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Abstract
Purpose  Animal emissions account for nearly 60% of total greenhouse gas emissions from the livestock sector. To estimate 
these emissions, the Food and Agriculture Organization of the United Nations (FAO) developed a dedicated module within 
the Global Livestock Environmental Assessment Model (GLEAM). Although previous studies have explored selected inputs 
for specific animals and emission types, a comprehensive analysis of all 92 inputs (parameters and emission factors) had not 
been conducted. This study aimed to identify the most influential inputs affecting ruminant emissions in GLEAM.
Methods  Using global data from GLEAM to build representative samples, a one-at-a-time (OAT) sensitivity analysis was 
conducted by varying each input individually while holding the others constant. Parameters-specific ranges were defined, 
and sensitivity was assessed using regression coefficients for methane, nitrous oxide, and their sum as total emissions.
Results  Sensitivity was determined for 70 of the 92 inputs, based on a high R2 between each input and the predicted emis-
sions. Three parameters: gross energy of the diet, diet digestibility, and age at first calving, were the most influential with a 
negative correlation to animal emission, with diet digestibility emerging as the most sensitive. In contrast, parameters related 
to animal weight and two emissions factors: the methane producing capacity of manure (Bo) and urinary energy as a fraction 
of gross energy (UE), were the most influential with a positive correlation, mainly due to their impact on methane, which 
accounts for nearly 90% of total animal emissions. Nitrous oxide emissions were highly sensitive and positively correlated 
with the nitrogen content of the diet, while showing moderate sensitivity with a positive correlation to the emission factors 
for direct N2O emissions from manure (EF3), for nitrogen volatilization and redeposition (EF4) and for N2O from leaching/
runoff (EF5). Regarding manure management systems, methane emissions were most affected and positively correlated 
with manure managed in liquid systems, while nitrous oxide emissions were most influenced with a positive correlation to 
manure managed as dry lot and deep litter. In contrast, changing manure management to compost, burned for fuel, or daily 
spreading showed the greatest potential to reduce animal emissions.
Conclusions  The study identified the most and least influential parameters and emission factors based on individual effects 
but did not evaluate interactions between them. The findings support prioritizing data quality improvements for the most 
influential inputs while using default values for less influential ones, helping to improve the accuracy and efficiency of 
livestock emission assessments.
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1  Introduction

The increase in greenhouse gas (GHG) emissions is caus-
ing temperatures to rise substantially worldwide, which 
is having serious effects on climate events. Livestock is 
widely recognized as a notable contributor to GHG emis-
sions, accounting for approximately 12% of total anthropo-
genic emissions, when considering a life-cycle approach. 
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Emissions directly related to animals, mainly from manure 
management and enteric fermentation, account for nearly 
60% of livestock emissions.

To assess the environmental impact of the livestock sector 
and evaluate potential mitigation scenarios at national and 
global scale, the Global Livestock Environmental Assess-
ment Model (GLEAM) serves as a primary analytical tool. 
Developed by the Food and Agriculture Organization of 
the United Nations (FAO), GLEAM incorporates methods, 
emission coefficients, and factors outlined by the Intergov-
ernmental Panel on Climate Change (IPCC 2006, 2019), and 
simplifies the calculation process by reducing the complex-
ity of required input parameters. Within its computational 
framework, GLEAM employs Life Cycle Assessment (LCA) 
and integrates spatial data that encompass animal produc-
tion. The diverse data for the input parameters have been col-
lected worldwide at various resolutions and from different 
sources, including surveys, literature, databases, and expert 
opinions. All of them are mapped onto a standardized grid 
with a spatial resolution of 10 km at the equator (FAO 2016).

All parameters and emission factors carry inherent 
uncertainties, which can lead to less accurate and less pre-
cise estimations of greenhouse gas emissions. To evaluate 
those impacts from individual parameters, sensitivity analy-
sis has been identified as a key methodology, particularly 
when evaluating mitigation strategies in the livestock sector 
(Opio et al. 2013; Misra and Verma 2017). However, few 
studies have examined the sensitivity of parameters in the 
GLEAM model, and most specialized in specific greenhouse 
gas emissions or specific production systems. For instance, 
Uwizeye et al. (2017) conducted a sensitivity analysis on 
nitrogen flows through supply chains in dairy systems using 
GLEAM, with data collected from Rwanda and the Nether-
lands. Similarly, Opio et al. (2013) performed a sensitivity 
analysis to determine the most influential parameters and 
emission factors contributing to the uncertainty of emissions 
for dairy and beef systems in France and Paraguay.

A comprehensive evaluation of the model is essential to 
fully understand the sensitivity of all parameters and emis-
sion factors involved. Given that GLEAM is designed for 
global application, it is crucial to incorporate sensitivity 
analyses across all possible conditions to identify the most 
influential parameters and to help prioritize data collection 
and updating efforts. This study aims to analyse the impact 
of individual input parameters and emission factors used 
in GLEAM and similar models that follow IPCC guide-
lines. These models rely on a wide range of assumptions 
and variables, and understanding the contribution of each 
to the overall emission estimates is essential for accurately 
interpreting model results, especially when evaluating dif-
ferent scenarios.

A sensitivity analysis is particularly valuable as it ena-
bles researchers and policymakers to anticipate the effects of 

modifying specific input variables before applying changes 
in real-world scenarios. By identifying the parameters that 
most influence the results, we can better target interventions, 
improve model transparency, and enhance scenario analy-
sis. Additionally, this study provides a foundation for future 
uncertainty assessments by highlighting the key inputs that 
should be prioritized when analysing emission variability, 
whether at the level of specific animal emission source or in 
a total animal emission estimate.

To establish an efficient sensitivity analysis method, it 
is essential to consider model complexity, the number of 
parameters, and the availability of input parameter ranges. 
Both model complexity and the number of parameters influ-
ence the computational cost of the analysis. To improve 
computational efficiency, techniques such as grouping 
parameters and defining samples have been developed (Sal-
telli et al. 2008). According to Pianosi et al. (2016), when 
the parameter range is available, testing sensitivity becomes 
simpler using a method referred to as Global Sensitivity 
Analysis. In contrast, if the range is unknown, assumptions 
must be made, such as defining a range around the mean 
value, which is the basis of Local Sensitivity Analysis.

One commonly used design in sensitivity analysis is the 
variation of one parameter at a time (OAT), characterized by 
its simplistic implementation without requiring any complex 
manipulation of the parameters data (Groen et al. 2016). 
Despite limitations in capturing the full impact of parame-
ters, OAT is invaluable for screening low-impact parameters 
that might be excluded from more detailed analyses (Hamby 
1994; Ferretti et al. 2016).

Several studies have employed an OAT design in sensitiv-
ity analysis to identify important parameters in emissions 
models that use the IPCC methodology. Most of these stud-
ies test models in specific countries, examining the uncer-
tainty of default emission coefficients and factors from the 
IPCC. The primary outcome of these studies is the calcula-
tion of uncertainty transmission from these coefficients into 
emissions (Brown et al. 2001; Karimi-Zindashty et al. 2012).

In this paper, we conducted a sensitivity analysis of all 
parameters associated with the animal emission module, 
including their integration into all the preceding sequential 
modules (herd module and animal energy module) within 
the GLEAM model. Using data from four ruminant species, 
we applied a combined method of global and local sensitiv-
ity analysis, using an OAT (One-At-a-Time) design to deter-
mine the sensitivity of all the involved parameters.

2 � Materials and methods.

The methodological framework of this study is based on, 
and fully aligned with, IPCC guidelines. We used GLEAM 
3.0 (FAO 2022a), which incorporates the updated 2019 
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guidelines. However, its method for estimating nitrous oxide 
emissions is not fully in line with the IPCC methodology. To 
ensure alignment, the nitrous oxide component was adapted 
from GLEAM 2.0 (FAO 2016), which remains consistent 
with IPCC. In addition, the emission factors were updated 
according to the 2019 IPCC revisions. This approach allows 
the analysis to remain comparable with models based on the 
IPCC methodology.

The sensitivity analysis was performed using GLEAMS’s 
global dataset from four ruminant species (cattle, buffalo, 
sheep and goats) (FAO 2022b), which is structured by pro-
duction orientation and livestock production systems (see 
Appendix A for the list of the production systems). How-
ever, the sensitivity results are presented at the animal spe-
cies level, as the IPCC guidelines estimate emissions at this 
scale, requiring a process of data aggregation. This paper 
includes numerous abbreviations for the parameters and 
emission factors analysed. For clarity, all abbreviations used 
throughout the manuscript are summarized in Table 1.

2.1 � GLEAM model

GLEAM is structured into six sequential modules (FAO 
2022a). The first, the herd module, categorizes the animal 
population into cohorts required by the IPCC to estimate 
emissions with a Tier 2 approach (see Appendix B for a list 
of the cohorts generated by GLEAM). It also provides addi-
tional outputs, such as average animal weight and growth 
rate. The second, the feed ratio and intake module, calcu-
lates animal energy requirements and estimates feed intake 
based on diet composition, also determining the nutritional 
composition of the feed ratio. The third, the animal emis-
sions module, estimates emissions from animal produc-
tion, including methane and nitrous oxide emissions from 
enteric fermentation and manure management. The fourth, 
the manure module, quantifies the amount of manure-nitro-
gen applied to crops after storage, or deposited on pastures 
by grazing animals. The fifth, the feed emissions module, 
assesses emissions from feed production, as carbon dioxide 
from energy consumption, methane from rice cultivation and 
nitrous oxide from nitrogen inputs to soils, including the 
manure-nitrogen calculated by the manure module. Finally, 
the allocation module distributes emissions among co-prod-
ucts generated throughout the supply chain.

This study evaluates the sensitivity of parameters asso-
ciated with the animal emission module, which relies on 
outputs from the feed ratio and intake module. A total of 
92 parameters, including inputs and emission factors, were 
identified across these two modules. However, some of these 
parameters also influence the herd module. To account for 
this, equations from the herd module that include these 
parameters were integrated, while fixed values, derived 
from the average of global datasets used in the analysis, were 

applied to the remaining parameters. The integration of the 
herd equations enabled the estimation of changes to the pop-
ulation structure in response to variation in input parameters, 
which were used to calculate a weighted average index to 
assess sensitivity at animal level. Additionally, since manure 
deposited on pasture is part of the manure management sys-
tems, the amount of manure-nitrogen on grassland, as esti-
mated by the manure module, was integrated with emission 
factors from IPCC to calculate corresponding nitrous oxide 
emissions and evaluate the impact of variations in the frac-
tion of this manure management system.

Figure 1 illustrates the structure of the GLEAM modules, 
Table 2. presents the processes and equations adopted from 
GLEAM, Table 3 details the average fixed values assigned 
to herd module parameters not included in the sensitivity 
analysis, and Fig. 2 illustrates the methodological process 
implemented in our study.

The model estimates four types of animal emissions: 
methane from enteric fermentation (CH4_E), methane from 
manure (CH4_M), nitrous oxide from manure management 
systems (N2O_M) and nitrous oxide emitted from manure 
deposited on pastures (N2O_MP). GLEAM applies a Global 
Warming Potential (GWP) factor to convert these emissions 
into CO₂-equivalent, enabling the calculation of total emis-
sions. For this study, we used the GWP values from the AR5 
assessment (FAO 2016): 34 for CH4 and 298 for N2O. This 
allowed for the assessment of the sensitivity of parameters 
and emission factors for each emission type, as well as their 
sensitivity effect on total emissions.

2.2 � Classification of parameters tested 
in the sensitivity analysis

Due to the heterogeneous nature of the parameters involved, 
a classification was performed, based on the modules of 
GLEAM in which each parameter is used. This classifica-
tion allows for defining a method and performing a sensi-
tivity analysis for parameters with similar characteristics. 
Following the model description documentation (FAO 
2016, 2022a), we established six groups of parameters. 
Herd: parameters related to animal growth and reproduc-
tion, Feed: parameters related to the nutritional values of 
feed, Manure: parameters associated to manure management 
systems. Additionally, we perform a detailed analysis of the 
equations, and we identify parameters whose complete range 
of values is integrated in the model. We group them in a 
fourth group called Global Conditional (See Appendix C).

Additionally, we identified the emission factors and 
coefficients (efc) used in the equations of the different mod-
ules in GLEAM, which were verified and updated follow-
ing methods presented in Chapters 10 and 11 of the IPCC 
2006 and 2019 guidelines (IPCC 2006, 2019). We explored 
these guidelines to extract the variability and uncertainty 
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Table 1   List of acronyms and abbreviations used throughout the paper

Abbreviation Definition Abbreviation Definition

AF Adult females LINT Lambing or kidding interval, period between two 
parturitions

afc Age at first calving litsize Litter size, number of kids per parturition
afkg Average live weight of adult female animals MCF CH4 conversion factor for each mms
AM Adult males MF Meat female animals
amkg Average live weight of adult male animals MFR Ram to ewe (sheep) or does to bucks (goats) ratio
AR5 IPCC Fifth Assessment Report mfskg Live weight of female fattening animals at slaughter
bcr Male to female ratio milk_fat Fat content of milk
BEF Beef systems milk_prot Average fraction of protein in milk
BFL Buffalo milk_yield Daily milk production
bo Max CH4 producing capacity for manure MM Meat male animals
Ca Coefficient of animal’s feeding situation mms Manure managed system (see appendix C)
CH4 Methane emissions mmskg Live weight of male fattening animals at slaughter
CH4_E CH4 from enteric fermentation MXD Mixed systems
CH4_M CH4 from manure N2O Nitrous oxide emissions
ckg Live weight at birth N2O_M N2O from manure management systems
CO2 Carbon dioxide N2O_MP N2O from manure deposited on pastures
CTL Cattle N2Odirect Direct N2O from manure management
diet_di Average digestibility of feed ration N2Oleach: Indirect N2O due to leaching from manure
diet_ge Average gross energy content of feed ration N2Omanure N2O from manure
diet_n_cont Average nitrogen content of feed ration N2Ovol Indirect N2O due to volatilization from manure
DMI Dry matter intake NEact Net energy for activity
DR1 Death rate female calves, lambs or kids NEfibre Net energy for production of fibre
DR1M Death rate male calves NEgrow Net energy for growth
DR2 Death rate other animals than calves, lambs or kids NElact Net energy for milk production
DRY Dairy systems NEmain Net energy for maintenance
ef Emission factor NEpreg Net energy for pregnancy
EF3 ef for direct N2O emissions from mms NEwork Net energy for draught power
EF4 ef for nitrogen volatilization and redeposition Nr Nitrogen retention
EF5 ef for N2O from leaching/runoff Nx Nitrogen excretion
efc emission factors and coefficients OAT One-At-A-Time
FAO Food and Agriculture Organization of United 

Nations
past_man_fra Fraction of managed pastures

fr fertility rate prod_fibre Annual production of fibre by animal
frac_leach_liquid Proportion of manure nitrogen lost due to leaching 

from liquid manure
REG Ratio of net energy available for growth in a diet to 

digestible energy consumed
frac_leach_solid Proportion of manure nitrogen lost due to leaching 

from solid manure
REM Ratio of net energy available in diet for maintenance to 

digestible energy consumed
frac_mlk Fraction of milking adult females in the herd RF Replacement females
FracGasmPast Fraction of nitrogen that volatilizes as NH3 and NOx 

from manure
RFA Replacement females in the midst of first year

FracLeachPast Percentage nitrogen lost due to leaching/runoff from 
manure in pastures

RFB Replacement females in the midst of the second year

FRRF Rate of fertile replacement females RM Replacement males
GE Total gross energy required RMA Replacement males in the midst of first year
GHG Greenhouse emissions RMB Replacement males in the midst of the second year
GLEAM Global Livestock Environmental Assessment Model RRF Replacement rate female animals
GRS Grassland systems RRF Replacement rate female animals
GTS Goats SHP Sheep
GWP Global Warming Potential temp Average temperature Celsius
hours Number of hours of work per day UE Urinary energy as fraction of gross energy
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associated with each efc. With that information, we gener-
ated two additional groups: Variability of emission factors 
and coefficients: efc whose default values were derived from 
a range of values provided in the IPCC guidelines, Uncer-
tainty of emission factors and coefficients: efc for which the 
IPCC guidelines provide uncertainty values (see Appendix 
D).

2.3 � Parameters sample generation

A descriptive statistical assessment was conducted on the 
input parameters on each production system to evaluate 
data variability. Parameters related to feed nutritional val-
ues and manure management systems were identified with 
extremely low or null coefficients of variation, complicating 
the implementation of a sensitivity analysis based on data 
variability (see Appendix E). Moreover, the global datasets 
contain over 5 million records, which presented a major 
computational challenge for the sensitivity analysis process. 
To address this, a sample dataset was generated for each of 
the production systems to facilitate the evaluation of every 
parameter while simultaneously incorporating the complete 
variability of the Global Conditional parameters, whose full 

range is known. In each production system, following the 
sensitivity methodology approach by Pianosi et al. (2016), 
we established one fixed value for each parameter based on 
the characteristics of the parameter group, as described in 
Table 4.

Since our analysis tests the sensitivity of all parameters, 
we assign mean or mode values from other production sys-
tems to fill gaps or missing values. (see Appendix C and D 
for details on methods and values used on each parameter as 
fixed value). To assess sensitivity under all possible model 
conditions, we generated the sample dataset by creating 
unique combinations of global conditional parameters and 
incorporated the fixed values from the herd, feed, manure, 
emission factors and coefficient groups. For temperature, we 
only considered integer values, as GLEAM’s conditions for 
this parameter are based on integer inputs. This approach 
reduced the size of the sample dataset and improved pro-
cessing time.

2.4 � Range definition for each parameter

To conduct the variation of one parameter at a time, a range 
was established on each parameter group. For the Herd 

Table 1   (continued)

Abbreviation Definition Abbreviation Definition

IPCC Intergovernmental Panel on Climate Change Vs Daily volatile solids excreted by animal
lact Duration of lactation period ym Percentage of gross energy converted to CH4

Fig. 1   GLEAM model structure 
adapted from FAO (2016, 
2022a). The numbers represent 
the module number and calcula-
tion sequence. Modules 1, 2, 3, 
and 4 are part of this research
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Table 2   Processes and subprocesses in GLEAM to estimate direct emissions

1  Source from GLEAM 2.0, emission coefficients and factors updated to IPCC 2019 guidelines

Process: Source from GLEAM 3.0

Population proportion:
  BFL, CTL Section 2.1.2
  GTS, SHP Section 2.2.2

Live weight and growth rates:
  BFL, CTL Section 2.1.2.5
  GTS, SHP Section 2.2.2.4

Energy requirement – GE:
   NEmain: Net energy for maintenance  Equation 3.29
   NEact: Net energy for activity Equation 3.30–3.31
   NEgrow: Net energy for growth  Equation 3.32–3.33
   NElact: Net energy for milk production  Equation 3.34–3.35
   NEwork: Net energy for draught power  Equation 3.36
   NEfibre: Net energy for production of fibre Equation 3.37
   NEpreg: Net energy for pregnancy Equation 3.38–3.39
   REM: Ratio of net energy available in diet for maintenance to     digestible energy consumed  Equation 3.40
   REG: Ratio of net energy available for growth in a diet to digestible energy consumed  Equation 3.41
   GE: Total gross energy  Equation 3.42
   Dry matter intake estimation – DMI  Equation 3.53

Methane from enteric fermentation
   Ym: Percentage of gross energy converted to methane  Table 4.6
   CH4enteric Equation 4.1

Methane from manure
   Vs: daily volatile solids excreted by animal  Equation 4.3
   MCF: methane conversion factor for each manure management Table 4.131

   CH4manure Equation 4.2
Nitrogen excretion – Nx Equation 4.6
Nitrogen retention – Nr Equation 4.7
Nitrogen oxide from manure management - N2Omanure:
   N2Odirect: Direct nitrous oxide from manure management Equation 4.101

   N2Ovol: Indirect nitrous oxide due to volatilization from manure management Equation 4.111

   N2Oleach: Indirect nitrous oxide due to leaching from manure management Equation 4.121

Nitrogen oxide from manure in pastures - N2Omanure pasture Equation 6.5a1

Table 3   Fixed values used to estimate population proportion per pixel in the herd module for the parameters not included in the sensitivity 
analysis

Parameter: Definition Animal Unit Fixed value

AF Adult females BFL, CTL, GTS, SHP Number 100
DR1 Death rate female calves BFL, CTL percentage 11.40
DR1 Death rate of lambs or kids GTS, SHP percentage 18.00
DR1M Death rate male calves BFL, CTL percentage 11.40
DR2 Death rate other animals than calves BFL, CTL percentage 4.70
DR2 Death rate other animals than lambs or kids GTS, SHP percentage 8.00
FRRF Rate of fertile replacement females BFL, CTL, GTS, SHP fraction 0.95
LINT Lambing or kidding interval, period between two parturitions GTS, SHP days 240
MFR Ram to ewe (sheep) or does to bucks (goats) ratio GTS, SHP ratio 0.05
RRF Replacement rate female animals BFL, CTL percentage 14
RRF Replacement rate female animals GTS, SHP percentage 28
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and Feed group, where the parameter’s range is unknown, 
a sequence was generated encompassing all possible val-
ues produced by varying between − 20% and + 20% from 
the fixed value, with an increment of 1% in the sequence. 
This percentage range was defined based on uncertainty 
values reported for parameters of these groups. Accord-
ing to IPCC (2006), uncertainty for parameters such as diet 
digestibility and animal weights ranges between 10 and 
30%. To account for potential impacts overlooked when the 

selected range is insufficient (Norton 2015), additional limits 
(± 10% and ± 50%) were tested, but no notable changes were 
observed in the sensitivity results. Additionally, parameters 
expressed as fractions were adjusted to a maximum value of 
1 when the selected range exceeded this limit.

For Manure group parameters which have a defined range 
from 0 to 1, the range was established as (0, 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1). However, to maintain the condi-
tion that all manure management systems must sum up to 

Fig. 2   Process to estimate 
sensitivity index of the variation 
of one-by-one input parameter 
to determine its impact on the 
estimation of greenhouse gas 
emissions using GLEAM

Table 4   Description of the methods used to define a fixed value per parameter, based on the characteristics of the parameter group

Parameter group Method for the fixed value Notes

herd Mean value per cohort Mean or mode values from other production systems are assigned in 
case of gaps or missing values. Our approach was to avoid having 
zeros as fixed values for the parameters

feed Mean value per cohort Mean or mode values from other production systems are assigned in 
case of gaps or missing values. Our approach was to avoid having 
zeros as fixed values for the parameters

manure Fraction calculated by dividing 1 by the total num-
ber of manure systems per animal

Parameters in this group refer to manure management systems, 
which represents the share of manure on each system. In GLEAM 
these systems are expressed in fractions that must sum to 1 when 
combined

emission factors 
and coefficients

Default values from IPCC or method from GLEAM Emission factors are derived from IPCC guidelines, except for the 
coefficient corresponding to animals feeding situation (Ca), emis-
sion factor for direct N2O from manure (EF3) and the methane 
conversion factor from manure (Mcf) which are calculated using 
adapted methods described in GLEAM documentation

Global Conditional All unique records The data for these parameters are spatially structured. The unique 
records were extracted from each production system
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1, a subtraction process was implemented (1—parameter), 
followed by dividing this result by the remaining manure 
management systems presented in the sample. For param-
eters in the Global Conditional group where the complete 
range of the parameter is known, all values were considered 
in the range. For the Emission factor and coefficient group, 
a range of 10 values was generated between the identified 
maximum and minimum limits for each parameter, including 
the fixed value assigned to the parameter.

By using specific ranges adapted to the characteristics 
of each parameter and by combining them with all possi-
ble conditional parameters, we addressed the limitations of 
parameter interactions under all possible conditions, which 
cannot be accounted for in a simple sensitivity analysis, as 
highlighted by Groen et al. (2016).

2.5 � Sensitivity analysis technique

A One-At-A-Time (OAT) variation technique was imple-
mented for all parameters, emission factors and coefficients. 
OAT is a simplistic technique that isolates the effect of indi-
vidual parameters by varying one parameter at a time while 
keeping all other parameters fixed (Hamby 1994). This 
method is widely used in sensitivity analysis for models 
based on life cycle assessments (Groen et al. 2016). The 
OAT process was automated using R software, allowing the 
integration of the GLEAM model code in the process.

The sensitivity analysis method developed for this study 
is based on the standardized regression technique described 
by Hamby (1994) and Saltelli et al. (2008). This approach 
requires standardizing parameters’ units before performing 
regression analysis to eliminate the unit-dependent effect. 
To achieve this, parameter variability was expressed as a 
percentage relative to the fixed value, while greenhouse gas 
emissions were expressed as a percentage relative to the 
emissions estimated from the fixed value. For parameters in 
the global conditional group, we standardized relative to the 
minimum value from the range, and specifically for tempera-
ture, we standardized relative to the mean temperature value.

The sensitivity of each parameter (sensitivity index) was 
calculated using the regression coefficient between the vari-
ability in percentage of the parameter and the variability in 
percentage of GHG emissions. This approach allowed for the 
observation of the correlation between the parameter and the 
type of emission, showing whether it is positive or negative, 
and the magnitude of change in GHG emissions after a one 
percent change in a given parameter from their fixed value. 
A sensitivity index close to zero indicates low sensitivity.

To generate a combined sensitivity index that includes all 
cohorts, we used a weighted average sensitivity index, uti-
lizing the population proportion calculated for each cohort. 
For this paper, the sensitivity index is presented per ani-
mal. Therefore, we combine all production systems for each 

species before performing the regression analysis. Lastly, 
the coefficient of determination (R-square) was computed 
for each association used to calculate the sensitivity indexes 
to determine the linearity of our modelling. To visualize the 
results, heat maps were generated, which allowed for the dis-
tinction of four categories based on the parameter absolute 
index: high (index > 1), moderate (0.2–1), low (0.10–0.2), 
and extremely low (< 0.1). We calculated sensitivity per 
parameter for each of the four types of animal emissions, as 
well as for total emissions, which are the sum of all emis-
sion types.

3 � Results

3.1 � Population proportion

The population proportion was calculated using the herd 
module by varying only the parameters identified for esti-
mating animal emissions, while keeping the rest of the 
parameters fixed, as detailed in Sect. 2.1. The cohort pro-
portion remained relatively stable despite parameter varia-
tion. Since an average weight was used to calculate sensitiv-
ity at the animal level, the cohort proportions reflected the 
influence of each cohort on parameter sensitivity. The Adult 
females (AF) cohort was the primary contributor, with the 
greatest proportion across all species, ranging between 0.3 
and 0.5. Meat animals (MM and MF), replacement females 
(RF), and replacement females in the first year (RFA) also 
contributed notably, with proportions varying between 0.1 
and 0.3. The remaining cohorts maintained a proportion 
below 0.1 (see appendix F).

3.2 � Sensitivity results

3.2.1 � Influential parameters on animal emissions by animal 
species

Figures 3 and 4 present the most influential parameters 
for each type of animal emission, highlighting those with 
moderate to high sensitivity across all emission types (See 
Appendix G for a scheme illustrating the role of influential 
parameters for total emissions in the GLEAM processes and 
subprocesses).

For parameters with negative correlation, the results iden-
tified three as the most influential across all species. Diet 
digestibility (diet_di) stood out as the parameter with the 
greatest influence over all types of direct emissions, with 
absolute values exceeding 2.50. This parameter showed the 
greatest sensitivity among all parameters tested in this study, 
with values being 50% greater than the next most influential 
parameter.
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The second most influential parameter with a negative 
correlation, except for methane from enteric fermentation, 
was diet gross energy (diet_ge). Emissions were highly 
sensitive to this parameter, with absolute sensitivity values 
exceeding 1. The third parameter that stood out among those 
with a negative correlation was age at first calving (afc). 
Emissions showed moderate sensitivity to this parameter.

For parameters with positive correlation, total emissions 
did not exhibit high sensitivity to any parameter. However, 
they showed moderate sensitivity to three parameters: the 
urinary energy as a fraction of gross energy (UE) and the 
weight of adult females (afkg), both with sensitivity indexes 
close to 0.4. Additionally, in goats and sheep, total emis-
sions showed moderate sensitivity to the maximum methane 
producing capacity of manure (Bo) and the weight of adult 
males (amkg), with sensitivity indexes close to 0.2 (Fig. 3).

Methane from enteric fermentation did not show high 
sensitivity to parameters with positive correlation. The only 
influential parameter with this type of correlation, but with 
moderate sensitivity, was the weight of adult females (afkg), 
with indexes close to 0.5 across all species (Fig. 4).

For methane emissions from manure, five parameters 
stood out as influential with positive correlation. These 
emissions were highly sensitive to the urinary energy as a 
fraction of gross energy (UE) and the maximum methane 
producing capacity of manure (Bo), both with sensitivity 
indexes exceeding 1. Additionally, these emissions showed 
moderate sensitivity to the weight of adult females (afkg), 
the proportion of manure managed as a lagoon (mmslagoon), 
and its methane conversion factor (Mcflagoon), each with 
sensitivity indexes ranging between 0.3 and 0.5 (Fig. 4).

Influential parameters with positive correlation to nitrous 
oxide emissions included two with high sensitivity: the 
nitrogen content of the diet (diet_n_content) and the manure 
deposited on pasture (mmspasture), both with indexes 
exceeding 1. These emissions also exhibited moderate 

sensitivity to the weight of adult animals (afkg and amkg), 
the emission factors for nitrogen volatilization and redeposi-
tion (EF4), and the manure managed as dry lot (mmsdrylot) 
and deep litter (mmsdeeplitt), along with their correspond-
ing emission factors for direct N2O emissions from manure 
(EF3drtylot and Ef3deeplitt). Additionally, for nitrous oxide 
emissions specifically from manure in pasture, the emission 
factor for N2O from leaching (EF5), the emission factor for 
direct N2O emissions from manure in pastures (EF3past), 
the percentage nitrogen lost due to leaching from manure in 
pastures (FracLeachpast) and the fraction of nitrogen that 
volatilizes from manure in pastures (FracGasmpast), stood 
out as influential, showing moderate sensitivity (Fig. 4).

3.2.2 � Sensitivity analysis of the herd group parameter

In the herd group, none of the parameters exhibited high 
sensitivity in relation to any of the animal emissions. Two 
parameters exhibited moderate sensitivity across all spe-
cies. Animal emissions showed moderate sensitivity with 
a positive correlation to the weight of adult females (afkg), 
with indexes around 0.4. In contrast, emissions demonstrated 
moderate sensitivity with a negative correlation to the age 
at first calving (afc), with indexes ranging between − 0.12 
and − 0.59 for methane and total emissions.

Parameters with low sensitivity and positive correlation 
(sensitivity indexes between 0.10 and 0.20) included adult 
male weight (amkg) and weights of fattening animals at 
slaughter (mmskg and mfskg) across all species and milk 
yield in cattle. Specifically for nitrous oxide emissions, 
parameters with low sensitivity included the live weight at 
birth (ckg) in sheep and goats. In contrast, nitrous oxide 
emissions showed low sensitivity with a negative correlation 
to the age at first calving (afc) across all species and to milk 
protein content in cattle.

Fig. 3   Most influential parameters (sensitivity index ≥ 0.2) for total emissions (Total) in the GLEAM model for the ruminant species. Positive 
correlations are represented in red and negative correlations in green. The intensity of the colours indicates the strength of the sensitivity value
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Finally, parameters such as fertility rate (fr), litter size 
(litsize), number of hours of work by the animals (hours), 
fraction of managed pastures (past_man_fra), production 
of fibre (prod_fibre), male to female ratio (bcr) and lacta-
tion duration (lact) demonstrated extremely low sensitivity 
(SI integer value < 0.10) across all species and had minimal 
impact on the variability of daily emissions in this study 
(see Appendix H).

3.2.3 � Sensitivity analysis of the feed group parameters

For the group of parameters associated with feed character-
istics, all animal emissions were found to be highly sensi-
tive to diet digestibility (diet_di), with a negative correlation 
observed in all species. Similarly, emissions from manure 
(CH4_M, N2O_M, and N2O_MP) showed high sensitivity 
to diet gross energy (diet_ge), with a negative correlation 
across all species. In contrast, only nitrous oxide emissions 
exhibited high sensitivity with a positive correlation to the 

nitrogen content of the diet (diet_n_content) in all species 
(see Appendix I).

3.2.4 � Sensitivity analysis of the manure group parameters.

The parameters in the manure group represent the impact 
on animal emissions when one manure management system 
increases while the rest decrease. For all the parameters in 
this group, it was important to explore the sensitivity analysis 
of each individual gas to determine if there was an amplifica-
tion or attenuation of the total emission index. Some manure 
systems could have a positive relationship with methane 
production and a negative relationship with nitrous oxide, 
affecting the sensitivity index of total emissions.

Methane emissions from enteric fermentation (CH4_E) 
showed no sensitivity to any manure management systems, 
except for manure in pastures (mmspasture). This parameter 
exhibited extremely low sensitivity with a positive correla-
tion (maximum index of 0.03). The slight sensitivity was due 

Fig. 4   Most influential parameters (sensitivity index ≥ 0.1) in the 
GLEAM model for the ruminant species, per type of direct emis-
sion: methane from enteric fermentation (CH4_E) and from manure 
(CH4_M), nitrous oxide from manure management systems (N2O_M) 

and from manure in pastures (N2O_MP). Positive correlations are 
represented in red and negative correlations in green. The intensity of 
the colours indicates the strength of the sensitivity value
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to its role in calculating energy for activity, which affected 
dry matter intake and methane emissions.

Regarding methane emissions from manure (CH4_M), 
these emissions showed moderate sensitivity with a posi-
tive correlation to manure stored as lagoon (mmslagoon) 
across all species, with a sensitivity index of approximately 
0.40. The remaining manure systems exhibited low to very 
low sensitivity (absolute index < 0.13). Two parameters, 
mmsliqcrust and mmsbiogas, showed no linearity in the 
calculation of their sensitivity index, with R2 values lower 
than 0.7.

Nitrous oxide emissions from manure (N2O_M) exhib-
ited low to moderate sensitivity with a positive correla-
tion (indexes between 0.15 and 0.23) to deep litter systems 
(mmsdeeplitt) in cattle and dry lot systems (mmsdrylot) in 
buffalo, goats, and sheep. For all other manure systems, 
these emissions showed low to very low sensitivity (abso-
lute index < 0.10).

Nitrous oxide emissions from manure in pastures 
(N2O_MP) were found to be highly sensitive to manure 
deposited on pasture (mmspasture), exhibiting a positive 
correlation with a sensitivity index of approximately 1.15. 
Since GLEAM calculates nitrous oxide emissions from this 
manure system independently of other sources, mmspasture 
stood out as the only parameter with a high positive cor-
relation with this greenhouse gas. In contrast, other manure 
management practices showed low to very low sensitivity 
with a negative correlation (see Appendix J).

3.2.5 � Sensitivity analysis of the global conditional group 
parameters

The global conditional parameters included those that are 
spatially integrated within the GLEAM model and served as 
conditional factors in certain processes. All records of these 
parameters were used in the sensitivity analysis. Parameters 
in this group showed extreme low to no influence on meth-
ane from enteric fermentation (CH4_E) and nitrous oxide 
in all species.

Methane emissions from manure (CH4_M) and total 
emissions were found to be sensitive to the maximum meth-
ane producing capacity of manure (Bo) in cattle, sheep, and 
goats. CH4_M exhibited high sensitivity with a positive cor-
relation (sensitivity index = 1), while total emissions showed 
low to moderate sensitivity with a positive correlation (sen-
sitivity index ranging from 0.15 to 0.22). The remaining 
parameters showed extremely low to no sensitivity.

The maximum methane producing capacity of manure 
(Bo) in buffalo and temperature in cattle did not demonstrate 
a linear relationship that could be explained by the sensitiv-
ity methods used in this study, as described in the descriptive 
statistics of parameters section (see Appendix K).

3.2.6 � Sensitivity analysis of the emission factors 
and coefficients (efc) group

The sensitivity analysis of the emission factors and coeffi-
cients showed that all these parameters had a positive cor-
relation with animal emissions. Total emissions were highly 
sensitive to the urinary energy as a fraction of gross energy 
(UE), with sensitivity indexes greater than 0.33 in all species. 
For the rest of the parameters, these emissions exhibited low 
to no sensitivity.

Methane emissions from enteric fermentation (CH4_E) 
showed very low to no sensitivity to any emission factor 
included in this study. The gross energy converted to meth-
ane (ym), which directly influences methane emissions, was 
calculated based on diet digestibility in GLEAM. There-
fore, their influence was accounted for within the sensitivity 
analysis of diet digestibility.

Methane emissions from manure (CH4_M) were highly 
sensitive to the urinary energy as a fraction of gross energy 
(UE), with sensitivity indexes exceeding 2.20. Addition-
ally, these emissions showed moderate sensitivity to the 
methane conversion factor for lagoons (Mcflagoon), with 
indexes ranging from 0.35 to 0.56 across all species, and 
exhibited low sensitivity (indexes between 0.05 and 0.20) 
to the methane conversion factors of manure as liquid crust 
(Mcfliqcrust), as liquid (Mcfliquid and Mcliqoth), as pit 2 
(Mcfpit2), as deep litter (Mcfdeeplitt), and as biogas (Mcf-
biogas). All remaining emission factors had extremely low 
or no influence on methane emissions from manure.

Nitrous oxide emissions from manure (N2O_M) exhib-
ited moderate sensitivity (indexes between 0.20 and 0.39) 
to emission factors for nitrogen volatilization and redepo-
sition (EF4), to emission factors for direct N2O emissions 
from manure in dry lots (EF3drylot) and from deep litter 
(EF3deeplitt). Additionally, these emissions showed low 
sensitivity (indexes between 0.10 and 0.20) to the emis-
sion factors for direct N2O emissions from manure as solid 
(EF3solid) and the emission factor for N2O from leaching 
(EF5). All other emission factors demonstrated very low to 
zero sensitivity indexes for these emissions.

Nitrous oxide from manure in pastures (N2O_MP) was 
found to be moderately sensitive to emission factors for 
nitrogen volatilization and redeposition (EF4), emission 
factor for N2O from leaching (EF5), emission factors for 
direct N2O emissions from manure in pasture (EF3past), 
the percentage nitrogen lost due to leaching from manure in 
pastures (FracLeachpast) and the fraction of nitrogen that 
volatilizes from manure in pastures (FracGasmpast), with 
sensitivity indexes between 0.24 and 0.46 across all species. 
The rest of parameters showed extremely low to zero sen-
sitivity for this type of emissions (see Appendix L and M).
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3.3 � Descriptive statistics of parameters and results

The coefficient of determination between parameters and 
greenhouse gas emission demonstrated linearity in 70 out 
of 92 parameters, with R2 exceeding 0.70. This indicated 
that our sensitivity methodology, using regression coeffi-
cient, was robust enough to predict the sensitivity for most 
influential parameters, as suggested by (Saltelli et al. 2008). 
The nonlinearity of the remaining parameters was associated 

with location-specific conditional factors within certain 
cohorts (see Table 5). For these parameters, an alternative 
sensitivity method should be considered.

The distribution analysis of estimated greenhouse gas 
emissions resulting from parameter variation highlighted 
the proportional contribution of each emission type to total 
emissions, as total emissions represent the sum of the four 
greenhouse gas sources. Methane was the primary con-
tributor across all ruminant species. Specifically, methane 

Table 5   Parameters with an R-square lower than 0.7 per type of ani-
mal emission, animal species and cohort. For these parameters, the 
sensitivity analysis method is not reliable. This suggests that the vari-
ability in emissions is not well explained by changes in these param-

eters. Animal emissions: methane from enteric fermentation (CH4_E) 
and from manure (CH4_M), nitrous oxide from manure management 
systems (N2O_M) and from manure in pastures (N2O_MP), and their 
sum in total emissions (Total)

Parameter: Animal Cohort Type of animal emission

afc Goats MF, MM N2O_M, N2O_MP
afkg Goats MF N2O_M, N2O_MP
amkg Goats MM, RMB N2O_M, N2O_MP
bcr Buffalo, Cattle AM CH4_E, CH4_M, N2O_M, N2O_MP, Total
bo Buffalo All CH4_E, CH4_M, N2O_M, N2O_MP, Total
diet_ge Buffalo MM, RF, RM CH4_E
diet_ge Cattle AF CH4_E
diet_ge Goats AF, MM CH4_E
diet_ge Sheep AM CH4_E
fracGasmaerproc Goats, Sheep All CH4_E, CH4_M, N2O_M, N2O_MP, Total
fracGasmbiogas Buffalo, Cattle, Goats, Sheep All CH4_E, CH4_M, N2O_M, N2O_MP, Total
fracGasmburned Cattle All CH4_E, CH4_M, N2O_M, N2O_MP, Total
fracGasmliqcrust Goats, Sheep All CH4_E, CH4_M, N2O_M, N2O_MP, Total
fracGasmliquid Goats, Sheep All CH4_E, CH4_M, N2O_M, N2O_MP, Total
fracGasmpasture Buffalo, Cattle, Goats, Sheep All CH4_E, CH4_M, N2O_M, N2O_MP, Total
hours Buffalo, Cattle AM CH4_E, CH4_M, N2O_M, N2O_MP, Total
mcfburned Cattle All CH4_M, Total
mcfdaily Cattle All Total
milk_prot Goats AF N2O_M, N2O_MP, Total
milk_yield Goats AF CH4_E, CH4_M, N2O_M, N2O_MP, Total
mmsbiogas Buffalo All CH4_M
mmsbiogas Cattle All CH4_M, Total
mmsbiogas Goats, Sheep All CH4_M
mmsbiogas Goats, Sheep MF, MM Total
mmscompost Cattle, Goats All N2O_M
mmscompost Sheep AF, MF, MM N2O_M
mmsdrylot Buffalo, Cattle, Goats, Sheep All Total
mmsliqcrust Buffalo, Cattle, Goats, Sheep All CH4_M, Total
mmsliqoth Cattle All Total
mmsliquid Buffalo, Goats, Sheep All CH4_M, Total
mmsliquid Cattle All Total
mmspasture Buffalo, Cattle All Total
mmspasture Goats AF, AM, RFB, RMB Total
mmspasture Sheep RFA, RFB, RMA, RMB Total
mmspit2 Cattle All Total
temp Buffalo, Cattle All CH4_M, Total
temp Goats, Sheep All Total
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from enteric fermentation accounted for nearly 70% of 
total emissions, followed by methane from manure, which 
contributed approximately 15% to 25%. Nitrous oxide rep-
resented the remaining 5% to 15% of total emissions (see 
Appendix N).

4 � Discussion

The suggested sensitivity method implemented in 
GLEAM, which calculates cumulative sensitivity per ani-
mal by combining sensitivities across cohorts and pro-
duction systems, successfully predicted the influence of 
70 parameters involved in the model. This method was 
particularly effective for evaluating emission factors and 
parameters within the herd and feed groups, which are 
related to animal growth, reproduction, and feed composi-
tion (see Appendix H and I). However, this study did not 
account for the interactions between parameters. Its aim is 
to assess the individual impact of each parameter and be 
able to distinguish between influential and non-influential 
ones.

The results highlighted three parameters, with high and 
moderate sensitivity (absolute index > 0.20), that had a 
strong impact on reducing animal emissions (Fig. 3): diet 
digestibility (diet_di), gross energy of the diet (diet_ge) 
and age at first calving (afc).

In the context of animal emissions, improving diet 
digestibility is one of the most effective strategies for 
reducing greenhouse gas emissions, as shown by the 
results of the sensitivity analysis. Diet digestibility 
emerged as the most sensitive parameter in GLEAM’s 
animal emissions estimates, with a sensitivity index close 
to − 3. This indicates that a 1% increase in diet digestibil-
ity results in an approximate 3% reduction in total animal 
emissions (Fig. 3). In addition, this parameter showed the 
same strong effect across all four sources of animal emis-
sions. For methane and nitrous oxide emissions (Fig. 4), 
the absolute index value of this parameter was at least 
1 percent greater than the following influential param-
eter. Furthermore, for total emissions, it was at least four 
times greater than the second most influential parameter. 
Numerous studies had identified the diet quality, and spe-
cifically the improvement of digestibility, as a technique 
with medium to high potential for mitigating greenhouse 
gas emissions, mainly methane emissions (Haque 2018), 
which can be reduced by 10 to 30% compared to baseline 
scenarios (Gerber et al. 2013; Mottet et al. 2017; Grossi 
et al. 2019). This effect is primarily due to the impact of 
diet digestibility on the energy available for maintenance 
(REM) and growth (REG), which directly influences the 
total energy requirements.

Additionally, diet digestibility plays a key role in meth-
ane emission factors (Liu and Liu 2018), particularly on 
the calculation of the percentage of gross energy to meth-
ane (ym) and the daily volatile solids excreted (Vs), both 
of which directly influence methane production. How-
ever, changing diet composition could impact processes 
that simultaneously influence the increase of emissions, 
potentially offsetting the mitigating effect. For instance, 
O’Mara et al. (2008) noted that while nutritional strate-
gies may contribute to mitigating animal emissions, they 
could also influence emissions upstream, such as the ones 
associated with the production, processing and transport 
of feed. Similarly, Gerber et al. (2013) highlighted that the 
production of improved feed may be associated with land 
use change processes, potentially resulting in additional 
total emissions from the production chain.

In addition to diet digestibility, improving the gross 
energy content of the diet and reducing the age at first calv-
ing can also contribute to lowering greenhouse gas emis-
sions from livestock. The gross energy of the diet exhib-
ited high sensitivity, with an index near − 1, to methane 
and nitrous oxide emissions from manure, while age at first 
calving showed moderate sensitivity, with an index close 
to − 0.3, to all animal emissions (Fig. 4). These parameters 
are inversely correlated with dry matter intake and daily 
weight gain, respectively, which are positively correlated 
to greater animal emissions from enteric fermentation 
and manure management (Min et al. 2022). Specifically, a 
reduction in age at first calving is associated in the GLEAM 
model with animals reaching the adult stage at a younger 
age. The model adjusts and distributes the adult weight over 
a shorter period, resulting in greater daily energy require-
ments and, consequently, greater dry matter intake to meet 
those requirements. This highlights an additional factor to 
consider, particularly for slaughter animals, whose life-
time emissions decrease as they reach slaughter weight in a 
shorter time, a trend that can be observed in a full production 
system analysis (O’Mara et al. 2008).

In addition, three parameters were found to be highly 
influential for the increment of animal emissions (Fig. 3): the 
weight of adult females (afkg), the urinary energy as a frac-
tion of gross energy (UE) and the maximum methane pro-
ducing capacity from manure (Bo). All of them have mod-
erate sensitivity between 0.20 and 0.50 to total emissions.

Among the input parameters evaluated in this study, ani-
mal weight, particularly the weight of adult females (afkg), 
emerged as the most influential parameter of increased 
greenhouse gas emissions. Heavier animals have greater 
maintenance and production energy requirements, which 
translates into higher feed intake and, consequently, ele-
vated emissions from both enteric fermentation and manure 
management. This reinforces the importance of managing 
herd composition and size when aiming to reduce overall 
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emissions in livestock systems. The weight of adult females 
stands out as the most influential parameter within the herd 
group, with a moderate sensitivity index close to 0.4 (see 
Appendix H). This indicates that a 1% change in adult female 
weight leads to an average increase of approximately 0.4% in 
any type of animal emissions. This parameter plays a direct 
role in estimating live weight per cohort and daily weight 
gain, which are critical inputs influencing energy require-
ments for growth, maintenance, and activity (see Appen-
dix G). Additionally, in cattle, milk yield is identified as an 
influential parameter, particularly for methane emissions, 
as it is directly associated with the energy requirements for 
lactation. These energy requirements determine dry mat-
ter intake, which subsequently exhibit a positive correla-
tion with methane and nitrous oxide emissions, especially 
in dairy systems (Jonker et al. 2016; Wolf et al. 2017; Star-
smore et al. 2024).

The prominence of the weight of adult females over other 
parameters associated with animal weight can be attributed 
to the cumulative sensitivity method applied, specifically 
since this parameter is related to adult females (AF) cohort, 
whose population proportion represents almost 40% among 
all cohorts (see Appendix F).

The UE coefficient, which is the energy lost by ruminants 
in the urine, is the most influential parameter with positive 
correlation within the emission factors group. It contributes 
to calculating daily volatile solids excretion (Vs), which have 
a direct positive correlation with methane emissions from 
manure (Mangino et al. 2001). The IPCC (2019) guidelines 
recommend a default value of 0.04 for this parameter; how-
ever, the use of country-specific values is recommended. 
Although the estimation of UE is challenging, as it requires 
combustion-based analysis of urine samples, it can be esti-
mated based on nitrogen content due to its direct relation-
ship with it. Nitrogen content is a more commonly measured 
parameter in urine (Street et al. 1964; Morris et al. 2021).

The second most influential parameter from the emission 
factor group is the maximum methane-producing capacity 
from manure (Bo). This parameter is used to calculate the 
cumulative methane conversion factor across manure man-
agement systems and has a positive impact on methane emis-
sions from manure (Mangino et al. 2001).

Additionally, the results by type of animal emission 
showed that the nitrogen content of the diet (diet_n_cont) 
is highly influential for nitrous oxide emissions, with a 
sensitivity index close to 1; it indicates a linear relation-
ship with these emissions, as nitrogen excretion is directly 
linked to nitrogen availability in the diet. This is particularly 
important for monitoring the increase in nitrogen emissions 
resulting from high-protein diets and for evaluating potential 
mitigation through manure management practices (Külling 
et al. 2001; Oenema et al. 2005).

The sensitivity of manure management systems illustrates 
the impact on emissions when manure fraction increases in 
one system while decreasing in others (see Appendix J). In 
contrast, the sensitivity of the emission factors for methane 
from manure reflects the specific impact of modifying a sin-
gle system (see Appendix L and M).

In general, manure stored in liquid systems without aero-
bic processes (mmslagoon, mmsliqcrust, mmsliquid, and 
mmspit2) have a notable impact on increasing methane 
emissions from manure, due to their high methane conver-
sion factors. Among these systems, manure stored in lagoons 
(mmslagoon) is the most influential, with a moderate sensi-
tivity index of approximately 0.50. Its methane conversion 
factor is the highest due to longer retention times. These 
factors are primarily influenced by temperature, resulting in 
considerable variability (IPCC 2006; Sommer et al. 2007; 
Opio et al. 2013). However, most of these manure systems 
have a negative correlation with nitrous oxide emissions, due 
to the low emission factor for direct N2O emissions (EF3).

Increasing the proportion of manure managed through 
systems such as solid compost (mmscompost), solid burned 
as fuel (mmsburned), or daily spread (mmsdaily) can help 
reduce emissions from manure. This is mainly due to their 
low methane conversion factors and low emission factors 
for direct N₂O emissions (EF3), as noted in the IPCC guide-
lines, which explains their negative sensitivity in methane 
and nitrous oxide from manure. Moreover, raising their share 
in the overall manure management mix reduces the overall 
share of more emission-intensive systems like liquid storage, 
which are associated with higher methane emissions.

The analysis of emission factors for nitrous oxide emis-
sions highlighted three factors with moderate sensitivity, 
with indexes close to 0.3. These include the emission fac-
tors for direct N2O emissions from manure in deep litter 
(EF3deeplitt), solid dry lot (EF3drylot), and the emission 
factor for nitrogen volatilization and redeposition (EF4) (see 
Appendix L and M).

Focusing specifically on nitrous oxide from manure 
deposited on pastures, five emission factors exhibit mod-
erate sensitivity, with indexes ranging from 0.24 to 0.50. 
Ranked in order of importance, these include: the emission 
factor for direct N2O emissions from manure in pastures 
(EF3past), the emission factor for N2O from leaching (EF5), 
the emission factor for nitrogen volatilization and redeposi-
tion (EF4), the percentage of nitrogen lost due to leaching/
runoff from manure in pastures (FracLeachPast), and the 
fraction of nitrogen that volatilizes as NH₃ and NOx from 
manure in pastures (FracGasmPast).

These results align with previous studies identifying 
influential emission factors based on their uncertainty. Bas-
set-Mens et al. (2009) used uncertainty analysis to assess the 
sensitivity of the same emission factors, ranking EF3, EF4, 
and EF5 in that order of importance for milk production 
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farms in New Zealand. Similarly, Brown et al. (2001) high-
lighted EF3 from manure in pastures as particularly sensi-
tive due to the high nitrogen production compared to other 
manure systems, followed by EF5 for its role in indirect 
nitrous oxide emissions, while considering EF4 insensitive.

Parameters related to manure systems were among the 
most challenging to predict in terms of their sensitivity, 
particularly for methane from manure. Some of these 
parameters exhibited insufficient linearity, with R2 values 
below 0.7, which is the minimum recommendation by Salt-
elli et al. (2008) for applying the sensitivity index based on 
regression coefficients used in this study. This behaviour is 
driven by the cumulative sensitivity methodology utilized 
in this study. In this aspect, a non-cumulative analysis per 
cohort and production system is recommended to perform 
sensitivity from manure parameters.

Additional parameters that exhibited insufficient linear-
ity in specific cohorts include the male to female ratio 
(bcr) and number of hours of work per day (hours). These 
parameters are interdependent in the calculation of energy 
for draught power. In GLEAM, this process starts with a 
minimum value of 0.10 for bcr, making linearity difficult 
to achieve for both parameters. However, their sensitivity 
is extremely low in the cumulative sensitivity analysis, as 
they mainly affect adult males, which constitute a small 
proportion of the population.

A similar issue arises with the age at first calving (afc), 
adult female weight (afkg), and adult male weight (amkg), 
where linearity was lacking in cohorts with low popula-
tion proportions. The methane producing capacity for 
manure (Bo) in buffalo also showed low linearity, primar-
ily because this parameter is represented by a single value 
in the original datasets. Another parameter with insuffi-
cient linearity is temperature, which is used in GLEAM 
for assigning methane conversion factors. These factors 
are calculated between two limits: 10 and 28 degrees Cel-
sius. Outside this range, the limit values are applied, mak-
ing it challenging to use linear regression for sensitivity 
analysis.

The sensitivity analysis of parameters associated with ani-
mal emissions in GLEAM identified several with extremely 
low sensitivity (indexes < 0.10). These include fertility 
rate (fr), number of hours of work per day (hours), male to 
female ratio (bcr), fraction of managed pastures (past_man_
fra), fraction of milking adult females in the herd (frac_mlk), 
lactation period (lact), annual fibre production per animal 
(prod_fibre), litter size (litsize), temperature, most emis-
sion factors associated with non-liquid manure systems, 
proportion of manure nitrogen lost due to leaching in non-
pasture manure systems (frac_leach), milk yield in small 
ruminants, and live weight at birth (ckg) in large ruminants. 
Additionally, the fraction of milk protein (milk_prot) shows 
extremely low sensitivity, except in cattle. While these 

parameters may have limited influence on animal emission 
estimates, some could still impact other emission sources.

The sensitivity analysis in this study was consolidated at 
animal level, requiring an aggregation of cohorts and herds. 
Conducting a sensitivity analysis at the level of individual 
cohorts, herds, or production systems could produce differ-
ent results from those presented here.

Finally, this study focuses on the influence of independent 
parameters on emissions, without accounting for their interactions, 
which could be further explored through uncertainty analysis.

5. Conclusions.
The analysis of each parameter’s influence on animal 

emissions estimation in GLEAM was successfully pre-
dicted and ranked using the sensitivity method proposed 
in this study. The results highlight the strong influence of 
feed quality and age at first calving in reducing emissions, 
while parameters related to animal weight were identified as 
influential to increase emissions. Additionally, emission fac-
tors such as urinary energy (UE) and the maximum methane 
producing capacity of manure (Bo) were found to have the 
greatest impact on increasing emissions as well.

The sensitivity analysis also identified 12 parameters 
from the herd group, three from the conditional parameters, 
and several emission factors associated with specific manure 
systems as having extremely low sensitivity. This distinction 
is crucial for optimizing data collection efforts by prioritiz-
ing parameters that have the greatest impact on results, par-
ticularly when resources are limited.

Furthermore, our methodology identifies the most influ-
ential parameters for individual animal emissions, making 
it particularly useful for studies focused on specific emis-
sion types, supporting potential mitigation strategies. How-
ever, since not all sensitivity indexes can be fully explained 
by this method, we provide a list of parameters for which 
sensitivity should be assessed using alternative sensitivity 
approaches or complemented with a herd-level sensitivity 
analysis. Finally, these findings can contribute to improving 
GLEAM’s algorithms by incorporating default values for 
those with minimal influence.
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