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Abstract 

Objective

This study investigates the mechanisms behind exercise capacity in adults with 

type 2 diabetes mellitus (T2DM), focusing on central and peripheral components, as 

described by the Fick equation.

Methods

A cross-sectional study of 141 adults with T2DM was conducted, using cardiopulmo-

nary exercise testing, near-infrared spectroscopy (NIRS) and exercise echocardiog-

raphy. Participants with sufficient-quality NIRS data were stratified into tertiles based 

on percentage predicted VO₂peak. Group comparisons and stepwise regression were 

used to examine the contributions of central and peripheral components to VO₂peak.

Results

Sixty-seven participants had insufficient quality NIRS data. Those with lower-quality 

data were more likely to be female (p < 0.001) and had a lower exercise capacity 

(p < 0.001). Among participants with good-quality NIRS data, those in the lowest 

fitness tertile were older (p < 0.01), had a longer diabetes duration (p = 0.04), lower 

eGFR (p < 0.001) and more frequent use of beta-blockers (p = 0.02) and diuretics 

(p = 0.04). Significant differences were observed in peak cardiac output (p < 0.001) 

and NIRS-derived parameters across fitness groups. Multivariate regression 
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identified cardiac output as the strongest predictor of VO₂peak, while peripheral oxy-

gen extraction did not improve model performance.

Conclusion

Cardiac output is the primary determinant of exercise capacity in adults with T2DM. 

This suggests that muscle perfusion may be the main limiting factor in relatively fit 

individuals with T2DM. However, cardiac output and local muscle perfusion are not 

directly equivalent, as mechanical factors, such as intramuscular pressure during 

high-intensity exercise, may prevent maximal perfusion.

Introduction

Adults with type 2 diabetes (T2DM) often present with a significantly reduced 
exercise capacity, demonstrated by a 20–30% lower peak oxygen consumption 
(VO

2
peak) compared to their healthy peers [1,2]. This reduced VO

2
peak is a key 

factor contributing to adverse clinical outcomes and reduced life expectancy in this 
population [3,4]. An improvement in VO

2
peak by one metabolic equivalent of a task 

(MET) is associated with a 14–19% reduction in mortality risk [5,6]. However, exer-
cise capacity varies widely among adults with T2DM [1]. Therefore, a better under-
standing of the underlying mechanisms associated with a lower exercise capacity in 
adults with T2DM is needed to facilitate early preventive interventions.

According to the Fick equation, VO
2
peak is the product of cardiac output (CO) 

and the arteriovenous oxygen difference (a-v O
2
 diff), representing the central and 

peripheral components of oxygen transport, respectively [7]. The central component, 
CO, can be reliably measured using echocardiography, a non-invasive and widely 
used imaging technique [8,9]. However, evidence regarding the role of CO in exer-
cise intolerance among adults with T2DM remains inconclusive. While some studies 
have found no differences in CO, others suggest that impaired CO adjustment during 
exercise is a key factor in reduced exercise capacity [10–12].

Peripheral oxygen extraction by the muscle is also often recognized as a key 
factor contributing to exercise intolerance in adults with T2DM [10,11]. In particular, 
insulin resistance is closely linked to mitochondrial dysfunction, leading to reduced 
respiration rates and impaired substrate utilization [13,14]. Additionally, T2DM is 
associated with increased arterial stiffness and endothelial dysfunction, which may 
compromise both oxygen delivery and extraction in the working muscles [15,16]. 
Near-infrared spectroscopy (NIRS) is a non-invasive method for assessing oxygen- 
dependent absorption of oxygenated hemoglobin (O

2
Hb) and deoxygenated hemo-

globin (HHb) in muscle tissue [17]. NIRS has been successfully used in various  
populations to evaluate muscle oxygenation and microvascular reactivity, making it 
an interesting tool for evaluating the peripheral contribution to exercise capacity in 
adults with T2DM [18–20].

In summary, the underlying mechanisms contributing to reduced exercise capacity 
in adults with T2DM remain inconclusive. Specifically, we aim to determine whether 
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differences in VO
2
peak between people with T2DM are primarily driven by differences in cardiac output, peripheral oxygen 

extraction or a combination of both.

Materials and methods

Study design and participants

This cross-sectional study included baseline data from participants with T2DM enrolled in two exercise intervention trials 
in UZ/KU Leuven (Belgium) (PROTECTION trial-NCT05023538, recruitment between 28/02/2022 and 07/05/2024 | 
PRIORITY trial-NCT04745013, recruitment between 16/09/2021 and 29/03/2024). Both study protocols adhered to the 
Declaration of Helsinki and were approved by the Ethics Committee Research UZ/KU Leuven. Before enrolment, all 
participants provided written informed consent. Eligibility criteria for this study included adults aged 35–80 years with a 
diagnosis of T2DM and on stable pharmacological therapy for at least 4 weeks. Exclusion criteria included participants 
with uncontrolled diabetes (HbA1c > 9%), uncontrolled hypertension, significant arrhythmias, established cardiovascular 
disease, chronic obstructive pulmonary disease, cerebrovascular, renal or peripheral vascular disease and active malig-
nant disease.

Measurements

Clinical characteristics.  Medication use was assessed verbally, while demographic data, smoking status, and 
medical history were collected by a questionnaire and verified in medical records. Fasted blood samples were taken 
to measure fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), hemoglobin (Hb), total cholesterol, low-density 
lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides, creatinine and estimated glomerular 
filtration rate (eGFR). Blood pressure was measured in triplicate (Omron X3, Omron Healthcare, Japan). The percentage 
body fat was measured using the Bodystat Quadscan 4000 (Bodystat Ltd, British Isles). Body height and body mass 
(Seca Alpha 770, Seca, Germany) were measured barefoot and body mass index (BMI) was calculated as body mass 
in kilograms divided by height in meters squared (kg/m2). Waist circumference was measured twice at the level of the 
umbilicus.

Cardiopulmonary exercise test (CPET).  All participants performed a symptom-limited graded cardiopulmonary 
exercise test (CPET) on a cycle ergometer (Vyntus CPX, Duomed, Belgium) until volitional exhaustion (i.e., when 
participants were no longer able to maintain a cycling frequency of 60 rpm), followed by a three-minute recovery period 
of unloaded pedaling. An individualized ramp protocol was applied, starting at either 10, 20 or 50 watts, with respective 
increments of 10, 20 or 25 watts per minute, depending on participants’ physical status. This approach aimed to achieve 
a total test duration between 8–12 minutes [21]. Heart rate and a 12-lead electrocardiogram (CardioSoft ECG, CardioSoft, 
USA) were recorded continuously. Blood pressure (SunTech Tango M2, SunTech Medical, USA) was measured 
automatically every other minute. Additionally, a breath-by-breath analysis of ventilation and pulmonary gas exchange 
parameters was performed (SentrySuite, Duomed, Belgium). Ratings of perceived exertion (Borg scale) at the end of the 
test and reasons for stopping the exercise test (i.e., muscle fatigue and/or shortness of breath) were noted. VO

2
peak was 

determined as the highest average oxygen uptake over 30 seconds.
Near-infrared spectroscopy (NIRS).  Quadriceps muscle oxygenation was measured with a wireless continuous-wave 

three-channel NIRS device (PortaMon, Artinis, The Netherlands) 15 centimeter proximal to the lateral femoral epicondyle 
on the mid-portion of the vastus lateralis muscle of the right leg. The Beer-Lambert Law was used to calculate changes 
in tissue saturation index (TSI), oxygenated hemoglobin (O

2
Hb) and deoxygenated hemoglobin (HHb). Total hemoglobin 

(tHb) was calculated as the sum of O
2
Hb and HHb and hemoglobin difference (Hb

diff
) was calculated as O

2
Hb minus 

HHb. To minimize noise, data were down-sampled to 1 Hz and a moving Gaussian filter with a 3-second window was 
applied. Variations in O

2
Hb, HHb, tHb, and Hb

diff
 were expressed as an average of the 3 optodes and were normalized to 

reflect changes from baseline level. NIRS parameters during exercise were reported at percentages of VO
2
peak. During 
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recovery, NIRS parameters were reported at 10-second intervals for the first minute post-exercise, followed by 30-second 
intervals until the end of the recovery period. To quantify the changes in NIRS parameters, the differences between the 
maximum and minimum values were calculated. In addition, the ΔHHb/ΔtHb ratio was calculated as an index of oxygen 
extraction relative to local blood volume. Only NIRS measurements of sufficient quality were included, as determined by 
the absence of a flat line or TSI fit factors exceeding 99%.

Echocardiography at rest and during exercise.  Resting and exercise echocardiography, combined with CPET 
(CPETecho), were performed using a Vivid E95 ultrasound system (GE Healthcare, USA), one week after the standard 
CPET assessment. The imaging protocol for resting echocardiography included the measurements of conventional 
morphological parameters and CO. CO was calculated using the velocity-time integral of the left ventricular outflow 
tract (LVOT) obtained via pulsed-wave Doppler, along with heart rate and LVOT diameter. The standardized CPETecho 
protocol, previously described in detail [22], was conducted on a semi-supine bicycle ergometer (Ergoline, GmbH, Bitz, 
Germany) using an individualized ramp protocol. Images were acquired before exercise, at low intensity (heart rate 
between 90 and 100 beats per minute, before fusion of E and A waves, or at a respiratory exchange ratio (RER) between 
0.85 and 0.9 in case of chronotropic incompetence), and at peak exercise (RER > 1.05). All analyses were performed 
offline using EchoPAC software (version 204, GE Vingmed, Norway) in accordance with contemporary international 
guidelines [23,24].

Statistical analysis

All statistical analyses were conducted using JASP Statistics (version 0.19.1, JASP Stats, The Netherlands). Participants 
were first categorized into two groups based on NIRS data quality: high-quality and insufficient quality NIRS data. Subse-
quently, participants with high-quality NIRS data were divided into tertiles, based on the predicted VO

2
peak (Gläser et al., 

2010) [25]. Characteristics of participants in the lowest (tertile 1) and highest (tertile 3) fitness group were compared. Data 
normality was assessed through visual inspection of Q-Q plots and histograms. Normally and non-normally distributed 
variables are presented as mean ± standard deviation (SD) and median ± interquartile range (IQR), respectively. Group 
differences were analyzed using an independent t-test (normally distributed data) or a Mann-Whitney U test (non-normally 
distributed data). To evaluate the potential confounding effect of adipose tissue on NIRS outcomes, analysis of covariance 
(ANCOVA) was performed with adipose tissue thickness (ATT) as a covariate. As ATT could not be measured in all par-
ticipants, a parallel ANCOVA was conducted using body fat percentage as an alternative covariate. To assess differences 
in the temporal evolution of NIRS parameters during recovery, a repeated measures analysis of variance (ANOVA) was 
conducted comparing the lowest and highest fitness tertiles. Mauchly’s test of sphericity was applied to assess homoge-
neity of variance, and, where violated, Greenhouse–Geisser corrections were applied to the degrees of freedom. Post hoc 
comparisons were performed using Holm’s correction to control for multiple testing. Finally, a stepwise multiple regression 
analysis was conducted to assess the individual contributions of central and peripheral factors to VO₂peak (ml/min). The 
baseline model included the variables described by Gläser et al. 2010 as independent variables (age, gender, height, 
weight and smoking status) [25]. CO (central component) and the ΔHHb/ΔtHb ratio (peripheral component) were then 
added separately to evaluate their additional explanatory value. Model performance was evaluated using adjusted R2, 
Bayesian Information Criterion (BIC) values and root mean square error (RMSE).

Results

High vs insufficient quality measurement

A total of 141 participants with T2DM (79 men; mean age 61.41 ± 10.38 years old) performed a CPET combined with 
NIRS. Data from 67 participants (48%) were excluded from further analysis due to the insufficient quality of the NIRS mea-
surements. A detailed comparison between participants with high-quality vs insufficient-quality NIRS is provided in Sup-
plementary File S1 Table. Overall, participants with insufficient quality NIRS data were more likely to be female (p < 0.001), 



PLOS One | https://doi.org/10.1371/journal.pone.0331737  September 9, 2025 5 / 14

had a higher fat mass (p < 0.001) and had a lower exercise capacity (p < 0.001) compared to those with high-quality NIRS 
measurements.

Lowest vs highest fitness

The remaining 74 participants were categorized into tertiles based on their percentage of predicted VO
2
peak [25]. Tertile 1 

included 25 participants (22 men, average predicted VO
2
peak = 77%) with the lowest fitness, while tertile 3 comprised 25 

participants (20 men, average predicted VO
2
peak = 118%) with the highest fitness.

Demographics and clinical characteristics.  As shown in Table 1, participants in the lowest fitness tertile were on 
average older (p = 0.01), had a longer history of diabetes (p = 0.04) and had a worse kidney function, as indicated by a 
lower eGFR (p < 0.001). Furthermore, participants in the lowest fitness tertile had a higher fat mass (p < 0.004), a lower 
diastolic blood pressure (p = 0.04) and were more likely to use beta-blockers (p = 0.02) and diuretics (p = 0.04).

Rest and exercise echocardiography.  As shown in Table 2, no significant differences were observed in resting 
echocardiography parameters between the fitness groups. However, at peak exercise, significant differences were found 
in CO (p < 0.001), cardiac index (CI) (p < 0.001) and peak heart rate (p < 0.001).

Evolution of NIRS parameters during exercise.  Participants in the lowest fitness group exhibited a smaller increase 
in tHb (p < 0.001) during exercise, as well as a smaller change in O

2
Hb (p < 0.001), tHb (p < 0.001) and Hb

diff
 (p = 0.005) 

during the recovery period, compared to those in the higher fitness group. For HHb, a similar trend towards smaller 
increases during exercise and smaller decreases during recovery was observed, although these differences did not 
reach statistical significance (p = 0.07 for both). Results of the ANCOVA, adjusting for ATT and body fat are provided in 
Supplementary Files S2–S3 Tables. Both analyses yielded findings consistent with the original analysis and the observed 
statistical significance remained unchanged.

The evolution of NIRS-derived parameters during exercise and the recovery period is illustrated in Fig 1. A significant 
interaction effect between fitness group and time point was observed for changes in TSI (p = 0.04), O

2
Hb (p < 0.001), and 

tHb (p = 0.001) during exercise and for O
2
Hb (p < 0.001), tHb (p < 0.001) and Hb

diff
 (p = 0.004) during recovery. Changes 

were consistently greater in the highest fitness group compared to the lowest fitness group. Post-hoc analyses indicated 
significant differences at 80% (p = 0.022) and 90% (p = 0.005) of VO

2
peak for O₂Hb and at 70% (p = 0.004), 80% (p = 0.003), 

90% (p < 0.001), and 100% (p = 0.001) of VO
2
peak for tHb. During recovery, O₂Hb demonstrated significant differences from 

20 seconds onward (p = 0.01), persisting across all subsequent time points until the end of the recovery period (p < 0.001). 
Likewise, tHb and Hb

diff
 showed significant differences from 30 seconds onward (p = 0.04 and p = 0.01, respectively).

Central vs peripheral contribution to VO2peak

The results of the stepwise multiple regression analysis are presented in Table 3. The baseline model (Model 1), which 
included the covariates age, gender, height, weight and smoking status was significant (p < 0.001) and explained 53% of 
the variance in VO

2
peak (adjusted R2 = 0.53, RMSE = 483.41, BIC = 1151.85). The central component, Peak CO, showed 

a strong and significant (r = 0.63, p < 0.001) correlation with VO
2
peak, which was reflected in improved model performance 

in Model 2 (adjusted R2 = 0.61, RMSE = 436.21, BIC = 803.79). In contrast, the peripheral component, ΔHHb/ΔtHb, was 
not significantly associated with VO₂peak and provided minimal model improvement (adjusted R2 = 0.54, RMSE = 475.58, 
BIC = 1149.43). The model including both peak CO and ΔHHb/ΔtHb (Model 5) achieved the best overall fit (adjusted 
R2 = 0.62, RMSE = 429.79, BIC = 805.03), though its performance was comparable to the model including peak CO alone.

Discussion

To our knowledge, this is the first study to examine the oxygen cascade, as defined by the Fick equation, by combining 
CO assessment and NIRS-derived skeletal muscle hemodynamics during exercise, within the same participants.
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Table 1.  Demographics and clinical characteristics.

Based on Gläser (2010) Total
(N = 74)

Lowest 
fitness
(N = 25)

Highest 
fitness
(N = 25)

p value

Demographics

  Age (years) 61.72 ± 9.19 64.75 ± 9.25 58.33 ± 7.98 0.01

  Sex (M/F) 62/12 20/5 22/3 0.44

  Duration of diabetes (years)* 6.00 ± 9.75 9.00 ± 15.00 3.00 ± 4.50 0.04

Medication intake

  Beta-blocker 23 (31%) 12 (48%) 4 (16%) 0.02

  Calcium channel blocker 16 (22%) 4 (16%) 6 (24%) 0.48

  Diuretics 23 (31%) 12 (48%) 5 (20%) 0.04

  Lipid-lowering drug 49 (66%) 18 (72%) 13 (52%) 0.15

  Metformin 66 (89%) 21 (84%) 22 (88%) 0.68

  Insulin 9 (12%) 3 (12%) 2 (8%) 0.64

  SGLT2-inhibitor 17 (23%) 6 (24%) 6 (24%) 1.00

  GLP1-agonist 26 (35%) 10 (40%) 7 (28%) 0.37

  Sulfamines 13 (18%) 7 (28%) 3 (12%) 0.16

  DPP4-inhibitor 4 (5%) 2 (8%) 0 (0%) 0.15

Blood pressure

  Resting SBP (mmHg) 130.25 ± 15.10 128.59 ± 16.73 134.65 ± 12.18 0.16

  Resting DBP (mmHg) 82.06 ± 10.73 78.69 ± 11.08 85.13 ± 9.60 0.04

Smoking status

  Non-smoker 38 (51%) 11 12 0.78

  Smoker 27 (37%) 9 12 0.39

  Ex-smoker 9 (12%) 5 1 0.08

Anthropometrics

  Body mass index 29.68 ± 5.17 29.58 ± 5.05 30.15 ± 5.48 0.70

  Body weight (kg) 91.14 ± 19.61 90.00 ± 21.14 93.34 ± 19.13 0.56

  Fat mass (%) 31.02 ± 6.21 33.50 ± 5.79 28.28 ± 6.35 0.004

  Waist circumference (cm) 108.74 ± 14.66 111.11 ± 16.33 107.45 ± 14.18 0.41

  Adipose tissue thickness (mm) – Vastus lateralis* 3.50 ± 1.80
(n = 55)

3.90 ± 1.80
(n = 19)

3.25 ± 1.38
(n = 20)

0.57

Biochemical data

  HbA1c (%) 6.66 ± 1.03 6.88 ± 1.23 6.38 ± 0.84 0.10

  FPG (mmol/L) 7.0 ± 1.8 7.3 ± 2.5 6.8 ± 1.5 0.38

  Hemoglobin (mmol/L) 9.23 ± 0.77 9.02 ± 0.79 9.38 ± 0.83 0.13

  Creatinine (μmol/L) 82.23 ± 27.41 96.38 ± 38.9 76.04 ± 11.49 0.02

  eGFR (ml/min/1.73m2) 85.68 ± 18.03 73.96 ± 19.96 92.84 ± 11.65 <0.001

  Total cholesterol (mmol/L) 3.66  ± 0.91 3.65 ± 0.96 3.82 ± 0.94 0.52

  HDL (mmol/L) 1.24 ± 0.27 1.27 ± 0.29 1.20 ± 0.28 0.36

  LDL (mmol/L) 1.79 ± 0.83 1.67 ± 0.82 2.09 ± 0.81 0.08

  Triglycerides (mmol/L) 1.37  ± 0.77 1.57 ± 1.06 1.17 ± 0.49 0.09

  HOMA-IR* 5.65 ± 6.00 7.06 ± 6.81 5.53 ± 5.62 0.50

SBP: Systolic blood pressure; DBP: Diastolic blood pressure; FPG: Fasting plasma glucose; eGFR: Estimated glomerular filtration rate; HDL: High- 
density lipoprotein; LDL: Low-density lipoprotein.

Significance level was set at p < 0.05.

*Data not normally distributed are presented as median ± IQR; Mann–Whitney U test was used.

https://doi.org/10.1371/journal.pone.0331737.t001

https://doi.org/10.1371/journal.pone.0331737.t001
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Table 2.  Results of the cardiopulmonary exercise test, near-infrared spectroscopy and echocardiography.

Based on Gläser (2010) Total
(N = 74)

Lowest fitness
(N = 25)

Highest fitness
(N = 25)

p value

CPET data

  Rest V0
2
 (mL/kg/min) 4.44 ± 0.92 4.45 ± 0.76 4.56 ± 0.91 0.63

  V0
2
 @ VAT (mL/kg/min) 14.26 ± 3.94 11.06 ± 2.08 17.76 ± 3.59 <0.001

  Peak V0
2
 (mL/min) 2137.87 ± 701.53 1586.48 ± 408.78 2796.28 ± 643.35 <0.001

  Peak V0
2
 (mL/kg/min) 23.64 ± 6.68 17.72 ± 2.80 30.25 ± 5.67 <0.001

  Predicted Peak V0
2
 - %

 (Glaser – 2010)
96.68 ± 19.78 76.96 ± 10.57 118.44 ± 12.50 <0.001

  Peak workload (watt) 186.19 ± 65.84 132.08 ± 36.21 246.48 ± 56.89 <0.001

  Peak HR (bpm) 145.14 ± 26.76 125.68 ± 27.31 162.48 ± 15.17 <0.001

  Peak ventilation (L/min) 85.59 ± 26.00 64.98 ± 17.96 108.46 ± 23.10 <0.001

  Peak RER 1.16 ± 0.08 1.14 ± 0.10 1.18 ± 0.06 0.10

  Peak RPE 16.51 ± 2.08 16.52 ± 2.31 16.44 ± 2.13 0.90

  VE/VCO
2
 slope 29.19 ± 4.45 31.18 ± 4.49 26.86 ± 2.84 <0.001

  V0
2
/watt slope 9.99 ± 1.41 9.82 ± 1.33 10.01 ± 0.98 0.57

NIRS data

During Exercise

  TSI baseline 59.96 ± 4.89 60.65 ± 5.62 59.48 ± 5.26 0.45

  TSI max 63.25 ± 4.57 63.60 ± 5.41 63.04 ± 4.19 0.68

  TSI min 50.72 ± 6.69 50.10 ± 8.96 50.76 ± 4.67 0.74

  ΔTSI 12.53 ± 5.53 13.50 ± 7.82 12.28 ± 3.36 0.47

  ΔHHb 12.67 ± 5.93 11.42 ± 7.16 14.51 ± 4.02 0.07

  ΔO
2
Hb 7.20 ± 3.50 7.65 ± 3.69 7.35 ± 2.97 0.75

  ΔtHb 13.29 ± 5.48 10.89 ± 4.70 16.66 ± 4.73 <0.001

  ΔHb
diff

15.27 ± 8.73 15.43 ± 11.46 15.64 ± 4.84 0.93

  ΔHHb/ΔtHb 0.99 ± 0.37 1.05 ± 0.51 0.90 ± 0.21 0.19

During Recovery

  TSI min 53.00 ± 6.07 52.88 ± 7.90 52.96 ± 5.17 0.97

  TSI max 70.20 ± 3.34 70.09 ± 3.33 70.50 ± 2.70 0.63

  ΔTSI 17.20 ± 6.03 17.22 ± 8.15 17.54 ± 3.99 0.86

  ΔHHb 12.03 ± 6.00 10.74 ± 6.96 13.77 ± 4.51 0.07

  ΔO
2
Hb 17.70 ± 7.01 14.06 ± 7.25 21.32 ± 4.49 <0.001

  ΔtHb 8.81 ± 3.32 6.61 ± 2.78 11.14 ± 2.91 <0.001

  ΔHb
diff

28.65 ± 12.54 24.13 ± 14.02 33.82 ± 8.36 0.005

  ΔHHb/ΔtHb 1.79 ± 2.28 2.54 ± 3.70 1.39 ± 0.87 0.14

Echocardiography

Rest – lateral position

  Rest CO (L/min) 5.93 ± 1.51 6.08 ± 1.97 6.01 ± 1.35 0.88

  Rest CI (L/min/m2) 2.89 ± 0.72 2.99 ± 1.02 2.86 ± 0.51 0.59

During exercise – semi supine position

  Rest CO (L/min) 5.38 ± 1.31 5.62 ± 1.46 5.25 ± 1.48 0.47

    HR Rest (bpm) 70.37 ± 11.33 73.35 ± 13.62 69.72 ± 9.72 0.37

    SV Rest (mL/min) 77.06 ± 18.52 77.88 ± 21.55 74.84 ± 17.46 0.65

  Low CO (L/min) 9.56 ± 2.25 8.85 ± 2.35 10.17 ± 2.42 0.11

  Peak CO (L/min) 12.27 ± 3.00 10.26 ± 2.47 13.87 ± 3.18 <0.001

    Peak HR (bpm) 131.79 ± 23.00 117.82 ± 22.18 144.72 ± 14.13 <0.001

(Continued)
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The average exercise capacity in our study was 23.64 ml O₂/kg/min, corresponding to 97% of the predicted VO
2
peak. 

Participants in the lowest fitness group performed 22% below their predicted exercise capacity, whereas those in the 
highest fitness group exceeded their predicted values by 18% on average. While the difference between both groups was 
substantial, the average exercise capacity of our population was higher than that reported in previous studies investigating 
exercise capacity in adults with T2DM [10,11].

We categorized adults with T2DM in fitness groups based on their achieved VO
2
peak, expressed as a percentage 

of predicted VO
2
peak for their age, sex, length, height and smoking status. Despite this, the lowest fitness group was 

significantly older, suggesting that older adults with T2DM tend to perform worse relative to their healthy peers compared 
to younger adults with T2DM. This finding indicates that the impact of T2DM on fitness becomes more pronounced with 
advancing age. Furthermore, this group also had a longer history of diabetes, lower kidney function and was prescribed 
more cardiovascular drugs (i.e., diuretics and beta-blockers), which may reflect the cumulative effect of diabetes-related 
physiological maladaptations over time [1,26,27].

To better understand the physiological determinants underlying these fitness differences, we first compared the cen-
tral and peripheral components between both fitness groups. Peak CO was significantly higher in the highest fitness 
group. This finding contrasts with previous studies that found no differences in peak CO between individuals with T2DM 
and exercise intolerance and individuals with T2DM but normal exercise capacity [10,11]. However, the lower peak CO 
observed in the lowest fitness group may be partially explained by their significantly lower maximal heart rate, potentially 
due to older age and more frequent use of beta-blockers [28,29].

When comparing the NIRS-derived outcome measures, a greater increase in tHb was found in the higher compared to 
the lower fitness group. Given that tHb serves as a marker for local tissue perfusion, the higher tHb in the highest fitness 
group might partly reflect the greater peak CO observed in these individuals [30,31]. However, patients in the lowest 
fitness group also tended to be more insulin resistant as shown by a greater HOMA-IR index and fasted plasma glucose, 
although not significantly different from the highest fitness group. It is well established that insulin resistance is associated 
with reduced capillary recruitment and endothelial dysfunction [32–36]. As such, individuals in the lower fitness group may 
have exhibited an impaired local muscle blood flow and vasodilatory response which could also have contributed to the 
lower tHb in this group.

This reduced muscle perfusion may explain the observed differences in O
2
Hb during higher exercise intensities, as 

individuals with lower fitness may have had insufficient oxygen delivery to meet the increasing demand [37,38]. In con-
trast, those in the higher fitness group maintained O

2
Hb levels close to baseline value, suggesting that oxygen delivery 

and demand were more effectively matched. This greater increase in muscle perfusion in the highest fitness group was 
accompanied by a parallel increase in HHb, suggesting not only greater perfusion but also more effective oxygen utili-
zation at the muscular level [31,39]. However, it should be noted that HHb reflects the oxygen extraction, relative to the 
muscle perfusion [40]. Therefore, previous studies have recommended correcting for blood volume when assessing mito-
chondrial capacity [41,42]. Consequently, we introduced ΔHHb/ΔtHb as a volume-corrected marker of oxygen extraction 

Based on Gläser (2010) Total
(N = 74)

Lowest fitness
(N = 25)

Highest fitness
(N = 25)

p value

    Peak SV (mL/min) 94.52 ± 21.48 89.74 ± 24.17 96.44 ± 23.06 0.407

  Peak CI (L/min/m2) 6.04 ± 1.40 5.10 ± 1.13 6.71 ± 1.18 <0.001

HR: Heart rate; RER: Respiratory exchange ratio; RPE: Rate of perceived exertion; VE/VCO₂: Ventilatory equivalent for CO₂; VO₂/watt: Oxygen 
consumption per watt; TSI: Tissue saturation index; HHb: Deoxygenated hemoglobin; O₂Hb: Oxygenated hemoglobin; tHb: Total hemoglobin; Hbdiff: 
O₂Hb − HHb; CO: Cardiac output; CI: Cardiac index.

The significance level was set at p < 0.05.

https://doi.org/10.1371/journal.pone.0331737.t002

Table 2.  (Continued)

https://doi.org/10.1371/journal.pone.0331737.t002
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Fig 1.  Changes in NIRS-derived parameters during exercise and recovery. TSI is expressed as a percentage. 0
2
Hb, HHb, tHb and Hb

diff
 are expressed as 

changes relative to the start of the exercise. Blue circles represent average for the total sample, green triangles represent highest fitness group. Red squares 
represent lowest fitness group. Values are presented as means ± SD. *: significant post-hoc analysis following repeated measures ANOVA (P < 0.05).

https://doi.org/10.1371/journal.pone.0331737.g001

https://doi.org/10.1371/journal.pone.0331737.g001
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capacity. As no differences in ΔHHb/ΔtHb were observed between both fitness groups, the differences in HHb may be 
attributable to increased muscle perfusion rather than to intrinsic differences in muscle oxygen extraction capacity.

The results of the multiple regression analysis further confirmed these findings, as the model including peak CO added 
significant explanatory value beyond traditional demographic and lifestyle factors (as described in the Gläser formula), 
including age, while ΔHHb/ΔtHb did not significantly correlate with VO₂peak and provided only minimal contribution 
to model performance. Although combining both peak CO and ΔHHb/ΔtHb provided a marginally better model fit, the 
improvement over the model with only peak CO was negligible, reinforcing peak CO as the dominant limiting factor in this 
population. This is in contrast with previous research where oxygen extraction capacity has been highlighted as a predic-
tor for VO

2
peak and exercise intolerance in adults with T2DM [11,43]. However, as previously mentioned, the population in 

this study was rather fit and therefore severe vasogenic remodeling might not have been present in these individuals.
Interestingly, during recovery, both groups showed a continued increase in tHb, suggesting that muscle blood flow may 

have been constrained during peak exercise. Previous research highlights that muscle contractions can indeed restrict 
blood flow by exerting pressure on the intramuscular capillaries [44]. While reports on post-exercise changes in tHb are 
limited, similar trends of continued tHb elevation during recovery have been previously observed [45,46]. These findings 
call for caution when interpreting changes in tHb as a direct reflection of CO, as maximal CO and maximal muscle perfu-
sion might not be reached simultaneously.

Strengths and limitations

The primary strength and novelty of our study is that both CO (as the central component) and NIRS-derived skeletal mus-
cle hemodynamics (as the peripheral component) were assessed during exercise within the same participants, providing a 
more complete overview of the oxygen cascade.

However, the study has certain limitations. NIRS-derived skeletal muscle hemodynamics were measured at one single 
site on the vastus lateralis, which may limit the generalizability of the findings to the entire muscle or other muscle groups 
[47]. Given that local variations in muscle oxygenation have been previously documented, evaluating spatial heterogeneity 
would require the use of multi-channel NIRS equipment [47–49].

Table 3.  Overview of stepwise multivariate regression models on VO2 peak (mL/min).

Correlation Multivariate regression

Model Covariates r p value Adjusted R2 Standardised β RMSE BIC p value

1 Age
Gender
Height
Weight
Smoking status

−0.51
−0.50
0.56
0.52
0.05

<0.001
<0.001
<0.001
<0.001
0.66

0.53 483.41 1151.85 <0.001

2 Model 1
+ peak CO

0.63 <0.001 0.61 0.32 436.21 803.79 <0.001

3 Model 1
+ Peak HR
+ Peak SV

0.43
0.29

0.001
0.035

0.68 0.49
0.21

398.94 797.28 <0.001

4 Model 1
+ ΔHHb/ΔtHb

−0.19 0.10 0.54 −0.13 475.58 1149.43 <0.001

5 Model 1
+ peak CO
+ ΔHHb/ΔtHb

0.62 0.31
−0.14

429.79 805.03 <0.001

CO: Cardiac output; HR: heart rate; SV: stroke volume; ΔHHb/ΔtHb: change in deoxygenated hemoglobin divided by change in total hemoglobin; RMSE: 
Root mean square error; BIC: Bayesian information criterion.

Significance level was set at p < 0.05.

https://doi.org/10.1371/journal.pone.0331737.t003

https://doi.org/10.1371/journal.pone.0331737.t003
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Despite the inclusion of a relatively large sample size, a significant proportion of NIRS measurements were of insuffi-
cient quality and could not be included in the analysis. These insufficient-quality NIRS-data were more prevalent among 
those with greater adipose tissue thickness, a factor known to affect NIRS-derived data [50,51]. This limitation is partic-
ularly relevant, as these individuals also exhibited a significantly lower exercise capacity. Consequently, the final study 
sample may not be fully representative of the overall population with T2DM. Moreover, while ANCOVA using either ATT or 
body fat percentage as covariates did not change the statistical significance of the findings between fitness groups, results 
should still be interpreted with caution. Although physiological calibrations, such as arterial occlusion, are often recom-
mended to improve data interpretability, they are difficult to implement in this population [30,47,52]. Therefore, to improve 
the assessment of muscle hemodynamics in clinical populations, future studies could benefit from using NIRS devices 
with greater penetration depth to mitigate these limitations or from using alternative exercise protocols targeting muscle 
sites with less adipose tissue interference [48,52].

Conclusion

Cardiac output was identified as the main determinant of VO₂peak, while differences in muscle oxygen extraction 
appeared to result primarily from variations in perfusion, rather than intrinsic limitations in mitochondrial function. The 
lower peak CO observed in the lower fitness group may be partly due to a reduced maximal heart rate, likely influenced by 
older age and more frequent use of CO-modulating medication. However, CO and local muscle perfusion are not directly 
equivalent, as mechanical factors, such as intramuscular pressure during high-intensity exercise, may prevent maximal 
perfusion.
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