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Abstract

Glioblastoma (GB) is the most frequent aggressive primary brain tumor in adults, with a 5-year
overall survival rate of 5% in GB patients even after aggressive treatment. GB is widely recognized
as challenging to diagnose and manage. GB treatment generally comprises surgical excision,
followed by radiation and chemotherapy, but relapse is the norm. Decision-making regarding
therapy is challenging and uncertain in the early moments, wasting precious time until
confirmation on therapy efficacy or the need to switch to second-line approaches, highlighting
the need to improve therapy response assessment. Magnetic resonance imaging (MRI) contains
a wide range of structural and functional information that can be used by machine learning
algorithms to facilitate the management of GB patients. This thesis aims to develop and evaluate
machine learning classifiers capable of detecting therapy-induced changes in the tumor
microenvironment, using the GL261 murine GB model as a preclinical benchmark. T2-weighted
MRI data were analyzed, and a total of 90 quantitative imaging features were extracted per MRI
image: 42 texture features derived from various gray-level matrices and 48 morphological
features computed from Minkowski functionals. To address the high dimensionality of the
dataset, feature selection methods were applied in combination with several classification
algorithms, including logistic regression (LR), linear discriminant analysis (LDA), K-nearest
neighbors (KNN), and support vector machines (SVM). Our findings suggest that more flexible
models, particularly SMV with higher-degree polynomial kernels and fine-grained KNN, achieved
the best classification performance. These results highlight the potential of radiomics-based
models to non-invasively monitor therapeutic response in GB, with possible future applications
in translational and clinical settings by facilitating personalized medicine.
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1. Introduction

1.1 Glioblastoma

Glioblastoma (GB), the focus of this Master’s thesis, is the most frequent of the aggressive
primary brain tumor types found in human adults. Tumors of the Central Nervous System (CNS)
comprised approximately 2% of all cancer cases diagnosed worldwide in 2022. Because of their
poor prognosis, they are responsible for 2.8% of all cancer-related deaths. Each year, CNS cancers
lead to over 300,000 new cases and 250,000 deaths globally [1]. Gliomas comprise nearly 30%
of all primary brain tumors and around 80% of malignant cases, making them the leading cause
of death from primary brain tumors [2]. In 2022, the reported incidence was 5.26 cases per
100,000 population. These tumors originate from mature glial cells (Figure 1) or their precursors
and are characterized by their capacity to infiltrate and diffusely invade surrounding brain tissue.

GBis an adult-type (i.e., median age at diagnosis is 62) diffuse glioma, which spreads infiltratively
through the brain parenchyma, gradually causing neuronal dysfunction and cell death [3]. GB is
the most aggressive and common form of primary astrocytoma, accounting for approximately
57% of all gliomas and 48% of primary malignant CNS tumors [4]. The 2021 World Health
Organization (WHO) Classification of Tumors of the CNS grades brain and spinal cord tumors (i.e.,
with grades going from 1 to 4) based on histological, immunohistochemical, and molecular
features, with Grade 4 being the most malignant [5]. GB is classified in most cases as Grade 4
(Figure 1).

Some GB tumors develop de novo (i.e., primary tumors), while others (i.e., secondary GBs)
progress from lower-grade gliomas [6]. Primary GB is diagnosed in the case of adult diffuse
astrocytic tumors that are IDH-wildtype (isocitrate dehydrogenase wildtype) when either
histological features of grade 4 malignancy (such as microvascular proliferation or necrosis) are
present, or when specific molecular alterations are identified. The latter includes telomerase
reverse transcriptase (TERT) promoter mutation, epidermal growth factor receptor (EGFR)
amplification, or combined whole chromosome 7 gain and whole chromosome 10 loss (+7/-10)
(Figure 1). The presence of any one of these molecular changes is sufficient for GB diagnosis,
even without classic grade 4 histological features [7]. In contrast, secondary GBs account for only
~10% of GB cases and typically arise from precursor diffuse or anaplastic astrocytomas. These
secondary GBs carry IDH mutations and are often linked to improved outcomes [8].

GB is a disease generally associated with poor prognosis, especially in older adults, since
advanced age or incomplete resection are key negative prognostic factors. Median survival in
elderly patients receiving only supportive care is less than 4 months [8]. Unfortunately, despite
advances in diagnostic strategies and novel therapies, overall survival has not significantly
improved. The typical survival rate is approximately 12-15 months with standard treatment, and
the two-year survival rate is below 30% [9].
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Figure 1 — A) Astrocytes, oligodendrocytes, and microglia are the main glial cell types in the CNS. Microglia also serve
as a stable, resident immune cell population within the CNS. Extracted from [10]. B) Classification for adult-type diffuse
gliomas. Adapted from [7].

The current standard of care for GB reflects its highly aggressive nature and aims to prolong
survival while preserving neurological function. Treatment typically begins with maximal safe
surgical resection to reduce tumor burden and alleviate symptoms, followed by a combination
of radiotherapy and chemotherapy [11]. Temozolomide (TMZ), an oral alkylating agent, is the
chemotherapeutic agent of choice and is administered concurrently with radiotherapy, followed
by additional cycles as maintenance therapy. This multimodal regimen, commonly referred to as
the Stupp protocol, has become the gold standard for newly diagnosed adult patients up to 70
years of age who are in good general and neurological health. Despite these efforts, GB almost
invariably recurs, often locally, highlighting the limitations of current therapies. Overall,
treatment response in GB is closely linked to molecular characteristics, with MGMT
(methylguanine DNA methyltransferase) promoter methylation being the strongest predictor of
benefit from TMZ chemotherapy. For the multimodal regimen, median overall survival is longer
in patients with a methylated MGMT promoter (24 months); in unmethylated cases, it averages
just 12.6 months [11].

GB are highly heterogeneous tumors, both genetically and phenotypically, which poses a
significant challenge to effective treatment. This variability exists not only between patients but
also within a single tumor, where diverse subpopulations of cells contribute to treatment
resistance [12]. Resistance can be either intrinsic or acquired after therapy and is driven by
multiple mechanisms, including the blood-brain barrier (i.e., the natural barrier that separates
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the blood and CNS and can hamper the brain delivery of drugs when administered
intravenously), evasion of apoptosis [13, 14], the presence of glioblastoma stem cells [15],
proneural-mesenchymal transition [16, 17], and immune suppression [18]. Together, these
factors reduce the efficacy of conventional and targeted therapies, complicating clinical decision-
making and underscoring the urgent need for improved response assessment and personalized
treatment strategies.

1.2 Magnetic resonance imaging

Magnetic Resonance Imaging (MRI) has become one of the most widely used imaging techniques
today, especially in the medical field. MRI is particularly effective in detecting pathological
tissues, making it a key diagnostic tool for healthcare professionals. In particular, in the case of
GB, it is the standard modality for diagnosing, characterizing, and clinical management, typically
identifying tumors around 4 cm in size at diagnosis [19]. Although GB tumors often develop in
the brain’s temporal lobe, they can appear anywhere in the CNS. Compared to histopathology,
radiological methods like MRI, computerized tomography (CT), and positron emission
tomography (PET) offer inherently digital imaging, facilitating analysis and follow-up without the
limitations of physical sample processing. MRI advantages include excellent soft tissue contrast,
high spatial resolution, unlimited penetration depth, and the absence of ionizing radiation (i.e.,
unlike CT scans).

MRI is based on the interaction between a magnetic field and the hydrogen nuclei present in
water molecules within different tissues. MRI allows the measurement of T1 and T2 relaxation
times of these nuclei, which vary depending on their environment, mobility, and concentration.
This information is particularly useful for detecting pathological tissues, as cancer cells typically
contain more water than healthy ones. The differences in T1 and T2 values contribute to the
contrast seen in MRI images.

However, in certain regions of the body, the inherent contrast in MRI is insufficient to clearly
distinguish pathological tissues from healthy ones. To enhance image contrast, contrast agents
are employed in approximately 40% of MRI examinations. These agents are typically
administered intravenously and function by shortening the relaxation times of water protons
within tissues, thereby increasing the signal intensity and improving the clarity of the resulting
images. Currently, the most widely used contrast agents are based on chelates of the trivalent
gadolinium ion (Gd3*), which is paramagnetic [20]. Gadolinium(Ill) possesses seven unpaired
electrons, endowing it with a high longitudinal R, relaxivity (i.e., defined as the capacity of a
contrast agent to reduce the relaxation times of hydrogen nuclei, thereby enhancing the MRI
signal in regions where the agent accumulates).

A standard MRI scan protocol for patients with brain tumors typically includes T1-weighted, T2-
weighted, fluid-attenuated inversion recovery (FLAIR), and post-contrast T1-weighted sequences
(Figure 2). T1-weighted images are particularly effective for illustrating anatomical detail, with
cerebrospinal fluid (CSF) and most tumors appearing as areas of low signal intensity. In contrast,
T2-weighted images offer greater sensitivity for lesion detection, presenting most pathological
lesions as hyperintense, whereas regions of hemorrhage or chronic hemosiderin deposition
often appear hypointense [21]. FLAIR sequences, which are T2-weighted images with CSF
suppression, are highly sensitive for detecting pathological changes and enhance the visibility of

Page 7 of 56



lesions such as tumors and edema, which appear with increased signal intensity compared to
conventional T2-weighted images. However, tumor margins in FLAIR or T2-weighted images may
be poorly differentiated from surrounding edema, gliosis, or ischemic alterations. Post-contrast
T1-weighted imaging generally offers superior delineation of the tumor nidus and provides
valuable diagnostic information regarding tumor grade, hemorrhage, necrosis, and peritumoral
edema [21].

Figure 2 — MRl scans performed for diagnostic purposes revealed a large intracranial mass in a patient presenting right-
sided hemiparesis. Subsequent histopathological analysis was consistent with GB. (A) The T1-weighted image shows
a hypointense lesion located in the left frontoparietal region. (B, C) T2-weighted and fluid-attenuated inversion
recovery (FLAIR) sequences demonstrate a heterogeneous hyperintense lesion accompanied by surrounding edema.
(D) The post-contrast T1-weighted image displays a heterogeneous, ring-enhancing lesion, with an additional area of
enhancement posterior to the primary lesion, as well as prominent vasogenic edema. Adapted from [21].

There are currently radiological and clinical guidelines, particularly the RANO (Response
Assessment in Neuro-Oncology) [22] and Response Evaluation Criteria in Solid Tumors (RECIST)
criteria [23], which evaluate GB response to therapy based on changes in enhancing tumor size
measured on contrast-enhanced T1-weighted images, as established by the RANO and earlier
Macdonald criteria [24].

1.3 Radiomics

Beyond conventional visual assessment, advanced imaging techniques allow for the non-invasive
characterization of a tumor’s radiographic phenotype across different stages of treatment:
before, during, and after therapy. Radiomics builds upon this capability by applying high-
throughput computational algorithms to extract and quantitatively analyze a vast array of
imaging features [25]. This automated approach enables the transformation of standard
radiological scans into high-dimensional, mineable data, capturing subtle patterns in shape,
texture, intensity, and spatial relationships that may not be discernible to the human eye. The
aim of this approach is to support clinical decision-making by semi-automatically or
automatically extracting radiologic features and linking them to clinical outcomes such as disease
progression and patient survival. Due to the complex (intra-tumoral and inter-patient)
heterogeneity of GB, advanced imaging methods like radiomics offer a valuable alternative to
tackle the challenge of tumor heterogeneity, by capturing tumor diversity and guiding treatment
based on image-derived features.
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that although this thesis is focused on radiomics at the preclinical level, the ultimate goal of our
research is to develop radiomics tools that serve as support for clinicians’ decision-making. In a
typical radiomics workflow (Figure 3), the process begins with image segmentation, where
regions or volumes of interest are defined. This can be done manually, semi-automatically, or
automatically, with deep learning gaining popularity. Manual methods are time-consuming and
observer-dependent, affecting reproducibility. In some cases, an image processing step is
included, involving the standardization of pixel spacing and grey levels to ensure consistency;
tools like 3D Slicer and pyRadiomics support this [25, 26]. Next, a feature extraction step is
performed, where quantifiable features (intensity, shape, texture) are computed. Finally, feature
selection or dimension reduction eliminates non-robust, redundant, or irrelevant features to
avoid model overfitting and improve generalizability.

2. Description of the research questions

This Master’s thesis aims to investigate whether machine learning classifiers trained on MRI-
derived radiomics and morphological image features can effectively detect therapy-induced
changes in the local tumor microenvironment in GB, using TMZ treatments on the GL261 murine
GB model as a preclinical benchmark.

The long-term objective of this research is to enable earlier and more accurate assessment of
GB therapy response by using quantitative MRI features to detect subtle microenvironmental

Page 9 of 56



changes induced by treatment. By developing and comparing machine learning models trained
on a comprehensive set of image features, this thesis aims to support faster, data-driven clinical
decision-making in GB management.

3. Description of the dataset

The retrospective dataset used in this thesis consists of MRl images acquired from 63 mice (Table
1) generated as part of the research at Prof. Ana Paula Candiota’s (Group of Biomedical
Applications of Nuclear Magnetic Resonance, GABRMN) laboratory at Universitat Autonoma de
Barcelona (UAB, Spain) [28-32].

Table 1 —Summary of the 63 animals harboring a GL261 GB tumor and analyzed in this thesis. The table also indicates
the day post-inoculation when they were last studied (i.e., prior to euthanization), whether they were treated or
control mice, and whether they were included in the training set or test set. The Cxxx notation corresponds to the
internal uniqgue mouse identifier code in the GABRMN group.

Training set Test set
Control Treated Control Treated
C32-Day 16? C414-Day 24! C1109-Day 112 C971-Day 263
C69-Day 15? C415-Day 231 C1110-Day 1323 C975-Day 262
C71-Day 161 C418-Day 221 C1111-Day 1623 C1023-Day 232

C179-Day 17!

C419-Day 24!

C1111-Day 132

C1026-Day 232

C233-Day 17*

C437-Day 23

C1320-Day 18*°

C1100-Day 263

C234-Day 17*

C521-Day 18!

C1344-Day 17%°

C1108-Day 293

C255-Day 14!

C525-Day 221

C1348-Day 21*°

C1412-Day 23*°

C278-Day 19*

C526-Day 181

C1457-Day 23*°

C1445-Day 23*°

C288-Day 18*

C527-Day 22*

C1459-Day 15°

C1447-Day 28*°

C351-Day 13*

C572-Day 18*

C1461-Day 15°

C1450-Day 24*>

C520-Day 18*

C574-Day 26*

C1462-Day 15°

C1451-Day 23*°

C529-Day 181

C575-Day 26*

C1465-Day 15*°

C1456-Day 23*°

C583-Day 18*

C584-Day 26°

C1466-Day 23*°

C1458-Day 23*°

C586-Day 221

C1471-Day 16*°

C1460-Day 23*°

C776-Day 34*

C1472-Day 13*°

C1463-Day 23*°

C795-Day 181

C1474-Day 1445

C797-Day 22*

C808-Day 33*

C821-Day 34*

1, Mice described in reference [29]. 2, Mice described in reference [28]. 3, Mice described in reference [30]. 4, Mice
described in reference [32]. 5, Mice described in reference [33]. 6, Mice described in reference [31].

In all cases, these mice correspond to a GB preclinical model established by stereotactic injection
of GL261 cells into the caudate nucleus of mice [29]. Treated mice were, in all cases, administered
TMZ following either an Immune-Enhancing Metronomic Schedule (IMS) [28] or three-cycle
administration protocol [30]. These animals were followed up with MRI studies and magnetic
resonance spectroscopic imaging (MRSI) at chosen time points, although in this thesis we will
only focus on the MRI images. However, as a result of this combined MRSI/MRI analysis, the
number of MRI brain/tumor slices available for each mouse ranges from 1 to 4 (Figure 4A).
Supplementary Table 1 describes additional details of these mice, including the number of slices
available for each mouse.
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The available MRI images are 256x256 pixels and are accompanied by a mask for each
image/slice, determining the region of interest (ROI). The ROl indicates where the tumor is in the
image and has been generated by experts from the GABRMN laboratory who are used to seeing
MRI images as part of their daily research. A radiomics MATLAB software is used to extract 90
features from each image, which belong to two different types of radiomic features: texture
features and Minkowski functions. The texture features are 42 and are described in
Supplementary Table 2. These are classified into four different texture matrices: Gray Level Co-
Ocurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix
(GLRLM) and Neighbouring Gray Tone Difference Matrix (NGTDM) [34]. In contrast, the
Minkowski functions capture morphological and structural aspects of image heterogeneity. For
a chosen number of levels N (set to 16 in this thesis, based on prior experience in the GABRMN
lab), N binary images are extracted using equally spaced intensity thresholds within the mask
(Figure 4B). From each binary image, three features (i.e., area, perimeter, and Euler
characteristics) are computed, yielding 3N (i.e., 48) features.

A)
4 7
Sice1 48
Slice? A —
Slice 3
Slice 4
B)
7

10 12

Figure 4 — Dataset and feature characteristics. A) Scheme showing the mouse brain and the positioning of brain slices.
B) lllustration of the 16-level Minkowski thresholds for the C526-Day18 tumor mask. Adapted from [31].

4. Methodology

4.1 Generation of the preclinical glioblastoma model for in vivo studies

In this thesis, we employed the well-characterized, immunocompetent GL261 orthotopic murine
model, which is widely used for GB research [28-30, 35, 36]. The GL261 mouse glioma cells were
obtained from the Tumor Bank Repository at the National Cancer Institute (USA) and cultured in
RPMI-1640 medium (Sigma-Aldrich, Spain), supplemented with 2.0 g/L sodium bicarbonate,
0.285 g/L L-glutamine, 10% fetal bovine serum (Gibco, Invitrogen, UK), and 1%
penicillin/streptomycin (Sigma-Aldrich). Cells were cultured at 37 °C in a humidified incubator
with 5% CO..
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Female C57BL/6 wild-type mice (average weight: 21.1 + 1.3 g) were obtained from Charles River
Laboratories (France) and housed at UAB’s animal facility. In particular, the mice described in
references [32, 33], were housed in an enriched environment-like (EE-like) setting for three
weeks prior to tumor implantation (Figure 5) and maintained there throughout the experiment
to promote immune activation and reduce glioma growth, based on evidence that EE exposure
enhances survival and brain immunological responses in C57BL/6 mice [37]. For tumor
implantation, each animal received preemptive analgesia with subcutaneous Metacam (1
mg/kg; Boehringer Ingelheim, Germany) 15 min prior to anesthesia, and again at 24 and 48 h
post-implantation. Anesthesia was induced by intraperitoneal injection of ketamine (80 mg/kg;
Parke-Davis SL, Spain) and xylazine (10 mg/kg; Carlier, Spain). Anesthetized mice were placed in
a prone position on a stereotaxic frame (Kopf Instruments, USA). Following scalp shaving and
disinfection with an iodophor solution, a 1-cm incision was performed along the midline to
expose the skull. Using a precision microdrill, a 1-mm burr hole was created at a point 0.1 mm
posterior to the bregma and 2.32 mm lateral to the right of the midline (Fine Science Tools,
Germany). A 26-gauge Hamilton syringe (Reno, USA), connected to a digital push-pull
microinjector (Harvard Apparatus, USA), delivered 4 puL of a suspension containing 100,000
GL261 cells at a depth of 3.35 mm below the skull surface, with an injection speed of 2 puL/min.
To minimize backflow, the syringe was maintained in position for an additional 2 min after the
injection. It was then slowly and carefully withdrawn, and the incision was closed with 6.0 silk
sutures (Braun, Spain). Post-operative care included recovery in a warm environment. Mice were
monitored daily, with body weight recorded, and tumor progression was assessed two to three
times per week using T2-weighted MRI (Figure 5).

4.2 Treatment of the GB mouse model

The analysis in this thesis was performed using animals that were treated with two distinct
treatment protocols. The original protocol used in the laboratory consisted of three cycles of
TMZ treatment (Figure 5A). TMZ (Sigma-Aldrich) was dissolved in 10% dimethyl sulfoxide
(DMSO) in saline solution (0.9% w/v NaCl). In the three-cycle regimen, mice received a daily dose
of 60 mg/kg for 5 consecutive days during the first cycle, followed by a 3-day rest period. The
second cycle was administered over 2 consecutive days, followed by another 3-day rest. The third
cycle was identical to the second, with a 2-day consecutive dose followed by a 3-day break. The
treatment period was carefully structured to ensure that the rest periods were long enough for
tumor cells unaffected by previous cycles to regain sufficient proliferative capacity. Control mice
were treated with a 10% DMSO vehicle instead of TMZ. This treatment regimen was used in
animals with low Cxxx numbers (i.e., animals with numbers lower than C1300). In our study,
these mice correspond to the animals described in references [28-30].

Another treatment protocol used was the IMS-TMZ treatment. Tumor-bearing mice were treated
at a dose of 60 mg/kg via oral gavage every 6 days, beginning on day 11 post-implantation (Figure
5B). Control mice were treated with a 10% DMSO vehicle. As described for the three-cycle
regimen, the IMS-TMZ treatment protocol followed the principle of providing appropriate
recovery times between treatments, while monitoring tumor progression using MRI to evaluate
treatment efficacy. This treatment regimen was used in animals with high Cxxx numbers (i.e.,
animals with numbers higher than C1300). In our study, these mice correspond to the animals
described in references [32, 33].
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A) TMZ or vehicle 3-cycle treatment

Cycle 1 Cycle2 Cycle3
(5 days) (2 days) (2 days)

11 16 19-20  24-25
Days %
0 11 14 17 20 23 26 29 32 35

Tumor
implantation

MRI (volumetric T2w) every 2 or 3 days

B)

TMZ or vehicle treatment every 6 days

11 17 23 29 35
Days %
-3 weeks Enriched- ) 1 14 17 20 23 26 29 32 35

Mice obtained environment-like Tumor

from suppliers caging adaptation implantation

MRI (volumetric T2w) every 2 or 3 days

Figure 5 — A) Three-cycle TMZ and B) IMS-TMZ treatment regimens.

In all cases, tumor volumes were assessed through T2-weighted MRI at day 11 after implantation,
with randomization ensuring homogeneous tumor sizes and body weights among the
experimental groups. MRI scans were performed twice a week to monitor the tumor's response
to therapy, and animal health was carefully monitored throughout the study. Upon reaching
predetermined endpoint criteria, animals were euthanized by cervical dislocation, and the brain
and tumors were resected for analysis. All animal studies were approved by the local ethics
committee (https://www.uab.cat/en/research-ethics/animal-experimentation, accessed on 27

July 2025), according to the regional and state legislation.

4.3 MRI analysis

In vivo MRI/MRSI studies were conducted at the joint nuclear magnetic resonance facility of UAB
and the Centro de Investigacion Biomédica en Red (Ciber)-Bioingenieria, Biomateriales y
Nanomedicina (BBN), at Unit 25 of NANBIOSIS (https://www.nanbiosis.es, accessed on 26 July
2025). All experiments were performed on a 7T Bruker BioSpec 70/30 USR spectrometer (Bruker

BioSpin GmbH, Germany) equipped with a mini-imaging gradient system of 400 mT/m. For MRI
acquisitions, radiofrequency transmission was achieved using a 72 mm inner-diameter linear
volume coil, while signal reception was performed with a mouse brain surface coil.

Animals were placed on a dedicated support platform equipped for anesthesia delivery
(isoflurane, 1.5-2.0% in oxygen at 1 L/min) and containing a circulating warm-water system to
stabilize body temperature. Breathing rate was tracked using a pressure sensor, ensuring a
respiratory frequency of 60-80 breaths per minute.

GL261 tumor-bearing mice were first assessed using high-resolution coronal T2-weighted images
obtained through a Rapid Acquisition with Relaxation Enhancement (RARE) sequence to identify
brain tumor presence and track its stage of development. The MRI acquisition parameters were
as follows: repetition time/effective echo time = 4200/36 ms; echo train length= 8; field of view
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=19.2 x 19.2 mm; matrix size = 256 x 256 (75 x 75 um/pixel); slice thickness = 0.5 mm; inter-slice
thickness = 0.1 mm; number of slices = 10; number of averages = 4; and total acquisition time =
6 min and 43 s.

4.4 Radiomics workflow

We performed a radiomics analysis of the MRI images to extract quantitative features from
tumor regions in the GL261 GB mouse model. Figure 6 describes the general workflow of
radiomics extraction and subsequent analysis. Tumor ROIs 2D masks were delineated manually
under the advice and supervision of experts in MRI GB imaging. The purpose of these masks is
to avoid the inclusion of surrounding peritumoral and normal tissues in the analysis. This
segmentation process ensured that only the tumor tissue was considered for feature extraction,
thereby enhancing the precision of the analysis.

T2w MRI Image

Feature extraction
on the ROI

! }

42 texture-based 48 Minkowski functions-based
features features

i

Normalization

Feature selection

il

! ! !
LOGISTIC
REGRESSION

Classification

SVS approach

I ‘I ._

Figure 6 — Image analysis workflow.

All data were processed using MATLAB (version 23.2.0.2859533, R2023b, MathWorks, USA),
utilizing the Image Processing Toolbox (version 23.2) and specialized radiomics toolboxes for
feature extraction [38, 39]. Radiomic features for the analysis were derived from both texture
matrices and Minkowski functions. Specifically, texture features were obtained using the
Radiomics MATLAB toolbox [39], which considers four types of texture matrices: Gray Level Co-
Occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix
(GLRLM), and Neighboring Gray Tone Difference Matrix (NGTDM). These matrices provide
various representations of the tumor's texture. As a result, a total of 42 texture features were
extracted based on these matrices, as shown in Supplementary Table 2. To calculate these
features, a rectangular bounding box was generated around the segmented tumor region,
ensuring that the matrix input matched the required dimensions for feature extraction.

In addition to the texture features, Minkowski functions were calculated directly from the tumor
mask using the Minkowski MATLAB toolbox [38]. The Minkowski functions are used to describe
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the morphological and structural properties of the tumor and its heterogeneity. The process
involved the creation of N binary images (where N was set to 16 based on prior experience in
the GABRMN lab) by applying equally spaced intensity thresholds within the tumor mask (Figure
4b). For each threshold, three distinct morphological features (i.e., area, perimeter, and Euler
characteristics) were computed, providing a comprehensive description of the tumor's structure.
This procedure resulted in a total of 48 Minkowski-based features (3 features per threshold level
across 16 levels). These features serve as critical descriptors of the tumor's geometric properties,
enhancing the overall radiomics analysis by providing insights into the tumor's complexity and
heterogeneity.

After feature extraction, features were normalized using the z-score method using the normalize
MATLAB function. This method centers the data to have a mean of 0 and scales it to have a
standard deviation of 1.

To provide a consolidated analysis for multi-slice tumor images, a slice-voting system (SVS) was
employed (Figure 7). This method aggregates the outputs from multiple tumor slices by
computing a weighted average, with greater emphasis placed on slices that contained a larger
proportion of tumor tissue. Weights for each slice were determined based on the number of
pixels within the tumor mask to reflect the relative importance of each slice in the overall
analysis.

Slice 1 Slice 2 Slice 3

Tumor size: 3022 px Tumor size: 3624 px Tumor size: 1812 px
Output: Control Output: Control Output: Treated

D e e

| Control: 6646 pixels Treated: 1812 pixels |

Classified as Control

Figure 7 — Example of the SVS system used to aggregate the output of three different slices in the case of a control
mouse. Image adapted from [31].

In summary, the radiomics feature set included 90 distinct features (42 texture features and 48
Minkowski features) per slice. Moreover, the outputs of different slices are aggregated to
generate a unique output for each mouse.

4.5 Model fitting

To assess the performance of different classifier models, several methods were tested using
MATLAB and its Bioinformatics Toolbox (version 23.2), and the Statistics and Machine Learning
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Toolbox (version 23.2). Several methods were evaluated, including Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), and K-Nearest Neighbors
(KNN) (Figure 6). Each method was applied to the training data using different configurations
(e.g., different kernel types for SVM and distance metrics for KNN). The selected classification
models enable evaluating a range of algorithms, each with distinct characteristics and strengths,
to determine which is best suited for our dataset.

The LR analysis was performed using the fitgim function within MATLAB. The 'Distribution’
parameter was set to 'binomial’ and the 'link' parameter was set to 'logit' to model the log-odds
of the success class.

The SVM analysis was performed with the fitcsvym MATLAB function, setting the 'KernelScale'
parameter to 'auto' to automatically adjust the kernel's scale to fit the data and optimize the
model performance. The 'BoxConstraint' was set to 1 to balance the trade-off between
minimizing the classification error and maximizing the margin between classes. The 'Standardize'
setting was set to 'true' to standardize the input features to have zero mean and unit variance,
ensuring equal contribution of all features during training. The evaluated kernel types include
linear, Gaussian, and polynomial (with degrees 2, 3, and 4). The polynomial kernels allow for
varying degrees of complexity, with higher degrees enabling more complex decision boundaries.

The LDA analysis was performed using the fitcdiscr MATLAB function, which trains an LDA
classifier on the input data. The 'DiscrimType' parameter was set to 'linear' to create a linear
decision boundary between classes, while the 'Gamma' parameter was set to 0 ensuring that no
regularization is applied to the model, while setting FillCoeffs was set to 'off' to ensure that no
coefficient filling occurs, allowing the model to remain unaltered by any automatic adjustments
that MATLAB might otherwise perform on the coefficients.

The KNN analysis was performed using the fitcknn MATLAB function, with the following specified
settings. The 'Distance' parameter was set to different distance metrics, including 'Euclidean’,
'‘Cosine', and 'Minkowski', to test different similarity measures between data points. The
'Exponent' was set for the Minkowski distance to 3 for testing the influence of the distance's
exponent. The 'NumNeighbors' parameter was adjusted across different values, such as 1 or 10
for the different models, determining how many neighbors influence the classification. The
'DistanceWeight' was set to either 'Equal' or 'Squaredinverse' to explore different weighting
schemes for neighbors, where 'Squaredinverse' places more weight on closer neighbors.
Additionally, the 'Standardize' option was set to true for all models to ensure that the input
features were standardized to have zero mean and unit variance, allowing for standardized
comparisons between features with different scales. The evaluated models include fine,
medium, cosine, cubic, and weighted KNN configurations, with different combinations of
distance metrics and neighbor settings, allowing for exploration of various complexity levels and
trade-offs in classification accuracy. A detailed description of the fine, medium, cosine, cubic,
and weighted KNN configurations can be found in Section 5. Results.

In terms of model performance metrics, after training, the models' predictions were compared
to the response labels of the test datasets to assess the best-performing methods. The following
performance metrics were used:
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- Accuracy: The accuracy of the model was determined by calculating the classification
error rate, following the equation Accuracy = (TP+TN)/(TP+TN+FP+FN), where FP refers
to false positives; TP refers to true positives; FN refers to false negatives and TN refers to
true negatives.

- Sensitivity: This metric was calculated by assessing the proportion of actual positive
cases (i.e., treatment-responsive mice) correctly identified by the model. It was
calculated using the formula: Sensitivity = TP/(TP+FN)

- Specificity: This metric was calculated by assessing the proportion of actual negative
cases (i.e., non-responder mice) that were correctly predicted by the model. This metric
was calculated using the formula Specificity = TN/(TN+FP).

- Fl-score: The function calculates the F1 score using the confusion matrix to assess the
balance between precision and recall. The Fl-score was calculated following the
equation: Fl-score = 2*Prec*Rec/(Prec + Rec) = 2*TP/(2*TP+FP+FN), where Prec =
Precision and Rec = Recall.

A leave-one-out cross-validation (LOOCV) strategy was employed to evaluate model
performance. In this approach, the models were iteratively trained on all but one subject and
tested on the left-out subject, such that each mouse served once as the independent test set.

The MATLAB software used in this thesis can be found at
https://gitfront.io/r/stanco78/alGZ76Z8GDrN/Radiomics/, where additional details can be
found. The main scripts used for the analysis are located in the src folder.

4.6 Feature selection

Given that our dataset displays a large number of features (i.e., 90) but a limited number of
observations (i.e., 32), we decided to reduce the number of features in our models. We expect
that many features will not contribute meaningfully to the model learning outcome and, instead,
can cause the model to overfit the noise present in the data. Additional expected benefits of
feature selection include the reduction of computational resources for model usage and the
enhancement of the interpretability of the results.

For comparison purposes, we followed a similar feature selection strategy to the one described
in Nunez et al. [31]. Thus, we applied two different approaches for feature selection: a filter
scheme and an embedded-wrapper recursive feature elimination (RFE) scheme. For the filter
scheme, a univariate t-test was performed to rank features based on their individual significance
in distinguishing between control and treated groups. For this purpose, the rankfeatures
MATLAB function was used.

In the embedded-wrapper RFE scheme, the method iteratively removes the least relevant
features, starting from the complete set. For the MRI dataset used in this thesis, a pure RFE
wrapper method failed to distinguish feature relevance in the early steps, as most accuracies
remained unchanged. Consequently, an embedded RFE method was first employed to select
features, and a wrapper feature selection was applied to further reduce the number of selected
features, optimizing the model for improved performance.
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5. Results

This Master’s thesis derives from the research published in Scientific Reports by Nufiez et al. [31],
which highlighted the potential of both MRI-based radiomics and MRSI-based source extraction
in assessing TMZ therapy response in GB, particularly in distinguishing treated from untreated
tumors. The research team led by Prof. Candiota showed that MRI-derived radiomics, based on
the use of texture and structural image features, shows adequate accuracy when combined with
feature selection techniques like a t-test-based filter method or an RFE method. A key
assumption of this analysis was that linear regression models would be the most appropriate for
such an analysis, given that they are expected to provide a low degree of over-fitting on our
limited number of samples. The dataset used in this research piece also contained MRSI data,
which can be used to distinguish between treated and untreated tumors with higher accuracy
when compared to the radiomics approach.

In this thesis, we will concentrate exclusively on the MRI dataset, as MRI analysis relies on
equipment that is widely available in universities and hospitals, making it a more accessible
choice. Moreover, MRl imaging is routinely used as a standard procedure to monitor brain tumor
volume in preclinical mouse studies, offering valuable insights into tumor growth and treatment
efficacy. Additionally, MRI serves as the primary imaging modality in hospitals for diagnosing and
managing GB in patients, due to its ability to provide detailed structural images of the brain. In
contrast, while MRSI holds significant potential for enhancing classification methods in GB [28,
30, 31, 33], its use is limited by the availability of specialized, high-end instrumentation. Such
equipment is typically found only in select research facilities and highly specialized hospitals,
restricting its broader application as a potential classification software in clinical settings.

We will assess whether the previous assumption that linear regression models are the most
suitable for this analysis, due to their expected low tendency to overfit, holds true. For this
purpose, we will test several alternative classification methods, including Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), and K-Nearest Neighbors (KNN), each with a
variety of different configurations, rendering algorithms with diverse degrees of complexity, to
assess which is the best-suited for our dataset.

Finally, we will assess different feature selection algorithms to reduce the dimensionality of the
dataset by preserving essential information while discarding redundant or irrelevant features,
which can improve model performance. High-dimensional data increases the risk of overfitting
and complicates the detection of meaningful patterns, as irrelevant or redundant features
expand the search space. Feature selection, in particular, is an important process for extracting
consistent and relevant insights from the data, ensuring that only the most valuable features are
retained.

Ultimately, the selection of the optimal feature selection algorithm is dependent on the
characteristics of the data. Wrapper methods tend to produce excellent results, albeit at a higher
computational cost, as they evaluate subsets of features based on their impact on model
accuracy. In contrast, filter methods assess feature relevance independently of the classifier,
with feature selection occurring before the classifier is trained. A third approach, the embedded
method, integrates feature selection within the classifier itself, assigning a relevance score to
each feature based on the model's internal structure. For comparison purposes, we will follow a
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similar approach as the one used in Nufiez et al. [31]: we will use a filter scheme that uses a
univariate t-test to rank features by its ability to distinguish between control and treated groups,
and will use a more complex embedded-wrapper RFE scheme that combines both an embedded

method followed by a wrapper method (as described in Section 4.6. Feature selection)

5.1 Logistic regression

The first step was to reproduce the LR output described by Nuiez et al. [31] when using the same
dataset. For this, we adapted and further developed a MATLAB code that was originally
developed for the mentioned research publication, which was not complete. For additional
information about the software, check Section 12. Software code.

Figure 8 displays the accuracy obtained when the t-test-based filter feature selection method is
used. As described in Figure 8 (left), our software can reproduce the published data [31] with
small deviations from the published accuracies for the slice classification approach. Thus, we
reproduce LR models that use radiomic features to moderately distinguish between TMZ-treated
and control cases in the preclinical dataset. The LR models’ outcomes exhibit a somewhat
irregular pattern with test accuracy generally falling around 60%, with the overall accuracy
declining as the number of selected features increases [31]. Table 2 displays the first 30 ranked
features based on the t-test filtering method.

In contrast, our models differ markedly from the published results in the case of the SVS
approach. By aggregating the results of the different slices available for a given mouse, Nufiez et
al. report that the SVS approach (Figure 8, right) is able to reach a higher test accuracy (i.e., 87%)
when 10 features are selected. Our models show a more limited improvement in accuracy with
the SVS approach (i.e., 74% with 7 selected features and 77.5% with 18 selected features). After
inspection of the MATLAB code, we observed that the data presented in Nufiez et al. appear to
be incorrectly calculated because the MATLAB function used does not aggregate the data as
described in Figure 7. NUfiez et al. appear to have used the PredictionReport function shown in
Section 12. Software code. This function appears to aggregate classifier predictions per mouse,
compute individual accuracies per model, and derive a "voting" label based on rounded accuracy
per model (i.e., binarizing whether a model is accurate per mouse). When the PredictionReport
function is used, we can replicate the published data [30] with small deviations (Supplementary
Figure 1).

Supplementary Figure 2 displays the specificity and sensitivity of our LR models (i.e., Nufiez et
al. values are not available). While the specificity is high in general (e.g., the specificity of the SVS
approach is 100% for models using 1 to 3 selected features), model sensitivity tends to be low,
although it reaches 80% for 18 selected features and the SVS approach. Supplementary Figure
17 displays the model performance, evaluated using the F1 score.
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Figure 8 — LR radiomics model performance, in terms of model accuracy over the hold-out set, as a function of the
number of selected features (i.e., from 1 to 30 features) using a filter-based method. On the left, the accuracy is
evaluated for each slice, and on the right, the SVS approach was applied to aggregate all the slices for a specific mouse.

The embedded-wrapper method was more challenging to reproduce, given the lack of details in
the description available for this strategy in the article of Nufiez et al. [31]. The rationale for
adopting a combined embedded-wrapper strategy is that the pure RFE wrapper method
struggled to identify feature relevance in the early stages, with most accuracies remaining
unchanged. This issue was also evident when we applied our model, further highlighting the
need for an integrated approach. A detail not specified in the reference publication is how many
features are selected using the embedded method, before changing to the wrapper method. We
evaluated different feature numbers at which to transition from the embedded to the wrapper
method (i.e., we tested m=50, m=60 and m=70) and found that 60 provides the optimal results
in terms of model accuracy. Figure 9 (left) shows that for high feature numbers, we are able to
reproduce the accuracy values described in Nufiez et al. [31], but bigger differences can be
observed for low numbers of selected features. Nufiez et al. described that the embedded-
wrapper method reaches 75% test accuracy with two features (i.e., GLCM Entropy and
Perimeter9); in our results, 9-11 features are needed to obtain a similar accuracy. When the
results are aggregated with the SVS approach, while Nufiez et al. do not show a significant
improvement in model performance as a result of the slice aggregation, our model reaches 87%
accuracy with 9 features.

Table 2 displays the first 30 ranked features based on the embedded-wrapper RFE method
according to Nufiez et al. Supplementary Figure 3 displays the specificity and sensitivity of our
LR models (i.e., Nufiez et al. values are not available) constructed using the embedded-wrapper
feature selection method. Supplementary Figure 18 displays the performance of these models,
evaluated using the F1 score.
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Figure 9 — Embedded-wrapper LR radiomics model performance, in terms of model accuracy over the hold-out set, as
a function of the number of selected features (i.e., from 1 to 30 features). On the left, the accuracy is evaluated for
each slice, and on the right, the SVS approach was applied to aggregate all the slices for a specific mouse.

In summary, we were able to reproduce with our MATLAB code most findings described for the
MRI dataset in Nufiez et al., although the embedded-wrapper method is more difficult to
reproduce (e.g., in terms of the optimal number of features). As a result, we decided to use our
MATLAB code and adapt it to other classification algorithms to determine the optimal approach
for our TMZ-treatment MRI dataset.

5.2 Alternative models using a filter-based feature selection method

We started by evaluating how SVM models perform in our MRI dataset. An SVM approach
classifies data by finding the optimal hyperplane that separates classes with the maximum
margin. It works well in high-dimensional spaces and can handle non-linearly separable data
using kernels, which map input data to higher dimensions where separation becomes possible.
Common kernels include linear, Gaussian (also known as radial basis function), and polynomial
of different degrees. The linear kernel is best for linearly separable data, while the Gaussian
kernel handles more complex non-linear patterns by creating smooth decision boundaries.
Polynomial kernels can model feature interactions depending on the polynomial degree chosen.
Thus, we evaluated SVM models with kernel types that include linear, Gaussian, and polynomial
(with degrees 2, 3, and 4).
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Figure 10 — Performance (i.e., test accuracy) of different SVM radiomics models as a function of the number of selected
features (i.e., from 1 to 30 features) using a filter-based method. Different kernel types were evaluated, including A)
linear kernel, B) Gaussian kernel, C) polynomial kernel with degree 2, D) polynomial kernel with degree 3, and E)
polynomial kernel with degree 4. The performance of the LR models is plotted as a reference.

Page 22 of 56



Figure 10 shows the performance of SVM models both when considering each slice
independently (i.e., slice classification approach) and when the SVS approach is used. Figure 10
compares the SVM model performance in terms of classification accuracy with that of the LR
models. SVM models display, in general, better performance when compared to LR in the case
of the slice classification approach. In particular, the SVM classifiers with a Gaussian kernel
underperformed relative to the other SVM variants (i.e., they performed more similarly to the
LR models). In contrast, the test accuracy of the SVM models with polynomial kernels of degree
3 and 4 is especially high. While the SVM of polynomial kernel degree 3 reaches 73% accuracy
for the model with 25 selected features, when used in the SVS approach, the model with 23-24
features reaches 87% accuracy. Similarly, the SVM model with a polynomial kernel of degree 4
with 21 or 25 selected features achieves 73% accuracy, but the accuracy increases to 87% with
21-23 features when integrated into the SVS approach. Supplementary Figure 4 to
Supplementary Figure 8 display the specificity and sensitivity of these models. In general, these
models display a better balance between specificity and sensitivity. For example, the SVM
models with a polynomial kernel of degree 3 (when used in the SVS approach) reach both 87%
specificity and 87% sensitivity with 23-24 selected features. The same occurs with the SVM
model with polynomial kernel degree 4, with 21-23 filter-based selected features. Overall, we
observe a general trend in which, as the number of selected features increases, model specificity
decreases, and model sensitivity increases. Supplementary Figure 19 to Supplementary Figure
21 display the performance of these models in terms of the F1 score.

We also evaluated LDA models, which classify the observations by projecting high-dimensional
data onto a lower-dimensional space to maximize class separability. In a binary classification
problem like the one studied in this thesis, LDA assumes that both classes are normally
distributed with identical covariance matrices but different means. LDA finds a linear
combination of features that best separates the two classes by maximizing the ratio of between-
class variance to within-class variance. Figure 11, Supplementary Figure 9 and Supplementary
Figure 22 show, respectively, the accuracy, specificity/sensitivity and F1 score of the fitted
models. The LDA models perform similarly or slightly worse than the published LR models.
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Figure 11 — LDA radiomics model performance, in terms of model accuracy over the hold-out set, as a function of the
number of selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR
models is plotted as a reference.
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Finally, we evaluated different KNN models, which are non-parametric classifiers. In binary
classification, KNN predicts the class of a new data point based on the majority class among its
k closest neighbors in the feature space, typically measured using Euclidean distance. These
models do not make assumptions about data distribution and require no training phase.
Different KNN model configurations were evaluated (Figure 12): the KNN ‘fine’ configuration uses
Euclidean distance, a k value of 1 (also known as nearest neighbor interpolation) and an equal
DistanceWeight (i.e., each neighbor gets equal weight); the KNN ‘medium’ configuration uses
also Euclidean distance but using a k value of 10 and an equal DistanceWeight; the KNN ‘cosine’
configuration uses the Cosine distance (i.e., one minus the cosine of the included angle between
observations), using a k value of 10 and an equal DistanceWeight; the KNN ‘cubic’ configuration
uses a Minkowski distance with exponent 3, with a k value of 1 and an equal DistanceWeight;
and the KNN ‘weighted’ configuration is similar to the ‘medium’ configuration but uses the
Squaredinverse distance weight (i.e., each neighbor gets weight equal to 1/d?, where d is the
distance between this neighbor and the point being classified). Figure 12 compares the KNN
performance in terms of classification accuracy with that of the LR models. As in the SVM case,
KNN models display generally better performance when compared to LR in the case of the slice
classification approach. The KNN fine model with 12 selected features appears to perform best
with an accuracy of 71.5% in the case of slice classification (i.e., slightly worse than the best SVM
models) and 90% in the case of the SVS approach (i.e., slightly better than the best SVM models).
Supplementary Figure 10 to Supplementary Figure 14 display the specificity and sensitivity of
these models. Supplementary Figure 23 to Supplementary Figure 25 display the performance of
these models in terms of the F1 score.

It is worth noting that the list of selected features in the t-test filter method is the same for all
the evaluated models in this section (Table 2), as the list does not depend on the model itself.

5.3 Feature selection using recursive feature elimination

Next, we performed feature selection for some of the models tested in the previous section, but
following a similar embedded-wrapper RFE procedure to the one applied by Nufiez et al. for LR
[31]. To this end, we chose to focus on SVM models with polynomial kernels of degrees 3 and 4,
as they were among the top-performing models in the previous section and are well-suited for
incorporating an embedded-wrapper RFE method.

Figure 13 and Figure 14 display the performance in terms of test accuracy for SVM models with
a polynomial kernel of degree 3 and 4, respectively. Similarly, Supplementary Figure 15 and
Supplementary Figure 16 represent the test specificity and sensitivity of these models, and
Supplementary Figure 26 and Supplementary Figure 27 represent the F1 score of these models.
We observe that the SVM models with a polynomial kernel of degree 3 do not display improved
performance when compared to the LR models generated based on the embedded-wrapper RFE
method (Figure 13). The specificity of these models varies between 50%-60% (Supplementary
Figure 15).
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Figure 12 — Performance (i.e., test accuracy) of different KNN radiomics models as a function of the number of selected
features (i.e., from 1 to 30 features) using a filter-based method. Different KNN model configurations were evaluated,
including A) fine, B) medium, C) cosine, D) cubic, and E) weighted (see main text for a full description of these
configurations). The performance of the LR models is plotted as a reference.
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In contrast, the SVM model with 14 selected features with a polynomial kernel of degree 4
(Figure 14) performs slightly better than the LR models for the slice classification approach,
reaching 77% accuracy. For the SVS approach, the models with 14-15 selected features perform
worse than equivalent LR models, reaching 80.5% accuracy. In terms of specificity/sensitivity, the
SVM model with 14 selected features and a polynomial kernel of degree 4 provides a 75%

specificity and 87% sensitivity (Supplementary Figure 16).
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Figure 13 —Test accuracy of SVM radiomics models with a polynomial kernel of degree 3. Model performance is plotted
as a function of the number of selected features (i.e., from 1 to 30 features), which were selected using an embedded-
wrapper RFE method, in which the embedded RFE feature selection method selects features until 60 features remain

in the model, and the wrapper RFE further continues selecting features.
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Figure 14 —Test accuracy of SVM radiomics models with a polynomial kernel of degree 4. Model performance is plotted
as a function of the number of selected features (i.e., from 1 to 30 features), which were selected using an embedded-
wrapper RFE method, in which the embedded RFE feature selection method selects features until 60 features remain

in the model, and the wrapper RFE further continues selecting features.
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Table 2 displays the 14 selected features in the best-performing model shown in Figure 14. In
addition, Table 2 displays the 30 top features in the Figure 14 models and compares them with
the t-test-based filter selected features and those published by Nuiiez et al. [31]. Several features
selected in the SVM models are also identified by other techniques, including GLRLM-SRE, GLCM-
Homogeneity, GLRLM-SRLGE, Euler 15, and various perimeter- and area-related parameters.
However, the overlap of the different strategies (Table 2) is quite limited (Figure 15).

Table 2 — Features ranked by the t-test filter method, the embedded-wrapper LR RFE feature selection method [31]

and the embedded-wrapper RFE SVM feature selection method.

Ranking T-test filter method Embedded-Wrapper | Embedded-Wrapper
RFE LR RFE SVM polynomial 4

1 Perimeter9 GLCMEntropy Perimeter16

2 Perimeter8 Perimeter9 GLRLMSRLGE

3 GLRLMRLV GTDMComplexity Perimeterl2

4 Perimeter7 GLSZMSZLGE GLRLMSRE

5 Euler7 Areal6 Perimeter2

6 Euler6 Areal3 GLRLMHGRE

7 GLRLMGLN GLRLMRLV GLRLMLRE

8 Perimeter6 GLRLMRLN Areab

9 GLCMVariance Eulerl Perimeterl

10 GLSZMGLN GLRLMSRE Area5

11 GLCMEntropy Eulerl6 GLCMHomogeneity

12 Perimeter10 GLSZMLGZE Areal5

13 GLCMEnergy Euler15 Euler15

14 GLRLMGLNN GLSZMGLV Euler12

15 Euler5 GLCMCorrelation GTDMComplexity

16 Perimeter5 Euler9 GLRLMRLNN

17 GLRLMSRHGE Perimeterl6 GLSZMZSN

18 Euler12 Euler2 GLCMAutoCorrelation

19 Euler2 Areal2 GLRLMGLNN

20 GTDMContrast GLSZMZP GLRLMRLV

21 GLSZMSZLGE GTDMStrength GLRLMLRHGE

22 Euler3 Areal0 GTDMContrast

23 Perimeter4d GLRLMSRHGE Perimeter10

24 Euler10 GLCMVariance GLSZMSZLGE

25 GLCMCorrelation Euler5 GLRLMLRLGE

26 GLSZMLGZE GLCMHomogeneity | GLRLMGLN

27 GLSZMSZHGE Areall GLSZMLGZE

28 Eulerd GLRLMSRLGE GLSZMSZHGE

29 GLRLMHGRE Perimeter6 Euler8

30 GLCMAutoCorrelation | GLRLMRP GLCMCorrelation
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LR hybrid T-test filter

SVM hybrid

Figure 15 — Venn diagram showing the overlap among the 30 top-selected features using the t-test filter method, the
embedded-wrapper LR RFE feature selection method (indicated LR hybrid in the image) and the embedded-wrapper
RFE SVM feature selection method (indicated SVM hybrid in the image) according to Table 2. Plot generated using the
ggVennDiagram package in RStudio.

6. Discussion and interpretation of the results.

The results presented in this Master’s thesis demonstrate the potential of using radiomics and
machine learning models to assess GB response to therapy in a preclinical mouse model. We
have successfully applied various classifiers and feature selection techniques to MRI-derived
features, offering a promising tool for analyzing subtle microenvironmental changes induced by
treatment.

The classification models evaluated included LR, SVM, LDA and KNN, which exhibit different
performance levels, highlighting the complexities of using radiomic features for GB treatment-
response classification. While SVM, particularly with polynomial kernels, outperformed other
models, it remains important to note that even the best-performing models showed some
limitations in their ability to fully distinguish treated and untreated tumors. This may be
attributed to the combination of a small sample size and high feature dimensionality, which likely
introduces overfitting, limiting the models' overall predictive capacity.

The relatively high accuracy achieved by SVM with polynomial kernels suggests that these
models capture important patterns in the data, especially when combined with a slice voting
system that aggregates the results of different slices, increasing the confidence of the model
prediction for a given mouse. A general trend in the best performing models (i.e., SVM with
polynomial kernel of degree 3 or 4, KNN fine) is that these are among the most flexible and
complex models tested in this thesis. These results suggest that the underlying data distribution
is highly nonlinear and benefits from models capable of capturing complex decision boundaries.
In fact, SVM has been previously proposed in the literature as the best algorithm to diagnose GB
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using histopathological images [40], determine the molecular subtypes of gliomas based on MRI
[41] or predict GB treatment survival using magnetic resonance images in a clinical setting [42].

Moreover, we employed different feature selection methods such as the t-test filter and
embedded-wrapper RFE methods. These approaches aimed to identify the most informative
features while reducing the risk of overfitting. Additional expected benefits of feature selection
include the reduction of computational resources for model usage and the enhancement of the
interpretability of the results. In this context, it is worth noting that the classifiers with the best
predictive performance (especially SVMs with complex, high-degree kernels) were also the least
interpretable. The latter could pose a challenge for applications where interpretability is a
desired model feature.

Table 3 — Summary of the top-performing models as a function of the feature selection method.

t-test filter embedded — wrapper

Selected SVS Selected Selected SVS Selected
Accuracy Accuracy

features ' accuracy features features | accuracy features
Logistic 63% 19 77% 18 75% 9 87% 9
regression
SVM polynomial | - 50, 24 87% 21 70% 9 74% 5
degree 3
SVM polynomial | - 3o, 20 87% 21 77% 14 80% 14
degree 4

The effectiveness of these feature selection techniques varied depending on the classifier used.
Table 3 provides a summary of the model accuracy obtained for the different methods, as a
function of the feature selection method, and the use or non-use of the SVS approach. We
observe that, in terms of accuracy, while the embedded-wrapper method provides a better
model in the case of the LR classifiers, the t-test filter method for feature selection generates
better models for the SVM models (i.e., in particular when combined with SVS aggregation per
mouse). Another trend that can be observed in Table 3 is that the top-performing models contain
fewer selected features in the case of the embedded-wrapper feature method, when compared
to the best-performing models generated with the t-test-based filter method. Of particular
relevance here is the fact that the t-test filter method offers lower computational cost, as it
operates independently of model training and performance evaluation.

In terms of the features selected by each feature selection method, while the t-test filter
identified key features such as GLCM Entropy and Perimeter9, the more complex embedded-
wrapper RFE method revealed additional features critical for distinguishing treated from
untreated tumors. Interestingly, the overlap between features selected by different methods
was limited (Table 2 and Figure 15). The partial overlap might be linked to the inherent
heterogeneity of GB and could suggest that different classification models may capture distinct
aspects of tumor behavior.

Among the top selected features in the SVM with a polynomial kernel of degree 4 using the
embedded-wrapper RFE method, we found texture features from the GLRLM (Gray Level Run
Length Matrix) matrix. Developed by Galloway et al. in 1975 [43], the GLRLM is a texture
descriptor that evaluates sequences of contiguous pixels sharing the same gray level. Among the
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top selected GLRLM-derived features we find (Table 2): 1) GLRLM-SRLGLE (Short Run Low Gray-
Level Emphasis, which refers to the pattern of short low-intensity areas with homogeneous
texture); 2) GLRLM-SRE (Short Run Emphasis, which represents the distribution of short areas of
homogeneous texture); 3) GLRLM-HGRE (High Gray-Level Run Emphasis, which refers to the
pattern of high grayscale extensions); and 4) GLRLM-LRE (Long Run Emphasis, which describes
the pattern of long homogeneous stretches). Moreover, 10 out of the 30 top-selected features
in the SVM model (Table 2) belong to the GLRLM matrix. The strong representation of GLRLM-
derived features among the top predictors correlated with evidence found in the literature. For
instance, prior studies have shown that GLRLM metrics correlate with relevant histopathological
markers in gliomas. Specifically, the GLRLM-SRE feature has been linked to proliferation indices
like vimentin and CD34 in high-grade glioma cases [44]. Additionally, GLRLM-based features have
demonstrated potential in assessing treatment response in GB. As reported by recent work [45],
GLRLM features were effective in distinguishing between true progression and
pseudoprogression following therapy, a major clinical challenge in the management of GB.
Moreover, Cheung et al. [40] found several GLRLM features to differ significantly between GB
and normal tissue, highlighting their diagnostic utility. Overall, these findings highlight the utility
of GLRLM features in capturing tumor heterogeneity relevant to treatment response in GB.

Another feature among the top selected features is GLCMHomogeneity, from the Gray Level Co-
occurrence Matrix (GLCM). The GLCM matrix [46] quantifies how often pairs of pixel intensities
(i and j) occur at specific spatial relationships, typically in vertical, horizontal, or diagonal
directions [47]. GB lesions often exhibit irregular shapes and variable nucleoli, leading to greater
heterogeneity in pixel intensity. As a result, GLCM features tend to show higher variability and
reduced homogeneity in tumor tissue compared to normal tissue, reflecting underlying
structural differences. Cheung et al. [40] found that GLCMHomogeneity was significantly lower
in GB than in normal tissue based on H&E-stained histopathological slides, reinforcing the
feature’s potential to quantify the loss of textural uniformity characteristic of malignant glioma
regions.

Moreover, Perimeter features from the Minkowski functions are selected among the top
selected features in the SVM based on the embedded-wrapper feature selection method and in
the t-test filter method. Minkowski functionals have been identified as valuable tools for
quantifying the structural heterogeneity of peritumoral hyperintensity regions in GB. By
capturing geometric features such as the boundary complexity in the case of the Perimeter
values, these functions have demonstrated prognostic significance, particularly in predicting
patient survival outcomes [48].

Finally, one of the notable strategies employed in this research was the SVS approach, which
aggregates results from multiple MRI slices to produce a more robust classification. We have
observed that the SVS approach improved the accuracy of classification for most of the models,
although the magnitude of this improvement varied for the different models. In our approach,
not only is aggregation a key factor improving accuracy, but also the weighting system used in
SVS (i.e., area of the associated image mask). As shown in Figure 16, the use of weights that
depend on the area of the tumor outperforms an aggregation strategy in which each tumor slice
has the same weight in the aggregation process. All this suggests that a 3D analysis (i.e., rather
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than analyzing a few slides) would likely provide a more comprehensive view of the tumor's
microenvironment and could enhance the model's predictive power.
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Figure 16 — Comparison of the model accuracy if the SVS approach (Figure 10) uses weights that depend on the area
of the masks (i.e., area of the tumors) or if each slice has a similar weight. Model accuracy is plotted as a function of
the number of selected features (i.e., from 1 to 30 features) using a filter-based method.

7. Possible drawbacks of the methods used

The methods used in this Master’s thesis yielded promising results; however, several limitations
and potential drawbacks may be acknowledged.

The study was conducted using a relatively limited number of mice (n = 63), with only 32 samples
used for training. This is a small sample size that restricts the models’ statistical power and,
importantly, can negatively impact the generalizability of the models. The high dimensionality of
the feature space (90 features) relative to the number of samples increases the risk of overfitting,
despite the use of cross-validation and feature selection techniques. This might be particularly
relevant for SVM models with polynomial kernels of degrees 3 and 4, which showed strong
performance but might lack robustness on unseen data. These models may still be learning
dataset-specific noise and might not generalize well.

Our strategy uses manual ROl segmentation as the image segmentation approach. Here, the
segmentation of tumor regions was done manually by expert researchers. While this ensures
high-quality segmentation, it also introduces subjectivity and potential inter-individual
variability, which might limit the reproducibility of the results described. Automated or semi-
automated segmentation methods could provide alternatives to address this potential method
limitation. Alternatively, the image segmentation step could be avoided altogether, enabling the
model to extract information from the whole MRI images.

Although the SVS approach used to aggregate predictions from multiple slices per mouse
improved performance, the weighting scheme may oversimplify spatial heterogeneity within
tumors. It is possible that 3D volumetric analysis could provide a more representative picture of
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the tumor microenvironment and represent more accurately the intra-tumoral heterogeneity
across slices.

For model training and validation, we adopted the same training-test split of the dataset that
was proposed by Nufiez et al. [31], primarily to enable direct comparison with their results.
However, this predefined split introduces certain biases that may affect the generalizability of
the models. Specifically, the training set consists predominantly of single-slice images per mouse,
whereas the test set includes mice with three to four slices each (Supplementary Table 1).
Additionally, there is a treatment protocol imbalance: the training set is largely composed of
mice treated with the standard 3-cycle TMZ regimen, while the test set primarily includes mice
subjected to the IMS-TMZ protocol (Table 1 and Figure 5). Finally, most of the mice in the test
set were kept in an EE-like setting before and during TMZ treatment (Figure 5) to boost treatment
performance (this was not the case for mice in the training set). These differences could affect
model performance in ways unrelated to the features of interest, limiting the reliability of the
conclusions. A more balanced approach, which, for example, randomly assigns mice to training
and test sets, could potentially mitigate these biases and lead to more robust performance on
unseen data.

The analysis presented focuses on images corresponding to the last day these mice were studied
(usually prior to euthanization) [31]. This endpoint is informative, as it reflects the full impact of
the treatment on the tumor microenvironment. However, it is important to note that the mice
were imaged longitudinally, approximately every 3-4 days throughout the study (Figure 5).
Despite this, the temporal evolution of the tumor, as captured by these serial MRl scans, was not
incorporated into our current modeling approach. Incorporating time-dependent changes in the
radiomic features could potentially enhance the predictive performance and clinical relevance
of our models, particularly for early response assessment.

The rationale for using a hybrid embedded-wrapper RFE method in this thesis and in Nunez et
al. [31] originates from the limitations of a pure wrapper-based RFE method, which often fails to
distinguish feature relevance in the early steps, as classification accuracies remain largely
unchanged. However, we also observed that the embedded RFE method faces similar challenges,
encountering many instances in which it cannot distinguish feature relevance. Consequently, the
hybrid approach cannot fully resolve the issue it was designed to overcome. Thus, alternative
feature selection strategies, such as incorporating a preprocessing step to remove low-variance
features [42], could be evaluated in an effort to eliminate variables with minimal discriminatory
power that would otherwise hinder both embedded and wrapper RFE methods.

8. Ethical thinking, societal relevance, and stakeholder awareness

From an ethical point of view, the research dataset used in this thesis adheres to a responsible
and ethical approach to biomedical research, aimed at balancing scientific progress with a strong
commitment to animal welfare, societal benefit, and clinical relevance in the context of GB. The
dataset used was sourced from previously completed studies, which were performed in line with
regional and national ethical guidelines and were approved by UAB’s Research Ethics Committee
(https://www.uab.cat/en/research-ethics/animal-experimentation, accessed on 27 July 2025),
under protocols CEA-OH-3665 and CEEAH-9685.
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The research performed at the GABRMN laboratory fully embraces the 3Rs principle—
Replacement, Reduction, and Refinement—as a cornerstone of its in vivo research practices.
Replacement is promoted through the use of in vitro systems and existing data from preclinical
models, reducing the need for new in vivo experiments. Reduction is achieved by minimizing the
number of animals to those strictly needed to provide statistically/biologically meaningful
conclusions and by applying longitudinal MRI imaging protocols that enable gathering additional
information from each mouse. Refinement is ensured through optimal housing conditions,
environmental enrichment, and continuous veterinary supervision, all aimed at minimizing
stress and discomfort. All imaging procedures were non-invasive and performed under
anesthesia, further safeguarding animal welfare.

Additionally, the research is designed to limit animal use to only those stages where therapeutic
approaches demonstrated sufficient efficacy in representative in vitro models. Only when these
preclinical results justified further validation were small cohorts of animals used, with carefully
optimized experimental designs that maximize scientific value while minimizing ethical cost.

Crucially, the role of veterinary supervision in this process is paramount. Veterinarians involved
in these studies operate under strict animal welfare criteria and are entrusted with the authority
to halt any experiment should animal well-being be compromised. Their judgment is sovereign,
and animal welfare takes precedence over any scientific goal, including the desire to complete a
dataset.

Though the study presented in this thesis did not involve human subjects, future translational
steps of these models should adhere to principles of transparency, informed consent, and data
protection, particularly if these models are to be integrated into clinical decision-making. The
machine learning models developed here are ultimately intended to support, but not to replace,
medical expertise. As such, reproducibility, interpretability, and fairness should be some of the
principles that guide future deployment.

In terms of societal relevance, GB accounts for approximately half of all primary CNS
malignancies and remains the most common primary malignant brain tumor in adults, with an
incidence of about 3 cases per 100,000 individuals per year [3, 4]. Despite advances in surgical
techniques, radiotherapy, and chemotherapy, the prognosis remains extremely poor, with long-
term survival being rare. In addition to its high mortality, GB causes significant neurological,
cognitive, and emotional impairments, severely diminishing patient independence and imposing
a profound burden on families and caregivers. GB also has important economic implications,
linked to substantial direct and indirect costs. The median cost of therapy per patient is estimated
at approximately $100,000, most of which is concentrated in the first four months after diagnosis
(i.e., explained by its aggressive nature and limited survival of the disease). Indirect costs, such
as productivity loss and caregiver burden, have been estimated to exceed $1 billion per year in
the EU, highlighting the societal urgency of improving GB care.

In this context, the development of predictive models—Ilike those explored in this thesis—has
significant potential to enhance clinical decision-making and support precision medicine. By
enabling earlier identification of treatment response or failure, these models could help optimize
therapeutic strategies, reduce unnecessary toxicity, and improve quality of life. While this work
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is based on preclinical (murine) data, it contributes to future translational research aimed at
supporting clinicians with quantitative, data-driven tools.

In terms of stakeholders’ awareness, it is worth pointing out that the long-term impact of this
research depends not only on scientific robustness but also on proactive engagement with key
stakeholders across the biomedical innovation ecosystem, as a critical step required for future
clinical implementation. Thus, establishing and maintaining strong connections with hospitals is
central in this respect, enabling early feedback from clinicians and facilitating the integration of
new technologies into real-world clinical workflows. In particular, the GABRMN laboratory
collaborates closely with Dr. Andreu Gabarrds and Alejandro Fernandez-Coello at Bellvitge
Hospital (Bellvitge, Spain), whose expertise in brain tumor treatment and neurological
complications provides critical clinical insight. These collaborations ensure alignment with
medical needs and provide a realistic view of possible adoption in the complex clinical GB setting.
Similarly, interactions with patient associations can ensure critical alignment with patient needs.

Beyond academic, clinical and patient stakeholders, the successful development and
deployment of machine learning-based medical technologies would require the involvement of
a broader set of stakeholders in the innovation ecosystem. This includes entrepreneurs, early-
stage investors, and industry partners capable of supporting regulatory navigation and
commercialization of such technologies. Overall, stakeholder engagement is not only critical for
accelerating the translation of research into practice but also for ensuring responsible
innovation. By involving diverse actors early in the development process, we can better
anticipate potential barriers to implementation, such as ethical concerns or data privacy.
Stakeholders’ involvement enables the development of solutions that are technically robust,
realistic, socially acceptable, and ethically sound.

9. Conclusion

This thesis investigated the use of radiomics-based machine learning models to differentiate
therapeutic responses in the murine GL261 glioblastoma model. By extracting a comprehensive
set of radiomic features from T2-weighted MRI images (i.e., 90 features including texture and
morphological features) and applying classification algorithms, we assessed the ability of these
models to distinguish between TMZ treatment responses.

We were able to demonstrate the potential of MRI-based radiomics approaches to detect
therapy-induced changes in glioblastoma tumors, by capturing subtle microenvironmental
changes induced by TMZ. By systematically evaluating a range of diverse classifiers and feature
selection strategies, we identified support vector machines with higher-degree polynomial
kernels and fine-grained KNN as the top-performing models. Overall, the findings might indicate
that the most effective approaches are those relying on flexible and complex models, supporting
the notion that the underlying data distribution is highly nonlinear and best addressed by
classifiers capable of capturing intricate decision boundaries.

Several texture-based features derived from the GLRLM family were selected, suggesting their
potential relevance in characterizing tumor heterogeneity and therapy response. Similarly, GLCM
Homogeneity and Minkowski functions’ Perimeter features appear to be important in
distinguishing treatment groups. However, while certain biological interpretations can be
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inferred from existing literature, further validation is necessary to establish their biological
relevance and to link them to specific molecular mechanisms.

In terms of future research, this thesis also highlights some possible challenges, particularly
regarding model generalizability. Potential imbalances or biases in dataset composition could
have limited the robustness of the classifiers. Moreover, the use of a mask generated by expert
researchers for image segmentation might introduce subjectivity and potential inter-individual
variability, potentially affecting model generalizability. Addressing these limitations through
future software developments may help to improve robustness and broader applicability of
these models.

Overall, this thesis contributes to highlighting the potential in using radiomics and machine
learning methods with the aim of improving treatment response assessment in GB.

10. Ideas for future research

One of the proposed next steps in this project is to apply the developed models to new preclinical
datasets, in order to assess how accurately these models can classify other (related) GB
treatments. As part of this Master’s thesis, | started creating masks for MRl images from different
preclinical studies using the GL261 mouse model. These included a dataset in which variations
of the IMS-TMZ treatment were evaluated: different TMZ doses (i.e., 140 mg/kg, 200 mg/kg and
240 mg/kg) and different starting days for the TMZ treatment (i.e., 8 and 11 days after tumor
implantation) were evaluated. Another available dataset corresponds to the evaluation of a
combination of TMZ and the casein kinase 2 inhibitor CX-4945 [49] as a possible combined
treatment for GB [50]. Another set of images corresponds to the evaluation of
cyclophosphamide (a chemotherapeutic) as GB treatment, evaluated with the metronomic
regimen [51]. Moreover, a dataset is available in which immunotherapy using the anti-PD-1
antibody (checkpoint inhibitor) is evaluated as GB treatment alone or in combination with TMZ
treatment [52, 53]. Another available dataset evaluated ALDH inhibitors (i.e., a lipidic
nanoemulsion of the compound DIMATE) as a possible GB treatment [54]. Finally, there are two
datasets that assess biscatechol-based and Fe-based Pt(IV) compounds for GB treatment.

Overall, the available datasets comprise MRI scans from 94 mice, each with three time points on
average and 10 slices per scan, resulting in a total of 2,820 slices for analysis. Given the scale and
complexity of this data, the development of an automatic or semi-automatic tool is essential to
facilitate the generation of segmentation masks and ensure consistency across images and users.
Furthermore, the availability of multiple slices spanning the entire brain offers a valuable
opportunity to enhance our MATLAB-based pipeline by incorporating multi-slice analysis
reflecting the spatial context, enabling a more comprehensive characterization of the tumor
microenvironment, even without a full 3D volumetric reconstruction.

A possible interesting direction for future research would be to evaluate classifier ensembles as
a way to enhance model robustness and accuracy [55]. Inspired by the brain’s modular
information processing, ensemble methods apply the divide-and-conquer principle by
combining simpler classifiers to address complex tasks [56]. Techniques such as bagging and
boosting have shown strong potential in pattern recognition. Bagging trains multiple models on
different bootstrapped subsets and combines them via majority voting, while boosting
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sequentially adjusts training to focus on previously misclassified instances. Thus, we could
evaluate SVM ensembles using bagging or boosting in our future Radiomics studies.

Future research could also explore the integration of multimodal data in preclinical models to
enhance the performance of the machine learning models. Recent studies in clinical oncology
have demonstrated the benefits of combining imaging, clinical, and molecular data, among
others [27]. Incorporating diverse data modalities in addition to MRI, such as histopathology,
genomic/transcriptomic profiles (i.e., radiogenomics [57]), and behavioral readouts from animal
models, may offer a more integrated understanding of tumor biology. Such multimodal
approaches could increase predictive accuracy by overcoming the limitations of MRI and may
enable the capture of complementary biological information [41, 42].

Finally, some of the selected features (e.g., GLCM Entropy, Perimeter9, GLRLM-SRE, GLCM
Homogeneity) have demonstrated algorithmic importance in distinguishing treatment groups.
However, their direct biological relevance in the tumor microenvironment changes remains
unclear. Further research could focus on establishing the connections between these radiomic
features and biological processes in GB. One possible strategy involves correlating selected
radiomic features with histopathological markers, such as cell density, necrosis, vascular
proliferation, or immune cell infiltration, obtained from matched tissue sections. This could help
determine whether features like texture heterogeneity (e.g., GLCM Homogeneity) reflect cellular
disorganization, hypoxia, or immune activity. Similarly, the correlation of selected features with
immunohistochemical markers or gene expression could be studied, especially when studied on
the same tumors used for MRI acquisition. Overall, such a line of research would highlight the
potential of radiomics in shedding light on the molecular mechanisms driving GB disease.

11. References

1. Ferlay, J., et al. Global Cancer Observatory: Cancer Today. Lyon, France: International
Agency for Research on Cancer. 2024 [cited 2025 12 July]; Available from:
https://gco.iarc.who.int/today.

2. Weller, M., et al., Glioma. Nat Rev Dis Primers, 2015. 1: p. 15017.

3. Osswald, M., et al., Brain tumour cells interconnect to a functional and resistant network.
Nature, 2015. 528(7580): p. 93-8.

4. Stoyanov, G.S., et al., Cell biology of glioblastoma multiforme: from basic science to
diagnosis and treatment. Med Oncol, 2018. 35(3): p. 27.

5. Central Nervous System Tumours. WHO Classification of Tumours. Vol. 6. 2021: IARC
Publications.

6. Weber, R.G., et al., Characterization of genomic alterations associated with glioma
progression by comparative genomic hybridization. Oncogene, 1996. 13(5): p. 983-94.

7. Byun, Y.H. and C.K. Park, Classification and Diagnosis of Adult Glioma: A Scoping Review.
Brain Neurorehabil, 2022. 15(3): p. e23.

8. Tan, A.C., et al., Management of glioblastoma: State of the art and future directions. CA
Cancer J Clin, 2020. 70(4): p. 299-312.

9. Sipos, D., et al., Glioblastoma: Clinical Presentation, Multidisciplinary Management, and

Long-Term Outcomes. Cancers (Basel), 2025. 17(1): p. 146.
10. Greenhalgh, A.D., S. David, and F.C. Bennett, Immune cell regulation of glia during CNS
injury and disease. Nat Rev Neurosci, 2020. 21(3): p. 139-52.

Page 36 of 56



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Stupp, R., et al., Effects of radiotherapy with concomitant and adjuvant temozolomide
versus radiotherapy alone on survival in glioblastoma in a randomised phase Ill study: 5-
year analysis of the EORTC-NCIC trial. Lancet Oncol, 2009. 10(5): p. 459-66.

Parker, N.R., et al., Molecular heterogeneity in glioblastoma: potential clinical
implications. Front Oncol, 2015. 5: p. 55.

Karpel-Massler, G., et al., Combined inhibition of Bcl-2/Bcl-xL and Usp9X/Bag3
overcomes apoptotic resistance in glioblastoma in vitro and in vivo. Oncotarget, 2015.
6(16): p. 14507-21.

Bellail, A.C., et al., DR5-mediated DISC controls caspase-8 cleavage and initiation of
apoptosis in human glioblastomas. J Cell Mol Med, 2010. 14(6A): p. 1303-17.

Sundar, S.J., et al., The role of cancer stem cells in glioblastoma. Neurosurg Focus, 2014.
37(6): p. E6.

Kim, Y., et al., Perspective of mesenchymal transformation in glioblastoma. Acta
Neuropathol Commun, 2021. 9(1): p. 50.

Segerman, A., et al., Clonal Variation in Drug and Radiation Response among Glioma-
Initiating Cells Is Linked to Proneural-Mesenchymal Transition. Cell Rep, 2016. 17(11): p.
2994-3009.

Lim, M., et al., Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol,
2018.15(7): p. 422-42.

Czarnywojtek, A., et al., Glioblastoma Multiforme: The Latest Diagnostics and Treatment
Techniques. Pharmacology, 2023. 108(5): p. 423-31.

Caravan, P, et al., Gadolinium(lll) Chelates as MRI Contrast Agents: Structure, Dynamics,
and Applications. Chem Rev, 1999. 99(9): p. 2293-352.

Leung, D., et al., Role of MRl in primary brain tumor evaluation. ) Natl Compr Canc Netw,
2014.12(11): p. 1561-8.

Vogelbaum, M.A., et al., Application of novel response/progression measures for
surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology
(RANO) Working Group. Neurosurgery, 2012. 70(1): p. 234-43; discussion 243-4.
Eisenhauer, E.A., et al., New response evaluation criteria in solid tumours: revised RECIST
guideline (version 1.1). Eur J Cancer, 2009. 45(2): p. 228-47.

Macdonald, D.R., et al., Response criteria for phase Il studies of supratentorial malignant
glioma. J Clin Oncol, 1990. 8(7): p. 1277-80.

van Griethuysen, J.J.M., et al.,, Computational Radiomics System to Decode the
Radiographic Phenotype. Cancer Res, 2017. 77(21): p. e104-e107.

van Timmeren, J.E., et al., Radiomics in medical imaging— “how-to” guide and critical
reflection. Insights into Imaging, 2020. 11(1): p. 91.

Perez-Lopez, R., et al., A guide to artificial intelligence for cancer researchers. Nat Rev
Cancer, 2024. 24(6): p. 427-41.

Arias-Ramos, N., et al., Metabolomics of Therapy Response in Preclinical Glioblastoma:
A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of
Temozolomide Treatment. Metabolites, 2017. 7(2): p. 20.

Delgado-Goni, T., et al., MRSI-based molecular imaging of therapy response to
temozolomide in preclinical glioblastoma using source analysis. NMR Biomed, 2016.
29(6): p. 732-43.

Wu, S., et al., Anti-tumour immune response in GL261 glioblastoma generated by
Temozolomide Immune-Enhancing Metronomic Schedule monitored with MRSI-based
nosological images. NMR Biomed, 2020. 33(4): p. e4229.

Nunez, L.M., et al., Unraveling response to temozolomide in preclinical GL261
glioblastoma with MRI/MRSI using radiomics and signal source extraction. Sci Rep, 2020.
10(1): p. 19699.

Page 37 of 56



32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43,

44.

45.

46.

47.

48.

49.

50.

51.

Calero-Perez, P., On the road to improve glioblastoma therapy follow-up. Immune
microenvironment: what is behing the MRI-based nosological images?, in Department
of Biochemistry and Molecular Biology. 2022, Universitat Autonoma de Barcelona.
Calero-Perez, P.,, et al., Immune System-Related Changes in Preclinical GL261
Glioblastoma under TMZ Treatment: Explaining MRSI-Based Nosological Imaging
Findings with RT-PCR Analyses. Cancers (Basel), 2021. 13(11): p. 2663.

Vallieres, M., et al., A radiomics model from joint FDG-PET and MRI texture features for
the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med
Biol, 2015. 60(14): p. 5471-96.

Towner, R.A., et al., A new anti-glioma therapy, AG119: pre-clinical assessment in a
mouse GL261 glioma model. BMC Cancer, 2015. 15: p. 522.

Kober, C., et al., Microglia and astrocytes attenuate the replication of the oncolytic
vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps. )
Transl Med, 2015. 13: p. 216.

Garofalo, S., et al., Enriched environment reduces glioma growth through immune and
non-immune mechanisms in mice. Nat Commun, 2015. 6: p. 6623.

Legland, D. Minkowski toolbox. 2021 [Last accessed 21th April 2025]; Available from:
https://es.mathworks.com/matlabcentral/fileexchange/33690-geometric-measures-in-
2d-3d-images.

Valliere, M. Radiomics toolbox. 2012 [Last accessed 21th April 2025]; Available from:
https://github.com/mvallieres/radiomics.

Cheung, EYW., et al., Al Deployment on GBM Diagnosis: A Novel Approach to Analyze
Histopathological Images Using Image Feature-Based Analysis. Cancers, 2023. 15(20): p.
5063.

Lu, C.F,, et al., Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas.
Clin Cancer Res, 2018. 24(18): p. 4429-4436.

Chong, J.K., et al., Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A
Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation.
J Korean Neurosurg Soc, 2025. 68(1): p. 7-18.

Galloway, M.M., Texture analysis using gray level run lengths. Computer Graphics and
Image Processing, 1975. 4(2): p. 172-79.

Li, J., et al., High-order radiomics features based on T2 FLAIR MRI predict multiple glioma
immunohistochemical features: A more precise and personalized gliomas management.
PLoS One, 2020. 15(1): p. e0227703.

Patel, M., et al. Radiomic evaluation of treatment response in patients with glioblastoma:
a preliminary study. 2019. European Congress of Radiology-ECR 2019.

Haralick, R.M., K. Shanmugam, and |. Dinstein, Textural Features for Image Classification.
IEEE Transactions on Systems, Man, and Cybernetics, 1973. SMC-3(6): p. 610-21.
Bhagat, P.K., P. Choudhary, and K.M. Singh, Chapter 13 - A comparative study for brain
tumor detection in MRI images using texture features, in Sensors for Health Monitoring,
N. Dey, J. Chaki, and R. Kumar, Editors. 2019, Academic Press. p. 259-87.

Choi, Y., et al., Analysis of peritumoral hyperintensity on pre-operative T2-weighted MR
images in glioblastoma: Additive prognostic value of Minkowski functionals. PLoS One,
2019. 14(5): p. e0217785.

Bova, V., et al., Casein Kinase 2 Inhibitor, CX-4945, Induces Apoptosis and Restores Blood-
Brain Barrier Homeostasis in In Vitro and In Vivo Models of Glioblastoma. Cancers
(Basel), 2024. 16(23): p. 3936.

Ferrer-Font, L., et al., Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for
GL261 Glioblastoma Therapy in Inmunocompetent Mice. Pharmaceuticals (Basel), 2017.
10(1): p. 24.

Ferrer-Font, L., Tuning response to therapy in preclinical GL261 glioblastoma through
CK2 targeting and temozolomide metronomic approaches: non-invasive assessment with

Page 38 of 56



52.

53.

54.

55.

56.

57.

MRI and MRSI-based molecular imaging strategies., in Department of Biochemistry and
Molecular Biology. 2017, Universitat Autonoma de Barcelona.

Wu, S., When oncology meets immunology: improving GL261 glioblastoma treatment
through cancer-related immunity and MRSI-based non-invasive follow-up of response, in
Department of Biochemistry and Molecular Biology. 2020, Universitat Autonoma de
Barcelona.

Wu, S., et al., Anti-PD-1 Immunotherapy in Preclinical GL261 Glioblastoma: Influence of
Therapeutic Parameters and Non-Invasive Response Biomarker Assessment with MRSI-
Based Approaches. International Journal of Molecular Sciences, 2020. 21(22): p. 8775.
Jimenez, R., Targeting aldehyde dehydrogenases in combined therapy against
glioblastoma, in Department of Biochemistry and Molecular Biology. 2023, Universitat
Autonoma de Barcelona.

Huang, M\W.,, et al., SVM and SVM Ensembles in Breast Cancer Prediction. PLoS One,
2017. 12(1): p. €0161501.

Kim, H.-C., et al., Constructing support vector machine ensemble. Pattern recognition,
2003. 36(12): p. 2757-67.

Monti, S., et al., Radiomics and Radiogenomics in Preclinical Imaging on Murine Models:
A Narrative Review. J Pers Med, 2023. 13(8).

Page 39 of 56



12. Software code

The MATLAB software used in this thesis can be found at
https://gitfront.io/r/stanco78/alGZ76Z8GDrN/Radiomics/

e PredictionReport function used in Nufiez et al. [31] to calculate the votation accuracy in the

SVS approach

function [MiceTable,NMetrics] = PredictionReport (NTable, NMetrics, Methods)
% This function extracts the predictions of the results of classifiers over
% a dataset to extract how the performance in each mouse is individually to
% show which ones are the critical subjects.

MiceTable = TableGenerator (['Mouse'; 'Samples'; 'Average';Methods]);

mice = unique ([NTable.Mouse], 'rows');

VotationLabels = [];
for i = 1: length (mice)
mouse = mice (i) ;
mouse_ selection = (NTable.Mouse == mouse);
NTableMouse = NTable (mouse selection,:);
N = sum(mouse selection);
right = sum((NTableMouse.Group) == tableZarray(NTableMouse (:,Methods)),1);

accmethod = right / N;
avg = mean (accmethod) ;
VotationLabel mice = logical (round(accmethod)) ;
VotationLabels = [VotationLabels;VotationLabel mice];
MiceTable = [MiceTable;
num2cell ([mouse, N, avg,accmethod]) ];
end

VotationResults = sum(VotationLabels,1l) / size(VotationLabels,1);
NMetrics = addvars (NMetrics,VotationResults', 'NewVariableNames', 'VotationAcc');
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13. Annex

Supplementary Table 1 — Details of the mouse data set, including the day post-treatment at which the image was
taken and the number of slices. Adapted from [31].

DATASET
TRAIN TEST
MOUSE DAY Number | CONTROL/ | MOUSE DAY Number | CONTROL/
# of SLICES | TREATED # of SLICES TREATED
179 17 1 CONTROL 1109 11 4 CONTROL
233 17 1 CONTROL 1110 13 4 CONTROL
234 17 1 CONTROL 1111 16 4 CONTROL
255 14 1 CONTROL 1112 13 4 CONTROL
278 19 1 CONTROL 1471 16 2 CONTROL
288 18 1 CONTROL 1465 15 2 CONTROL
32 16 1 CONTROL 1472 13 3 CONTROL
351 13 1 CONTROL 1474 14 3 CONTROL
520 18 1 CONTROL 1320 18 3 CONTROL
529 18 1 CONTROL 1344 17 3 CONTROL
583 18 1 CONTROL 1348 21 3 CONTROL
69 15 1 CONTROL 1457 23 3 CONTROL
71 16 1 CONTROL 1459 15 2 CONTROL
526 18 1 TREATED 1461 15 3 CONTROL
572 18 1 TREATED 1462 15 3 CONTROL
574 26 1 TREATED 1466 23 3 CONTROL
776 34 1 TREATED 975 26 4 TREATED
795 18 1 TREATED 1023 23 4 TREATED
797 22 1 TREATED 1026 23 4 TREATED
808 33 1 TREATED 1108 29 3 TREATED
415 22 1 TREATED 1100 26 4 TREATED
418 22 1 TREATED 971 26 4 TREATED
437 23 1 TREATED 1412 23 2 TREATED
525 22 1 TREATED 1445 23 4 TREATED
527 22 1 TREATED 1447 28 3 TREATED
575 26 1 TREATED 1450 24 2 TREATED
584 26 1 TREATED 1451 23 3 TREATED
586 22 1 TREATED 1456 23 2 TREATED
821 34 1 TREATED 1458 23 4 TREATED
414 24 1 TREATED 1460 23 2 TREATED
419 24 1 TREATED 1463 23 1 TREATED
521 18 1 TREATED
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Supplementary Table 2 — Radiomics texture features extracted from the MRI images. Adapted from [31].

Gray Level Co-occurrence Matrix (GLCM)

Energy

Contrast

Entropy

Homogeneity

Correlation

SumAverage

Variance

Dissimilarity

Autocorrelation

ray Level Run Length Matrix (GLRLM)

Short Run Emphasis (SRE)

Long Run Emphasis (LRE)

Gray Level Non-Uniformity (GLN)

Run Length Non-Uniformity (RLN)

Run Percentage (RP)

Low Gray-Level Run Emphasis (LGRE)

High Gray-Level Run Emphasis (HGRE)

Short Run Low Gray-Level Emphasis (SRLGE)
Short Run High Gray-Level Emphasis (SRHGE)
10 | Long Run Low Gray-Level Emphasis (LRLGE)
11 | Long Run High Gray-Level Emphasis (LRHGE)
12 | Gray-Level Variance (GLV)

Gray-Level Size Zone Matrix (GLSZM):

1 | Small Zone Emphasis (SZE)

2 | Large Zone Emphasis (LZE)

3 | Gray-Level Nonuniformity (GLN)
4 | Zone-Size Nonuniformity (ZSN)
5 | Zone Percentage (ZP)
6

7

8

9

OO (N[O [WIN|F-

o

Ol |INIOON|BWIN|F

Low Gray-Level Zone Emphasis (LGZE)

High Gray-Level Zone Emphasis (HGZE)

Small Zone Low Gray-Level Emphasis (SZLGE)
Small Zone High Gray-Level Emphasis (SZHGE)
10 | Large Zone Low Gray-Level Emphasis (LZLGE)
11 | Large Zone High Gray-Level Emphasis (LZHGE)
12 | Gray-Level Variance (GLV)

Neighborhood Gray-Tone Difference Matrix (NGTDM):
Coarseness

Contrast

Busyness

Complexity

Strength

N IWIN|E
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Supplementary Figure 1 — LR radiomics model performance, in terms of model accuracy, when the PredictionReport
function is used to calculate the accuracy for the SVS approach. Accuracy is plotted as a function of the number of
selected features (i.e., from 1 to 30 features) using a filter-based method. On the left, the accuracy is evaluated for
each slice, and on the right, the SVS approach was applied to aggregate all the slices for a specific mouse.
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Supplementary Figure 2 — LR model performance, in terms of model test specificity (left) and sensitivity (right). These
performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30 features) using
a filter-based method.
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Supplementary Figure 3 — LR model performance, in terms of model test specificity (left) and sensitivity (right). These
performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30 features) using

an embedded-wrapper method.

Test specificity Test sensitivity
T T T T T T
LR LR
SVM SVM
LR+SVS LR+SVS
1 — — svM+svs| ] 1F|= = svm+svs 1
0.8 & 08
2 2
£ 06 — 206 r
3 \ 2
o 7 5 |
(%) —- 7]
\
04 1 04 1
I
02 R 02+ R
0 1 . L 1 1 0 1 1 1 . L
0 5 10 15 20 25 30 0 5 10 15 20 25 30

number of features

number of features

Supplementary Figure 4 — SVM with linear kernel model performance, in terms of model test specificity (left) and
sensitivity (right). These performance parameters are plotted as a function of the number of selected features (i.e.,
from 1 to 30 features) using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 5 — SVM with Gaussian kernel model performance, in terms of model test specificity (left) and
sensitivity (right). These performance parameters are plotted as a function of the number of selected features (i.e.,
from 1 to 30 features) using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 6 — SVM with polynomial kernel of degree 2 model performance, in terms of model test
specificity (left) and sensitivity (right). These performance parameters are plotted as a function of the number of
selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR model is plotted

as a reference.
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Supplementary Figure 7 — SVM with polynomial kernel of degree 3 model performance, in terms of model test
specificity (left) and sensitivity (right). These performance parameters are plotted as a function of the number of
selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR model is plotted

as a reference.
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Supplementary Figure 8 — SVM with polynomial kernel of degree 4 model performance, in terms of model test
specificity (left) and sensitivity (right). These performance parameters are plotted as a function of the number of
selected features (i.e., from 1 to 30 features) using a filter-based method. The performance of the LR model is
plotted as a reference.
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Supplementary Figure 9 — LDA model performance, in terms of model test specificity (left) and sensitivity (right). These
performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30 features) using

a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 10 — KNN fine model performance, in terms of model test specificity (left) and sensitivity (right).
These performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30 features)
using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 11 — KNN medium model performance, in terms of model test specificity (left) and sensitivity
(right). These performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30
features) using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 12 — KNN cosine model performance, in terms of model test specificity (left) and sensitivity
(right). These performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30
features) using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 13 — KNN cubic model performance, in terms of model test specificity (left) and sensitivity
(right). These performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30
features) using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 14 — KNN weighted model performance, in terms of model test specificity (left) and sensitivity
(right). These performance parameters are plotted as a function of the number of selected features (i.e., from 1 to 30
features) using a filter-based method. The performance of the LR model is plotted as a reference.
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Supplementary Figure 15 — SVM with polynomial kernel of degree 3 model performance, in terms of model test
specificity (left) and sensitivity (right). These performance parameters are plotted as a function of the number of
selected features (i.e., from 1 to 30 features) using an embedded-wrapper method. The performance of the LR model
is plotted as a reference.
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Supplementary Figure 16 — SVM with polynomial kernel of degree 4 model performance, in terms of model test
specificity (left) and sensitivity (right). These performance parameters are plotted as a function of the number of
selected features (i.e., from 1 to 30 features) using an embedded-wrapper method. The performance of the LR model
is plotted as a reference.
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Supplementary Figure 17 — LR model performance, in terms of F1-score. The Fl-score is plotted as a function of the
number of selected features (i.e., from 1 to 30 features) using the t-test filter method.
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Supplementary Figure 18 — LR model performance, in terms of F1-score. The Fl-score is plotted as a function of the
number of selected features (i.e., from 1 to 30 features) using the embedded-wrapper method.
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Supplementary Figure 19 — SVM model performance, in terms of Fl-score, when a linear kernel (left) or Gaussian
kernel (right) is used. The Fl-score is plotted as a function of the number of selected features (i.e., from 1 to 30

features) using the t-test filter method.
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Supplementary Figure 20 — SVM model performance, in terms of F1-score, when a polynomial kernel of degree 2 (left)
or 3 (right) is used. The F1-score is plotted as a function of the number of selected features (i.e., from 1 to 30 features)

using the t-test filter method.
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Supplementary Figure 21 — SVM model performance, in terms of F1-score, when a polynomial kernel of degree 4 is
used. The Fl-score is plotted as a function of the number of selected features (i.e., from 1 to 30 features) using the t-
test filter method.
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Supplementary Figure 22 — LDA model performance, in terms of F1-score. The Fl-score is plotted as a function of the
number of selected features (i.e., from 1 to 30 features) using the t-test filter method.
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Supplementary Figure 23 — KNN model performance, in terms of F1-score, when a KNN fine (left) or KNN
medium (right) model configuration is used. The F1-score is plotted as a function of the number of selected

features (i.e., from 1 to 30 features) using the t-test filter method.
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Supplementary Figure 24 — KNN model performance, in terms of Fl-score, when a KNN cosine (left) or KNN cubic
(right) model configuration is used. The F1-score is plotted as a function of the number of selected features (i.e., from

1 to 30 features) using the t-test filter method.
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Supplementary Figure 25 — KNN model performance, in terms of F1-score, when a KNN weighted model configuration
is used. The F1-score is plotted as a function of the number of selected features (i.e., from 1 to 30 features) using the
t-test filter method.
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Supplementary Figure 26 — SVM model performance, in terms of F1-score, when a polynomial kernel of degree 3 is
used. The Fl-score is plotted as a function of the number of selected features (i.e., from 1 to 30 features) using the
embedded-wrapper method.

Page 55 of 56



SVMpolynomial4
T

LR
SVM
0.9 LR+SVS
— — SVM+sVS

0.7 —

o
o
T

F1 score
o
(4]
I
|

N
~
I

1

03— —

02— -

0 5 10 15 20 25
number of features

Supplementary Figure 27 — SVM model performance, in terms of F1-score, when a polynomial kernel of degree 4 is
used. The Fl-score is plotted as a function of the number of selected features (i.e., from 1 to 30 features) using the
embedded-wrapper method.
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