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Abstract

We present LLM-Matcher, an interactive name-based schema
matching system that utilizes large language models (LLMs) to
identify correspondences between source and target schema ele-
ments relying solely on their names and descriptions. This tool is
specifically designed for restricted environments where instance-
based schema matching is not possible, such as the healthcare
domain where instance access is often prohibited. LLM-Matcher is
based on an extensive experimental study, showing the capabilities
of LLMs in the schema matching task. Our system is specifically
tailored towards users with sufficient domain knowledge and of-
fers an interpretable initial mapping that can be further refined by
providing textual feedback. This feedback allows to rectify model
misconceptions as well as improve the quality of schema element
descriptions. This paper provides a comprehensive overview of
LLM-Matcher, explores its application in the healthcare domain,
allows users to gain additional insight into our experimental study,
and outlines different steps showcased in the demonstration.
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1 Introduction

Schema matching [11] is a core task in data integration [4], where
it refers to the problem of identifying correspondences between
the elements of two schemas so that corresponding elements repre-
sent the same real-world concept. For example, a schema matcher
may determine that the attribute patient_id in one table is se-
mantically equivalent to the attribute person_id in another. Con-
structed matchings can be used to translate data conforming to the
first schema into data conforming to the second schema, a process
known as schema mapping. Schema matching is hence a necessary
first step in integrating data from a source database into a target
database and provides the required starting point for schema map-
ping systems like Clio [5]. We focus on schema matching, with the
healthcare domain as a key application area.

Because manual schema matching is a time-consuming, error-
prone and tedious process, significant research effort has been
devoted to automating schema matching [2, 3, 11]. In general, how-
ever, it is not possible to fully automate schema matching, primarily
because schemas in practice have specific semantics that are not for-
mally expressed, but remain implicit in domain knowledge. Schema
matching software, therefore, should only determine match candi-
dates, which the user can accept, reject, or change [11].

To generate match candidates, schema matching software can
exploit a wide variety of signals that hint at element correspon-
dence: exploit syntactic similarity between attribute names; consult
thesauri; go beyond the schema level and also look at actual data
values and value distributions in concrete database instances; ex-
ploit database constraints; or consider past mappings [1, 3, 11].
Unfortunately, many such signals are often unavailable in real-
world schemas [7]: attribute names are often cryptic and involve
domain-specific abbreviations, and the use of actual data values and
concrete database instances may be restricted due to legal reasons;
this is the case in particular in the healthcare domain where, even
within healthcare organisations, regulations such as the European
General Data Protection Regulation restrict access to data instances.
Hence, data engineers in the healthcare domain need approaches
for instance-free, name-based schema matching.

Schema matchers like DITTO [6], LSM [16] or SMAT [15] use
BERT-based models for instance-free schema matching. Such ap-
proaches necessitate that a significant part of the data, i.e. the
potential matches between two schemas, are labelled beforehand
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for fine-tuning. In real-world settings, true (non-)matches are typ-
ically unknown and thus unavailable. In response, we developed
and extensively evaluated an approach based on large language
models (LLMs) in [10]. LLMs are machine learning models trained
on generic, web-scale textual data. They have shown to solve data
wrangling tasks [8], but have not been widely used for schema
matching to this date. ReMatch [12] uses a similar approach, but
did not make the prompts used to perform the matching publicly
available, making ReMatch unavailable to health data engineers.

In this demonstration, we present LLM-Matcher, an open-source
schema matcher that utilizes an off-the-shelf large language model
to perform instance-free, name-based schema matching. Key fea-
tures of LLM-Matcher are the following: (i) Ease of deployment:
LLM-Matcher stands out for its minimal deployment requirements.
By operating only on schema metadata, privacy concerns are cir-
cumvented which allows to utilize any cloud-based LLM backend as
opposed to needing to run the LLM locally which typically demands
substantial computational resources. (ii) Effectiveness: The LLM
interaction methodology is based on a comprehensive experimental
study [10] and outperforms matching methods based on string edit
distance. Given the constraints of the healthcare domain elaborated
above, edit-distance based matching remains the state-of-the-art
method in this context. During the demonstration, attendees will
be able to assess the schema matching and refinement capabilities
of LLM-Matcher and compare them to methods based on string
edit distance.

This manuscript is further organized as follows. We first describe
an example schema matching problem from the healthcare domain
that we will use as a running example in Section 2. We next describe
the components of LLM-Matcher in Section 3, and discuss concrete
demonstration scenarios in Section 4.

2 Health domain example

We introduce the following running example from [10] as a practical
use case to illustrate the capabilities of LLM-Matcher and to serve
as a guiding scenario for the demonstration. For ease of presentation,
we discuss only a handful of relations. During the demonstration,
attendees will be able to explore all relations discussed in [10] or
to define additional schemas themselves.

A health data engineer is tasked to transform data from a schema
Source to a schema Target. Source describes a hospital information
system, where the engineer picks the relation Admissions for match-
ing. Admissions contains details about the patient admission, such
as an admission datetime or the type of admission. In our running
example, Admissions is taken from the MIMIC-IV data set.1 The
attributes of the considered relation are depicted in Table 1 (left); we
refer to the MIMIC-IV online documentation1 for more information.
Target is the OMOP common data model, which harmonizes a broad
range of different disease-specific information sources. We focus on
the Visit Occurrence relation. Visit Occurrence contains information
about events where persons engage with the healthcare system for
a duration of time. An overview of all attributes of Target is given
in Table 1 (right). Further details can be found in the online OMOP
common data model documentation.2

1https://mimic.mit.edu/docs/iv/modules/hosp/
2https://ohdsi.github.io/CommonDataModel/cdm53.html

Source.Admissions

hadm_id
subject_id
admittime
dischtime
deathtime
admission_type
admit_provider_id
admission_location
discharge_location
insurance
language
marital_status
ethnicity
edregtime
edouttime
hospital_expire_flag

Target.Visit Occurrence
visit_occurrence_id
person_id
visit_concept_id
visit_start_date
visit_start_datetime
visit_end_date
visit_end_datetime
visit_type_concept_id
provider_id
care_site_id
visit_source_value
visit_source_concept_id
admitting_source_concept_id
admitting_source_value
discharge_to_concept_id
discharge_to_source_value
preceding_visit_occurrence_id

Table 1: Schema example: Overview of the relations and at-

tributes in Source and Target.

In [9] researchers from the healthcare domain consented on fa-
cilitating Extract, Transform and Load (ETL) process development
solely through sharing descriptions and summaries of data with
data engineers. This approach, while challenging due to the absence
of actual data instances for Source and Target, ensures that sensi-
tive health data is processed in compliance with GDPR regulations.
Hence, the health data engineer can only rely on their knowledge
of the health domain and the textual descriptions of the schema el-
ements provided by the documentation. The data engineer chooses
a relation 𝑆 in Source and a relation 𝑇 in Target and as a first step
wants to identify pairs of matching attributes. We say that a pair
of attributes (𝑎, 𝑎′) matches when 𝑎 is an attribute of 𝑆 , 𝑎′ is an
attribute of𝑇 and there is a one-to-one correspondence between the
values of 𝑎 and the values of 𝑎′. We focus on one-to-one matches
analogous to our experimental evaluation presented in [10]. To
illustrate the inherent difficulty of this schema matching task we
point out that out of the 272 possible attribute pairs only 8 pairs
represent a valid match. A ground truth was obtained through in-
spection of a publicly available ETL pipeline transforming MIMIC
data to the OMOP common data model. In [10], we considered a
total of nine different combinations of 𝑆 and 𝑇 , ranging from 80 to
391 possible attribute pairs with 2 to 10 true matches.

3 Overview of LLM-Matcher

Figure 1: Overview of the user interactions in LLM-Matcher.

Figure 1 presents a graphical overview of the three steps LLM-
Matcher consists of: (1) loading the description of the source
and target relations; (2) computing matching attribute pairs with
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associated natural language justification; and, (3) interpreting the
mapping and providing natural language feedback. Steps (2) and
(3) are repeated until a satisfactory mapping is achieved. We next
elaborate on each of these three functionalities.

3.1 Load

To initialize the matching process, the user manually inputs a spec-
ification of a relation 𝑆 in Source and a relation 𝑇 in Target or loads
a JSON-formatted specification. These contain, for each attribute,
the attribute’s name and a natural language description defining
the intended semantics. After loading the specifications, the user is
able to in- and/or exclude individual attributes. A common use case
would be the exclusion of auto-generated identifiers in the target
schema. Excluded attributes will not be shown to the LLM.

3.2 Match

When the schemas are loaded, LLM-Matcher performs an initial
matching by prompting an LLM. By default we use GPT-4o-mini,
although in principle any LLM can be used. The prompting is spec-
ified via prompt templates that describe the matching task itself,
contain placeholders for the descriptions of the attributes and list
the requirements for the output (for instance, that a decision is
required for each attribute pair and the format of the output). The
matching quality greatly depends on the chosen prompt in two
ways. First, we choose prompt patterns that are known to work
well to build our prompt [14]. Second, the right amount of context
information is important. We defined and compared different task
scopes in our experimental study [10]. Task scopes describe the
amount of information from the source and the target schema sup-
plied to a single prompt: 1-to-1, 1-to-N, N-to-1 and N-to-M. A 1-to-𝑁
task scope, for example, asks for the matching between a fixed
attribute in 𝑆 and all attributes in 𝑇 . That is, only the descriptions
of one attribute 𝑎 in 𝑆 and the descriptions of all attributes in 𝑇 are
specified in the prompt by substituting the corresponding place-
holders. By default, we use a combination of the 1-to-𝑁 and 𝑁 -to-1
task scopes as these two have shown to provide the best matching
results. Further information, rationale and evaluation with respect
to task scopes can be found in our experimental study [10].

LLM-Matcher renders the task scope-specific prompt templates,
initiates the requests to the LLM, and parses and processes the
answers. Our prompts instruct the LLM to associate one of the
labels Yes, No, or Unknown to every attribute pair (𝑎, 𝑎′), indicating
that there is a match, is no match, or that it can not determine
whether there is a match. We refer to this output for a specific pair
as a vote. When no decision is made by the LLM for an attribute
pair, the label Unknown is assigned in post-processing. We obtain
three votes per task scope to account for hallucinations. By default,
we thus obtain six votes in total for every attribute pair in 𝑆 and 𝑇 .
Next, we describe how LLM-Matcher visually presents the overall
result and all individual votes retrieved from the LLM to the user.

3.3 Revise

LLM-Matcher visualizes the LLMs votes as a bipartite graph. The
attributes of 𝑆 and 𝑇 are visualized as nodes. Per attribute pair, we
represent the LLM’s votes by drawing edges coloured by the vote
label. The edge thickness indicates the count of votes per label.

Consequently, each attribute pair can have up to three differently
coloured edges representing the number of Yes, No and Unknown
votes. Users can select attribute pairs to inspect the LLM’s justifica-
tion of each individual vote. Furthermore, LLM-Matcher presents
potential matches identified by measuring the string similarity of
the names of the attributes of 𝑆 and 𝑇 as a baseline. We default to
the Dice-similarity of 3-grams as a baseline [13]. If a ground truth is
provided beforehand, LLM-Matcher also shows metrics to assess
the quality of the matches given by the LLM and the baseline.

A health data engineer can inspect the LLM’s justifications to
detect errors made by the model and provide feedback that is taken
into account in the next matching iteration. Concrete examples of
what can be learned are the following:

(1) False positives: the LLM sometimes jumps to conclusions
as it overemphasizes similarity of attribute names while
disregarding the intent of the attributes as described in the
provided documentation. For instance, we noticed that the
LLM is eager to match two attributes solely based on the fact
that they both refer to the time dimension of an event even
when those events are clearly different.

(2) False negatives: for specific attributes the LLM simply does
not have enough information as the documentation describ-
ing these attributes is imprecise, contains inaccuracies or is
even missing.

After this inspection, natural language feedback can be provided in
a text field that is added to the prompt and is taken into account
when a rematching is initiated. Example feedback for case (1) above
could instruct the model to attribute more importance towards
similarity of the description of text fields for attributes related to
time. For cases like (2), we allow users to directly modify the text
describing the intent of the attributes.

4 Demonstration

With demonstrating LLM-Matcher, we aim to provide attendees
with first-hand experience on the viability of large language models
for instance-free, name-based schema matching. We define three
scenarios to illustrate this in the following. We also supply a video
recording3 of a walkthrough of the first scenario.

4.1 First scenario: a simple introduction to

LLM-Matcher.

As attendees might not be familiar with schema matching systems,
we start out the demonstration with a more prototypical example
to get acquainted with the tool. In this scenario, the task is to match
two relations containing person information. That is, 𝑆 contains
the attributes Name, Gender and Registerdate, while 𝑇 contains the
attributes First Name, Last Name, Birthdate and Sex. The attendee
can load these relations and has the ability to inspect the names of
the attributes as well as the text fragments describing their intent
as provided by the documentation. If desired, the attendee can alter
these descriptions inside the tool.

The attendee can inspect LLM-Matcher’s first matching result
to gauge whether they are sound and whether the given natural lan-
guage explanations for the matchings meet the expectations. Next

3https://drive.google.com/file/d/1LkyKm1ZYwJGx_Slr-fdojQBnNq0WRgLu/view
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to this first matching, we present string similarity-based matches to
allow attendees to compare two instance-free, name-based schema
matching approaches directly using a simple example. Further, the
attendee can supply specific textual feedback to trigger a regener-
ation of LLM-Matcher’s results. The effect of the feedback can
be, again, compared to the string similarity baseline to gauge the
feedback’s effect on the matching result.

4.2 Second scenario: diving deeper into the

experimental study.

Now that the attendee is sufficiently familiar with the operations
of LLM-Matcher, we turn to illustrating the effect that the task
scope choice has on matching quality. The attendee will be able
to freely choose a relation pair (𝑆,𝑇 ) from all real-world datasets
used in our experimental study [10]; choose an LLM that will be
prompted for matching; choose any number of task scopes from
1-to-𝑁 , 𝑁 -to-1, or 𝑁 -to-𝑀 ; and choose a string similarity metric as
a baseline for comparison. LLM-Matcher matches the attributes
of 𝑆 and 𝑇 given the parameters chosen by the attendee.

The results from both LLM-Matcher and the chosen string
similarity metric are presented to the attendee in direct comparison,
as in the first scenario. In addition, we present the assessment
metrics reported in our experimental study: F1-score, precision,
recall and decisiveness (see [10] for more detail). The attendee will
now be able to inspect first-hand the effect of task scopes on schema
matching. First, all matches that contributed to the result of our
experimental study are presented. Second, LLM-Matcher presents
the natural language text explanations to provide insight into the
LLM’s reasoning. By varying the parameters of an experiment, the
attendee will be able to conduct experiments not reported in our
study, such as choosing alternative string similarity baselines. In
summary, through this scenario we give novel and deeper insights
into the experimental study performed in [10].

4.3 Third scenario: exploring LLM-Matcher

with custom attributes.

Taking the role of a health data engineer, the attendee’s task is to
match attributes from 𝑆 and 𝑇 using the same process as already
applied in the first scenario. In this scenario, the attendee will be
asked to define a small number of attributes for 𝑆 , or to choose a
MIMIC example relation from our real-world dataset and modify a
few attributes. As we expect that most attendees are not sufficiently
familiar with the healthcare domain, we will assist with the creation
or modification of attributes in 𝑆 . However, we aim to motivate
attendees to provide new, unseen examples for our LLM-based
schema matching. In particular, we want to encourage attendees to
provide attribute names and descriptions based on their experience,
which may differ from the style we are used to in the healthcare
domain. Next, we choose a relation 𝑇 from the OMOP common
data model (see Section 2) and define (or modify) a ground truth to
faciliate the inspection of the results. 𝑆 and𝑇 are matched using our
LLM-based approach as well as by measuring the string similarity
of attributes’ names, providing, yet again, a baseline to compare
our LLM-based approach against.

The attendee will be able to inspect the results similar to the pre-
vious two scenarios. The matches of LLM-Matcher are presented

next to the baseline obtained by a string similarity metric, allowing
attendees to assess the quality of LLM-based schema matching. In
this scenario, however, we step away from the real-world schemas
reported in [10]. The aim of this scenario is to highlight the viability
of LLM-based schema matching with unseen schemas.
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