

Investigations on the effect of corrosion on testing data of reinforced concrete beams

Eline Vereecken

Hasselt University, Hasselt, Belgium

Wouter Botte, Robby Caspeele

Ghent University,
Ghent, Belgium

Geert Lombaert

KU Leuven, Leuven, Belgium

Introduction

Introduction

Experimental campaign

Experimental campaign

Beam layout

Length 5 m

Accelerated corrosion

Current: 100 µA/cm²

Salt solution: 5% NaCl

Applied at age of 28 days

Top reinforcement isolated from current

Corrosion duration

Beam 1.1: 330 days \rightarrow 6,2%

Beam 1.2: 63 days \rightarrow 2,7%

Beam 2.1: 285 days → 6,6%

Beam 2.2: 182 days \rightarrow 5,2%

Beam 4.1: 0 days → Reference

Actual corrosion degree

Parts of 20 cm reinforcement bar Cleaned and weighed

Dynamic tests

Reference beam

Dynamic tests

to accelerated corrosion

Beams subjected

Dynamic tests

Static tests

Destructive tests

Actual corrosion degree

Beam 1.2 - 2,7% corrosion

Beam 1.1 – 6,2% corrosion

Mode	28 days	63 days	Rel. Diff. [%]	Rel. Diff. Ref. 63 days [%]
L2	120.97			-1.31
B2	164.70	167.03	1.41	-0.67
T1	204.51	201.27	-1.58	
L3	228.26			-1.15
В3	303.97	304.43	0.15	-1.54
L4	362.75	358.56	-1.16	
•••				

Mode	28 days	330 days	Rel. Diff. [%]	Rel. Diff. Ref. 330 days [%]
L2		103.60		-6.13
B2	169.16	146.33	-13.5	-7.67
T1	202.01	186.57	-7.64	-2.82
L3		202.41		-4.97
В3	306.48	274.17	-10.54	-6.33
L4	363.36	322.05	-11.37	-5.46
•••				

General reduction in frequency BUT not larger than for reference beam.

General reduction in frequency AND larger than for reference beam.

Static tests

4-point bending
Strains between 5 and 15 kN (load in one loading point)

Modelled values = FEM model with input of actual corrosion degree

Reference beam

No reduction in stiffness over time

Static tests

Beam 2.2 – 5,2% corrosion

On average higher strains than for reference BUT difference not exceeding measurement error

Crushing of concrete in compression zone

Higher corrosion degree (beam 1.1) =

- Lower ultimate load
- Lower initial stiffness

Shear failure

Higher corrosion degree (beam 2.1) =

Lower ultimate load

Reference beam: highest initial stiffness

FEM results (beam 1.1)

- Uncorroded = max. capacity
- Max. corrosion degree = best approximation of experiments
- Average corrosion degree ≈ ultimate load of spatial corrosion degree

Conclusions

Dynamic tests

- Reference beam: Reduction in natural frequency over time.
- 5,2% and 6,2% corrosion: Decrease in natural frequencies compared to reference beam at same age.
- **2,7% corrosion**: No influence on natural frequencies compared to reference beam.

Static tests

- Overlap modelled and experimental values (+ uncertainty bounds).
- No clear increase in strain with corrosion degree.

Destructive tests

Influence of corrosion on stiffness and ultimate failure load.

Investigations on the effect of corrosion on testing data of reinforced concrete beams

Eline Vereecken

Hasselt University, Hasselt, Belgium

Wouter Botte, Robby Caspeele

Ghent University,
Ghent, Belgium

Geert Lombaert

KU Leuven, Leuven, Belgium