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Abstract 

Glioblastoma (GB) is the most frequent aggressive primary brain tumor in adults, with a 5-year 
overall survival rate of 5% in GB paƟents even aŌer aggressive treatment. GB is widely recognized 
as challenging to diagnose and manage. GB treatment generally comprises surgical excision, 
followed by radiaƟon and chemotherapy, but relapse is the norm. Decision-making regarding 
therapy is challenging and uncertain in the early moments, wasƟng precious Ɵme unƟl 
confirmaƟon on therapy efficacy or the need to switch to second-line approaches, highlighƟng 
the need to improve therapy response assessment. MagneƟc resonance imaging (MRI) contains 
a wide range of structural and funcƟonal informaƟon that can be used by machine learning 
algorithms to facilitate the management of GB paƟents. This thesis aims to develop and evaluate 
machine learning classifiers capable of detecƟng therapy-induced changes in the tumor 
microenvironment, using the GL261 murine GB model as a preclinical benchmark. T2-weighted 
MRI data were analyzed, and a total of 90 quanƟtaƟve imaging features were extracted per MRI 
image: 42 texture features derived from various gray-level matrices and 48 morphological 
features computed from Minkowski funcƟonals. To address the high dimensionality of the 
dataset, feature selecƟon methods were applied in combinaƟon with several classificaƟon 
algorithms, including logisƟc regression (LR), linear discriminant analysis (LDA), K-nearest 
neighbors (KNN), and support vector machines (SVM). Our findings suggest that more flexible 
models, parƟcularly SMV with higher-degree polynomial kernels and fine-grained KNN, achieved 
the best classificaƟon performance. These results highlight the potenƟal of radiomics-based 
models to non-invasively monitor therapeuƟc response in GB, with possible future applicaƟons 
in translaƟonal and clinical seƫngs by facilitaƟng personalized medicine. 
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1. IntroducƟon 

1.1 Glioblastoma 

Glioblastoma (GB), the focus of this Master’s thesis, is the most frequent of the aggressive 
primary brain tumor types found in human adults. Tumors of the Central Nervous System (CNS) 
comprised approximately 2% of all cancer cases diagnosed worldwide in 2022. Because of their 
poor prognosis, they are responsible for 2.8% of all cancer-related deaths. Each year, CNS cancers 
lead to over 300,000 new cases and 250,000 deaths globally [1]. Gliomas comprise nearly 30% 
of all primary brain tumors and around 80% of malignant cases, making them the leading cause 
of death from primary brain tumors [2]. In 2022, the reported incidence was 5.26 cases per 
100,000 populaƟon. These tumors originate from mature glial cells (Figure 1) or their precursors 
and are characterized by their capacity to infiltrate and diffusely invade surrounding brain Ɵssue. 

GB is an adult-type (i.e., median age at diagnosis is 62) diffuse glioma, which spreads infiltraƟvely 
through the brain parenchyma, gradually causing neuronal dysfuncƟon and cell death [3]. GB is 
the most aggressive and common form of primary astrocytoma, accounƟng for approximately 
57% of all gliomas and 48% of primary malignant CNS tumors [4]. The 2021 World Health 
OrganizaƟon (WHO) ClassificaƟon of Tumors of the CNS grades brain and spinal cord tumors (i.e., 
with grades going from 1 to 4) based on histological, immunohistochemical, and molecular 
features, with Grade 4 being the most malignant [5]. GB is classified in most cases as Grade 4 
(Figure 1). 

Some GB tumors develop de novo (i.e., primary tumors), while others (i.e., secondary GBs) 
progress from lower-grade gliomas [6]. Primary GB is diagnosed in the case of adult diffuse 
astrocyƟc tumors that are IDH-wildtype (isocitrate dehydrogenase wildtype) when either 
histological features of grade 4 malignancy (such as microvascular proliferaƟon or necrosis) are 
present, or when specific molecular alteraƟons are idenƟfied. The laƩer includes telomerase 
reverse transcriptase (TERT) promoter mutaƟon, epidermal growth factor receptor (EGFR) 
amplificaƟon, or combined whole chromosome 7 gain and whole chromosome 10 loss (+7/−10) 
(Figure 1). The presence of any one of these molecular changes is sufficient for GB diagnosis, 
even without classic grade 4 histological features [7]. In contrast, secondary GBs account for only 
~10% of GB cases and typically arise from precursor diffuse or anaplasƟc astrocytomas. These 
secondary GBs carry IDH mutaƟons and are oŌen linked to improved outcomes [8]. 

GB is a disease generally associated with poor prognosis, especially in older adults, since 
advanced age or incomplete resecƟon are key negaƟve prognosƟc factors. Median survival in 
elderly paƟents receiving only supporƟve care is less than 4 months [8]. Unfortunately, despite 
advances in diagnosƟc strategies and novel therapies, overall survival has not significantly 
improved. The typical survival rate is approximately 12-15 months with standard treatment, and 
the two-year survival rate is below 30% [9]. 
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Figure 1 – A) Astrocytes, oligodendrocytes, and microglia are the main glial cell types in the CNS. Microglia also serve 
as a stable, resident immune cell populaƟon within the CNS. Extracted from [10]. B) ClassificaƟon for adult-type diffuse 
gliomas. Adapted from [7]. 

The current standard of care for GB reflects its highly aggressive nature and aims to prolong 
survival while preserving neurological funcƟon. Treatment typically begins with maximal safe 
surgical resecƟon to reduce tumor burden and alleviate symptoms, followed by a combinaƟon 
of radiotherapy and chemotherapy [11]. Temozolomide (TMZ), an oral alkylaƟng agent, is the 
chemotherapeuƟc agent of choice and is administered concurrently with radiotherapy, followed 
by addiƟonal cycles as maintenance therapy. This mulƟmodal regimen, commonly referred to as 
the Stupp protocol, has become the gold standard for newly diagnosed adult paƟents up to 70 
years of age who are in good general and neurological health. Despite these efforts, GB almost 
invariably recurs, oŌen locally, highlighƟng the limitaƟons of current therapies. Overall, 
treatment response in GB is closely linked to molecular characterisƟcs, with MGMT 
(methylguanine DNA methyltransferase) promoter methylaƟon being the strongest predictor of 
benefit from TMZ chemotherapy. For the mulƟmodal regimen, median overall survival is longer 
in paƟents with a methylated MGMT promoter (24 months); in unmethylated cases, it averages 
just 12.6 months [11]. 

GB are highly heterogeneous tumors, both geneƟcally and phenotypically, which poses a 
significant challenge to effecƟve treatment. This variability exists not only between paƟents but 
also within a single tumor, where diverse subpopulaƟons of cells contribute to treatment 
resistance [12]. Resistance can be either intrinsic or acquired aŌer therapy and is driven by 
mulƟple mechanisms, including the blood-brain barrier (i.e., the natural barrier that separates 
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the blood and CNS and can hamper the brain delivery of drugs when administered 
intravenously), evasion of apoptosis [13, 14], the presence of glioblastoma stem cells [15], 
proneural-mesenchymal transiƟon [16, 17], and immune suppression [18]. Together, these 
factors reduce the efficacy of convenƟonal and targeted therapies, complicaƟng clinical decision-
making and underscoring the urgent need for improved response assessment and personalized 
treatment strategies. 

1.2 MagneƟc resonance imaging 

MagneƟc Resonance Imaging (MRI) has become one of the most widely used imaging techniques 
today, especially in the medical field. MRI is parƟcularly effecƟve in detecƟng pathological 
Ɵssues, making it a key diagnosƟc tool for healthcare professionals. In parƟcular, in the case of 
GB, it is the standard modality for diagnosing, characterizing, and clinical management, typically 
idenƟfying tumors around 4 cm in size at diagnosis [19]. Although GB tumors oŌen develop in 
the brain’s temporal lobe, they can appear anywhere in the CNS. Compared to histopathology, 
radiological methods like MRI, computerized tomography (CT), and positron emission 
tomography (PET) offer inherently digital imaging, facilitaƟng analysis and follow-up without the 
limitaƟons of physical sample processing. MRI advantages include excellent soŌ Ɵssue contrast, 
high spaƟal resoluƟon, unlimited penetraƟon depth, and the absence of ionizing radiaƟon (i.e., 
unlike CT scans). 

MRI is based on the interacƟon between a magneƟc field and the hydrogen nuclei present in 
water molecules within different Ɵssues. MRI allows the measurement of T1 and T2 relaxaƟon 
Ɵmes of these nuclei, which vary depending on their environment, mobility, and concentraƟon. 
This informaƟon is parƟcularly useful for detecƟng pathological Ɵssues, as cancer cells typically 
contain more water than healthy ones. The differences in T1 and T2 values contribute to the 
contrast seen in MRI images.  

However, in certain regions of the body, the inherent contrast in MRI is insufficient to clearly 
disƟnguish pathological Ɵssues from healthy ones. To enhance image contrast, contrast agents 
are employed in approximately 40% of MRI examinaƟons. These agents are typically 
administered intravenously and funcƟon by shortening the relaxaƟon Ɵmes of water protons 
within Ɵssues, thereby increasing the signal intensity and improving the clarity of the resulƟng 
images. Currently, the most widely used contrast agents are based on chelates of the trivalent 
gadolinium ion (Gd³+), which is paramagneƟc [20]. Gadolinium(III) possesses seven unpaired 
electrons, endowing it with a high longitudinal R₁ relaxivity (i.e., defined as the capacity of a 
contrast agent to reduce the relaxaƟon Ɵmes of hydrogen nuclei, thereby enhancing the MRI 
signal in regions where the agent accumulates). 

A standard MRI scan protocol for paƟents with brain tumors typically includes T1-weighted, T2-
weighted, fluid-aƩenuated inversion recovery (FLAIR), and post-contrast T1-weighted sequences 
(Figure 2). T1-weighted images are parƟcularly effecƟve for illustraƟng anatomical detail, with 
cerebrospinal fluid (CSF) and most tumors appearing as areas of low signal intensity. In contrast, 
T2-weighted images offer greater sensiƟvity for lesion detecƟon, presenƟng most pathological 
lesions as hyperintense, whereas regions of hemorrhage or chronic hemosiderin deposiƟon 
oŌen appear hypointense [21]. FLAIR sequences, which are T2-weighted images with CSF 
suppression, are highly sensiƟve for detecƟng pathological changes and enhance the visibility of 
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lesions such as tumors and edema, which appear with increased signal intensity compared to 
convenƟonal T2-weighted images. However, tumor margins in FLAIR or T2-weighted images may 
be poorly differenƟated from surrounding edema, gliosis, or ischemic alteraƟons. Post-contrast 
T1-weighted imaging generally offers superior delineaƟon of the tumor nidus and provides 
valuable diagnosƟc informaƟon regarding tumor grade, hemorrhage, necrosis, and peritumoral 
edema [21]. 

 
Figure 2 – MRI scans performed for diagnosƟc purposes revealed a large intracranial mass in a paƟent presenƟng right-
sided hemiparesis. Subsequent histopathological analysis was consistent with GB. (A) The T1-weighted image shows 
a hypointense lesion located in the leŌ frontoparietal region. (B, C) T2-weighted and fluid-aƩenuated inversion 
recovery (FLAIR) sequences demonstrate a heterogeneous hyperintense lesion accompanied by surrounding edema. 
(D) The post-contrast T1-weighted image displays a heterogeneous, ring-enhancing lesion, with an addiƟonal area of 
enhancement posterior to the primary lesion, as well as prominent vasogenic edema. Adapted from [21]. 

There are currently radiological and clinical guidelines, parƟcularly the RANO (Response 
Assessment in Neuro-Oncology) [22] and Response EvaluaƟon Criteria in Solid Tumors (RECIST) 
criteria [23], which evaluate GB response to therapy based on changes in enhancing tumor size 
measured on contrast-enhanced T1-weighted images, as established by the RANO and earlier 
Macdonald criteria [24]. 

1.3 Radiomics 

Beyond convenƟonal visual assessment, advanced imaging techniques allow for the non-invasive 
characterizaƟon of a tumor’s radiographic phenotype across different stages of treatment: 
before, during, and aŌer therapy. Radiomics builds upon this capability by applying high-
throughput computaƟonal algorithms to extract and quanƟtaƟvely analyze a vast array of 
imaging features [25]. This automated approach enables the transformaƟon of standard 
radiological scans into high-dimensional, mineable data, capturing subtle paƩerns in shape, 
texture, intensity, and spaƟal relaƟonships that may not be discernible to the human eye. The 
aim of this approach is to support clinical decision-making by semi-automaƟcally or 
automaƟcally extracƟng radiologic features and linking them to clinical outcomes such as disease 
progression and paƟent survival. Due to the complex (intra-tumoral and inter-paƟent) 
heterogeneity of GB, advanced imaging methods like radiomics offer a valuable alternaƟve to 
tackle the challenge of tumor heterogeneity, by capturing tumor diversity and guiding treatment 
based on image-derived features. 



Page 9 of 56 
 

Figure 3 – Overview of the radiomics workflow from image 
acquisiƟon to feature extracƟon and model-based clinical 
decision support. Following image acquisiƟon and 
segmentaƟon, radiomic features are extracted. Advanced 
staƟsƟcal modeling and machine learning techniques are 
then employed for disease classificaƟon, paƟent subgroup 
idenƟficaƟon, and individualized prognosis assessment. 
Image extracted from [26]. 

 

 

 

 

 

Because preclinical studies oŌen rely on relaƟvely 
small datasets (this is usually not the case for 
clinical trials which may involve hundreds of 
paƟents), some radiomics approaches treat each 
image voxel (i.e., short for “volume element”, 
which associates with a pixel in the case of 2D 
MRI images) as an individual input, effecƟvely 
expanding the number of data points and 
enhancing sensiƟvity to subtle features [27]. This 
voxel-wise strategy contrasts with whole-image 
analysis, which preserves broader contextual and 

spaƟal informaƟon. Figure 3 displays a typical radiomics workflow. At this point, it is worth noƟng 
that although this thesis is focused on radiomics at the preclinical level, the ulƟmate goal of our 
research is to develop radiomics tools that serve as support for clinicians’ decision-making. In a 
typical radiomics workflow (Figure 3), the process begins with image segmentaƟon, where 
regions or volumes of interest are defined. This can be done manually, semi-automaƟcally, or 
automaƟcally, with deep learning gaining popularity. Manual methods are Ɵme-consuming and 
observer-dependent, affecƟng reproducibility. In some cases, an image processing step is 
included, involving the standardizaƟon of pixel spacing and grey levels to ensure consistency; 
tools like 3D Slicer and pyRadiomics support this [25, 26]. Next, a feature extracƟon step is 
performed, where quanƟfiable features (intensity, shape, texture) are computed. Finally, feature 
selecƟon or dimension reducƟon eliminates non-robust, redundant, or irrelevant features to 
avoid model overfiƫng and improve generalizability. 

2. DescripƟon of the research quesƟons 

This Master’s thesis aims to invesƟgate whether machine learning classifiers trained on MRI-
derived radiomics and morphological image features can effecƟvely detect therapy-induced 
changes in the local tumor microenvironment in GB, using TMZ treatments on the GL261 murine 
GB model as a preclinical benchmark.  

The long-term objecƟve of this research is to enable earlier and more accurate assessment of 
GB therapy response by using quanƟtaƟve MRI features to detect subtle microenvironmental 
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changes induced by treatment. By developing and comparing machine learning models trained 
on a comprehensive set of image features, this thesis aims to support faster, data-driven clinical 
decision-making in GB management. 

3. DescripƟon of the dataset 

The retrospecƟve dataset used in this thesis consists of MRI images acquired from 63 mice (Table 
1) generated as part of the research at Prof. Ana Paula Candiota’s (Group of Biomedical 
ApplicaƟons of Nuclear MagneƟc Resonance, GABRMN) laboratory at Universitat Autònoma de 
Barcelona (UAB, Spain) [28-32].  

Table 1 – Summary of the 63 animals harboring a GL261 GB tumor and analyzed in this thesis. The table also indicates 
the day post-inoculaƟon when they were last studied (i.e., prior to euthanizaƟon), whether they were treated or 
control mice, and whether they were included in the training set or test set. The Cxxx notaƟon corresponds to the 
internal unique mouse idenƟfier code in the GABRMN group.  

Training set Test set 
Control Treated Control Treated 

C32-Day 161 C414-Day 241 C1109-Day 112 C971-Day 262,3 
C69-Day 151 C415-Day 231 C1110-Day 132,3 C975-Day 262 
C71-Day 161 C418-Day 221 C1111-Day 162,3 C1023-Day 232 
C179-Day 171 C419-Day 241 C1111-Day 132 C1026-Day 232 
C233-Day 171 C437-Day 231 C1320-Day 184,5 C1100-Day 263 
C234-Day 171 C521-Day 181 C1344-Day 174,5 C1108-Day 293 
C255-Day 141 C525-Day 221 C1348-Day 214,5 C1412-Day 234,5 
C278-Day 191 C526-Day 181 C1457-Day 234,5 C1445-Day 234,5 
C288-Day 181 C527-Day 221 C1459-Day 156 C1447-Day 284,5 
C351-Day 131 C572-Day 181 C1461-Day 156 C1450-Day 244,5 
C520-Day 181 C574-Day 261 C1462-Day 156 C1451-Day 234,5 
C529-Day 181 C575-Day 261 C1465-Day 154,5 C1456-Day 234,5 
C583-Day 181 C584-Day 261 C1466-Day 234,5 C1458-Day 234,5 
 C586-Day 221 C1471-Day 164,5 C1460-Day 234,5 
 C776-Day 341 C1472-Day 134,5 C1463-Day 234,5 
 C795-Day 181 C1474-Day 144,5  
 C797-Day 221   
 C808-Day 331   
 C821-Day 341   

1, Mice described in reference [29]. 2, Mice described in reference [28]. 3, Mice described in reference [30]. 4, Mice 
described in reference [32]. 5, Mice described in reference [33]. 6, Mice described in reference [31]. 

In all cases, these mice correspond to a GB preclinical model established by stereotacƟc injecƟon 
of GL261 cells into the caudate nucleus of mice [29]. Treated mice were, in all cases, administered 
TMZ following either an Immune-Enhancing Metronomic Schedule (IMS) [28] or three-cycle 
administraƟon protocol [30]. These animals were followed up with MRI studies and magneƟc 
resonance spectroscopic imaging (MRSI) at chosen Ɵme points, although in this thesis we will 
only focus on the MRI images. However, as a result of this combined MRSI/MRI analysis, the 
number of MRI brain/tumor slices available for each mouse ranges from 1 to 4 (Figure 4A). 
Supplementary Table 1 describes addiƟonal details of these mice, including the number of slices 
available for each mouse. 
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The available MRI images are 256x256 pixels and are accompanied by a mask for each 
image/slice, determining the region of interest (ROI). The ROI indicates where the tumor is in the 
image and has been generated by experts from the GABRMN laboratory who are used to seeing 
MRI images as part of their daily research. A radiomics MATLAB soŌware is used to extract 90 
features from each image, which belong to two different types of radiomic features: texture 
features and Minkowski funcƟons. The texture features are 42 and are described in 
Supplementary Table 2. These are classified into four different texture matrices: Gray Level Co-
Ocurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix 
(GLRLM) and Neighbouring Gray Tone Difference Matrix (NGTDM) [34]. In contrast, the 
Minkowski funcƟons capture morphological and structural aspects of image heterogeneity. For 
a chosen number of levels N (set to 16 in this thesis, based on prior experience in the GABRMN 
lab), N binary images are extracted using equally spaced intensity thresholds within the mask 
(Figure 4B). From each binary image, three features (i.e., area, perimeter, and Euler 
characterisƟcs) are computed, yielding 3N (i.e., 48) features. 

 
Figure 4 – Dataset and feature characterisƟcs. A) Scheme showing the mouse brain and the posiƟoning of brain slices. 
B) IllustraƟon of the 16-level Minkowski thresholds for the C526-Day18 tumor mask. Adapted from [31]. 

4. Methodology 

4.1 GeneraƟon of the preclinical glioblastoma model for in vivo studies 

In this thesis, we employed the well-characterized, immunocompetent GL261 orthotopic murine 
model, which is widely used for GB research [28-30, 35, 36]. The GL261 mouse glioma cells were 
obtained from the Tumor Bank Repository at the NaƟonal Cancer InsƟtute (USA) and cultured in 
RPMI-1640 medium (Sigma-Aldrich, Spain), supplemented with 2.0 g/L sodium bicarbonate, 
0.285 g/L L-glutamine, 10% fetal bovine serum (Gibco, Invitrogen, UK), and 1% 
penicillin/streptomycin (Sigma-Aldrich). Cells were cultured at 37 °C in a humidified incubator 
with 5% CO₂. 
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Female C57BL/6 wild-type mice (average weight: 21.1 ± 1.3 g) were obtained from Charles River 
Laboratories (France) and housed at UAB’s animal facility. In parƟcular, the mice described in 
references [32, 33], were housed in an enriched environment-like (EE-like) seƫng for three 
weeks prior to tumor implantaƟon (Figure 5) and maintained there throughout the experiment 
to promote immune acƟvaƟon and reduce glioma growth, based on evidence that EE exposure 
enhances survival and brain immunological responses in C57BL/6 mice [37]. For tumor 
implantaƟon, each animal received preempƟve analgesia with subcutaneous Metacam (1 
mg/kg; Boehringer Ingelheim, Germany) 15 min prior to anesthesia, and again at 24 and 48 h 
post-implantaƟon. Anesthesia was induced by intraperitoneal injecƟon of ketamine (80 mg/kg; 
Parke-Davis SL, Spain) and xylazine (10 mg/kg; Carlier, Spain). AnestheƟzed mice were placed in 
a prone posiƟon on a stereotaxic frame (Kopf Instruments, USA). Following scalp shaving and 
disinfecƟon with an iodophor soluƟon, a 1-cm incision was performed along the midline to 
expose the skull. Using a precision microdrill, a 1-mm burr hole was created at a point 0.1 mm 
posterior to the bregma and 2.32 mm lateral to the right of the midline (Fine Science Tools, 
Germany). A 26-gauge Hamilton syringe (Reno, USA), connected to a digital push-pull 
microinjector (Harvard Apparatus, USA), delivered 4 µL of a suspension containing 100,000 
GL261 cells at a depth of 3.35 mm below the skull surface, with an injecƟon speed of 2 µL/min. 
To minimize backflow, the syringe was maintained in posiƟon for an addiƟonal 2 min aŌer the 
injecƟon. It was then slowly and carefully withdrawn, and the incision was closed with 6.0 silk 
sutures (Braun, Spain). Post-operaƟve care included recovery in a warm environment. Mice were 
monitored daily, with body weight recorded, and tumor progression was assessed two to three 
Ɵmes per week using T2-weighted MRI (Figure 5). 

4.2 Treatment of the GB mouse model 

The analysis in this thesis was performed using animals that were treated with two disƟnct 
treatment protocols. The original protocol used in the laboratory consisted of three cycles of 
TMZ treatment (Figure 5A). TMZ (Sigma-Aldrich) was dissolved in 10% dimethyl sulfoxide 
(DMSO) in saline soluƟon (0.9% w/v NaCl). In the three-cycle regimen, mice received a daily dose 
of 60 mg/kg for 5 consecuƟve days during the first cycle, followed by a 3-day rest period. The 
second cycle was administered over 2 consecuƟve days, followed by another 3-day rest. The third 
cycle was idenƟcal to the second, with a 2-day consecuƟve dose followed by a 3-day break. The 
treatment period was carefully structured to ensure that the rest periods were long enough for 
tumor cells unaffected by previous cycles to regain sufficient proliferaƟve capacity. Control mice 
were treated with a 10% DMSO vehicle instead of TMZ. This treatment regimen was used in 
animals with low Cxxx numbers (i.e., animals with numbers lower than C1300). In our study, 
these mice correspond to the animals described in references [28-30].  

Another treatment protocol used was the IMS-TMZ treatment. Tumor-bearing mice were treated 
at a dose of 60 mg/kg via oral gavage every 6 days, beginning on day 11 post-implantaƟon (Figure 
5B). Control mice were treated with a 10% DMSO vehicle. As described for the three-cycle 
regimen, the IMS-TMZ treatment protocol followed the principle of providing appropriate 
recovery Ɵmes between treatments, while monitoring tumor progression using MRI to evaluate 
treatment efficacy. This treatment regimen was used in animals with high Cxxx numbers (i.e., 
animals with numbers higher than C1300). In our study, these mice correspond to the animals 
described in references [32, 33]. 
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Figure 5 – A) Three-cycle TMZ and B) IMS-TMZ treatment regimens.  

In all cases, tumor volumes were assessed through T2-weighted MRI at day 11 aŌer implantaƟon, 
with randomizaƟon ensuring homogeneous tumor sizes and body weights among the 
experimental groups. MRI scans were performed twice a week to monitor the tumor's response 
to therapy, and animal health was carefully monitored throughout the study. Upon reaching 
predetermined endpoint criteria, animals were euthanized by cervical dislocaƟon, and the brain 
and tumors were resected for analysis. All animal studies were approved by the local ethics 
commiƩee (hƩps://www.uab.cat/en/research-ethics/animal-experimentaƟon, accessed on 27 
July 2025), according to the regional and state legislaƟon. 

4.3 MRI analysis 

In vivo MRI/MRSI studies were conducted at the joint nuclear magneƟc resonance facility of UAB 
and the Centro de InvesƟgación Biomédica en Red (Ciber)-Bioingeniería, Biomateriales y 
Nanomedicina (BBN), at Unit 25 of NANBIOSIS (hƩps://www.nanbiosis.es, accessed on 26 July 
2025). All experiments were performed on a 7T Bruker BioSpec 70/30 USR spectrometer (Bruker 
BioSpin GmbH, Germany) equipped with a mini-imaging gradient system of 400 mT/m. For MRI 
acquisiƟons, radiofrequency transmission was achieved using a 72 mm inner-diameter linear 
volume coil, while signal recepƟon was performed with a mouse brain surface coil. 

Animals were placed on a dedicated support plaƞorm equipped for anesthesia delivery 
(isoflurane, 1.5-2.0% in oxygen at 1 L/min) and containing a circulaƟng warm-water system to 
stabilize body temperature. Breathing rate was tracked using a pressure sensor, ensuring a 
respiratory frequency of 60-80 breaths per minute. 

GL261 tumor-bearing mice were first assessed using high-resoluƟon coronal T2-weighted images 
obtained through a Rapid AcquisiƟon with RelaxaƟon Enhancement (RARE) sequence to idenƟfy 
brain tumor presence and track its stage of development. The MRI acquisiƟon parameters were 
as follows: repeƟƟon Ɵme/effecƟve echo Ɵme = 4200/36 ms; echo train length= 8; field of view 
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= 19.2 × 19.2 mm; matrix size = 256 × 256 (75 × 75 μm/pixel); slice thickness = 0.5 mm; inter-slice 
thickness = 0.1 mm; number of slices = 10; number of averages = 4; and total acquisiƟon Ɵme = 
6 min and 43 s. 

4.4 Radiomics workflow 

We performed a radiomics analysis of the MRI images to extract quanƟtaƟve features from 
tumor regions in the GL261 GB mouse model. Figure 6 describes the general workflow of 
radiomics extracƟon and subsequent analysis. Tumor ROIs 2D masks were delineated manually 
under the advice and supervision of experts in MRI GB imaging. The purpose of these masks is 
to avoid the inclusion of surrounding peritumoral and normal Ɵssues in the analysis. This 
segmentaƟon process ensured that only the tumor Ɵssue was considered for feature extracƟon, 
thereby enhancing the precision of the analysis.  

 

Figure 6 – Image analysis workflow. 

All data were processed using MATLAB (version 23.2.0.2859533, R2023b, MathWorks, USA), 
uƟlizing the Image Processing Toolbox (version 23.2) and specialized radiomics toolboxes for 
feature extracƟon [38, 39]. Radiomic features for the analysis were derived from both texture 
matrices and Minkowski funcƟons. Specifically, texture features were obtained using the 
Radiomics MATLAB toolbox [39], which considers four types of texture matrices: Gray Level Co-
Occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix 
(GLRLM), and Neighboring Gray Tone Difference Matrix (NGTDM). These matrices provide 
various representaƟons of the tumor's texture. As a result, a total of 42 texture features were 
extracted based on these matrices, as shown in Supplementary Table 2. To calculate these 
features, a rectangular bounding box was generated around the segmented tumor region, 
ensuring that the matrix input matched the required dimensions for feature extracƟon. 

In addiƟon to the texture features, Minkowski funcƟons were calculated directly from the tumor 
mask using the Minkowski MATLAB toolbox [38]. The Minkowski funcƟons are used to describe 
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the morphological and structural properƟes of the tumor and its heterogeneity. The process 
involved the creaƟon of N binary images (where N was set to 16 based on prior experience in 
the GABRMN lab) by applying equally spaced intensity thresholds within the tumor mask (Figure 
4b). For each threshold, three disƟnct morphological features (i.e., area, perimeter, and Euler 
characterisƟcs) were computed, providing a comprehensive descripƟon of the tumor's structure. 
This procedure resulted in a total of 48 Minkowski-based features (3 features per threshold level 
across 16 levels). These features serve as criƟcal descriptors of the tumor's geometric properƟes, 
enhancing the overall radiomics analysis by providing insights into the tumor's complexity and 
heterogeneity. 

AŌer feature extracƟon, features were normalized using the z-score method using the normalize 
MATLAB funcƟon. This method centers the data to have a mean of 0 and scales it to have a 
standard deviaƟon of 1.  

To provide a consolidated analysis for mulƟ-slice tumor images, a slice-voƟng system (SVS) was 
employed (Figure 7). This method aggregates the outputs from mulƟple tumor slices by 
compuƟng a weighted average, with greater emphasis placed on slices that contained a larger 
proporƟon of tumor Ɵssue. Weights for each slice were determined based on the number of 
pixels within the tumor mask to reflect the relaƟve importance of each slice in the overall 
analysis. 

 

Figure 7 – Example of the SVS system used to aggregate the output of three different slices in the case of a control 
mouse. Image adapted from [31]. 

In summary, the radiomics feature set included 90 disƟnct features (42 texture features and 48 
Minkowski features) per slice. Moreover, the outputs of different slices are aggregated to 
generate a unique output for each mouse.  

4.5 Model fiƫng 

To assess the performance of different classifier models, several methods were tested using 
MATLAB and its BioinformaƟcs Toolbox (version 23.2), and the StaƟsƟcs and Machine Learning 
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Toolbox (version 23.2). Several methods were evaluated, including Support Vector Machine 
(SVM), Linear Discriminant Analysis (LDA), LogisƟc Regression (LR), and K-Nearest Neighbors 
(KNN) (Figure 6). Each method was applied to the training data using different configuraƟons 
(e.g., different kernel types for SVM and distance metrics for KNN). The selected classificaƟon 
models enable evaluaƟng a range of algorithms, each with disƟnct characterisƟcs and strengths, 
to determine which is best suited for our dataset.  

The LR analysis was performed using the fitglm funcƟon within MATLAB. The 'DistribuƟon' 
parameter was set to 'binomial' and the 'link' parameter was set to 'logit' to model the log-odds 
of the success class.  

The SVM analysis was performed with the fitcsvm MATLAB funcƟon, seƫng the 'KernelScale' 
parameter to 'auto' to automaƟcally adjust the kernel's scale to fit the data and opƟmize the 
model performance. The 'BoxConstraint' was set to 1 to balance the trade-off between 
minimizing the classificaƟon error and maximizing the margin between classes. The 'Standardize' 
seƫng was set to 'true' to standardize the input features to have zero mean and unit variance, 
ensuring equal contribuƟon of all features during training. The evaluated kernel types include 
linear, Gaussian, and polynomial (with degrees 2, 3, and 4). The polynomial kernels allow for 
varying degrees of complexity, with higher degrees enabling more complex decision boundaries. 

The LDA analysis was performed using the fitcdiscr MATLAB funcƟon, which trains an LDA 
classifier on the input data. The 'DiscrimType' parameter was set to 'linear' to create a linear 
decision boundary between classes, while the 'Gamma' parameter was set to 0 ensuring that no 
regularizaƟon is applied to the model, while seƫng FillCoeffs was set to 'off' to ensure that no 
coefficient filling occurs, allowing the model to remain unaltered by any automaƟc adjustments 
that MATLAB might otherwise perform on the coefficients. 

The KNN analysis was performed using the fitcknn MATLAB funcƟon, with the following specified 
seƫngs. The 'Distance' parameter was set to different distance metrics, including 'Euclidean', 
'Cosine', and 'Minkowski', to test different similarity measures between data points. The 
'Exponent' was set for the Minkowski distance to 3 for tesƟng the influence of the distance's 
exponent. The 'NumNeighbors' parameter was adjusted across different values, such as 1 or 10 
for the different models, determining how many neighbors influence the classificaƟon. The 
'DistanceWeight' was set to either 'Equal' or 'SquaredInverse' to explore different weighƟng 
schemes for neighbors, where 'SquaredInverse' places more weight on closer neighbors. 
AddiƟonally, the 'Standardize' opƟon was set to true for all models to ensure that the input 
features were standardized to have zero mean and unit variance, allowing for standardized 
comparisons between features with different scales. The evaluated models include fine, 
medium, cosine, cubic, and weighted KNN configuraƟons, with different combinaƟons of 
distance metrics and neighbor seƫngs, allowing for exploraƟon of various complexity levels and 
trade-offs in classificaƟon accuracy. A detailed descripƟon of the fine, medium, cosine, cubic, 
and weighted KNN configuraƟons can be found in SecƟon 5. Results. 

In terms of model performance metrics, aŌer training, the models' predicƟons were compared 
to the response labels of the test datasets to assess the best-performing methods. The following 
performance metrics were used: 
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- Accuracy: The accuracy of the model was determined by calculaƟng the classificaƟon 
error rate, following the equaƟon Accuracy = (TP+TN)/(TP+TN+FP+FN), where FP refers 
to false posiƟves; TP refers to true posiƟves; FN refers to false negaƟves and TN refers to 
true negaƟves. 

- SensiƟvity: This metric was calculated by assessing the proporƟon of actual posiƟve 
cases (i.e., treatment-responsive mice) correctly idenƟfied by the model. It was 
calculated using the formula: SensiƟvity = TP/(TP+FN) 

- Specificity: This metric was calculated by assessing the proporƟon of actual negaƟve 
cases (i.e., non-responder mice) that were correctly predicted by the model. This metric 
was calculated using the formula Specificity = TN/(TN+FP). 

- F1-score: The funcƟon calculates the F1 score using the confusion matrix to assess the 
balance between precision and recall. The F1-score was calculated following the 
equaƟon: F1-score = 2*Prec*Rec/(Prec + Rec) = 2*TP/(2*TP+FP+FN), where Prec = 
Precision and Rec = Recall. 

A leave-one-out cross-validaƟon (LOOCV) strategy was employed to evaluate model 
performance. In this approach, the models were iteraƟvely trained on all but one subject and 
tested on the leŌ-out subject, such that each mouse served once as the independent test set. 

The MATLAB soŌware used in this thesis can be found at 
hƩps://giƞront.io/r/stanco78/aJGZ76Z8GDrN/Radiomics/, where addiƟonal details can be 
found. The main scripts used for the analysis are located in the src folder. 

4.6 Feature selecƟon 

Given that our dataset displays a large number of features (i.e., 90) but a limited number of 
observaƟons (i.e., 32), we decided to reduce the number of features in our models. We expect 
that many features will not contribute meaningfully to the model learning outcome and, instead, 
can cause the model to overfit the noise present in the data. AddiƟonal expected benefits of 
feature selecƟon include the reducƟon of computaƟonal resources for model usage and the 
enhancement of the interpretability of the results. 

For comparison purposes, we followed a similar feature selecƟon strategy to the one described 
in Núñez et al. [31]. Thus, we applied two different approaches for feature selecƟon: a filter 
scheme and an embedded-wrapper recursive feature eliminaƟon (RFE) scheme. For the filter 
scheme, a univariate t-test was performed to rank features based on their individual significance 
in disƟnguishing between control and treated groups. For this purpose, the rankfeatures 
MATLAB funcƟon was used. 

In the embedded-wrapper RFE scheme, the method iteraƟvely removes the least relevant 
features, starƟng from the complete set. For the MRI dataset used in this thesis, a pure RFE 
wrapper method failed to disƟnguish feature relevance in the early steps, as most accuracies 
remained unchanged. Consequently, an embedded RFE method was first employed to select 
features, and a wrapper feature selecƟon was applied to further reduce the number of selected 
features, opƟmizing the model for improved performance. 
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5. Results 

This Master’s thesis derives from the research published in ScienƟfic Reports by Núñez et al. [31], 
which highlighted the potenƟal of both MRI-based radiomics and MRSI-based source extracƟon 
in assessing TMZ therapy response in GB, parƟcularly in disƟnguishing treated from untreated 
tumors. The research team led by Prof. Candiota showed that MRI-derived radiomics, based on 
the use of texture and structural image features, shows adequate accuracy when combined with 
feature selecƟon techniques like a t-test-based filter method or an RFE method. A key 
assumpƟon of this analysis was that linear regression models would be the most appropriate for 
such an analysis, given that they are expected to provide a low degree of over-fiƫng on our 
limited number of samples. The dataset used in this research piece also contained MRSI data, 
which can be used to disƟnguish between treated and untreated tumors with higher accuracy 
when compared to the radiomics approach.  

In this thesis, we will concentrate exclusively on the MRI dataset, as MRI analysis relies on 
equipment that is widely available in universiƟes and hospitals, making it a more accessible 
choice. Moreover, MRI imaging is rouƟnely used as a standard procedure to monitor brain tumor 
volume in preclinical mouse studies, offering valuable insights into tumor growth and treatment 
efficacy. AddiƟonally, MRI serves as the primary imaging modality in hospitals for diagnosing and 
managing GB in paƟents, due to its ability to provide detailed structural images of the brain. In 
contrast, while MRSI holds significant potenƟal for enhancing classificaƟon methods in GB [28, 
30, 31, 33], its use is limited by the availability of specialized, high-end instrumentaƟon. Such 
equipment is typically found only in select research faciliƟes and highly specialized hospitals, 
restricƟng its broader applicaƟon as a potenƟal classificaƟon soŌware in clinical seƫngs. 

We will assess whether the previous assumpƟon that linear regression models are the most 
suitable for this analysis, due to their expected low tendency to overfit, holds true. For this 
purpose, we will test several alternaƟve classificaƟon methods, including Support Vector 
Machine (SVM), Linear Discriminant Analysis (LDA), and K-Nearest Neighbors (KNN), each with a 
variety of different configuraƟons, rendering algorithms with diverse degrees of complexity, to 
assess which is the best-suited for our dataset. 

Finally, we will assess different feature selecƟon algorithms to reduce the dimensionality of the 
dataset by preserving essenƟal informaƟon while discarding redundant or irrelevant features, 
which can improve model performance. High-dimensional data increases the risk of overfiƫng 
and complicates the detecƟon of meaningful paƩerns, as irrelevant or redundant features 
expand the search space. Feature selecƟon, in parƟcular, is an important process for extracƟng 
consistent and relevant insights from the data, ensuring that only the most valuable features are 
retained. 

UlƟmately, the selecƟon of the opƟmal feature selecƟon algorithm is dependent on the 
characterisƟcs of the data. Wrapper methods tend to produce excellent results, albeit at a higher 
computaƟonal cost, as they evaluate subsets of features based on their impact on model 
accuracy. In contrast, filter methods assess feature relevance independently of the classifier, 
with feature selecƟon occurring before the classifier is trained. A third approach, the embedded 
method, integrates feature selecƟon within the classifier itself, assigning a relevance score to 
each feature based on the model's internal structure. For comparison purposes, we will follow a 
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similar approach as the one used in Núñez et al. [31]: we will use a filter scheme that uses a 
univariate t-test to rank features by its ability to disƟnguish between control and treated groups, 
and will use a more complex embedded-wrapper RFE scheme that combines both an embedded 
method followed by a wrapper method (as described in SecƟon 4.6. Feature selecƟon) 

5.1 LogisƟc regression 

The first step was to reproduce the LR output described by Núñez et al. [31] when using the same 
dataset. For this, we adapted and further developed a MATLAB code that was originally 
developed for the menƟoned research publicaƟon, which was not complete. For addiƟonal 
informaƟon about the soŌware, check SecƟon 12. SoŌware code. 

Figure 8 displays the accuracy obtained when the t-test-based filter feature selecƟon method is 
used. As described in Figure 8 (leŌ), our soŌware can reproduce the published data [31] with 
small deviaƟons from the published accuracies for the slice classificaƟon approach. Thus, we 
reproduce LR models that use radiomic features to moderately disƟnguish between TMZ-treated 
and control cases in the preclinical dataset. The LR models’ outcomes exhibit a somewhat 
irregular paƩern with test accuracy generally falling around 60%, with the overall accuracy 
declining as the number of selected features increases [31]. Table 2 displays the first 30 ranked 
features based on the t-test filtering method.  

In contrast, our models differ markedly from the published results in the case of the SVS 
approach. By aggregaƟng the results of the different slices available for a given mouse, Núñez et 
al. report that the SVS approach (Figure 8, right) is able to reach a higher test accuracy (i.e., 87%) 
when 10 features are selected. Our models show a more limited improvement in accuracy with 
the SVS approach (i.e., 74% with 7 selected features and 77.5% with 18 selected features). AŌer 
inspecƟon of the MATLAB code, we observed that the data presented in Núñez et al. appear to 
be incorrectly calculated because the MATLAB funcƟon used does not aggregate the data as 
described in Figure 7. Núñez et al. appear to have used the PredicƟonReport funcƟon shown in 
SecƟon 12. SoŌware code. This funcƟon appears to aggregate classifier predicƟons per mouse, 
compute individual accuracies per model, and derive a "voƟng" label based on rounded accuracy 
per model (i.e., binarizing whether a model is accurate per mouse). When the PredicƟonReport 
funcƟon is used, we can replicate the published data [30] with small deviaƟons (Supplementary 
Figure 1). 

Supplementary Figure 2 displays the specificity and sensiƟvity of our LR models (i.e., Núñez et 
al. values are not available). While the specificity is high in general (e.g., the specificity of the SVS 
approach is 100% for models using 1 to 3 selected features), model sensiƟvity tends to be low, 
although it reaches 80% for 18 selected features and the SVS approach. Supplementary Figure 
17 displays the model performance, evaluated using the F1 score. 
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Figure 8 – LR radiomics model performance, in terms of model accuracy over the hold-out set, as a funcƟon of the 
number of selected features (i.e., from 1 to 30 features) using a filter-based method. On the leŌ, the accuracy is 
evaluated for each slice, and on the right, the SVS approach was applied to aggregate all the slices for a specific mouse.  

The embedded-wrapper method was more challenging to reproduce, given the lack of details in 
the descripƟon available for this strategy in the arƟcle of Núñez et al. [31]. The raƟonale for 
adopƟng a combined embedded-wrapper strategy is that the pure RFE wrapper method 
struggled to idenƟfy feature relevance in the early stages, with most accuracies remaining 
unchanged. This issue was also evident when we applied our model, further highlighƟng the 
need for an integrated approach. A detail not specified in the reference publicaƟon is how many 
features are selected using the embedded method, before changing to the wrapper method. We 
evaluated different feature numbers at which to transiƟon from the embedded to the wrapper 
method (i.e., we tested m=50, m=60 and m=70) and found that 60 provides the opƟmal results 
in terms of model accuracy. Figure 9 (leŌ) shows that for high feature numbers, we are able to 
reproduce the accuracy values described in Núñez et al. [31], but bigger differences can be 
observed for low numbers of selected features. Núñez et al. described that the embedded-
wrapper method reaches 75% test accuracy with two features (i.e., GLCM Entropy and 
Perimeter9); in our results, 9-11 features are needed to obtain a similar accuracy. When the 
results are aggregated with the SVS approach, while Núñez et al. do not show a significant 
improvement in model performance as a result of the slice aggregaƟon, our model reaches 87% 
accuracy with 9 features.  

Table 2 displays the first 30 ranked features based on the embedded-wrapper RFE method 
according to Núñez et al. Supplementary Figure 3 displays the specificity and sensiƟvity of our 
LR models (i.e., Núñez et al. values are not available) constructed using the embedded-wrapper 
feature selecƟon method. Supplementary Figure 18 displays the performance of these models, 
evaluated using the F1 score. 
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Figure 9 – Embedded-wrapper LR radiomics model performance, in terms of model accuracy over the hold-out set, as 
a funcƟon of the number of selected features (i.e., from 1 to 30 features). On the leŌ, the accuracy is evaluated for 
each slice, and on the right, the SVS approach was applied to aggregate all the slices for a specific mouse. 

In summary, we were able to reproduce with our MATLAB code most findings described for the 
MRI dataset in Núñez et al., although the embedded-wrapper method is more difficult to 
reproduce (e.g., in terms of the opƟmal number of features). As a result, we decided to use our 
MATLAB code and adapt it to other classificaƟon algorithms to determine the opƟmal approach 
for our TMZ-treatment MRI dataset. 

5.2 AlternaƟve models using a filter-based feature selecƟon method 

We started by evaluaƟng how SVM models perform in our MRI dataset. An SVM approach 
classifies data by finding the opƟmal hyperplane that separates classes with the maximum 
margin. It works well in high-dimensional spaces and can handle non-linearly separable data 
using kernels, which map input data to higher dimensions where separaƟon becomes possible. 
Common kernels include linear, Gaussian (also known as radial basis funcƟon), and polynomial 
of different degrees. The linear kernel is best for linearly separable data, while the Gaussian 
kernel handles more complex non-linear paƩerns by creaƟng smooth decision boundaries. 
Polynomial kernels can model feature interacƟons depending on the polynomial degree chosen. 
Thus, we evaluated SVM models with kernel types that include linear, Gaussian, and polynomial 
(with degrees 2, 3, and 4). 
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Figure 10 – Performance (i.e., test accuracy) of different SVM radiomics models as a funcƟon of the number of selected 
features (i.e., from 1 to 30 features) using a filter-based method. Different kernel types were evaluated, including A) 
linear kernel, B) Gaussian kernel, C) polynomial kernel with degree 2, D) polynomial kernel with degree 3, and E) 
polynomial kernel with degree 4. The performance of the LR models is ploƩed as a reference. 



Page 23 of 56 
 

Figure 10 shows the performance of SVM models both when considering each slice 
independently (i.e., slice classificaƟon approach) and when the SVS approach is used. Figure 10 
compares the SVM model performance in terms of classificaƟon accuracy with that of the LR 
models. SVM models display, in general, beƩer performance when compared to LR in the case 
of the slice classificaƟon approach. In parƟcular, the SVM classifiers with a Gaussian kernel 
underperformed relaƟve to the other SVM variants (i.e., they performed more similarly to the 
LR models). In contrast, the test accuracy of the SVM models with polynomial kernels of degree 
3 and 4 is especially high. While the SVM of polynomial kernel degree 3 reaches 73% accuracy 
for the model with 25 selected features, when used in the SVS approach, the model with 23-24 
features reaches 87% accuracy. Similarly, the SVM model with a polynomial kernel of degree 4 
with 21 or 25 selected features achieves 73% accuracy, but the accuracy increases to 87% with 
21-23 features when integrated into the SVS approach. Supplementary Figure 4 to 
Supplementary Figure 8 display the specificity and sensiƟvity of these models. In general, these 
models display a beƩer balance between specificity and sensiƟvity. For example, the SVM 
models with a polynomial kernel of degree 3 (when used in the SVS approach) reach both 87% 
specificity and 87% sensiƟvity with 23-24 selected features. The same occurs with the SVM 
model with polynomial kernel degree 4, with 21-23 filter-based selected features. Overall, we 
observe a general trend in which, as the number of selected features increases, model specificity 
decreases, and model sensiƟvity increases. Supplementary Figure 19 to Supplementary Figure 
21 display the performance of these models in terms of the F1 score. 

We also evaluated LDA models, which classify the observaƟons by projecƟng high-dimensional 
data onto a lower-dimensional space to maximize class separability. In a binary classificaƟon 
problem like the one studied in this thesis, LDA assumes that both classes are normally 
distributed with idenƟcal covariance matrices but different means. LDA finds a linear 
combinaƟon of features that best separates the two classes by maximizing the raƟo of between-
class variance to within-class variance. Figure 11, Supplementary Figure 9 and Supplementary 
Figure 22 show, respecƟvely, the accuracy, specificity/sensiƟvity and F1 score of the fiƩed 
models. The LDA models perform similarly or slightly worse than the published LR models. 

 
Figure 11 – LDA radiomics model performance, in terms of model accuracy over the hold-out set, as a funcƟon of the 
number of selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR 
models is ploƩed as a reference. 
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Finally, we evaluated different KNN models, which are non-parametric classifiers. In binary 
classificaƟon, KNN predicts the class of a new data point based on the majority class among its 
k closest neighbors in the feature space, typically measured using Euclidean distance. These 
models do not make assumpƟons about data distribuƟon and require no training phase. 
Different KNN model configuraƟons were evaluated (Figure 12): the KNN ‘fine’ configuraƟon uses 
Euclidean distance, a k value of 1 (also known as nearest neighbor interpolaƟon) and an equal 
DistanceWeight (i.e., each neighbor gets equal weight); the KNN ‘medium’ configuraƟon uses 
also Euclidean distance but using a k value of 10 and an equal DistanceWeight; the KNN ‘cosine’ 
configuraƟon uses the Cosine distance (i.e., one minus the cosine of the included angle between 
observaƟons), using a k value of 10 and an equal DistanceWeight; the KNN ‘cubic’ configuraƟon 
uses a Minkowski distance with exponent 3, with a k value of 1 and an equal DistanceWeight; 
and the KNN ‘weighted’ configuraƟon is similar to the ‘medium’ configuraƟon but uses the 
SquaredInverse distance weight (i.e., each neighbor gets weight equal to 1/d2, where d is the 
distance between this neighbor and the point being classified). Figure 12 compares the KNN 
performance in terms of classificaƟon accuracy with that of the LR models. As in the SVM case, 
KNN models display generally beƩer performance when compared to LR in the case of the slice 
classificaƟon approach. The KNN fine model with 12 selected features appears to perform best 
with an accuracy of 71.5% in the case of slice classificaƟon (i.e., slightly worse than the best SVM 
models) and 90% in the case of the SVS approach (i.e., slightly beƩer than the best SVM models). 
Supplementary Figure 10 to Supplementary Figure 14 display the specificity and sensiƟvity of 
these models. Supplementary Figure 23 to Supplementary Figure 25 display the performance of 
these models in terms of the F1 score. 

It is worth noƟng that the list of selected features in the t-test filter method is the same for all 
the evaluated models in this secƟon (Table 2), as the list does not depend on the model itself. 

5.3 Feature selecƟon using recursive feature eliminaƟon 

Next, we performed feature selecƟon for some of the models tested in the previous secƟon, but 
following a similar embedded-wrapper RFE procedure to the one applied by Núñez et al. for LR 
[31]. To this end, we chose to focus on SVM models with polynomial kernels of degrees 3 and 4, 
as they were among the top-performing models in the previous secƟon and are well-suited for 
incorporaƟng an embedded-wrapper RFE method.  

Figure 13 and Figure 14 display the performance in terms of test accuracy for SVM models with 
a polynomial kernel of degree 3 and 4, respecƟvely. Similarly, Supplementary Figure 15 and 
Supplementary Figure 16 represent the test specificity and sensiƟvity of these models, and 
Supplementary Figure 26 and Supplementary Figure 27 represent the F1 score of these models. 
We observe that the SVM models with a polynomial kernel of degree 3 do not display improved 
performance when compared to the LR models generated based on the embedded-wrapper RFE 
method (Figure 13). The specificity of these models varies between 50%-60% (Supplementary 
Figure 15). 
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Figure 12 – Performance (i.e., test accuracy) of different KNN radiomics models as a funcƟon of the number of selected 
features (i.e., from 1 to 30 features) using a filter-based method. Different KNN model configuraƟons were evaluated, 
including A) fine, B) medium, C) cosine, D) cubic, and E) weighted (see main text for a full descripƟon of these 
configuraƟons). The performance of the LR models is ploƩed as a reference. 
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In contrast, the SVM model with 14 selected features with a polynomial kernel of degree 4 
(Figure 14) performs slightly beƩer than the LR models for the slice classificaƟon approach, 
reaching 77% accuracy. For the SVS approach, the models with 14-15 selected features perform 
worse than equivalent LR models, reaching 80.5% accuracy. In terms of specificity/sensiƟvity, the 
SVM model with 14 selected features and a polynomial kernel of degree 4 provides a 75% 
specificity and 87% sensiƟvity (Supplementary Figure 16). 

 

Figure 13 – Test accuracy of SVM radiomics models with a polynomial kernel of degree 3. Model performance is ploƩed 
as a funcƟon of the number of selected features (i.e., from 1 to 30 features), which were selected using an embedded-
wrapper RFE method, in which the embedded RFE feature selecƟon method selects features unƟl 60 features remain 
in the model, and the wrapper RFE further conƟnues selecƟng features. 

 

Figure 14 – Test accuracy of SVM radiomics models with a polynomial kernel of degree 4. Model performance is ploƩed 
as a funcƟon of the number of selected features (i.e., from 1 to 30 features), which were selected using an embedded-
wrapper RFE method, in which the embedded RFE feature selecƟon method selects features unƟl 60 features remain 
in the model, and the wrapper RFE further conƟnues selecƟng features. 
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Table 2 displays the 14 selected features in the best-performing model shown in Figure 14. In 
addiƟon, Table 2 displays the 30 top features in the Figure 14 models and compares them with 
the t-test-based filter selected features and those published by Núñez et al. [31]. Several features 
selected in the SVM models are also idenƟfied by other techniques, including GLRLM-SRE, GLCM-
Homogeneity, GLRLM-SRLGE, Euler 15, and various perimeter- and area-related parameters. 
However, the overlap of the different strategies (Table 2) is quite limited (Figure 15). 

Table 2 – Features ranked by the t-test filter method, the embedded-wrapper LR RFE feature selecƟon method [31] 
and the embedded-wrapper RFE SVM feature selecƟon method. 

Ranking T-test filter method Embedded-Wrapper 
RFE LR 

Embedded-Wrapper 
RFE SVM polynomial 4 

1 Perimeter9 GLCMEntropy Perimeter16 
2 Perimeter8 Perimeter9 GLRLMSRLGE 
3 GLRLMRLV GTDMComplexity Perimeter12 
4 Perimeter7 GLSZMSZLGE GLRLMSRE 
5 Euler7 Area16 Perimeter2 
6 Euler6 Area13 GLRLMHGRE 
7 GLRLMGLN GLRLMRLV GLRLMLRE 
8 Perimeter6 GLRLMRLN Area6 
9 GLCMVariance Euler1 Perimeter1 
10 GLSZMGLN GLRLMSRE Area5 
11 GLCMEntropy Euler16 GLCMHomogeneity 
12 Perimeter10 GLSZMLGZE Area15 
13 GLCMEnergy Euler15 Euler15 
14 GLRLMGLNN GLSZMGLV Euler12 
15 Euler5 GLCMCorrelaƟon GTDMComplexity 
16 Perimeter5 Euler9 GLRLMRLNN 
17 GLRLMSRHGE Perimeter16 GLSZMZSN 
18 Euler12 Euler2 GLCMAutoCorrelaƟon 
19 Euler2 Area12 GLRLMGLNN 
20 GTDMContrast GLSZMZP GLRLMRLV 
21 GLSZMSZLGE GTDMStrength GLRLMLRHGE 
22 Euler3 Area10 GTDMContrast 
23 Perimeter4 GLRLMSRHGE Perimeter10 
24 Euler10 GLCMVariance GLSZMSZLGE 
25 GLCMCorrelaƟon Euler5 GLRLMLRLGE 
26 GLSZMLGZE GLCMHomogeneity GLRLMGLN 
27 GLSZMSZHGE Area11 GLSZMLGZE 
28 Euler4 GLRLMSRLGE GLSZMSZHGE 
29 GLRLMHGRE Perimeter6 Euler8 
30 GLCMAutoCorrelaƟon GLRLMRP GLCMCorrelaƟon 
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Figure 15 – Venn diagram showing the overlap among the 30 top-selected features using the t-test filter method, the 
embedded-wrapper LR RFE feature selecƟon method (indicated LR hybrid in the image) and the embedded-wrapper 
RFE SVM feature selecƟon method (indicated SVM hybrid in the image) according to Table 2. Plot generated using the 
ggVennDiagram package in RStudio. 

6. Discussion and interpretaƟon of the results. 

The results presented in this Master’s thesis demonstrate the potenƟal of using radiomics and 
machine learning models to assess GB response to therapy in a preclinical mouse model. We 
have successfully applied various classifiers and feature selecƟon techniques to MRI-derived 
features, offering a promising tool for analyzing subtle microenvironmental changes induced by 
treatment.  

The classificaƟon models evaluated included LR, SVM, LDA and KNN, which exhibit different 
performance levels, highlighƟng the complexiƟes of using radiomic features for GB treatment-
response classificaƟon. While SVM, parƟcularly with polynomial kernels, outperformed other 
models, it remains important to note that even the best-performing models showed some 
limitaƟons in their ability to fully disƟnguish treated and untreated tumors. This may be 
aƩributed to the combinaƟon of a small sample size and high feature dimensionality, which likely 
introduces overfiƫng, limiƟng the models' overall predicƟve capacity. 

The relaƟvely high accuracy achieved by SVM with polynomial kernels suggests that these 
models capture important paƩerns in the data, especially when combined with a slice voƟng 
system that aggregates the results of different slices, increasing the confidence of the model 
predicƟon for a given mouse. A general trend in the best performing models (i.e., SVM with 
polynomial kernel of degree 3 or 4, KNN fine) is that these are among the most flexible and 
complex models tested in this thesis. These results suggest that the underlying data distribuƟon 
is highly nonlinear and benefits from models capable of capturing complex decision boundaries. 
In fact, SVM has been previously proposed in the literature as the best algorithm to diagnose GB 
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using histopathological images [40], determine the molecular subtypes of gliomas based on MRI 
[41] or predict GB treatment survival using magneƟc resonance images in a clinical seƫng [42]. 

Moreover, we employed different feature selecƟon methods such as the t-test filter and 
embedded-wrapper RFE methods. These approaches aimed to idenƟfy the most informaƟve 
features while reducing the risk of overfiƫng. AddiƟonal expected benefits of feature selecƟon 
include the reducƟon of computaƟonal resources for model usage and the enhancement of the 
interpretability of the results. In this context, it is worth noƟng that the classifiers with the best 
predicƟve performance (especially SVMs with complex, high-degree kernels) were also the least 
interpretable. The laƩer could pose a challenge for applicaƟons where interpretability is a 
desired model feature. 

Table 3 – Summary of the top-performing models as a funcƟon of the feature selecƟon method. 

 t-test filter embedded – wrapper 

 
Accuracy Selected 

features 
SVS 

accuracy 
Selected 
features 

Accuracy Selected 
features 

SVS 
accuracy 

Selected 
features 

Logistic 
regression 

63% 19 77% 18 75% 9 87% 9 

SVM polynomial 
degree 3 73% 24 87% 21 70% 9 74% 5 

SVM polynomial 
degree 4 

73% 20 87% 21 77% 14 80% 14 

 

The effecƟveness of these feature selecƟon techniques varied depending on the classifier used. 
Table 3 provides a summary of the model accuracy obtained for the different methods, as a 
funcƟon of the feature selecƟon method, and the use or non-use of the SVS approach. We 
observe that, in terms of accuracy, while the embedded-wrapper method provides a beƩer 
model in the case of the LR classifiers, the t-test filter method for feature selecƟon generates 
beƩer models for the SVM models (i.e., in parƟcular when combined with SVS aggregaƟon per 
mouse). Another trend that can be observed in Table 3 is that the top-performing models contain 
fewer selected features in the case of the embedded-wrapper feature method, when compared 
to the best-performing models generated with the t-test-based filter method. Of parƟcular 
relevance here is the fact that the t-test filter method offers lower computaƟonal cost, as it 
operates independently of model training and performance evaluaƟon. 

In terms of the features selected by each feature selecƟon method, while the t-test filter 
idenƟfied key features such as GLCM Entropy and Perimeter9, the more complex embedded-
wrapper RFE method revealed addiƟonal features criƟcal for disƟnguishing treated from 
untreated tumors. InteresƟngly, the overlap between features selected by different methods 
was limited (Table 2 and Figure 15). The parƟal overlap might be linked to the inherent 
heterogeneity of GB and could suggest that different classificaƟon models may capture disƟnct 
aspects of tumor behavior. 

Among the top selected features in the SVM with a polynomial kernel of degree 4 using the 
embedded-wrapper RFE method, we found texture features from the GLRLM (Gray Level Run 
Length Matrix) matrix. Developed by Galloway et al. in 1975 [43], the GLRLM is a texture 
descriptor that evaluates sequences of conƟguous pixels sharing the same gray level. Among the 
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top selected GLRLM-derived features we find (Table 2): 1) GLRLM-SRLGLE (Short Run Low Gray-
Level Emphasis, which refers to the paƩern of short low-intensity areas with homogeneous 
texture); 2) GLRLM-SRE (Short Run Emphasis, which represents the distribuƟon of short areas of 
homogeneous texture); 3) GLRLM-HGRE (High Gray-Level Run Emphasis, which refers to the 
paƩern of high grayscale extensions); and 4) GLRLM-LRE (Long Run Emphasis, which describes 
the paƩern of long homogeneous stretches). Moreover, 10 out of the 30 top-selected features 
in the SVM model (Table 2) belong to the GLRLM matrix. The strong representaƟon of GLRLM-
derived features among the top predictors correlated with evidence found in the literature. For 
instance, prior studies have shown that GLRLM metrics correlate with relevant histopathological 
markers in gliomas. Specifically, the GLRLM-SRE feature has been linked to proliferaƟon indices 
like vimenƟn and CD34 in high-grade glioma cases [44]. AddiƟonally, GLRLM-based features have 
demonstrated potenƟal in assessing treatment response in GB. As reported by recent work [45], 
GLRLM features were effecƟve in disƟnguishing between true progression and 
pseudoprogression following therapy, a major clinical challenge in the management of GB. 
Moreover, Cheung et al. [40] found several GLRLM features to differ significantly between GB 
and normal Ɵssue, highlighƟng their diagnosƟc uƟlity. Overall, these findings highlight the uƟlity 
of GLRLM features in capturing tumor heterogeneity relevant to treatment response in GB. 

Another feature among the top selected features is GLCMHomogeneity, from the Gray Level Co-
occurrence Matrix (GLCM). The GLCM matrix [46] quanƟfies how oŌen pairs of pixel intensiƟes 
(i and j) occur at specific spaƟal relaƟonships, typically in verƟcal, horizontal, or diagonal 
direcƟons [47]. GB lesions oŌen exhibit irregular shapes and variable nucleoli, leading to greater 
heterogeneity in pixel intensity. As a result, GLCM features tend to show higher variability and 
reduced homogeneity in tumor Ɵssue compared to normal Ɵssue, reflecƟng underlying 
structural differences. Cheung et al. [40] found that GLCMHomogeneity was significantly lower 
in GB than in normal Ɵssue based on H&E-stained histopathological slides, reinforcing the 
feature’s potenƟal to quanƟfy the loss of textural uniformity characterisƟc of malignant glioma 
regions. 

Moreover, Perimeter features from the Minkowski funcƟons are selected among the top 
selected features in the SVM based on the embedded-wrapper feature selecƟon method and in 
the t-test filter method. Minkowski funcƟonals have been idenƟfied as valuable tools for 
quanƟfying the structural heterogeneity of peritumoral hyperintensity regions in GB. By 
capturing geometric features such as the boundary complexity in the case of the Perimeter 
values, these funcƟons have demonstrated prognosƟc significance, parƟcularly in predicƟng 
paƟent survival outcomes [48]. 

Finally, one of the notable strategies employed in this research was the SVS approach, which 
aggregates results from mulƟple MRI slices to produce a more robust classificaƟon. We have 
observed that the SVS approach improved the accuracy of classificaƟon for most of the models, 
although the magnitude of this improvement varied for the different models. In our approach, 
not only is aggregaƟon a key factor improving accuracy, but also the weighƟng system used in 
SVS (i.e., area of the associated image mask). As shown in Figure 16, the use of weights that 
depend on the area of the tumor outperforms an aggregaƟon strategy in which each tumor slice 
has the same weight in the aggregaƟon process. All this suggests that a 3D analysis (i.e., rather 
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than analyzing a few slides) would likely provide a more comprehensive view of the tumor's 
microenvironment and could enhance the model's predicƟve power. 

 

Figure 16 – Comparison of the model accuracy if the SVS approach (Figure 10) uses weights that depend on the area 
of the masks (i.e., area of the tumors) or if each slice has a similar weight. Model accuracy is ploƩed as a funcƟon of 
the number of selected features (i.e., from 1 to 30 features) using a filter-based method.  

7. Possible drawbacks of the methods used 

The methods used in this Master’s thesis yielded promising results; however, several limitaƟons 
and potenƟal drawbacks may be acknowledged. 

The study was conducted using a relaƟvely limited number of mice (n = 63), with only 32 samples 
used for training. This is a small sample size that restricts the models’ staƟsƟcal power and, 
importantly, can negaƟvely impact the generalizability of the models. The high dimensionality of 
the feature space (90 features) relaƟve to the number of samples increases the risk of overfiƫng, 
despite the use of cross-validaƟon and feature selecƟon techniques. This might be parƟcularly 
relevant for SVM models with polynomial kernels of degrees 3 and 4, which showed strong 
performance but might lack robustness on unseen data. These models may sƟll be learning 
dataset-specific noise and might not generalize well. 

Our strategy uses manual ROI segmentaƟon as the image segmentaƟon approach. Here, the 
segmentaƟon of tumor regions was done manually by expert researchers. While this ensures 
high-quality segmentaƟon, it also introduces subjecƟvity and potenƟal inter-individual 
variability, which might limit the reproducibility of the results described. Automated or semi-
automated segmentaƟon methods could provide alternaƟves to address this potenƟal method 
limitaƟon. AlternaƟvely, the image segmentaƟon step could be avoided altogether, enabling the 
model to extract informaƟon from the whole MRI images. 

Although the SVS approach used to aggregate predicƟons from mulƟple slices per mouse 
improved performance, the weighƟng scheme may oversimplify spaƟal heterogeneity within 
tumors. It is possible that 3D volumetric analysis could provide a more representaƟve picture of 
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the tumor microenvironment and represent more accurately the intra-tumoral heterogeneity 
across slices. 

For model training and validaƟon, we adopted the same training-test split of the dataset that 
was proposed by Núñez et al. [31], primarily to enable direct comparison with their results. 
However, this predefined split introduces certain biases that may affect the generalizability of 
the models. Specifically, the training set consists predominantly of single-slice images per mouse, 
whereas the test set includes mice with three to four slices each (Supplementary Table 1). 
AddiƟonally, there is a treatment protocol imbalance: the training set is largely composed of 
mice treated with the standard 3-cycle TMZ regimen, while the test set primarily includes mice 
subjected to the IMS-TMZ protocol (Table 1 and Figure 5). Finally, most of the mice in the test 
set were kept in an EE-like seƫng before and during TMZ treatment (Figure 5) to boost treatment 
performance (this was not the case for mice in the training set). These differences could affect 
model performance in ways unrelated to the features of interest, limiƟng the reliability of the 
conclusions. A more balanced approach, which, for example, randomly assigns mice to training 
and test sets, could potenƟally miƟgate these biases and lead to more robust performance on 
unseen data. 

The analysis presented focuses on images corresponding to the last day these mice were studied 
(usually prior to euthanizaƟon) [31]. This endpoint is informaƟve, as it reflects the full impact of 
the treatment on the tumor microenvironment. However, it is important to note that the mice 
were imaged longitudinally, approximately every 3-4 days throughout the study (Figure 5). 
Despite this, the temporal evoluƟon of the tumor, as captured by these serial MRI scans, was not 
incorporated into our current modeling approach. IncorporaƟng Ɵme-dependent changes in the 
radiomic features could potenƟally enhance the predicƟve performance and clinical relevance 
of our models, parƟcularly for early response assessment. 

The raƟonale for using a hybrid embedded-wrapper RFE method in this thesis and in Núñez et 
al. [31] originates from the limitaƟons of a pure wrapper-based RFE method, which oŌen fails to 
disƟnguish feature relevance in the early steps, as classificaƟon accuracies remain largely 
unchanged. However, we also observed that the embedded RFE method faces similar challenges, 
encountering many instances in which it cannot disƟnguish feature relevance. Consequently, the 
hybrid approach cannot fully resolve the issue it was designed to overcome. Thus, alternaƟve 
feature selecƟon strategies, such as incorporaƟng a preprocessing step to remove low-variance 
features [42], could be evaluated in an effort to eliminate variables with minimal discriminatory 
power that would otherwise hinder both embedded and wrapper RFE methods. 

8. Ethical thinking, societal relevance, and stakeholder awareness 

From an ethical point of view, the research dataset used in this thesis adheres to a responsible 
and ethical approach to biomedical research, aimed at balancing scienƟfic progress with a strong 
commitment to animal welfare, societal benefit, and clinical relevance in the context of GB. The 
dataset used was sourced from previously completed studies, which were performed in line with 
regional and naƟonal ethical guidelines and were approved by UAB’s Research Ethics CommiƩee 
(hƩps://www.uab.cat/en/research-ethics/animal-experimentaƟon, accessed on 27 July 2025), 
under protocols CEA-OH-3665 and CEEAH-9685. 
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The research performed at the GABRMN laboratory fully embraces the 3Rs principle—
Replacement, ReducƟon, and Refinement—as a cornerstone of its in vivo research pracƟces. 
Replacement is promoted through the use of in vitro systems and exisƟng data from preclinical 
models, reducing the need for new in vivo experiments. ReducƟon is achieved by minimizing the 
number of animals to those strictly needed to provide staƟsƟcally/biologically meaningful 
conclusions and by applying longitudinal MRI imaging protocols that enable gathering addiƟonal 
informaƟon from each mouse. Refinement is ensured through opƟmal housing condiƟons, 
environmental enrichment, and conƟnuous veterinary supervision, all aimed at minimizing 
stress and discomfort. All imaging procedures were non-invasive and performed under 
anesthesia, further safeguarding animal welfare. 

AddiƟonally, the research is designed to limit animal use to only those stages where therapeuƟc 
approaches demonstrated sufficient efficacy in representaƟve in vitro models. Only when these 
preclinical results jusƟfied further validaƟon were small cohorts of animals used, with carefully 
opƟmized experimental designs that maximize scienƟfic value while minimizing ethical cost. 

Crucially, the role of veterinary supervision in this process is paramount. Veterinarians involved 
in these studies operate under strict animal welfare criteria and are entrusted with the authority 
to halt any experiment should animal well-being be compromised. Their judgment is sovereign, 
and animal welfare takes precedence over any scienƟfic goal, including the desire to complete a 
dataset. 

Though the study presented in this thesis did not involve human subjects, future translaƟonal 
steps of these models should adhere to principles of transparency, informed consent, and data 
protecƟon, parƟcularly if these models are to be integrated into clinical decision-making. The 
machine learning models developed here are ulƟmately intended to support, but not to replace, 
medical experƟse. As such, reproducibility, interpretability, and fairness should be some of the 
principles that guide future deployment. 

In terms of societal relevance, GB accounts for approximately half of all primary CNS 
malignancies and remains the most common primary malignant brain tumor in adults, with an 
incidence of about 3 cases per 100,000 individuals per year [3, 4]. Despite advances in surgical 
techniques, radiotherapy, and chemotherapy, the prognosis remains extremely poor, with long-
term survival being rare. In addiƟon to its high mortality, GB causes significant neurological, 
cogniƟve, and emoƟonal impairments, severely diminishing paƟent independence and imposing 
a profound burden on families and caregivers. GB also has important economic implicaƟons, 
linked to substanƟal direct and indirect costs. The median cost of therapy per paƟent is esƟmated 
at approximately $100,000, most of which is concentrated in the first four months aŌer diagnosis 
(i.e., explained by its aggressive nature and limited survival of the disease). Indirect costs, such 
as producƟvity loss and caregiver burden, have been esƟmated to exceed $1 billion per year in 
the EU, highlighƟng the societal urgency of improving GB care. 

In this context, the development of predicƟve models—like those explored in this thesis—has 
significant potenƟal to enhance clinical decision-making and support precision medicine. By 
enabling earlier idenƟficaƟon of treatment response or failure, these models could help opƟmize 
therapeuƟc strategies, reduce unnecessary toxicity, and improve quality of life. While this work 
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is based on preclinical (murine) data, it contributes to future translaƟonal research aimed at 
supporƟng clinicians with quanƟtaƟve, data-driven tools.  

In terms of stakeholders’ awareness, it is worth poinƟng out that the long-term impact of this 
research depends not only on scienƟfic robustness but also on proacƟve engagement with key 
stakeholders across the biomedical innovaƟon ecosystem, as a criƟcal step required for future 
clinical implementaƟon. Thus, establishing and maintaining strong connecƟons with hospitals is 
central in this respect, enabling early feedback from clinicians and facilitaƟng the integraƟon of 
new technologies into real-world clinical workflows. In parƟcular, the GABRMN laboratory 
collaborates closely with Dr. Andreu Gabarrós and Alejandro Fernandez-Coello at Bellvitge 
Hospital (Bellvitge, Spain), whose experƟse in brain tumor treatment and neurological 
complicaƟons provides criƟcal clinical insight. These collaboraƟons ensure alignment with 
medical needs and provide a realisƟc view of possible adopƟon in the complex clinical GB seƫng. 
Similarly, interacƟons with paƟent associaƟons can ensure criƟcal alignment with paƟent needs. 

Beyond academic, clinical and paƟent stakeholders, the successful development and 
deployment of machine learning-based medical technologies would require the involvement of 
a broader set of stakeholders in the innovaƟon ecosystem. This includes entrepreneurs, early-
stage investors, and industry partners capable of supporƟng regulatory navigaƟon and 
commercializaƟon of such technologies. Overall, stakeholder engagement is not only criƟcal for 
acceleraƟng the translaƟon of research into pracƟce but also for ensuring responsible 
innovaƟon. By involving diverse actors early in the development process, we can beƩer 
anƟcipate potenƟal barriers to implementaƟon, such as ethical concerns or data privacy. 
Stakeholders’ involvement enables the development of soluƟons that are technically robust, 
realisƟc, socially acceptable, and ethically sound. 

9. Conclusion 

This thesis invesƟgated the use of radiomics-based machine learning models to differenƟate 
therapeuƟc responses in the murine GL261 glioblastoma model. By extracƟng a comprehensive 
set of radiomic features from T2-weighted MRI images (i.e., 90 features including texture and 
morphological features) and applying classificaƟon algorithms, we assessed the ability of these 
models to disƟnguish between TMZ treatment responses. 

We were able to demonstrate the potenƟal of MRI-based radiomics approaches to detect 
therapy-induced changes in glioblastoma tumors, by capturing subtle microenvironmental 
changes induced by TMZ. By systemaƟcally evaluaƟng a range of diverse classifiers and feature 
selecƟon strategies, we idenƟfied support vector machines with higher-degree polynomial 
kernels and fine-grained KNN as the top-performing models. Overall, the findings might indicate 
that the most effecƟve approaches are those relying on flexible and complex models, supporƟng 
the noƟon that the underlying data distribuƟon is highly nonlinear and best addressed by 
classifiers capable of capturing intricate decision boundaries. 

Several texture-based features derived from the GLRLM family were selected, suggesƟng their 
potenƟal relevance in characterizing tumor heterogeneity and therapy response. Similarly, GLCM 
Homogeneity and Minkowski funcƟons’ Perimeter features appear to be important in 
disƟnguishing treatment groups. However, while certain biological interpretaƟons can be 
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inferred from exisƟng literature, further validaƟon is necessary to establish their biological 
relevance and to link them to specific molecular mechanisms. 

In terms of future research, this thesis also highlights some possible challenges, parƟcularly 
regarding model generalizability. PotenƟal imbalances or biases in dataset composiƟon could 
have limited the robustness of the classifiers. Moreover, the use of a mask generated by expert 
researchers for image segmentaƟon might introduce subjecƟvity and potenƟal inter-individual 
variability, potenƟally affecƟng model generalizability. Addressing these limitaƟons through 
future soŌware developments may help to improve robustness and broader applicability of 
these models.  

Overall, this thesis contributes to highlighƟng the potenƟal in using radiomics and machine 
learning methods with the aim of improving treatment response assessment in GB. 

10. Ideas for future research 

One of the proposed next steps in this project is to apply the developed models to new preclinical 
datasets, in order to assess how accurately these models can classify other (related) GB 
treatments. As part of this Master’s thesis, I started creaƟng masks for MRI images from different 
preclinical studies using the GL261 mouse model. These included a dataset in which variaƟons 
of the IMS-TMZ treatment were evaluated: different TMZ doses (i.e., 140 mg/kg, 200 mg/kg and 
240 mg/kg) and different starƟng days for the TMZ treatment (i.e., 8 and 11 days aŌer tumor 
implantaƟon) were evaluated. Another available dataset corresponds to the evaluaƟon of a 
combinaƟon of TMZ and the casein kinase 2 inhibitor CX-4945 [49] as a possible combined 
treatment for GB [50]. Another set of images corresponds to the evaluaƟon of 
cyclophosphamide (a chemotherapeuƟc) as GB treatment, evaluated with the metronomic 
regimen [51]. Moreover, a dataset is available in which immunotherapy using the anƟ-PD-1 
anƟbody (checkpoint inhibitor) is evaluated as GB treatment alone or in combinaƟon with TMZ 
treatment [52, 53]. Another available dataset evaluated ALDH inhibitors (i.e., a lipidic 
nanoemulsion of the compound DIMATE) as a possible GB treatment [54]. Finally, there are two 
datasets that assess biscatechol-based and Fe-based Pt(IV) compounds for GB treatment. 

Overall, the available datasets comprise MRI scans from 94 mice, each with three Ɵme points on 
average and 10 slices per scan, resulƟng in a total of 2,820 slices for analysis. Given the scale and 
complexity of this data, the development of an automaƟc or semi-automaƟc tool is essenƟal to 
facilitate the generaƟon of segmentaƟon masks and ensure consistency across images and users. 
Furthermore, the availability of mulƟple slices spanning the enƟre brain offers a valuable 
opportunity to enhance our MATLAB-based pipeline by incorporaƟng mulƟ-slice analysis 
reflecƟng the spaƟal context, enabling a more comprehensive characterizaƟon of the tumor 
microenvironment, even without a full 3D volumetric reconstrucƟon. 

A possible interesƟng direcƟon for future research would be to evaluate classifier ensembles as 
a way to enhance model robustness and accuracy [55]. Inspired by the brain’s modular 
informaƟon processing, ensemble methods apply the divide-and-conquer principle by 
combining simpler classifiers to address complex tasks [56]. Techniques such as bagging and 
boosƟng have shown strong potenƟal in paƩern recogniƟon. Bagging trains mulƟple models on 
different bootstrapped subsets and combines them via majority voƟng, while boosƟng 
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sequenƟally adjusts training to focus on previously misclassified instances. Thus, we could 
evaluate SVM ensembles using bagging or boosƟng in our future Radiomics studies. 

Future research could also explore the integraƟon of mulƟmodal data in preclinical models to 
enhance the performance of the machine learning models. Recent studies in clinical oncology 
have demonstrated the benefits of combining imaging, clinical, and molecular data, among 
others [27]. IncorporaƟng diverse data modaliƟes in addiƟon to MRI, such as histopathology, 
genomic/transcriptomic profiles (i.e., radiogenomics [57]), and behavioral readouts from animal 
models, may offer a more integrated understanding of tumor biology. Such mulƟmodal 
approaches could increase predicƟve accuracy by overcoming the limitaƟons of MRI and may 
enable the capture of complementary biological informaƟon [41, 42]. 

Finally, some of the selected features (e.g., GLCM Entropy, Perimeter9, GLRLM-SRE, GLCM 
Homogeneity) have demonstrated algorithmic importance in disƟnguishing treatment groups. 
However, their direct biological relevance in the tumor microenvironment changes remains 
unclear. Further research could focus on establishing the connecƟons between these radiomic 
features and biological processes in GB. One possible strategy involves correlaƟng selected 
radiomic features with histopathological markers, such as cell density, necrosis, vascular 
proliferaƟon, or immune cell infiltraƟon, obtained from matched Ɵssue secƟons. This could help 
determine whether features like texture heterogeneity (e.g., GLCM Homogeneity) reflect cellular 
disorganizaƟon, hypoxia, or immune acƟvity. Similarly, the correlaƟon of selected features with 
immunohistochemical markers or gene expression could be studied, especially when studied on 
the same tumors used for MRI acquisiƟon. Overall, such a line of research would highlight the 
potenƟal of radiomics in shedding light on the molecular mechanisms driving GB disease. 
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12.  SoŌware code 

The MATLAB soŌware used in this thesis can be found at 
hƩps://giƞront.io/r/stanco78/aJGZ76Z8GDrN/Radiomics/ 

 

 PredicƟonReport funcƟon used in Núñez et al. [31] to calculate the votaƟon accuracy in the 
SVS approach 

function [MiceTable,NMetrics] = PredictionReport (NTable, NMetrics, Methods) 
% This function extracts the predictions of the results of classifiers over 
% a dataset to extract how the performance in each mouse is individually to 
% show which ones are the critical subjects. 
 
MiceTable = TableGenerator(['Mouse';'Samples';'Average';Methods]); 
 
mice = unique([NTable.Mouse],'rows'); 
VotationLabels = [];  
for i = 1: length(mice) 
    mouse = mice(i); 
    mouse_selection = (NTable.Mouse == mouse); 
    NTableMouse = NTable(mouse_selection,:); 
    N = sum(mouse_selection); 
    right = sum((NTableMouse.Group) == table2array(NTableMouse(:,Methods)),1); 
    accmethod = right / N; 
    avg = mean(accmethod); 
    VotationLabel_mice = logical(round(accmethod)); 
    VotationLabels = [VotationLabels;VotationLabel_mice]; 
    MiceTable = [MiceTable; 
        num2cell([mouse,N,avg,accmethod])]; 
end 
 
VotationResults = sum(VotationLabels,1) / size(VotationLabels,1); 
NMetrics = addvars(NMetrics,VotationResults','NewVariableNames','VotationAcc'); 
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13. Annex 

Supplementary Table 1 – Details of the mouse data set, including the day post-treatment at which the image was 
taken and the number of slices. Adapted from [31]. 

DATASET 

TRAIN TEST 
MOUSE 

# 
DAY Number 

of SLICES 
CONTROL/ 
TREATED 

MOUSE 
# 

DAY Number 
of SLICES 

CONTROL/ 
TREATED 

179 17 1 CONTROL 1109 11 4 CONTROL 
233 17 1 CONTROL 1110 13 4 CONTROL 
234 17 1 CONTROL 1111 16 4 CONTROL 
255 14 1 CONTROL 1112 13 4 CONTROL 
278 19 1 CONTROL 1471 16 2 CONTROL 
288 18 1 CONTROL 1465 15 2 CONTROL 
32 16 1 CONTROL 1472 13 3 CONTROL 

351 13 1 CONTROL 1474 14 3 CONTROL 
520 18 1 CONTROL 1320 18 3 CONTROL 
529 18 1 CONTROL 1344 17 3 CONTROL 
583 18 1 CONTROL 1348 21 3 CONTROL 
69 15 1 CONTROL 1457 23 3 CONTROL 
71 16 1 CONTROL 1459 15 2 CONTROL 

526 18 1 TREATED 1461 15 3 CONTROL 
572 18 1 TREATED 1462 15 3 CONTROL 
574 26 1 TREATED 1466 23 3 CONTROL 
776 34 1 TREATED 975 26 4 TREATED 
795 18 1 TREATED 1023 23 4 TREATED 
797 22 1 TREATED 1026 23 4 TREATED 
808 33 1 TREATED 1108 29 3 TREATED 
415 22 1 TREATED 1100 26 4 TREATED 
418 22 1 TREATED 971 26 4 TREATED 
437 23 1 TREATED 1412 23 2 TREATED 
525 22 1 TREATED 1445 23 4 TREATED 
527 22 1 TREATED 1447 28 3 TREATED 
575 26 1 TREATED 1450 24 2 TREATED 
584 26 1 TREATED 1451 23 3 TREATED 
586 22 1 TREATED 1456 23 2 TREATED 
821 34 1 TREATED 1458 23 4 TREATED 
414 24 1 TREATED 1460 23 2 TREATED 
419 24 1 TREATED 1463 23 1 TREATED 
521 18 1 TREATED     
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Supplementary Table 2 – Radiomics texture features extracted from the MRI images. Adapted from [31]. 

Gray Level Co-occurrence Matrix (GLCM) 
1 Energy 
2 Contrast 
3 Entropy 
4 Homogeneity 
5 Correlation 
6 SumAverage 
7 Variance 
8 Dissimilarity 
9 Autocorrelation 
Gray Level Run Length Matrix (GLRLM) 
1 Short Run Emphasis (SRE) 
2 Long Run Emphasis (LRE) 
3 Gray Level Non-Uniformity (GLN) 
4 Run Length Non-Uniformity (RLN) 
5 Run Percentage (RP) 
6 Low Gray-Level Run Emphasis (LGRE) 
7 High Gray-Level Run Emphasis (HGRE) 
8 Short Run Low Gray-Level Emphasis (SRLGE) 
9 Short Run High Gray-Level Emphasis (SRHGE) 
10 Long Run Low Gray-Level Emphasis (LRLGE) 
11 Long Run High Gray-Level Emphasis (LRHGE) 
12 Gray-Level Variance (GLV) 
Gray-Level Size Zone Matrix (GLSZM): 
1 Small Zone Emphasis (SZE) 
2 Large Zone Emphasis (LZE) 
3 Gray-Level Nonuniformity (GLN) 
4 Zone-Size Nonuniformity (ZSN) 
5 Zone Percentage (ZP) 
6 Low Gray-Level Zone Emphasis (LGZE) 
7 High Gray-Level Zone Emphasis (HGZE) 
8 Small Zone Low Gray-Level Emphasis (SZLGE) 
9 Small Zone High Gray-Level Emphasis (SZHGE) 
10 Large Zone Low Gray-Level Emphasis (LZLGE) 
11 Large Zone High Gray-Level Emphasis (LZHGE) 
12 Gray-Level Variance (GLV) 
Neighborhood Gray-Tone Difference Matrix (NGTDM): 
1 Coarseness 
2 Contrast 
3 Busyness 
4 Complexity 
5 Strength 
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Supplementary Figure 1 – LR radiomics model performance, in terms of model accuracy, when the PredicƟonReport 
funcƟon is used to calculate the accuracy for the SVS approach. Accuracy is ploƩed as a funcƟon of the number of 
selected features (i.e., from 1 to 30 features) using a filter-based method. On the leŌ, the accuracy is evaluated for 
each slice, and on the right, the SVS approach was applied to aggregate all the slices for a specific mouse. 

 

Supplementary Figure 2 – LR model performance, in terms of model test specificity (leŌ) and sensiƟvity (right). These 
performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using 
a filter-based method. 
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Supplementary Figure 3 – LR model performance, in terms of model test specificity (leŌ) and sensiƟvity (right). These 
performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using 
an embedded-wrapper method. 

 

Supplementary Figure 4 – SVM with linear kernel model performance, in terms of model test specificity (leŌ) and 
sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., 
from 1 to 30 features) using a filter-based method. The performance of the LR model is ploƩed as a reference. 
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Supplementary Figure 5 – SVM with Gaussian kernel model performance, in terms of model test specificity (leŌ) and 
sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., 
from 1 to 30 features) using a filter-based method. The performance of the LR model is ploƩed as a reference. 

 

Supplementary Figure 6 – SVM with polynomial kernel of degree 2 model performance, in terms of model test 
specificity (leŌ) and sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of 
selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR model is ploƩed 
as a reference. 
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Supplementary Figure 7 – SVM with polynomial kernel of degree 3 model performance, in terms of model test 
specificity (leŌ) and sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of 
selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR model is ploƩed 
as a reference. 

 

Supplementary Figure 8 – SVM with polynomial kernel of degree 4 model performance, in terms of model test 
specificity (leŌ) and sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of 
selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR model is 
ploƩed as a reference. 
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Supplementary Figure 9 – LDA model performance, in terms of model test specificity (leŌ) and sensiƟvity (right). These 
performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using 
a filter-based method. The performance of the LR model is ploƩed as a reference. 

 

Supplementary Figure 10 – KNN fine model performance, in terms of model test specificity (leŌ) and sensiƟvity (right). 
These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) 
using a filter-based method. The performance of the LR model is ploƩed as a reference. 
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Supplementary Figure 11 – KNN medium model performance, in terms of model test specificity (leŌ) and sensiƟvity 
(right). These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 
features) using a filter-based method. The performance of the LR model is ploƩed as a reference. 

 

Supplementary Figure 12 – KNN cosine model performance, in terms of model test specificity (leŌ) and sensiƟvity 
(right). These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 
features) using a filter-based method. The performance of the LR model is ploƩed as a reference. 
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Supplementary Figure 13 – KNN cubic model performance, in terms of model test specificity (leŌ) and sensiƟvity 
(right). These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 
features) using a filter-based method. The performance of the LR model is ploƩed as a reference. 

 

Supplementary Figure 14 – KNN weighted model performance, in terms of model test specificity (leŌ) and sensiƟvity 
(right). These performance parameters are ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 
features) using a filter-based method. The performance of the LR model is ploƩed as a reference. 

 

S
pe

ci
fic

ity

S
en

si
tiv

ity

S
pe

ci
fic

ity

S
en

si
tiv

ity



Page 50 of 56 
 

 

Supplementary Figure 15 – SVM with polynomial kernel of degree 3 model performance, in terms of model test 
specificity (leŌ) and sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of 
selected features (i.e., from 1 to 30 features) using an embedded-wrapper method. The performance of the LR model 
is ploƩed as a reference. 

 

Supplementary Figure 16 – SVM with polynomial kernel of degree 4 model performance, in terms of model test 
specificity (leŌ) and sensiƟvity (right). These performance parameters are ploƩed as a funcƟon of the number of 
selected features (i.e., from 1 to 30 features) using an embedded-wrapper method. The performance of the LR model 
is ploƩed as a reference. 
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Supplementary Figure 17 – LR model performance, in terms of F1-score. The F1-score is ploƩed as a funcƟon of the 
number of selected features (i.e., from 1 to 30 features) using the t-test filter method. 

 

Supplementary Figure 18 – LR model performance, in terms of F1-score. The F1-score is ploƩed as a funcƟon of the 
number of selected features (i.e., from 1 to 30 features) using the embedded-wrapper method. 
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Supplementary Figure 19 – SVM model performance, in terms of F1-score, when a linear kernel (leŌ) or Gaussian 
kernel (right) is used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 
features) using the t-test filter method. 

 

Supplementary Figure 20 – SVM model performance, in terms of F1-score, when a polynomial kernel of degree 2 (leŌ) 
or 3 (right) is used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) 
using the t-test filter method. 
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Supplementary Figure 21 – SVM model performance, in terms of F1-score, when a polynomial kernel of degree 4 is 
used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using the t-
test filter method. 

 

Supplementary Figure 22 – LDA model performance, in terms of F1-score. The F1-score is ploƩed as a funcƟon of the 
number of selected features (i.e., from 1 to 30 features) using the t-test filter method. 
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Supplementary Figure 23 – KNN model performance, in terms of F1-score, when a KNN fine (left) or KNN 
medium (right) model configuration is used. The F1-score is plotted as a function of the number of selected 
features (i.e., from 1 to 30 features) using the t-test filter method. 

 

Supplementary Figure 24 – KNN model performance, in terms of F1-score, when a KNN cosine (leŌ) or KNN cubic 
(right) model configuraƟon is used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 
1 to 30 features) using the t-test filter method. 
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Supplementary Figure 25 – KNN model performance, in terms of F1-score, when a KNN weighted model configuraƟon 
is used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using the 
t-test filter method. 

 

Supplementary Figure 26 – SVM model performance, in terms of F1-score, when a polynomial kernel of degree 3 is 
used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using the 
embedded-wrapper method. 
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Supplementary Figure 27 – SVM model performance, in terms of F1-score, when a polynomial kernel of degree 4 is 
used. The F1-score is ploƩed as a funcƟon of the number of selected features (i.e., from 1 to 30 features) using the 
embedded-wrapper method. 
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