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On the Impact of Proprioception in EEG
Representations and Decoding during Human-Hand

Exoskeleton Interaction
Qiang Sun, Eva Calvo Merino, Liuyin Yang, Axel Faes, and Marc M. Van Hulle

Abstract—Controlling a hand exoskeleton based on electroen-
cephalogram (EEG)-based brain-computer interfacing (BCI)
holds promise for human motor augmentation and neurore-
habilitation. To achieve natural control, a critical step is to
understand the impact of proprioception provided by the ex-
oskeleton during interaction. In this study, we aim to approach
the goal by quantifying EEG representations and BCI per-
formance. We monitored 25 healthy subjects’ full-scalp EEG
while performing different finger movement tasks with a cable-
driven hand exoskeleton. Each task involves three movement
modalities, i.e., imagined (IM), passive (PM), and congruent
imagined and passive (IPM) finger flexion. We found that alpha
(8 - 13 Hz) and beta (13 - 30 Hz) band desynchronization in the
sensorimotor area was significantly stronger for PM and IPM
tasks compared to IM, with no significant difference between PM
and IPM. Using machine learning models, we achieved a high
accuracy in classifying exoskeleton-assisted movements from the
rest condition (IPM vs. REST: 0.80 ± 0.07, PM vs. REST: 0.72
± 0.10), with the IPM modality returning the highest accuracy.
However, distinguishing between IPM and PM yielded only 0.61 ±
0.09, significantly lower than the condition of intention detection
without the exoskeleton (IM vs. REST: 0.73 ± 0.08). Our findings
suggest that sensorimotor EEG activity can track proprioceptive
feedback induced by the hand exoskeleton. While this feedback
is pronounced and distinguishable, detecting motor intention
during exoskeleton movement remains highly challenging. This
highlights the need for advanced decoders and control strategies
for the future development of continuous BCI-actuated hand
exoskeletons.

Index Terms—brain-computer interfaces (BCIs), electroen-
cephalogram (EEG), hand exoskeleton, motor intention, propri-
oception.

I. INTRODUCTION

Brain-computer interfaces (BCIs) build a direct connection
between the human brain and effectors, bypassing the normal
neuromuscular pathway [1]. A promising field for BCI systems
is human motor augmentation and neurorehabilitation, where
the end users can rely on a brain-actuated exoskeleton to
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accomplish daily activities. For practical considerations, elec-
troencephalogram (EEG) is recommended for recording brain
activities as it is non-invasive, affordable, and offers relatively
high temporal and spatial resolution compared to other non-
invasive recording techniques. A successful demonstration has
been realized by Soekadar et al. [2], where an individual with
impaired hand function could accomplish different daily hand
tasks with an EEG-controlled exoskeleton.

Exoskeletons are widely used in neurorehabilitation to en-
courage the patient’s engagement which in turn promotes mo-
tor recovery [3]. A BCI-controlled exoskeleton is particularly
useful in this case as the patient’s active motor intentions can
be decoded and translated into exoskeleton commands. For
patients with limited motor control functions, their intentions
are conveyed through imagined movement, a type of move-
ment that motor-disabled individuals can do by imagining a
given movement without actually performing it [2], [4]. Such
a closed-loop active robot-assisted mode has been shown to
improve post-stroke rehabilitation outcomes [4]. In this study,
we focused on BCI-actuated hand exoskeletons, as they hold
promise for restoring intuitive finger control in people with
hand motor impairments.

A major feature of human-exoskeleton interaction, com-
pared to human-robotic arm or avatar interaction, is the strong
proprioceptive feedback provided by the device. Once the
exoskeleton is activated, the user can sense body posture and
limb movements during physical interaction, leading to the
excitation of the sensorimotor cortex [5]–[7]. From ongoing
EEG, this excitatory activity is characterized by a power de-
crease or increase in particular frequency bands, termed event-
related desynchronization (ERD) and event-related synchro-
nization (ERS), respectively [8]. Specifically, robot-assisted
passive movement can elicit bilaterally distributed alpha (8 -
13 Hz) and beta (13 - 30 Hz) ERD during the movement,
albeit stronger on the contralateral side [5], [7]. Once the
movement is terminated, ERS in the beta band occurs centrally,
partially reflecting an active inhibition of the motor cortex by
somatosensory afferents [9].

From a control perspective, it is pivotal to develop asyn-
chronous and, ideally, continuous BCI, as it attributes to
the autonomy of the user and provides more natural control
capabilities. An asynchronous BCI system allows the user to
voluntarily decide when to initiate or terminate a task. In
contrast, a continuous BCI system provides ongoing, real-
time outputs that continuously map the user’s brain activity



to control parameters, such as movement or speed, reflecting
their dynamic motor intentions. Both types of BCIs rely on
real-time monitoring and decoding of the user’s motor inten-
tions. However, as the exoskeleton will produce proprioceptive
afferents during interaction, the difficulty of motor intention
decoding from EEG needs to be addressed. Indeed, a recent
study reported that motor intention detection is more challeng-
ing during lower-limb exoskeleton interaction compared to a
static case [10]. However, whether this phenomenon pertains
to hand exoskeletons remains unexplored.

In this study, we designed an experimental paradigm com-
bining a cable-driven hand exoskeleton and full-scalp EEG
recordings. Our first objective is to compare the EEG represen-
tations of different movement modalities, including imagined
(IM), passive (PM), and congruent imagined and passive (IPM)
finger flexions, with a particular interest in comparing IPM
and PM. The second objective is to assess motor intention
detection performance in situations with and without exoskele-
ton assistance. Based on our findings, we highlight the key
challenges of EEG decoding during human-hand exoskeleton
interaction.

II. MATERIALS AND METHODS

A. Subjects

We recruited 25 right-handed subjects (12 males and 13
females, 24.20 ± 3.29 years old). Each subject’s handedness
was evaluated using the Edinburgh Handedness Inventory1.
All subjects participated in a single-session EEG experiment.
This study was approved by the Ethical Committee of the
University Hospital of KU Leuven (UZ Leuven) under ref-
erence number S6254. Before the experiment, all subjects
were informed about the study details and gave their written
consent.

B. Experimental setup and paradigm details

The experiment was conducted in a quiet recording room.
Subjects sat on a comfortable chair wearing the EEG cap
and a right-hand exoskeleton, as illustrated in Fig. 1a. We
configured 62 EEG active electrodes (Easycap GmbH, Ger-
many) covering the full scalp following the 10%-System.
Additional reference and ground electrodes were placed at
FCz and AFz, respectively. When preparing the electrodes, we
kept the impedance below 5kΩ. For EEG recording, we used
the Neuroscan SynAmps RT device (Compumedics, Australia)
operating at 1000 Hz sampling rate. As for the exoskeleton,
we used the Gloreha Sinfonia (renamed R-TOUCH by BTL
Industries). This device enables one degree-of-freedom for
each finger and controls its flexion and extension by an electric
actuator-driven steel cable (Fig. 1b).

The paradigm instructions were shown on the screen (View-
Pixx, Canada) in front of the subjects (Fig. 1a). We designed
three movement modalities, namely, IM, PM, and IPM. Each
modality had three finger tasks including thumb, index, and
middle-ring-little finger flexion. The timing of an exemplary

1https://www.brainmapping.org/shared/Edinburgh.php

Fig. 1. Experimental paradigm. (a) Experimental setup. The subject wore a
hand exoskeleton and performed the instructed tasks while the full-scalp EEG
signals were recorded. (b) The exoskeleton made the thumb of the subject flex
via a steel cable. (c) Timing of an exemplary imagined thumb movement trial.

imagined thumb trial is shown in Fig. 1c. At the beginning of
the trial, a cross was shown on the screen for 1.5s instructing
the subject to stay focused. Later, a circle and tick marks, were
shown, centered on the cross, as well as a word cue indicating
the finger task to be performed. Upon the disappearance of the
word cue (1s later), the circle started to shrink at a constant
speed. Once the circle touched the tick marks(2s later), the
subject performed the finger task, either by imaging finger
flexion (IM and IPM conditions) or by refraining from any
mental tasks but by undergoing (and feeling) the exoskeleton
movement (PM condition). After 2.5s, the subject could relax
for 2-3s. There was a homing-back action from the exoskeleton
in the PM and IPM conditions. For IM and IPM, we asked
our subjects to perform kinesthetic imagination, i.e., imagine
they were moving their right-hand fingers at the same speed
as the shrinking circle. For PM, we asked our subjects to
avoid any mental tasks. The exoskeleton moved the fingers at
the same speed. The experiment had 30-40 rounds with each
round randomizing three modalities each one comprising three
randomized finger tasks. The subjects could relax between
rounds and were given a form to report the trials they did
wrong in the past round. All subjects practiced the paradigm
prior to the real experiment. A camera monitored the behavior
of each subject’s right hand during the entire experiment.

C. EEG data preprocessing

Data preprocessing was done based on customized MAT-
LAB code and scripts from the FieldTrip toolbox [11]. The
recorded raw EEG data were downsampled to 250 Hz for ease



of computation after applying an antialiasing filter. Then, two
notch filters were applied to remove power line noise at 50
Hz and 100 Hz. Next, we filtered the continuous signals into
0.1 - 120 Hz. The mentioned filters were all 3-order Butter-
worth IIR filters. Before removing eye movement artifacts, we
visually inspected and removed faulty channels noted during
the recording. Then, we used independent component analysis
(runica implemention in FieldTrip) to detect vertical and
horizontal eye movement-related components and removed
them. Common average referencing was implemented. Finally,
we imputed the excluded noisy channel EEGs based on those
of neighboring electrodes.

The cleaned EEGs were segmented into 9-s epochs accord-
ing to trial markers, starting from trial onset (Fig. 1c). For
each epoch, we detected the noisy channels based on features:
kurtosis, mean value, and variance. Specifically, a channel was
detected as noisy if any of its features exceeded three times
the standard deviation of the mean for all channels. The noisy
channels were interpolated. We also removed bad epochs when
a third of the channels had an amplitude over ±100 µV.

D. EEG representations

We looked into event-related spectrum perturbation (ERSP)
of the EEG signals, which reflects the spectra power changes
relative to a baseline. The group-averaged ERSP for a given
finger task at channel c, frequency f, and time t is calculated
as:

ERSP (c, f, t) =
1

S

S∑
s=1

1

N

N∑
n=1

(
Fs,n,c(f, t)− F baseline

s,n,c (f)
)

(1)
where S and N represent the number of subjects and the num-
ber of trials in the current task, respectively. Fs,n,c indicates
the time-frequency representation (TFR) of the c-th channel
and n-th trial from subject s. We calculated the averaged
power from 0.5 to 1.5s with respect to the appearance of
the cross during the fixation phase (Fig. 1c) as the baseline
F baseline
s,n,c . The TFRs were calculated based on Short-Time

Fourier Transform (STFT) with a window of 1s and overlap
of 1 sample. We took the logarithm for ERSP calculation.

EEG oscillatory activities in the alpha (8 - 13 Hz) and
beta (13 - 30 Hz) bands were specifically analyzed, as these
rhythms are characteristic of both active and passive finger
movements [6], [12]. We first visualized the topographical
distribution of alpha and beta ERSP on the scalp. Then, we
looked into the TFR of the representative EEG channels.

E. Decoding models

We built four binary classification models based on the
Fisher Geodesic Minimal Distance to Mean (FgMDM) classi-
fier [13]. FgMDM works in the Riemannian space and shows
exceptional decoding performance in many BCI tasks [14].
In the first model, we classified IM versus the resting state
(IM vs. REST), representing motor intention detection without
exoskeleton movement. The second and third models classified
PM versus REST and IPM versus REST, respectively, to assess

whether the exoskeleton induces distinguishable features. The
final model classified IPM versus PM (IPM vs. PM), simulat-
ing a scenario to determine the presence of motor intention
during exoskeleton interaction. We pooled all three finger
tasks’ epochs together for IM, PM, and IPM. The cleaned
epochs were further bandpassed into 4 - 40 Hz. Considering
the shorter displacement of thumb flexion and future online
BCI applications, we opted for a 1-s data length to test
decoding performance. Therefore, we extracted the first 1-
second segment (time window: 4.5 – 5.5 s) from the task
period for IM, PM, and IPM, respectively (Fig. 1c). For the
resting state, a 1-second segment (time window: 0.5 – 1.5 s)
was obtained from the fixation phase (Fig. 1c), which also
served as the baseline for ERSP calculation. In the end, we
obtained 105.25 ± 13.57, 105.08 ± 12.08, and 106.67 ± 11.94
segments for IM, PM, and IPM, respectively. The resting state
contained the same number of segments as IM, PM, and IPM,
respectively.

The FgMDM classifier was implemented using the Co-
variance toolbox2 with the Riemannian mean and distance
as model parameters. All models were trained and tested
following a 10× 5-fold (stratified) cross-validation procedure.
The average accuracy (correct predictions out of all samples)
is reported.

F. Statistical analysis

We compared the alpha and beta rhythm power changes at
channels C3 and C4 via the Wilcoxon rank sum test. We used
repeated measures Analysis of Variance (ANOVA) to test the
difference of alpha and beta rhythm for different modalities.
Once a significant effect was found, we performed multiple
comparisons with Bonferroni correction. The classification
accuracies from different models were tested in the same way.
The normality of variable observations was examined based on
the Shapiro-Wilk test. All statistical analyses used a significant
level of 0.05.

III. RESULTS

A. Exoskeleton-assisted finger movements induce strong EEG
desynchronization in sensorimotor area

Figure 2 illustrates the evolution of EEG activities within
the alpha and beta bands for three movement modalities.
Each topoplot represents the averaged ERSP across all finger
tasks, subjects, and the selected time window. During the
preparation stage, IM and IPM exhibited relatively stronger
power decreases (i.e., desynchronization or ERD) compared to
PM in the contralateral central region, with IPM showing more
widespread activation. Upon exoskeleton activation, stronger
ERD occurred in the sensorimotor area, as observed in PM
and IPM modalities during the task and rest stages. The pro-
prioceptive feedback-induced ERD was bilaterally distributed,
with the strongest effects observed contralaterally. It is worth
noting that for PM and IPM in the rest stage, the exoskeleton is

2https://github.com/alexandrebarachant/covariancetoolbox/tree/master



Fig. 2. Changes in alpha and beta rhythm power distribution over time for
different movement modalities across three interaction stages: Preparation,
Task, and Rest. Each column represents a distinct stage, with time = 0 s
indicating the onset of the task. The color scale shows power changes in dB.
EEG electrode locations were marked in black dots.

homing back at a faster speed, which partly explains why rest-
stage ERD patterns differ from those of the task stage. Addi-
tionally, a strong ERS was observed in the occipital region for
the IM modality during REST when the subject ceased motor
imagery, with a similar but less pronounced effect for IPM
and minimal occurrence in PM. For the distribution differences
between alpha and beta rhythms, more brain regions engaged
in alpha ERD, particularly for the preparation and task stages.
The strength of each rhythm at the C3 (contralateral) and C4
(ipsilateral) EEG channel was statistically compared in Fig. 3.
Generally, alpha rhythm showed stronger ERD compared to
the beta rhythm for the EEG channels of both hemispheres,
with the exception of the preparation stage in C4. However, a
significant difference between alpha and beta was only found
in C3 during the preparation stage of the IM modality (Fig.
3a).

B. Comparable alpha and beta ERD in exoskeleton-assisted
movements regardless of motor intentions

Figure 4 presents the time-frequency representation of the
C3 and C4 channels for three movement modalities. The 8-
30 Hz frequency band activity was most pronounced in each
modality, particularly when exoskeleton movement was in-
volved (Fig. 4a and d). During exoskeleton-assisted movement
(PM and IPM), stronger ERD was observed compared to

Fig. 3. Comparison between alpha and beta band power changes at channel
(a) C3 and (b) C4. From left to right, each subfigure represents a different
interaction stage similar to Fig. 2. The whisker on each bar corresponds to
the standard error of the mean (SEM) power changes across subjects. The
asterisk indicates a significant difference between alpha and beta was found
via the Wilcoxon rank sum test (**: p < 0.01).

TABLE I
COMPARISON BETWEEN MOVEMENT MODALITIES IN ALPHA AND BETA
BAND POWER CHANGES AT CHANNEL C3 AND C4. N.S. INDICATES NOT

SIGNIFICANT

Channel Rhythm Comparison P-value

C3

alpha
PM vs. IM 0.00044218
IPM vs. IM 0.00086206
IPM vs. PM n.s.

beta
PM vs. IM 3.234e-05
IPM vs. IM 4.5419e-06
IPM vs. PM n.s.

C4

alpha
PM vs. IM 0.003176
IPM vs. IM 5.6824e-05
IPM vs. PM n.s.

beta
PM vs. IM 0.00098239
IPM vs. IM 9.517e-06
IPM vs. PM n.s.

IM. A pronounced ERS was observed in the IM condition
after the end of the task, whereas the exoskeleton-induced
ERD persisted because of the device homing back. During
the task, alpha and beta rhythms showed distinct behaviors,
as illustrated in Fig. 4b-c and e-f. Notably, a steep decrease
in alpha power was observed upon exoskeleton activation
(Fig. 4b and e). In terms of modality differences, PM and
IPM showed similar alpha and beta band desynchronization,
with minimal variation during the pre- and post-task stages.
Table I compares power changes across modalities in the
alpha and beta bands during the task stage (time window: 5
- 6s), revealing significant differences for both PM and IPM
compared to IM, while no significant difference was detected
between PM and IPM.



Fig. 4. Time-frequency representation of EEG activity in the C3 (a-c) and C4 (d-f) channels for different movement modalities. (a, d) Time-frequency spectra
for IM, PM, and IPM modalities, illustrating power changes in dB over time. (b-c, e-f) Comparison of alpha (8-13 Hz) and beta (13-30 Hz) band power
changes across movement modalities. ’Start’ and ’End’ denote the onset and offset of the task, respectively. Thick lines in (b-c) and (e-f) correspond to the
average across trials, shaded regions to the 95% confidence interval.

C. Motor intention detection is more challenging with propri-
oceptive feedback

Figure 5 presents the binary classification results from four
models. In general, distinguishing different movement modal-
ities from the resting state is relatively easy, with the highest
accuracy achieved 0.80 ± 0.07 (IPM vs. REST). The worst
condition was IPM vs. PM, which obtained an accuracy of 0.61
± 0.09, thus slightly above the chance level. It is interesting
that the models IM vs. REST and PM vs. REST showed
no significant difference, and a larger accuracy variation was
found for PM vs. REST.

IV. DISCUSSION

As growing attention is being dedicated to BCI-controlled
hand exoskeletons, the challenges for advancing this BCI
application should be addressed. In this study, we focused
on a critical component, namely, motor intention decoding
from brain activities during human-hand exoskeleton inter-
action. From continuous EEG recordings, we observed that
exoskeleton-assisted passive movement introduced prominent
bilateral ERD in alpha and beta bands, which is similar
in frequency range but stronger in amplitude compared to
imagined movement-induced neural correlates (Fig. 2 and Fig.
4). When the exoskeleton’s movement was involved, it became
difficult to discern motor intention-related EEG responses, as
reflected by the statistical comparisons between PM and IPM
modalities (Table I). This could partially explain why motor
intention detection was quite difficult for IPM vs. PM (Fig.
5).

It is worth noting that our study focused specifically on
the interaction between humans and a cable-driven hand
exoskeleton. EEG correlates may vary across different ex-
oskeleton systems. Our findings align with those reported
in [6], where the same hand exoskeleton model was used,

Fig. 5. Comparison between different binary classification models. Each box
shows the distribution of each subject’s accuracy (n = 25), with the middle
red line representing the median. The whiskers correspond to 1.5 × IQR.
The average accuracy and standard deviation are shown next to each box.
P-values from post-hoc multiple comparisons are marked on the figure (***:
p < 0.001, **: p < 0.01, n.s.: not significant)

and ERD patterns were observed in similar frequency ranges.
Although the proprioceptive representation of the hand differs
from that of proximal limb counterparts [15], similarities in
EEG correlates are evident across the hand (our study and
[6]), wrist [5], forearm [16], and lower limb [7]. Generally,
passive movement elicits bilateral alpha and beta ERD, with
a predominance on the contralateral side. On the other hand,
factors such as movement speed and the type of exoskeleton
motor will also impact EEG correlates. For example, Iwane



et al. reported that passive movement speed was correlated
with the contralateral beta rebound and ipsilateral alpha ERD
[16]. Mitra et al. observed a strong broadband synchronization
coinciding with the robot movement [17], suggesting some
exoskeletons (Harmony Exoskeleton used in their study) will
likely introduce instrumental noise.

When comparing alpha and beta ERD, we found alpha
rhythm had stronger desynchronization than beta rhythm (Fig.
3), particularly on the contralateral side, which is in line with
observations in [5], [7], [18]. This supports earlier observations
that alpha and beta rhythms would be related to different
functional properties, i.e. somatosensory- and somatomotor
cortical function, respectively [19]. Another finding in our
study is that passive movement produced clear-cut modifica-
tion of alpha band oscillations compared to beta band upon
exoskeleton activation, as depicted in Fig. 4b-c. This could
be partially explained by the sensitivity of alpha rhythm to
attention and cognitive engagement [20]. During exoskeleton-
assisted movements, the subject might pay more attention to
the sensation of movement or the mechanical action of the
exoskeleton.

We found a significant difference in motor intention detec-
tion with and without exoskeleton movement in Fig. 5. With
exoskeleton movement, intention detection becomes more
challenging (IPM vs. PM compared to IM vs. REST). This
phenomenon was also reflected in Ferrero et al.’s study [10],
where the authors found that it was more challenging to
detect ’stop’ intention when the lower-limb exoskeleton was
activated compared to detecting ’start’ intention without robot
activation. Our experiment revealed that when the exoskeleton
is activated, brain activations are similar regardless of whether
the subject imagines a movement (IPM modality) or not (PM
modality). In contrast, when the exoskeleton is not involved,
the ERD induced by motor imagery (IM modality) can be
clearly distinguished from REST. Therefore, extracting motor
intention-related EEG features becomes more challenging in
situations with exoskeleton activation. An interesting finding is
that although both IPM and PM showed significantly different
power changes compared to IM (Table I), PM vs. REST did not
show as high accuracy as IPM vs. REST, nor IM vs. REST.
One explanation is that we were classifying the covariance
feature on the manifold space, not the power feature.

Although BCI-actuated hand exoskeletons hold great
promise for neurorehabilitation, their current control strategies
remain limited. Typically, a BCI decoder detects the user’s
motor intention and triggers the exoskeleton accordingly. How-
ever, once the exoskeleton is activated, the decoder struggles to
function effectively, restricting the system to discrete control
[21]. This means users can initiate movement but cannot
continuously modulate or stop it. A key challenge for the next
generation of BCI-exoskeleton systems is enabling continuous
control, where motor intentions are dynamically monitored and
executed in real-time. Our findings highlight this challenge:
during exoskeleton interaction, the brain generates ERD pat-
terns that are similar but stronger than those observed during
motor imagery (Fig. 2, Fig. 4). Moreover, our decoding results

suggest that detecting motor intention becomes significantly
more difficult when the exoskeleton is moving (IPM vs. PM),
with a classification accuracy only marginally above chance
level. There is a trade-off between system stability and subject
engagement. For stable control and better task completion,
one may consider using a shared-control strategy [22] as it
relies more on robot intelligence. For natural control and
more subject engagement, we believe subject learning and
advanced decoders are required. Indeed, although we asked the
subject to avoid performing any movement imagination during
PM, they reported that it was quite hard to finish the task.
This suggested that subject learning is necessary in order to
obtain task-differentiable data [23]. Our previous studies have
shown the possibility of regressing fine finger movements from
intracranial brain activity [24], [25], those explainable models
can be particularly useful for continuous motor intention
decoding during human-hand exoskeleton interaction.

V. CONCLUSION

We designed an experiment to investigate the impact of
proprioception in EEG representations and decoding when
interacting with a hand exoskeleton. We found when the
exoskeleton was activated, strong alpha and beta ERDs were
elicited due to proprioceptive afferents. However, EEG cor-
relates were similar in situations with and without imagined
motor intention upon the exoskeleton activation. Those find-
ings explain why poor motor intention detection accuracy
was observed when involving the exoskeleton. For future
development of continuous BCI-actuated hand exoskeletons,
we suggest using advanced decoders or control strategies
considering the trade-off between system stability and subject
engagement.
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J. M. Azorı́n, and J. L. Contreras-Vidal, “Brain–machine interface
based on deep learning to control asynchronously a lower-limb robotic
exoskeleton: a case-of-study,” Journal of NeuroEngineering and Reha-
bilitation, vol. 21, no. 1, p. 48, 2024.

[11] R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive elec-
trophysiological data,” Computational Intelligence and Neuroscience,
vol. 2011, no. 1, pp. 1:1–1:9, 2011.

[12] Q. Sun, E. C. Merino, L. Yang, and M. M. Van Hulle, “Unraveling
EEG correlates of unimanual finger movements: insights from non-
repetitive flexion and extension tasks,” Journal of NeuroEngineering and
Rehabilitation, vol. 21, no. 1, p. 228, 2024.

[13] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Riemannian
geometry applied to bci classification,” in International conference on
latent variable analysis and signal separation. Springer, 2010, pp.
629–636.

[14] S. Chevallier, I. Carrara, B. Aristimunha, P. Guetschel, S. Sedlar,
B. Lopes, S. Velut, S. Khazem, and T. Moreau, “The largest EEG-based
BCI reproducibility study for open science: the MOABB benchmark,”
arXiv preprint arXiv:2404.15319, 2024.

[15] O. J. Lutz and S. J. Bensmaia, “Proprioceptive representations of the
hand in somatosensory cortex,” Current Opinion in Physiology, vol. 21,
pp. 9–16, 2021.

[16] F. Iwane, G. Lisi, and J. Morimoto, “EEG sensorimotor correlates of
speed during forearm passive movements,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 27, no. 9, pp. 1667–1675,
Sep. 2019.

[17] K. Mitra, F. S. Racz, S. Kumar, A. D. Deshpande, and J. D. R.
Millán, “Characterizing the onset and offset of motor imagery during
passive arm movements induced by an upper-body exoskeleton,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2023, pp. 3789–3794.

[18] E. Formaggio, S. F. Storti, I. Boscolo Galazzo, M. Gandolfi, C. Geroin,
N. Smania, A. Fiaschi, and P. Manganotti, “Time–frequency modulation
of ERD and EEG coherence in robot-assisted hand performance,” Brain
topography, vol. 28, pp. 352–363, 2015.

[19] A. Stolk, L. Brinkman, M. J. Vansteensel, E. Aarnoutse, F. S. Leijten,
C. H. Dijkerman, R. T. Knight, F. P. de Lange, and I. Toni, “Electro-
corticographic dissociation of alpha and beta rhythmic activity in the
human sensorimotor system,” Elife, vol. 8, p. e48065, 2019.

[20] J. A. Pineda, “The functional significance of mu rhythms: translating
“seeing” and “hearing” into “doing”,” Brain research reviews, vol. 50,
no. 1, pp. 57–68, 2005.

[21] N. Rustamov, L. Souders, L. Sheehan, A. Carter, and E. C. Leuthardt,
“IpsiHand brain-computer interface therapy induces broad upper extrem-
ity motor recovery in chronic stroke,” medRxiv, pp. 2023–08, 2023.

[22] J. M. Catalán, E. Trigili, M. Nann, A. Blanco-Ivorra, C. Lauretti,
F. Cordella, E. Ivorra, E. Armstrong, S. Crea, M. Alcañiz et al.,
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