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Abstract

Performing a reliable assessment of workplace well-being in diverse populations remains a
central challenge in occupational health research. Instruments must demonstrate robust mea-
surement equivalence to ensure fair and meaningful comparisons. This study presents a com-
prehensive psychometric validation of the OHS Barometer e-survey, designed to assess multiple
dimensions of workplace well-being by evaluating factor structure, internal consistency, and
measurement invariance across key demographic and methodological subgroups.

Data were collected from 699 employees across four Belgian companies in the retail and
wholesale sectors. Participants completed Dutch (88.3%) or French (10.4%) survey versions, with
25% using mobile devices. The evaluation done in this master’s thesis work included confirmatory
factor analysis, reliability assessments using multiple measures (McDonald’s omega, polychoric
alpha, composite reliability) suited to ordinal data, and measurement invariance testing using
both traditional null hypothesis significance testing and modern equivalence-based approaches.
Missing data (5-6%) were handled using multiple imputation with bootstrap-based uncertainty
estimation.

CFA results supported a four-factor structure comprising Psychosocial, Ergonomics, Safety,
and Hygiene domains, with excellent model fit indices (CFI = 0.987, TLI = 0.984, SRMR =
0.075). All domains demonstrated strong internal consistency, with polychoric alpha values
ranging from 0.817 to 0.935. Full scalar measurement invariance was established across lan-
guage groups, data collection methods, and gender. Age-based analyses revealed developmental
differences in response patterns, particularly greater sensitivity to physical workplace conditions
among older employees, rather than measurement bias.

Two critical findings emerged. First, the strong inter-factor correlation between Ergonomics
and Hygiene domains (r = 0.777) violated the Fornell-Larcker criterion for discriminant va-
lidity, suggesting empirical inseparability despite theoretical distinctions. Second, traditional
measurement invariance testing for the Environmental domain failed to converge. Subsequent
differential item functioning analysis indicated that observed issues stemmed from questionnaire
version differences rather than instrument problems. These findings highlight the need to ac-
count for survey version effects when assessing measurement equivalence, challenging traditional
assumptions about measurement invariance in organizational research.

Although limited to cross-sectional design within Belgian retail and wholesale sectors, the
OHS Barometer emerges as a psychometrically sound and cross-platform compatible tool, of-
fering practitioners a validated instrument for workplace well-being assessment while providing
researchers with important insights into measurement dynamics in organizational contexts.
Keywords: workplace well-being, psychometric validation, measurement invariance, confirma-

tory factor analysis, occupational health assessment, organizational context
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Chapter 1

Introduction

1.1 Background

Workability is a pivotal concept in occupational health, representing an employee’s capacity to
meet job demands while maintaining physical, mental, and social well-being. This multifaceted
construct is shaped by individual characteristics, workplace conditions, and broader societal
influences (Gould et al., 2008). Accurately assessing workability is critical for employers to
implement targeted interventions that support employee health and productivity throughout
their careers.

Occupational health and safety (OHS/OSH) remains a top priority within the European
Union (EU), with policies aimed at fostering safe and healthy working environments. The OSH
Barometer, an EU-wide public information system, offers valuable insights into workplace safety,
health, and well-being (EU-OSHA, 2025). According to a recent report by EU-OSHA, Safety and
Health at Work in Europe: Status and Trends in 2023, fatal workplace accidents have decreased
by 57% in recent decades. However, these improvements have plateaued in recent years, signaling
the need for renewed focus and innovative approaches (Eurogip, 2024).

In Belgium, the responsibility for OHS lies with the Minister of Employment and the Federal
Public Service for Employment, Labour, and Social Dialogue. The Act of 4 August 1996 serves as
the cornerstone of Belgium’s legislative framework, mandating that employers prioritize worker
well-being through prevention, safety training, and risk mitigation (SPF Emploi, Travail et
Concertation sociale, 2025). This legislation underscores the importance of proactive workplace

policies in cultivating a culture of safety and well-being.

1.2 Concept of Workability

The concept of workability was first introduced by Ilmarinen and Tuomi (1993) as a multi-
dimensional construct that encompasses an individual’s ability to perform work effectively in
relation to job demands, health status, and mental resources. Traditionally, workability has
been measured using the Work Ability Index (WAI) (Ilmarinen & Tuomi, 1993), which assumes
a unidimensional structure focused primarily on a medical perspective. However, recent studies
suggest that workability is better understood through a multidimensional lens (Martus et al.,
2010; Radkiewicz & Widerszal-Bazyl, 2005), leading to an evolution toward a more comprehen-

sive model that balances various components, including job demands, environmental factors,
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and individual resources. This shift highlights the complexity and dynamic nature of workabil-
ity, emphasizing the need for a holistic approach to its assessment that goes beyond traditional
occupational health perspectives.

In this study, we adopt a multidimensional approach to workability, grounded in theoretical
frameworks, developed by experts at Mensura, a leading Belgian occupational health service.
The survey employed in this study assesses subjective workability through self-assessment rather
than relying solely on evaluations by occupational physicians or other healthcare professionals.
According to Tuomi (1991), subjective estimates are strong predictors of future work ability
and disability (Tuomi et al., 1991). In addition, subjective assessment methods, such as the
demand-specific workability approach (Nabe-Nielsen et al., 2014), offer nuanced insights into
employees’ perceived workability across diverse job contexts.

In human resource management, extending workers’ careers is unfeasible if employees reach
a point where they are unable to continue working. Therefore, it is crucial for employers to
understand workability comprehensively to develop effective interventions, foster employee en-

gagement, and ensure organizational sustainability (Pak et al., 2021).

1.3 Mensura’s OHS Barometer

Mensura is developing the OHS Barometer, a data-driven tool designed to provide employers with
actionable insights into employee well-being through a comprehensive assessment of workability
dimensions.

This barometer focuses on occupational well-being, a multidimensional construct encompass-
ing physical, mental, and social health dimensions that enable optimal workplace functioning.
It combines subjective experiences of satisfaction and engagement with objective health mea-
sures (Dodge et al., 2012). The World Health Organization (WHO) defines it as a state of
complete physical, mental, and social well-being, not merely the absence of disease in relation to
work (World Health Organization, 2018). As highlighted in Section 1.2, this concept aligns with
modern workability perspectives, reflecting the dynamic balance between individual capabilities,
job demands, and environmental factors that support sustainable employment (Ilmarinen, 2019;
Schulte & Vainio, 2010).

1.3.1 OHS Barometer Domains

The OHS Barometer evaluates four core domains of workplace well-being:
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Figure 1.1: Model framework including four well-being domains as integrated in the OHS Barom-
eter developed by Mensura. More specifically, the model diagram includes ER, HY, SA, and PS
work environments. The link between well-being domains and specific items in the barometer
are indicated by arrows. Solid boxes refer to reflective indicators (i.e., reflective of the work
environment), dashed boxes represent formative indicators (i.e., defining the work environment
itself).

1. Psychosocial work environment (PS): Measured through indicators such as work
pace, emotional demands, work atmosphere, and work-life balance, with resilience being a
formative indicator! for the PS domain.

2. Ergonomics (ER): Assessed through indicators such as stressful postures, repetitive
work, sitting for a long time, manual handling of loads, and physically strenuous activities,
with physical work ability being a formative indicator for the ER domain.

3. Work safety (SA): Evaluated through indicators such as worker involvement and lead-
ership engagement, with satisfaction with safety being a formative indicator for the SA
domain.

4. Work hygiene (HY): Measured through indicators such as exposure to tool vibrations,
low temperatures, high temperatures, noise, and hazardous substances, with satisfaction
with hygiene being a formative indicator for the HY domain.

In the extended version of the OHS Barometer, a fifth domain—Environment (EN)—was

included to assess environmental aspects of workplace well-being, allowing for a comprehensive

measurement across the physical, social, and environmental dimensions of occupational health.

!Formative indicators are measurement variables that collectively define and form a latent construct. Unlike
reflective indicators (which are manifestations of an underlying construct), formative indicators are considered
to cause or determine the construct they measure.
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The OHS barometer aims to provide actionable data-driven recommendations for targeted
interventions to enhance workplace well-being. Currently, benchmarking is based on data from
pilot companies, although the development of meaningful industry-specific benchmarks against
established standards remains an area for future development and refinement. Mensura’s R&D
department has developed a streamlined, user-friendly online assessment tool (hereafter referred
to as the e-survey) designed for cross-sectoral application and longitudinal monitoring. This
efficient instrument accommodates diverse work environments while facilitating consistent data
collection over time. However, prior to full-scale implementation, comprehensive psychometric
validation is essential to establish the reliability, validity, and measurement precision of e-survey

across different organizational contexts.

1.4 Problem Statement

For the OHS Barometer to serve as an effective tool in workplace well-being assessment, rigorous
validation is essential to ensure that the survey instrument reliably and accurately measures
workability across diverse occupational contexts. This validation requires addressing two critical

methodological aspects:

1. Internal consistency and reliability: Evaluating of whether the survey provides con-

sistent measurements of the intended constructs.

2. Measurement invariance: Ensuring that the survey functions equivalently across dif-

ferent conditions and populations.

1.5 Study Objectives

More specifically, this study aims to:

1. Assess the reliability and internal consistency of the OHS Barometer e-survey using data

collected from 699 employees across four companies in the retail and wholesale sectors.
2. Evaluate measurement invariance across different conditions:
e Survey versions (with and without the EN)
e Language groups (Dutch and French)
e Data collection methods (mobile vs. desktop)
e Gender groups
e Age categories
3. Provide evidence-based recommendations for refining the survey instrument based on com-
prehensive validation findings, enhancing its utility as an occupational well-being assess-
ment tool.
4. Establish the psychometric properties of the EN as a potential addition to the core OHS
Barometer framework, determining whether its inclusion affects the measurement proper-

ties of existing domains.

1.6 Research Hypotheses and Assessment Criteria

This study employs Confirmatory Factor Analysis (CFA) as the primary analytical framework to

validate the reliability and measurement invariance of the OHS Barometer e-survey. CFA allows
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for the specification and testing of hypothesized latent factor structures, enabling the assessment
of how well observed survey items reflect their intended underlying constructs. Within this
framework, both formal statistical hypothesis testing and exploratory assessment criteria are
used to evaluate the psychometric properties of the instrument.

All statistical metrics and methods referenced in this section are formally introduced and
detailed in the methods section (Chapter 2) of this master thesis.

1.6.1 Formal Statistical Hypotheses

Factor Loading Significance

For each item-factor relationship in the CFA:
e Null hypothesis (Hy): \ix < 0.5 (The standardized factor loading is inadequate for prac-
tical significance)
e Alternative hypothesis (H1): Ajx > 0.5 (The standardized factor loading demonstrates

practical significance)

Ak — 0.5

SE(Aik)

e Decision rule: Reject Hy if t > t, q4r (one-tailed test, o = 0.05)

e Test statistic: ¢t =

Note: A\, refers to the factor loading of item 7 on factor k.

Measurement Invariance Testing

For each group comparison (Survey version, language groups, data collection methods, gender,
age categories):

Configural vs. Metric Invariance

Hj : Factor loadings are equal across groups (metric invariance holds)

H, : Factor loadings differ significantly across groups
Metric vs. Scalar Invariance

Hj : Ttem thresholds are equal across groups (scalar invariance holds)

H, : Item thresholds differ significantly across groups

Test statistic: Chi-square difference test (Ax?)
Decision rule: Reject Hy if p < 0.05 for Ax? test

Differential Item Functioning (DIF) Analysis

For items showing potential bias across groups:

Hj : Item functions equivalently across groups (no DIF present)

H; : Item functions differently across groups (DIF present)

Test statistics: Wald test, likelihood ratio test
Decision rule: Reject Hy if p < 0.05
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1.6.2 Exploratory Assessment Criteria

The following assessments use established thresholds from psychometric literature but do not

constitute formal statistical tests:

Reliability Assessment
Within the CFA framework, latent factors are hypothesized to represent underlying constructs,
and their internal consistency is evaluated using established thresholds:

e Internal consistency: Cronbach’s Alpha > 0.70 (acceptable), > 0.80 (good)

e Composite reliability (CR): CR > 0.70 (acceptable)

e Construct reliability: Average Variance Extracted (AVE) > 0.50

e Item reliability: Factor loadings A > 0.50 (acceptable), > 0.70 (preferred)

1.6.3 Survey Version Comparison (with/without EN)

Due to substantial sample size imbalance (n = 44 vs. n = 655), traditional multi-group confir-

matory factor analysis may not be feasible. Alternative approaches will be explored:
e Differential Item Functioning (DIF) analysis to assess item-level equivalence
e Descriptive comparisons of reliability metrics across versions
e Qualitative assessment of factor structure consistency

This approach acknowledges the practical limitations while maximizing the analytical value

of available data.

1.7 Significance of the Study

This validation study addresses a critical gap in occupational health measurement by providing a
psychometrically sound, efficient workplace well-being assessment tool. The research significance
spans methodological innovation, practical application, and broader impact on measurement

science and practice.

1.7.1 Methodological Significance

This study advances measurement science by introducing the first systematic integration of mul-
tiple imputation with bootstrap procedures for workplace assessment validation. The research
provides empirical evidence for contextual influences on measurement invariance, particularly
the role of organizational characteristics in shaping item response behavior. These findings con-
tribute to the theoretical understanding of how workplace-specific factors affect the validity of

employee well-being assessments across heterogeneous settings.

1.7.2 Practical Significance

The validated e-survey addresses key limitations of existing workplace assessment tools by
demonstrating: full measurement invariance across survey version, device types, cross-linguistic
functionality, gender, and age categories; and robust psychometric properties, enabling real-time
automated scoring. These empirically validated features allow for seamless integration into rou-
tine HR and OHS processes across diverse workforce demographics, providing reliable data for

evidence-based decision making.
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1.7.3 Broader Significance

These contributions advance both measurement science and occupational health practice by
bridging the gap between rigorous psychometric validation and practical workplace implementa-
tion needs. By establishing psychometric equivalence across Belgium’s multilingual workforce,
this research promotes equitable workplace health monitoring and supports alignment with the
European Union’s Strategic Framework on Health and Safety at Work. The validated instru-
ment provides a foundation for targeted, evidence-based workplace well-being initiatives that,
according to existing research, can reduce workplace-related healthcare costs by up to 30% while
improving employee retention and productivity (Baicker et al., 2010). This creates a pathway for
healthier, more sustainable work environments that benefit individual workers, organizational

performance, and broader public health outcomes across diverse organizational contexts.

1.8 Scope of the Study

The validation process incorporates e-survey data from four companies in the retail and whole-
sale sectors (N = 699), as detailed in Chapter 3, providing a diverse sample for psychometric

evaluation of the OHS Barometer.

1.8.1 Sample Characteristics

Companies 1-3 (N = 605): These companies represent diverse subsectors within retail and
wholesale. The sample features varying technological engagement (19.0% mobile completion)
and linguistic diversity (86.4% Dutch, 12.1% French, 1.5% English), allowing robust cross-group
comparisons for the formal hypotheses outlined in Section 1.6.

Company 4 (N = 94): This supplementary sample extends the validation by incorporating
an additional EN domain and collecting data on occupational classification (white/blue collar).

To assess the impact of domain inclusion, two survey variants were administered:
e Form A (N = 46): Standard assessment excluding EN items
e Form B (N = 48): Enhanced assessment including EN items

1.8.2 Measurement Equivalence Assessment

A comprehensive multi-method approach to equivalence testing examines the instrument’s sta-
bility across diverse conditions:
Traditional Measurement Invariance Testing: Hierarchical model comparisons (con-

figural, metric, scalar) assess equivalence across:
e Language versions (Dutch vs. French)
e Data collection modalities (mobile vs. desktop)
e Gender groups
o Age categories

Differential Item Functioning (DIF) Analysis: Examines response patterns between

survey versions (with/without EN items) through:
e Full-sample analysis to establish general patterns

e Company-specific analyses to control for questionnaire version consistency effects
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1.8.3 Analytical Considerations

The validation employs sophisticated statistical methodologies to ensure robust findings:

e Missing Data Management: Multiple imputation techniques preserve sample repre-
sentativeness and statistical power while accounting for uncertainty in the imputation

process.

e Robust Parameter Estimation: Bootstrap procedures quantify uncertainty with re-
spect to the fit indices used to assess the fit of the CFA model to the observed data,
while appropriate transformations address potential non-normality in the distribution of

the estimators.

1.9 Model Framework
This study is grounded in the Healthy Workplace Model developed by the WHO (World Health

Organization, 2010), which offers a comprehensive framework for occupational health inter-
ventions. At its core, the model emphasizes collaboration between workers and management,
built upon a foundation of ethics and organizational values. Surrounding this core are essential
processes of leadership engagement and worker involvement, ensuring shared responsibility for
workplace well-being.

These components align with the measurement domains of the OHS Barometer, as illustrated

in Figure 1.1:
e Physical work environment: Captured by the ER, HY, and SA domains. It should

be noted that leadership engagement and worker involvement, while currently measured
within the SA domain as indicators of safety culture, represent broader organizational
culture principles that hypothetically play key roles in well-being policy implementation

across all domains.
e Psychosocial work environment: Assessed through the PS domain.

The Belgian well-being domains measured by the OHS Barometer can be considered nested
within the WHO model’s four avenues of influence, providing the content framework for targeted
interventions. While leadership engagement and worker involvement are currently contextualized
within work safety, future development may expand these as general process indicators reflecting

broader organizational culture principles that support comprehensive well-being initiatives.



Chapter 2

Materials and Methods

2.1 Data Description

2.1.1 Overview

This study analyzes data from the OHS Barometer validation project collected between February
and June 2024. Four companies in the retail and wholesale sectors were contacted and agreed
to participate, with voluntary employee participation resulting in a dataset of 699 respondents.
Table 2.1 provides an overview of the participating companies and their response rates. The e-
survey was administered in three languages (Dutch, French, and English), and participants were
able to complete the survey using either mobile devices or desktop computers. For Company 4,
we used an experimental design in which participants were randomly assigned to a basic survey
version or an extended version that included an additional Environment (EN) domain. The
dataset includes 39 variables measuring four primary workplace well-being domains: Psychoso-
cial (PS), Ergonomics (ER), Work Safety (SA), and Work Hygiene (HY) across all companies,
with the Environment (EN) domain administered to a subset of Company 4 respondents. This
structure enables measurement invariance testing across survey versions, languages,data collec-

tion methods, gender, and age categories.

Table 2.1: Survey distribution and response rates by company

Company Sector Employees Respondents Response
Invited Rate (%)

Company 1 Construction & 417 149 35.7
Metal

Company 2 Hardware 673 298 44.3
Wholesale

Company 3 IT & Software 203 158 77.8

Company 4 Mixed Retail & 217 94 43.3
Wholesale

Total — 1510 699 46.3

Data collection targeted a minimum response rate of 40% across participating companies,
based on established guidelines for organizational survey research (Rogelberg & Stanton, 2007).
This threshold was selected to ensure adequate representation while accounting for typical re-

sponse patterns in workplace electronic surveys, which generally achieve rates between 30-60%

10
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(Baruch & Holtom, 2008).

2.1.2 Data Preprocessing and Missing Data Handling

Prior to the main analyses, several preprocessing and data handling steps were implemented to
ensure data quality and address missing data:

e Pre-processing by Data Provider: Prior to analysis, Mensura performed data clean-
ing and manipulations to address structural missingness patterns, including cases where
missing responses could be logically deduced from previous questions.

e Missing Data Analysis: Following initial data cleaning, examination revealed approxi-
mately 5-6% missingness across key model variables, with systematic missingness (93.7%)
for EN domain variables by design. Little’s MCAR (Missing Completely At Random) test
showed no systematic relationship between missingness and observed variables for the core
domains. Although MCAR findings would support unbiased complete case analysis, mul-
tiple imputation was implemented to gain statistical efficiency and retain the full sample
for planned analyses, acknowledging that MCAR cannot rule out missing not at random
(MNAR) mechanisms.

e Data Structure Verification: We confirmed that reverse-coded items were properly
aligned in the provided dataset, with consistent scoring directionality throughout the in-
strument (higher item scores uniformly reflected better workplace conditions). This veri-

fication ensured valid measurement of the intended constructs.

e Outlier Detection: Multivariate outliers were identified using Mahalanobis distance
calculated from factor scores representing the continuous latent dimensions (PS, ER, SA,
HY, and EN where applicable) with a conservative threshold (p < 0.001). These cases

were reviewed but retained, as they may reflect valid workplace response patterns.

Multiple Imputation Procedure

To handle missing data, Multiple Imputation with Chained Equations (MICE) was performed
using the mice package in R (van Buuren & Groothuis-Oudshoorn, 2011), with the following

specifications:
e Number of datasets: 10 imputed datasets were generated.

e Iterations: 20 iterations per imputation, with convergence assessed separately for each

of the 10 imputed datasets through trace plots of means and standard deviations.
e Imputation methods:
— Ordinal variables: Proportional odds logistic regression (polr)
— Continuous variables: Predictive mean matching (pmm)
— Binary variables: Logistic regression (logreg)
e Special case handling: For cases without EN domain data (based on the has_environment_domain
variable), environmental variables were set to a placeholder value (-999) prior to imputa-
tion to prevent these structurally. Age was measured as an ordered categorical variable
("<25", "25-34", "35-44", "45-54", ">=55") and was converted to an ordered factor with

explicit sequencing before imputation.
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Imputation Quality Assessment

To evaluate imputation quality, the following diagnostics were performed:

Convergence diagnostics: Trace plots of means and standard deviations across itera-
tions were examined separately for each of the 10 imputed datasets to confirm algorithm
convergence within each imputation.

Distributional checks: Distributions of observed and imputed data were compared to
ensure preservation of key characteristics.

Variance assessment: Between- and within-imputation variances were examined to eval-
uate imputation stability.

Imputation Fit Index (IFI): To evaluate imputation quality beyond standard diag-
nostics (Rubin, 1976), we employed the Imputation Fit Index (IFI), which assesses the
congruence between observed and imputed data distributions by comparing their stan-
dard errors. This metric addresses limitations of direct standard error comparisons and

provides a standardized measure of imputation accuracy. The mathematical formulation
of the IFI is detailed in Appendix A.1.

2.1.3 Sample Size Considerations

Sample size adequacy is crucial for obtaining stable parameter estimates in CFA and mea-

surement invariance testing. For the main analyses of the combined dataset, the sample size

substantially exceeds common recommendations of at least 200 participants (Kline, 2016) or a

minimum ratio of 5-10 participants per parameter (Bentler & Chou, 1987).

For subgroup analyses in measurement invariance testing, sample size adequacy varies across

comparison groups:

Language groups: Substantial variation in group sizes necessitates focusing the primary
language invariance analysis on the two largest groups, with the smallest language group
excluded from standalone analysis due to insufficient sample size.

Device types: Both desktop and mobile user groups exceed the minimum threshold of
100 observations recommended for group comparisons (Chen, 2007).

Survey versions: The experimental comparison groups approach the minimum threshold
of 50 observations often cited for factor analysis (Hair et al., 2019), though they remain
somewhat limited for robust CFA. Cautious interpretation of results and robust estimation
techniques will be employed to address these moderate sample sizes.

Company comparisons: All organizational subsamples exceed the minimum recom-
mendation of 50 observations for factor analysis, enabling meaningful between-company
comparisons.

Gender groups: Both groups substantially exceed minimum thresholds for robust group
comparisons.

Age categories: Sample sizes vary across the five age groups, with the youngest cate-
gory falling below typical minimums and potentially requiring cautious interpretation or

category consolidation for invariance testing.

Bootstrapping will be implemented primarily for interval estimation purposes, circumventing
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problems in deriving asymptotic variances for the quantities of interest. While bootstrap pro-
cedures can provide more stable variance estimates compared to asymptotic methods, the point
estimates themselves are expected to remain close to those obtained from the original data. This
approach is particularly valuable for smaller subgroups where asymptotic assumptions may be
less reliable. Complete sample size distributions for all planned measurement invariance com-

parisons are reported in the results (Section 3.1.1).

2.2 Software and Computational Environment

All analyses were conducted in R (version 4.2.2) using specialized packages for confirmatory fac-
tor analysis (lavaan), measurement invariance testing (semTools), multiple imputation (mice),
and related procedures. Code and outputs were managed using R Markdown to ensure full
reproducibility. Complete software specifications and computational details are provided in Ap-
pendix A.2.

2.3 Confirmatory Factor Analysis (CFA)

Confirmatory Factor Analysis (CFA) is a statistical technique used to validate the factor struc-
ture of a measurement instrument by testing whether observed variables (survey items) reliably
reflect their intended latent constructs (Kline, 2016). CFA is hypothesis-driven and confirms
predefined theoretical models, making it an essential tool for psychometric research, particularly
in validating survey instruments.

In this study, CFA is applied to assess the validity of the OHS Barometer e-survey. Our
analysis examines whether the survey items appropriately measure their respective dimensions
as proposed in our theoretical framework (see Figure 1.1).

The CFA confirms whether the items load onto their hypothesized factors with sufficient
strength and whether the overall measurement model provides an acceptable fit to the data,
thereby establishing the construct validity of the instrument for the assessment of workplace

well-being.
2.3.1 Components of CFA in this Study

CFA relies on key components to define and assess the factor structure of the OHS Barometer
e-survey:

e Latent Variables: These represent unobserved workplace well-being constructs inferred
from observed responses. In this study, the latent factors correspond to the four primary
domains (PS, ER, SA, HY) and the additional EN domain for the extended survey version.

e Observed Variables (Reflective Indicators): These include the individual survey
items that serve as reflective indicators of the latent variables. In reflective measurement
models, the observed indicators are conceptualized as effects or manifestations of the un-
derlying latent construct, meaning changes in the latent variable cause changes in the
observed indicators. The strength of their association with the latent factor is represented
by their factor loadings, with higher loadings indicating that the observed variable more

strongly reflects the underlying construct.

e Error Terms: Each observed variable includes a measurement error component, repre-



14 Chapter 2. Materials and Methods

senting the portion of variance not explained by the latent factor. This acknowledges that

survey items are imperfect measures of underlying constructs.

e Factor Correlations: The model allows latent factors to correlate with each other, re-
flecting the interconnected nature of workplace well-being domains while maintaining their

distinctiveness as separate constructs.

e Path Diagram: A structural representation of the CFA model, visually mapping the

relationships between survey items and their corresponding latent factors (see Figure 2.1).

e Model Fit Assessment: Statistical measures evaluate how well the proposed measure-
ment model fits the observed data, using multiple indices to assess different aspects of
model adequacy. The specific fit indices and their interpretive criteria are detailed in
Appendix A 4.

This comprehensive approach ensures rigorous evaluation of the measurement model’s psy-
chometric properties and its suitability for workplace well-being assessment across diverse orga-

nizational contexts.

2.3.2 Mathematical Model of CFA

CFA models the relationship between observed survey responses and latent workability con-
structs. While the equation can be expressed for individual responses, a matrix formulation

provides a more comprehensive representation of the complete model:

Y=p+AF +e

Where:

e Y is the j X i matrix of observed responses from j subjects on 7 items.

e 1 is the i x 1 vector of intercepts for each item.

e A is the i x m matrix of factor loadings, where m is the number of latent factors.
e F'is the j x m matrix of latent factor scores.

e ¢ is the j X ¢ matrix of error terms.

This matrix formulation elegantly captures the multivariate nature of the CFA model, accom-
modating multiple latent factors and their relationships to observed variables. It also provides
the basis for estimating the model’s parameters through maximum likelihood or other estimation
methods.

For an individual observation, the confirmatory factor analysis (CFA) model can be expressed

as:

m
Vi = pi+ > Ak Fjk + i
k=1

where:
e )\, represents the loading of item i on factor k,
e [y, is the score of subject j on factor £,
e Yj; is the response of subject j to item 7, and

e ¢j; is the error term for subject j on item i.
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In this study, m = 4 for the standard survey version (covering the domains PS, ER, SA,
HY), or m =5 for the extended version that includes the additional EN domain.

2.3.3 Model Diagnostics for CFA

Prior to conducting CFA, comprehensive model diagnostics were performed to ensure data suit-

ability and validity of statistical assumptions. Key assessments included:

e Multivariate Normality: Evaluated using univariate skewness/kurtosis indices and
Mardia’s multivariate tests. Robust estimation methods (WLSMV) were employed to

accommodate ordinal data and potential violations of normality assumptions.

e Multicollinearity: Assessed through Variance Inflation Factors (VIF), correlation matri-

ces, and determinant analysis to detect problematic redundancy among observed variables.

e Factorability: Evaluated using Bartlett’s Test of Sphericity and Kaiser-Meyer-Olkin
(KMO) measures to confirm that inter-item correlations were sufficient for meaningful

factor extraction.

Comprehensive diagnostic procedures, mathematical specifications, and an interpretation

guide are provided in the Appendix A.3.

2.4 CFA for OHS Barometer e-Survey

2.4.1 Model Specification

Based on theoretical frameworks and prior research, we specified CFA models representing work-

place well-being domains:

e Four-factor model (Standard version): Psychosocial Work Environment (PS), Er-
gonomics (ER), Work Safety (SA), and Work Hygiene (HY)

e Five-factor model (Extended version): The four-factor model plus Environment (EN)

domain
The models assume:
e Each observed variable loads on only one latent factor (simple structure)

e Latent factors are allowed to correlate, reflecting the interconnected nature of workplace

well-being domains
e Factor variances are fixed to 1 for identification purposes

e Error terms are uncorrelated unless modification indices suggest otherwise

2.5 Parameter Interpretation and Model Evaluation

2.5.1 Item-Level Properties

Factor Loadings (\;): Standardized loadings indicate the strength of relationship between

observed variables and latent factors.
e )\ > 0.50: Acceptable discrimination
e )\ > 0.70: Strong discrimination (Hair et al., 2010)
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Figure 2.1: Illustrates the four-factor CFA model structure, showing factor loadings from each
latent factor to its corresponding observed variables and covariances between latent factors.

2.5.2 Threshold Parameters for Ordinal Indicators

For ordinal survey responses analyzed with WLSMV estimation, threshold parameters (7) repre-
sent the cut-points on an underlying continuous latent response variable that determine transi-
tions between observed response categories. Each ordinal item reflects an underlying continuous
latent response propensity, with thresholds defining the boundaries between adjacent response
categories. Threshold estimates inform interpretations of item difficulty and reveal where items
are most informative along the latent trait continuum (see Appendix A.5 for detailed mathe-
matical specification and interpretation guidelines).

For ordinal survey responses analyzed with WLSMV estimation, threshold parameters
(7) represent the cut-points on an underlying continuous latent response variable that determine

transitions between observed response categories.

2.5.3 Model Fit Assessment

Overall model adequacy was evaluated using multiple fit indices, each capturing different aspects
of model adequacy and compensating for the limitations of individual measures. Complete

definitions of all fit indices and their interpretive cut-offs are provided in Appendix A.4.
2.5.4 Robust Estimation Methods

Primary Estimation

Given the ordinal nature of Likert-scale survey data and potential violations of multivariate
normality (assessed in Section 2.3.3 ), we employed robust estimation method.
WLSMV (Weighted Least Squares Mean and Variance Adjusted):
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e Designed specifically for ordinal data using polychoric correlations

e Does not assume multivariate normality

e Provides robust standard errors and fit indices

Bootstrap Implementation

To enhance robustness and provide additional uncertainty quantification, bootstrap procedures

with pooled results were implemented according to Rubin’s rules in order to:

e Generate empirical standard errors for parameters where analytical standard errors may

be unreliable

e Assess stability of fit indices across resampled datasets

e Provide robust uncertainty quantification independent of distributional assumptions

Technical Specifications:

e Number of bootstrap samples: 1,000 replications

e Estimation method: WLSMV

e Random seed set for reproducibility

2.5.5 Combining Multiple Imputation with Bootstrap

To address the uncertainty of missing data and sampling variability simultaneously, we imple-

mented a comprehensive approach combining multiple imputation with bootstrap resampling
(Schomaker & Heumann, 2018).

Procedure Steps

1.

Bootstrap Sampling: For each of the M = 10 imputed datasets, B = 1,000 replacement

bootstrap samples were drawn

. Model Fitting: The CFA model was fitted to each bootstrap sample using WLSMV

estimation

. Parameter Extraction: Fit indices (CFI, TLI, RMSEA, SRMR, x?) and parameter

estimates (factor loadings, factor correlations, item thresholds) were extracted from each
fitted model

. Bootstrap Standard Errors Estimates: For each parameter 6 in imputed dataset j,

bootstrap-based standard errors estimates were calculated as:
where éj () is the parameter estimate from bootstrap sample b in imputed dataset 7, and
0j = % S b =1565® is the bootstrap mean.

. Variance-Stabilizing Transformations: Applied to bounded indices to improve distri-

butional properties:
e Fisher transformation: z = 0.5 x In Gf—;) for CFI and TLI

e Log transformation: z = In(z) for RMSEA

Pooling via Rubin’s Rules:

. Pooling via Rubin’s Rules: For each parameter 6, results from the M imputed datasets

are combined using Rubin’s rules to obtain pooled point estimates, within-imputation
variance, between-imputation variance, and total variance (see Appendix A.6 for detailed

formulas).
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7. Degrees of Freedom Adjustment: Calculated using Rubin’s formula (Rubin, 1987) :

2
1+L
(1+4)B

8. Back-Transformation: Results transformed back to original scale for interpretation pur-

df = (M~ 1)

poses.

9. Missing Information Assessment: The fraction of missing information (FMI) was

computed as:

(1+4)B
T

This represents the proportion of the total variance attributable to missing data uncer-

FMI =

tainty.

The bootstrap approach, combined with multiple imputation, enhances parameter estima-
tion and hypothesis testing by mitigating bias from missing data, addressing non-normality
through robust estimation, quantifying uncertainty from both missing data and sampling vari-
ability, adjusting degrees of freedom for valid inference, and ensuring conservative testing when
missing data impact is substantial, thus providing a reliable framework for workplace well-being

measurement across diverse organizational contexts.

2.6 Assessing Internal Consistency and Reliability

Following confirmatory factor analysis model estimation, a comprehensive assessment of inter-
nal consistency and reliability is essential for establishing the psychometric quality of the OHS
Barometer e-survey. This study employs multiple complementary reliability indices to address
the limitations of any single coefficient and account for the diverse characteristics of our work-

place well-being measurement domains (Brown, 2015).
Reliability Assessment Framework

Given the ordinal nature of our Likert-scale survey data and the potential violation of tau-
equivalence assumptions across items, we implemented a multi-faceted reliability approach in-
corporating McDonald’s Omega, Cronbach’s Alpha, Polychoric Alpha, Composite Reliability,
Average Variance Extracted, and Spearman-Brown Reliability. Additionally, discriminant valid-
ity is assessed using the Fornell-Larcker Criterion.

Interpretive guidelines and mathematical specifications for all reliability measures are pro-
vided in Appendix A.7.

2.6.1 Cronbach’s Alpha («)

Cronbach’s Alpha represents the traditional approach to reliability assessment, providing a mea-
sure of internal consistency when the assumption of tau-equivalence holds. Tau-equivalence as-
sumes that all items measuring a construct have equal factor loadings, meaning they contribute

equally to the measurement of the latent variable (Edwards et al., 2021).

I
- (1 21»21@)

Ototal

Formula:
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Where I is the number of items, ; represents the error variance of each item i = 1,..., 1,
and Ufotal represents the total variance of the composite scores.

Tau-equivalence assessment: This assumption can be evaluated by comparing constrained
CFA models (where factor loadings are set equal) with unconstrained models (where factor
loadings are freely estimated) through chi-square difference testing. Additionally, examining
the magnitude of standardized factor loadings in the unconstrained model provides insight into
whether loadings are approximately equal.

While widely used, Cronbach’s Alpha may underestimate or overestimate reliability when
tau-equivalence is violated, necessitating alternative approaches for congeneric measurement

models.

2.6.2 McDonald’s Omega (w)

When tau-equivalence cannot be assumed, McDonald’s Omega serves as a more robust alter-
native to Cronbach’s Alpha for estimating internal consistency reliability. Unlike Alpha, which
presumes equal factor loadings, Omega accommodates congeneric measurement by incorporating
the actual factor loadings and error variances obtained from CFA. This allows w to quantify the
proportion of variance in the composite score attributable to the latent construct rather than
to measurement error, thereby providing a more accurate and theoretically grounded reliability
estimate (McDonald, 1999; Raykov, 2001; Zinbarg et al., 2005).

Formula for a single construct:

_ (Ci M)
(S A2+ o

Where \; represents standardized factor loadings for items ¢ = 1,...,1, and ; the unique

variances for each item.
Interpretation: The numerator represents the total explained variance, while the denomi-
nator incorporates both explained variance and measurement error, providing the proportion of

reliable variance in the observed composite.

2.6.3 Composite Reliability (CR)

Composite Reliability assesses the overall reliability of indicators measuring a latent construct
within the CFA framework, incorporating differential factor loadings without assuming tau-
equivalence.

Formula:

R
RS S WERS STy

Where \; represents standardized factor loadings.

2.6.4 Polychoric Alpha

Given the ordinal nature of our Likert-scale responses, Polychoric Alpha provides reliability esti-

mates that account for the categorical structure of the data by utilizing polychoric correlations.

I
o — I 1721:103
Pr—1 o2

Formula:

sum
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Where a? represents the variance of item ¢ estimated from the polychoric covariance matrix,

and o2, represents the variance of the sum score computed from that matrix.

2.6.5 Supplementary Reliability Measures

Average Variance Extracted (AVE)

AVE measures the proportion of variance captured by a construct relative to measurement error,
serving as an indicator of convergent validity (Fornell & Larcker, 1981).
Formula: .
AVE — s Af
I
Interpretation: AVE values > 0.50 indicate that the construct explains more variance in its
indicators than is attributable to error. It is conceptually related to both Omega and Composite

Reliability, though it emphasizes average explained variance per item.

Spearman-Brown Reliability

Used for domains with only two items.

Formula:
2run

1+ 7ry,

rsB =
where 7, is the correlation between the two items of the scale.

2.6.6 Discriminant Validity Assessment

Fornell-Larcker Criterion

This criterion assesses whether the constructs are empirically distinct (Fornell & Larcker, 1981).

Criterion:

VAVE, > 1y and VAVE, > rg

Where rg; is the correlation between the constructs a and b.

2.6.7 Integration with CFA Results

All reliability and validity assessments are based on parameter estimates from the CFA mod-
els described in Section 2.3, ensuring coherence between measurement model specification and
psychometric evaluation. This integrated approach provides a comprehensive assessment of the

OHS Barometer’s measurement quality.

2.7 Measurement Invariance and Equivalence Testing

This study employed complementary methodological approaches to assess whether the OHS
Barometer functions equivalently across different conditions, supporting valid cross-group com-

parisons and ensuring the instrument’s utility across diverse workplace contexts.

2.7.1 Multi-Group Confirmatory Factor Analysis (MGCFA)

Analytical Framework

MGCFA was conducted using two complementary approaches to overcome limitations of tradi-

tional invariance testing:
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e Traditional Null Hypothesis Testing (NHT): Compares nested models with increas-
ing constraints to detect statistically significant fit deterioration, following the sequential
testing paradigm established by (Meredith, 1993).

e Equivalence Testing (ET): Evaluates whether parameter differences are practically
negligible rather than statistically significant, addressing the limitation that traditional
approaches may reject invariance due to trivial differences in large samples (Counsell et
al., 2020). Equivalence thresholds were set at 0.2 for factor loadings and 0.3 for item
thresholds, representing small to medium effect sizes that are unlikely to affect substantive

interpretations.
Sequential Testing Hierarchy
Invariance was assessed sequentially using WLSMV estimation, consistent with the approach
described in Section 2.3:

e Configural Invariance: Tests whether the same factor structure holds across groups

(same pattern of loadings).

e Metric Invariance: Tests whether factor loadings are equivalent across groups (same

measurement units).

e Scalar Invariance: Tests whether item intercepts are equivalent across groups (enables

mean comparisons).
Each level serves as a prerequisite for the next, with failure at any stage precluding interpre-
tation of subsequent levels.

Evaluation Criteria

Model Fit Assessment: Following the criteria detailed in Appendix A.4, acceptable fit was
defined as CFI > 0.95, RMSEA < 0.06, and SRMR < 0.08.
Invariance Support: Following (Chen, 2007):

e Metric invariance: ACFI > -0.01, ARMSEA < 0.015, ASRMR < 0.03!
e Scalar invariance: ACFI > -0.01, ARMSEA < 0.015, ASRMR < 0.01

Equivalence Testing: Invariance was supported when 90% confidence intervals for param-
eter differences fell entirely within equivalence bounds, indicating practical equivalence rather

than mere non-significance (Lakens, 2017).

2.7.2 Differential Item Functioning (DIF) Analysis

Rationale and Application

DIF analysis was employed as a complementary approach to MGCFA, particularly valuable when
sample size constraints prevent reliable multi-group modeling. DIF evaluates whether individual
items function differently across groups while controlling for the underlying trait level (Raykov
et al., 2018).

Detection Methods

Three complementary DIF detection methods were implemented:

! A (Delta) indicates the change in fit indices between increasingly constrained models in measurement invari-
ance testing.
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e Mantel-Haenszel Procedure: Examines odds ratios for item responses across groups,
stratified by total score levels. DIF magnitude was classified using Educational Testing
Service criteria:
— Negligible (A): |log(aarm)| < 1.0
— Moderate (B): 1.0 < |log(anpm)| < 1.5
— Large (C): |log(apym)| > 1.5
e Logistic Regression Approach:
— Uniform DIF: Different item difficulty across groups (main effect)
— Non-uniform DIF: Different item discrimination across groups (interaction effect)
e IRT-based Detection: Compares item parameters (difficulty and discrimination) across

groups using likelihood ratio tests to identify statistically significant differences.

Methodological Integration

Both MGCFA and DIF analyses were integrated with the multiple imputation and bootstrap

framework described in Section 2.4. For MGCFA, invariance tests were conducted across all

imputed datasets, with the results pooled using appropriate combining rules for nested model

comparisons. For DIF, detection procedures were applied to each imputed dataset separately,

with the final classification of DIF based on consistency across imputations and pooled effect

size estimates.

2.7.3 Group Comparisons and Sample Considerations

Primary Comparisons

The measurement invariance testing plan encompassed:

Language Groups: Dutch versus French survey versions (linguistic equivalence)
Data Collection Methods: Mobile versus desktop completion (method effects)
Survey Versions: Standard versus extended versions with EN (structural equivalence)
Gender Groups: Men versus women (demographic equivalence)

Age Categories: Younger (<35), middle-aged (35-54), and older (>55) workers (gener-

ational equivalence)

Analytical Strategy by Group Type

Adequate Sample Sizes: Full MGCFA approach with both NHT and ET evaluation for
groups with n > 100.

Imbalanced Groups: Primary reliance on DIF analysis, supplemented by descriptive
MGCFA where feasible—particularly for the EN comparison.

Company-Specific Analysis: Focused analysis within Company 4 for the EN compar-
ison to ensure the consistency of the questionnaire version and eliminate confounding of

the survey design.
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Results

3.1 Data Description

The analysis dataset consisted of 699 observations across 39 variables, including 20 primary
model variables, 4 EN variables, 10 auxiliary variables, and 5 grouping variables. See Table 3.1
for model variable details and Appendix Table F.6 for auxiliary variable specifications. Company

participation details are provided in Table 2.1.

3.1.1 Sample Characteristics

Language Distribution: Dutch speakers constituted the majority at 88.3% (N = 617), with
French speakers representing 10.4% (N = 73) and English speakers 1.3% (N =9). Due to the
small English subsample, measurement invariance testing focused on Dutch-French comparisons
as planned in the methodology.

Data Collection Method: Approximately 25% of respondents (N = 175) completed the
survey using mobile devices, with the remainder (N = 524) using desktop computers, enabling
robust cross-platform invariance testing.

Gender and Age Distribution: The sample included 63.4% men (N = 443) and 35.2%
women (N = 246), with 1.4% missing gender information. Age distribution was as follows: <25
years (4.0%, N = 28), 25-34 years (18.9%, N = 132), 35-44 years (27.5%, N = 192), 45-54
years (32.6%, N = 228), and >55 years (16.2%, N = 113), with 0.9% missing age data.

Environment Domain: The extended survey version including the EN domain was ad-
ministered to Company 4 participants, with 48 receiving the extended version and 46 receiving

the standard version, implementing the planned experimental design.

3.1.2 Missing Data Patterns

Prior to multiple imputation, missing data analysis revealed approximately 5-6% missingness
across core model variables, with systematic missingness (93.7%) for EN variables by design.
Little’s MCAR test confirmed no systematic relationship between missingness and observed
variables for the core domains (x? = 1847.3, df = 1839, p = 0.564), supporting the appropriate-

ness of multiple imputation procedures.

23
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Percentage of Missing Values by Company
Darker red indicates higher percentage of missing data

company4

company3

% Missing
100

company2

companyl

Figure 3.1: Heat map showing the percentage of missing values by company and variable

3.1.3 Descriptive Statistics and Distributional Properties

Table 3.1 presents comprehensive descriptive statistics for all model variables. Notable distribu-
tional characteristics include:

e Psychosocial Domain: Variables measured on 3-point scales (1 = not good, 2 = rea-
sonable, 3 = good) showed means ranging from 2.42 to 2.58, indicating generally positive
workplace perceptions. Moderate negative skewness values (-0.81 to -1.09) reflected the
tendency toward higher response categories.

e Ergonomics Domain: Variables measured on 4- or 5-point scales exhibited means be-
tween 3.05 and 3.76, with substantial distributional asymmetry. Physical Strenuous Work
showed pronounced ceiling effects (skewness = -2.83, kurtosis = 6.94), indicating most
respondents reported low physical demands.

e Safety Domain: Variables demonstrated consistent means around 2.6 on 3-point scales,
with moderate distributional characteristics supporting reliable measurement.

e Hygiene Domain: Variables displayed the most pronounced ceiling effects, with Haz-
ardous Substances Fzxposure showing a mean of 3.83 on a 4-point scale and substantial
distributional asymmetry (skewness = -3.41, kurtosis = 11.58), reflecting the low preva-
lence of such exposures in the sampled organizations.

e Environment Domain: Available only for the Company 4 subsample (N = 48), these

variables showed more balanced distributions with means between 2.84 and 3.07 and mod-
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erate skewness values (-0.34 to -0.67), suggesting less pronounced ceiling effects than other

domains.

Table 3.1: Descriptive statistics for model variables

Domain Variable N Mean SD Median Min Max ‘ Skewness Kurtosis
Psychosocial
Emotional demands 661 2.49 0.67 3 1 3 -0.94 -0.31
Work atmosphere 659 2.46 0.68 3 1 3 -0.88 -0.43
Work pace 661 2.42 0.71 3 1 3 -0.81 -0.62
Work-life balance 659 2.58 0.60 3 1 3 -1.09 0.17
Ergonomics
Manual handling loads 661 3.55 0.87 4 1 4 -1.70 1.50
Physically strenuous 661 3.76  0.68 4 1 4 -2.83 6.94
Repetitive work 661 3.67 0.74 4 1 4 -2.07 2.98
Sitting for long periods 662 3.05 0.96 3 1 4 -0.47 -1.05
Stressful postures 661 3.42 0.94 4 1 4 -1.26 0.08
Safety
Leadership engagement 668 2.62 0.59 1 -1.27 0.58
Worker involvement 668 2.62 0.59 1 -1.32 0.69
Hygiene
Hazardous substances 665 3.83 0.55 4 1 4 -3.41 11.58
High temperatures 664 3.63 0.80 4 1 4 -1.99 2.63
Low temperatures 664 3.51 091 4 1 4 -1.55 0.90
Noise 664 3.40 0.94 4 1 4 -1.23 0.07
Tool vibrations 662 3.71 0.68 4 1 4 -2.36 4.85
Environment
Environmental leadership 44 2.84 0.75 3 1 4 -0.41 -0.01
Environmental satisfaction 44 3.07 0.70 3 1 4 -0.49 0.34
Environmental contribution 44 291 047 3 1 4 -1.57 5.53
Environmental involvement 44 3.00 0.75 3 1 4 -0.33 -0.37

Implications for Analysis

The data’s distributional characteristics, including ceiling effects and asymmetry, justified the

use of WLSMV estimation and polychoric correlations, suitable for ordinal and nonnormal data.

Sample size distributions confirmed adequate power for measurement invariance testing, with the

English subgroup excluded due to its small sample size (N < 50), aligning with best practices.

These features support the validity of the measurement model findings.

3.2 Multiple Imputation Results

3.2.1

Imputation Implementation

In line with the procedures described in Section 2.1.2, 10 imputed datasets were constructed

to address missingness in 5-6% of the core variable observations. These imputed datasets were

subsequently used for all CFA and measurement invariance analyses as detailed in Section 2.5.5.

3.2.2

Distribution Preservation

Imputation Quality Assessment

Distribution statistics comparing original and imputed data are provided in Appendix Table F.8.

The imputation procedure generally preserved the distribution characteristics of the original

data, with imputed means consistently slightly lower than original means and imputed standard
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deviations slightly higher, reflecting modest regression toward the mean typical in multiple

imputation procedures.
Imputation Variance Components

Rubin’s variance components analysis (detailed in Appendix Table F.7) demonstrated extremely
low between-imputation variances relative to within-imputation variances, resulting in minimal
Fraction of Missing Information (FMI) values across all variables. This pattern reflects the low
percentage of missingness (5-6%) and indicates that the uncertainty introduced by missing data
is negligible compared to the sampling variance. FMI values ranged from effectively zero to

2.93 x 107%, well below the 0.30 threshold indicating problematic missing data impact.
Imputation Diagnostics

Detailed imputation diagnostics, including Imputation Fit Index (IFI) analysis comparing stan-
dard errors between observed and imputed data, are provided in Appendix Table F.9. While
some variables showed larger discrepancies than others (particularly those with ceiling effects),
the low overall missingness rate (5-6%) suggests minimal practical impact on subsequent anal-

yses.

3.2.3 Convergence and Implementation

Convergence diagnostics confirmed that imputation algorithms converged within the specified
20 iterations across all imputation runs, with no substantial differences in variable distribu-
tions observed after imputation. While imputed distributions may not exactly match observed
data distributions (depending on missingness patterns and variable relationships in the imputa-
tion model), the overall distributional characteristics were well-preserved. Detailed convergence
diagnostics and trace plots are provided in Appendix A.9.

The 10 multiply-imputed datasets were subsequently used for all CFA and measurement

invariance testing, with results pooled using Rubin’s rules as detailed in Section 2.5.5.

3.3 Confirmatory Factor Analysis Results

3.3.1 CFA Assumptions and Diagnostics

Prior to model estimation, comprehensive diagnostics confirmed the appropriateness of the
analytical approach. Assessment of distributional characteristics revealed substantial depar-
tures from multivariate normality assumptions, with Mardia’s multivariate skewness (32909.28,
p < 0.001) and kurtosis (194.05, p < 0.001) statistics indicating significant distributional asym-
metry. All variables failed univariate normality tests (Anderson-Darling, p < 0.001). These
findings confirmed the appropriateness of WLSMYV estimation for the ordinal survey data, as
specified in the methodology.

The multicollinearity assessment through the correlation matrix (Figure 3.2) revealed inter-
pretable patterns supporting the theoretical factor structure. Within-domain correlations were
generally stronger than cross-domain correlations, with the strongest relationships observed be-
tween Manual handling loads and Stressful postures (r = 0.76), Leadership engagement and
Work involvement (r = 0.74), and Tool vibrations and Hazardous substances (r = 0.67). No
correlations exceeded the 0.85 threshold indicating problematic multicollinearity. However, Sit-

ting for long-time showed weak correlations overall, including a concerning negative correlation
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with Stressful postures (r = —0.15).

Correlation Matrix of Reflective Indicators
Work pace | 1.00 0.54 0.45 0.49 0.28 0.37 0.18 0.32 0.34 0.31 0.33 0.36 0.32 0.32 031 0.32
Emotional demands ~ 0.54 1.00 0.58 0.48 0.33 0.32 0.18 0.33 0.33 0.39 0.45 0.35 0.32 0.29 031 0.32
Work atmosphere 045 0.58 1.00 0.43 0.40 0.34 0.12 0.42 0.38 0.42 0.47 0.39 0.32 0.22 0.31 0.36
Work-life balance ~ 0.49 0.48 0.43 100 031 0.36 0.25 034 040 0.37 037 0.40 0.33 0.35 0.34 041
Stressful postures 028 0.33 0.40 031 1.00 043  -0.15 0.76 0.59 0.44 0.41 0.62 0.48 0.36 0.44 0.52

Repetitive work 0.37 0.32 0.34 0.36 0.43 1.00 0.27 0.50 0.59 0.41 0.33 0.52 0.41 0.43 0.42 0.50

Sitting for long-time 0.18 0.18 0.12 0.25 -0.15 0.27 1.00 -0.05 0.13 0.13 0.08 0.09 0.10 0.25 0.11 0.20
1.0
Manual handling loads 0.32 0.33 0.42 0.34 0.76 0.50 -0.05 1.00 0.63 0.46 0.43 0.63 0.48 0.43 0.47 0.60 05
0.0
Physical strenuous 0.34 0.33 0.38 0.40 0.59 0.59 0.13 0.63 1.00 0.42 0.35 0.64 0.51 0.44 0.47 0.61
-0.5
-1.0

Work involvement 0.31 0.39 0.42 0.37 0.44 0.41 0.13 0.46 0.42 1.00 0.74 0.39 0.39 0.34 0.28 0.46

Leadership engagement 0.33 0.45 0.47 0.37 0.41 0.33 0.08 0.43 0.35 0.74 1.00 0.35 0.34 0.27 0.22 0.39

Tool Vibrations 0.36 0.35 0.39 0.40 0.62 0.52 0.09 0.63 0.64 0.39 0.35 1.00 0.51 0.48 0.54 0.67

Low temperatures 0.32 0.32 0.32 0.33 0.48 0.41 0.10 0.48 0.51 0.39 0.34 0.51 1.00 0.62 0.49 0.51

High temperatures 0.32 0.29 0.22 0.35 0.36 0.43 0.25 0.43 0.44 0.34 0.27 0.48 0.62 1.00 0.49 0.52

Noise 0.31 0.31 0.31 0.34 0.44 0.42 0.11 0.47 0.47 0.28 0.22 0.54 0.49 0.49 1.00 0.45

Hazardous Substances 0.32 0.32 0.36 0.41 0.52 0.50 0.20 0.60 0.61 0.46 0.39 0.67 0.51 0.52 0.45 1.00
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Figure 3.2: Correlation matrix of reflective indicators

Note. Reflective indicators are observed variables that are manifestations of an underlying latent
construct; the latent construct is assumed to cause variation in these indicators.

Factorability diagnostics strongly supported the appropriateness of factor analysis for most
variables. The Kaiser-Meyer-Olkin (KMO) measure indicated meritorious sampling adequacy
(KMO = 0.89), with individual KMO values > 0.80 for most variables. Bartlett’s test of
sphericity (x? = 26145.97, df = 171, p < 0.001) strongly rejected the identity matrix hypothesis.
However, the Sitting for long-time variable failed to meet factorability requirements with KMO =
0.68 (below the 0.70 threshold) and inadequate correlations with other indicators. Despite this,
the variable was retained in the initial CFA model to assess its empirical performance, with
the understanding that poor factor loading performance would support its removal in model

refinement.

3.3.2 Model Fit and Parameter Estimates

The four-factor CFA model demonstrated good overall fit to the data. Pooled fit indices across
multiply-imputed datasets showed excellent performance for CFI (0.987, 95% CI [0.978, 0.992]),
TLI (0.984, 95% CI [0.972, 0.991]), and SRMR (0.075, 95% CI [0.064, 0.086]). RMSEA was
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slightly above the preferred threshold (0.082, 95% CI [0.070, 0.096]) but remained within ac-
ceptable limits. FMI values ranged from 0.298-0.323, indicating moderate impact of missing
data on parameter estimation.

Factor loadings revealed generally strong relationships between indicators and their respec-
tive constructs (Table 3.2). Most standardized loadings exceeded 0.70, with particularly strong
performance for Manual handling loads (A = 0.942) and Work involvement (A = 0.944). The
critical exception was Sitting for long-time (A = 0.124), which fell well below acceptable thresh-

olds and confirmed concerns identified in assumption testing.

Table 3.2: Standardized and unstandardized factor loadings (discrimination) and intercepts
(difficulty)

Factor Description Unstd Loading (SE) Std Loading (SE) Intercept Estimate (SE) |
Ergonomics (ER)

ER Manual handling loads 1.059 (0.022) 0.942 (0.010) 1.187 (0.055)
ER Physical strenuous 1.044 (0.024) 0.929 (0.016) 1.324 (0.059)
ER Stressful postures 1.000* (0.000) 0.890 (0.014) 0.986 (0.051)
ER Repetitive work 0.893 (0.033) 0.794 (0.026) 1.278 (0.057)
ER Sitting for long-time 0.139 (0.034) 0.124 (0.030) 0.754 (0.048)
Hygiene (HY)

HY High temperatures 0.852 (0.026) 0.793 (0.025) 1.254 (0.057)
HY Low temperatures 0.910 (0.021) 0.846 (0.020) 1.181 (0.055)
HY Noise 0.740 (0.032) 0.689 (0.029) 0.974 (0.051)
HY Hazardous substances 0.989 (0.024) 0.920 (0.020) 1.415 (0.062)
HY Tool vibrations 1.000% (0.000) 0.930 (0.014) 1.342 (0.060)
Psychosocial Work Environment (PS)

PS Emotional demands 1.046 (0.052) 0.790 (0.028) 0.562 (0.044)
PS Work pace 1.000% (0.000) 0.755 (0.027) 0.478 (0.042)
PS Work atmosphere 1.086 (0.044) 0.820 (0.023) 0.531 (0.043)
PS Worlk-life balance 1.034 (0.050) 0.781 (0.029) 0.744 (0.046)
Safety (SA)

SA Leadership engagement 0.987 (0.040) 0.931 (0.021) 0.807 (0.047)
SA Work involvement 1.000* (0.000) 0.944 (0.021) 0.795 (0.047)

*Fixed for identification

Factor correlations (Appendix Table F.10) showed varying degrees of association between
constructs. The strongest correlation emerged between Psychosocial and Safety factors (r =
0.681), while the weakest was between Psychosocial and Hygiene factors (r = 0.295). The mod-
erate correlation between Ergonomics and Hygiene (r = 0.586) suggested potential discriminant

validity concerns that required formal assessment using the Fornell-Larcker criterion.
3.3.3 Reliability and Validity Assessment

Reliability analysis demonstrated good to excellent internal consistency across all factors. Boot-

strap confidence intervals across multiply-imputed datasets (10 imputations) showed (Table 3.3):

Table 3.3: Reliability coefficients for CFA by factor (N = 10 per factor)

Factor N Valid Cronbach’s « Polychoric ayy McDonald’s w Spearman-Brown  Polychoric SB

PS 10 0.792 [0.790, 0.795]  0.860 [0.858, 0.862] 0.796 [0.794, 0.799] - -
ER 10 0.746 [0.742, 0.751]  0.817 [0.813, 0.821] 0.795 [0.788, 0.801] - -
SA 10 0.859 [0.854, 0.864] 0.935 [0.932, 0.939] - 0.859 [0.854, 0.864]  0.935 [0.932, 0.939]

HY 10 0.828 [0.816, 0.839]  0.915 [0.908, 0.922] 0.856 [0.848, 0.864] -
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All reliability estimates substantially exceeded the 0.70 acceptability threshold, with poly-
choric measures showing consistently higher values when accounting for ordinal data structure.
Confidence intervals were narrow, indicating stable reliability estimation. The Safety factor
demonstrated the highest reliability across measures, while Ergonomics showed the lowest but
still acceptable performance.

Convergent validity assessment (Table 3.4) showed all factors met established criteria, with
Composite Reliability values ranging from 0.752-0.922 and Average Variance Extracted (AVE)
values from 0.511-0.856. The Safety factor demonstrated the strongest convergent validity
(AVE = 0.856), while Psychosocial showed the lowest but acceptable (AVE = 0.511).

Table 3.4: Convergent validity assessment

Factor Composite Reliability AVE
Psychosocial (PS) 0.804 0.511
Ergonomics (ER) 0.752 0.571
Safety (SA) 0.922 0.856
Hygiene (HY) 0.848 0.531

Note. CR values > 0.70 indicate acceptable reliability. AVE
values > 0.50 indicate acceptable convergent validity.

Discriminant validity assessment using the Fornell-Larcker criterion revealed mixed results
(Table 3.5). Good discriminant validity was found for most factor pairs, except Ergonomics and
Hygiene. The correlation between these (0.777) exceeded the square root of AVE for Hygiene

(0.729), indicating problematic overlap that challenges their conceptual distinctiveness.

Table 3.5: Fornell-Larcker matrix

Factor PS ER SA HY

PS 0.715 0.329 0.562 0.277
ER 0.329 0.755 0.466 0.777
SA 0.562 0.466 0.925 0.313
HY 0.277 0777  0.313 0.729

Note: Diagonal elements (in bold) represent the square root of AVE. Off-diagonal elements
represent, correlations between factors.

3.3.4 Threshold and Intercept Parameters

Threshold estimates for ordinal indicators (Appendix Table F.11) showed consistent patterns,
with values concentrated in the negative range of the latent continuum. This suggests the in-
strument is most sensitive to moderate-to-low workplace concern levels. Item intercepts varied
across domains, with Hygiene items generally showing higher values, reflecting greater diffi-
culty in endorsing negative conditions. The Sitting for long-time indicator again showed unique
characteristics, with a positive t3 threshold (0.235), further distinguishing it from other model

indicators.
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3.4 3.6 Measurement Invariance Results

Measurement invariance was tested across five key conditions using both traditional Null Hypoth-

esis Testing (NHT) and modern Equivalence Testing (ET) approaches as detailed in Section 2.7.

3.4.1 Overview of Invariance Testing Results

Summary of Invariance Decisions

Table 3.6: Measurement invariance results by approach and group comparison

Comparison Sample Sizes Metric Invariance Scalar Invariance NHT ET
Dutch vs French ny =617,n, =73 Supported Supported Supported Supported
Mobile vs Desktop ny = 175,n9 = 524 Supported Supported Supported Supported
Men vs Women ny = 443, ne = 246 Supported Supported Supported Supported
Age Categories 5 groups (28-228) Not Supported Supported Supported Supported
Environment Domain n; = 44,n9 = 655 Not Testable Not Testable Not Testable Not Testable

Note: NHT = Null Hypothesis Testing (ACFI > -0.01, ARMSEA < 0.015, ASRMR < 0.03
for metric; < 0.01 for scalar); ET = Equivalence Testing (0.2 threshold for loadings, 0.3 for
thresholds). Bold indicates divergent results between approaches.

Model Fit Indices Across All Tests

Table 3.7: Fit indices for measurement invariance models

Comparison Model 2 df CFI RMSEA SRMR ACFI ARMSEA ASRMR

Dutch vs French Configural 319.18 168 0.995 0.051 0.068 —
Metric 346.56 179 0.994 0.052 0.071  -0.001 +0.001 +0.003
Scalar 341.84 193 0.995 0.047 0.068  +0.001 -0.005 -0.002

Mobile vs Desktop Configural 290.62 168 0.997 0.046 0.059 —
Metric 318.23 179 0.996 0.047 0.061  -0.000 -+0.001 +0.002
Scalar 379.98 199 0.995 0.051 0.059  -0.001 +0.004 -0.002

Men vs Women Configural 240.93 142 0.996 0.045 0.069 —
Metric 279.34 152 0.995 0.049 0.075  -0.001 -+0.004 +0.005

Scalar 260.12 164 0.996 0.041 0.070  +0.001 -0.008 -0.004
Age Categories Configural 299.00 284 0.999 0.016 0.074 — —

Metric 376.92 314 0.998 0.034 0.081  -0.002 +0.018* +0.008

Scalar 342.36 350 1.000 0.002 0.074  +0.002 -0.031 -0.007

Note: Asterisk indicates threshold violation (ARMSEA = 0.018 > 0.015 threshold).

Differential Item Functioning Results

Table 3.8: DIF analysis results for environment domain comparison

Analysis Type Sample Total Items | Items with DIF | % with DIF
Full Sample All companies 16 16 100%
Company 4 Only | Single organization 16 0 0%

Note: DIF = Differential Item Functioning using Mantel-Haenszel procedure.
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3.4.2 Language Invariance (Dutch vs. French)
Sample Characteristics: Dutch speakers (N = 617) vs. French speakers (N = 73). Three

variables with sparse French responses were recoded to binary format to ensure adequate cell
frequencies.

Results: Strong invariance support across all levels under both NHT and ET approaches,
with all change indices well within established thresholds and maximum parameter differences
of 0.01 (well below ET equivalence bounds). Model fit remained excellent across all invariance
levels (see Tables 3.6 and 3.7).

3.4.3 Device Method Invariance (Mobile vs. Desktop)
Sample Characteristics: Mobile users (N = 175) vs. Desktop users (N = 524).

Results: Consistent invariance support under both approaches, with minimal fit deteri-
oration and parameter differences well below equivalence thresholds. Visual evidence in Ap-

pendix Figure A.6 demonstrates stable CFI values (> 0.99) across all invariance levels.

3.4.4 Gender Invariance (Men vs. Women)

Sample Characteristics: Men (N = 443) vs. Women (N = 246). Modified model excluding
problematic Low temperatures variable.
Results: Strong invariance support across all levels under both approaches, with excellent

model fit maintained and minimal parameter differences observed.

3.4.5 Age Category Invariance

Sample Characteristics: Five age groups: <25 (N = 28), 25-34 (N = 132), 35-44 (N = 192),
45-54 (N = 228), >55 (N = 113).

Divergent Findings: While scalar invariance was supported by both approaches, metric
invariance showed divergent results—NHT approach indicated non-support (ARMSEA = 0.018
> 0.015 threshold), while ET approach supported equivalence (max loading difference = 0 <
0.2 threshold).

Source of Divergence: Three items showed substantial loading differences across age
groups, with older workers (> 55) consistently showing stronger item-factor relationships for
physical workplace conditions:

e High temperature: 0.238 loading difference (0.859 vs. 0.620)

e Noise: 0.213 loading difference (0.737 vs. 0.524)

e Repetitive work: 0.165 loading difference (0.923 vs. 0.758)

This pattern suggests age-related differences in sensitivity to physical workplace factors,

representing a theoretically meaningful finding rather than measurement error.

3.4.6 Environment Domain Invariance

Multi-Group CFA Challenges
Traditional MGCFA could not be implemented for the EN comparison (N = 44) vs.(N = 655)

due to insufficient sample size and sparse cell frequencies. Multiple methodological approaches
were attempted, including binary recoding, simplified models, and company-specific analysis,

but these resulted in model non-convergence/inadmissible solutions.



32 Chapter 3. Results

Differential Item Functioning Analysis

Full Sample Results: DIF analysis revealed universal differential functioning—all 16 items
(100%) across all four domains showed significant DIF between groups with and without the EN
(Table 3.8). All items received a “C” classification, indicating large effect sizes.

Company 4 Results: In stark contrast, when the analysis was restricted to Company 4, no
items showed significant DIF (Table 3.8). This dramatic difference (100% — 0% DIF) highlights
the critical role of questionnaire version consistency in measurement equivalence, as Company
4 was the only organization where both comparison groups completed the same survey version

including the environmental extension.
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Discussion

4.1 Discussion and Interpretation of the Results

This comprehensive psychometric validation of the OHS Barometer e-survey provides essential
evidence for its utility as a workplace well-being assessment tool while revealing important
insights about measurement invariance, questionnaire version effects, and age-related differences
in workplace assessment. The findings establish a solid foundation for evidence-based workplace
well-being measurement while identifying key areas requiring attention for optimal instrument
performance and application.

The confirmatory factor analysis revealed a generally well-functioning four-factor measure-
ment model with excellent overall fit (CFI = 0.987, TLI = 0.984, SRMR = 0.075) and robust
reliability across all domains. The reliability analysis demonstrated strong internal consistency,
with particularly noteworthy findings regarding the consistent superiority of polychoric measures
over traditional reliability coefficients when accounting for the ordinal nature of the data. Poly-
choric alpha values reached as high as 0.935 for the Safety factor, underscoring the importance
of using measurement approaches specifically designed for ordinal data in workplace assessment
contexts.

However, several critical findings emerged that require careful theoretical consideration. The
discriminant validity analysis revealed problematic overlap between the Ergonomics and Hygiene
factors (r = 0.777 > /AVEgy = 0.729), challenging their conceptual distinctiveness and sug-
gesting these domains may not be empirically separable in workplace assessments despite their
theoretical differentiation. This finding aligns with contemporary perspectives emphasizing the
interconnected nature of physical work environment factors and suggests that workplace well-
being may be better conceptualized through integrative rather than compartmentalized models
(Health and Safety Executive, 2019).

The strong correlation between Psychosocial and Safety factors (r = 0.681) further supports
this integrative perspective, suggesting that psychological safety and broader safety culture are
closely intertwined.

The identification of the Sitting for long-time variable as consistently problematic across
multiple assessments—demonstrating inadequate factorability (KMO = 0.68), extremely weak
factor loading (A = 0.124), and poor correlations with other ergonomic indicators—suggests
fundamental misalignment with the intended factor structure. This is further evidenced in the
threshold estimates, where Sitting for long-time is the only variable across all domains to exhibit

a positive threshold (t3 = 0.235), indicating that endorsement of the highest category requires
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exceeding the distribution mean, contrasting sharply with all other ergonomic variables that
show consistently negative thresholds. This unique threshold pattern reinforces the variable’s
conceptual and statistical divergence from other ergonomic factors, supporting its problematic fit
within the ergonomic domain. This finding indicates that not all theoretically relevant workplace
factors necessarily translate into psychometrically sound measurement indicators, highlighting
the critical importance of empirical validation in instrument development.

The measurement invariance testing yielded the most theoretically and methodologically
significant findings. Strong measurement invariance was established across language groups
(Dutch—French), data collection methods (mobile-desktop), and gender, supporting valid cross-
group comparisons for these conditions. The consistency between traditional null hypothesis
testing and modern equivalence testing approaches strengthened confidence in these conclusions
and demonstrated the value of employing multiple analytical perspectives in invariance research.

The age-related analysis yielded particularly compelling insights that advance our under-
standing of developmental perspectives in workplace assessment. Both analytical approaches
consistently supported scalar invariance, indicating equivalent item thresholds across age groups.
However, metric invariance results diverged markedly: traditional null hypothesis testing sug-
gested non-invariance due to ARMSEA exceeding the 0.015 threshold, while equivalence testing
demonstrated practical equivalence, with maximum factor loading differences remaining well
below the 0.2 criterion.

This methodological divergence reveals critical distinctions between statistical and practical
significance in measurement invariance research. The findings suggest that age-related differ-
ences in factor loadings may reflect legitimate developmental variations in workplace priorities
and experiences rather than measurement bias. Older workers’ differential weighting of work-
place factors could represent meaningful life-stage perspectives rather than psychometric limi-
tations, thereby contributing valuable insights to developmental theories of occupational health
assessment.

These results highlight fundamental tensions in current measurement invariance practice
(Putnick & Bornstein, 2016) and contribute to evolving debates about appropriate equivalence
standards in organizational research (Marsh et al., 2004; Vandenberg & Lance, 2000). The
contrast between traditional threshold-based approaches (Chen, 2007) and emerging equivalence
testing frameworks (Lakens, 2017) underscores the need for context-sensitive decision criteria
rather than universal cutoff values (Nye & Drasgow, 2011).

The specific pattern of age-related loading differences proved particularly revealing, with
older workers (> 55) consistently demonstrating stronger item-factor loadings for physical work-
place conditions (high temperature, noise, repetitive work) compared to younger age groups.
Rather than representing measurement error, these differences appear to capture genuine devel-
opmental processes whereby older workers become more sensitive to physical workplace condi-
tions due to accumulated experience and changing physiological capacities. This pattern reflects
theoretically meaningful developmental changes, aligning with research on age-related changes
in physical tolerance and workplace priorities (Kenny et al., 2010).

Perhaps the most striking methodological insight emerged from the differential item function-

ing (DIF) analysis, which successfully addressed the convergence challenges encountered with
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traditional invariance testing approaches. In the full sample spanning all participating com-
panies, universal differential functioning was observed across all four domains (100% of items
exhibited significant DIF).

In stark contrast, when the analysis was limited to Company 4—the only organization that
implemented the environmental questionnaire extension—mno DIF was detected (0% of items),
representing a complete reversal of the full sample pattern. This dramatic shift demonstrates
that apparent measurement non-equivalence may stem from differences in questionnaire versions
rather than from true measurement bias or organizational context effects.

This pattern reveals that survey extensions can create systematic artifacts in DIF analyses.
What appears as measurement non-invariance may actually reflect methodological confounding
introduced by comparing responses across companies with differing instrument versions. These
findings demonstrate that traditional approaches to measurement validation may conflate true
measurement bias with effects driven by survey version inconsistencies, potentially leading to
erroneous conclusions about instrument reliability or fairness.

The results underscore a critical methodological requirement for organizational survey re-
search: measurement equivalence testing must control for survey version consistency. The uni-
versal DIF observed in the full sample likely reflects methodological confounding due to Company
4’s questionnaire extension rather than actual psychometric shortcomings. Consequently, cross-
organizational DIF analyses must ensure identical instrument versions across groups to avoid
artifactual findings that may misrepresent the measurement properties of workplace assessment
tools.

From a practical implementation perspective, these findings provide clear guidance for in-
strument refinement and application. The immediate need to remove or substantially revise
the Sitting for long-time indicator is evident from its consistently poor performance. The poor
discriminant validity between Ergonomics and Hygiene domains suggests these should be con-
sidered for merger into a unified Physical Work Environment factor, which would better reflect
the empirical relationships while maintaining theoretical coherence. The age-related findings
necessitate implementing partial metric invariance approaches when conducting age-based com-
parisons, specifically freeing constraints on the three problematic items while maintaining scalar
invariance for valid mean comparisons.

For organizations implementing the OHS Barometer, the established measurement invari-
ance across language, device, and gender groups enables confident cross-group comparisons
for these conditions. Organizations can validly compare workplace well-being scores between
Dutch and French speakers, mobile and desktop users, and men and women without concern
for measurement artifacts. Age-related differences in factor loadings may reflect meaningful
developmental variations in workplace priorities rather than measurement limitations, suggest-
ing that observed differences between age groups represent genuine life-stage perspectives on
workplace factors. Additionally, organizations should ensure questionnaire version consistency
when making cross-organizational comparisons, as survey extensions or modifications can cre-
ate apparent measurement differences that reflect methodological artifacts rather than genuine

workplace differences.
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4.2 Study Limitations

Several methodological limitations must be acknowledged that may influence the interpretation
and generalizability of these findings. The sample characteristics present the most significant
constraint, with data collection restricted to retail and wholesale sectors within Belgium. This
sectoral limitation potentially restricts generalizability to other industries where workplace well-
being domain relationships may differ substantially. Manufacturing environments with heavy
physical demands, healthcare settings with unique psychosocial stressors, or knowledge work
contexts with predominantly cognitive demands may exhibit different factor structures and mea-
surement properties than those observed in retail and wholesale settings.

The geographic restriction to Belgian organizations similarly limits international generaliz-
ability, as cultural differences in workplace expectations, regulatory frameworks, and assessment
patterns may influence instrument performance in other national contexts. The sample size dis-
tribution across demographic groups presented analytical challenges, particularly for age-based
analyses, with the smallest age group (<25 years, n = 28) falling substantially below optimal
sample sizes for robust measurement invariance testing. Similarly, the English-speaking subsam-
ple (n = 9) was too small to include in cross-linguistic measurement invariance testing, limiting
the analysis to Dutch-French comparisons and restricting conclusions about measurement equiv-
alence for English-speaking workers.

The environment domain analysis suffered from severe methodological constraints due to
the substantial sample size imbalance (n = 44 vs. n = 655), preventing traditional measure-
ment invariance testing and limiting conclusions about the domain’s measurement properties.
The cross-sectional design represents another significant limitation, preventing conclusions about
temporal stability, test-retest reliability, and responsiveness to workplace changes—critical ap-
plications for workplace assessment tools.

The reliance exclusively on self-report survey data without objective workplace assessments
or external validation criteria represents a methodological constraint that limits understand-
ing of how subjective assessments relate to objective workplace conditions. The convenience
sampling approach may have introduced selection bias through the voluntary participation of
organizations, potentially restricting the representativeness of findings to the broader population
of Belgian workplaces.

While methodologically sophisticated, the multiple imputation approach relied on missing-
at-random assumptions that, although statistically supported, cannot be definitively verified.
Additionally, measurement invariance testing was limited to the specific grouping variables ex-
amined, potentially missing other important sources of measurement non-equivalence such as

job level, tenure, or organizational size.

4.3 Ethical Thinking, Societal Relevance, and Stakeholder Aware-
ness

The development and validation of workplace well-being assessment tools carries significant
ethical responsibilities and societal implications that extend beyond technical psychometric con-

siderations. This research contributes to fundamental ethical imperatives in occupational health
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by providing organizations with evidence-based tools to assess and improve conditions affecting
worker health, safety, and well-being, ensuring that decisions affecting workers’ lives are based
on reliable, valid measurements rather than subjective impressions.

The cross-linguistic validation particularly addresses ethical concerns about equity and in-
clusion in workplace assessment. By establishing measurement equivalence across Dutch and
French language groups, this research helps ensure that linguistic minorities are not disadvan-
taged by measurement bias in workplace evaluations, supporting broader social justice goals
and reducing the potential for systematic bias against French-speaking workers in multilingual
organizational contexts.

The identification of age-related measurement differences raises important ethical consider-
ations about age discrimination and inclusive workplace practices. Rather than representing
problematic bias, the finding that older workers show stronger sensitivity to physical workplace
conditions provides valuable information for developing age-inclusive workplace policies that
consider developmental differences in workplace design and assessment.

The questionnaire version effects revealed through the environment domain analysis highlight
methodological responsibilities in workplace research and assessment. The finding that appar-
ent measurement problems disappeared when survey version consistency was controlled demon-
strates the importance of considering methodological factors rather than attributing assessment
challenges to individual or instrumental failures. This supports more rigorous approaches to
workplace evaluation that ensure questionnaire consistency across organizational comparisons
and avoid misinterpreting methodological artifacts as genuine measurement problems or organi-
zational differences.

For various stakeholders, this research provides tools that support ethical practice and
decision-making. Occupational health professionals benefit from validated instruments that en-
able more accurate assessment of workplace conditions affecting worker health while providing
efficient approaches that respect workers’ time and organizational resources. Employers benefit
from evidence-based assessment tools that support ethical decision-making about workplace con-
ditions and enable proactive identification of workplace well-being concerns. Workers themselves
benefit from validated assessment tools that accurately capture their workplace experiences and
provide reliable foundations for improvement efforts.

The broader societal relevance extends to public health and economic implications of work-
place well-being. Reliable assessment tools support the development of healthier workplaces
that reduce healthcare costs, improve productivity, and enhance quality of life for workers and
their families. The comprehensive assessment approach recognizes workers as whole persons with
interconnected physical, psychological, and social needs rather than reducing them to isolated

dimensions.

4.4 Future Research Directions

The findings and limitations of this validation study point toward several important directions
for future research that could significantly advance workplace well-being assessment and mea-
surement science. Longitudinal validation represents the most critical immediate need, as the

cross-sectional design prevents conclusions about temporal stability, test-retest reliability, and
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responsiveness to workplace changes. Future research should examine the instrument’s perfor-
mance over various time intervals and assess whether the factor structure remains stable over
time and whether measurement invariance holds across temporal contexts.

Expanding the validation scope to diverse organizational and cultural contexts represents
another critical research priority. The current restriction to retail and wholesale sectors in
Belgium limits understanding of how workplace well-being factor structures and measurement
properties may vary across industries with different characteristics. Manufacturing environ-
ments, healthcare settings, educational institutions, and knowledge work contexts may exhibit
different measurement properties that would inform both theoretical understanding and practical
application.

The environment domain requires focused development attention given the methodological
constraints that prevented adequate evaluation in this study. Future research should prioritize
collection of larger, more balanced samples specifically designed to enable robust psychometric
evaluation of environmental workplace factors and clarify the conceptual boundaries of environ-
mental workplace well-being.

Criterion validation research represents a significant gap that limits conclusions about prac-
tical utility and predictive validity. Future studies should incorporate objective workplace mea-
surements, health outcomes, performance indicators, and organizational metrics to establish
how subjective well-being assessments relate to concrete workplace conditions and outcomes,
examining relationships with absenteeism, turnover, productivity measures, safety incidents,
and healthcare utilization.

The age-related measurement differences warrant deeper investigation through mixed-methods
approaches that combine quantitative analysis with qualitative exploration of how different age
groups understand and interpret workplace assessment items. Advanced analytical approaches
could provide new insights into workplace well-being structure and relationships, including net-
work analysis to explore complex patterns of relationships and multilevel modeling to examine
organizational-level variance in measurement properties.

The questionnaire version effects revealed in this study suggest important new research direc-
tions examining how survey design consistency and methodological controls influence measure-
ment properties in organizational assessment processes. Research could investigate how different
questionnaire versions or extensions affect measurement equivalence across organizations and
develop standardized protocols to ensure valid cross-organizational comparisons while avoiding
methodological artifacts that can be misinterpreted as genuine organizational or measurement

differences.
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Conclusion

This comprehensive psychometric validation establishes the OHS Barometer e-survey as a valu-
able tool for workplace well-being assessment while providing important insights for both mea-
surement science and practical application. The research demonstrates that rigorous psycho-
metric validation can be successfully conducted in organizational contexts using sophisticated
analytical approaches that address missing data, measurement invariance, and multiple sources
of uncertainty.

The generally strong psychometric properties, including robust reliability across domains and
good overall model fit, support the instrument’s utility for workplace assessment applications.
The established measurement invariance across language groups, data collection methods, and
gender provides confidence that the instrument functions equivalently across these critical con-
ditions, enabling valid cross-group comparisons and supporting inclusive assessment practices.

The methodological contributions extend beyond instrument validation to advance measure-
ment science through innovative approaches to combining multiple imputation with bootstrap
procedures and systematic comparison of traditional and modern measurement invariance test-
ing approaches. The identification of questionnaire version effects in measurement equivalence
represents a significant contribution to measurement methodology, demonstrating that appar-
ent measurement problems may reflect survey design inconsistencies rather than instrumental
factors.

However, several important limitations require acknowledgment and attention. The prob-
lematic Sitting for long-time indicator requires removal or substantial revision, while the poor
discriminant validity between Ergonomics and Hygiene domains suggests the need for structural
refinement. The age-related measurement differences, while theoretically meaningful, necessitate
careful interpretation and may require age-specific implementation guidelines.

Despite these limitations, the research provides a solid foundation for evidence-based work-
place well-being assessment while identifying clear pathways for continued development and
refinement. The comprehensive approach to validation, honest acknowledgment of limitations,
and detailed implementation guidance provide a model for rigorous psychometric research in
workplace contexts. The instrument represents an important step forward in efficient, multi-
dimensional workplace assessment that respects diverse linguistic and technological preferences

while providing reliable assessment of workplace well-being factors.
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Appendix A

Supplementary Material

This file contains additional figures, tables, and equations referenced in the main text.

A.1 Imputation Fit Index (IFI)

For each variable m and imputation k:
Fli = |SE({e™) — SE()|

Average IFI across all imputations:

1 K
IFL,, = % kzl IFL,,,

Standard deviation of IFI:
1
2 2
= — E IF1,,,. — IFL,,
SIFIm K —1 r ( mk )

Standardized IFI score:
IFI,. — IFT,,

2P, = oL
Where:

o SE (wgbs)) = standard error of observed data for variable m

) SE(wgf)) = standard error of imputed data for variable m in imputation k

e K = number of imputations (10 in this study)

A.2 Software and Computational Environment

A.2.1 Software Specifications

Analyses were conducted in R (4.2.2) using both core and specialized packages:

e Core Packages: lavaan, semTools, mice, mitml, psych — for factor analysis, invariance

testing, and reliability estimation.

e Specialized Packages: difR, MVN, boot — for differential item functioning analysis,

normality testing, and bootstrap procedures.
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e Data and Visualization: dplyr, ggplot2, knitr, rmarkdown — for data manipulation,

visualization, and dynamic reporting.
A.2.2 Computational Environment

e Hardware: 3.6 GHz processor, 32 GB RAM, running Windows 11 on SSD storage.
e Optimization: Utilized parallel processing, efficient memory management, and controlled
random seeds (set.seed(123)).
A.2.3 Reproducibility Measures
e Code Management: Modular .Rmd scripts, version control systems (e.g., Git), and
clearly separated code blocks for analyses.

e Documentation: Clear variable naming conventions, comprehensive commenting, and

session information logging.
e Output Handling: Automated generation of tables and figures, consistent formatting
styles, and saved intermediate outputs.

A.2.4 Code Availability

Analysis scripts are available upon request and are structured to support adaptation and future

research applications.

A.3 Diagnostic Procedures and Statistical Assumptions

This appendix details the diagnostic procedures, mathematical formulations, and interpretation

criteria referenced in Section 2.4.3.
A.3.1 Multivariate Normality

Multivariate normality was assessed using:
e Univariate Skewness (v1): Significant asymmetry indicated by |y1| > 2.
e Univariate Kurtosis (72): Excess peakedness or flatness indicated by |y2| > 7.
e Mardia’s Tests:
— Multivariate skewness and kurtosis statistics.
— p < .05 indicates deviation from multivariate normality.
A.3.2 Multicollinearity
Multicollinearity among observed variables was examined via:
e Variance Inflation Factor (VIF): Values below 10 indicate acceptable levels.
e Inter-item correlations: Correlation coefficients |r| > .85 may suggest redundancy.
e Determinant of Correlation Matrix: Values < 0.00001 indicate potential multi-
collinearity problems.

A.3.3 Factorability

To assess factorability:
e Bartlett’s Test of Sphericity: p < .05 supports factorability.
e Kaiser-Meyer-Olkin (KMO) Measure:
— KMO > .60 considered acceptable.
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— KMO > .80 considered very good.

e Correlation Matrix Inspection: Majority of coefficients |r| > .30 indicates adequate

inter-item correlation.

All diagnostics were reviewed before confirmatory analysis, with adjustments made (e.g., use

of WLSMV estimator) to accommodate detected violations.

A.4 Model Fit Indices

A.4.1 Mathematical definitions of CFA model fit indices

Table A.1: Mathematical definitions of CFA model fit indices

Fit Index

Formula

Interpretation

Chi-Square (x?)
CFI

TLI
RMSEA

SRMR

(N — 1) X FML

max[(xgarget —dftarget),0]

" max[(xF oo — Wbaseline ) (Xoarget — Utarget).0)

(X asetine/ Afbasetine) — (XPargot/ frarget)
(X]Z)ascunc /dfbaseline) —1

2_q
max (d;((N*fl) , O)

EU(SU*&U)Q
2
Z” Sij

Tests if model-implied and sample covariance ma-
trices match.

Compares target model to baseline independence
model.

Adjusts for model complexity, less sensitive to sam-

ple size.

Evaluates discrepancy per degree of freedom, ad-
justed for sample size.

Measures average standardized residuals between
observed and model-implied covariances.

A.4.2 Interpretation of Model Fit Indices

Table A.2: Interpretive guidelines for CFA model fit indices

Fit Index Excellent Fit | Good Fit | Acceptable Fit | Poor Fit
Chi-Square (x?) p > 0.05 p > 0.01 p > 0.001 p < 0.001
CFI >0.97 >0.95 >0.90 < 0.90
TLI >0.97 >0.95 >0.90 < 0.90
RMSEA <0.05 < 0.06 <0.08 > 0.08
SRMR <0.05 < 0.06 <0.08 > 0.08
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A.4.3 Practical Considerations

Table A.3: Practical guidelines and limitations for model fit interpretation

Aspect

Guidelines

Sample Size

e Small samples (N < 200): focus on descriptive fit indices.
e Large samples (N > 500): chi-square likely significant, em-
phasize practical fit indices.

e Very large samples (N > 1000): chi-square almost always
significant, rely on CFI, TLI, RMSEA, and SRMR.

Model Complexity

e Simple models may show good fit but lack theoretical rich-
ness.

e Complex models may exhibit lower fit indices but capture
nuanced relationships.

e Prefer simpler models with adequate fit over complex models
with marginal improvement.

Combined Interpretation

e Good fit: CFI and TLI > 0.95, RMSEA < 0.06 with narrow
CI, SRMR < 0.06, non-significant x? (if sample size allows).

e Marginal fit: CFI and TLI > 0.90, RMSEA < 0.08, SRMR
< 0.08, strong theoretical justification.

Limitations

e Cut-off values are guidelines, not absolute thresholds.
e Model type sensitivity affects interpretations.
e Estimation method impacts fit indices.

e Good fit doesn’t guarantee theoretical or practical utility.

A.5 Threshold Parameters - Mathematical Specification

Conceptual Framework

Each ordinal item is assumed to reflect an underlying continuous latent response propensity.

Respondents perceive this continuous trait level but report it using the limited set of discrete

response categories (e.g., 1 = not good,” 2 = reasonable,” 3 = “good”).

Mathematical Specification

For an item with C response categories, there are C'— 1 thresholds (71, 72,...,7c—1) that define

the boundaries between adjacent response categories:

e Response category 1 if latent response < 7

e Response category 2 if 71 < latent response < 7o

e Response category 3 if 7o < latent response < 73
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Interpretation Guidelines

Threshold location indicates the latent trait level required to transition between response

categories

Negative thresholds suggest transitions occur at below-average trait levels

Positive thresholds indicate transitions require above-average trait levels

Threshold spacing reflects item discrimination across different trait levels

Practical Implications

e [tems with widely spaced thresholds discriminate well across a broad range of trait levels

e Items with closely spaced thresholds provide fine-grained measurement precision in a nar-

rower trait region

This modeling approach is fundamental to ordinal confirmatory factor analysis (CFA) and

provides essential insight into item functioning beyond factor loadings alone.

A.6 Rubin’s Rules Formulas

For each parameter 0, the following formulas are used to combine results across M imputed

datasets:

e Pooled point estimate:
| M
0P001 = M Z Hj
7j=1
e Within-imputation variance:

1 A
W= > SE3(4))
7j=1

¢ Between-imputation variance:

e Total variance:
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A.7 Reliability and Validity Measures

A.7.1 Mathematical Formulations

Table F.1: Mathematical formulas for reliability and validity measures

Measure

Formula

Key Notes

Cronbach’s  Alpha
(a)

= ()

Ttotal

I = items, v; = er-
ror variance, assumes tau-
equivalence

McDonald’s Omega
(w)

N
WE TN %

X; = standardized load-
ings, numerator = ex-
plained variance

Composite Reliabil-
ity (CR)

A
CR = 37500

Accounts for congeneric
measures

Average Variance
Extracted (AVE)

PPY
AVE = &

X; = standardized load-
ings, average variance ex-
plained

Polychoric Alpha

I Yo}
%Zﬁ@*ﬂ )

sum

For ordinal data; O'Z-Q from

(ap) polychoric covariances
Spearman-Brown rSB = ﬁ"ﬁ For two-item scales; rpp =
(rsm) correlation between halves

Fornell-Larcker Cri-
terion

VAV E, > rg, and \/JAVEy > 1y,

Discriminant validity test

A.7.2 Interpretive Thresholds

Table F.2: Interpretive thresholds for reliability and validity

Reliability Level | «, w, CR AVE

Reference

Excellent
Good
Acceptable

Poor

Questionable

>0.90 > 0.70
0.80-0.89 > 0.60
0.70-0.79 > 0.50

< 0.60 < 0.40

Nunnally & Bernstein (1994)
Nunnally & Bernstein (1994)
Nunnally & Bernstein (1994)
0.60-0.69 | 0.40-0.49 | Hair et al. (2010)
Hair et al. (2010)
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A.7.3 Interpretation and Assessment Strategy

Table F.3: Interpretation for reliability and validity assessment

Situation

Primary Measure

Additional Requirements / Action

Tau-equivalence holds

Cronbach’s Alpha

Confirm with constrained CFA model

Tau-equivalence vio-

lated

McDonald’s Omega

Compare constrained vs. uncon-

strained CFA models

Ordinal/Likert data

Polychoric Alpha

Always report alongside primary mea-
sure

Two-item constructs

Spearman-Brown

Use split-half correlation

Convergent validity

AVE

AVE > 0.50 required

Discriminant validity

Fornell-Larcker

VAV E must exceed inter-construct
correlations

A.7.4 Contextual Factors

Table F.4: Contextual factors in reliability evaluation

pha; Continuous:
Binary: KR-20

Standard;

Factor Consideration Implication

Scale Length 2-3 items: Lower reliability | Adjust interpretation based on item
expected; 4-7: Standard; 8+: | count
Higher

Data Type Ordinal: Use Polychoric Al- | Match method to data scale

Sample Size

N < 200: Less stable; N >
500: More stable; N > 1000:

Overpowered

cordingly

A.7.5 Troubleshooting Common Issues

Table F.5:

Common issues and solutions in reliability analysis

Problem

Potential Causes

Solutions

Low Reliability (< 0.70)

Heterogeneous items, short
scales, high error

Check item-total correlations, consider
item removal

Failed Discriminant Va-
lidity

Conceptual overlap,

method effects

Examine correlations, respecify con-
structs

Discrepant Estimates

a < w: Tau-equivalence
violated;  Polychoric >
Standard: Ordinal data

Report most appropriate measure, ex-
plain differences

A.7.6 Minimum Reporting Standards

e Report at least two reliability coefficients per construct (e.g., w, CR)

e Include AVE values for all latent constructs

e Conduct and report discriminant validity assessment (e.g., Fornell-Larcker)

e Justify choice of primary reliability measure based on model and data characteristics

Interpret stability and significance ac-
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A.8 Data Description Appendix

A.8.1 Auxiliary Variables

Table F.6: Auxiliary variables for multiple imputation

Variable Domain Description Missing (%) Strongest
Correlation
age_cat Demographics Age cate- 0.9 N/A
gories
sex_cat Demographics Gender cate- 1.4 N/A
gories
. H d bst
hyg_freq_exp_substances Hygiene Frequency 4.9 (8282:5 ous substances
of hazardous '
substance
exposure
. Tool vibrati
hyg_freq_exp_tools Hygiene Frequency of 5.0 ((())?36)VI rations
vibrating tool '
exposure
. High t t
hyg_freq_exp_high_temp  Hygiene Frequency 5.0 (01%2) erperatures
of high tem- '
perature
exposure
. L t t
hyg_freq_exp_low_temp Hygiene Frequency of 5.2 (ggg)empera ures
low tempera- '
ture exposure
. Noi
hyg_freq_exp_noise Hygiene Frequency of 5.2 ((;) 1;9(;
noise  expo- '
sure
s . Sitting for long-time
erg_freq_exp_sitting Ergonomics Frequency of 5.3 (0.85)
prolonged sit- '
ting
. Stressful postures
erg_freq_exp_posture Ergonomics Frequency of 5.4 (0.92)
stressful pos- '
tures
. Physical st
erg_freq_exp_physical Ergonomics Frequency 5.4 ysical strenuous

of  physical
demands

(0.93)
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Between and Within Imputation Variance

Table F.7: Between and within imputation variance components by latent factor

Variable Mean Within Var Between Var Total Var FMI
Psychosocial Work Environment (PS)

Work pace 2.36 0.570 1.33 x 107° 0.570 2.56 x 107
Emotional demands 2.43 0.506 8.05 x 1073 0.506 1.75 x 10~*
Work atmosphere 2.39 0.539 4.91 x 1076 0.539 1.00 x 107°
Work-life balance 2.50 0.458 9.19 x 1076 0.458 2.21 x 107°
Ergonomics (ER)

Stressful postures 3.31 1.051 1.21 x 1074 1.051 1.26 x 10~
Repetitive work 3.54 0.853 3.73 x 1076 0.853 4.81 x 1076
Sitting for long-time 2.95 1.065 7.75 x 1076 1.065 8.01 x 1076
Manual handling loads 3.42 1.023 6.57 x 1076 1.023 7.07 x 1076
Physical strenuous 3.62 0.796 1.24 x 107° 0.796 1.71 x 107°
Safety (SA)

Work involvement 2.56 0.428 1.55 x 1075 0.428 3.98 x 107°
Leadership engagement 2.57 0.394 2.57 x 107 0.394 7.17 x 1075
Hygiene (HY)

Tool vibrations 3.57 0.786 1.84 x 1076 0.786 2.58 x 1076
Low temperatures 3.38 1.085 3.66 x 1076 1.085 3.71 x 1076
High temperatures 3.51 0.892 2.38 x 1074 0.892 2.93 x 1074
Noise 3.32 0.997 4.19 x 1074 0.997 4.62 x 1074
Hazardous substances 3.69 0.653 0.00000 0.653 0.00000

Distribution Comparison

Table F.8: Distribution statistics for original and imputed data

Variable Original Distribution Missing (%) Original Mean (SD) Imputed Mean / SD Range
Psychosocial (PS)

Work pace 1: 85, 2: 211, 3: 365 5.4% 2.42 (0.71) 2.35-2.36 / 0.75-0.76
Emotional demands 1: 66, 2: 208, 3: 387 5.4% 2.49 (0.67) 2.42-2.45 / 0.69-0.72
Work atmosphere 1: 69, 2: 216, 3: 374 5.7% 2 46 (0.68) 2.38-2.39 / 0.73-0.74
Work-life balance 1: 37, 2: 204, 3: 418 5.7% 58 (0.60) 2.49-2.50 / 0.67-0.68
Ergonomics (ER)

Stressful postures 1: 31, 2: 119, 3: 53, 4: 458 5.4% 3.42 (0.94) 3.30-3.33 / 1.00-1.05
Repetitive work 1: 12, 2: 71, 3: 40, 4: 538 5.4% 3.67 (0.74) 3.54-3.54 / 0.92-0.93
Sitting for long-time 1: 36, 2: 179, 3: 164, 4: 283 5.3% 3.05 (0.96) 2.94-2.95 / 1.03-1.03
Manual handling loads 1: 29, 2: 81, 3: 51, 4: 500 5.4% 3.55 (0.87) 3.42-3.42 / 1.01-1.01
Physical strenuous 1: 18, 2: 40, 3: 25, 4: 578 5.4% 3.76 (0.68) 3.62-3.63 / 0.88-0.90
Safety (SA)

Work involvement 1: 39, 2: 174, 3: 455 4.4% 2.62 (0.59) 2.56-2.57 / 0.64-0.66
Leadership engagement 1: 37, 2: 182, 3: 449 4.4% 2.62 (0.59) 2.56-2.57 / 0.62-0.64
Hygiene (HY)

Tool vibrations 1: 13, 2: 43, 3: 70, 4: 536 5.2% 3.71 (0.68) 3.57-3.57 / 0.88-0.89
Low temperatures 1: 32, 2: 97, 3: 38, 4: 497 5.0% 3.51 (0.91) 3.38-3.38 / 1.04-1.04
High temperatures 1: 22, 2: 70, 3: 42, 4: 530 5.0% 3.63 (0.80) 3.50-3.54 / 0.90-0.97
Noise 1: 33, 2: 114, 3: 72, 4: 445 5.0% 3.40 (0.94) 3.30-3.37 / 0.93-1.04
Hazardous substances 1:9,2: 24, 3: 41, 4: 591 4.9% 3.83 (0.55) 3.69-3.69 / 0.81-0.81




52 Appendix A. Supplementary Material

Imputation Fix Index

Table F.9: Imputation fit index (IFI) results by latent factor

Variable Orig. SE Pooled SE IFI,, S2ir1 Zir1
Psychosocial Work Environment (PS)

Work pace 0.0276 0.0286 0.0010 2.53 x 10~7 -1.87
Emotional demands 0.0261 0.0269 0.0008 1.98 x 10~7 -1.72
Work atmosphere 0.0264 0.0278 0.0014 3.94x 1077 -1.68
Work-life balance 0.0233 0.0256 0.0023 6.13 x 1077 -1.46
Ergonomics (ER)

Stressful postures 0.0366 0.0388 0.0022 8.47 x 1077 -1.52
Repetitive work 0.0287 0.0349 0.0062 3.89 x 1076 -0.93
Sitting for long-time 0.0372 0.0390 0.0018 4.12x 1077 -1.66
Manual handling loads 0.0338 0.0382 0.0044 2.18 x 1076 -1.29 Note. Zypr
Physical strenuous 0.0266 0.0337 0.0071 5.04 x 1079 -0.85
Safety (SA)

Work involvement 0.0230 0.0248 0.0018 3.27 x 107 -1.70
Leadership engagement 0.0228 0.0237 0.0009 1.05 x 107 -1.90
Hygiene (HY)

Tool vibrations 0.0263 0.0335 0.0072 5.29 x 1076 -0.84
Low temperatures 0.0354 0.0394 0.0040 1.60 x 1076 -1.34
High temperatures 0.0312 0.0357 0.0045 3.17x1076 -1.18
Noise 0.0365 0.0378 0.0013 2.59 x 1077 -1.78
Hazardous substances 0.0212 0.0306 0.0094 8.84 x 107% -0.77

values indicate the standardized difference in standard errors between original and imputed data.
Values < —1.65 suggest minimal discrepancy (good imputation fit), while higher values indicate greater
divergence and potential fit concerns.

A.8.2 Factor Correlations

Table F.10: Factor correlations

Factor 1 Factor 2 Correlation (SE)

PS ER 0.372 (0.046)
PS SA 0.681 (0.038)
PS HY 0.295 (0.049)
ER SA 0.450 (0.042)
ER HY 0.586 (0.037)
SA HY 0.408 (0.044)

A.8.3 Threshold Estimates
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Table F.11: Threshold estimates from the confirmatory factor analysis

Domain Variable Threshold Estimate (SE)

Psychosocial Work Environment (PS)
Work pace t1 —0.956 (0.056)
Work pace t2 —0.067 (0.047)
Emotional demands t1 —1.113 (0.060)
Emotional demands t2 —0.148 (0.048)
Work atmosphere t1 —1.036 (0.058)
Work atmosphere t2 —0.097 (0.048)
Work-life balance t1 —1.261 (0.064)
Work-life balance t2 —0.259 (0.048)

Ergonomics (ER)
Stressful postures t1 —1.474 (0.072)
Stressful postures t2 —0.625 (0.051)
Stressful postures t3 —0.403 (0.049)
Repetitive work t1 —1.501 (0.073)
Repetitive work t2 —0.959 (0.056)
Repetitive work t3 —0.752 (0.053)
Sitting for long-time t1 —1.281 (0.065)
Sitting for long-time t2 —0.365 (0.049)
Sitting for long-time t3 0.235 (0.048)
Manual handling loads  t1 —1.336 (0.067)
Manual handling loads 2 —0.814 (0.054)
Manual handling loads  t3 —0.579 (0.050)
Physical strenuous t1 —1.437 (0.070)
Physical strenuous t2 —1.112 (0.060)
Physical strenuous t3 —0.959 (0.056)

Safety (SA)

Work involvement t1 —1.316 (0.066)
Work involvement t2 —0.389 (0.049)
Leadership engagement t1 —1.385 (0.068)
Leadership engagement t2 —0.369 (0.049)
Hygiene (HY)

Tool Vibrations t1 —1.480 (0.072)
Tool Vibrations t2 —1.119 (0.060)
Tool Vibrations t3 —0.731 (0.052)
Low temperatures t1 —1.313 (0.066)
Low temperatures t2 —0.726 (0.052)
Low temperatures t3 —0.558 (0.050)

(0.071)

High temperatures t1 —1.453 (0.071
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Domain Variable Threshold Estimate (SE)
High temperatures t2 —0.912 (0.055)
High temperatures t3 —0.701 (0.052)
Noise £1 —1.469 (0.072)
Noise £2 —0.718 (0.052)
Noise t3 —0.349 (0.049)
Hazardous Substances  t1 —1.542 (0.075)
Hazardous Substances 2 —1.306 (0.065)
Hazardous Substances  t3 —1.017 (0.058)

Convergence Diagnostics

Convergence Heatmap
Mean values across iterations for each variable

Hazardous Substances
Noise

High temperatures

Low temperatures

Tool Vibrations
Leadership engagement

Work involvement Mean Value

35
3.0

25
2.0
15

Physical strenuous
Manual handling loads
Sitting for long-time
Repetitive work
Stressful postures
Work-life balance
Work atmosphere
Emotional demands

Work pace

0 5 10 15 20
Iteration

Figure A.1: Heat map of convergence mean value of imputation

A.8.4 Convergence Diagnostics

A.9 Figure showing convergence trace plot

Provide a detailed figure showing a convergence trace plot for the different domain factors for

both mean and standard deviation.

A.9.1 Measurement invariance visual
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Figure A.2: Convergence trace plot for Safety
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Convergence Trace Plots for Ergonomics Factors
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Figure A.3: Convergence trace plot for Ergonomics
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CFI Values Across Different Invariance Models

0.996
\ Group
\ Dutch vs French
\ —* Mobile vs Desktop

CFl Value

0.995

Configural Metric Scalar

Invariance Model

Figure A.6: CFI values across different invariance models for language groups (Dutch vs. French)
and device types (Mobile vs. Desktop). Note the minimal changes in CFI values across models,
with all values remaining above 0.99, indicating excellent fit at all levels of invariance testing.
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Relevant R Code

Note: The complete code and the simulated data (not the company data used due to sensitivity)

are available at: GitHub Repository.

B.1 Data Preparation and Variable Selection

Listing B.1: Define model variables for four-factor structure

# Define model variables for four-factor structure

model _vars <- list(

PS = c( _ 5 _ _ 5 - - >
_ _ 5 _ _ ) g
ER = c( _ 5 - - s - - >
- - 5 - - D - - ),
SA = c( _ , _ _ . _ _ ) g
HY = c( _ 5 _ _ B - - - s
- - - 5 - - 5 _ _ )

# Select auxiliary variables with <20 missing for imputation

auxiliary_vars <- c(

= > - B - - >

B.2 Missing Data Analysis

Listing B.2: Calculate missing data patterns by domain

# Calculate missing data patterns by domain
domain_missingness <- lapply(names(domains), function(domain_name) {
vars <- domains[[domain_name]]
full _analysis_dataset %>%
summarise (across(all_of (vars), "“mean(is.na(.))*100)) %>%
pivot_longer (cols = everything(),
names_to = s
values_to = - ) %>%

mutate (domain = domain_name)
}) %>% bind_rows ()

60



https://github.com/jkomalceh/workplace-wellbeing-assessment_MasterThesis/blob/main/CFA_rCode_JimmyKomalceh_Thesis.r
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# Little’s MCAR test
mcar_test <- BaylorEdPsych::LittleMCAR(full_analysis_dataset[model_vars])

B.3 Multiple Imputation

Listing B.3: MICE imputation setup and execution

# Set up MICE imputation with appropriate methods

imp_methods <- mice(imputation_dataset, maxit = 0)$method

imp_methods [ordinal_vars] <- "polr" # Proportional odds for ordinal
imp_methods [continuous_vars] <- "pmm" # Predictive mean matching
imp_methods [binary_vars] <- "logreg" # Logistic regression

# Run multiple imputation
imputed_data <- mice(imputation_dataset,
method = imp_methods,
m = 10, # 10 imputed datasets
maxit = 20, # 20 iterations
seed = 12345)

B.4 Confirmatory Factor Analysis Model

Listing B.4: Four-factor CFA model specification

# Define four-factor CFA model
cfa_model <- ~’
# Psychosocial work environment factor
PS =7 psy_rating_pace + psy_rating_emotional +

psy_rating_sphere + psy_work_1life

# Ergonomics factor
ER =7 erg_rating_posture + erg_rating_repeat + erg_rating_sitting +

erg_rating_loads + erg_rating_physical

# Safety factor

SA =7 saf_rating_workinvolv + saf_rating_leadengage

# Hygiene factor
HY =" hyg_rating_tools + hyg_rating_low_temp + hyg_rating_high_temp +

hyg_rating_moise + hyg_rating_substances

# Fit model with WLSMV estimator for ordinal data
fit <- cfa(cfa_model,

data = dataset,

ordered = ordinal_vars,

estimator = "WLSMV")

B.5 Reliability and Validity Assessment
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Listing B.5: Composite Reliability and AVE calculation

# Function to calculate Composite Reliability and AVE
calculate _CR_AVE <- function(fit) {

std_estimates <- standardizedSolution(fit)

loadings <- subset(std_estimates, op == ~m)

results <- data.frame ()
for(factor in unique(loadings$lhs)) {
lambda <- subset(loadings, lhs == factor)$est.std

lambda_squared <- lambda~2

# Composite Reliability
CR <- sum(lambda)~2 / (sum(lambda)~2 + sum(l - lambda_squared))

# Average Variance Extracted

AVE <- sum(lambda_squared) / length(lambda)

results <- rbind(results, data.frame(Factor = factor, CR = CR, AVE = AVE))
}

return(results)

# Discriminant validity: Formell-Larcker criterion

# Square root of AVE should exceed inter-factor correlations
factor_cors <- lavInspect (fit, )

sqrt _AVE <- sqrt(CR_AVE_results$AVE)

B.6 Pooled Analysis Across Imputed Datasets

Listing B.6: Bootstrap and pooling across imputations

# Bootstrap and pool results across imputed datasets
for (m in 1:M) {
# Bootstrap within each imputed dataset
boot _fun <- function(data, indices) {
boot _sample <- datal[indices, ]
fit <- cfa(cfa_model, data = boot_sample,
ordered = ordinal_vars, estimator = )

) ) ) )))

return(fitMeasures (fit, c(

boot_results <- boot(data = completed_datasets[[m]],
statistic = boot_fun, R = 1000)

# Pool using Rubin’s rules with transformations

# Fisher transformation for CFI/TLI, log transformation for RMSEA
pooled_estimate <- mean(transformed_estimates)

within_var <- mean(variances)

between_var <- var(estimates)

total_var <- within_var + (1 + 1/m) * between_var
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B.7 Measurement Invariance Testing

Listing B.7: Measurement invariance testing with NHT and ET approaches

# Function for measurement invariance with NHT and ET approaches
test_invariance <- function(data, model, group_var, ordinal_vars) {
# Configural invariance
configural <- cfa(model, data = data, group = group_var,

ordered = ordinal_vars, estimator = "WLSMV")

# Metric invariance (equal loadings)

metric <- cfa(model, data = data, group = group_var,
ordered = ordinal_vars, estimator = "WLSMV",
group.equal = "loadings")

# Scalar invariance (equal loadings and thresholds)

scalar <- cfa(model, data = data, group = group_var,
ordered = ordinal_vars, estimator = "WLSMV",
group.equal = c("loadings", "thresholds"))

# Evaluate using fit index changes
# NHT: $\Delta$CFI > -0.01, $\Delta$RMSEA < 0.015, $\Delta$SRMR < 0.030

metric) or 0.010 (scalar)

# ET: Compare maximum parameter differences to equivalence bounds

return(list (configural = configural, metric = metric, scalar = scalar))

# Test across multiple grouping variables

invariance_groups <- c("language_group", "device_type", "env_domain",

"sex_cat", "age_cat")

(

B.8 Differential Item Functioning Analysis

Listing B.8: Differential Item Functioning Analysis

r# Mantel -Haenszel DIF detection

perform_mh_dif <- function(data, group_var, items) {
item_data <- datal, items]
group_data <- datal[[group_var]]

total_scores <- rowSums(item_data, na.rm = TRUE)

# Prepare data for difR
dif _input <- cbind(item_data, group_data)

colnames (dif _input) <- c(items, "group")

# Run Mantel -Haenszel test
mh_results <- difMH(Data = dif_input,
group = "group',

focal.name = levels(group_data) [2],
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match = total_scores,
purify = TRUE)

# Classify DIF magnitude (ETS criteria)
alpha_mh <- mh_results$a1phaMH
dif _classification <- ifelse(abs(log(alpha_mh)) < 1.0, ,

ifelse(abs(log(alpha_mh)) < 1.5, s
))
return(list (
statistics = mh_results$MH,
alpha = alpha_mh,
classification = dif_classification,

significant = mh_results$MH > qchisq(0.95, 1)
))

# Logistic Regression DIF detection
perform_lr_dif <- function(data, group_var, items) {
results <- list ()

for(item in items) {
total_score <- rowSums(datal[, items], na.rm = TRUE)
item_median <- median(data[[item]], na.rm = TRUE)

item_binary <- ifelse(datal[[item]] > item_median, 1, 0)

# Base model (ability only)

modell <- glm(item_binary ~ total_score, family = binomial)

# Uniform DIF model (ability + group)

model2 <- glm(item_binary total_score + datal[group_var]l], family =

binomial)

# Non-uniform DIF model (ability + group + interaction)

model3 <- glm(item_binary total_score + datal[[group_var]] +

total_score:datal[[group_var]], family = binomial)

# Test for DIF
uniform_test <- anova(modell, model2, test = )

nonuniform_test <- anova(model2, model3, test = )
results[[item]] <- 1list(

uniform_p = uniform_test$‘Pr(>Chi) ‘[2],

nonuniform_p = nonuniform_test$‘Pr(>Chi) ¢[2]

return(results)

B.9 Key Functions for Pooled Reliability
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Listing B.9: Reliability calculation across imputed datasets

# Calculate reliability across imputed datasets
calculate_pooled_reliability <- function(datasets, factor_vars) {

for (factor_name in names (factor_vars)) {

# Calculate alpha, omega, and polychoric alpha for each imputation

alpha_values <- numeric(length(datasets))

omega_values <- numeric(length(datasets))

for (i in 1:length(datasets)) {

factor_data <- datasets[[i]][, factor_vars[[factor_namel]]

# Cronbach’s alpha

cor_matrix <- cor(factor_data, use = )

k <- ncol(factor_data)

avg_r <- (sum(cor_matrix) - k) / (k * (k - 1))
alpha_values[i] <- (k * avg_r) / (1 + (k - 1) * avg_r)

# McDonald’s omega (for factors with >2 items)
it (k > 2) {

fit <- cfa(pasteO(factor_name,

B

paste(factor_vars[[factor_name]], collapse

data = datasets[[i]], ordered = TRUE, estimator

omega_values[i] <- reliability(fit) [ , factor_name]

# Pool estimates with confidence intervals
pooled_alpha <- mean(alpha_values)

se_alpha <- sd(alpha_values) / sqrt(length(datasets))
ci_alpha <- pooled_alpha + c(-1.96, 1.96) * se_alpha

B.10 Model Fit Summary Function

Listing B.10: Model fit indices extraction and interpretation

# Extract and format key fit indices
summarize_fit <- function(fit) {

indices <- fitMeasures (fit, c(

fit_summary <- data.frame (
Measure = c( s
> )
Value = round(indices, 3),
Interpretation = c(
ifelse(indices [ ] > 0.05, s ),
NA,
NA,
ifelse(indices [ ] > 0.95,
ifelse(indices[ ] > 0.95,
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ifelse(indices[ ] < 0.06, , ),
ifelse(indices [ ] < 0.08, , )

)

return(fit_summary)

Note: The repository includes a simulated dataset that replicates the structure and charac-
teristics of the original workplace assessment data, allowing full reproducibility of all analyses

while maintaining participant privacy.
B.10.1 Repository Structure

workplace-wellbeing-assessment-thesis/

CFA_rCode_JimmyKomalceh_Thesis.r # Complete analysis code

create_sample_data.r # Simulated data generator
Simulated_data_SAMPLE.csv # Simulated dataset

README . md # Main documentation
README_SampleGeneration.md # Data simulation documentation
requirements.txt # R package dependencies
LICENSE # Repository license

.gitignore # Git ignore file

B.10.2 Requirements
e R version 4.0+
e Required packages: tidyverse, lavaan, mice, semTools, psych, MVN
e See requirements.txt for complete package list
B.10.3 Citation
If using this code, please cite:
[Jimmy Komalceh]. (2025). Workplace Well-being Assessment: Analysis Code.

GitHub repository: https://github.com/jkomalceh /workplace-wellbeing-assessment
MasterThesis/blob/main/CFA _rCode JimmyKomalceh Thesis.r



https://github.com/jkomalceh/workplace-wellbeing-assessment_MasterThesis/blob/main/CFA_rCode_JimmyKomalceh_Thesis.r
https://github.com/jkomalceh/workplace-wellbeing-assessment_MasterThesis/blob/main/CFA_rCode_JimmyKomalceh_Thesis.r
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