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Abstract 
Locally advanced cervical cancer is the most frequently diagnosed cancer in women aged 40-50 years, 

making it an important medical problem. In this study, Bayesian networks (BNs) are learned and 

evaluated as predictive models for treatment outcomes of cervical cancer patients. BNs model 

relationships between random variables, and their compactness and intuitive graphical representation 

make them suitable for eXplainable AI (XAI) – a field of research focused on methods that allow for 

human intellectual oversight over AI algorithms. XAI is particularly important in the healthcare field 

due to the high stakes involved in clinical decision-making. BNs were learned using DBN-GOMEA, a 

state-of-the-art self-discretizing BN learning algorithm for discrete and continuous data powered by an 

evolutionary algorithm. The dataset contains clinical inputs and outcomes for 280 patients treated for 

locally advanced cervical cancer, and this is the first time DBN-GOMEA is applied to a real-world 

dataset. Three different outcomes were modelled: distant metastasis-free survival time, overall survival 

time, and 12-month metastasis-free survival. These models were evaluated and compared to classical 

survival analysis. The BN for metastasis-free survival time and overall survival time showed indications 

of predictive power but performed similar to or worse than Cox proportional hazards models as 

measured by Harrell’s concordance index, potentially due to shortcomings of the model for censored 

survival data. The BN for 12-month metastasis-free survival (binary classification) on the other hand 

showed promising results, with a test ROC area under curve (AUC) estimated to be 0.79 (sd=0.14), 

which is higher than the Cox regression AUC. Furthermore, an explorative study into the relationship 

between dose-volume histogram (DVH) metrics and toxicity was performed. DVH metrics can be used 

to measure the amount of unwanted treatment radiation dose in critical organs. No clear indicators of 

correlation were found. Counterintuitively, the occurrence of toxicity became more common over time 

whereas DVH metrics improved, a trend that is not yet understood and requires further investigation.  
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Introduction 
Locally advanced cervical cancer is the most frequently diagnosed cancer in women aged 40-50 years 

[1], and the morbidity due to the cancer as well as treatment impacts many aspects of their lives. The 

standard of treatment is external beam radiotherapy (EBRT) with concurrent chemotherapy and 

brachytherapy (BT) [2]. EBRT and BT are two types of radiation treatment where the radiation source 

is placed outside and inside the patient respectively. In radiotherapy, patients receive personalized 

treatment plans where the goal is to give a prescribed amount of radiation dose to the tumor, while 

sparing the surrounding healthy tissue and critical organs. However, it can be challenging to achieve a 

low amount of radiation dose to critical organs, especially those situated close to the tumor, which can 

lead to treatment-related toxicity. Therefore, an explainable yet flexible model that reveals how patient 

and treatment factors influence outcomes such as survival as well as toxicity would be valuable for 

personalized clinical decision-making. 

Bayesian networks (BNs) are a potential solution – they are flexible models and have good properties 

for explainability as they tend to be compact, and captured relationships can be directly visually 

inspected by domain experts [3]. This thesis explores the use of BNs as a predictive model for treatment 

outcomes of patients treated for locally advanced cervical cancer. BNs will be trained using Discretizing 

Bayesian Network Gene-pool Optimal Mixing Evolutionary Algorithm (DBN-GOMEA) [3], a state-of-

the-art evolutionary algorithm. The goal of the research will be to explore the feasibility of this algorithm 

for learning BNs on the cervical cancer dataset. To benchmark the performance, the test performance of 

the BNs will be compared to that of classical models. 

Explainable AI (XAI) is a field of research focused on methods that allow for human intellectual 

oversight over AI algorithms. This thesis will focus on the model interpretability aspect of XAI. In 

contrast to a black-box model, an XAI model gives insight into the reasoning behind its predictions, 

making them more understandable and transparent. This is especially important in the field of healthcare 

where clinical decisions carry high stakes. Explainable models are allow clinicians to critically evaluate 

and challenge the model’s recommendations, rather than relying on opaque predictions. This also aligns 

with modern regulations such as the EU’s AI Act [4], which emphasizes transparency and interpretability 

and makes human oversight a requirement for high-risk AI systems such as those used in healthcare. 

The BN learning algorithm DBN-GOMEA has been developed by the Evolutionary Intelligence group 

which supervised this work, and has been thoroughly tested in a simulation study by Ha et al. [3]. This 

thesis is the first time this algorithm has been used to learn BNs from a real-world dataset. 

The dataset studied in this research was previously analyzed by Horeweg et al. [1] using classical 

methods such as Cox proportional hazards models and Kruskal-Wallis H-tests. Their research will be 

used to inform feature selection. Since then, the dataset has grown by about 80% as more patients have 

been treated. Horeweg et al. identified relevant factors that influence different types of survival 

outcomes. About 70% of patients experienced toxicity; one risk factor for vaginal toxicity was identified, 

but no statistically significant predictors for bladder, rectal, bowel and bone toxicity were found. 

However, DVH (dose-volume histogram) metrics for EBRT plans, which quantify the amount and 

distribution of radiation dose into the critical organs as well as tumor volumes, were not included in the 

analysis. In this thesis, new features will be generated by calculating DVH metrics for EBRT plans and 

the relationship between them and toxicity outcomes will be explored, with a focus on urinary 

incontinence, urinary urgency and urinary frequency. These toxicities were flagged by a clinician as a 

common cause of discomfort for patients. Since radiation dose to critical organs can be adjusted in the 

treatment preparation process, it is important to study and understand dose thresholds for toxicity. 

As stated before, this thesis is the first time DBN-GOMEA has been used for learning BNs for a real-

life dataset. By applying this technique to real-world data and benchmarking it against classical models, 

this study aims to contribute to methodological insight for the field of medical XAI. 
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Research questions 

The goal of this study can be summarized into the following three research questions: 

1. Can we learn a Bayesian Network as a predictive XAI model for clinical censored and 

uncensored survival data, and what are the limitations? 

2. How do the performance and results of the XAI model compare to a classical survival analysis? 

3. Do new features (DVH metrics) carry predictive power with respect to toxicity outcomes, in 

particular urinary incontinence, urinary urgency and urinary frequency? 

The first two questions are the core of this research, and the third research question is more exploratory 

in nature. 
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Ethical thinking, societal relevance and stakeholder awareness 

Locally advanced cervical cancer is a relevant medical and societal problem as it is the most 

frequently diagnosed cancer for women aged 40-50 years old, and many patients suffer from 

treatment-related toxicity in the form of urinary incontinence, urinary urgency and/or urinary 

frequency, reducing their quality of life. This makes it important to study the factors that lead to 

treatment success as well as complications. 

In the clinic, doctors rely on models to make treatment decisions. For example, in radiotherapy, 

doctors use dose-toxicity models from research literature to estimate the probability of treatment-

related toxicity based on the radiation dose absorbed by critical organs. The usefulness of the model is 

limited by the quality of the model. 

This thesis researches the potential of Bayesian Networks as a model for treatment outcomes of locally 

advanced cervical cancer. The potential of BNs lies in their combination of flexibility and 

explainability. This could make it a better model than either classical methods, due to its higher 

flexibility, or black-box type machine learning models, due to its better explainability. In the medical 

domain, XAI becomes especially important and is ethically advantageous to black-box models, as it 

allows clinicians to critically evaluate and challenge the model’s recommendations.  

In the field of radiotherapy, the use of AI algorithms has increased tremendously in the past years, with 

especially deep learning-based algorithms being used for applications such as the automatic 

segmentation of organs at risk, synthetic CT generation, deep learning-based automated treatment 

planning and outcome prediction [5] [6]. However, there are concerns, as well as ethical and legal 

challenges in adopting AI into clinical practice including patient privacy, the healthcare provider’s 

accountability for errors, developer responsibility for transparency and bias mitigation, and the 

trustworthiness of the algorithms [7]. XAI offers a path forward. The importance of using explainable 

methods may still increase as the EU’s AI Act [4], effective since Augst 1st 2024, emphasizes 

transparency and interpretability and mandates human oversight for high-risk AI systems such as those 

used in healthcare. This means that explainability is not only ethically responsible, but also legally 

required in certain contexts. 

The dataset used in this study is a real-world clinical dataset, collected retrospectively and anonymized 

to protect patients’ privacy. Despite the anonymization, the data is still sensitive as it contains CT and 

MRI scans of patients. All data handling occurred on a designated secure system and the data was not 

allowed to be copied or moved to any other systems. 

Several stakeholders are impacted by this study. Clinicians will be the ones using the model to make 

treatment decisions, and the explainability is especially important for them because if the XAI’s 

reasoning is medically sensible, they can more easily trust and rely on its outcomes. Patients will 

benefit from improved predictive power as this leads to better treatment decisions and thus better 

quality of care. A more directly involved stakeholder is the research group supervising this work. 

They have developed DBN-GOMEA and have an XAI research line, which means they are interested 

in studying the potential of this method for predicting clinical outcomes. The group is part of the 

Leiden University Medical Center and collaborates closely with clinicians in developing explainable 

AI tools.  
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Data 

Description 

The dataset examined in this work is an extension of [1]. The dataset consists of anonymized data from 

280 patients who were treated for locally advanced cervical cancer between 2008 and 2021. Two types 

of data were available: tabular data and DICOM data. 

Tabular data 

The tabular data has 327 columns with features that can be categorized into four groups: 

• Patient features – demographic and medical history data such as age, sex, presence of diabetes, 

and the presence of other malignancies; 

• Diagnosis features – characterization of the patient’s disease such as the tumor size at diagnosis, 

tumor histology, the classification of the tumor, and whether lymph nodes are affected; 

• Treatment features – details of the treatment, such as the administered radiation dose, number 

of brachytherapy needles used, and whether the patient received chemotherapy; 

• Clinical outcome features – clinical outcomes such as overall survival, distant metastasis-free 

survival, as well as different types of toxicities, when they occurred and their severity. 

Data completeness is >98% for most features used in our analyses (among others age, overall survival 

time, histology, tumor classification, comorbidity, lymph node involvement). However, tumor size is 

only 95% complete, and the presence of diabetes and other malignities are only 78% complete. 

DICOM data 

DICOM is a medical imaging data standard [8]. In radiotherapy, the DICOM format allows storing of 

patient-specific treatment plans, the radiation dose distribution in the patient and organ segmentations. 

The DICOM data in this study consists of: 

• CT and/or MRI images;  

• radiotherapy treatment plans for both external beam radiotherapy as well as brachytherapy; 

• organ and tumor segmentations;  

• radiation dose distributions for external beam radiotherapy and brachytherapy. 

Figure 1 gives an example of a visualization of a radiation dose distribution calculated on a CT. 
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Figure 1. An example of DICOM data. Shown here is once slice of a CT scan (greyscale) with a 3D dose distribution indicated 

the color-graded surfaces. Some organ segmentations are also shown here, for example the two kidneys segmented by a green 

and purple line, and the bowel segmented by the large yellow contour on the right. This figure also illustrates critical organ 

sparing: the kidneys receive lower dose than the tissue between and outside of the kidneys, this is because the treatment plan 

was designed in such a way to spare these critical organs. 

The available DICOM data was not a curated selection for this study, but rather extracted in bulk from 

the hospital’s medical imaging data archive. As a result, the dataset contained all DICOM records 

associated with the 280 patients, including a considerable amount of surplus data. Significant effort was 

undertaken to go through the 280 patients and identify the relevant data suitable for analysis. 

The DICOM data is used only to engineer additional features that quantify the quality of the external 

beam radiation treatment plan: the DVH metrics. To calculate DVH metrics, the simulated patient dose 

distribution and organ segmentations are required. Two examples of DVH metrics are: 

• Bladder V40 relative volume: the relative volume of the bladder segmentation receiving a total 

dose of 40 Gray or more, with Gray being the unit for measuring absorbed radiation dose; 

• Kidney Dmean: the mean radiation dose in the (left or right) kidney segmentation volume. 

The DVH metrics are calculated for all segmented organs as well as the tumor volume. These new 

features are appended to the tabular dataset for further analysis. 

Sufficient DICOM data to calculate DVH metrics was only available for 157 out of 280 patients (56 

percent). This poor rate of completeness is due to two reasons: 

• Before a change of policy in 2015, radiation dose distributions were not saved in the hospital’s 

PACS1 system. For some of these patients treated before 2015, the dose was recoverable, and 

was recalculated and added to the dataset. This was done by a researcher for research project. 

For other patients, the data is missing; 

• Multi-center treatment: a considerable number of patients received external beam radiation 

therapy in another clinic. In these cases, the DICOM dose distributions, treatment plans and 

segmentations are missing. 

 
1 Picture Archiving and Communication System; the system used for storing, maintaining and distributing 
medical images in the clinic 
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Exploratory data analysis 

Exploratory data analysis was performed to better understand the dataset through summary tables and 

visualizations. Table 1 summarizes key features in the dataset regarding the patients, diagnoses, and 

treatments. Note that the population is rather young for a cancer population, that all patients received 

external beam radiotherapy and brachytherapy, and the majority of patients also received chemotherapy. 

Characteristics N (% of total) 

Age – median 55 years 

Comorbidity  158 (56%) 

Tumor size in mm – mean (SD) 49.5 (17.1) 

Lymph node involvement 146 (52%) 

Histological type  

    Squamous cell carcinoma 232 (83%) 

    Adenocarcinoma 35 (13%) 

    Adenosquamous carcinoma 8 (3%) 

    Other  4 (1%) 

FIGO stage  

    <2a 77 (28%) 

    2b – 4 203 (72%) 

External beam radiotherapy 280 (100%) 

Brachytherapy 280 (100%) 

Chemotherapy 218 (78%) 

Treatment time in days 42.9 
Table 1. Summary of important features 

The treatment outcomes overall survival and distant metastasis-free survival are summarized in Table 2. 

Note that in the analysis of distant metastasis-free survival, death before metastasis is not seen as an 

event but rather as censoring. 

Outcome 1-year 

survival  

3-year 

survival  

5-year 

survival  

Mean 

survival 

Overall survival 93% 75% 62% 6.3 years 

Distant metastasis-free survival 90% 76% 71% 8.1 years 
Table 2. Summary of treatment outcomes 

Histograms of overall survival time and metastasis-free survival time are shown in Figure 2.  

 

Figure 2. Histograms of overall survival time (left) and distant metastasis-free survival time (right) grouped by event status 

where 0=censoring and 1=event. The bin width is 6 months. 

In prior work on the same dataset [1], tumor size was found to be the most significant risk factor for 

overall survival as well as distant metastasis-free survival. A scatterplot for overall survival time as a 

function of tumor size is shown in Figure 3. This figure shows clearly that survival past 50 months (4.2 



9 
 

years) was not observed for any patients with a tumor size greater than about 60 𝑚𝑚, whereas patients 

with smaller tumors did often survive longer. 

 

Figure 3. Scatterplot of non-censored overall survival time versus tumor size 

DVH metrics versus toxicity 

Throughout the course of data collection (2008 – 2021), external radiotherapy treatment techniques used 

in the clinic have evolved, allowing better sparing of critical organs. As a result, the values of DVH 

metrics have gone down notably (Figure 4). For all six metrics shown, a lower value is desirable as it 

indicates less radiation dose to the critical organs. 

 

Figure 4. Evolution of several DVH metric values over time. Each dot represents a patient’s treatment plan 

One might then expect to see an improvement in treatment-related toxicity. For example, a lower dose 

to the bladder might result in a lower degree of urinary toxicity such as incontinence. 

Toxicity events are recorded by date as well as by grade 1 through 4, with grade 4 being the most severe 

case of toxicity. For radiation-related toxicities, grade 2 toxicities are of particular interest according to 
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an involved clinician. Table 3 shows the frequencies of the most common grade 1 and 2 toxicities. For 

most toxicity types, there are less than ten events, potentially making it difficult to model. 

 Frequency 

Toxicity type grade 2 grade 1 

Urinary frequency 2 36 

Spinal fracture 2 0 

Fecal incontinence       3 15 

Vaginal dryness 3 13 

Pelvic fracture 3 5 

Vaginal hemorrhage 4 35 

Chronic kidney disease 5 3 

Constipation 6 6 

Urinary incontinence       6 15 

Proctitis 7 7 

Diarrhea 15 34 

Abdominal pain 23 40 

Vaginal stenosis or stricture 26 63 
Table 3. Most common grade 1 and grade 2 toxicities, ordered by the frequency of grade 2 toxicity 

Table 4 shows the frequency of the urinary toxicities of interest for all 4 grades. 

 Frequency 

Toxicity type Grade 1 Grade 2 Grade 3 Grade 4 

Urinary frequency 36 2 0 0 

Urinary urgency 39 1 0 0 

Urinary incontinence 39 6 2 0 
Table 4. Frequency of three types of urinary toxicity, per grade 

The most common of these across all grades is urinary incontinence. Figure 5 shows a boxplot of the 

grade of urinary incontinence against the DVH metric associated with radiation dose to the bladder. 

Although there are only 5 datapoints for grade 2 and 1 datapoint for grade 3 toxicity, the apparent trend 

is the opposite from the expected, i.e. patients with higher grades of toxicity have a lower value for 

bladder V30 rel. volume; the relative volume of the bladder receiving 30 Gray of dose or more. This 

trend will be explored further in the Results section. 

 

Figure 5. Boxplot of bladder V30 relative volume versus the grade of urinary incontinence 
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Methodology 
The main model under study is a BN, learned using a state-of-the-art learning algorithm called DBN-

GOMEA. The first subsection will briefly introduce the concepts of BNs and the learning algorithm. 

To answer the research questions, three types of analyses are performed: time-to-survival event analysis, 

fixed-time survival classification, and the DVH metrics versus toxicity exploration. These will be 

described in the second and later subsections.  

Discrete Bayesian networks and DBN-GOMEA 

A BN consists of a directed acyclic graph (DAG), with each node representing a feature, and a 

conditional probability table associated with each node. Figure 6 shows an example of such a network. 

 

Figure 6. An example of a Bayesian network [3]. All possible edges are shown in grey. An example of edges representing a BN 

is shown in black 

In Figure 6, all possible edges in the DAG are shown in grey, labeled 𝑔12, 𝑔13, 𝑔14, … , 𝑔56 for the edge 

between nodes 𝑋1 and 𝑋2, 𝑋1 and 𝑋3, 𝑋1 and 𝑋4 and so forth. The selected edges are shown in black, 

which for this example can be represented by the “genotype” {𝑔12, … , 𝑔56} = {01000 1000 110 00 2}. 

In a genotype, all possible edges 𝑔𝑖𝑗 between nodes are represented by a number, with 0 meaning no 

edge, 1 meaning an edge from 𝑖 to 𝑗, and 2 meaning an edge from 𝑗 to 𝑖. 

The directed edges represent the direct conditional dependencies between variables. The conditional 

probability table of node 𝑋3 is conditionally dependent on its parents, 𝑋1 and 𝑋2, but not for instance its 

child 𝑋4. The BN is essentially a factorization of the full joint probability distribution, as the joint 

probability distribution over all random variables X1, …, Xn can be written as: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

𝑛

𝑖=1

 

Where 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) denotes the immediate parent nodes of node 𝑋𝑖.  

The process of learning BNs from data is also known as structure learning. The technique used in this 

study is called DBN-GOMEA, which employs an evolutionary algorithm2 called Gene-pool Optimal 

Mixing Evolutionary Algorithm (GOMEA). GOMEA a model-based evolutionary algorithm that uses 

 
2 Evolutionary algorithms starts with a so-called generation consisting of multiple individuals with random 

genotypes, here represented by strings of 1s and 0s. The algorithm then selects individuals from this generation 

based on their fitness score, crosses their genomes, and applies random mutations, resulting in a next generation. 

This process is inspired by evolution through natural selection (survival of the fittest) and is repeated for many 

generations until a specified time point or number of evaluations is reached. 
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domain knowledge of the optimization problem to improve the performance and scalability of the 

optimization. This domain knowledge can be learned from the dataset during optimization, or, when 

possible, be supplied a priori [9]. DBN stands for Discretizing Bayesian Network because the algorithm 

can jointly discretize real-valued features during structure learning. 

To run the learning algorithm, the variables to be used as nodes in the BN need to be specified. DBN-

GOMEA optimizes the selection of edges between the nodes and the discretization of continuous 

features to maximize the density-based log-likelihood of the network defined by equation (1), where 𝐺 

is the Bayesian network and 𝒙𝒊 ∈ ℝ𝑁 is a sample 𝑖 from a training data set of size 𝑛. The data is 

normalized to [0,1] for the computation of the densities to make it invariant to data range. The fitness 

function also includes a weighted complexity penalty as defined in equation (2), which punishes the 

number of parent discretizations |𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)|, the number of discretizations of each node |𝑋𝑖| and the 

number of observations 𝑛 (BIC penalty [10]). The resulting fitness function is shown in equation (3), 

with 𝜆 ≥ 0 being the weight of the complexity term. 

𝐿𝐿(𝑿, 𝐺) =  ∏ log (𝑓𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙𝒊))

𝑛

𝑖=1

(1) 

𝐶(𝐺) = ∑|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)| ∙ (|𝑋𝑖| − 1) ∙ log (
𝑛

2
)

𝑁

𝑖=1

(2) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑿, 𝐺) = 𝐿𝐿(𝑿, 𝐺) − 𝜆 ∙ 𝐶(𝐺) (3) 

Two important hyperparameters were tuned in this study: 

• The discretization policy for continuous variables 

o DBN-GOMEA-EF: Equal-Frequency. Continuous variables are discretized into 2 – 9 

bins, with each bin containing the same amount of observations 

o DBN-GOMEA-EW: Equal-Width. Continuous variables are discretized into 2 – 9 bins 

of equal width 

o DBN-GOMEA-BD: Bayesian score discretization: continuous variables are discretized 

into 2 – 9 bins, and the break points are jointly learned over all continuous variables 

[11]. This is a more involved and time consuming algorithm than the other two and has 

been shown in a simulation study to obtain more accurate network structures than EF 

and EW for networks with only a few nodes [3]. Unlike EF and EW, BD is a post-

structure learning discretization method, meaning it is applied after the network 

architecture is learned through optimization of the density log-likelihood 

• The complexity penalty (𝜆) 

o a number greater than 0 that defines the weight of the complexity term in the fitness 

function. 

Survival time-to-event 

For the outcomes metastasis-free survival and overall survival, a BN is learned. Two reference models 

are also optimized/fitted for comparison: a Cox proportional hazards model and a random survival forest 

[12]. 

DBN-GOMEA 

BNs are learned from a training set consisting of 70% of the data. All three discretization policies (EF, 

EW, BD) of DBN-GOMEA are used. The weight of the complexity term in the score function is tuned 

using 5-fold cross validation on the training set. From the cross-validation results, the combination of 

discretization policy and complexity penalty resulting in the best validation C-index is selected, and a 

final model is trained on the full training set and evaluated on the test set (30% of the full dataset). The 
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survival outcomes are represented by two nodes in the network. One representing the time-to-event in 

months, and another representing the type of event: 0 in for censoring and 1 if the event occurs (for 

example, death in the case of overall survival). Modeling censored survival data using discrete BNs has 

been described in literature [13], but it is not a well-established technique. 

Reference models 

A Cox proportional hazards model is fitted and evaluated using 5-fold cross validation on the full dataset. 

For each fold, the model is fitted to 80% of the data and evaluated on the remaining 20%. The final 

result is the average C-index over five folds. 

As a modern ML survival model, a random survival forest is trained and evaluated using 5-fold cross 

validation on the full dataset, the same way as the Cox proportional hazards model. The random survival 

forest is trained using 1000 trees, ‘impurity’ variable importance mode, a log-rank splitting rule, a 

minimal node size to split at of 3, and a number of variables to split at in each node equal to the rounded 

down square root of the number of variables. 

Model evaluation 

Models are evaluated and compared using Harrell’s concordance index [14] [15], from now on referred 

to as C-index, a common metric for evaluating the performance of survival models that can be computed 

for a wide range of models. The evaluation of C-index of the final model on the test set is bootstrapped 

with 1000 samples to obtain the standard deviation. 

To calculate the C-index for the BNs, the mean survival time is predicted for each test observation given 

all other features and a survival event indicator equal to 1. This mean predicted survival time is used to 

compare pairs of observations and determine whether the predictions are concordant. The algorithm to 

calculate the C-index is described by Ishwaran et al [12]. 

Feature selection 

This study is the first time that DBN-GOMEA is used on real-world data, so we start with a univariate 

“toy problem” of modelling overall survival time versus tumor size. From literature it is known that 

overall survival is correlated with tumor size, and the simplicity of the model will allow for easy sanity-

checking of the results. 

After the toy problem, full models are trained for distant metastasis-free survival and overall survival. 

For the full models, the same set of features are used for all types of models. That is, the BN trained for 

overall survival has the same features as the Cox proportional hazards model for overall survival. Feature 

selection is copied from the study by Horeweg et al [1] on the same data, where candidate risk factors 

for metastasis-free survival and overall survival were selected by experts prior to analysis, and included 

in the final multivariate model if the P-value for that feature in a univariate Cox regression model was 

below 0.10. The model for metastasis-free survival has four regressors, the model for overall survival 

has seven regressors. 

Fixed-time survival classification 

For censored time-to-event data, the BN has fundamental limitations as it is not designed to work with 

censored data, which is expected to introduce bias and compromise the results. For that reason, a fixed-

time survival classification analysis is performed as well. Instead of modelling time-to-event (e.g. 

metastasis-free survival time), the survival status at a fixed point in time is predicted. For example, 12-

month metastasis-free survival. This is a binary classification problem, and for an early time point such 

as 12 months, not many patients have been lost to follow-up yet, meaning the effect of censoring is 

limited. 

BNs are trained for 12-month metastasis-free survival (9% missingness due to censoring). 
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Just like the survival time-to-event analysis, 5-fold cross validation on the training set is used to optimize 

hyperparameters for the BN. The performance of the final model is evaluated on the test set.  

Reference models 

As a classical reference model, a Cox proportional hazards model is fitted and evaluated using 5-fold 

cross validation on the full dataset. For each fold, the model is fitted to 80% of the data and evaluated 

on 20%. The Cox PH model parameters were used to predict risk scores at 12 months on the test set, 

allowing for evaluation. The final cross-validated result is the average over the five folds. 

Model evaluation 

Since this is a classification problem, the ROC area under curve (AUC) is calculated. The ROC AUC is 

related to the concordance index [16], and is also a number between 0 and 1. An AUC of 0.5 on the test 

set means is equivalent to random guessing, and any number greater than that indicates some predictive 

power. 

Feature selection 

The 12-month metastasis-free survival status is represented by a single node in the BN. The selection of 

regressors is identical to the feature selection described for the survival time-to-event models for distant 

metastasis-free survival. 

DVH metrics versus toxicity 

The last research question is aimed at investigating whether the DVH metrics carry any predictive power 

with respect to treatment outcomes. 

Generation of DVH metric features 

The calculation of DVH metric features is a domain-specific task, which was performed in the 

radiotherapy treatment planning system (TPS) which can import the DICOM-files containing treatment 

plans, dose distributions, CT scans and organ segmentations for the patients in the study. The software 

allows for automation using Python scripting and has its own API. The API can be used to extract the 

desired DVH metrics for any organ if the names of the organ segmentations are known. A Python script 

was written that loops over all suitable patients in the study, and based on the names used for organ 

segmentation, extracts the required DVH metrics and writes them to a text file. From here, the new 

features are copied into the tabular data. 

Statistical analysis / exploration 

In the first part of the exploration, a quick scan across all combinations of toxicities and DVH metrics 

is performed. Kruskal-Wallis H-tests are performed to explore univariate relations between a continuous 

DVH metric (such as the dose to bladder) and the categorical toxicity outcome (such as urinary 

incontinence: no toxicity / grade 1 / grade 2 / grade 3 / grade 4). 

The second part of the exploration focuses on three toxicities of specific interest: urinary incontinence, 

urinary urgency and urinary frequency. These were combined into a singly binary feature, 

urinary_tox_binary. A value of 0 means none of the toxicities has occurred for this patient during follow-

up, and 1 means any of the toxicities of any grade has occurred during follow-up. Logistic regression 

was used to explore univariate and multivariate relationships of this toxicity with relevant DVH metrics 

and potential confounders, using a 5% significance level (α = 0.05). 

This investigation into DVH metrics and toxicity is purely explorative. Using exploratory data analysis 

techniques, trends in the data were explored, giving ideas for the direction of future research. 
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Computation 

DBN-GOMEA is written in C++ and is run from a Linux server at the Centrum Wiskunde & 

Informatica (CWI) with the following specifications: Dual AMD EPYC 7282, 16-Core Processors (64 

logical CPUs) with 256 GB RAM. 

The training data needs to be supplied in the form of txt files, and the algorithm also writes its results 

to txt files. 

Three self-written Python scripts are included in the appendix: 

• generate_input_data.py to convert the tabular dataset into the txt files needed for DBN-

GOMEA. This script can also be instructed to split the data into a train and a test set, and split 

the training set into a specified number of folds for cross-validation.  

• analyze_bn_probabilities.py further processes the model training output by performing tasks 

such as calculating the C-index, calculating ROC AUC, bootstrapping, and plotting the 

Bayesian network. 

• collect_experiment_results.py to collect all results into a single CSV file suitable for 

visualization. 

Experiments such as cross validation were performed by writing a Linux bash script that runs all 

necessary scripts in order; it starts by generating input data, then compiles the C++ program, then runs 

DBN-GOMEA in a nested loop over a range of complexity penalty values and discretization policies. 

After all training is done, evaluation of all the solutions is performed in another nested loop using 

analyze_bn_probabilities.py. Finally, the results are collected into a single csv file with 

collect_experiment_results.py. 

The for-loops in the Linux bash script are parallelized. The server allows up to 64 processes to run in 

parallel, speeding up the computation time considerably. 
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Results 

Univariate toy problem 

Table 5 shows the training and test results for a BNs learned for overall survival versus tumor size, 

without any cross validation. This network has three nodes: tumor size, survival time, survival event. 

The BN learning algorithm self-discretizes the continuous features tumor size and survival time into an 

appropriate number of bins. The columns of Table 5 represent the following: 

• discretization   - the discretization policy used 

• complexity penalty  - the weight of the complexity term in the fitness function 

• networks  - the resulting network structures represented as a genotype 

• instantiations  - the number of bins for each of the three nodes 

• fitness train   - the value of the fitness function on the training set 

• C-index train/test - the value of the C-index on the training/test set 

Discretization 

Complexity 

penalty Networks Instantiations 

Fitness 

train 

C-index 

train 

C-index 

validation 

Equal width 0 122/111 8-8-2 167 0.66 0.61 

Equal width 0.1 222/211 8-8-2 167 0.66 0.61 

Equal width 0.2 122 8-5-2 139 0.65 0.58 

Equal width 0.3 201/202 4-5-2 127 0.59 0.53 

Equal width 0.4 000 4-9-2 123 0.41 0.46 

Equal width 0.5 000 4-9-2 120 0.41 0.46 

Equal width 0.6 000 4-9-2 116 0.41 0.46 

Equal frequency 0 112/221/222 9-9-2 221 0.66 0.54 

Equal frequency 0.1 111/112/221/222 9-9-2 179 0.66 0.54 

Equal frequency 0.2 221/222 9-8-2 138 0.66 0.54 

Equal frequency 0.3 001 8-9-2 118 0.52 0.46 

Equal frequency 0.4 000 8-9-2 113 0.51 0.44 

Equal frequency 0.5 000 8-9-2 109 0.51 0.44 

Equal frequency 0.7 000 8-7-2 101 0.56 0.44 

Equal frequency 1 000 8-4-2 91 0.56 0.48 

Bayesian score 0 210 2-2-2 58 0.61 0.58 

Bayesian score 0.1 210 2-2-2 56 0.61 0.58 

Bayesian score 0.2 210 2-2-2 55 0.61 0.58 

Bayesian score 0.4 210 2-2-2 52 0.61 0.58 

Bayesian score 0.6 210 2-2-2 50 0.61 0.58 

Bayesian score 0.7 210 2-2-2 48 0.61 0.58 

Bayesian score 0.8 000 2-2-2 47 0.5 0.5 

Bayesian score 1 000 2-2-2 46 0.5 0.5 
 

Table 5. Training and test results for the Bayesian network of overall survival versus tumor size. 

The results show that for all discretization policies, the complexity of the network structure and the 

number of discretization bins decreases as the complexity penalty is increased. For a high enough 

complexity penalty, the algorithm always returns a ‘000’ network structure, representing a network with 

independent nodes. For both the training and test set, the C-index seems to be the highest for a 

complexity penalty equal to 0. The highest training and validation C-indices are 0.66 and 0.61. This 
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suggests that some predictive power is obtained, although without a measure of uncertainty it isn’t clear 

whether this is statistically significantly different from 0.5. 

Interestingly, the Bayesian Score discretization results returns the same network structure (‘210’) and 

instantiations (‘2-2-2’) for a wide range of complexity penalty values. This network is shown in Figure 

7. 

 

Figure 7. Bayesian network trained on toy problem using a Bayesian score-type discretization policy 

This network can be used to sanity-check the result because the continuous nodes are both split into only 

two bins, allowing for easy intuitive evaluation. The conditional probability table learned for the node 

representing tumor size can be read from Figure 7, and is also shown below in Table 6. 

P( tumor size | survival time ) Small tumor Large tumor 

Short survival 0.67 0.33 

Long survival 0.89 0.11 
 

Table 6. Conditional probability table for tumor size in the network shown in Figure 7 

From this table, an odds ratio of  
(0.89/0.11)

(0.67/0.33)
≈ 3.99 is obtained. In other words, small tumors are 4 times 

more common in long survivors compared to short survivors, which makes intuitive sense and is 

consistent with results from Horeweg et al [1]. 

The discretization boundaries learned are 65.5 𝑚𝑚 for tumor size and 24 months for survival time. 

Comparing this to the scatter plot of overall survival time and tumor size in Figure 3, the boundary for 

tumor size looks to be in a good position to separate the patients with long survival times from the ones 

with shorter survival.  

As a final sanity check, a log-rank test is used to find the optimal boundary for tumor size by sweeping 

over a range of boundary positions for a binary tumor size feature and minimizing the P-value. The 

survival time is used as a continuous survival feature, and the tumor size is discretized into two bins. 

The log-rank test tests whether there is a statistically significant difference in survival between the small 

tumor and large tumor groups. The results in Figure 8 show that the biggest difference in survival 

between the two tumor size groups is obtained for a boundary position between 60 and 70 𝑚𝑚. The 

minimum is around 67 𝑚𝑚 with a p-value of 10−5. This matches very well with the discretization 

boundary of 65.5 𝑚𝑚 that was found by DBN-GOMEA. 
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Figure 8. Log-rank test for overall survival versus tumor size, swept over a range of discretization boundary positions to split 

tumor size into a binary variable (bottom plot is a zoomed-in version of top plot, with labels showing the p-values) 

From this it can be concluded that DBN-GOMEA generated a model with reasonable results; the 

modelled direction of the effect and the proposed discretization are consistent with a classical survival 

model that does properly handle censored data. 

Time-to-event survival analysis 

Metastasis-free survival 

BNs for metastasis-free survival time were trained using cross validation. The networks have six nodes: 

survival time, survival event (0/1); tumor size; FIGO stage (<2a vs 2b-4); nodal involvement (N0 vs 

N+); and treatment time (days). 

The nodes survival time, tumor size and treatment time are continuous features and will be discretized 

by DBN-GOMEA.  

Figure 9 shows the training and validation results. 



19 
 

 

 

 

Figure 9. Hyperparameter tuning through cross validation of Bayesian networks for metastasis-free survival. The three rows 

of plots show training log-likelihood, training C-index and validation C-index as a function of the complexity penalty. The three 

columns represent the three types of discretization policies. 

The first two rows of plots show the training density log-likelihood and training C-index. As expected 

the training log-likelihood decreases with an increasing complexity penalty as the complexity penalty 

reduces overfitting to the training set. In contrast, Bayesian discretization does not directly optimize the 

log-likelihood, unlike the other two methods, and so it does not show this trend. The training C-index 
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regresses to 0.5 for a high enough complexity penalty, indicating underfitting. Interestingly, a 

complexity penalty of 0.0 can lead to a training C-index well below 0.5, indicating a discordant model. 

This behavior will be explored further in the discussion section. 

The final row of plots shows the validation C-index, which is used to select the final model. Based on 

these plots, two models with the highest average validation C-index are selected: a Bayesian 

discretization model with a complexity penalty of 0.6, and an Equal-Frequency model with complexity 

penalty 0.2. Two models were selected as they both performed equally well on the validation set. No 

Equal-Width model was selected due to the considerably lower validation C-index. 

After retraining on the full training data and evaluating on the test set, the final BN model results are 

summarized in Table 7. 

Model Discretization Complexity 

penalty 

C-index 

training 

C-index test (SD) 

Bayesian network Equal-Frequency 0.2 0.75 0.58 (0.07) 

Bayesian network Bayesian discr. 0.6 0.69 0.63 (0.08) 
Table 7. Bayesian Network final test results for metastasis-free survival 

The Bayesian score discretization performed best on the test set with a test C-index of 0.63, indicating 

that on average, for 63% of all pairs of observations in the test set, the model predicted the correct 

ordering of survival time. 

The results for the reference models are shown in Table 8. 

model C-index training (SD) C-index validation (SD) 

Cox proportional hazards 0.68 (0.02) 0.64 (0.02) 

Random survival forest 0.90 0.70 (0.14) 
Table 8. Cross validation results for reference models for metastasis-free survival 

Comparing these results to the BN results, it can be concluded that the BN with Bayesian discretization 

performs comparable to the Cox proportional hazards model in terms of its training and test C-index, 

although with greater confidence intervals. The random survival forest seems to outperform the other 

models, but with a large confidence interval. 

Overall survival 

BNs for overall survival time have been trained using cross validation. The networks have 9 nodes: 

survival time, survival event (0/1); age; diabetes; previous other malignancy; tumor size; FIGO stage 

(<2a vs 2b-4); nodal involvement (N0 vs N+); and treatment time (days). 

The nodes survival time, age, tumor size and treatment time are continuous features and will be 

discretized by DBN-GOMEA. 

Figure 10 shows the training and validation results. 
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Figure 10. Hyperparameter tuning through cross validation of Bayesian networks for overall survival. The three rows of plots 

show training log-likelihood, training C-index and validation C-index as a function of the complexity penalty. The three 

columns represent the three types of discretization policies. 

The training results in the first two rows of plots show a similar pattern to the metastasis-free models in 

Figure 9. The validation C-index in the last row shows a very high degree of variability, and a ‘slower’ 
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trend with respect to complexity penalty. The higher number of nodes for the same amount of training 

data perhaps makes the model more susceptible to overfitting, requiring a higher complexity penalty to 

combat it. 

From these results, the final selected models are Equal-Frequency with a complexity penalty of 0.7 and 

Bayesian Discretization with a complexity penalty of 1.7. The results on the test set, together with the 

reference models for comparison, are shown in Table 9. 

Model Discretization Complexity 

penalty 

C-index train C-index test (SD) 

Bayesian network Equal-Frequency 0.7 0.69 0.60 (0.07) 

Bayesian network Bayesian discr. 1.7 0.49 0.50 (0.01) 

Cox PH - - - 0.66 (0.11) 

Random survival forest - - - 0.65 (0.15) 
Table 9. Final BN test results and cross-validated reference model results for overall survival 

On the test set, the Bayesian discretization BN showed no predictive power at all. The equal-frequency 

BN shows some indication of predictive power, but with a lower test C-index than the Cox PH model 

as well as the random survival forest. 

Fixed-time survival classification  

12-month metastasis free survival 

BNs for 12-month metastasis-free survival status have been trained using cross validation. The networks 

have 6 nodes: 12-month survival status (0/1); tumor size; FIGO stage (<2a vs 2b-4); nodal involvement 

(N0 vs N+); and treatment time (days). 

The nodes tumor size and treatment time are continuous features and will be discretized by DBN-

GOMEA. 

Figure 11 shows the training and validation results. 
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Figure 11. Hyperparameter tuning through cross validation of Bayesian networks for 12-month metastasis-free survival. The 

three rows of plots show training log-likelihood, training C-index and validation C-index as a function of the complexity 

penalty. The three columns represent the three types of discretization policies. 

Compared to modelling of continuous survival time rather than a fixed-timepoint survival, the training 

and validation ROC shows a great deal of variability. The final selected model is Equal-Frequency with 

a 0.05 complexity penalty. 
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This model’s performance on the test set after retraining on the full training set is presented in Table 10. 

Model Discretization Complexity penalty AUC training AUC test (SD) 

Bayesian network  Equal-Frequency 0.05 0.75 0.90 (0.04) 

Cox PH - - 0.76 0.74 (0.12) 
Table 10. Final model results for 12-month metastasis-free survival 

For the bootstrapped AUC on the test set, a very high value of 0.90 was obtained, even considerably 

higher than the training AUC. While this is evaluated on an unseen test set without any cherry picking, 

it is thought unlikely that this is a true measure of the model’s performance on unseen data. Since the 

training AUC is lower, it is likely that the model just happened to fit very well to the test set. This is 

possible in a low-sample, high variance setting like this. 

Post-hoc analysis 

Figure 11 already showed high variability in AUC across different folds used in cross-validation. This 

variability in AUC for a single complexity penalty is largely due to the fact that for different folds, 

different network structures were learned with varying performance on test data. For a fixed complexity 

penalty, the random seed used in splitting the training/test set was found to strongly affect which network 

structure was learned, which in turn strongly affects the AUC ROC. The validation sets are rather small 

and contain only 0s and 1s, most likely unbalanced as well, so the evaluation result is subject to high 

variability. 

To get a more realistic approximation of test performance than 0.90, repeated holdout validation is used: 

the process of training a final model with complexity penalty 0.05 and then bootstrapping the 

performance on the test was repeated for 30 different seeds for the random split of training and test data, 

resulting in 91 unique learned “final” networks (many of them equivalent). For all these solutions, the 

bootstrapped “test” AUC and its variability is plotted as a function of the training AUC in Figure 12. 

The error bars represent the standard deviation obtained from bootstrapping for a fixed network 

structure. The scatter of many datapoints represent different network structures learned for different 

random splits between training and test set. The plot reveals a strong correlation between the training 

and test performance; networks that score well on training tend to also score well on the test set, most 

likely indicating that it is simply a better network for the data. 

 

Figure 12. Bootstrapped mean and standard deviation for test AUC versus train AUC, obtained for 30 different random splits 

of train and test set. 
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Choosing the best network from this collection would lead to an upwards biased estimate of the test 

performance. To get a better estimate of the model’s test set performance, the network architecture 

should not be selected based on test-set performance, but on a validation set performance. That is, choose 

the network structure that performed best in cross validation on the validation set, fix this architecture 

and optimize the discretization boundaries on the full training set, and evaluate the performance on the 

test set. However, the current implementation of DBN-GOMEA does not allow to fix the network 

architecture and will always learn a new architecture from scratch. The repeated holdout validation 

provides a solution here: we can identify the network architecture(s) that worked best in cross validation, 

and then find matching networks among 1000 repeated random holdout runs and average their test set 

performance. The best network from was chosen by pooling solutions from all 5 folds and their 

validation AUC, and choosing the network(s) with the highest validation AUC. Note that DBN-GOMEA 

can learn multiple equivalent network structures in a single run because equivalent network structures 

have the same fitness score. 

In cross-validation (shown earlier in Figure 11), the following network architectures performed equally 

well, with a training AUC of 0.89 and a validation AUC of 0.84, one of which is plotted in Figure 13: 

{1111110201}, {1121220201}, {2221110101}, {2111110201}, {2111110101}, {2211110101}, 

{1211210101}, {2211210101}, {2121120201}, {1221220201} 

 

Figure 13. Graphical representation of one of the networks with the best performance in cross-validation (genotype 
{1121220201}) 

Finding these networks among 1000 evaluations with different seeds gives the bold results in table Table 

11. This table also shows the average performance over all networks, rather than only those selected. 

Model Discretization Complexity 

penalty 

AUC training AUC test (SD) 

Bayesian network – averaged 

result over all networks 

Equal-

Frequency 

0.05 0.78 0.73 (0.08) 

Bayesian network – average 

over best networks from CV 

Equal-

Frequency 

0.05 0.83 0.79 (0.09) 

Table 11. Post-hoc analysis for 12-month metastasis-free survival 

This estimate is higher than the AUC obtained from the Cox PH model, although it might still be biased 

upwards because there is overlap between the test data used by the many random splits and the training 

data used for cross validation that informed the choice of network architecture. 



26 
 

DVH metrics versus toxicity 

Finally, the influence of the DVH metrics on toxicity is explored. A quick scan for strong univariate 

correlations between all combinations of DVH metric features and toxicity features was performed. The 

top 15 results by p-value out of more than 350 combinations are shown in Table 12.  

DVH metric feature Toxicity feature P-value 

Sigmoid V30 rel. volume toxicity grade vaginal dryness 0.003 

Body V43 abs. volume toxicity grade chronic kidney disease 0.004 

Body V36 abs. volume toxicity grade chronic kidney disease 0.006 

Sigmoid V40 rel. volume toxicity grade vaginal dryness 0.009 

Bowel V30 abs. volume toxicity grade vaginal dryness 0.018 

Rectum V40 rel. volume toxicity grade abdominal infection 0.022 

Bowel V15 abs. volume toxicity grade vaginal dryness 0.023 

Bowel V40 abs. volume toxicity grade abdominal pain 0.023 

Bladder V40 rel. volume toxicity grade chronic kidney disease 0.024 

Body V36 abs. volume toxicity grade constipation 0.025 

Bowel V40 abs. volume toxicity grade vaginal dryness 0.025 

Body V36 abs. volume toxicity grade urinary frequency 0.026 

Body V43 abs. volume toxicity grade urinary frequency 0.026 

Bladder V30 rel. volume toxicity grade chronic kidney disease 0.028 

Rectum V30 rel. volume toxicity grade urinary incontinence 0.030 
Table 12. Kruskal-Wallis H-test results with highest p-values for all combinations of DVH metric feature and toxicity feature 

The combinations marked with bold text are shown as box plots in Figure 14. 

 

 

Figure 14. Boxplots for the pairs of DVH-metric and toxicity feature marked bold in Table 12 
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Urinary toxicity 

Exploratory data analysis results shown earlier in Figure 5 revealed a counter-intuitive negative 

univariate correlation between bladder V30 and urinary incontinence. The Kruskal-Wallis H-test also 

shows this as a negative coefficient for Bladder V30 rel. volume (p=0.02). 

The apparently negative correlation may well be due to confounders, it is therefore important to know 

which other factors are correlated with urinary toxicity. When running univariate logistic regression tests 

for urinary_tox_binary versus every other column in the data, it was found that various date-related 

features (such as the treatment starting date, the data entry date, etc.) show the strongest correlations, 

with p-values between 10−10 and 10−6. The sign of the correlations indicate that over time, these urinary 

toxicities became more common in the study population.  

In Figure 4 it was shown that after a treatment protocol change in 2015, DVH metrics were improved. 

Figure 15 shows a comparison of urinary toxicity-free survival curves of patients treated before versus 

after this protocol change, confirming that the patients before 2015 had better survival outcomes. 

 

Figure 15. Kaplan-Meier curves for combined urinary toxicity-free survival, comparing two groups of patients: those treated 

before a protocol change in 2015 and those after 

This surprising result coincides with an improvement in DVH metrics, which potentially makes it 

difficult to demonstrate a positive effect of the better DVH metrics. 

Besides date, other factors that have a strong univariate correlation with urinary_tox_binary are age, 

history of urological disease, gynaecological surgery, EQD2tot ICRU bladder and FIGO-classification 

of the tumor. EQD2tot ICRU bladder is a measure for the dose to the bladder from brachytherapy, rather 

than external beam radiotherapy. A multivariate logistic regression model for urinary_tox_binary and 

these features gives the results shown in Table 13. 

Regressor Estimate Std.error Z-value Pr(>|z|) 

(Intercept) 15.73 1481.00 0.011 0.99 

Gynaecological surgery 2.55 1.22 2.092 0.04* 

History of urological disease -18.36 1481.00 -0.012 0.99 

EQD2tot ICRU bladder -0.004 -0.001 -2.875 0.004** 

Bladder V40 rel. volume 1.95 1.36 1.428 0.15 

EBRT after 2015 protocol change 2.49 0.83 2.996 0.003** 

FIGO stage 2b – 4 0.71 0.70 1.017 0.31 
Table 13. Logistic regression results for outcome urinary_tox_binary. A positive coefficient estimate indicates that a higher 

value of that regressor is correlated with a higher rate of toxicity. 

When correcting for these confounders, the Bladder V40 rel. volume DVH metric is no longer 

statistically significant. The binary date variable (EBRT after 2015 protocol change) is statistically 

significant (𝑝 = 0.003), as well as the brachytherapy dose given to the bladder, with an unexpected 

negative sign indicating that higher dose corresponds to less combined urinary toxicity. 
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Discussion 

Interpretation and drawbacks 

The main focus of this study is to train Bayesian networks using DBN-GOMEA on a real-world clinical 

dataset and evaluate predictive power. BNs are of interest because of their potential for explainable AI. 

Investigating how to present models effectively lies outside the scope. 

In a full multivariate network trained for metastasis-free survival, a test C-index of 0.63 with a standard 

deviation of 0.08 was obtained for DBN-GOMEA, which was comparable to a Cox regression model, 

although with higher variability. The full network trained for overall survival resulted in a test C-index 

of 0.60 with a standard deviation of 0.07, a slightly lower estimate than Cox PH. Despite higher 

flexibility of the Bayesian network, it was not able to achieve a higher C-index on an unseen test set. 

A fundamental drawback of learning BNs for survival data is that BNs are not designed to properly 

handle censored data. By introducing one node for survival time and one node for survival event 

(0=censor, 1=event), it was possible to mimic a survival model, but in this way censored and non-

censored patients are likely modeled as two separate groups and results can be expected to be biased. 

Another drawback is that the continuous survival-time feature is discretized into 9 bins, causing a loss 

of information. It is possible that these fundamental shortcomings are why the BNs for survival time do 

not manage to outperform a simple Cox regression model on unseen test data, despite being more 

flexible. Results for a random survival forest – an ML model that can handle censored data – indicate 

that the Cox regression model might be outperformed in terms of C-index with the right model, although 

due to large confidence intervals this cannot be stated with certainty. Note that random survival forests 

are not as suited for XAI as BNs; it has drawbacks with regards to explainability due to it being an 

ensemble method. 

To circumvent the issue of censored data, a fixed-timepoint analysis was performed by learning BNs for 

12-month metastasis-free survival. These results seem promising although they suffer from a high 

degree of variability, and the evaluation on the fixed test set resulted in an overly optimistic test AUC 

of 0.90, considerably higher than the training AUC. A post-hoc analysis using repeated holdout 

validation resulted in a better approximation of test set performance showing good results, but these 

might contain some bias. This is because the test sets in repeated holdout partially overlap with the 

training data used in cross validation to select the complexity penalty and the best-performing network 

structures. This is a rather mild form of leakage, because in each repetition, the test set is still held out 

from training, and the model parameters are kept fixed; no additional hyperparameter tuning or selection 

is performed on repeated holdouts. Despite the potential bias, the obtained estimate (an AUC of 0.79) is 

deemed more useful than the overly optimistic performance on the fixed test set. 

In an earlier simulation study on DBN-GOMEA [3], the sample size of the training set was found to be 

important to get accurate results. In the simulation study, data was generated from known BNs. DBN-

GOMEA was applied on this data to evaluate whether it could correctly reobtain the ground truth BNs. 

The accuracy and sensitivity achieved by DBN-GOMEA was found to increase with an increasing 

sample size and did not plateau even past 50,000 samples. The real-world dataset of 280 patients in 

comparison is small and results from the simulation study suggest that this will likely limit the 

effectiveness of the learning algorithm. 

Low training C-index 

In Figure 9, a training C-index for metastasis-free survival as low as 0.2 – 0.3 was calculated when no 

complexity penalty is applied. This is a surprising result because a non-predictive model should result 

in a C-index of 0.5. A value below 0.5 indicates a discordant model that is more likely to make 

predictions in the wrong direction; this is unexpected especially on the training set.  
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To check why this is the case, the predicted mean survival time was plotted as a function of true survival 

times for both a discordant model (penalty = 0.0) and a concordant model (penalty = 0.2). Figure 16 

shows that the discordant model (top row) produces many zero-valued predictions. This in itself would 

not result in a discordant model, but the histogram on the top right shows that zero-valued predictions 

are disproportionally assigned to patients with longer observed survival times. This makes the model 

discordant. The histograms show that the majority of survival times are in fact short so it is possible that 

a model that produces too many zero-valued survival times can produce a high log-likelihood. During 

training, the log-likelihood is maximized, not the C-index. This discordant effect does not hold up on a 

validation set, indicating it results from spurious correlations in the training set. 

 

 

Figure 16. Left: scatterplot of BN-predicted mean metastasis-free survival time versus observed survival time. Right: histogram 

of observed metastasis-free survival times, grouped by whether the predicted survival time is zero or non-zero. Top: results for 

discordant model with complexity penalty 0.0, resulting in a training C-index of 0.2 – 0.3. Bottom: results for concordant model 

with complexity penalty 0.0, resulting in a training C-index of 0.75. 

DVH metrics versus toxicity 

Exploratory data analysis of DVH metrics and urinary toxicity revealed an apparent paradox in the data: 

while DVH metrics did improve over time, meaning critical organs received less dose, the occurrence 

of toxicity actually increased. The increase in toxicity over time is not understood and outside the scope 

of this research. 

Some notable drawbacks of the exploratory analysis and possible explanations of counterintuitive  are: 

• Radiotherapy treatment trade-offs. A decrease in the dose to one critical organ may increase 

dose to another unsegmented organ not captured by a DVH metric; 

• Incomplete treatment information. Clinically, brachytherapy and external beam radiotherapy are 

considered cumulatively and both influence toxicity. However, only external radiotherapy DVH 

metrics were considered here. An improvement of DVH metrics for external beam radiotherapy 
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can create room for the brachytherapy plan to increase the dose to the critical organs, potentially 

offsetting the gains. 

• Metric limitations. DVH metrics are limited in that they describe a 3D dose distribution with a 

single number. A highly inhomogeneous dose distribution with strong “hotspots” can still obtain 

a good value for V30. The bladder in particular is interesting because it is a hollow organ filled 

with urine. Only the dose to the bladder wall could lead to toxicity, yet DVH metrics include 

the entire volume. 

• Need for clinical insight. Understanding why toxicity seems to increase over time requires 

collaboration with a clinician to narrow the scope and make the problem more manageable. 

• Small amount of data. The full dataset consists of 280 patients, but dose distributions are only 

known for 158 patients. 

Ideas for future research 

DBN-GOMEA for learning BNs has been shown before to perform well in a simulation study with self-

generated data. For further research into the application of this technique on real-life datasets, it is 

recommended to use a benchmark dataset with more observations (preferably >500) and a classification 

target rather than censored survival times, allowing a fair comparison with modern ML methods and 

clearer performance evaluation.  

The BN results for time-to-event data were similar or worse than Cox PH model results. Modelling 

survival-time this using two BN-nodes (time and event indicator) has fundamental flaws which could 

partially explain poor test performance. Kraisangka et al. [17] have studied BN interpretations of Cox 

models that are able to handle censored data. However, these networks were generated based on Cox 

regression coefficients and not learned from data. The training data will have to be remapped in order 

to learn a BN this way; it is not clear whether this is possible but it would be worth investigating. 

In contrast to the BN results for time-to-event data, results for binary classification of 12-month 

metastasis-free survival status seem promising and warrant further study by improving the process of 

model selection through cross-validation. The post-hoc analysis performed can still lead to optimistic 

estimates, this problem can be solved by nested cross-validation and/or by reprogramming DBN-

GOMEA. 

In this study, cross-validation was used to find the optimal value of the complexity penalty based on the 

validation C-index. Then, a new Bayesian network was completely retrained using this value of 

complexity penalty. Rather than retraining the whole network, a better approach is to fix the network 

structure from the best validation C-index and only optimize the conditional probability tables and 

perhaps discretization boundaries. It is highly recommended to apply such an analysis to the results in 

Figure 10, as the individual datapoints for validation C-index show three ‘levels’ of performance: around 

0.5, around 0.6 and around 0.8. It might be that the network structures with a validation C-index of 0.8 

perform much better on the unseen test set than what was achieved now. 

This study uses the same feature sets as prior work on the same data. However, the full dataset contains 

many more features that were not considered for the models. It is worth looking into feature selection 

techniques to potentially find a better set of features and obtain more predictive power. 

The explainability of the BN was not yet explored in this study and will require further research, focusing 

on interpretable model presentation and ways of quantifying and communicating feature importance. 

For research into the relationship between DVH metrics and toxicity, due to the large scope and the 

limitations of BNs for modeling survival data, it is recommended to separate this research question from 

the research into BNs for explainable AI. That is, to use established state-of-the-art ML techniques for 

survival data, for example random survival forests [12], deep-learning based methods [18] or gradient-

boosting methods [19] to model the seemingly complex relationship between DVH metrics and toxicity.   
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Conclusions 
BNs were learned on the clinical dataset using Discretizing Bayesian Network Gene-pool Optimal 

Mixing Evolutionary Algorithm (DBN-GOMEA), targeting three different outcomes: metastasis-free 

survival time, overall survival time, and 12-month metastasis-free survival. 

DBN-GOMEA was compared with Cox-Regression. DBN-GOMEA for metastasis-free survival time 

scored a test C-index of 0.63 (sd=0.08) and for overall survival time scored a test C-index of 0.60 

(sd=0.07). These results likely indicate some predictive power, but the performance is comparable to or 

perhaps worse than the Cox regression model results. 

For 12-month metastasis-free survival, DBN-GOMEA does not suffer from fundamental issues 

regarding censored data, and better results were obtained. Using cross-validation for model selection on 

the training set and then evaluating performance on a fixed test set resulted in an unrealistically high test 

AUC of 0.90 (sd=0.04). Post-hoc analysis was performed to get a better estimate of the test performance, 

which returned an AUC of 0.79 (sd=0.09). However, this score might still be biased. The scores obtained 

are as good as or better than Cox regression. DBN-GOMEA shows great promise to be used as a 

predictive model for this data. More work is needed to improve the model selection phase, and to exploit 

the explainability of the network. 

The relationship between urinary DVH metrics and toxicity was explored. No clear indicators for a 

correlation was found based on exploratory box plots and logistic regression models. Furthermore, the 

data suggests a complicated relationship between DVH metrics and toxicity. DVH metrics improved 

over time, yet occurrences of urinary toxicity became more common. An in-depth analysis incorporating 

clinical knowledge to identify all relevant confounders and trade-offs between treatment modalities 

would be required to understand this problem in further research. 
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Appendix (software code) 
Code was written in Python to generate input data for the training algorithm, analyze the results, and 

collect the results into a single CSV file. Generate_input_data.py and collect_experiment_results.py 

were fully written by me. For the analysis I built on an existing script analyze_bn_probabilities.py. 

Below I only attached the classes and functions that I wrote, and left out the code written by my 

supervisor. 

Git was used with a private repository for version control which also includes the C++ code for the 

training algorithm (DBN-GOMEA). 

The DBN-GOMEA code was written by my supervisor, it is not attached here as I did not work on it. 


























