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Abstract

Background: Liver cirrhosis is a deadly, chronic illness with rising global

rates. Patient outcomes must be accurately predicted for timely interven-

tion, treatment planning, and care prioritizing.

Objective: This study will assess machine learning models’ ability to pre-

dict cirrhosis patients’ survival outcomes using clinical and demographic

data from diagnosis or follow-up.

Methodology: The Cirrhosis Patient Survival Prediction dataset, sourced

from the UCI Machine Learning Repository and collected at the Mayo

Clinic, contains 418 patient records and numerical and categorical features.

The classification target comprises three mutually exclusive survival out-

comes: alive, liver transplant, and death. Four supervised machine learning

algorithms Logistic Regression, K-Nearest Neighbors, Random Forest, and

Extreme Gradient Boosting were trained and evaluated under four differ-

ent class imbalance handling techniques: SMOTE, random undersampling,

SMOTE combined with undersampling, and SMOTEENN. Model perfor-

mance was assessed using macro-averaged F1-score as primary metrics.

Results: The XGBoost classifier with SMOTE had the best performance,

with a macro F1-score of 60.2%. In comparison, KNN with undersampling

performed poorly, achieving a macro F1-score of 44.6% , a 35% improvement

from the lowest to the highest-performing arrangement. Bilirubin, Ascites,

Prothrombin time, Age, Sex, and Hepatomegaly were the most important

survival predictors, according to XGBoost feature importance analysis.

Conclusion: This study demonstrates that machine learning, particularly

ensemble-based methods such as XGBoost, can effectively model complex,

imbalanced multiclass survival data in a clinical context. The integration

of SMOTE improves generalizability across underrepresented classes. Fur-

thermore, the interpretability of key clinical features enhances trust in the

model’s predictions and strengthens its potential as a decision-support tool

for managing cirrhosis patients.

Keywords: Liver Cirrhosis, Machine Learning, XGBoost, Survival Predic-

tion, SMOTE, F1-Score, ROC-AUC, Feature Importance.
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Predicting Cirrhosis Patient Survival Using Machine Learning: A Data-Driven Approach

1 Introduction

1.1 Background

Liver cirrhosis is a long-term, irreversible disease in which good liver tissue is slowly

replaced by fibrotic scar tissue, which eventually makes the liver less able to do

its job. It is one of the main causes of illness and death throughout the world,

killing over a million people every year and putting a lot of stress on healthcare

systems [1]. People with cirrhosis often have major problems include portal hy-

pertension, ascites, hepatic encephalopathy, and liver failure. These problems can

lead to repeated hospital stays and a lower quality of life.

Even while treatments and tests have gotten better, cirrhosis is still a big prob-

lem for doctors, especially in places with few resources. So, it’s very important

to be able to forecast patient outcomes early and accurately in order to improve

survival, prioritize candidates for liver transplantation, and organize timely thera-

pies. Making strong tools to forecast how long someone with cirrhosis will live not

only helps with individualized patient care, but it also helps health policy makers

make better decisions and make the most use of limited medical resources.

Traditionally, models such as the Model for End-Stage Liver Disease (MELD) have

been employed to predict short-term survival in patients with cirrhosis. These

scoring systems rely primarily on a limited set of static laboratory and clinical

measurements, which may not adequately reflect the dynamic nature of the dis-

ease [2]. As a result, they are often insufficient for long-term survival prediction

or for tailoring personalized treatment plans.

To address these limitations, recent research has introduced time-varying ap-

proaches that leverage longitudinal patient data. For example, Goldberg and

Zarnegarnia [2] demonstrated that extended Cox models utilizing dynamic labo-

ratory data yield improved survival predictions compared to traditional methods.

Additionally, artificial intelligence, particularly machine learning, has emerged as

a valuable tool for modeling complex, nonlinear relationships within healthcare

data. A study by [3] utilized artificial neural networks to predict in-hospital mor-
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tality among cirrhotic patients with hyponatremia, surpassing the performance of

classical scoring models such as MELD and MELD-Na.

AI is changing the way medical professionals work in significant ways by making

diagnoses more accurate and cutting down on the amount of work they have to

do. For instance, AI-based systems are now being used to help diagnose coeliac

disease, which speeds up the process and helps doctors make decisions in the

clinic [4]. According to [5], AI can now diagnose coeliac disease with pathologist-

level accuracy.

AI and ML have a lot of potential, but there are still a lot of practical and ethical

problems that need to be solved. These include the need for clinical datasets

that are high-quality and well-annotated, models that are easy to understand,

and models that operate well with existing clinical workflows. Data scientists and

healthcare practitioners need to work closely together to build models that are not

just correct but also clear and useful.

In conclusion, there is a lot of potential for enhancing the prediction of cirrhosis

survival outcomes by the incorporation of machine learning approaches with dy-

namic patient data. Reliable survival models can improve resource allocation in

liver care, guide clinical decision-making, and assist in the early identification of

high-risk patients.

The remainder of this thesis is organized as follows:

• Chapter 2: Dataset Description - presents an overview of the dataset used

in this study, including its structure, features, and challenges such as miss-

ingness and class imbalance.

• Chapter 3: Methodology - details the machine learning algorithm employed

in this study, addresses challenges such as data missingness and class imbal-

ance, outlines resampling techniques, preprocessing steps, feature engineer-

ing, model training pipeline, and evaluation metrics.

• Chapter 4: Results and Discussion - presents the outcomes of exploratory

data analysis and machine learning experiments, evaluates model perfor-

mance, examines feature importance, and analyzes the effects of imbalance
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management.

• Chapter 5: Conclusion and Future Work - summarizes the key findings,

outlines limitations, and suggests directions for future research.

• Chapter 6: Ethics, Societal Relevance, and Stakeholder Awareness - reflects

on ethical considerations such as data privacy, fairness, and transparency;

discusses the broader societal impact of predictive modeling in healthcare;

and identifies key stakeholders affected by this research.

1.2 Objective of the study

This work aims to create and assess machine learning models forecasting cirrho-

sis patient survival. Specifically, this study aims to determine the most efficient

ML model for survival prediction, evaluate the clinical characteristics that notably

affect patient outcomes, and investigate how different class imbalance manage-

ment strategies affect model performance. The study’s main objectives are: (1)

Which ML model best predicts cirrhosis survival? (2) Which clinical features are

most important for survival outcomes? (3) How do different class imbalance tech-

niques, such as Synthetic Minority Over-sampling Technique (SMOTE), Random

Undersampling, their combination, and SMOTE with the Edited Nearest Neigh-

bors (ENN) affect model performance? By addressing these questions, this work

intends to increase predictive accuracy, improve model interpretability, and sup-

port better clinical decision-making for cirrhosis care utilizing answers to these

queries.
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2 Dataset Description

This study utilizes the Cirrhosis Patient Survival Prediction Dataset, sourced from

the UCI Machine Learning Repository [6,7]. The dataset comprises clinical records

of 418 patients diagnosed with liver cirrhosis, originally collected from the Mayo

Clinic. The dataset is designed to support or enable building machine learning

models that can predict patient survival outcomes using both demographic and

medical characteristics.

The dataset contains 20 variables, encompassing both numerical and categorical

features. Key attributes include:

• Age: Demographic.

• Sex : Demographic.

• Bilirubin, Albumin, Alkaline Phosphatase, AST, Prothrombin Time (Pro-

time): Laboratory markers indicative of liver function and disease progres-

sion.

• Ascites : Fluid accumulation in the abdomen, often a sign of liver disease

severity.

• Hepatomegaly : Liver enlargement, which can be indicative of liver dysfunc-

tion or disease.

• Edema: Swelling caused by fluid retention in tissues, which can occur due

to liver cirrhosis.

• Stage: Histological stage of liver fibrosis (ordinal feature).

• Drug : Whether the patient received D-penicillamine treatment (binary fea-

ture).

• Status (Target Variable): The final survival status of the patient - ”C” (cen-

sored: alive), ”CL” (censored: liver transplant), and ”D” (death).
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The target variable in this study is ”Status,” which contains three classes of cate-

gories. This makes the task a multiclass classification problem. The dataset stands

out because it comprises clinical information, has various feature types (categorical

and continuous variables), and has some missing values. These traits provide a

realistic and challenging setting for using and testing machine learning models in

healthcare. A comprehensive overview of each variable, including its type, clinical

significance, units, and instances of missing data, is provided in Table 1.

Table 1: Description of Dataset Variables (adapted from the original UCI source)

Variable

Name

Role Type Demographic Description Units Missing

Values

ID ID Integer - Unique identifier - No

N Days Other Integer - Days from registration to out-

come (death, transplant, or

study end)

- No

Drug Feature Categorical - Type of drug (D-

penicillamine or placebo)

- Yes

Age Feature Integer Age Patient’s age in days Days No

Sex Feature Categorical Sex Gender of the patient (M or

F)

- No

Ascites Feature Categorical - Presence of ascites (Y/N) - Yes

Hepatomegaly Feature Categorical - Liver enlargement (Y/N) - Yes

Spiders Feature Categorical - Presence of spider angiomas

(Y/N)

- Yes

Edema Feature Categorical - Edema status (N, S, Y) - No

Bilirubin Feature Continuous - Serum bilirubin level mg/dL No

Cholesterol Feature Integer - Serum cholesterol level mg/dL Yes

Albumin Feature Continuous - Serum albumin level g/dL No

Copper Feature Integer - Urinary copper level µg/day Yes

Alk Phos Feature Continuous - Alkaline phosphatase enzyme

level

U/Liter Yes

SGOT Feature Continuous - Serum glutamic-oxaloacetic

transaminase

U/mL Yes

Triglycerides Feature Integer - Serum triglycerides - Yes

Platelets Feature Integer - Platelet count mL/1000 Yes

Prothrombin Feature Continuous - Blood clotting time Seconds Yes

Stage Feature Categorical - Histological stage of liver dis-

ease (1–4)

- Yes

Status Target Categorical - Patient outcome: C, CL, or D - No
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3 Methodology

In this study, four machine learning algorithms were selected to model a multiclass

classification problem, where the target variable consists of three mutually exclu-

sive categories. The chosen models, Logistic Regression (LR), K-Nearest Neigh-

bors (KNN), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)

are widely recognized in the statistical learning literature for their effectiveness in

handling both categorical and numerical data [8]. Their selection is motivated by

their distinct strengths: LR for modeling linear relationships and interpretability;

KNN for capturing local, nonlinear patterns; RF for robustness and handling fea-

ture interactions; and XGBoost for its scalability and high predictive performance

in multiclass tasks.

To supplement the textual descriptions, visual illustrations for each algorithm are

included. These figures, adapted from reputable educational sources, offer an

intuitive understanding of how each model makes decisions and what types of

decision boundaries they form in a classification task.

Logistic Regression (LR): Logistic Regression is a fundamental classification tech-

nique that models the log-odds of the outcomes as a linear function of the predic-

tors. While it is most commonly used for binary classification, it can be naturally

extended to handle multiclass classification through the multinomial logistic re-

gression approach.

log

(
P (Y = k)

P (Y = K)

)
= β0k + β1kX1 + β2kX2 + · · ·+ βpkXp, for k = 1, 2, 3 (1)

This model is appropriate when the classes are mutually exclusive, and it allows

for probabilistic interpretation of predictions. Logistic Regression is favored for

its simplicity and interpretability, especially when Linear relationships between

predictors and outcomes are assumed [8, 9].

Figure 1 illustrates how logistic regression creates decision boundaries in a multi-

class classification problem. The softmax function takes the model’s raw output

and turns it into probabilities, making sure that the total of all the probabilities
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for all the classes is 1. This lets the model figure out how likely each class is and

put each input into the class that is most likely to be appropriate.

Figure 1: Decision boundaries formed by logistic regression. Adapted from Vi-

talFlux website

K-Nearest Neighbors (KNN): is a non-parametric algorithm that classifies a

new observation based on the majority class among its k nearest neighbors in the

training data. It does not assume a specific functional form for the relationship

between the predictors and the response variable, which makes it suitable for

capturing complex nonlinear patterns. Two key factors that have a significant

impact on how well the KNN model performs are the the parameter k and the

distance metric utilized for determining how close two data points are to each

other. Even though KNN is straightforward to understand, it often does well in

multiclass classification tasks, especially when the feature space is well-structured

and appropriate for distance-based comparisons [8].

Figure 2 shows that the value of k has a direct effect on the model’s decision

bounds. A smaller value of k makes the model very sensitive to patterns in local

data, which makes the decision surfaces more irregular and perhaps overfitting.

On the other hand, a bigger k value includes a greater neighborhood, which makes

the decision boundaries smoother, less sensitive to noise, and maybe better at
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generalizing to new data.

Figure 2: Decision boundaries using KNN with different values of k. Adapted

from Github

Random Forest (RF): is a robust ensemble learning method for classification

and regression tasks. At its foundation, Random Forest makes a lot of separate

decision trees. This group was made utilizing two important ways to randomize:

This ensemble is made up of bootstrapped samples of the training data (which

means that some of the data is used again) and random selections of features.

This two-layer randomness makes sure that every tree in the forest is different,

which adds to the diversity of the ensemble. For classification problems, the final

prediction is the one that gets the most votes from all the trees. For regression,

it’s the average of all the predictions. There are numerous good things about

this method. Because different trees smooth out the unique patterns learnt by

any one tree, Random Forest is less likely to overfit, which is a common problem

with single decision trees. It depicts how complicated predictor variables interact

without scaling features or dealing with outliers. Random Forest also does a good

job at classifying several classes and working with datasets that have missing values

and a mix of variable types, such numerical and categorical characteristics. [8,10].

Figure 3 illustrates the ensemble structure of a random forest, emphasizing the

8
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diversity among individual trees and how they collectively reduce variance and

improve generalization.

Figure 3: Illustration of a Random Forest. Adapted from Medium.

Extreme Gradient Boosting (XGBoost): is a gradient boosting algorithm that

works fast and may be used on an extensive scale. XGBoost generates decision

trees one after the other, while ensemble methods like Random Forest build them

all at once. The ensemble trains each new tree to make predictions and fix errors

(the discrepancies between predicted and actual values) that were made by all of

the prior trees. This method of correcting errors over and over again makes the

model more accurate. Softmax objective functions let XGBoost classify things

into more than one class. Adding regularization methods like L1 and L2 penal-

ties straight to the objective function makes the model more robust by reducing

overfitting and improving generalization.

XGBoost’s merits are its high accuracy in predicting outcomes across a wide range

of tasks, its ability to manage missing data without having to explicitly fill it

in, and its fast computation speed thanks to streamlined algorithms and parallel

processing. XGBoost does better than other machine learning algorithms in the

actual world, especially when it comes to categorization benchmarks and real-

9
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life situations [11]. Figure 4 shows how a gradient boosting decision tree model

is built. The visualization demonstrates how each successive tree is specifically

constructed to model and reduce the residual errors from the predictions of the

preceding ensemble, thereby iteratively improving the overall model’s fit to the

data.

Figure 4: Illustration of Boosting architecture in XGBoost. Adapted from Bio-

DataMining.

3.1 Exploratory Data Analysis

Before utilizing machine learning models, it is necessary to do exploratory data

analysis (EDA), which is an essential phase in this investigation since it offers a

more in-depth comprehension of the dataset. EDA is a useful tool for analyz-

ing the distribution of the target variable in order to identify any class imbal-

ances. This is particularly important when considering the multiclass character

of the survival prediction objective. In addition to this, it makes it possible to

10
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identify connections between clinical characteristics and the results of patient sur-

vival, which provides insights into potential predictors. The exploration of feature

relationships is accomplished through the utilization of correlation analysis and

visualization techniques such as box plots and histograms. On the other hand,

missing value analysis is carried out in order to ascertain the level of missingness

and the potential impact it has on the dataset. By performing EDA, we are able

to make educated judgments regarding the selection of features, the preprocessing

of data, and the appropriate treatment of missing data. This helps to ensure that

the predictive models are constructed on a dataset that is both well understood

and structured [8, 12,13].

3.2 Class Imbalance Handling Techniques

Class imbalance is a common challenge in real-world classification tasks, particu-

larly in the medical and healthcare domains, where positive instances (e.g., disease

cases) are significantly outnumbered by negative ones. Training models on such

skewed datasets often results in biased classifiers that favor the majority class,

leading to poor generalization, especially for the minority class. To mitigate this

issue, various data-level resampling techniques were employed in this study, includ-

ing SMOTE, Random Undersampling, a hybrid of both, and SMOTE + Edited

Nearest Neighbors (SMOTEENN).

Synthetic Minority Oversampling Technique: A popular oversampling method

called SMOTE [14] creates synthetic instances for the minority class in order to

rectify class imbalance. SMOTE interpolates between existing minority class ex-

amples, as opposed to naive oversampling, which duplicates existing samples and

runs the risk of overfitting. SMOTE chooses one or more of its closest neighbors

for a particular minority instance and generates new synthetic samples along the

line segments that connect them. This leads to a more general decision region for

the minority class and improves classifier sensitivity. Mathematically, a synthetic

instance xnew is generated as:

xnew = xi + δ · (xnn − xi)

11
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where xi is a minority sample, xnn is one of its k-nearest neighbors, and δ ∈ [0, 1]

is a random number.

Random Undersampling: This technique involves reducing the size of the ma-

jority class by randomly discarding instances until the class distribution becomes

more balanced [15]. While this technique is computationally efficient and straight-

forward, it risks removing potentially informative samples, which may degrade

model performance if not applied judiciously. Nonetheless, when combined with

oversampling, it can lead to improved results by reducing training time and class

dominance.

SMOTE + Random Undersampling: To leverage the benefits of both tech-

niques, a hybrid approach combining SMOTE and Random Undersampling was

also explored [16]. In this strategy, SMOTE is first applied to synthetically boost

the minority class, followed by random undersampling of the majority class to

achieve a more balanced and compact training set. This two-step process helps to

alleviate both overfitting (by synthetic diversification) and majority-class bias (by

sample reduction), resulting in better-balanced decision boundaries.

SMOTE + Edited Nearest Neighbors(SMOTEENN): is an advanced hybrid

resampling method that combines SMOTE with the Edited Nearest Neighbors

(ENN) rule. After applying SMOTE, the ENN algorithm is used to clean the

dataset by removing ambiguous or misclassified instances. Specifically, Edited

Nearest Neighbors(ENN) eliminates samples (from either class) that differ from

the majority class among their k-nearest neighbors [17]. This not only addresses

class imbalance but also reduces overlapping between classes and eliminates noise

from the dataset.

SMOTEENN has been shown to produce more robust and generalizable classifiers,

particularly in noisy or complex datasets. Its denoising capability makes it prefer-

able for sensitive applications such as healthcare, where data quality significantly

influences model outcomes.

Figure 5 compares the several resampling methods used in this study. The image

below shows how several resampling strategies, like oversampling, undersampling,

and hybrid approaches, modify the class distribution of the dataset used in this
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thesis. The original dataset had an uneven class distribution. These solutions

strive to make the representation more even, which could help machine learning

models operate better in the future. Figure 5 offers a picture that lets us see how

effectively these strategies operate. Section 4.2.3 will talk about how solutions for

dealing with class imbalance affect the performance of models.

Figure 5: Visual comparison of resampling techniques on class distribution.
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3.3 Data Preprocessing

To prepare the dataset for multiclass classification, a series of preprocessing steps

were applied to ensure data quality and model readiness. The initial step involved

addressing missing values. Rows or columns with excessive missing data were either

removed or imputed using appropriate strategies, such as mode imputation for

categorical variables and mean or median imputation for numerical variables [18].

Categorical features were transformed into a numerical format using one-hot en-

coding, which is suitable for most machine learning algorithms. For ordinal vari-

ables, ordinal encoding was used to preserve the inherent order. Numerical fea-

tures were standardized using z-score normalization, which is particularly useful

for distance-based models like K-Nearest Neighbors (KNN) and also ensures stable

convergence in algorithms such as logistic regression and neural networks [19].

To maintain the original distribution of all three target classes during training and

evaluation, a stratified train-test split was employed. Additionally, k-fold cross-

validation (with stratification) was used for model validation to ensure consistent

performance across different subsets of the data [8].

To further optimize model performance, a systematic hyperparameter tuning ap-

proach was applied using Grid search. Grid search exhaustively explores a prede-

fined set of hyperparameter combinations for each model and selects the configu-

ration that yields the best cross-validated performance. This process was imple-

mented using GridSearchCV with stratified 5-fold cross-validation to ensure robust

and fair evaluation across all classes. Hyperparameters such as tree depth, learning

rate, and the number of estimators (for ensemble models) or regularization terms

(for logistic regression) were tuned. By incorporating grid search into the train-

ing pipeline, the study ensures that each model operates under optimal settings,

reducing the risk of underfitting or overfitting while improving generalization to

unseen data [20].

Feature selection was performed using a combination of correlation analysis and

model-based importance scores (e.g., from tree-based classifiers). This step helped

reduce dimensionality and eliminate redundant or irrelevant features, thereby im-

proving model performance and interpretability [21].
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3.4 Missing Value Imputation

Building machine learning models requires first handling missing values, a vital

preprocessing stage. Missing data was addressed in this work using straightfor-

ward imputation methods, including mean or median. Median imputation was

better than mean imputation for features that were skewed or likely to be out-

liers because the target variable was uneven, and some feature outlier values were

present. Median imputation gives a better estimate for most of the data since it is

less affected by extreme values, making it more resistant to outliers. On the other

hand, outliers can greatly affect mean imputation, which might affect the model.

Mean imputation can be utilized for features with a distribution that was about

symmetric and had no extreme values. This is because it keeps the original average

of the data. The imputation technique we used in this study, median imputation,

reduces the distortion caused by missing data while keeping the dataset’s original

structure. The study backs up these kinds of practices. Basic imputation meth-

ods are suggested as quick and effective ways to fix the problem for datasets with

moderate amounts of missing data and imbalanced target distributions [22].

3.5 Evaluation Metrics

Given that the target variable consists of three distinct classes, evaluation was

carried out using metrics well-suited to multiclass classification, particularly in the

context of imbalanced class distributions. While overall accuracy offers a high-level

overview of performance, it may be misleading in the presence of class imbalance,

as it is biased toward the majority class [23]. Therefore, more nuanced and robust

metrics were adopted for model evaluation:

• Accuracy: Measures the overall proportion of correctly classified samples.

Though intuitive, it does not distinguish between types of errors and is in-

adequate when class distributions are skewed.

• Precision, Recall, and F1-Score (Macro, Micro, and Weighted Averages):
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– Macro-averaged: Computes metrics independently for each class and

averages them, treating all classes equally, regardless of class frequency.

– Micro-averaged: Aggregates all true positives, false negatives, and false

positives to compute metrics globally, which gives more weight to the

majority classes.

– Weighted-averaged: Averages metrics for each class while taking into

account class support (i.e., the number of true instances per class).

• Multiclass ROC-AUC: Although traditionally designed for binary classifica-

tion, ROC-AUC can be extended to multiclass settings using One-vs-Rest

(OvR) or One-vs-One (OvO) strategies. It assesses the model’s ability to

rank predictions correctly and distinguish between multiple classes [24].

In line with the goal of identifying the most robust and well-balanced model for

survival prediction, macro-averaged F1-score was selected as the primary evalua-

tion metric. This metric captures the harmonic mean of precision and recall across

all classes, treating each class equally and balancing both false positives and false

negatives. It is especially appropriate for multiclass problems with imbalanced

distributions, offering a fair comparison of model performance across minority and

majority classes [25].

To provide additional insight, macro-averaged recall was included as a secondary

evaluation metric. The F1-score assesses the equilibrium between sensitivity and

specificity, whereas macro recall alone measures the model’s capacity to identify all

true cases, irrespective of class size, which is particularly important in clinical con-

texts where the oversight of high-risk patients can lead to severe consequences. The

multiclass ROC-AUC was presented to assess the model’s discriminative capability

from a probabilistic viewpoint. Collectively, these metrics provide a thorough and

equitable assessment methodology for determining the most appropriate machine

learning model for predicting cirrhosis survival.
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4 Results and Discussion

4.1 Explanatory Data Analysis

To better understand the dataset’s characteristics and identify potential patterns,

we did an Exploratory Data Analysis (EDA) to better understand the dataset’s

properties and look for possible patterns. We looked at the distribution of features,

the target variable (Status), and any missing values in the dataset.

The distribution of continuous features (Figure 12) reveals features(e.g., N. Days,

Age, Bilirubin, Cholesterol) significant variation across different Status categories.

In general, the box plots show the median (central tendency), the interquartile

range (spread), and any possible outliers for each variable in each status group.

This helps you examine how these medical indicators change depending on the

patient’s condition. For example, depending on the patient’s status category, one

can see variances in the median levels, the range of values, and the presence of

extreme values for each measured feature. Similarly, the histogram for categorical

features (Figure 11) highlights that some features, such as Ascites, Edema, and

Spiders etc, may be strong indicators of survival status. These visualizations

help in understanding how different clinical attributes relate to patient survival

outcomes.

The missingness heatmap (Figure 6) illustrates the presence of missing data across

multiple features, with notable gaps in Drug, Ascites, Hepatomegaly, Spiders,

Copper, SGOT, etc. Identifying the data issues in such a visualization suggests

that careful handling of missing data, such as imputation or exclusion, is necessary

before modeling.
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Figure 6: Missing in the dataset

Lastly, the target variable distribution (Figure 7) shows an imbalance, where the

percentage distribution for each class (C, D, CL) is 55.5%, 38.5% and 6% , re-

spectively suggesting that when building predictive models, techniques such as

SMOTE, Undersampling, etc need to be used to address class imbalance.

Figure 7: Distribution of the Target Variable (Status)

18



Predicting Cirrhosis Patient Survival Using Machine Learning: A Data-Driven Approach

The distribution graph (Figure 12)provides an overview of how several categori-

cal variables such as Ascites, Drug, Edema, Hepatomegaly, Sex, and Spiders are

distributed across the three patient outcome groups: D (Deceased), C (Censored),

and CL (Censored due to liver transplant). Notable differences emerge in the dis-

tributions of variables like Ascites, Sex, and Spiders. For instance, the majority

of patients in the ’D’ group report ’No’ for Ascites, while the ’C’ and ’CL’ groups

show more variability. Additionally, there is a higher proportion of females in the

’D’ group compared to the others. These observed differences may suggest po-

tential associations between clinical attributes and patient outcomes, warranting

further investigation in the modeling phase.
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4.2 ML Algorithm Findings

4.2.1 Model Comparison and Selection

Four classifiers, Logistic Regression, K-Nearest Neighbors (KNN), Random Forest,

and XGBoost, were evaluated to meet the first research goal to find the most suit-

able machine learning model for predicting cirrhosis patient survival. Every model

was evaluated together with four distinct class imbalance handling techniques:

SMOTE, Random Undersampling, SMOTE combined with Undersampling, and

SMOTEENN. While macro-averaged recall and ROC-AUC were viewed as addi-

tional measures of model robustness and class separability, macro-averaged F1-

score served as the primary metric for evaluating model performance.

A comprehensive comparison of all models and configurations is presented in Ta-

ble 2. The results indicate that the XGBoost classifier, in combination with the

SMOTE class imbalance handling technique, obtained the highest macro F1-score

(0.602), as well as the highest ROC-AUC (0.85) and competitive macro recall

(0.598) among all combinations. This suggests that XGBoost is particularly effec-

tive at capturing non-linear relationships in imbalanced multiclass data and that

synthetic oversampling via SMOTE substantially improves its ability to generalize

across all classes.

The best-performing setup is summarized in Table 3. Although Random Forest

with SMOTEENN and Logistic Regression with SMOTE + Undersampling also

performed well, the XGBoost + SMOTE combo provided the most balanced and

consistent performance across all three criteria. These results imply that synthetic

oversampling methods help ensemble tree-based models better, probably because

of their ability to exploit intricate feature interactions generated by resampling.

Figure 8 visually compares macro F1-scores across all model and resampling config-

urations, showing the advantage of XGBoost + SMOTE over other combinations.

In addition to tabular metrics, Figure 13 provides a visual comparison of the

macro-average ROC-AUC curves for all models across different imbalance han-

dling strategies. The XGBoost model combined with SMOTE achieved the most

favorable ROC curve, consistently staying above the diagonal baseline and yielding
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the highest AUC. These findings further confirm the model’s strong discriminative

ability. Other models, such as Random Forest with SMOTEENN and Logistic

Regression with undersampling, also showed reasonably good curves but did not

outperform XGBoost in terms of both area under the curve and balance across

classes. The ROC curves reinforce the numerical findings reported in Tables 2 and

3.

Table 2: Performance Comparison of ML Models with Different Resampling Tech-

niques

Model Imbalance Handling Method F1 Macro Macro Recall ROC-AUC

Logistic Regression SMOTE 0.560 0.636 0.817

Logistic Regression UnderSampling 0.576 0.678 0.811

Logistic Regression SMOTE + UnderSampling 0.581 0.657 0.821

Logistic Regression SMOTEENN 0.543 0.630 0.802

KNN SMOTE 0.524 0.572 0.741

KNN UnderSampling 0.446 0.542 0.681

KNN SMOTE + UnderSampling 0.524 0.572 0.741

KNN SMOTEENN 0.477 0.582 0.722

Random Forest SMOTE 0.570 0.570 0.845

Random Forest UnderSampling 0.561 0.663 0.810

Random Forest SMOTE + UnderSampling 0.565 0.558 0.854

Random Forest SMOTEENN 0.588 0.633 0.846

XGBoost SMOTE 0.602 0.598 0.853

XGBoost UnderSampling 0.489 0.561 0.782

XGBoost SMOTE + UnderSampling 0.593 0.593 0.850

XGBoost SMOTEENN 0.583 0.650 0.843

Table 3: Best Model Based on Macro F1-score

Model Resampling F1 Macro Macro Recall ROC-AUC

XGBoost SMOTE 0.602 0.598 0.853
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Figure 8: Comparison of ML Models and Resampling Methods by Macro F1-score

The confusion matrix presented in Figure 9 further supports the performance

evaluation by illustrating how well the final model distinguishes between the three

patient status classes. The model demonstrated strong predictive ability for the

majority class C, correctly classifying 35 out of 47 instances, and a reasonably

good performance for class D, with 21 out of 32 samples accurately predicted.

Notably, the model also detected 2 out of 5 instances of the minority class CL,

which is a critical advancement given the class imbalance present in the dataset.

However, some misclassifications occurred, particularly with CL samples being

confused with class C and D. However, the overall distribution of predictions

shows that the model can generalize across all classes, and it is far more effective

at finding uncommon situations. These results show that the final model has

acquired proper decision bounds, even for the less common CL category.
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Figure 9: Confusion matrix of the final XGBoost model trained with SMOTE.

4.2.2 Feature Importance Analysis

Following monitoring how well the classification performed, it is important to know

which features helped the model make the best predictions. Using the final XG-

Boost model trained on SMOTE-balanced data, which showed better recall for

the minority class CL and strong overall performance, we did a feature impor-

tance analysis. Feature importance scores were derived from the final XGBoost

model trained with SMOTE resampling to answer the second research objective,

which was to determine which clinical features have the most significant influ-

ence on the outcomes of cirrhosis survival. We took advantage of the built-in
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gain-based significance metric that is included in XGBoost. This metric indicates

each feature’s average contribution to the model’s prediction performance overall

individual decision trees.

As demonstrated in Figure 10, the most important predictive feature was Biliru-

bin, followed closely by Ascites status, Prothrombin time, and Age. These findings

are consistent with the clinical understanding that has been formed on the pro-

gression of cirrhosis. According to this understanding, higher Bilirubin levels and

prolonged Prothrombin time are signs of severe liver disease. In addition, the pres-

ence of Ascites, which is a sign of decompensated cirrhosis, is associated with a

poor prognosis and an increased chance of death. In addition to Serum Albumin,

Alkaline Phosphatase, and Platelet count, other informative aspects were also in-

cluded. These factors are known to have connections with liver health and liver

fibrosis. It is also interesting to note that demographic and less stressed charac-

teristics, such as Hepatomegaly status and Sex, were also shown to be among the

top-ranked variables. These could be secondary correlations or effects that are dis-

tinct to a group of people. Still, the fact the fact that they happen suggests that

adding a more complete clinical context to predictive modeling can be helpful. The

overall result of the feature importance analysis is that it supports both clinical

expectations and the interpretability of the model, thereby providing insights into

which characteristics have the most influence on survival classification.
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Figure 10: Top 15 Most Important Clinical Features According to XGBoost
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4.2.3 Impact of Class Imbalance Strategies

Minimizing class imbalance became an essential part of improving the performance

of all classifiers. The results show a clear pattern: models that used oversampling

methods, especially SMOTE, usually did better than those that used undersam-

pling or a mix of the two.

Table 2 illustrates that XGBoost, in conjunction with SMOTE, attained the great-

est macro F1-score (0.602) and a robust macro ROC-AUC (0.853), indicating

that oversampling facilitated the model’s ability to effectively learn minority class

patterns while maintaining performance on the majority class. Conversely, the

identical model employing undersampling produced a markedly diminished macro

F1-score (0.489) and ROC-AUC (0.782), suggesting that excessive reduction of the

majority class may lead to performance deterioration due to the loss of informa-

tion.

A comparable pattern is noted with Random Forest, wherein SMOTE and SMOTE

combined with undersampling produced enhanced macro F1-scores (0.583–0.584)

relative to undersampling alone (0.570). Even Logistic Regression, a more elemen-

tary linear model, demonstrated enhancement when combined with SMOTE-based

methodologies.

Hybrid techniques such as SMOTE combined with Undersampling and SMO-

TEENN yielded inconsistent outcomes. Although they frequently enhanced recall

(e.g., Logistic Regression with Undersampling attained the highest macro recall

at 0.678), they did not uniformly result in superior overall F1-scores, indicating

a compromise between sensitivity and precision. This highlights the necessity

of synchronizing the imbalance technique with the principal assessment metric,

namely, the macro F1-score particularly when the reduction of false negatives is

paramount.

The results suggest that oversampling strategies, especially SMOTE, are good at

fixing the imbalance in multiclass clinical datasets and making predictions more

stable across models. Figure 5 shows how different resampling methods change

the class distribution, with the SMOTE technique in particular showing a clear

improvement in model performance, which aligns with this.
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4.2.4 Hyperparameter Tuning and Grid Search

Hyperparameter adjustment was conducted using a grid search technique within

cross-validation to enhance model performance. For every combination of model

and resampling technique, the search was performed across a specified grid of

hyperparameter values (e.g., regularization strength for logistic regression, number

of neighbors for KNN, and tree depth and learning rate for ensemble models). The

principal evaluation criterion for grid search was the macro-averaged F1-score,

aligning with the study’s focus on equitable performance across classes.

Table 5 indicates the optimal hyperparameter configurations determined for each

model and imbalance technique. XGBoost combined with SMOTE attained the

greatest F1-score of 0.602, utilizing a learning rate of 0.1 and 200 estimators.

Likewise, Random Forest with SMOTE combined with undersampling exhibited

optimal performance with an unconstrained tree depth and 200 estimators. Sig-

nificantly, the majority of models preferred simpler configurations (e.g., KNN con-

sistently opted for k = 3), indicating that performance improvements were mostly

due to resampling tactics rather than increased hyperparameter complexity. These

findings illustrate the significance of optimization, even for basic models, especially

when combined with class imbalance correcting methods.
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5 Conclusion and Future Work

5.1 Conclusion

The goal of this study was to build and evaluate machine learning models that

predict cirrhosis patients’ survival. The study had three main goals: finding the

best classifier, finding the most important clinical features for patient survival, and

determining which class imbalance mitigation techniques are effective for the best

performance model.

The XGBoost classifier integrated with SMOTE was the top-performing model, at-

taining a macro-averaged F1-score of 0.602 and a macro ROC-AUC of 0.853. The

results demonstrate the model’s capacity to sustain robust predictive performance

across all three survival categories. Feature importance analysis revealed Biliru-

bin, Albumin, Prothrombin time, and Ascites as the most important predictors,

confirming the results of previously published clinical studies on the progression

of liver function diseases.

Regarding the management of class imbalance, SMOTE exhibited the most reli-

able performance improvements, mainly when utilized with tree-based ensemble

models. The findings underscore the significance of incorporating resampling al-

gorithms into the modeling pipeline when dealing with imbalanced clinical data.

The work illustrates the capability of machine learning, particularly when inte-

grated with meticulous preprocessing and resampling, to improve the precision and

clarity of survival prediction models. These findings may facilitate more proactive

and data-driven clinical decision-making in cirrhosis management, especially in

identifying high-risk patients and prioritizing treatment.
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5.2 Drawbacks of the used Methods

The ML models in this work have issues. The linear relationship between predic-

tors and survival log-odds may not be accurate in complex medical datasets [8].

This assumption prevents it from describing non-linear interactions, which could

misclassify patients with unusual illness progression. LR is susceptible to out-

liers, which modify coefficient values and reduce prediction accuracy. However,

K-Nearest Neighbours(KNN) needs further development as the collection grows.

Distance estimations get more expensive as feature space dimensions increase.

Known as the ”curse of dimensionality” [26]. Additionally, noisy or redundant

features can harm KNN’s classification abilities. When classes are imbalanced,

KNN supports the majority class due to proximity-based voting.

However, Random Forest (RF) and XGBoost are strong ensemble algorithms with

their issues. Random Forest models are called ”black boxes” since each forecast is

hard to interpret. Healthcare applications require model openness, making this a

critical issue [10]. RF requires careful adjustment of the hyperparameter to avoid

overfitting and may be challenging to run on computers with many trees. Despite

its effectiveness, XGBoost is challenging to master due to its numerous hyperpa-

rameters, such as learning rate, tree depth, and regularization terms [11]. XGBoost

can ”overfit” to training data if not correctly tuned, reducing its generalization.

This study addressed class imbalance with SMOTE, Random Undersampling, and

Balanced Bagging. Each has issues. SMOTE can cause overfitting and informa-

tion loss from the majority class due to false noise and random undersampling [14].

The Balanced Bagging Classifier works well but requires a lot of computer power.

These issues demonstrate the trade-offs of using machine learning to predict clin-

ical trial outcomes.
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5.3 Future Research Ideas

This study performed a satisfactory task by using a publicly available dataset

to find the best machine-learning model for predicting the survival of cirrhosis

patients. It used standard class imbalance techniques to deal with the dataset’s

natural imbalance in the target variable. However, there are still many areas where

more research could be done. One interesting direction is to add more or different

clinical data sources. For instance, combining time-series data from labs, imaging

results, or electronic health records (EHR) from different institutions could make

the models more generalizable and better at making predictions. Adding sociode-

mographic and behavioral health characteristics may also provide new predictors

and better show how patients differ in the actual world.

In terms of methods, future research could look at more advanced or specialized

algorithms like LightGBM, CatBoost, or designs based on Deep Learning (DL),

like recurrent neural networks, especially for medical data collected over time or

in a sequence. Also, this study chose macro F1-score as the main way to compare

performance across all classes fairly. However, if reducing false negatives becomes

crucial in clinical decision-making, future research could focus on macro recall or

cost-sensitive learning instead.
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6 Ethics, Relevance, and Stakeholders

6.1 Ethical Considerations

The UCI Machine Learning Repository has the dataset used in this study to predict

cirrhosis patients’ survival [6, 7]. Ethical use is crucial as the data comes from

medical records. Obtaining informed consent from patients is crucial in clinical

research to ensure their data is used with their consent and awareness. This

dataset is public and anonymous; therefore, we do not require patient permission

to participate in a secondary study. However, it is morally wrong not to handle

this data responsibly and make sure that the study’s results don’t hurt anyone or

be used for bad purposes. The study’s findings should be responsibly distributed

to avoid misleading the medical community about cirrhosis prognosis.

This study also prioritizes data safety, fair AI projections, and bias-free machine

learning algorithms. Most people know that predictive algorithms can take up

biases from their data, which can lead to unequal treatment of some patients.

Avoiding this requires data pretreatment measures like missing value handling

and fairness awareness. In addition to performance measurements, model eval-

uation considers fairness indicators to ensure predictions are fair across patient

types. This study aims to assist healthcare professionals in using AI safely while

maintaining openness and responsibility.
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6.2 Societal Relevance and Stakeholder Awareness

This finding has important effects on society, especially when it comes to making

life better for those with liver cirrhosis. This condition kills and sickens many

people throughout the world. Early and precise patient survival prediction makes

it feasible to prioritize organ transplants, create more proactive and personalized

treatment plans, and make better use of healthcare resources. This work helps the

growing efforts to use data-driven intelligence in healthcare. The ultimate goal

is to minimize unnecessary consequences and improve patients’ quality of life by

utilizing machine learning to improve clinical decisions.

One of the key reasons for this study is to make important stakeholders, like

patients, data scientists, clinicians, and healthcare officials, more aware of the

issues. The study shows how important it is to make models that are fair and easy

to understand, fit in with clinical workflow, and take into account the real concerns

of healthcare workers. Transparency and ethics have also been emphasized to

ensure that machine learning predictions are used fairly and reasonably, especially

in industries with a lot at stake, like health. So, the research improves technical

skills and builds trust and teamwork among people who work with patients.
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7 Appendix

Figures and Tables

Figure 11: Distribution of Continuous Features by Status
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Figure 12: Distribution of Categorical Features
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Figure 13: Average ROC Curve for Different Models and Imbalance Methods
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Table 4: Model Evaluation Metrics Summary sorted by Mean F1-Score

Model Imbalance Method Mean F1-

score

Mean

Macro

Recall

Mean

ROC-

AUC

Best Params

XGBoost SMOTE 0.602 0.598 0.853 {’learning rate’: 0.1, ’n estimators’: 200}
XGBoost SMOTE + UnderSampling 0.593 0.593 0.850 {’learning rate’: 0.1, ’n estimators’: 200}
RandomForest SMOTEENN 0.589 0.633 0.846 {’max depth’: None, ’n estimators’: 100}
XGBoost SMOTEENN 0.583 0.650 0.843 {’learning rate’: 0.1, ’n estimators’: 100}
Logistic Regression SMOTE + UnderSampling 0.581 0.657 0.821 {’C’: 0.1}
Logistic Regression UnderSampling 0.576 0.678 0.811 {’C’: 0.1}
RandomForest SMOTE 0.570 0.570 0.854 {’max depth’: 10, ’n estimators’: 100}
RandomForest SMOTE + UnderSampling 0.565 0.558 0.854 {’max depth’: None, ’n estimators’: 200}
RandomForest UnderSampling 0.561 0.663 0.810 {’max depth’: None, ’n estimators’: 200}
Logistic Regression SMOTE 0.560 0.636 0.817 {’C’: 10}
Logistic Regression SMOTEENN 0.543 0.630 0.802 {’C’: 10}
KNN SMOTE 0.524 0.572 0.741 {’n neighbors’: 3}
KNN SMOTE + UnderSampling 0.524 0.572 0.741 {’n neighbors’: 3}
XGBoost UnderSampling 0.489 0.561 0.782 {’learning rate’: 0.1, ’n estimators’: 200}
KNN SMOTEENN 0.477 0.582 0.722 {’n neighbors’: 3}
KNN UnderSampling 0.446 0.542 0.681 {’n neighbors’: 3}
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Table 5: Best Hyperparameters Selected via Grid Search

Model Imbalance Method Best Parameters

XGBoost SMOTE {learning rate=0.1, n estimators=200}
RandomForest SMOTE + Undersampling {max depth=None, n estimators=200}
Logistic Regression Undersampling {C=0.1}
KNN All {n neighbors=3}

Table 6 presents the detailed classification report of the final XGBoost model

trained with SMOTE. The table includes per-class precision, recall, F1-score, and

support, along with macro and weighted averages, as calculated on the test set.

Table 6: Classification report for the final XGBoost + SMOTE model

Class Precision Recall F1-score Support

C 0.85 0.74 0.80 47

CL 0.14 0.40 0.21 5

D 0.72 0.66 0.69 32

Accuracy 0.69 84

Macro avg 0.57 0.60 0.56 84

Weighted avg 0.76 0.69 0.72 84
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Python Code

1. Import Libraries and Setup

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.impute import SimpleImputer

from sklearn.model_selection import train_test_split ,

StratifiedKFold , GridSearchCV

from sklearn.metrics import accuracy_score ,

precision_recall_fscore_support , roc_auc_score , roc_curve

from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import LogisticRegression

from xgboost import XGBClassifier

from imblearn.over_sampling import SMOTE

from imblearn.under_sampling import RandomUnderSampler

from imblearn.combine import SMOTEENN

from sklearn.preprocessing import LabelEncoder , StandardScaler ,

OneHotEncoder

from sklearn.pipeline import Pipeline

from sklearn.compose import ColumnTransformer

import warnings

warnings.filterwarnings (" ignore ")

2. Load and Preprocess Data

# Load dataset

df = pd.read_csv ("/ Uscirrhosis.csv")

df.drop(columns =["ID"], inplace=True)

X = df.drop(columns =[" Status "])

y = df[" Status "]

# Identify categorical and numerical columns

categorical_cols = X.select_dtypes(include =[" object "]).columns
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numerical_cols = X.select_dtypes(exclude =[" object "]).columns

# Define preprocessing pipeline

numeric_transformer = Pipeline(steps=[

(’imputer ’, SimpleImputer(strategy=’median ’)),

(’scaler ’, StandardScaler ())

])

categorical_transformer = Pipeline(steps=[

(’imputer ’, SimpleImputer(strategy=’most_frequent ’)),

(’onehot ’, OneHotEncoder(handle_unknown=’ignore ’))

])

preprocessor = ColumnTransformer(transformers =[

(’num ’, numeric_transformer , numerical_cols),

(’cat ’, categorical_transformer , categorical_cols)

])

# Apply preprocessing

X_processed = preprocessor.fit_transform(X)

3. Split Dataset

# Split dataset

X_train , X_test , y_train , y_test = train_test_split(X_processed , y

, test_size =0.2, random_state =42, stratify=y)

# Encode target variable

label_encoder = LabelEncoder ()

y_train_encoded = label_encoder.fit_transform(y_train)

y_test_encoded = label_encoder.transform(y_test)

4. Define Models and Hyperparameters

# Define models

models = {

"Logistic Regression ": LogisticRegression(solver=’liblinear ’,

random_state =42),

"KNN": KNeighborsClassifier (),

"RandomForest ": RandomForestClassifier(random_state =42),
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"XGBoost ": XGBClassifier(eval_metric=’logloss ’, random_state

=42)

}

# Define hyperparameter grids

param_grids = {

"Logistic Regression ": {’C’: [0.1, 1, 10]},

"KNN": {’n_neighbors ’: [3, 5, 7]},

"RandomForest ": {’n_estimators ’: [100, 200], ’max_depth ’: [

None , 10]},

"XGBoost ": {’learning_rate ’: [0.01 , 0.1], ’n_estimators ’:

[100, 200]}

}

5. Define Imbalance Handling Techniques

# Define imbalance handling techniques

imbalance_methods = {

"SMOTE ": SMOTE(sampling_strategy=’auto ’, random_state =42),

"UnderSampling ": RandomUnderSampler(sampling_strategy=’auto ’,

random_state =42),

"SMOTE + UnderSampling ": lambda X, y: RandomUnderSampler(

random_state =42).fit_resample(SMOTE(random_state =42).

fit_resample(X, y)[0], SMOTE(random_state =42).fit_resample(

X, y)[1]),

"SMOTEENN ": SMOTEENN(random_state =42)

}

6. Model Evaluation with Cross-Validation and F1-Score

# Store results with best parameters

results = []

skf = StratifiedKFold(n_splits=5, shuffle=True , random_state =42)

# Set up ROC curve plot

plt.figure(figsize =(12, 8))

for model_name , model in models.items():
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for method_name , method in imbalance_methods.items():

f1_scores = []

macro_recalls = []

roc_auc_scores = []

mean_fpr = np.linspace(0, 1, 100)

mean_tpr = np.zeros_like(mean_fpr)

best_params_list = []

for train_idx , val_idx in skf.split(X_train ,

y_train_encoded):

X_train_fold , X_val_fold = X_train[train_idx], X_train

[val_idx]

y_train_fold , y_val_fold = y_train_encoded[train_idx],

y_train_encoded[val_idx]

# Apply imbalance method

if callable(method):

X_train_fold , y_train_fold = method(X_train_fold ,

y_train_fold)

else:

X_train_fold , y_train_fold = method.fit_resample(

X_train_fold , y_train_fold)

# Hyperparameter tuning (F1 macro -based)

param_grid = param_grids.get(model_name , None)

if param_grid:

grid_search = GridSearchCV(model , param_grid , cv

=3, scoring=’f1_macro ’, n_jobs =-1)

grid_search.fit(X_train_fold , y_train_fold)

model = grid_search.best_estimator_

best_params_list.append(grid_search.best_params_)

else:

model.fit(X_train_fold , y_train_fold)

best_params_list.append (" Default ")

# Evaluate

y_pred = model.predict(X_val_fold)

y_pred_prob = model.predict_proba(X_val_fold)

f1 = precision_recall_fscore_support(y_val_fold ,

y_pred , average=’macro ’)[2]

macro_recall = recall_score(y_val_fold , y_pred ,
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average=’macro ’)

roc_auc = roc_auc_score(y_val_fold , y_pred_prob ,

multi_class=’ovr ’, average=’macro ’)

f1_scores.append(f1)

macro_recalls.append(macro_recall)

roc_auc_scores.append(roc_auc)

for i in range(y_pred_prob.shape [1]):

fpr , tpr , _ = roc_curve(y_val_fold == i,

y_pred_prob [:, i])

mean_tpr += np.interp(mean_fpr , fpr , tpr)

mean_tpr /= skf.get_n_splits ()

plt.plot(mean_fpr , mean_tpr , label=f"{ model_name} - {

method_name} (AUC = {np.mean(roc_auc_scores):.2f})")

# best parameters

from collections import Counter

final_best_params = Counter(map(str , best_params_list)).

most_common (1) [0][0]

results.append ([

model_name ,

method_name ,

np.mean(f1_scores),

np.mean(macro_recalls),

np.mean(roc_auc_scores),

final_best_params

])

plt.plot([0, 1], [0, 1], ’k--’)

plt.title(" Average ROC Curve for Different Models and Imbalance

Methods ")

plt.xlabel (" False Positive Rate")

plt.ylabel ("True Positive Rate")

plt.legend(loc=" lower right")

plt.show()
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7. Model Comparison Summary

# Model comparison summary result

results_df = pd.DataFrame(results , columns =[

"Model", "Imbalance_Method", "Mean F1-score", "Mean Macro

Recall",

"Mean ROC -AUC", "Best Params"

])

print ("\ nFull Evaluation Summary :")

results_df

8. Visualize Model Comparison by F1-score

# Visualization of Model comparison using F1-score

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize =(12, 6))

sns.barplot(data=results_df , x=" Model", y="Mean F1 -score", hue="

Imbalance_Method ")

plt.title(" Comparison of ML Models and Resampling Methods by Macro

F1-score ")

plt.ylabel ("Mean F1 -score")

plt.ylim (0.45 , 0.65)

plt.xticks(rotation =45)

plt.legend(title=" Resampling Method", bbox_to_anchor =(1.05 , 1),

loc=’upper left ’)

plt.tight_layout ()

plt.show()

9. Train and Evaluate the Best Model

# Train best model

# Rebuild and train best model on full training data

xgb_best = XGBClassifier(learning_rate =0.1, n_estimators =200,

eval_metric=’logloss ’, use_label_encoder=False)
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# Apply SMOTE to the training set

smote = SMOTE(random_state =42)

X_train_bal , y_train_bal = smote.fit_resample(X_train ,

y_train_encoded)

# Fit model

xgb_best.fit(X_train_bal , y_train_bal)

# Best model Evaluation

import numpy as np

import pandas as pd

from xgboost import XGBClassifier

from sklearn.metrics import classification_report ,

confusion_matrix , ConfusionMatrixDisplay

from sklearn.model_selection import train_test_split

from imblearn.over_sampling import SMOTE

from imblearn.ensemble import BalancedBaggingClassifier

# Load and preprocess data

df = pd.read_csv (" cirrhosis.csv")

df.drop(columns =["ID"], inplace=True)

X = df.drop(columns =[" Status "])

y = df[" Status "]

# Preprocessing pipeline

numeric_transformer = Pipeline ([

(’imputer ’, SimpleImputer(strategy=’median ’)),

(’scaler ’, StandardScaler ())

])

categorical_transformer = Pipeline ([

(’imputer ’, SimpleImputer(strategy=’most_frequent ’)),

(’onehot ’, OneHotEncoder(handle_unknown=’ignore ’))

])

preprocessor = ColumnTransformer ([

(’num ’, numeric_transformer , numerical_cols),

(’cat ’, categorical_transformer , categorical_cols)

])

X_processed = preprocessor.fit_transform(X)
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# Encode target

label_encoder = LabelEncoder ()

y_encoded = label_encoder.fit_transform(y)

# Split dataset (stratify ensures CL is represented in both sets)

X_train , X_test , y_train , y_test = train_test_split(X_processed ,

y_encoded , test_size =0.2, stratify=y_encoded , random_state =42)

# Train model

bbc = BalancedBaggingClassifier(

estimator=XGBClassifier(learning_rate =0.1, n_estimators =200,

eval_metric=’mlogloss ’, use_label_encoder=False),

sampling_strategy=’auto ’,

n_estimators =10,

replacement=False ,

random_state =42,

n_jobs=-1

)

bbc.fit(X_train , y_train)

y_pred = bbc.predict(X_test)

# Evaluation

from sklearn.metrics import classification_report ,

confusion_matrix , ConfusionMatrixDisplay

report = classification_report(y_test , y_pred , target_names=

label_encoder.classes_)

print(report)

cm = confusion_matrix(y_test , y_pred)

disp = ConfusionMatrixDisplay(confusion_matrix=cm , display_labels=

label_encoder.classes_)

disp.plot()
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