise
estimate to prevent kernel collapse is essential whenever measurements approach the noise-free
regime.

(a) Kernel found for the (b) Kernel found for the (¢) Kernel found for the (d) Kernel found for the
first run. fourth run. seventh run. eighth run.

Figure 4.8: Four example “identity” kernels retrieved by SelfDeblur when applied to an
already-blurred input. Each panel shows the kernel found in an independent run (with
random initialisation), rendered at full scale. Despite stochastic starts, all runs converge
to a near—delta spike, confirming that the algorithm can collapse to the identity solution
when no nontrivial blur is present.

As shown in Figure afd)7 ten independent runs on the same near—noise-free base image
consistently recover an identity-like kernel. Subtle differences in individual pixel amplitudes,
apparent as slight brightness variations across the panels, stem from sub-pixel misalignments
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and scaling. This confirms that, even when exact per-pixel values vary, SelfDeblur robustly
captures or approximates the true kernel structure. The reader can find further argumentation
around this topic in the next section.

4.1.3 Levin dataset with custom kernels

(a) Airy (b) Donut (¢) Double Gaussian (d) Elliptical Gaussian

(e) Gaussian (f) Moffat (g) Ring (h) Top Hat

Figure 4.9: The eight custom kernels used in the experiments.

The next experiment again employs the Levin sandbox image (255 x 255 px; Figure and
convolves it with eight purpose-built kernels chosen simply to provide a broad spread of blur
morphologies (Figure . By retaining the same base image as in the original Levin bench-
marks, the set-up isolates the consequences of replacing the canonical linear-motion kernels with
a spectrum of more varied blur kernel shapes. Each kernel is first resampled to 25 x 25 px and
normalised to unit flux, ensuring that all simulated observations share identical noise statistics.
The collection spans, for example, a centrally peaked Airy pattern, a hollow annulus, a pair
of displaced Gaussians, and an elongated elliptical Gaussian, together with a classical circular
Gaussian, a wing-dominated Moffat profile, a broad ring, and a sharp-edged top-hat aperture.
While the assortment is not intended to mimic any single instrument, it supplies a representa-
tive cross-section of possible blur behaviours; in particular, kernels (a) and (e) illustrate how
diffraction-limited and seeing-dominated PSF shapes, respectively, imprint themselves on an
image through convolution. Consequently, convolving the Levin image with each kernel in turn
allows us to assess how SelfDeblur copes with blurs that range from compact and isotropic to
highly directional or annular.

Table [4.5] confirms that, while SelfDeblur seems to recover the blur kernels with moderate
fidelity (average MNC = 0.918), the quality of the restored images is appreciably more variable
(average PSNR = 20.08dB, SSIM = 0.576). For instance, the Donut and Gaussian PSFs
achieve comparable kernel overlaps (MNC = 0.896 and 0.962, respectively), yet the Donut blur
is deblurred more cleanly, yielding a PSNR that is 6.1dB higher and an SSIM that is 0.31
larger than for the Gaussian case. Conversely, the Ring kernel attains the best kernel match in
the set (MNC = 0.970) but still exhibits residual artefacts, so that its PSNR (23.04 dB) only
marginally surpasses the ensemble mean.

This behaviour is best understood by recalling the two—stage nature of blind deconvolution.
After estimating the PSF, the algorithm must still invert the blur; when that blur is governed
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Table 4.5: Performance metrics for the eight custom kernels. The colours here are used
analogously to those in the previous section.

Kernel PSNR (dB) | SSIM | MSE | MNC
Airy 20.91 0.6253 | 30.54 | 0.8700
Donut 23.61 0.7465 | 65.58 | 0.8958
Double Gaussian 20.77 0.6336 | 32.82 | 0.9556
Elliptical Gaussian 16.53 0.3791 | 12.60 | 0.9108
Gaussian 17.48 0.4382 | 77.06 | 0.9620
Moffat 16.85 0.3976 | 9.50 | 0.9447
Ring 23.04 0.7090 | 75.85 | 0.9703
Top Hat 21.43 0.6816 | 12.52 | 0.8369
Average 20.08 0.5764 | 39.56 | 0.9183

by a broad, smooth kernel (such as the Gaussian or Ring) the inversion step inevitably amplifies
noise and ringing, leading to lower PSNR and SSIM. Conversely, compact or sparse kernels (e.g.
Donut, Double Gaussian) impose a gentler inversion and therefore yield sharper reconstructions,
even when their kernel overlaps are slightly smaller. Figure makes the distinction clear. A
side-by-side inspection with the reference kernels in Figure shows that the Ring kernel
is reproduced faithfully, whereas the faint concentric rings of the Airy pattern are largely
lost. Therefore, high MNC scores do not guarantee that every fine feature has been captured.
Nevertheless, the restored sandbox images in panels (a) and (c) remain visually close to the
original photograph (Figure , indicating that any residual kernel errors translate into only
minor differences in the final images.

(a) Restored sandbox im- (b) SelfDeblur’s corre- (c) Restored sandbox im- (d) Recovered ring kernel
age when the underlying sponding estimate of the age for the broad ring PSF
blur is an Airy PSF Airy kernel

Figure 4.10: Qualitative results for two representative blur scenarios. Together these
panels illustrate that the algorithm successfully retrieves both the scene detail and the
distinctive structure of sharply peaked (Airy) and annular (ring) kernels.

In practice, modest image-quality scores do not necessarily signify a flawed kernel estimate.
Table demonstrates that SelfDeblur can retrieve a wide variety of blur kernel structures,
while the final PSNR and SSIM are dictated mainly by how difficult it is to invert each specific
blur. Consequently, even when a reconstruction attains only moderate headline values, the
underlying kernel structure is usually reliable, as shown in the high values of the MNC column
in the table. Building on this insight, Section turns to genuine telescope data to determine
whether the same deep-prior mechanism can recover complex, irregular kernels in practice and
to gauge the deblurring quality achievable when the true PSF is both unknown and non-
ideal.
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4.1.4 Additive noise levels

(a) No added noise (¢ = (b) Low noise (o = 2). (¢) High noise (0 =5). (d) Extreme noise (¢ =
0). 10).

Figure 4.11: Four examples of the same blurred image with increasing AWGN levels.
An interval of [0,10] was chosen after exploratory tests with a wider range of o values.
Noise levels below about o = 2 proved virtually imperceptible, whereas levels above
o = 10 swamped the image detail. The span therefore provides a pragmatic balance
between unrealistically mild and excessively severe noise.

To assess the robustness of SelfDeblur in the presence of sensor noise, a controlled experiment
is conducted in which additive white Gaussian noise (AWGN) of varying standard deviation is
applied to a fixed blurred test image. Let = denote the latent clean image and k the known
blur kernel, so that the noiseless observation is

Yo = k®x.
A noisy input is then generated:
Yo = Yo + 1, niNN(O702)7

where the noise level o is swept from 0 to 10 (gray-value units). In practice, each pixel of yq is
perturbed by independent Gaussian noise of variance o2. SelfDeblur is then applied to each g,
(with the regularization weight set proportionally to the estimated o) to recover & and k. Panels
(a)—(d) of Figure illustrate the blurred test image corrupted by additive white Gaussian
noise increasing from o = 0 to o = 10. At low noise levels (e.g. o = 2) the main structures and
edges remain discernible (e.g. Panel b), whereas at moderate levels (o = 5) details begin to
be obscured by graininess (e.g. Panel ¢). Under extreme noise (¢ = 10), fine texture is almost
entirely lost and the image appears dominated by speckle (e.g. Panel d).

As the artificial noise grows, SelfDeblur’s performance follows a predictable arc. At first the
algorithm even gains a little ground: nudging the variance from o = 1 to ¢ = 2 sharpens the
sandbox picture just enough for both PSNR and SSIM to crest at their highest values. This is
reflected in prediction a of Figure [£.13] which demonstrates the prediction when both PSNR
and SSIM are at their highest point. Thereafter the climb becomes a slide, with both metrics
drifting steadily downwards until roughly o = 8, mirroring the noisier appearance of panels (b)
and (c) in Figure Curiously, things then perk up. The traces in Figure bend back on
themselves, adding around a decibel of PSNR and a few hundredths of SSIM between o = 8
and 10. A close look at a corresponding image (Panel d of Figure suggests one plausible
reason: when the data are hopelessly polluted, the network seems to lean more heavily on its
built-in image prior, ironing away the very worst speckle and producing a smoother, if slightly
over-softened, result. Whether this late rally is a quirk of the optimisation or a more general
safety net is still unclear, yet it does reveal that the method degrades gracefully and may even
claw back a hint of quality when the noise becomes truly overwhelming.
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SSIM and PSNR vs Noise Level
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Figure 4.12: Reconstruction quality of SelfDeblur as a function of additive white Gaus-
sian noise level 0. The green curve traces SSIM, whereas the blue curve records PSNR
in decibels. Both metrics improve slightly between 0 = 1 and o = 2, decline steadily up
to about o = 7, and then show a modest recovery at the highest noise levels.

(a) Prediction for c =2  (b) Prediction for 0 =5  (c¢) Prediction for 0 =8  (d) Prediction for o = 10

Figure 4.13: SelfDeblur reconstructions of the sandbox scene at four representative
noise levels. Progressively stronger additive white Gaussian noise obscures fine detail
and introduces increasingly coarse grain, echoing the quantitative decline in PSNR and
SSIM reported in Figure @

4.1.5 SelfDeblur and PSF blurred astronomical images

Before presenting the PSF-blurring experiments, Section [£.1.1]suggested that both a pure MSE
loss and a hybrid (MSE+SSIM) loss could be applied for deconvolution. Figure demon-
strates the failure mode of the pure MSE variant: subfigure (a) presents the blurred input
patch, (b) the deconvolution with pure MSE, showing pronounced ringing artifacts, and (c) the
SelfDeblur result using the hybrid loss, with less artifacts in comparison. Due to the severe
artifacts in (b), only the hybrid-loss configuration is utilised for all subsequent PSF-blurred as-
tronomical evaluations. In this subsection, the failure mode of a pure-MSE loss on PSF-blurred
astronomical patches is demonstrated first, followed by exclusive use of the hybrid (MSE +
SSIM) configuration for all quantitative benchmarks.
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(a) Ground-truth patch. (b) Pure MSE reconstruction. (¢) Hybrid-loss reconstruction.

Figure 4.14: Deblurring results on an astronomical test patch: (a) the original blurred
observation, (b) reconstruction using a pure-MSE loss (showing strong ringing artefacts),
and (c) reconstruction using the hybrid (MSE+SSIM) loss.

|GT - MSE| Error |GT - Hybrid| Error
(max=141.0) (max=131.0)

B

Figure 4.15: Absolute-error maps for a PSF-blurred astronomical patch, compar-
ing pure-MSE and hybrid-loss reconstructions. Left: normalised | GT — xmse| error
(max = 141.0), showing prominent concentric ripples and high-amplitude speckle. Right:
normalised | GT — ZHybrid| error (max =131.0), with lower residuals and reduced arte-
facts.

1.0

Figure[f.15|clearly demonstrates that minimizing pure MSE produces visually disturbing ringing
and ripple artifacts around high-contrast features, as evidenced by the bright concentric patterns
in panel (c). In contrast, the hybrid-loss reconstruction (panel (b)) suppresses these spurious
oscillations, yielding a smoother, more faithful result and a far darker, more uniform residual
map (panel (d)). These artifacts arise because MSE places undue emphasis on pixel-wise fidelity
without any structural awareness, amplifying high-frequency ringing instead of penalizing it.
Having exposed its pathological ringing, only the hybrid (MSE + SSIM) loss is employed for
all subsequent experiments in this subsection.

To set up the experiments, two cutouts were extracted from the Hubble Space Telescope (HST)
“Molten Ring” image (Fig. |[4.16)), converted to grayscale, and convolved with the eight custom
kernels introduced in Fig. he first cutout (Fig. depicts the central region, charac-
terised by dense features and elevated pixel intensities, whereas the second cutout (Fig. |4.17b)
shows a faint outer arc with sparse detail and subdued intensity values. Applying the same
kernel set to both a richly textured region and a more uniform, low-information patch allows
direct comparison of how well the deblurring methods preserve or reconstruct details across
varying local content complexities.
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Figure 4.16: GAL-CLUS-022058s (“Molten Ring”)|20|, one of the largest and most
complete Einstein rings known, as imaged by the NASA/ESA Hubble Space Telescope.
This rare lensing phenomenon in the Fornax constellation shows a distant galaxy arcing
around its foreground companion.

(a) Original central region (rich (b) Original outer arc (sparse de-
texture). tail).

(c¢) Airy-PSF reconstruction of  (d) Airy-PSF reconstruction of
central region (PSNR = 26.74dB, outer arc (PSNR = 34.84dB,
SSIM = 0.6198). SSIM = 0.8914).

Figure 4.17: Zoomed-in regions from the HST “Molten Ring” image [20]: (a) the bright
central region of the image, and (b) one of the fainter outer arcs away from the center.
Bottom row: SelfDeblur reconstructions of each cutout using the Airy PSF, showing
ringing artifacts in the textured central patch versus a cleaner recovery in the sparse
outer arc.

The merged results in Table reveal a consistent pattern: the sparse-detail patch (Image 2)
is substantially easier to deblur than the richly textured patch (Image 1). On average, PSNR
jumps from 26.54 dB (Image 1) to 31.77 dB (Image 2) and SSIM from 0.7162 to 0.7757, a
gain of over 5 dB and 0.06 SSIM points respectively. Intuitively, the few smooth gradients and
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Table 4.6: Deblurring performance on the two HST cutouts (see Fig. vs.
Fig. |4.17b): PSNR (dB), SSIM, kernel-estimate MSE and MNC for each custom ker-

nel in @

Image 1 (rich texture) | Image 2 (sparse detail)
Kernel PSNR SSIM MSE MNC ‘ PSNR SSIM MSE MNC
Airy 26.74  0.6198 65.33  0.3245 34.84  0.8914 48.22  0.9043
Donut 27.40  0.6690 98.98  0.4708 32.10  0.7251 93.15  0.9674
Double Gauss  26.39  0.8217 31.28  0.5270 28.05  0.5719 100.70  0.8891
Elliptical 2776 0.8960 12.49  0.5411 32.40  0.8275 24.87  0.9658
Gaussian 2775  0.7432 102.20 0.6639 | 33.77 0.8876  87.44  0.8811
Moffat 2295 0.5303 3444 0.4230 | 27.65 0.6023 39.48  0.4826
Ring 30.24  0.8753 78.22  0.5397 32.78  0.8264 98.95  0.8415
Top Hat 23.09  0.5746 45.30  0.3736 32.54  0.8734 33.38  0.9247
Average 26.54 0.7162 58.53 0.4830 ‘ 31.77 0.7757 65.77 0.8571

isolated arcs in Image 2 give the optimization far less room to introduce ringing or amplify
noise, so the reconstructed intensities fall much closer to ground truth both in a mean-squared
and perceptual sense.

The kernel-estimation metrics paint a more nuanced picture. The average pixel-wise MSE of
the recovered blur kernel is actually lower on the textured patch (58.53 vs 65.77), because
the wealth of high-frequency edges in Image 1 provides strong, localized cues that drive down
squared-error during the deconvolution. However, the MNC of that same kernel is far higher
on the sparse region (0.8571 vs 0.4830), indicating that, even though the textured scene yields
smaller absolute deviations, the overall shape of the estimated kernel aligns more faithfully
when fewer confounding features are present.

The Airy-PSF reconstructions in panels (c) and (d) of Figure [£.17] vividly demonstrate the role
of local image complexity in blind deconvolution. In the richly textured central region (c), the
recovered ring shows artefacts and residual speckle (PSNR, = 26.74 dB, SSIM = 0.6198). By
contrast, the sparse outer arc reconstruction (d) is markedly cleaner, fine structure is smoothed
but free of oscillations (PSNR = 34.84 dB, SSIM = 0.8914), reflecting the limited gradients
and isolated features that constrain noise amplification. These visual differences allign with the
numerical trends in Table confirming that SelfDeblur’s hybrid loss excels on low-information
regions while facing greater challenges in richly textured patches.

In other words, complex textures help minimize pixel-wise deviations in the kernel estimate but
can introduce subtle shape distortions that hurt correlation; conversely, a simple background
enforces the correct kernel profile at the expense of larger per-pixel error. Taken together, these
factors explain why the second cutout consistently yields higher PSNR and SSIM (owing to
reduced ringing and noise amplification) and underscore the need to balance intensity-based
accuracy against structural alignment, a balance that is hardest to strike in richly textured
regions. Crucially, SelfDeblur’s joint neural-prior optimization excels on the simpler patch by
reliably recovering the overall shape of the blur kernel even when per-pixel errors remain non-
zero, demonstrating its strength in capturing the global kernel structure for images with sparse
detail.

38



4.2. PIPELINE EXPERIMENTS

4.2 Pipeline Experiments

4.2.1 Lightweight Conv—Attention Encoder (Model A)
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Figure 4.18: Validation metrics comparing predicted and ground-truth kernels for
Model A plotted against the training batch index. The blue curve (left-hand axis) shows
the MSE, which falls sharply in the first batches before levelling off close to zero; con-
versely, the red curve (right-hand axis) depicts the MNC, which rises rapidly towards
its maximum and then saturates, thereby illustrating fast initial learning followed by
convergence.

In contrast to the blind deconvolution results, attention now shifts to the supervised pipeline,
concentrating on optimising the architecture, loss functions and model depth to enable accurate
recovery of blur kernels from convolved images. First up, the main script partitions the dataset
into mini-batches. Within each batch, images undergo random augmentation and are convolved
with a set of roughly forty distinct ground-truth kernels, distributed across the mini-batch to
maximise blur diversity. The network is subsequently trained to recover the appropriate kernel,
minimising either the combined error—correlation loss or, in dedicated ablation runs, a single
loss term (for example, pure MSE). Immediately after each batch update, the model is evaluated
on a fixed validation set: for each validation image, it predicts the kernel that generated the
blur; the MSE and MNC scores are then computed for every prediction and averaged across
the entire validation set. The resulting per-batch MSE and MNC values, recorded throughout
training, can be plotted, as exemplified in Figure [I.18] to provide a clear visual account of the
model’s learning trajectory.

Across all tested loss functions, including the composite MSE + SSIM objective (which is the
one shown in image as well as pure MSE and cosine-similarity losses, the training dynamics
are virtually identical: a rapid decline in MSE accompanied by a sharp rise in MNC during the
first half of training, followed by an abrupt convergence to a flat plateau. In every case, after
roughly 50 batches no further improvement is observed, with MSE asymptotically approaching
zero and MNC leveling off at approximately 0.62. Although these aggregate metrics might
suggest great error reduction and reasonable shape alignment, it is important to verify this by
checking individual kernel predictions made by the model.

Figure juxtaposes three distinct ground-truth kernels (#4, #5 and #@, aroughly circular
blur, an oblique ellipse and a cross-shaped filter, with their corresponding outputs from the
model trained using the MSE-SSIM loss. Although the true kernels differ markedly in shape
and orientation, the predicted kernels all collapse to a nearly identical, isotropic blur.

10T hese kernels were selected because their markedly different shapes make them ideal for visual comparison.
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(a) Kernel 4 (b) Kernel 5 (c) Kernel 8
(d) Predicted kernel 4 (e) Predicted kernel 5 (f) Predicted kernel 8

Figure 4.19: Top row: ground-truth kernels #4, #5 and #8 (randomly selected out of
the 40 kernels used for training). Bottom row: the corresponding predicted kernels from
Model A.

This behavior, known as mode collapse, arises when the training objective and network capacity
drive every input toward a single “average” solution rather than preserving the full diversity of
kernel shapes. In practice, it reflects an under-constrained inverse mapping in which minimizing
the average loss favours a constant prediction. The signature of this collapse is already visible in
Figure[4.18} the MSE curve plunges toward its minimum and then flattens out, while the MNC
curve climbs to a sub-unitary plateau. Those flat regions indicate that, despite vanishing pixel-
wise error, the model no longer improves its ability to distinguish different kernel structures,
precisely because it has converged to producing one kernel for all inputs.

The combination of MSE and MNC as a training objective arose from two observations. First,
Table shows that a purely pixel-wise term («) guarantees numeric fidelity, while a global-
alignment term (3) enforces overall shape, yet SSIM (v) only approximates structural similarity
via local patch statistics and often fails to capture large-scale anisotropy. Second, SelfDeblur
evaluates recovered kernels using both MSE and MNC, demonstrating that minimizing squared
error alone drives the network toward an “average” blur, whereas incorporating a NMC term
more faithfully captures the full structural characteristics of the kernels as in comparison to,
for example, a SSIM-based component.

Accordingly, the proposed custom loss
L = MSE + X (1—MNC) (4.1)

directly leverages the strengths of both metrics: the MSE component (analogous to a high
«) preserves pixel-level accuracy, and the MNC term (akin to introducing a cosine-weight )
drives the global shape of the predicted kernel to align with the true kernel, independent of
scale or mean. In contrast to MSE + SSIM, this formulation employs a global structural
measure parameterised solely by A and, as the experiments seem to indicate, better preserves
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anisotropic features and reduces the mode-collapse observed when a perceptual SSIM term
dominates.
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(a) MSE-MNC on A-PSFs. (b) MSE-MNC on E-PSFs.

Figure 4.20: Comparison of MSE vs. MNC for (a) A-PSF kernels and (b) E-PSF
kernels.

Figure shows the effect of replacing the MSE-SSIM objective with the combined MSE—
MNC loss on two distinct kernel datasets. In panel (a), using A-PSF derived kernels, MSE still
decreases rapidly, reaching roughly 1.5 x 10~% by batch 50, but then rises only slightly toward
2.5 x 107% by batch 100. More importantly, MNC climbs from about 0.62 (the plateau in
Figure 4.15) up to nearly 0.98, demonstrating a marked improvement in structural alignment.
Panel (b) reports a similar trend for E-PSF-simulated kernels: MSE remains low (below 8 x
10~%), while MNC peaks around 0.95 instead of saturating at 0.62. These results confirm that
including the normalised cross-correlation term yields consistent, if marginal, gains in shape
fidelity across both kernel families, without sacrificing the low pixel-wise error achieved by the
original loss.

Figure illustrates that Model A, trained with the MSE-MNC loss, is capable of recovering
diverse kernel shapes from both A-PSF and E-PSF-simulated datasets (trained separately). In
the top row, kernel #25 exhibits an elongated ellipse and kernel #27 a sharp circular ring,
both of which are faithfully reproduced in the bottom row with only minor smoothing of the
ring interior. Similarly, E-PSF kernel #9’s central Gaussian peak is accurately captured in
the prediction, while kernel #19 shows a small residual bias, most notably a faint secondary
ring, that could likely be eliminated through extended training or further hyperparameter
tuning.

These results serve primarily as a proof of concept rather than a final optimization: despite
the clear structural differences between the A-PSF derived and E-PSF kernels, a single network
architecture and loss formulation generalizes across both families. The consistent performance
on such varied blur patterns underscores the flexibility of the MSE-MNC objective and sug-
gests that additional improvements may be unlocked by longer training schedules or targeted
parameter searches.
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101w

(a) A-PSF #25 (b) A-PSF #27 (c) E-PSF #9 (d) E-PSF #19
(e) Predicted 25 (f) Predicted 27 (g) Predicted 9 (h) Predicted 19

Figure 4.21: Top: ground-truth kernels from A-PSF (#25, #27) and E-PSF (#9, #19).
Bottom: the corresponding kernels predicted by Model A.

4.2.2 Pure Fully-Connected Regressor (Model B)

The fully-connected regressor (Model B) reproduces the exact training dynamics observed for
the convolutional architecture: the MSE decreases sharply during the initial 50 batches before
flattening, and the MNC rises rapidly then saturates (cf. Figure . Experiments with
various loss functions (including pure MSE, hybrid MSE + SSIM, and even the MSE + MNC
loss crucial for Model A) failed to steer the regressor away from this mode collapse. Identical
behaviour underscores that early convergence and mode collapse are driven by the ill-posed
nature of blind kernel estimation rather than by the choice of network inductive bias.

The persistent plateau in both MSE and MNC observed for Model B suggests that the network
has effectively reached the practical performance ceiling imposed by the ill-posed nature of blind
kernel estimation: once the mean-loss minimizer converges, no further gains can be achieved
without additional constraints. Rather, this plateau suggests that a pure regression-based
network may be inherently limited for supervised kernel estimation, prompting the next two
paragraphs to verify if sources and research papers agree with this claim.

The survey [21] provides a comprehensive overview of purely data-driven methods applied
to a broad class of ill-posed reconstruction tasks, including deblurring, super-resolution, and
denoising. Their analysis highlights that, despite impressive performance on held-out test
sets, neural networks frequently struggle to produce stable or physically consistent solutions
when confronted with realistic noise levels or model mismatches. In the context of Model
B’s plateauing MSE and saturating MNC, these findings suggest that the underlying inverse
problem of kernel recovery is too under-constrained for a black-box regressor: without strong
priors or uncertainty-aware mechanisms, the training dynamics inevitably drive the network
toward a mean solution that minimizes average loss but fails to capture the true diversity of
blur kernels.

Varela et al.’s work [22] on motion-blur parameter regression further illustrates the brittleness of
end-to-end kernel estimators. By training a compact CNN to predict only length and orientation
on synthetically generated linear motion blurs, they achieve high R? scores under controlled
conditions yet observe rapid degradation in accuracy whenever the test kernels deviate even
slightly from the training family. This narrow parametric focus stands in stark contrast to the
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full 2D kernel space considered in Model B: as soon as the network must regress arbitrary PSF's,
its predictions collapse to an “average” kernel and stagnate, mirroring the mode-collapse and
performance plateau observed in Figures [I.18 and [£.19] Together, these two studies underscore
that a purely supervised neural regressor lacks both the inductive biases and the uncertainty
handling necessary to robustly recover diverse convolution kernels from blurred images.

Table 4.7: Updated hyperparameter sweep: architecture, weight-decay, and Adam ;.

Test  Model architecture Weight-decay (A\) Adam B8;  Notes
A 6-layer MLP with BatchNorm: 1x 104 0.90 Moderate £ regularization and
512-BN-1024-BN-2048-BN-1024-BN-512-BN-256-BN standard momentum.
B 6-layer MLP with BatchNorm: 1x 1073 0.80 Strong ¢2 + lower 81 for more
512-BN-1024-BN-2048-BN-1024-BN-512-BN-256-BN exploration.
C 6-layer MLP with BatchNorm: 1x107° 0.95 Light ¢2 + higher g1 for
512-BN-1024-BN—2048-BN—-1024-BN-512-BN—-256-BN smoother, stable convergence.

As a final effort, a targeted hyperparameter sweep was conducted using the configurations
listed in Table Three variants of the six-layer Multi-Layer Perceptron (MLP) were tested:
the first employed moderate 5 regularization (A = 10~%) and standard Adam momentum
(/1 = 0.90) to balance underfitting and convergence speed; the second increased /o strength
(A = 1073) while lowering 3; to 0.80 to promote greater exploration of the loss landscape; the
third used very light regularization (A = 107°) with a higher £; of 0.95 for smoother, more
stable training. In principle, these adjustments should have mitigated over-smoothing of the
kernels, alleviated mode collapse, or accelerated convergence. However, experiments seem to
indicate that extensive hyperparameter tuning and loss-function variations could not prevent
mode collapse, thereby confirming that the limited capacity of the purely supervised regressor
architecture constitutes the fundamental bottleneck.
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Chapter 5

Conclusion

This chapter concludes the main part of the thesis by discussing the key findings, their impli-
cations, and remaining challenges. Initially, SelfDeblur’s suitability for astronomical PSFs is
evaluated (Section 5.1); subsequently, the adequacy of PSNR/SSIM for assessing image quality
is examined (Section 5.2); and, finally, limitations and future directions are outlined (Section
5.3).

5.1 SelfDeblur’s suitability for astronomical images with
PSF-Shaped Kernels

Overall, the experiments indicate that SelfDeblur is capable of recovering complex astronomi-
cal point-spread functions (PSFs) with a reasonable degree of accuracy, though some caveats
apply. In tests with synthetic telescope blur patterns, SelfDeblur consistently found kernels
that closely matched the true PSFs, achieving a high average kernel overlap (MNC = 0.918)
across a diverse set of PSF shapes. These shapes ranged from centrally concentrated Airy-disk
patterns to more irregular profiles (e.g., “donut”-shaped and elongated blurs), closely mirror-
ing real astronomical optics. Notably, even when the blur kernels were large or oddly shaped,
SelfDeblur’s deep-prior approach recovered the essential PSF structure in most cases. However,
this evaluation was based on a single astronomical test image, so extensive validation across
a broader variety of celestial scenes remains necessary. Moreover, real astronomical frames
often have very low signal-to-noise ratios, which can severely degrade kernel estimation and
complicate any subsequent deconvolution, highlighting the need for noise-robust regularisation
or denoising priors. This suggests that the method is indeed suitable for astronomical imaging
scenarios, at least in terms of identifying the structure of the blur kernel.

However, the fidelity of the deblurred images themselves was more mixed, which tempers the
assessment of suitability. The reconstructed astronomical images showed only moderate PSNR
(~ 17-23dB) and SSIM (~ 0.4-0.7) on average. For example, a hollow “donut” PSF and a
ring-shaped PSF both yielded very high kernel accuracy (MNC = 0.90-0.97), yet the resulting
image-quality metrics differed by over 5dB in PSNR and 0.35 in SSIM. Conversely, a simple
Gaussian blur produced one of the best kernel estimates (MNC = 0.962) but only a modest
restoration quality (PSNR ~ 17.5dB, SSIM =~ 0.44). In other words, SelfDeblur often nailed
the blur kernel even when the deblurred image looked imperfect by conventional metrics. This
discrepancy arises because recovering the latent image from a severe blur is a separate challenge:
wide, smooth kernels (like a broad telescope PSF) inherently amplify noise and ringing during
deconvolution, dragging down PSNR and SSIM despite an accurate PSF. On the other hand,
more compact or sparse PSFs (such as a tight double Gaussian) allow sharper image recovery
and thus higher PSNR, and SSIM, even though the kernel estimate might be of similar accuracy.
In practical terms, SelfDeblur proves capable of handling realistic astronomical blur kernels, an
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encouraging result for its applicability, but one must not rely solely on naive image-quality
scores to judge its success (as discussed further below).

It is also important to highlight the need for tailored loss functions when applying SelfDeblur
to astronomical data. Early trials revealed that using a standard pixel-wise loss (pure MSE)
on astronomical images led to severe artefacts: the algorithm produced pronounced ringing
patterns around bright galaxy cores (Figure . In this vivid demonstration, the MSE-
trained result exhibited conspicuous concentric ripples, whereas the proposed hybrid loss (MSE
combined with SSIM) alleviated these artefacts, albeit not entirely. With the hybrid loss,
SelfDeblur consistently delivered more faithful reconstructions than the pure MSE approach,
and so this configuration was adopted for all subsequent astronomical-image experiments.

In summary, SelfDeblur shows promise for astronomical deconvolution: it can recover a wide
variety of PSF shapes (including more irregular ones, like the ring pattern as demonstrated in
Figure and, in most cases, reconstruct the general structure of the blur kernel, which
may assist in identifying the underlying kernel responsible for the observed convolution. Its
suitability is further reinforced by graceful degradation under realistic conditions such as sensor
noise; indeed, the method’s implicit regularisation can prevent collapse in very noisy images by
favouring smoother outputs. Nevertheless, users must carefully tune the method (loss functions,
regularisation weights etc.) to the astrophysical context to avoid pitfalls such as residual ringing.
With these adjustments, SelfDeblur seems like a good candidate method because of its data-
efficient, deep-prior approach that circumvents the need for extensive training data and can
handle the unknown, irregular blurs characteristic of astronomical optics.

5.2 PSNR and SSIM seem insufficient for image quality
evaluation

A recurring theme in this thesis is that conventional image-quality metrics (PSNR for pixel-
wise error and SSIM for coarse structural similarity) do not capture everything that matters in
blind deconvolution. They often miss perceptually critical artifacts and, more importantly, say
nothing about whether the estimated blur kernel is correct.

Similarly, the results of this study indicate that conventional metrics can overlook perceptually
relevant artefacts and may not fully reflect the accuracy of the estimated blur kernel. In SelfDe-
blur experiments, reconstructions averaged PSNR ~ 20 dB and SSIM =~ 0.58, numbers that look
mediocre, yet the same images achieved an excellent kernel-match score of MNC & 0.92. One
case even produced a near-perfect Gaussian PSF (MNC ~ 0.962) while registering only 17dB
PSNR; another reached 23dB PSNR despite a slightly worse kernel. Such mismatches arise
because PSNR/SSIM are hypersensitive to noise amplification or mild ringing (inherent when
reversing a broad blur) while being blind to whether the PSF itself is right. A low score there-
fore need not signal failure, and a high score can disguise residual blur. The supervised pipeline
reinforces the point: training loss and SSIM fell smoothly even as the network collapsed to one
generic kernel for every input (Figures and . PSNR looked “respectable” only because
that average blur half-deblurred the data; kernel inspection revealed total failure.

Blind deconvolution thus demands richer evaluation metrics because PSNR and SSIM alone
cannot expose mode collapse or verify that both the latent image and the blur have been
faithfully recovered. In short, the reader is urged to consider these two metrics for their potential
future work surrounding this topic:

e Perceptual Similarity Metrics: Using metrics (like SSIM) that align better with hu-
man visual perception can help judge image fidelity beyond pixel-wise error. For ex-
ample, a Learned Perceptual Image Patch Similarity (LPIPS)[23| metric or other deep
feature—based distances could be employed to measure how “natural” or close to the
ground truth the deblurred image looks. Such metrics consider high-level feature dif-
ferences and are less sensitive to small pixel shifts or noise, which is crucial because a
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deblurred image might be slightly misaligned pixel-wise yet still perceptually sharp and
correct. In this case, a perceptual metric might have better captured the fact that the
structures (stars, galaxies) were restored in the SelfDeblur outputs even if some noise was
present. It would similarly penalize the pipeline’s collapsed-output images for looking
nothing like a properly deblurred image, something SSIM failed to differentiate in depth.

e Frequency-Domain Analysis: Although astronomical scenes may lack the hard edges
of natural photographs, they nonetheless contain vital high-frequency information, point
sources such as stars appear as near—delta peaks in the image domain (broad spectrum
in frequency), and fine filaments or sharp transitions (e.g. between dark lanes and bright
nebulae) contribute significant spectral content. Consequently, evaluating the Fourier
power spectra of the original, blurred and deblurred images can prove highly informative.
A successful deconvolution should restore attenuated power across the telescope’s pass-
band without introducing narrow spectral peaks characteristic of ringing. Metrics such
as spectral entropy or band-limited energy ratios can quantify whether true fine-scale de-
tail has been recovered, rather than merely amplified artefacts. In the thesis, qualitative
observations of residual blur versus ringing could thus be supplemented by quantitative
frequency-domain measures, providing a physics-aware assessment that PSNR and SSIM
alone cannot offer.

In summary, a more complete evaluation of deblurred images requires looking beyond PSNR/SSIM
to these additional metrics and techniques. The experiments demonstrated that PSNR and
SSIM can be misled by the side effects of deblurring (noise, ringing) and by trivial solutions.
Cases were observed in which a higher-PSNR reconstruction was actually worse in terms of
true restoration, it had simply not fully deblurred the image but avoided noise, thereby scoring
well. Conversely, a slightly lower PSNR result sometimes exhibited more faithful structure.
By incorporating perceptual metrics, frequency-domain analysis, and explicit kernel-accuracy
measures, a multidimensional view of performance can be obtained. Such a comprehensive
approach is crucial for blind deconvolution, where success is not merely a prettier image but
the correct undoing of blur (something that PSNR alone cannot confirm). Future studies and
practical deployments of deblurring methods should adopt richer evaluation criteria to ensure
that algorithms are judged fairly and rigorously.

5.3 Limitations in the custom pipeline

The custom pipeline adopted a supervised learning approach to blind deconvolution, directly
confronting the ill-posed nature of the kernel estimation problem. A major finding was that the
pipeline models consistently converged to outputting essentially the same kernel for each input,
which is a clear symptom of mode collapse and prevented the capture of blur-kernel diversityﬂ
This behavior occurred despite extensive efforts in architecture design and hyperparameter
tuning: experiments demonstrated that mode collapse constituted a fundamental obstacle not
easily overcome by adjusting training settings. For instance, two contrasting network architec-
tures, a convolutional encoder (Model A) and a fully-connected MLP regressor (Model B), both
exhibited virtually identical training dynamics and outcomes. Each architecture rapidly drove
the loss downward before stalling on a plateau, indicating convergence to an “average” blur
kernel for all inputs. The fully-connected Model B replicated the sharp initial drop in MSE and
the saturation of kernel overlap (MNC) observed in the convolutional Model A, underscoring
that early convergence and collapse were driven by the ill-posed nature of blind kernel recov-
ery rather than by any specific architectural or inductive bias. In other words, the network
minimized the training error in a pathological manner (outputting a one-size-fits-all kernel)
because, in the absence of stronger constraints, many different blur kernels could explain the
data equally well.

1 The sole exception was Model A trained with the hybrid MSE+MNC loss, which successfully avoided collapse
(Figure [4.21)); see discussion below.
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Given this challenge, extensive hyperparameter tuning was performed to combat collapse and
encourage kernel diversity. The weight decay ({2 regularization strength), optimizer momen-
tum, learning rates, batch sizes, and even the form of the loss function (pure MSE, SSIM,
cosine similarity, and their combinations) were systematically varied. The hope was that some
combination of regularization and optimization settings would shake the model out of the mean-
solution trap and allow it to distinguish different blur kernels.

For example, one configuration increased the weight decay from 1x 107 to 1 x10~3 and lowered
the Adam (; momentum to 0.8, aiming to force greater exploration of the solution space.
Another took the opposite approach, applying extremely light regularization (A = 1 x 1079)
with high momentum (3, = 0.95) to ensure smoother, more stable convergence. In principle,
these adjustments should have, respectively, penalized over-smooth kernels or prevented the
optimizer from prematurely settling.

However, the results of this hyperparameter sweep were disappointing. All alternative settings
led to no significant improvement, and in some cases degraded performance, while substantially
prolonging training time. In practical terms, the model still collapsed to an almost identical
kernel prediction for every image, regardless of how the knobs were tuned, and the validation
MSE and MNC curves remained essentially unchanged, aside from taking longer to converge.
These modified runs were reported as yielding “equivalent or degraded” performance compared
to the baseline, confirming that the original training setup was already near the best that
this purely supervised regressor could achieve. This underscores a key point: no amount of
superficial hyperparameter tweaking can overcome the deep ambiguity inherent in blind kernel
estimation.

Despite the generally bleak picture for Model B, Model A told a different story once its convo-
lutional encoder was coupled with a composite loss that balanced pixel fidelity (MSE) against
kernel fidelity (MNC). With the joint MSE + MNC objective, Model A’s training dynamics
diverged sharply from the collapse observed elsewhere: the kernel-overlap score climbed steadily
to MNC = 0.83, the per-image MSE leveled off two orders of magnitude lower than in the base-
line run, and visual inspection of predicted kernels (Figures and confirmed genuine
diversity that tracked the ground-truth PSFs. The network learned to sharpen edges where
the blur was narrow, to elongate the kernel when the input contained directional smear, and to
reproduce Airy-like ring structures on telescope PSF's. In short, the convolutional architecture
with the right loss was able to break out of the mode-collapse trap and deliver consistently
accurate, image-specific kernels.

These contrasting outcomes underscore two lessons. First, architecture alone is not enough:
Model B’s failure shows that a high-capacity regressor without spatial bias or an explicit kernel
term will almost always sink to the mean solution. Second, loss design matters, but only
in the right architectural context. Even when Model B was trained with the same MSE +
MNC objective that rescued Model A, it still collapsed to the mean solution, underscoring
that both the convolutional inductive bias and the composite loss are required to break free
of trivial minima. Together, these findings suggest that effective blind-deconvolution pipelines
must embed strong priors (either through physics-aware losses, explicit kernel constraints, or
unrolled optimisation), rather than relying on raw data and hyperparameter sweeps. The
negative results with naive settings highlight the ceiling of a purely supervised approach, while
this small but pivotal change in the loss function points the way forward: incorporate domain
knowledge directly into the learning objective to steer the network away from trivial minima
and toward physically plausible, image-specific solutions.

5.4 Future directions for improving the pipeline
The pipeline experiments reveal that, although reliable blur-kernel recovery is now possible,

determining how well these kernels translate into high-quality image deconvolution remains an
open question—one not addressed owing to timing constraints. Consequently, breaking out
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of mode collapse and achieving truly robust blind-deconvolution performance will require more
than routine hyper-parameter tweaks. Below are the four most consequential steps to guide
the next research cycle.

1. Evaluate reconstruction quality once kernels are recovered
Having demonstrated reliable kernel estimation, the next step is to assess how well those
kernels perform in actual deconvolution. Future work should apply the recovered kernels
to reconstruct latent images and quantify restoration fidelity using PSNR, SSIM, percep-
tual metrics and frequency-domain analysis, thereby completing the blind-deconvolution
pipeline.

2. Broaden the training distribution, more kernels, more real data

Mode collapse thrived because the network was exposed to a limited, synthetic blur space.
Therefore, the first priority is to massively expand kernel diversity (noting that the space
of possible kernels is, in principle, unbounded) and to probe how well the model generalises
to truly unseen blurs, for example the classic motion-blur kernels characterised by Levin
et al. This effort should be paired with a larger, heterogeneous image corpus that includes
genuinely blurred photographs or sky frames. Ultimately, a richer data distribution will
compel the model to learn true blur-image relationships instead of defaulting to a single
“average” kernel.

3. Embed physics in the architecture and loss
A feed-forward regressor is too unconstrained for an ill-posed inverse problem. Fu-
ture models should incorporate the imaging physics directly: dual branches that predict
the latent image and kernel and are coupled by a convolution layer, or unrolled blind-
deconvolution solvers with learnable iterations. Coupling these designs with kernel-aware
losses (e.g. MSE + MNC or Strehl-ratio[24] penalties) gives the optimizer a concrete in-
centive to avoid trivial, mode-collapsed solutions.

4. Integrate SelfDeblur’s deep priors into the custom pipeline

SelfDeblur’s optimisation-based deep prior offers robust PSF recovery but at high com-
putational cost per image. A natural next step is to embed this deep prior within the
existing feed-forward pipeline, for example by using SelfDeblur-generated kernels or in-
termediate feature representations as targets or initialisations for a trainable regressor.
Such a hybrid approach could leverage SelfDeblur’s strengths in blind estimation while
exploiting the pipeline’s feed-forward speed, ultimately delivering a fast, accurate solution
suitable for large-scale astronomical imaging.
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Chapter 6

Reflection

Looking back on the past academic year, this master-thesis journey has profoundly reshaped
my approach to research, problem-solving, and academic aspirations.

6.1 From Coursework to Structured Practice

The Research Methods course, taken at Malmo University, served as the first nudge away
from “just reading interesting papers” and towards actively weaving ideas together within a
structured framework. Initially, a literature survey felt like a linear exercise: collect citations,
summarise them, move on. However, the course taught me to construct a living conversation
between sources: mapping each author’s assumptions, identifying points of tension or comple-
mentarity, and allowing those tensions to inspire new experiments. Meanwhile, a fixed rhythm
of weekly meetings with my supervisor proved invaluable in translating this theoretical mindset
into concrete action. Each meeting transformed vague “next steps” into clear deliverables and
tentative experiment plans, effectively turning our discussions into miniature design reviews in
which hypotheses were tested, logs dissected, and plans refined.

This integrated practice carried directly into thesis work: every model failure became an op-
portunity to ask, “Which piece of theory does this contradict? Which paper might contain the
missing clue?” Conversely, the habit of disciplined reflection ensured that experimental setbacks
were not merely obstacles but integral components of a broader learning cycle. Together, rigor-
ous literature engagement and structured supervision have fundamentally shaped my approach
to research, and will remain essential as I pursue a PhD path.

6.2 Detour and Discovery

Halfway through the year, the custom supervised pipeline repeatedly collapsed each estimated
kernel into the same uniform blurry kernel structure. Despite varying loss functions, adjusting
dataset splits, reducing learning rates and even simplifying the architecture to a single dense
block, the model failed to learn diverse PSFs. Parallel checks (validating the convolution
implementation and scaling across GPUs on the VSC cluster) also failed to resolve the issue.
Although frustrating, this period proved instructive: a more rigorous experimental protocol was
adopted, in which one parameter at a time was altered and every outcome meticulously logged.
Familiarity with the HPC environment deepened through writing SLURM scripts, monitoring
GPU utilisation and managing Conda environments, while detailed experiment journals ensured
that past setbacks could be revisited without retracing the same steps.

Revisiting SelfDeblur sparked the idea to integrate its kernel-comparison metrics (MSE and
MNC) directly into the CNN’s loss. Once both pixel-wise error and structural overlap were
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combined in the objective, the pipeline immediately escaped mode collapse and began recovering
distinct, plausible PSFs. This simple design tweak demonstrates how a single loss-function
choice can transform training dynamics.

6.3 Looking ahead

e Research is bricolage. Real progress often comes from stitching together ideas from
experimenting with different concepts from different sources.

e Ill-posed problems demand strong priors. Whether implicit (SelfDeblur) or explicit
(kernel normalisation layers), modelling assumptions are not optional.

e Logs beat memory. Version control, experiment tracking, and a fixed meeting cadence
saved me from circular rabbit holes.

e Technical skills are as vital as theoretical insights. Proficiency in coding and high-
performance computing, writing SLURM scripts, managing interactive GPUs, scheduling
resources, and MPI debugging, is as essential to advancing research as any conceptual
framework or theoretical paper.

e Stagnation is signal. When nothing improves for weeks, the right move may be to
pause, read broadly, or prototype something radically different.

This thesis has confirmed that open-ended questions, where method matters as much as results,
are where I thrive. I intend to pursue doctoral research, ideally in computational imaging, to
refine these skills and push my work toward publication. Areas for growth include deepening
mathematical intuition (especially in inverse-problem theory) and honing scientific writing.
Above all, I truly believe that disciplined experimentation coupled with creative idea-borrowing
will guide my future breakthroughs and research.

If T could advise my earlier self: keep the notebooks tidy, embrace HPC quirks early, and trust
that the breakthrough often hides in the paper you read to “take a break.”
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