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Abstract 
 

Near-miss events are high-risk driving situations that do not result in crashes but have a high 

potential to cause harm. In the field of road safety, these events are increasingly recognised as 

valuable indicators for proactive safety analysis. In light of this, this study investigates appropriate 

modelling methods to predict the frequency of the occurrence of these events using naturalistic 

driving data derived from the EU-funded project iDreams. This study specifically focuses on 

headway-related near-miss incidents with the aim of identifying the key trip-level and driver-level 

predictors of near-miss frequency. The study evaluates the effectiveness of both statistical and 

machine learning models in predicting risk.  

 

A dataset comprising 4,481 trips linked to 47 drivers in Belgium was analysed. Each trip was 

labelled with the count of dangerous headway events. Two statistical models – Poisson and 

Negative Binomial regression – were developed to estimate associations between near-miss 

frequency and predictors, including trip duration, distance, average speed, time of day, road 

environment, driver age, driver experience, and income. Additionally, a Random Forest regressor 

was also implemented to assess non-linear relationships and feature importance. 

 

Results showed that trip distance (across all the models) and average speed were consistently 

associated with higher frequencies of near-miss events across all the models. Time of day had 

minimal influence, even though night or dusk trips were generally linked to fewer near-miss events, 

possibly due to increased driver caution or low traffic density. Older drivers had lower event 

frequencies yet reversely driving experience showed a mild positive relationship with near-miss 

risk. Overall, the Negative Binomial model was a better statistical fit than Poisson, while the 

Random Forest model achieved strong predictive performance (R² = 0.743). 
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1 Introduction 
 

1.1 Background and rationale for the study 

According to the World Health Organisation, road traffic crashes are a global health challenge 

responsible for an estimated 1.19 million deaths in 2023, translating to 15 deaths per 100,000 

people. Traffic injuries are also the leading cause of death for persons aged 5-29, and they result in 

significant economic and social loss. With the global road network and motor vehicle fleet size 

expected to grow significantly in the future, it is increasingly crucial to address road safety issues. 

 

The conventional method of addressing road safety primarily involves the analysis of crash data 

before an intervention can be deployed. This method, although valuable, has limitations. According 

to Sarkar, Rao, & Chatterjee (2024), the traditional method is inherently reactive – relying entirely 

on the occurrence of crashes, which often have severe outcomes. This, according to scholars, can 

lead to a delayed identification of risks and ultimately hinder timely intervention. In order to take 

on a more proactive approach to road safety interventions, it is therefore important to use Surrogate 

Safety Measures (SSMs), e.g Time To Collision (TTC), which are more frequent and serve as 

indicators of potential safety problems (Sarkar, Rao, & Chatterjee, 2024; Wang, et al. 2024).SSMs 

aim to predict and prevent future crashes without waiting for an accumulation of sufficient crash 

data. They are used to evaluate the safety level of traffic systems by focusing on near-miss incidents 

and other indicators of unsafe interactions among road users (Singh & Das, 2021). 

 

Near-misses can be understood as the performance of an evasive manoeuvre by a driver to avoid a 

crash, and this manoeuvre may be in the form of sudden braking and/or rapid steering operations 

without resulting in an accident (Arai et al., 2001; Hanowski et al., 2007). Identifying these near-

misses may be done either manually – through data collection techniques like video recordings and 

field analysis (Siregar, Agah, & Hidayatullah (2018) – or by use of automated tools which enable 

the automatic identification, classification, and evaluation of near-misses for instance the Federal 

Highway Administration’s Surrogate Safety Assessment Model (SSAM). 

 

Based on findings from a study by Dong, et al. (2024), integrating machine learning (ML) 

techniques into determining near-miss incidents significantly advances traffic safety analysis by 

leveraging large datasets and detecting complex safety risks that traditional methods may overlook. 

Additionally, as evidenced by Lu, Grembek, & Hansen (2022), ML methods process a large amount 

of data in real time and thus facilitate proactive safety interventions. Despite these benefits, the use 

of ML in near-miss detection is still understudied and thus requires further research to establish 

functional models scalable to different traffic systems.  

 

This study, therefore, aims to address this knowledge gap by examining how both ML and 

statistical methods can be used to predict the frequency of near-miss events in naturalistic driving 

data. According to Lord & Mannering (2010), including statistical approaches is key since this 

study models event frequency rather than probability. The study utilises both trip-level and driver-

level variables to identify factors that contribute to increased safety risk. The findings are intended 

to support proactive safety interventions in traffic systems.    

 



Kizito Lule Ssentongo                                                                                                                                  June 2025 

3 

 

1.2 Problem statement  

 

Road crashes are caused by a combination of human, vehicle, and driving environment-related 

factors. Although advancements have been made to tackle these safety issues, the conventional 

method that involves the accumulation of crash data is limited in its ability to capture all crash-

influencing factors in sufficient detail.  

  

Besides the fact that crash data is often underreported and infrequent, scholars have also 

highlighted the ethical implications of waiting for crashes to happen before safety interventions are 

deployed. The use of SSMs presents road safety specialists with an opportunity to adopt more 

proactive measures.  SSMs, especially when applied to naturalistic driving data, help to provide 

early indicators of potential crash risks by analysing near-miss accidents and any other unsafe 

interactions. 

 

Naturalistic driving data–collected by smart in-vehicle technology during real-world driving 

conditions–enables the capture of a comprehensive and continuous dataset on driver behaviour, 

vehicle trajectory, driving environment (road type, weather), etc.  This data is essential in 

determining SSMs, which in turn helps in understanding the contributing factors to the occurrence 

of near-miss events and how these events evolve across different driving conditions.   

 

Studies have shown that integrating machine learning (ML) techniques and SSMs is key to 

enhancing a proactive approach to road safety. In determining SSMs, ML algorithms have been 

found to significantly outperform conventional statistical methods owing to their accuracy and 

ability to capture, process, and analyse an extensive range of naturalistic driving data (Dong et al., 

2024; Driessen et al., 2024; Behboudi, Moosavi and Ramnath, 2024).    

 

However, despite their significance, Behboudia, Moosavi and Ramnath (2024) state that the 

integration of ML in SSMs is still a relatively understudied domain.  Das et al. (2023) also state 

that there are research gaps in analysing the suitability of SSMs in mixed traffic situations and that 

the domain still lacks viable frameworks for combining and using multiple SSMs. In the context 

of Belgium, near-miss prediction using ML techniques is an understudied field despite the 

country’s unique driving environment and road safety record. Additionally, although some studies 

model near-misses as a probability outcome, this study adopts a trip-level frequency approach in 

order to identify contributing factors and gain greater insight into exposure risk patterns (Cai et al., 

2021). This trip-level frequency modelling thus warrants the use of statistical modelling methods 

and, in the context of this study, offers the opportunity to compare the effectiveness of both ML 

and statistical methods. 

 

This study, therefore, aims to apply ML and statistical approaches to naturalistic driving data from 

Belgium in order to develop a tailor-made and context-aware near-miss prediction methodology to 

enhance the precision of traffic safety assessments.  

  

  



Kizito Lule Ssentongo                                                                                                                                  June 2025 

4 

 

1.3 Research objectives and questions 

 

This study utilises data from the iDreams (Intelligent Driver and Road Environment Assessment 

and Monitoring System) project. iDreams is a road safety initiative funded by the European Union 

with an aim of developing an integrated platform that helps prevent drivers from getting too close 

to the boundaries of unsafe vehicle operations, thus keeping them within a “Safety Tolerance 

Zone”. The iDreams platform works by integrating real-time sensor data, physiological monitoring, 

and environmental conditions to dynamically assess driving risk and provide context-aware 

interventions to drivers both during and after trips. In the development of the platform, naturalistic 

driving data was collected from vehicles fitted with a range of sensors and equipment in five 

countries: Belgium, Germany, Greece, Portugal, and the United Kingdom. Vehicles were driven 

under typical real-world driving conditions, capturing a range of data related to the vehicle, driver, 

and environmental conditions, such as speed, distance, time, driver fatigue and distraction, weather 

conditions, etc.  

 

This study utilises data captured in Belgium, and, therefore, the following are the objectives;  

▪ To investigate how trip-level and driver-level characteristics influence the frequency of 

near-miss events in iDreams naturalistic driving data. 

▪ To assess the statistical relationship between key predictors and the frequency of dangerous 

headway events. 

▪ To develop and evaluate both a statistical and a machine learning model for predicting the 

frequency of near-miss events. 

▪ To draw a comparison between the performance of the statistical approach and the machine 

learning model. 

▪ To aid future safety assessment frameworks by identifying the most influential features that 

contribute to an elevation in driving risk levels. 

 

In order to achieve the above-mentioned objectives, the following research questions have to be 

answered; 

1. Which trip-level and driver-level characteristics are mainly associated with the frequency 

of near-miss events during naturalistic trips? 

2. To what extent can statistical approaches explain the variation in the frequency of near-

miss events using trip data and driver attributes? 

3. How does the performance of a machine learning model compare to a statistical approach 

in predicting near-miss events? 

4. What insights can be drawn from both approaches (machine learning and statistical) about 

the most relevant contributors to near-miss driving behaviour?  
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2 Literature Review 
 

2.1 Near-Miss Accidents and SSMs 

 

According to the USA Occupational Safety and Health Act (OSHA), a near-miss is an incident in 

which no property was damaged and no personal injury was sustained but where, given a slight 

shift in time or position, damage or injury easily could have occurred. A near-miss is an unplanned 

event that can precede events in which a loss or injury could occur (Siregar, Agah, & Hidayatullah, 

2018).  Near-misses  may also be referred to as "near accidents," “near hits,” or "near collisions." 

They can also be defined as sudden braking and rapid steering operations by the driver without 

resulting in an accident (Arai , et al. 2001). A near-miss accident is understood as the performance 

of an evasive manoeuvre by the driver to avoid a vehicle accident (Hanowski et al., 2007). 

Near accidents are fundamentally unclear and can potentially be interpreted in two ways: either as 

a wakeup call highlighting a potential source of danger or as a success indicating that margins were 

good enough (McMullen & Markman, 2000; Dillon & Tinsley, 2008; as cited by Terum & Svartdal, 

2019).   

The Swedish Traffic Conflict Technique (TCT) Observer Manual, which was published in 2018, 

also classifies near-miss accidents as traffic conflicts. The manual elaborates on the concept of the 

“Safety Pyramid” that was introduced by Hydén (1987). According to this manual, the traffic 

process can be seen as a number of elementary events which differ in their degree of severity.   

 

 

 

 

 

 

 

 

 

 

 

The lower part of this pyramid represents the normal and safe interactions that happen most of the 

time between road users. At the extreme, the top of the pyramid represents the most severe events, 

such as fatal or injury-leading accidents. These severe events are also known to be very infrequent 

in comparison with the total number of events. According to this TCT, a conflict’s severity is 

defined at the moment when one of the road users starts taking an evasive action. This conflict 

severity is based on two indicators:  

▪ Time-to-Accident (TA) - time remaining to a collision when the relevant road user takes 

the evasive action;  

▪ Conflicting Speed (CS) - speed of the relevant road user when they take the evasive action. 

 

 

 

Figure 1: Safety Pyramid (Hydén, 1987) 
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Other Near-miss indicators 

According to Jiang, et al. (2021), the common indicators of traffic conflicts can typically be in 3 

forms. The first form of these indicators measures risk aversion behaviour. It determines whether 

there is a conflict by observing whether or not an aversion behaviour exists, as well as the severity 

based on the urgency. These assessments are mostly qualitative in nature, for example, steering 

manoeuvres and evident deceleration. The second form of indicators measures the proximity in 

space and time, with the two most common indicators being the time-to-collision (TTC) and the 

post-encroachment time (PET). According to Li, et al. (2023), TTC is defined as the time remaining 

before a collision if none of the vehicles involved changes their speeds and directions. PET is the 

time separation between two vehicles passing each other in a conflict point where the two paths 

cross each other.   

 

According to Lu, et al. 2021, in a basic TTC calculation, acceleration is considered to be zero. TTC 

can therefore be determined by the following equation 

 

Where; 

▪ vf  - Velocity of the following vehicle 

▪ Vl  - Velocity of the leading vehicle 

▪ gap-  the distance headway minus vehicle length of the leading vehicle 

▪ If vf ≤ vl, it means that the vehicle is safe, and if vf > vl and TTC ≤ threshold,  it means that 

the vehicle is safe. According to studies cited by Kuang, Qu, & Wang (2015), the TTC 

threshold has varied between 1.5 s and 4s.  

 

The third form, according to Jiang et al., measures characteristics of the vehicle’s own movement, 

such as deceleration, with the most common indicator of a vehicle’s own movement characteristics 

being the deceleration rate to avoid a crash (DRAC). Lu, et al. (2021)  define DRAC as the squared 

differential speed between a following vehicle and its corresponding leading vehicle, divided by 

their closing gap. DRAC can also be defined as the minimum deceleration rate required by the 

following vehicle to come to a timely stop (or match the leading vehicle’s speed) and hence avoid 

a crash (Cooper & Ferguson, 1976; as cited by Kuang, Qu, & Wang, 2015). DRAC can, therefore, 

be denoted as; 
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Where V1 is the leading vehicle’s speed, V2 is the 

following vehicle’s speed, and D1–2 is the gap between 

the two vehicles. A higher DRAC value indicates a 

more dangerous car-following scenario. In general, 

Kuang, Qu, & Wang (2015) state that TTC is negatively 

related to DRAC. They also cite 2 thresholds for 

DRAC, citing The American Association of State 

Highway and Transportation Officials (AASHTO, 

2004), which suggests that a given vehicle is in conflict if its DRAC exceeds a threshold of 3.4 

m/s2. The other, slightly lower threshold, is recommended by Archer (2005) at 3.35 m/s2 for most 

drivers.   

 

Besides PET and TTC, Gore et al. (2023) also highlight additional conflict indicators, also called 

surrogate safety measures (SSM). These SSMs report the space or time proximity between different 

road users to a projected collision point. They include Deceleration Rate (DR), Proportion of 

Stopping Distance (PSD), Time Integrated TTC (TIT), and Modified time to collision (MTTC).  

A study conducted by Vogel (2003) also found that although using TTC provided good sensitivity 

to traffic changes, using headway as a safety indicator was better in safety enforcement since it is 

consistent across different locations. A similar view is also held by Ramezani-Khansari, Nejad, & 

Moogeh (2020), who agree that, in car following scenarios, braking time headway is more stable 

and significant. 

  

2.2 Factors contributing to near-miss accidents 

 

Near-miss accidents are influenced by a combination of human, vehicle, and environmental-

related factors (Bekelcho, et al., 2024; Jomnonkwao, et al., 2023). 

2.2.1 Human factors 

These factors are pivotal in contributing to near-miss accidents since they have a direct effect on 

the decision-making process, vehicle control, and reaction times. Key factors include driver 

distraction and driver fatigue. 

Driver Distraction  

Distraction while driving is a growing concern, particularly due to the increased use of mobile 

phones and in-vehicle infotainment systems. Studies indicate that cell phone distraction is 

responsible for 6% of crashes, while all forms of distraction cause 29% of crashes (Blincoe et al., 

2023). According to information from the American National Highway Traffic Safety 

Administration (NHTSA), 3,308 people were killed in 2022 in vehicle crashes that involved 

distracted drivers, representing 7.8% of total fatalities. According to the American National 

Institutes of Health (NIH), doing something else while driving e.g. eating, talking on the phone, 

texting, etc, increases the risk of a crash. A series of NIH-funded studies found that novice drivers 

were up to 8 times more likely to crash or have a near-miss when dialling a phone or reaching for 

a phone or other object. While adults were more than twice as likely to crash or have a near miss 

when dialling (NIH, 2014). 
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Driver Fatigue 

Driver fatigue is a critical contributing factor to near-miss incidents since it significantly impairs a 

driver’s ability to safely operate a vehicle. Fatigue reduces alertness, affects decision-making, and 

slows reaction time, thereby increasing the risk of crashes or near-misses (NHTSA, 1998; RoSPA, 

2024). Fatigue-impaired driving may lead to several errors, such as unintentional lane departure, 

missing traffic signals, and a delayed response to sudden traffic hazards. Considering the dangers 

that it poses, several studies have highlighted that driver fatigue is highly prevalent. A systematic 

review of research articles on road crashes related to driver sleepiness, published between  2000 

and 2020, found that 28% of drivers experienced at least one episode of uncontrollable sleepiness 

while driving.  Additionally, approximately 5% of these drivers had a crash or near-miss accident 

due to sleepiness (Saleem, 2022). According to data from the NHTSA, it is estimated that in 2017, 

there were 91,000 reported crashes in the USA involving sleepy drivers. These crashes led to over 

50,000 injuries and nearly 800 fatalities (NHTSA, 2017). In Europe, a survey conducted by the 

European Transport Workers’ Federation (ETF) found that 60% of truck drivers reported driving 

while feeling fatigued, and around 30% of them fell asleep at the wheel at least once within the 

previous year (Vitols & Voss, 2021). Similarly, a 2010 study of French drivers found that 28% of 

them had experienced at least one episode of severe sleepiness while driving in the previous 12 

months, and 11% reported at least one near-miss accident for the same period, with close to half of 

these incidents being sleep-related (Sagaspe, et al., 2010).  

2.2.2 Vehicle Dynamics 

This encompasses factors such as speed, acceleration, braking performance, and steering. Driving 

at excessive speeds and rapidly accelerating can significantly contribute to near-miss accidents. 

High-speed driving reduces the available time for a driver to identify and react to unexpected events 

in traffic, and this increases the likelihood of a crash or near-miss incident. A study by Guillen, et 

al. (2020) analysed automobile insurance telematics and found that speeding is associated with an 

increased risk of acceleration events, which are an indicator of near-miss incidents. Similarly, the 

study by Bekelcho et al. (2024), which analysed near-miss incidents among truck drivers in 

southern Ethiopia, found that about 72% of truckers had experienced a near-miss accident and that 

the majority of these near-misses (26%) were attributed to speeding. 

 

Another key element in vehicle dynamics is harsh/sudden braking. These events are typically 

characterised by rapid deceleration and are indicative of traffic emergency situations where a driver 

must swiftly react in order to avoid a crash (Bagdadi, 2013). These manoeuvres can destabilise the 

vehicle and may lead to a loss of control. Additionally, according to research, drivers in urban 

settings may be more prone to sudden stopping owing to the nature of traffic in city environments 

(Guillen, et al. 2020). Similarly, sudden steering inputs, which are often performed to avoid 

unexpected obstacles, can compromise vehicle stability and may represent an even higher risk 

scenario than sudden braking. A study by Smith, Najm, & Lam (2003) found that drivers engaged 

in last-second steering actions at shorter distances compared to their braking responses.  
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2.2.3 Environmental factors 

These are aspects directly affecting the driving environment. They may be weather conditions and 

road-related factors. Adverse weather conditions like rain, fog, snow, or ice have a significant 

influence on the occurrence of traffic crashes and, inherently, near-miss incidents. For instance, 

rain and fog can impair visibility and thus make it challenging for drivers to judge distances and 

see obstacles, while snow and ice create slippery surfaces that make it difficult to control vehicles, 

especially during sudden stops. According to data from the NHTSA, between 2007 and 2016, 

weather-related factors were responsible for 21% of vehicle crashes, 19% of injuries, and 16% of 

crash fatalities in the USA. Findings from Bekelcho et al. (2024) also revealed that the combination 

of reduced visibility and slippery road surfaces during adverse weather conditions increased the 

risk of driver errors and near-miss events. 

Road-related factors such as road layout and design, road geometry, and road surface conditions 

also play a role in the frequency of near-miss accidents. According to findings from the study by 

Siregar, Agah, and Hidayatullah (2018), complex road junctions with unconventional designs may 

pose a challenge to drivers and are thus prone to high traffic conflict rates. Concerning road 

geometry, Garnaik, Giri, and Panda (2023) identify a direct relationship between several road 

geometric factors and an increased risk of crashes or near-misses. For example, small radius 

horizontal curves, increased levels of superelevation, limited sight distance, narrow lanes, etc., 

were all found to increase risks related to speeding, erratic manoeuvring, improper steering, and 

loss of traction. Additionally, poor road conditions, such as potholes, uneven surfaces, pavement 

roughness and skid resistance, directly affect ride comfort, can distract drivers, lead to a loss of 

vehicle control and, ultimately, potential near-misses (Bekelcho et al., 2024; Mkwata & Chong, 

2022).  

2.3 Machine learning in near miss prediction 

Identifying and predicting near-miss accidents is critical in order to achieve proactive traffic safety 

management. Traditionally, approaches that predict near-miss incidents often employ statistical 

techniques such as regression analysis, time series analysis, and correlation studies. However, these 

methods may be limited when handling large volumes of heterogeneous data for complex and non-

linear interactions such as near misses (Obasi & Chizubem, 2023). A systematic review of 

statistical models by Slikboer et al. (2020) found that traditional methods had a reduced predictive 

performance due to several reasons, including poor variable selection and inadequate validation.  

Machine learning techniques are, thus, more effective alternatives that are capable of finding 

patterns within large datasets, for instance, naturalistic driving data. Algorithms such as Random 

Forest, Decision Trees, and other deep-learning models have been applied to predict the severity 

of injuries and near-miss accidents. For instance, the study by Obasi & Chizubem (2023) utilised 

a stacked sparse autoencoder (SSAE) that demonstrated a high accuracy when predicting injury 

severity. A comparative study by Hossain et al. (2021) also found that ensemble machine learning 

methods, e.g. XGBoost and random forest, effectively handle complex data structures and 

outperform traditional statistical methods in predicting accident severity. These conclusions are 

consistent with the findings made by Wahab & Jiang (2019) and Sufian & Varadarajan (2023), all 

of whom found that machine learning models had a better and more accurate predictive 

performance compared to traditional models, thus highlighting the potential of using ML in traffic 

safety analysis. 
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This study used a two-pronged modelling approach employing both a machine learning and a 

statistical approach.  For machine learning, the Random Forest model was used to predict the 

frequency of near-miss events across different trips. This prediction was based on both trip-level 

and driver-level characteristics such as trip duration, distance, trip average speed, time of day, 

driver age, and driver experience. This approach handles both numerical and categorical variables, 

offers feature importance ranking, and is flexible.  

 

Poisson regression was selected as the statistical modelling approach because the dependent 

variable – frequency of near-miss events – is a count variable that follows a distribution more 

consistent with Poisson assumptions. According to Akram et al. (2023) and Coxe et al. (2009), 

applying standard linear models to count outcomes may lead to biased and inconsistent estimates, 

and as such, Poisson regression models provide more appropriate analyses for count data.  

 

2.4 ML methodologies best suited for near-miss prediction in iDreams  

The iDreams dataset contains a large volume of multimodal naturalistic driving data that includes 

GPS readings, driver fatigue levels, vehicle dynamics (braking, steering, acceleration), and other 

factors like speeding, headway distance, lane departures, readings for forward collision warning, 

and overtaking events. The safety and driving events' metrics are recorded over time and thus 

require a sequential analysis.  

Additionally, the data is imbalanced, with the near-miss events expected to be generally fewer 

compared to normal driving instances/incidents. This imbalance may negatively affect the 

performance of the ML methodology as the machine learning model may become biased toward 

the majority class, thus leading to poor detection of rare near-miss incidents. Therefore, this will 

necessitate the use of class-balancing techniques, as illustrated by (Chawla, et al. 2002). 

The table below shows the final recommended ML methods to detect and predict near-misses in 

iDreams data 

ML Method Best Suited For  Advantages Challenges iDreams Data 

Type 

Source(s) 

Random 

Forest 

Predictive 

modelling of 

dangerous event 

frequency 

Handles 

non-linear 

interactions 

and ranks 

feature 

importance 

May overfit 

without tuning, 

it is also less 

interpretable 

than 

Generalised 

Linear Models 

Naturalistic 

driving data (for 

instance, as per 

this study, e.g. 

distance, 

average speed, 

duration, etc.) 

Xue et al. 

(2019) 

 

Hossain et 

al. (2021) 

SMOTE + 

XGBoost 

Handling class 

imbalance in 

near-miss 

prediction 

Improves 

recall in rare 

event 

detection 

Over-sampling 

may introduce 

synthetic noise 

Data that shows 

rare events like 

tailgating, late 

braking, extreme 

cornering, etc. 

Chawla, et 

al. (2002) 
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XGBoost 

(Tree-based 

model) 

Feature-based 

near-miss 

prediction 

High 

accuracy and 

interpretable 

insights 

Less effective 

for sequential 

event modelling 

Braking force, 

lane deviation, 

and steering 

angle variance 

Iranitalab & 

Khattak 

(2017) 

LSTM 

networks 

Time-series 

driver behaviour 

analysis, e.g. 

acceleration 

patterns, delays 

in reaction time.  

Captures 

temporal 

dependencies 

and is useful 

for real-time 

near-miss 

detection 

Requires a large 

dataset, thus 

making it 

computationally 

expensive 

Driver fatigue, 

acceleration, 

braking, 

steering, and 

reaction time 

Zhang, 

Yang, & 

Yang 

(2023) 

 

Mili et al. 

(2023) 

Isolation 

Forest (IF) 

Detecting high-

risk driving 

patterns 

Unsupervised 

detection of 

outliers 

May flag too 

many false 

positives 

Driving 

anomalies, e.g. 

sudden speed 

drops 

Liu, Ting, 

& Zhou 

(2009) 

Autoencoders 

(Anomaly 

Detection) 

Detecting 

unknown near-

miss events 

Works well 

for 

unsupervised 

detection of 

rare events 

Needs fine-

tuning for 

threshold 

selection 

Lane 

departures, 

sudden 

braking, erratic 

acceleration 

patterns 

Dong et al. 

(2018) 

Ip, Artur, & 

Mihaita 

(2024) 

Table 1: ML methods for iDreams data 
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3 Methodology 
This study involved both a literature review and modelling. The literature review was conducted 

with academic material that was identified and sourced from conventional academic databases like 

Google Scholar and Research Gate. Owing to the specific nature of the study, AI tools like 

ChatGPT were also used to search and identify relevant academic publications. 

 

The primary focus of the search was on publications related to statistical or machine learning 

modelling, with a preference for studies conducted on crash or near-miss prediction, definitions 

and indicators of near-miss accidents, and the use of models in naturalistic driving data.  

3.1 Overview of modelling approach 

This study adopts a quantitative research design that is based on the analysis of secondary 

naturalistic driving data collected from a set of Belgium-based drivers as part of the iDreams 

project.  This study’s key aim is to use both statistical and machine-learning techniques to predict 

the frequency of near-miss incidents. It specifically focuses on driving events classified as 

“Headway Level 2”. Analysis in this study is conducted at the trip level, with each individual trip 

considered as a separate entry for analysis.  

 

This study employs a two-part modelling approach. Initially, a Poisson regression model is used to 

explore the statistical relationships between the frequency of near-miss events and trip-level & 

driver-level characteristics. However, based on diagnostic indicators from the Poisson model, 

particularly high values for deviance and Pearson chi-square statistics, overdispersion was 

detected. Therefore, a Negative Binomial regression model was applied using the same predictors. 

Afterwards, a Random Forest model is applied to assess the predictive power of the same features 

through a machine learning framework.  

 

The original dataset consisted of information on over 17,000 trips, from which 4,966 trips were 

selected based on their association with one of 53 drivers. It is from these drivers that key driver 

characteristics were extracted, e.g. driver age and length of their driving experience. After further 

filtration, trips without complete driver information were excluded, and this reduced the number 

of trips to 4,481, which was the final modelling dataset.  

 

Data processing, feature extraction, and model development were carried out using Python and 

supported by MS Excel. Only trips that included at least one dangerous event were selected and 

retained for modelling. This selection criteria is consistent with prior near-miss prediction studies, 

e.g. Sun et al. (2024). Since near-miss events are more frequent in naturalistic driving datasets, 

trips with at least one dangerous event offer necessary variation for identifying risk factors and also 

prevent interfering with the model’s ability to detect patterns due to class imbalance.  
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The figure below provides a schematic overview of the entire methodology for this study  

  

 

Original iDreams Dataset 

~17,000 trips 

(Only Belgium) 

Filter 2: 

Trips lacking complete 

driver info removed (e.g. 

age, experience) 

 

=4,481 trips 

 

Final Modelling Dataset 

 

=4,481 trips 

Poisson Regression Model 

- Predictors, and  

- Outputs e.g. coefficients, 

p-values, confidence 

intervals, model fit, etc. 

Negative Binomial Model 

- Predictors, and  

- Outputs e.g. coefficients, 

p-values, confidence 

intervals, model fit, etc. 

 

Random Forest Regression 

- Predictors, and  

- Outputs, e.g. MSE, Root 

MSE, R2 score, feature 

importance scores, etc. 

Filter 1: 

Only trips with at least one 

dangerous event and 

associated with 53 identified 

drivers 

= 4,966 trips 

Figure 2: Methodology Schematic Representation 

▪ Model results and discussion 

▪ Interpretation of findings 

▪ Practical implications 

▪ Limitations and future research 

▪ Recommendations  
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3.2 Data Source  

This study uses trip-level naturalistic driving data from the iDreams project. The project involved, 

among other things, the use of instrumented vehicles equipped with advanced in-vehicle 

monitoring technologies across several European countries, including Belgium. 

 

The vehicles were fitted with various sensors and telematics systems, including the Mobileye driver 

assistance system. Mobileye collected high-frequency data on forward vehicle dynamics, thus 

allowing for the measurement of continuous time headway readings. These time headway values 

were then discretised into 4 safety levels: 

▪ -1: Invalid or missing value 

▪ 0: Safe Headway 

▪ 1: Moderate caution 

▪ 2: High risk (dangerous event)  

In this study, level 2 is used as a stand-in for near-miss incidents and therefore serves as the 

dependent variable. The trip files for each trip analysed contained both contextual and telemetry 

information from which trip-level features were extracted e.g. duration, speed, distance. The trips 

that were retained were those in which the trip driver identifier (short_id) matched a valid entry in 

the driver dataset. After filtering, the final dataset used for modelling included 4,481 trips 

representing 47 unique drivers.  

 

3.3 Dependent Variable 

In this study, the dependent variable is the number of dangerous events per trip. This variable is 

defined as the count of headway level 2 readings within each individual trip. These events are 

extracted from the driving data using Python scripts. These Python scripts scan the JSON trip files 

for occurrences of the value 2 under the field for headway level labelled 

data_ME_AWS_hw_level. 

 

Within the iDreams dataset, this level 2 is used as an indicator of a high-risk following distance 

between a subject vehicle and the vehicle ahead. This categorisation is based on discretised time 

headway measurements provided by the Mobileye ADAS sensor. Level 2 represents driving 

situations where the time headway drops below a critical safety threshold, signalling a potential 

near-miss condition that could escalate into a collision if an evasive action is not taken.  

 

In order to ensure model relevance, only trips that included at least one headway level 2 event were 

retained in the dataset. The total number of these events for each trip was computed and recorded 

as a numerical value (dangerous_events). This value, per trip, serves as the dependent variable for  

all the three models. 
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3.4 Independent Variables 

This study uses both trip-level and driver-level features as independent variables that may influence 

the frequency of the dangerous headway events (dangerous_events). The selection of these 

variables was primarily influenced by their availability, interpretability, and their overall relevance 

to prior research on driving risk research. All the variables were extracted from the JSON trip files 

and driver questionnaire data using Python and MS Excel. The complete list of trips and their 

associated variables were compiled into a single CSV file. The final variable selection is as follows; 

3.4.1 Trip-level variables 

At the start of the analysis,  variables like distraction events and weather were considered. 

However, they were excluded from the final model due to inconsistent data recording and a low 

volume of valid entries across the dataset. As such, the following trip-level variables were 

considered; 

  

▪ Duration (seconds): Total time of the trip, extracted from the trip JSON file and validated 

by calculating trip start and end times.  

▪ Day/Night Indicator (binary): Derived from the field data_ME_AWS_time_indicator. 

Since the original format of this variable was text, it was recoded to 0 for “day” and 1 for 

“night” or “dusk”. 

▪ Distance (kilometres): Total trip distance as recorded in the trip data. 

▪ Average Speed (km/h): Trip duration is converted to hours, and this variable is computed 

by dividing distance by duration.  

▪ Road Environment: Categorisation that indicates the road type on which a trip occurred. 

Road environment categories were proportionally assigned to trips based on each driver’s 

self-reported weekly driving exposure across 3 road types, i.e. urban, rural, and motorway 

(coded as 1, 2, 3, respectively, for modelling). Trips were first sorted in descending order 

of average speed per driver and road environment categories assigned based on the driver’s 

reported exposure proportions e.g. for a driver with 100 trips and a reported driving 

exposure of 60% urban, 30% rural, and 10% motorway, after sorting the trips by descending 

average speed, 60 trips would be assigned code 1, 30 trips code 2, and 10 trips code 3. 

3.4.2 Driver-level variables 

▪ Age (years): Age of the driver at the time of data collection. 

▪ Gender (binary). Binary coding of recorded driver genders (0 = male, 1 = female). 

▪ Driving Experience (years): Number of years that the driver had been licensed at the time 

of data collection. 

▪ Income (euro): A range of  monthly earnings per driver. To enable modelling, the ranges 

were converted into midpoint values as follows:  

Original Range Midpoint Used 

Less than €1.000 500 

€1.000 to €2.000 1500 

€2.000 to €3.000 2500 

€3.000 to €4.000 3500 

€4.000 to €5.000  4500 

Over €5.000 5500 

Table 2: Income Ranges and Midpoints 
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▪ Driving range: This is an estimated weekly driving distance per driver recorded as a 

categorical range. To enable modelling, these ranges were converted into midpoint values 

as follows: 

Original Range Midpoint Used (km) 

Up to 50 km  25 

50 – 100 km 75 

100 – 500 km 300 

500 – 1000 km  750 

Table 3: Weekly Driving Distance and Midpoints 

For the final dataset, only drivers for whom these variables were available were included. Trips 

with incomplete driver information were excluded, resulting in a total of 4,481 trips associated 

with 47 drivers.  

 

3.5 Feature Extraction 

Due to storage and computation constraints, the data was handled in batches of 100-200 files, 

allowing for efficient extraction. The following key variables were extracted from each trip file: 

▪ short_id (unique driver identifier) 

▪ duration 

▪ distance 

▪ data_ME_AWS_hw_level (used to count instances of dangerous events = headway level 2) 

▪ data_ME_AWS_time_indicator (used to classify time of day; “day, night, or dusk”) 

 

Driver-related features were extracted from the iDreams questionnaire and matched to trips using 

the short_id field. Only trips from drivers present in this field were retained. Python’s pandas 

library was used to merge and verify data consistency.  

 

3.6 Modelling Techniques 

This study employed Poisson regression, Negative Binomial regression and Random Forest 

regression modelling approaches to predict the frequency of near-miss events / dangerous events 

(headway level 2) per trip. All models were developed and executed using Python. 

 

3.6.1 Count Regression Models 

Poisson regression was selected as an initial approach because the dependent variable – 

dangerous_events – is a non-negative count variable. The model estimates how trip-level and 

driver-level features influence the expected number of near-miss events. A Generalised Linear 

Model (GLM) framework with a Poisson distribution and log link function was applied using the 

statsmodels package in Python. 
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The following were the included predictors and their mathematical relationships: 

▪ [+] Duration (in seconds)  

▪ [+] Distance (in kilometres) 

▪ [+] Average speed (in km/h) 

▪ [-] Day/night indicator (recoded: 0 = day, 1= night, and dusk) 

▪ [+] Road environment (ordinal categories; 1= urban, 2 = rural, 3 = motorway) 

▪ [-] Driver age (in years) 

▪ [-] Driver gender (0=male, 1=female) 

▪ [+] Driver income (midpoints of ranges in euro) 

▪ [+] Driving experience (in years) 

▪ Range of weekly driving distance (midpoints of ranges in km)  

The outputs of the model included regression coefficients, statistical significance (p-values), and 

exponentiated coefficients (Exp (B)), confidence intervals, and diagnostics regarding model fit. 

However, during the analysis, the Poisson model showed signs of overdispersion and therefore, in 

order to account for this, a Negative Binomial regression model was estimated using the same 

predictors. The Negative Binomial model produced improved fit results and was found to be better 

suited for this dataset compared to the Poisson model. 

 

3.6.2 Random Forest Regression 

In order to account for potential nonlinearities, feature interactions, and to complement the 

statistical model, a Random Forest Regressor was developed using Python’s scikit-learn library. 

This ML technique builds multiple decision trees and averages their outputs to improve accuracy 

and reduce overfitting. 

 

Just like in the Poisson model, the same predictor variables were used for this Random Forest 

model. However, here the dataset was split into a training set (80%) and a testing set (20%) to 

validate model performance. 

 

Evaluation of the model focused on Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), R2 score, and feature importance scores.   
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4 Results 
This chapter presents the findings derived from the descriptive analysis and modelling of near-miss 

events using the filtered iDreams dataset. The aim is to examine how trip-level and driver-level 

features relate to the frequency of near-miss events, i.e. headway level 2 events. The results provide 

an overview of the dataset and a presentation of the model outputs (both statistical and machine 

learning).  

4.1 Descriptive Statistics  

4.1.1 Overview of the Dataset 

The main iDreams dataset contained well over 17,000 trips. From this, 4966 trips were randomly 

extracted based on 2 criteria; 

▪ The trip file had to contain one of the 53 unique driver identifiers (short_id) that were found 

the iDreams driver dataset 

▪ The trip had to have at least one timestamped near-miss event, i.e. value 2 under 

data_ME_AWS_hw_level in the trip JSON file. 

For modelling purposes, these 4,966 trips were further reduced to 4,481 after excluding trips from 

drivers whose information was incomplete (e.g. age, and experience). These 4,481 trips were taken 

by a total of 47 unique drivers.    

 

4.1.2 Driver Characteristics 

a) Age and experience; 

▪ Drivers’ ages ranged from 20 to 79 years (mean age = 47, median age = 43, SD = 18) 

Age Range No. of Drivers 

20 – 30  12 

31 – 40  7 

41 – 50  9 

51 – 60  4 

61 – 70  9 

71 – 80  6 

 47 

Table 4: Driver Age Range 

▪ Drivers’ years of experience ranged from 2 to 55 years (mean = 27, median = 24, SD = 17) 

Experience Range (years) No. of Drivers 

2 – 10   12 

11 – 20  4 

21 – 30  12 

31 – 40  4 

41 – 50  10 

50+ 5 

 47 

Table 5: Driver Experience Range 
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b) Gender; 30 male, 17 female. 69% of the trips were taken by males while 31% were taken 

by females.  

c) Income; 

Income Range No. of Drivers 

Less than €1.000 1 

€1.000 to €2.000 4 

€2.000 to €3.000 11 

€3.000 to €4.000 9 

€4.000 to €5.000  12 

Over €5.000 7 

Unstated 3 

 47 

Table 6: Driver Income Range 

d) Weekly road exposure 

This is a range that shows the reported range of weekly driving distances per driver. 

Average Weekly Driving Distance No. of Drivers 

Up to 50 km 1 

50 – 100 km 9 

100 – 500 km  26 

500 – 1000 km  9 

Unknown 2 

 47 

Table 7: Range of  weekly driving distance 

4.1.3 Trip Characteristics  

▪ Trip duration: The original dataset featured trip durations captured in seconds. The shortest 

trip analysed was about 1.5 minutes (94 seconds), and the longest trip lasted approximately 

5 and a half hours. [mean  = 24 minutes, median duration = 17 minutes SD = 21 (minutes)]. 

▪ Trip distance: Distances ranged from 0.3 km to 615 km. (mean distance = 23 km, median 

distance = 12.5 km, SD = 28.7).  

▪ Average speed: This category was not expressly available in the dataset; however, it was 

calculated and included per trip [ 
Distance x 3600

Duration
]. Average speeds ranged from 2.8 km/h 

to 113 km/h. The median value of average speed across the trips was approximately 46 

km/h.  

▪ Road environment: After assigning trip road types based on driver information, 29% of 

trips were on urban roadways, 44% on rural, and 27% on motorways. 

▪ Time of day: Trips were categorised by driving conditions; day, dusk, and night. For 

modelling purposes, both dusk and night were similarly coded.  

Time of day Percentage share of trips 

Day 89% 

Night 9.5% 

Dusk 1.5% 
Table 8: Trip time of day distribution 
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4.1.4 Near-miss Event Distribution 

There were a total of 62,903 recorded near-miss events across all the trips. Male drivers accounted 

for about 93% of these events, with females at 7%. After assigning road environment categories to 

the trips, over 90% of all near-miss incidents were in the urban roadways. The median number of 

dangerous events was 7. The distribution of these dangerous events is skewed, with event counts 

per trip ranging from 1 at the lowest to 303 at the highest. This is further illustrated by the fact that 

around only 13% of all the trips account for over 50% of recorded near-miss events. 

  

4.2 Count Regression Model Output   

The study initially used a Poisson regression model to examine the relationship between the 

frequency of near-miss events and both trip-level characteristics & driver demographics. This 

modelling approach was deemed appropriate owing to the count nature of the dependent variable, 

which followed a discrete, non-negative distribution. However, the results showed signs of 

overdispersion, and thus, to counter this effect, a Negative Binomial regression was also conducted. 

Both models used 4,481 trips, with the occurrence of the near-miss event being the dependent 

variable while trip and driver characteristics were the independent variables. The models were run 

on a CSV file that contained all the necessary data for each of these trips. The table below shows 

how each of these variables was labelled in the CSV file. 

  

Variable Column Label in CSV 

Near-miss event count dangerous_events 

Trip duration (in seconds) duration 

Time of day indicator day_night 

Trip distance (in kilometres) distance 

Trip average speed (in km/h) average_speed 

Road environment category road_environment 

Driver age (in years) age 

Driver experience (in years) experience 

Driver gender (binary) gender  

Driver weekly driving distance stc_weekly 

Driver income range income  
Table 9: Count Regression Model Variables 

4.2.1 Poisson Regression Results 

This model was initially selected due to the discrete, non-negative nature of the dependent variable. 

The modelling was done in Python using the statsmodels library. A log-link Poisson model was 

selected. The table below shows a summary of the model output 

Metric Value 

Log-likelihood -24,033 

Deviance 31,797 

Pearson chi-square 36,200 

Degrees of freedom 4,285 

Pseudo R-squared 0.9999 
Table 10: Poisson Regression Results 

Based on these outputs, it was hypothesised that the high values for deviance and the Pearson-chi 

square suggested the presence of overdispersion within the dataset. It is likely that the variance of 

the outcome exceeded the mean, and therefore, a more flexible model would be appropriate.   
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The table below shows coefficient estimates for the Poisson model 

Variable Coefficient Std. Error p-value  Exp(β) 95% CI for Exp(β) 

Intercept 2.1324  0.071 <0.001 8.435 [7.35, 9.69] 

Duration 6.66e–10 2.21e–09 0.763 ≈1.00 [1.000, 1.000] 

Distance 0.0120 0.000 <0.001 1.012 [1.012, 1.012] 

Average Speed 0.0139 0.000 <0.001 1.014 [1.013, 1.015] 

Time of Day  -0.3748 0.013 <0.001 0.688 [0.670, 0.706] 

Driver Age -0.0489 0.003 <0.001 0.952 [0.946, 0.959] 

Experience 0.0450 0.003 <0.001 1.046 [1.039, 1.053] 

Gender -0.0529 0.010 <0.001 0.949 [0.930, 0.968] 

Weekly distance 1.97e-05 1.88e-05 0.295 1.000 [1.000, 1.001] 

Driver Income 1.22e-05 3.76e-06 0.001 1.000 [1.000, 1.000] 

Road environment 0.1683 0.010 <0.001 1.183 [1.161, 1.206] 
Table 11: Poisson Model Coefficients 

▪ Distance and average speed were found to be significantly associated with an increased 

frequency of near-miss events. Trip duration was not a statistically significant predictor. 

 

4.2.2 Negative Binomial Regression Results 

Due to indications of overdispersion in the Poisson regression model, a Negative Binomial 

regression model was estimated. This model is suitable for count data that exhibits high levels of 

variability that may not be well-handled by the Poisson model. 

 

The same predictor variables were used, and the model was fitted using the Generalised Linear 

Model (GLM) framework in Python. 

 

The table below shows a summary of the model output 

Metric Value 

Log-likelihood -14,200 

Deviance 2,407 

Pearson chi-square 2,800 

Degrees of freedom 4,285 

Pseudo R-squared 0.5153 
Table 12: Negative Binomial Regression Results 

These results are a substantial improvement over the Poisson model. All key metrics significantly 

reduced and thus suggesting a better-fitting model.  

The table below shows coefficient estimates for the Negative Binomial model 

Variable Coefficient Std. Error p-value  Exp(β) 95% CI for Exp(β) 

Intercept 2.199  0.243 <0.001 9.019 [5.61, 14.50] 

Duration 5.33e–10 4.89e–09 0.913 ≈1.00 [1.000, 1.000] 

Distance 0.0250 0.001 <0.001 1.025 [1.023, 1.027] 

Average Speed 0.0105 0.002 <0.001 1.011 [1.007, 1.014] 

Time of Day  -0.4575 0.053 <0.001 0.633 [0.570, 0.703] 

Driver Age -0.0437 0.011 <0.001 0.958 [0.936, 0.978] 

Experience 0.0367 0.012 0.002 1.037 [1.014, 1.062] 

Gender -0.1456 0.040 <0.001 0.865 [0.798, 0.935] 

Weekly distance -0.0003 7.58e-05 <0.001 1.000 [1.000, 1.001] 

Driver Income -1.112e-05 1.41e-05 0.431 1.000 [1.000, 1.000] 

Road environment 0.1308 0.036 <0.001 1.140 [1.062, 1.224] 
Table 13: Negative Binomial Model Coefficients 
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The Negative Binomial model confirmed most of the trends that were previously observed in the 

Poisson regression. However, it offered more reliable estimates due to an improvement in the 

handling of overdispersion. Key findings from this model include: 

▪ The baseline expected count of near-miss events corresponds to the intercept value 

▪ Trip duration was not a statistically significant predictor of near-miss event frequency. 

▪ A 1 km increase in trip distance is associated with a corresponding 2.5% increase in 

expected number of near-miss events. 

▪ Each 1 km/h increase in average speed slightly increases the expected number of near-miss 

events by 1%.  

▪ Night or dusk trips have up to 37% lower near-miss events compared to daytime trips 

▪ Female drivers are associated with approximately 13.6% fewer near-miss events compared 

to males. 

▪ Drivers moving from lower speed roads into higher speed roads, e.g. driving from urban to 

rural or rural to motorway, increase potential near-miss event risk by close to 14% 

▪ The income of the driver had no statistically significant relationship with near-miss events. 

▪ Each additional year in the age of the driver reduces the expected amount of near-miss 

incidents by approximately 4.3% 

▪ Reversely, for each extra year of driving experience, the data showed a 3.2% increase in 

the expected number of near-miss events. 

 

Note: The effects of driver age and experience on the frequency of near-miss events appear to be 

countering each other. Thus, there is a need for a more detailed study into the specific ‘cut-off 

points’ at which an increase in both age and/or experience leads to a unidirectional movement in 

expected near-miss event frequency.  
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4.3 Random Forest Model Results 

In addition to the count regression models, a Random Forest regressor was developed to assess the 

predictive strength of the same set of trip-level and driver-level variables. This was chosen due to 

the model’s capability in handling complex, non-linear relationships and interactions. The dataset, 

variables, and their arrangement were the same as for the count regression models. 

 

The dataset was randomly split into 2 sets; 80% was used as a training set while the remaining 20% 

was a test set. A Random Forest regressor with 100 trees was trained, and the performance of the 

model was evaluated on the test set. 

 

The table below shows the performance: 

Metric Value 

Mean Squared Error (MSE) 96.93 

Root Mean Squared Error (RMSE) 9.85 

R2 Score  0.743 
Table 14: Random Forest Model Results 

The model was able to explain approximately 74.3% of the variance in the number of dangerous 

events in the unseen data. The RMSE value is suggestive of moderate error in the predicted number 

of events. It can be hypothesised that this moderate error is due to variability and skewed dispersion 

in the driving data. 

 

Furthermore, the model extracted feature importance scores to show the relative contribution of 

each predictor to the overall prediction accuracy.  

 
Figure 3: Random Forest Feature Importance Ranking 

According to this ranking, trip distance was the most important predictor, greatly contributing to 

the model’s predictions. Other trip-level features, such as duration, average speed, and income, 

showed moderate influence, while road environment, gender, and time of day contributed relatively 

little. The most important driver-level predictor was income, while driver gender was not highly 

ranked.  
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5 Discussion 
This chapter provides an interpretation of the results from both the statistical and machine learning 

models. The main aim was to investigate which trip-level and driver-level factors had a significant 

influence on the frequency of near-miss incidents. 

5.1 Interpretation of Key Findings 

5.1.1 Trip-Level Influences 

▪ Trip distance was found to be the most influential predictor across all models. In both of 

the statistical models, trip distance was positively associated with near-miss event 

frequency. This finding was further reinforced by the Random Forest model, which showed 

that distance accounted for over 70% of model importance. This result from the models 

supports the literature that longer trips increase exposure time and thus the likelihood of 

being involved in risky situations  (Shen et al., 2020; Bagdadi, 2013). 

▪ Average speed was also found to be a significant risk factor, with higher speeds leading to 

increased near-miss event frequency. This is also in line with the generally accepted safety 

viewpoint that links speed with crash risk and near-miss event frequency. 

▪ In a seemingly counterintuitive finding, night/dusk time driving was associated with fewer 

near-miss events compared to daytime for both models. According to the literature, 

although the low light conditions in the night time may be considered riskier, this finding 

likely reflects cautious driving behaviour due to factors like an increase in alertness, 

presence of law enforcement, & reduced traffic density, etc. (Sun et al., 2024; Masello et 

al., 2023). 

5.1.2 Driver-level Characteristics 

▪ The Random Forest model highlighted that income was the most important driver-level 

predictor. This possibly points to the influence of socioeconomic factors on driving 

exposure and risk-taking behaviour.  

▪ Driver age showed a negative relationship with the frequency of near-miss events, with 

older drivers generally being less involved in dangerous events than younger ones. 

According to the literature, this finding is consistent with recorded changes in driving 

behaviour due to increasing age, for example, decreased likelihood for speeding, decreased 

impaired driving, and a generally more risk-averse driving style (NHTSA, 2023). 

▪ Reversely, driving experience had a mild positive effect on near-miss event frequency. 

Even though this possibly reflects a level of behavioural complacency or a false sense of 

confidence, there is still a need for a more thorough determination of actual driving 

experience. This is because, for modelling purposes, this study considered experience only 

in years, i.e. how long the driver had been with a driving license and did not consider the 

actual amount of time and/or different driving scenarios the driver had been exposed to. 
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5.2 Practical Implications 

Findings from this study offer a number of practical implications for the advancement of road 

safety, policy design, fleet management, and targeted driver behaviour interventions. The study 

identifies the key factors influencing the frequency of near-miss events and provides evidence to 

support strategies that mitigate risky driving behaviour before it results in a crash. 

The practical implications of this study can be in the following areas; 

 

1. Integrating prediction models into driver assistance systems. The hybrid modelling 

approach of using both statistical and machine learning models can offer complementary 

value in the development of driver assistance systems.   

2. Tailor-made driver interventions. The study found that older drivers were associated with 

fewer near-miss events. By focusing on driver characteristics such as age, road safety 

experts can devise age-sensitive behavioural interventions such as programs targeting 

novice drivers, refresher courses for drivers with less road exposure, programs that help 

older drivers adapt to cognitive changes over time, etc. 

Additionally, since more experienced drivers showed a slight increase in near-miss event 

frequency, these safety interventions should also include campaigns that help discourage 

overconfidence.   

3. Targeted speed management strategies. Findings from the modelling showed a significant 

and positive association between average speed and frequency of dangerous events. Since 

speed is one of the most critical behavioural factors contributing to road crashes, findings 

from this study support the implementation of context-sensitive speed enforcement 

strategies such as: 

▪ Adaptive speed warnings within in-vehicle driver feedback systems 

▪ Use of speed limiters in fleet vehicles 

▪ Risk-based insurance pricing that factors in speed 

▪ Targeted public awareness campaigns  

4. Policy and road safety research. Results from this study reinforce the need to prioritise trip 

context and the monitoring of behaviour in the development of road safety programs. 

Stakeholders such as road safety agencies can use findings from this study as evidence to 

support the design of behaviorally-informed regulations. There is also a need to invest in 

the continued collection and analysis of large-scale, real-world driving datasets to make 

road safety interventions much more proactive. 
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5.3 Limitations and Future Research 

While this study contributes to understanding factors that influence the frequency of near-miss 

events, it faced some limitations that may point to valuable directions for future research. 

 

▪ Conducting only a trip-level analysis. Due to resource constraints and data processing 

complexity, this study conducted analysis only at the trip level rather than at the event level. 

The dataset used for modelling contained over 60,000 dangerous events (headway level 2), 

and as such, an event-level analysis was not feasible within the study scope. This led to data 

aggregation, which may not capture the characteristics of individual near-miss events.  

For future research, a more “zoomed-in” event-level analysis would better isolate the 

moment-by-moment features that distinguish dangerous from non-dangerous conditions 

within trips. 

▪ Missing variables. Even though the study incorporated key trip and river variables, some 

other equally important behavioural and contextual factors were not included, e.g. driver 

distraction, fatigue, drowsiness, and environmental conditions (weather, road type, 

congestion, etc.).  These factors significantly influence driver performance, and their 

absence may reduce the explanatory power of the models. 

Future work on such a dataset should aim to integrate such variables into the model to give 

an all-round perspective. 

▪ Limited generalisability. The dataset used was based on car drivers in Belgium. The 

modelling process also did not differentiate vehicle types or driving contexts.  This makes 

the findings very area-specific and harder to generalise to: 

• Other geographical, cultural, or regulatory contexts 

• Different vehicle types, e.g. trucks or buses. 

▪ Reliance on a single surrogate safety indicator. This study uses time headway as its sole 

measure of near-miss risk. While headway is a well-established metric, its use in isolation 

may not fully capture complex trip-level driving conditions. It is important, therefore, that 

similar research considers integrating multiple surrogate safety measures such as Time To 

Collision (TTC), Post-Encroachment Time (PET), or Deceleration Rate to Avoid Crash 

(DRAC) in order to build a more multidimensional understanding of risk. 

▪ Cross-sectional nature of the study. The data and information used in the study are simply 

a “snapshot” of a particular moment in time for the drivers and their environment. It is 

worth investigating how driving styles may have evolved over time to get a better 

understanding of the impact that targeted behaviour-based interventions may have on near-

miss frequency for the same group of drivers. This can help to further improve proactive 

road safety measures. 

▪ To create a richer and more robust prediction system, future research can complement the 

Negative Binomial and Random Forest approaches used in this study with more flexible 

machine learning models, e.g. Gradient Boosted Trees, XGBoost. 
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6 Conclusion and Recommendations 
An important insight from the study is the comparative difference between the modelling 

approaches (statistical and machine learning). While some predictors consistently influenced both 

models, others significantly varied between the two approaches.  

 

For instance, in the Poisson model, a change in the road environment variable was associated with 

a 14% increase in expected near-miss events. Yet, the same variable was ranked as the least 

important by the Random Forest model. Additionally, trip duration was found not to be statistically 

significant in the count models, yet the Random Forest model ranked it as the second most 

important predictor. 

 

This is evidence that while count models may be appropriate when explaining relationships or 

effect sizes, machine learning models are better equipped to identify complex patterns. This further 

illustrates the importance of adopting a hybrid approach (statistical + machine learning) in order to 

get a holistic understanding of influencing factors in near-miss prediction. 

 

In conclusion, this study contributes to road and traffic behaviour research in several ways. 

▪ It provides empirical evidence that supports the importance of both trip-level and driver-

level features in predicting near-miss risk. 

▪ It demonstrates the value of combining both machine learning approaches and statistical 

approaches when analysing surrogate safety data, i.e. using both Random Forest regression 

and Negative Binomial regression. 

▪ It highlights the vital role played by naturalistic driving data for proactive risk modelling. 

This is key in ensuring that transport planners do not depend entirely on crash-based 

analyses. 

Additionally, based on the findings, the following recommendations are proposed: 

▪ Incorporating trip distance and speed thresholds in systems that monitor drivers and give 

them feedback during driving. 

▪ Developing real-time risk identification platforms that provide personalised and well-tuned 

risk assessments and recommendations to drivers. 

▪ Improving the framework upon which naturalistic driving data is collected, processed, 

shared, and analysed across different vehicle manufacturers, road safety agencies, and 

researchers. This would help in expanding the availability of this data for key proactive 

safety interventions.  
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8 Appendices 
8.1 Appendix 1: Poisson Regression Model (Python Script) 

 
import pandas as pd 

import statsmodels.api as sm 

import statsmodels.formula.api as smf 

 

file_path = 

r"C:\Users\lule4\Downloads\thesis\trip_data\data_for_modeling.csv

" 

df = pd.read_csv(file_path) 

 

df = df.dropna(subset=[ 

    'dangerous_events', 'duration', 'distance', 'average_speed', 

'day_night', 

    'age', 'experience', 'gender', 'stc_weekly', 'income', 

'road_environment' 

]) 

 

formula = ( 

    "dangerous_events ~ duration + distance + average_speed + 

day_night + " 

    "age + experience + gender + stc_weekly + income + 

road_environment" 

) 

 

poisson_model = smf.glm( 

    formula=formula, 

    data=df, 

    family=sm.families.Poisson() 

).fit() 

 

print(poisson_model.summary()) 

print("\nLog-Likelihood:", poisson_model.llf) 

print("AIC:", poisson_model.aic)  
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8.2 Appendix 2: Negative Binomial Regression Model (Python Script) 

 

 

import pandas as pd 

import statsmodels.api as sm 

import statsmodels.formula.api as smf 

 

file_path = 

r"C:\Users\lule4\Downloads\thesis\trip_data\data_for_modeling.csv

" 

df = pd.read_csv(file_path) 

 

df = df.dropna(subset=[ 

    'dangerous_events', 'duration', 'distance', 'average_speed', 

'day_night', 

    'age', 'experience', 'gender', 'stc_weekly', 'income', 

'road_environment' 

]) 

 

formula = ( 

    "dangerous_events ~ duration + distance + average_speed + 

day_night + " 

    "age + experience + gender + stc_weekly + income + 

road_environment" 

) 

 

nb_model = smf.glm( 

    formula=formula, 

    data=df, 

    family=sm.families.NegativeBinomial() 

).fit() 

 

print(nb_model.summary()) 

print("\nLog-Likelihood:", nb_model.llf) 

print("AIC:", nb_model.aic)  
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8.3 Appendix 3: Random Forest Model (Python Script) 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import mean_absolute_error, mean_squared_error, 

r2_score 

import matplotlib.pyplot as plt 

import numpy as np 

 

file_path = 

r"C:\Users\lule4\Downloads\thesis\trip_data\data_for_modeling.csv" 

df = pd.read_csv(file_path) 

 

df = df.dropna(subset=[ 

    'dangerous_events', 'duration', 'distance', 'average_speed', 

'day_night', 

    'age', 'experience', 'gender', 'stc_weekly', 'income', 

'road_environment' 

]) 

 

X = df[['duration', 'distance', 'average_speed', 'day_night', 'age', 

        'experience', 'gender', 'stc_weekly', 'income', 

'road_environment']] 

y = df['dangerous_events'] 

 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y, test_size=0.2, random_state=42 

) 

 

rf = RandomForestRegressor(n_estimators=100, random_state=42) 

rf.fit(X_train, y_train) 

 

y_pred = rf.predict(X_test) 

mae = mean_absolute_error(y_test, y_pred) 

mse = mean_squared_error(y_test, y_pred) 

r2 = r2_score(y_test, y_pred) 

 

print("Random Forest Regression Results") 

print(f"MAE: {mae:.4f}") 

print(f"MSE: {mse:.4f}") 

print(f"R²: {r2:.4f}") 

 

importances = rf.feature_importances_ 

features = X.columns 

indices = np.argsort(importances)[::-1] 

 

plt.figure(figsize=(10, 6)) 

plt.title("Feature Importance (Random Forest)") 

plt.bar(range(X.shape[1]), importances[indices], align="center") 

plt.xticks(range(X.shape[1]), [features[i] for i in indices], 

rotation=45) 

plt.tight_layout() 

plt.show() 

 

  



Kizito Lule Ssentongo                                                                                                                                  June 2025 

41 

 

8.4 Appendix 4: AI Logbook 

Date: 18 February 2025 

AI Tool Used: ChatGPT (GPT-4o) 

 

Prompt 1 

 

User Prompt: 

 

Find me publications on near miss accidents. Specifically in road 

crashes. 

 

AI Response: 

The AI produced a list of academic and technical sources focused 

on near-miss incidents within road safety: 

 

▪ Near-Miss Road Traffic Accidents and Associated Factors Among 

Truckers (PMC – BMC Public Health)(Mekonen et al., 2024) 

▪ Exploring Spatial Associations Between Near-Miss and Police-

Reported Crashes (ScienceDirect)(Khan et al., 2023) 

▪ Prevalence and Predictors of Near Misses and Road Traffic 

Crashes Among Long-Distance Bus Drivers (Springer)(Quarshie 

et al., 2024) 

▪ Near-Miss Accident Analysis for Traffic Safety Improvement at 

a 'Channelized' Junction (ResearchGate)(Wardhana & Darlis, 

2018) 

▪ Predictable is Preventable: Tracking Pedestrian Near-Miss 

Incidents (NJ Crossing Guards)(Rutgers CAIT, 2023) 

▪ Accidents and Near-Misses Analysis Using Video Drive-

Recorders in a Fleet Test (NHTSA)(Yamamoto et al., 2013) 

▪ Car-to-Pedestrian Contact Situations in Near-Miss Incidents 

and Real-World Accidents (NHTSA)(Zhang et al., 2011) 

▪ Developing a Near-Miss Reporting System for Roadside 

Responders (AAA Foundation)(Michael et al., 2021) 

▪ Drive Video Analysis for the Detection of Traffic Near-Miss 

Incidents (arXiv)(Kataoka et al., 2018) 

▪ Using SlowFast Networks for Near-Miss Incident Analysis in 

Dashcam Videos (arXiv)(Khan et al., 2024) 
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Prompt 2 

 

User Prompt: 

 

Search for: publications on machine learning modelling in near-

miss or accident prediction; preferably stick to academic sources. 

 

AI Response: 

 

▪ Using Near Misses, Artificial Intelligence, and Machine 

Learning to Predict Future Serious Casualties (Wiley)(Meaker 

et al., 2024) 

▪ Application of Optimized Machine Learning Techniques for 

Prediction of Accident Outcomes (ScienceDirect)(Abellán et 

al., 2018) 

▪ Road Car Accident Prediction Using a Machine-Learning-Enabled 

Data Analysis (MDPI)(Khan et al., 2023) 

▪ An Explainable Machine Learning Approach to Traffic Accident 

Fatality Prediction (arXiv)(Al Mamun et al., 2024) 

▪ Recent Advances in Traffic Accident Analysis and Prediction: 

A Comprehensive Review (arXiv)(Seth et al., 2024) 

▪ Anticipating Traffic Accidents with Adaptive Loss and Large-

Scale Incident Database (arXiv)(Yao et al., 2018) 

 

Prompt 3 

User Prompt: 

 

Filter out near miss publications to focus on road safety related. 

 

AI Response: 

The AI filtered entries from Prompt 1 to include only those with 

direct application to road traffic safety: 

 

▪ Near-Miss Road Traffic Accidents and Associated Factors Among 

Truckers (PMC – BMC Public Health)(Mekonen et al., 2024) 

▪ Exploring Spatial Associations Between Near-Miss and Police-

Reported Crashes (ScienceDirect)(Khan et al., 2023) 

▪ Prevalence and Predictors of Near Misses and Road Traffic 

Crashes Among Long-Distance Bus Drivers (Springer)(Quarshie 

et al., 2024) 

▪ Near-Miss Accident Analysis for Traffic Safety Improvement at 

a 'Channelized' Junction (ResearchGate)(Wardhana & Darlis, 

2018) 

▪ Predictable is Preventable: Tracking Pedestrian Near-Miss 

Incidents (NJ Crossing Guards)(Rutgers CAIT, 2023) 

▪ Accidents and Near-Misses Analysis Using Video Drive-

Recorders in a Fleet Test (NHTSA)(Yamamoto et al., 2013) 

▪ Car-to-Pedestrian Contact Situations in Near-Miss Incidents 

and Real-World Accidents (NHTSA)(Zhang et al., 2011) 

▪ Drive Video Analysis for the Detection of Traffic Near-Miss 

Incidents (arXiv)(Kataoka et al., 2018) 


