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Keywords: Ebola virus disease remains a threat in different Sub-Saharan African countries more particularly in the Dem-
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to animal reservoirs. While vaccines like Ad26.ZEBOV and MVA-BN-Filo are safe and immunogenic, the dy-
namics of antibody responses after the two-dose regimen and booster vaccination are not fully understood.
Within-host mathematical models offer valuable insights into disease dynamics and waning immunity, but data-
driven mechanistic models of antibody kinetics remain scarce.

The present study seeks to elucidate the processes involved in antibody kinetics after the two-dose vaccine
regimen with Ad26.ZEBOV and MVA-BN-Filo vaccines, followed by a booster dose vaccination with Ad26.
ZEBOV, addressing challenges in inference for and implementation of within-host approaches.

By integrating established theoretical frameworks with recent empirical findings on antibody kinetics
following Ebola vaccination, we illustrate how mechanistic modeling can enhance and refine our understanding
of antibody dynamics. Specifically, we emphasize the distinction in the half-life of antibody responses at different
vaccination time points and explore the role of vaccine antigens in eliciting an immunological response through
the formation and activation of germinal center mediated response. Careful consideration was given to the
development of a model that is both interpretable and practically feasible.

The half-life of the antibody response was found to be longer after booster vaccination compared to after the
second vaccine dose, indicating a steadier decay process. This may be due to the improved quality of antibodies
generated, the formation of memory B cells sustaining antibody production, and antigen-antibody binding.

This study highlights critical considerations for implementing within-host mechanistic models and the need for
robust data to accurately estimate model parameters. Further research is essential to elucidate the decay dy-
namics of memory B cells and long-lived plasma cells, as these processes play a pivotal role in sustaining
antibody-mediated immunity.

1. Introduction individuals or contaminated surfaces. The disease is characterized by
symptoms such as fever, bleeding, and organ failure, with outbreaks
Ebola virus disease is a severe and often fatal viral disease primarily occurring in Sub-Saharan Africa, mainly in parts of West Africa and the

transmitted through direct contact with bodily fluids of infected Democratic Republic of Congo (DRC), particularly in North Kivu, Ituri,
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and South Kivu [1]. Effective disease surveillance, training of special-
ized health care workers, and access to advanced therapeutics and
vaccines are considered crucial factors to prevent larger Ebola out-
breaks. Thus, ongoing efforts to implement an effective vaccination
strategy in high-risk populations remain essential.

Currently, two licensed vaccines are recommended for the preven-
tion of Ebola infection and severe disease. The first being a single-dose
replication-competent viral vector vaccine manufactured as ERVEBO®
by Merck, targeting the Zaire strain of the Ebola virus, and used in ring
vaccination (i.e., vaccinating contacts of confirmed Ebola infected in-
dividuals) during ongoing Ebola outbreaks. A single dose of ERVEBO®
has shown to be highly immunogenic, producing robust humoral re-
sponses [2-4]. Furthermore, the vaccine has shown to be highly effi-
cacious and safe when used during recent outbreaks in Guinea and the
DRC [5,6]. The second vaccine was jointly formulated by Janssen Vac-
cines & Prevention in collaboration with Bavarian Nordic, consisting of
a two-dose heterologous vaccination regimen employing Ad26.ZEBOV
(marketed as Zabdeno®) and MVA-BN-Filo (marketed as Mvabea®). The
rationale of the two-dose vaccine regimen is to enhance and prolong
both humoral and cellular responses. This prime-boost strategy has been
shown to induce a robust and durable immune response in clinical
studies with healthy individuals [7-11]. Ad26.ZEBOV is a monovalent
vaccine designed to confer active, specific immunity against the Zaire
Ebola virus. Meanwhile, MVA-BN-Filo is a polyvalent vaccine targeted
to offer protection against a range of viruses, including the Sudan virus
(SUDV), Ebola virus (EVD), Marburg virus (MARV), and the Tai Forest
virus (TAFV). In addition, studies in children and people with HIV have
shown that the booster dose with Ad26.ZEBOV has given an anamnestic
immune response [12,13], suggesting its potential to enhance immunity
in other populations. Nowadays, this vaccine regimen is recommended
by the World Health Organization to be used during outbreaks for in-
dividuals at risk of Ebola exposure, and preventively, before outbreaks,
for national and international first responders.

Although extensive research has been carried out on safety and
immunogenicity of the two-dose vaccine regimen in different regions of
West Africa and the DRC, less attention has been paid to studying the
dynamics that are responsible for antibody production. Traditionally,
antibody kinetics have been assessed using phenomenological models,
which quantify trends without describing underlying biological pro-
cesses. Alternatively, within-host mechanistic models could be used to
describe the evolution in various biological populations, such as cells,
thereby unravelling how specific components of the immune system
respond and interact [14,15]. Typically, these dynamics are translated
into a set of Ordinary Differential Equations (ODEs) with both popula-
tion- and individual-level parameters governing changes in the biolog-
ical processes that are described. A recent systematic review by Garcia-
Fogeda et al. [14] found that many studies have relied upon phenome-
nological models rather than mechanistic ones. The latter can be further
categorized into theory-driven and data-driven approaches. Theory-
driven models, which were far more prevalent according to the sys-
tematic review, solely focused on the intrinsic properties of the model,
exploring the impact of interventions on model outputs without vali-
dating them against observed data. In contrast, data-driven models use
available data to inform and estimate model parameters and allow for
the identification of the best-fitting model based on empirical data. By
providing a deeper understanding of the biological mechanisms gov-
erning antibody kinetics, mechanistic models can help optimize vacci-
nation strategies and improve immunological outcomes, advancing
vaccine research beyond the descriptive capabilities of phenomenolog-
ical models.

To date, several studies have explored within-host mechanistic
models to study the antibody kinetics following the two-dose schedule
with Ad26.ZEBOV and MVA-BN-Filo [13,16-18], focusing on short- and
long- term humoral responses. However, challenges like computational
time and identifiability of model parameters emerged largely due to
limited immunological data and the design of data collection. While
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research on short- and long-lived plasma cells has progressed, the un-
derstanding of immune activation upon introduction of antigens and
antibody dynamics post-booster dose remains limited.

This study focuses on the aforementioned two-dose vaccine regimen
(Ad26.ZEBOV and MVA-BN-Filo) and booster dose with Ad26.ZEBOV,
which was implemented in an open-label Phase II clinical trial
(EBL2007, NCT04186000) in healthcare workers of Boende, DRC, which
was part of the EBOVAC3 project [19]. Our primary aim is to generate
new insights into the timing of vaccine-induced protection, evaluate the
efficacy of prime-boost strategies, and quantify antibody decay. Partic-
ularly, this is the first study to integrate the booster dose with Ad26.
ZEBOV into a within-host mechanistic modeling framework. Using
immunogenicity data from the EBL2007 trial, we inform the mechanistic
model parameters to not only describe antibody decay but also to
elucidate the underlying biological mechanisms, such as B cell activa-
tion and memory cell formation. This mechanistic approach offers a
level of biological interpretation that phenomenological models alone
cannot provide, moving beyond descriptive patterns to a deeper un-
derstanding of immune dynamics.

The paper is organized as follows. In the Methods section the data
and methodology employed to address the aforementioned objectives is
introduced. Subsequently, the Results section details the application of
mechanistic approaches to analyse the EBL2007 trial data. Finally, the
Discussion section highlights the insights gained and reflects on the
implications and lessons learned.

2. Methods
2.1. Data description

The participants in the study were healthcare providers and front-
liners recruited from the Tshuapa province in the DRC [19], divided into
two cohort groups based on two different booster schedules. Within the
first year of the study, both cohorts were vaccinated with the same
vaccine regimen, Ad26.ZEBOV (5 x 10'° viral particles [vp]) as a first
dose and MVA-BN-Filo (1 x 108 50 % infectious units [Inf U]) as a
second dose vaccination at a 56-day interval between vaccine admin-
istrations. Following the two-dose schedule, participants were ran-
domized (1:1) to receive a booster dose of Ad26.ZEBOV either one
(cohort 1) or two (cohort 2) years after the first dose. The reader is
referred to Lariviere et al. [19] for a comprehensive description of the
study design.

The initial sample consisted of 700 participants, 676 meeting the per-
protocol criteria, receiving both doses within the protocol-defined
window, providing at least one post-vaccination immunogenicity sam-
ple, and having no major protocol deviations affecting the immune
response [19]. Seroprevalence at baseline was low, with no reported
prior EVD or EBOV vaccination or infection, and no evidence of out-
breaks involving strains other than ZEBOV in the region, suggesting
minimal pre-existing immunity or cross-reactivity [20,21].

Among participants with available data on binding antibody re-
sponses around 21 days after the second dose with MVA-BN-Filo, 95.2 %
met the responder threshold (>2.5x lower limit of quantification
(LLOQ)). Anti-ZEBOV IgG titers that were below the LLOQ were
considered left-censored (9 % in total, of which 53.2 % belong to the
baseline measurement). Fig. 1 illustrates individual log-transformed
antibody titers (ELISA units/ml) over time, encompassing the baseline
measurement, vaccination moments and additional measurements
based on samples collected for both cohort groups (i.e., cohort 1 shown
in red, cohort 2 in blue).

The present study utilizes phenomenological models to quantify the
association between antibody titers and vaccination status. This pre-
liminary analysis aimed to assess whether the two cohorts exhibited
similar immunological responses to the vaccination schedule, particu-
larly to the booster dose, which was administered at different time
points across cohorts. Identifying significant differences between
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Fig. 1. Boxplots of log-transformed antibody concentrations expressed in ELISA units/ml. At the time of the baseline measurement the first vaccine dose was
administered, and at day 56 the second dose was administered. An additional antibody concentration measurement was performed 78 days after the first dose. The
additional Ad26.ZEBOV dose, referred to as the prime-booster, was administered either one year (Y1) or two years (Y2) after the initial dose for cohort group 1 (in
red) and cohort group 2 (blue), respectively. Subsequently, a blood sample was taken seven days after booster vaccination. The individual dots within the boxplots
represent the variability of individual times within the visits at which the blood sample and vaccine administration were evaluated.

cohorts would imply the need for cohort-specific parameters or struc-
tural adaptations in the subsequent mechanistic modeling to adequately
reflect the underlying biological dynamics.

Subsequently, a linear mixed-effects model (LMM) was fitted,
including both fixed effects for population-level and random effects for
individual-specific variation and this model was fitted for each cohort
group. Let Y;; be the log antibody titer for individual i at measurement j,
with j = O for pre-booster and j = 1 for post-booster. The variable Booster
is equals to 1 as post-booster and 0O otherwise. This model allows us to
assess the average effect of booster vaccination while accounting for
individual-level heterogeneity in both antibody levels prior and poste-
rior to the booster dose. The model is defined as follows:

Y; = (B + boi) + (B + bii)*Booster + ¢;,

ey ~ N(0,6%), by ~ N(0,62). by ~ N(0,0?) M

The terms by; and bj; denote individual-specific random intercepts
applicable to two different measurement occasions, respectively. This
model allows us to assess the average effect of booster vaccination while
accounting for individual-level heterogeneity in both antibody levels
prior and posterior to the booster dose.

Additionally, an LMM was used to quantify the impact of the booster
dose within each cohort, accounting for the dependency between
repeated antibody measurements (Appendix B). This model allowed
estimation and testing of differences in mean titers between cohorts at
each time point, as well as differences in booster effects between co-
horts. The CIs were computed using the confint() function from the Ime4
package in R, which uses the profile likelihood method. A significance
level of 5 % and a p-value threshold of 0.05 were used for both analyses.
These analyses were performed in R, version 4.2.3 [22].

While the linear mixed-effects model (LMM) was used to evaluate
population-level changes in antibody titers and assess the comparability
of cohort responses, it does not capture the underlying biological
mechanisms that generate these dynamics. To address this, we applied a
data-driven mechanistic modeling approach to gain deeper insight into
the immunological processes involved in antibody production and decay
following vaccination. Mechanistic models, described by ODEs (Egs.
(2)-(3)), consist of compartments representing biological processes
involved in antibody production. To account for left-censored observa-
tions, we employed a likelihood-based approach that integrates
censored and non-censored data within a unified framework. Instead of
imputing censored observations by using fixed values (e.g., LLOQ/2), a

conditional likelihood formulation was used, ensuring that parameter
estimation appropriately reflected the uncertainty introduced by
censoring.

A variety of candidate models were considered in the process of
identifying a biologically plausible yet parsimonious framework. These
candidates were designed to reflect the key immunological mechanisms
relevant to our study. While multiple structures were explored, the final
model structure presented below was selected based on its alignment
with the biological processes of interest and its ability to meet the se-
lection criteria described at the end of this section.

2.2. Mechanistic model proposed by Nguyen et al. [23]

The proposed mechanistic model includes antigen (Ag), germinal
center (GC) mediated response, and antibody (Ab) populations.

The antigen population represents the introduced (vaccine-)antigen,
which is cleared by two processes: captured by antigen-presenting cells
(APCs) and transported to the lymph nodes (rate 8,¢), or binding with
antigen-specific antibodies that form antigen-antibody complexes that
are also deleted from the circulation (e.g. phagocytosed), with rate f,g.

The GC mediated response is subject to a delay process entailing a
series of events to process an immunological signal (with delay governed
by parameter T,4). This delay is not intended to capture the full mech-
anistic detail of GC mediated response but rather to summarize, in a
pooled form, the initiation of GC mediated response following antigen
recognition. Once activated upon encountering an antigen induced in
the Ag population, these events take place within the germinal center
mediated response. Briefly, naive B cells are activated by binding with
antigens and engage with activated cognate T cells to initiate germinal
center mediated response. This process leads to the migration of
(mature) B cells into germinal centers, within the lymph nodes [24,25].
Afterwards, this process leads to B-cell proliferation, antibody affinity
maturation, differentiation, proliferation, and consequently the pro-
duction of antibodies, primarily through the generation of plasma cells.
In this context, GC serves as a proxy for the integrated signal processing
and functional output of GCs, particularly the activation of B cells and
the subsequent differentiation that drives antibody production. Lastly,
in the third equation, y,p is the antibody production rate in the germinal
center mediated response, B, is the antibody decay upon binding with
the antigen, and &, represents the natural decay of antibodies.
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The aforementioned model was restructured to better reflect our
study scenario, in which a booster dose is administered, aiming for a
more accurate representation of the underlying biological mechanisms.
We found this structure to offer a biologically meaningful simplification
that improved model identifiability and interpretability. Fig. 2 illus-
trates the schematic representation of the biological mechanisms
incorporated into the restructured model (Eq. (3)), including antigen
dynamics, germinal center mediated response, and antibody production
following each vaccine dose and booster administration.
Building on the schematic representation shown in Fig. 2, the bio-
logical processes were mathematically formalized through a system of
ODEs. The resulting model is defined as follows:

ap*GC — .y *Ag*Ab — 54,*Ab
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scale [27]. The first antigen level is incorporated into the initial condi-
tion of Ag, while the infectious units from the second dose are specified
in @; using a Dirac delta function. In a similar manner, the population
Ags describes the antigen of the booster dose, represented by @
implying a Dirac delta function.

The parameter T,g represents the decay of the germinal center
mediated response, rather than 1/7,4 as in Eq. (2). This adjustment is
made because the activation of GCs following each vaccination moment
is independent of their decay rate [28]. Limited antigen availability in
the GCs after the first dose results in a response predominantly driven by
naive B cells that have matured and become activated upon encoun-
tering the antigen. After the second dose, memory B cells play a more
prominent role in this process, with higher levels of antigen available
due to the antibodies generated after the first dose that facilitate effec-
tive antigen presentation [28,29]. Specifically, the model incorporates
two separate parameters, og and oy, which are proportional to the nat-
ural clearance rate of antigens (5,4), representing the generation rates of
short-lived plasma cells and memory B cells, respectively, from the GC
mediated response. These are linked to antigen populations Ag; (first

3

B (= g — g Ag ALY (1~ () + (@1) T (O scicar
dA ; AR .
dtg3 = ( - ‘sag '(Ag:; - ﬂag*Ag:s"Ab) "(1 - IZ(t) ) + (QZ)"IZ(t)uz—egtguzﬂ'
dGC . . .
Tat Oags*A&y + Oagn™Ag3 — Tag*GC
dAb AT . AT % %
a = (— Sa*Ab) 13(t)0<t§u2 +7ap*GC — (O *Ab)*14(t) o0 — Basp (Agl +Ag3) Ab

I(t) (k = 1,2,3,4) represents an indicator function with value 1
when a specific condition applies. The measurement denoted by u; and
up indicate the individual times of second-dose and booster adminis-
tration, respectively.

The first antigen is introduced via the Ad26.ZEBOV vaccine at
baseline, which consists of 8.75 infectious units on the log10 scale [26],
followed by MVA-BN-Filo vaccine administration on day 57 since the
first dose, which contains an amount of 7.8 infectious units on the log10

and second dose with Ad26.ZEBOV and MVA-BN-Filo) and Ags (booster
with Ad26.ZEBOV), respectively. While not explicitly included in the
ODE system, ag and oy, are incorporated through the generation rates of
plasma cells as 8,g5 = 05*8ag and Sagm = oiv*Sag. From a biological point
of view, early responses following primary vaccination (Ad26.ZEBOV
and MVA-BN-Filo) are typically driven by the activation and differen-
tiation of naive B cells, producing mainly short-lived plasma cells, given
that there was not pre-existing immunity and that the MVA-BN-Filo
vaccine, confers immunity against additional serotypes. On the other

} Decay rate of germinal

centers

tag
8.
R — *
~ %6,
Decay rate of e
antigens S~ ~
Activation rate of the
Bag Gag from antigens
via short-lived B cells GC

Decay rates of antigens and antibodies
via the formation of antigen-antibody
complexes

Proliferation of
antibodies via
plasma cells

Yab

Decay rates of

antibodies

Decay rate of antigens
*
oy, 6

\

ag_.
-

-
-

Activation rate of the Gag
from antigens via
memory B cells

Decay rates of antigens and antibodies via
the formation of antigen-antibody
complexes

Fig. 2. Schematic diagram of the mechanistic model structure corresponding to Eq. (3), showing the antigen introduction, germinal center mediated response, and

antibody production dynamics.
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hand, memory B cell responses are more dominant following re-
exposure (booster), when pre-existing antibodies and B cells enhance
antigen presentation and GC mediated response, facilitating the gener-
ation of memory B cells and long-lived plasma cells. While the model
assumes a predominant contribution from short-lived plasma cells after
primary vaccination and from memory B cells after the booster, we
acknowledge that this representation may appear overly dichotomous.
In reality, both cell types are likely generated following each dose, albeit
in differing magnitudes and proportions. Due to the limited immuno-
logical data available, we chose to model these responses separately per
dose to ensure parameter identifiability.

The parameter y,p reflects antibody production driven by plasma
cells, irrespective of whether they originate from short-lived plasma
cells or memory B cell. To evaluate antibody half-lives after the two-dose
regimen and the booster, two decay parameters were estimated: 8,
(from Y1 data) and 0, (from post-booster measurements). Initial values
for 8, and 6, were informed by fitting separate LMM to their respective
time interval, with time as a continuous covariate to log-transformed
antibody concentrations. The slope coefficients from these models
served an initial condition of the aforementioned decay rates. Addi-
tionally, the parameter p,pp is proportional, with proportionality factor
Nab, to the decay of antigen after the formation of newly synthesized
antibodies (Bag). The reason for this relationship is that the presence of
antigens drives antibody production, so their clearance rate directly
influences the rate at which antibodies are produced or maintained [30].

2.3. Mechanistic model implementation

Our first exclusion criteria to evaluate the models were poor Sto-
chastic Approximation Expectation Maximization (SAEM) and poor
convergence assessment. The goal for the algorithm is to first reach a
neighbourhood around the maximum likelihood (ML) estimates during
the initial phase and then progressively converge to the ML estimates for
the model parameters. The second step, referred to as the convergence
assessment, allows to execute a workflow of estimated parameters
several times using different initial values as well as different seeds,
enabling to assess the robustness of the convergence of the parameters.
SAEM and convergence assessment were performed in Monolix, version
2023 [31].

Second, booster-related data as depicted in Fig. 1 (pre- and post-
booster) were examined, and candidate models were fitted to the full
dataset. Among models that met our selection criteria as described
above, the best fit was determined based on Akaike’s Information Cri-
terion (AIC) [32], for more details see Supplementary Material Table C3.
Pre-existing work on within-host mechanistic models, particularly those
applied to Ebola and Hepatitis A [13,16,33], were of particular interest
for evaluation in this study due to their incorporation of the dynamics of
short- and long-lived antibody secreting cells. However, the mechanisms
derived from these models were challenging to implement and infer
given the available data, as it had fewer sampling points, it did not
provide sufficient resolution to reliably estimate all model parameters of
the aforementioned studied. Consequently, as they did not meet our
inclusion criteria and required more extensive data to fully inform the
model we adopted the model proposed by Nguyen et al. [23], presented
below in Eq. (2).

Due to identifiability issues with the candidate model, parameter
profiling and sensitivity analyses were conducted to refine the model,
using individual parameter estimates from the SAEM algorithm near the
ML neighbourhood. To explore parameter correlations and assess
convergence robustness, we first ran five independent chains with var-
ied initial values and seeds. This preliminary step allowed us to detect
patterns of parameter dependence and convergence issues. Based on the
insights from these runs, we performed a more extensive follow-up
analysis using ten chains, systematically evaluating pairwise correla-
tions to identify combinations contributing to poor convergence. As a
result, these analyses enabled us to understand how changes in one
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parameter value influence others and to identify a plausible range of
values for these, contributing to the development of a more parsimo-
nious model.

A normal distribution with a proportional error was assumed for the
raw antibody concentration data. To ensure positivity, the population-
level parameters (fixed effects) are estimated on the log scale, and
random effects are assumed to follow a normal distribution. As a result,
the individual-specific parameters follow a lognormal distribution. The
variability of these random effects assumes an inverse-Wishart distri-
bution. Additional information on inference and parameter estimation
can be found in Appendix A.

Finally, a non-parametric bootstrap approach using 250 bootstrap re-
samples, was used to obtain confidence intervals for the estimated pa-
rameters of the final candidate model presented in the Results section.
Sensitivity analyses and bootstrapping were conducted in R, version
4.2.3 [22]. Additionally, sensitivity analyses were performed using the
full dataset that included both responders and non-responders, as well as
a dataset excluding non-responders, and found no significant impact on
the main findings. See Supplementary Table C5.

3. Results

Table 1 presents an overview of the demographic variables and
summary measures related to antibody concentrations measured at the
different visits. Although Mpox vaccination status and sex were not
included as a covariate in our mathematical model, they are presented in
the table due to its demonstrated relevance in immune responses during
previous analyses of this trial [10]. Differences between sex within the
cohorts, may have been amplified by the exclusion of pregnant and
breastfeeding women, a common practice in clinical trials [19].

Following, we present the results of the phenomenological models
used to assess the impact of booster vaccination. Next, we examine
antibody kinetics, fitting the proposed mechanistic model in Eq. (3) and
address the identifiability issues.

Table 1

Demographic variables and Anti-ZEBOV IgG measurements per healthcare
worker (HCW) cohort and altogether. For continuous variables, mean and
standard deviation (S.D.) are reported while for categorical variables, absolute
frequencies (no.) and relative frequencies expressed as percentages (%) are
shown. Y1 and Y2 refer to one year and two years after the initial vaccine dose,
respectively.

Cohort 1
(n = 340)

45.42 (11.51)

Cohort 2
(n = 336)

Variable All HCWs

(N = 676)

Age, in years, mean (S.
D.)

44.62 (12.46) 45.01 (11.99)

Sex, no. (%)

Women 88 (25.88) 70 (20.83) 158 (23.37)
Men 252 (74.12) 266 (79.17) 518 (76.63)
Mpox vaccine, no. (%)

Yes 59 (17.35) 67 (19.94) 126 (18.64)
No 281 (82.65) 269 (80.06) 550 (81.36)

Geometric mean antibody concentrations (in ELISA units/ml), (S.D.)

Baseline 77.03 (4.74) 78.22 (5.08) 77.62 (3.44)
57 days post first dose 252.5 (13.44) 308.08 (18.09) 279.07 (10.99)
21 days post second 3825.67 4496.32 4144.98
dose (288.36) (341.47) (219.61)
Y1 after the first dose 279.7 (15.49) 339.06 (20.92) 307.82 (12.69)
7 days after the prime 10,781.58 - 10,781.58
booster (806.8) (806.8)
Y2 after the first dose 1945.07 (159) 281.66 (17.86) 732.35 (47.44)
7 days after the prime - 10,770.94 10,770.94
booster (873.08) (873.08)
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Table 2

Parameter estimates of the linear mixed effects model per cohort.
Parameter Estimate (SE) CI P-value
COHORT 1
Intercept 5.63 (0.06) (5.51, 5.75) < 0.01
7 days post-booster 3.64 (0.06) (3.52, 3.77) < 0.01
COHORT 2
Intercept 5.64 (0.06) (5.50, 5.77) < 0.01
7 days post-booster 3.65 (0.07) (3.50, 3.79) < 0.01

3.1. Phenomenological approach

Our objective with the phenomenological approach was to investi-
gate whether the timing of prime-boost administration and the antibody
response seven days post-booster exhibited comparable effects on anti-
body concentrations within each cohort. Table 2 reveals the estimates of
the coefficients from the LMM fitted to the measurements prior and after
the prime-booster dose per cohort. The overlapping confidence in-
tervals, together with the results of two independent t-tests (see Table B1
in Appendix B), provide evidence of no statistically significant differ-
ences in mean antibody titers between the cohorts.

3.2. Mechanistic approach

We now turn to biological understanding of antibody kinetics. First,
the abovementioned model was fitted to the full dataset, using the
parameter estimates obtained from fitting the model to the Y1 data as
initial values. Proportionality factors were set to positive values,
assuming that og and o were equal, and that n,, was equal to 1. On the
other hand, initial decay rates of 0.009 and 0.004 were based on esti-
mates from the LMM fitted to the Y1 data and the booster process. After
running the model and applying the selection criteria defined in the
Methods section, we examined bivariate plots to evaluate how changes
in one parameter influenced values for others. The most divergent
parameter was identified and fixed to the arithmetic mean of its con-
ditional values across chains. This iterative process was repeated until
the convergence criteria were met. As a result, Table 5 presents the most
parsimonious model from Eq. (3), pooling all parameter estimates from
the different chains (i.e., 10 in total), which are initialized using
different starting values and seeds. Further details on the convergence
assessment and sensitivity analyses can be found in Appendix D, with
parameter definitions summarized in Table C4 of Appendix C.

Table 5
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Antigen clearance occurs through two processes with decay rates 8¢
and Pag. The first indicates the rate of antigen uptake by APCs and has a
fixed value of 0.4, suggesting a half-life of 2 days. This value provides
additional insight into the timing of antigen decay, which is consistent
with literature stating that antigen clearance typically occurs within the
first week post-vaccination [34,35]. The parameter g reflects the
effectiveness of the immune system in clearing antigens through the
formation of antibody-antigen complexes. With a value of 0.07 (95 % CI:
0.063, 0.075), this indicates that antigen clearance via antibody binding
is relatively slow. This could be due to the lack of pre-existing antibodies
prior to vaccination, or from the fact that most antigens are taken up by
APCs.

The results displayed by the GC mediated response indicate that it
takes approximately 4.17 days to create an immunological signal,
consistent with prior findings [24,25]. Additionally, the proportional
rates from the short-lived plasma cells and memory B cells (as, o)
suggest that memory B cells are generated more rapidly, as their rate of
response is higher than that of the short-lived plasma cells (7.71 vs 0.4)
[28,36]. This is consistent with the longer lifespan of memory B cells
compared to short-lived plasma cells, which are cleared after days
following vaccination [13].

Turning to the antibody population, y,p, represents a rate parameter
that quantifies the antibody production. This rate is determined by the
number of plasma cells actively producing antibodies, which is esti-
mated to be approximately 1041 plasma cells. Once antibodies bind to
antigens, they are no longer available to neutralize additional antigens,
and they are cleared in the process of an antigen-antibody interaction
(Pabp) with a rate of 0.27 (i.e., Bag+nab) with 95 %CI: (0.017, 0.020). The
proportionality factor ngy, of the aforementioned parameter exceeds one,
indicating effective antigen clearance. Since the antigens peak at two
days post vaccination and decay rapidly, making antibody clearance via
binding (Bapp) significant only when these antigens are still present after
vaccination. Given this and the variability in data intervals informing
antibody decay rates, we estimate half-lives relying on an exponential
decay process rather than focusing on the mechanistic model’s analyt-
ical solution for the antibody titers. The parameter 8, represents the
natural decay of the antibodies after the two-dose vaccine regimen
(Ad26.ZEBOV, and MVA-BN-Filo 57 days later), with a half-life of 2
months (62 days with 95 % CI: (57.76, 69.3) days). Meanwhile, the
parameter 0, reflects the antibody decay after the prime-booster dose
(Ad26.ZEBOV), resulting in a half-life of approximately 3 months (94
days with 95 % CI: (86.64, 105.02) days), indicating a higher persistence
of antibodies following the booster dose with Ad26.ZEBOV. The

Parameter estimates using the most parsimonious model from Eq. (3) for cohorts 1 and 2, fixing the parameters {as = 0.4, 853 = 0.4, N3 = 3.88, 7,5 = 0.24}, and
assuming a normal distribution and a proportional error model for the raw antibody titers. The fixed effects are on the log-scale and the random effects follow a normal
distribution. The standard error estimates (S.E.) for the estimators of the model parameters include within- and between-chain variability based on 10 chains that were
initialized with different starting values. The standard error estimates for the transformed parameters are derived using the Delta Method. The bootstrap-based 95 %
percentile confidence intervals (CIs) are calculated based on a non-parametric bootstrap approach with 250 bootstrap samples included.

Parameter  Definition Parameter estimate Transformed parameters 95 % CI
(S.E) (S.E)
Bag Decay of antigens when are combined with newly synthesized antibodies forming so- 0.0413 (0.0015) 0.0700 (0.0039) (0.06393, 0.0756)
called antigen-antibody complexes
v Proportional rate of memory B-cells 3.1243 (0.2285) 7.7069 (0.7007) (5.9434, 8.8697)
Yab Proliferation of antibodies induced by plasma cells 352.1254 (16.3857) 1041.5965 (60.2009) (968.4236,
1172.3990)
Sab Natural decay of antibodies after the two-dose vaccine regimen 0.0097 (0.0001) 0.0112 (0.0002) (0.0108, 0.01150)
Ab(0) Baseline antibody titers 42.3501 (3.7263) 283.2544 (34.0430) (234.8518,
322.0862)
Oab Natural decay of antibodies after the booster dose 0.0057 (0.0001) 0.0074 (0.0002) (0.0068, 0.0078)
€pag Random effects of B,g 0.5278 (0.0417)
EaM Random effects of oy 0.9028 (0.0539)
€yab Random effects of yap 1.0845 (0.0342)
€5ab Random effects of 8, 0.1449 (0.0144)
£Ab(0) Random effects of Ab(0) 1.900 (0.0818)

£0ab Random effects of 0,

0.2584 (0.0227)
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Fig. 3. Predicted log-transformed IgG titer profiles given by the estimated individual-level model, which is the parsimonious model from the Eq. (3) with fixed
parameters {a = 0.4, 5,5 = 0.4, Nap = 3.88, T4 = 0.24}.}. In the upper panel cohort 1 is represented in the grey boxes, and in the lower panel the cohort 2 is
represented in light yellow boxes. The black dots represent the observed data, the red dashed curves are the approximated conditional mean curves from SAEM, and
the blue curves depict the population-level fits based on the estimated fixed effects and individual-specific design characteristics, without incorporating individual-
specific random effect estimates. The blue shaded areas represent the 2.5 % and 97.5 % predicted percentiles, which account for inter-individual variability by
including random effects sampled from the estimated population-level distribution, rather than being based on individual-specific estimates.

parameter Ab(0), estimated at 283.25 EU/mL, reflects the typical in-
dividual’s baseline antibody level before vaccination, accounting for
both left-censored observations and inter-individual variability. This
value is derived from a population-level fit and may be higher than the
empirical GMC due to model-based integration of uncertainty and data
from subsequent timepoints.

Fig. 3 displays the observed data for each participant, as well as the
predicted profiles given by the estimated individual-level model.
Moreover, it can be observed that the predicted values correspond well
with the observed data. Based on this graphical depiction, the model
does not show a lack-of-fit to the available data. Since no substantial
differences between cohorts were found in the phenomenological
analysis, we assumed shared parameter values across cohorts in the
mechanistic model. Due to identifiability and convergence issues,
assessing cohort-specific mechanisms was not feasible and remains an
open question for future study. Further model diagnostics are presented
in Appendix D.

4. Discussion

The present study was designed to analyse the antibody dynamics
using within-host mechanistic models. The first question sought to
determine the antibody half-lives after the second dose and the subse-
quent booster dose. The estimated half-lives are crucial for under-
standing the waning processes and the persistence of immune responses
against infection [37,38]. Our findings indicate antibody half-lives of
two months (i.e., 62 days, 95 % CI: (57.76, 69.3) days) after the two-
dose vaccine regimen and approximately three months (i.e., 94 days,
95 % CI: (86.64, 105.02) days) after booster vaccination. In contrast,
previous studies, such as those by Pasin et al. [13] and Alexandre et al.
[16], estimated shorter antibody half-lives of around 24 days (95 % CI:
22, 26) after the second dose, while others found a more prolonged
persistence [9]. Studies using ERVEBO vaccine studies reported a half-
life of 28 days [4]. These differences as compared to our estimates can
be explained in part by the inclusion of three different decay rates for the
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antibody population in our model, which allowed us to disentangle
different processes contributing to the overall decrease of antibody
levels. Antibody decay should be viewed in terms of overall levels over
time, considering multiple overlapping processes. In this study, the
antibody measurements were specific to the Zaire ebolavirus (ZEBOV)
glycoprotein, as captured by the FANG ELISA assay. While this assay
may pick up minimal background signal, significant cross-reactivity
with other filovirus strains is unlikely and could not be directly
modeled due to lack of specific antigenic data [28,39].

In particular, the mechanistic model allowed us to separately esti-
mate decay rates linked to waning of antibody responses by physiolog-
ical processes, antigen-driven clearance, and antibody production in
response to booster-induced antigen presentation. This multi-process
view provides a more nuanced understanding than models assuming a
single decay rate. Our findings suggest that antibodies persist longer
after the booster dose, thereby extending humoral immunity.

While this study focused on the half-lives of binding antibodies, it is
also important to understand how antibody levels persist after they
begin to decay. Our findings on antibody persistence, derived from the
decay rates in the mechanistic model, indicate that by day 100 post first-
dose, antibody levels are expected to decline with respect to the 2.5-fold
increase above the LLOQ serving as a reference for the immunogenicity
threshold. Following the booster dose, the decay is steadier, in particular
it starts to decline towards the immunogenicity threshold at day 307.
Individual variability in immune responses suggests that not all in-
dividuals will reach this threshold at the same time, with many main-
taining antibody levels above this value.

Consistent with literature, binding antibody concentrations were
persisting for more than 3 years [11,40-43], although at lower levels
than some studies have reported [46]. Choi et al. [44] observed antibody
persistence lasting 4 to 5 years after the second dose and noted a 54-fold
increase 7 days post-booster, whereas our study recorded a 44.75-fold
increase 95 % CI: (35.38, 56.60)- and 34.79-fold increase 95 % CI:
(22.79, 53.11) per cohort at the same interval. Similarly, Manno et al.
[45] reported persistence beyond 3 years and found a 101- and 44-fold
increase in antibody levels 21 and 7 days post-booster, respectively.
These findings highlight the importance of carefully timed sampling to
accurately assess long-term antibody titers. Comparing trials based on
isolated cross-sectional data may therefore lead to misleading conclu-
sions regarding the duration of antibody positivity, as there is no
established correlate of protection (CoP). To accurately evaluate long-
term antibody persistence, studies must account for the full trajectory
of antibody decay.

Importantly, the phenomenological analysis revealed no substantial
differences in antibody responses between cohorts, suggesting that the
timing of booster dose administration could be relatively flexible. This
has valuable implications for immunization strategies in remote or
resource-limited areas [46]. The absence of observed differences in the
overall antibody kinetics implies that the underlying parameters of the
mechanistic model, such as antigen clearance, memory B cell response,
or decay processes, may be similar between cohorts. However, this
assumption remains to be verified. Due to data limitations and identi-
fiability issues, our model did not allow us to robustly investigate
whether such mechanistic processes were different across cohorts.
Future studies should study this effect as a covariate, to determine
whether these underlying immune mechanisms are truly shared.

Neutralizing antibodies are essential as they can neutralize antigens
or viruses. While our study does not directly measure neutralizing an-
tibodies, the parameter f,pp in our model, with a proportionality factor
of 3.88, suggests significant antibody-antigen binding, potentially indi-
cating neutralization. To contextualize our findings, prior studies have
demonstrated the persistence and variability of neutralizing antibodies
following vaccination. Choi et al. [47] reported the presence of Anti-
Ad26 neutralizing antibodies in small infants, while Bockstal et al.
[40] observed robust neutralizing responses against Ebola virus, spe-
cifically the Zaire strain (ZEBOV) but lower rates for SUDV and MARV.
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Mutua et al. [11] further found that neutralizing antibodies persisted up
to day 360 following a two-dose regimen. This highlights the importance
of future studies to determine whether the antigen-binding interactions
identified in our model also translate into neutralizing functionality,
which is critical for protective immunity.

These findings may be limited by the focus solely on binding anti-
bodies, without fully capturing short- and long-term humoral responses.
Short-lived antibody secreting cells provide an immediate response,
while long-lived antibody secreting cells ensure sustained antibody
production [48]. Recent studies suggest that short-term antibodies may
persist for up to a year post-prime immunization [13,16], while long-
term responses show a greater durability between 5 and 15 years
[13,16]. While our model distinguishes between short-lived plasma cells
and memory B cells in germinal center mediated response, additional
follow-up data would strengthen these distinctions. Nonetheless,
defining additional components of immunity further increases the need
for sufficient data to infer all relevant processes [23]. Rather than just
estimating antibody decay, we inferred meaningful biological quanti-
ties, such as antigen-antibody binding rates, and the relative generation
of memory vs. short-lived plasma cells in GCs. This is in particular re-
flected in the parameters oy being much higher than ag, suggesting a
robust memory B cell response following the booster dose, consistent
with expected immunological mechanisms [49] [50]. On the other hand,
including antigen decay dynamics (8,4, Bag) and their interaction with
antibody levels provides insight into how long antigen is present to
stimulate the immune system.

We recommend starting with simpler models before progressing to
more complex ones, particularly given the challenges of computational
time and parameter identifiability. While there is extensive literature on
solving mechanistic approaches with standard ODE solvers (e.g., in
MATLAB or R), software that integrate ODE solving with parameter
estimation including random effects (e.g., mixed effects modeling) is less
available. In these cases, software like Monolix (frequentist/Bayesian)
[31]and JAGS (Bayesian) [14], as well as Stan, which uses MCMC with
the no-U-turn sampler (NUTS) [51], are available. The choice between
these tools often depends on the statistical approach, computational
efficiency, flexibility in solving differential equations, user interface,
and licensing constraints. Ultimately, model development should strive
for parsimony while also considering practical feasibility, especially
when working with limited data.

An important limitation of this study is the scarcity of immunological
and longitudinal data, which constrains model accuracy. Direct infor-
mation on the processes driving antibody dynamics was unavailable,
leaving binding antibody levels as the only source of information.
Parameter estimation relied on backward fitting, requiring fixed pa-
rameters to address identifiability issues, which is a common challenge
that often leads to simplified models [13,17]. By contrast, studies with
richer longitudinal data have successfully identified key biological pa-
rameters [33,52,53]. Further research should explore the data needed to
fully inform these models. Despite these limitations, this study provides
valuable insights into antibody kinetics and immune processes.

We did not assess the effect of covariates on our model parameters
due to identifiability issues and the lack of sufficient data to support
these analyses. Incorporating covariates would require estimating
additional parameters, adding complexity to a model where parameter
estimation was already challenging. However, previous studies have
highlighted that factors such as sex, vaccination against Mpox, and
geographic region have an influence on antibody kinetics
[4,10,13,16,47]. While covariate effects have been partly studied using
simpler models [10], it remains to be determined whether the parame-
ters driving antibody production, such as those estimated in our mech-
anistic framework, differ meaningfully between cohorts. Including such
an analysis in our study would have largely replicated existing work,
without providing further biological insight into the mechanistic pro-
cesses specifically involved in the booster antibody response.

This study did not assess the role of B cell subpopulations,
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specifically memory B cells (MBCs) nor long-lived plasma cells (LLPCs),
but how the germinal center mediated response gets activated after each
dose producing plasma cells which produce binding antibodies. This is
important because within the GCs, some B cells differentiate into LLPCs,
which reside in the bone marrow and produce high-affinity antibodies,
ensuring long-term protection. Others become MBCs, which persist in
circulation and can quickly differentiate into antibody-secreting cells
upon re-exposure to the antigen. Unlike LLPCs, which maintain antibody
production regardless of antigen presence, MBCs can contribute to a
broader immune response and can recognize antigen variants. [25,26].
Recent work by Xu et al. [54] has further highlighted the complexity of
these processes, demonstrating that antibody repertoire reshaping and
memory dynamics are influenced by sequential or heterologous expo-
sures to different viral infections. While our model distinguishes be-
tween short-lived plasma cells and memory B cells indirectly, it does so
through a simplified compartment representing the GC mediated
response, abstracting away the full complexity of the cellular processes
within GC mediated response. This modeling choice was deliberate,
balancing biological plausibility with identifiability and data limita-
tions. Detailed modeling of B cell activation, T cell help, and affinity
maturation would require extensive immunological measurements not
available in the current dataset. Instead, we tracked antigen and anti-
body concentrations, two components for which direct data were
available, using a structure that preserves the essential Ag - GC - Ab
biological processes. In future investigations, both MBCs and LLPCs
could be added as compartments, to better understand the longevity of
immunity conferred by this vaccine regimen.

5. Conclusion

This study set out to assess the feasibility of implementing within-
host mechanistic approaches to gain a deeper understanding of anti-
body dynamics. Our findings reveal that antibody half-lives after the
booster dose is greater than after the second dose. Additionally, we
quantified key biological processes underlying antibody dynamics,
contributing to a more comprehensive understanding of these
mechanisms.

The challenges addressed in inferring these models have provided
valuable insights into antibody responses and lay the groundwork for
future research on binding antibodies and memory B-cell decay. Further
research should refine these models and identify necessary data.

In conclusion, these findings, together with future investigations, can
be used to develop targeted interventions aimed at when to implement
vaccination schedules. While a definitive CoP for Ebola vaccines has not
yet been established, estimating when antibody levels fall below certain
thresholds may still offer valuable guidance for booster timing. Impor-
tantly, our mechanistic model captures between-individual variation in
immune responses, which can inform tailored guidance on vaccine
schedules among healthcare workers in this case. This is especially
relevant in resource-limited areas, where identifying subgroups at risk of
earlier waning immunity may be critical for preventing future
outbreaks.

CRediT authorship contribution statement

Irene Garcia-Fogeda: Writing — review & editing, Writing — original
draft, Visualization, Software, Resources, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Steven Abrams:
Validation, Supervision, Methodology, Investigation, Formal analysis,
Conceptualization. Stijn Vanhee: Validation, Resources, Methodology,
Formal analysis, Conceptualization. Maha Salloum: Validation, Re-
sources, Investigation, Conceptualization. Benson Ogunjimi: Valida-
tion, Methodology, Funding acquisition, Formal analysis,
Conceptualization. Niel Hens: Validation, Supervision, Project admin-
istration, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization.

Vaccine 64 (2025) 127707
Funding

The EBOVAC3 project has received funding from the IMI2 Joint
Undertaking under grant agreement No 800176 (IMI-EU). This Joint
Undertaking receives support from the European Union’s Horizon 2020
research and innovation programme, European Federation of Pharma-
ceutical Industries and Associations (EFPIA) and the Coalition for
Epidemic Preparedness Innovations (CEPI). This project has received
funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 851752) and the European Union’s Horizon 2020
research and innovation programme grant agreement 851752-CEL-
LULO-EPI (B.O.)

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Irene Garcia-Fogeda reports financial support was provided by Univer-
sity of Antwerp Faculty of Medicine and Health Sciences. Niel Hens (NH)
reports that the Universities of Antwerp and Hasselt have received
funding for advisory boards and research projects of MSD, GSK, JnJ,
Pfizer outside the proposed work If there are other authors, they declare
that they have no known competing financial interests or personal re-
lationships that could have appeared to influence the work reported in
this paper.

Acknowledgments

IGF, MS and NH acknowledge support from the EBOVAC3 project
which has received funding from the IMI2 Joint Undertaking under
grant agreement No 800176 (IMI-EU). We extend our gratitude to the
EBL2007 study group for support and efforts in this trial. In particular,
we thank Pierre Van Damme for his contributions and insights to this
manuscript. We acknowledge the hard work and dedication of the local
nurses, medical doctors, and laboratory technicians, who collaborated
closely with medical doctors, and data managers from the University of
Kinshasa. Additionally, we thank we thank all the health care providers
and frontliners who took time out of their busy schedules to participate
in this trial.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.vaccine.2025.127707.

Data availability

The data that has been used is confidential.

References

[1] Ebola virus disease — Democratic Republic of the Congo. Available from: https
://www.who.int/emergencies/disease-outbreak-news/item/2022-DON411.

[2] Davis C, et al. Postexposure prophylaxis with rVSV-ZEBOV following exposure to a
patient with Ebola virus disease relapse in the United Kingdom: an operational,
safety, and immunogenicity report. Clin Infect Dis 2020;71(11):2872-9.

[3] Huttner A, et al. Antibody responses to recombinant vesicular stomatitis virus-Zaire
Ebolavirus vaccination for Ebola virus disease across doses and continents: 5-year
durability. Clin Microbiol Infect 2023;29(12):1587-94.

[4] Simon JK, et al. Inmunogenicity of rVSVAG-ZEBOV-GP Ebola vaccine (ERVEBO®)
in African clinical trial participants by age, sex, and baseline GP-ELISA titer: a post
hoc analysis of three phase 2/3 trials. Vaccine 2022;40(46):6599-606.

[5] Coulborn RM, et al. Case fatality risk among individuals vaccinated with rVSVAG-
ZEBOV-GP: a retrospective cohort analysis of patients with confirmed Ebola virus
disease in the Democratic Republic of the Congo. Lancet Infect Dis 2024;24(6):
602-10.

[6] Henao-Restrepo AM, et al. Efficacy and effectiveness of an rVSV-vectored vaccine
in preventing Ebola virus disease: final results from the Guinea ring vaccination,



L. Garcia-Fogeda et al.

[7

—

[8]

[9

—_

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]
[28]

[29]

[30]

open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 2017;389(10068):
505-18.

Afolabi MO, et al. Safety and immunogenicity of the two-dose heterologous Ad26.
ZEBOV and MVA-BN-filo Ebola vaccine regimen in children in Sierra Leone: a
randomised, double-blind, controlled trial. Lancet Infect Dis 2022;22(1):110-22.
Anywaine Z, et al. Safety and immunogenicity of a 2-dose heterologous vaccination
regimen with Ad26.ZEBOV and MVA-BN-filo Ebola vaccines: 12-month data from a
phase 1 randomized clinical trial in Uganda and Tanzania. J Infect Dis 2019;220
(1):46-56.

Ishola D, et al. Safety and long-term immunogenicity of the two-dose heterologous
Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Sierra Leone: a
combined open-label, non-randomised stage 1, and a randomised, double-blind,
controlled stage 2 trial. Lancet Infect Dis 2022;22(1):97-109.

Lariviere Y, et al. Safety and immunogenicity of the heterologous 2-dose Ad26.
ZEBOV, MVA-BN-Filo vaccine regimen in health care providers and Frontliners of
the Democratic Republic of the Congo. J Infect Dis 2024;229(4):1068-76.

Mutua G, et al. Safety and immunogenicity of a 2-dose heterologous vaccine
regimen with Ad26.ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from
a phase 1 randomized clinical trial in Nairobi, Kenya. J Infect Dis 2019;220(1):
57-67.

Barry H, et al. Safety and immunogenicity of 2-dose heterologous Ad26.ZEBOV,
MVA-BN-Filo Ebola vaccination in healthy and HIV-infected adults: a randomised,
placebo-controlled phase II clinical trial in Africa. PLoS Med 2021;18(10):
€1003813.

Pasin C, et al. Dynamics of the humoral immune response to a prime-boost Ebola
vaccine: quantification and sources of variation. J Virol 2019;93(18).
Garcia-Fogeda I, et al. Within-host modeling to measure dynamics of antibody
responses after natural infection or vaccination: a systematic review. Vaccine 2023;
41(25):3701-9.

Porgo TV, et al. The use of mathematical modeling studies for evidence synthesis
and guideline development: a glossary. Res Synth Methods 2019;10(1):125-33.
Alexandre M, et al. Prediction of long-term humoral response induced by the two-
dose heterologous Ad26.ZEBOV, MVA-BN-filo vaccine against Ebola. NPJ Vaccines
2023;8(1):174.

Balelli I, et al. A model for establishment, maintenance and reactivation of the
immune response after vaccination against Ebola virus. J Theor Biol 2020;495:
110254.

Clairon Q, et al. Parameter estimation in nonlinear mixed effect models based on
ordinary differential equations: an optimal control approach. Comput Stat 2024;39
(6):2975-3005.

Lariviere Y, et al. Open-label, randomised, clinical trial to evaluate the
immunogenicity and safety of a prophylactic vaccination of healthcare providers
by administration of a heterologous vaccine regimen against Ebola in the
Democratic Republic of the Congo: the study protocol. BMJ Open 2021;11(9):
e046835.

Zola Matuvanga T, et al. Low seroprevalence of Ebola virus in health care providers
in an endemic region (Tshuapa province) of the Democratic Republic of the Congo.
PloS One 2023;18(9):e0286479.

CDC. Ebola Outbreaks. Available from: https://www.cdc.gov/ebola/outbreaks/i
ndex.html; 2025.

Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models using
Ime4. J Stat Softw 2015;67(1):1-48.

Nguyen VK, Hernandez-Vargas EA. Windows of opportunity for Ebola virus
infection treatment and vaccination. Sci Rep 2017;7(1):8975.

De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol
2015;15(3):137-48.

Merino Tejero E, et al. Multiscale modeling of germinal center recapitulates the
temporal transition from memory B cells to plasma cells differentiation as
regulated by antigen affinity-based Tfh cell help. Front Immunol 2020;11:620716.
Zabdeno. Available from: https://www.ema.europa.eu/en/medicines/human/EPA
R/zabdeno.

MVABEA. Available from: https://www.ema.europa.eu/en/medicines/human/EP
AR/mvabea.

Syeda MZ, et al. B cell memory: from generation to reactivation: a multipronged
defense wall against pathogens. Cell Death Discov 2024;10(1):117.

Yang L, et al. Antigen presentation dynamics shape the antibody response to
variants like SARS-CoV-2 Omicron after multiple vaccinations with the original
strain. Cell Rep 2023;42(4):112256.

Hattori T, et al. Antigen clasping by two antigen-binding sites of an exceptionally
specific antibody for histone methylation. Proc Natl Acad Sci U S A 2016;113(8):
2092-7.

10

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]
[51]
[52]
[53]

[54]

Vaccine 64 (2025) 127707

Monolix, Monolix Documentation - Lixoft.

Akaike H. Citation classic — a new look at the statistical-model identification. Curr
Cont/Eng Technol Appl Sci 1981;51:22.

Andraud M, et al. Living on three time scales: the dynamics of plasma cell and
antibody populations illustrated for hepatitis a virus. PLoS Comput Biol 2012;8(3):
€1002418.

Altenburg AF, et al. Modified vaccinia virus Ankara (MVA) as production platform
for vaccines against influenza and other viral respiratory diseases. Viruses 2014;6
(7):2735-61.

Custers J, et al. Vaccines based on replication incompetent Ad26 viral vectors:
standardized template with key considerations for a risk/benefit assessment.
Vaccine 2021;39(22):3081-101.

Inoue T. Memory B cell differentiation from germinal centers. Int Immunol 2023;
35(12):565-70.

de Graaf WF, Kretzschmar ME, Teunis PF, Diekmann O. A two-phase within-host
model for immune response and its application to serological profiles of pertussis.
Epidemics 2014;9:1-7.

Korosec CS, Dick DW, Moyles IR, Watmough J. SARS-CoV-2 booster vaccine dose
significantly extends humoral immune response half-life beyond the primary
series. Sci Rep 2024;14(1):8426.

Mdluli T, et al. Ebola virus vaccination elicits Ebola virus-specific immune
responses without substantial cross-reactivity to other filoviruses. Sci Transl Med
2025;17(792):eadq2496.

Bockstal V, et al. First-in-human study to evaluate safety, tolerability, and
immunogenicity of heterologous regimens using the multivalent filovirus vaccines
Ad26.Filo and MVA-BN-Filo administered in different sequences and schedules: a
randomized, controlled study. PloS One 2022;17(10):e0274906.

Lariviere Y, et al. Ad26.ZEBOV, MVA-BN-Filo Ebola virus disease vaccine regimen
plus Ad26.ZEBOV booster at 1 year versus 2 years in health-care and front-line
workers in the Democratic Republic of the Congo: secondary and exploratory
outcomes of an open-label, randomised, phase 2 trial. Lancet Infect Dis 2024;24(7):
746-59.

McLean C, et al. Persistence of immunological memory as a potential correlate of
long-term, vaccine-induced protection against Ebola virus disease in humans. Front
Immunol 2023;14:1215302.

Pollard AJ, et al. Safety and immunogenicity of a two-dose heterologous Ad26.
ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): a
randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial.
Lancet Infect Dis 2021;21(4):493-506.

Man-Lik Choi E, et al. Safety and immunogenicity of an Ad26.ZEBOV booster
vaccine in Human Immunodeficiency Virus positive (HIV+) adults previously
vaccinated with the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen against Ebola: a
single-arm, open-label phase II clinical trial in Kenya and Uganda. Vaccine 2023;41
(50):7573-80.

Manno D, et al. Safety and immunogenicity of an Ad26.ZEBOV booster dose in
children previously vaccinated with the two-dose heterologous Ad26.ZEBOV and
MVA-BN-Filo Ebola vaccine regimen: an open-label, non-randomised, phase 2 trial.
Lancet Infect Dis 2023;23(3):352-60.

Lariviere Y, et al. Conducting an Ebola vaccine trial in a remote area of the
Democratic Republic of the Congo: challenges, mitigations, and lessons learned.
Vaccine 2023;41(51):7587-97.

Choi EM, et al. Safety and immunogenicity of the two-dose heterologous Ad26.
ZEBOV and MVA-BN-Filo Ebola vaccine regimen in infants: a phase 2, randomised,
double-blind, active-controlled trial in Guinea and Sierra Leone. Lancet Glob
Health 2023;11(11):e1743-52.

Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to
COVID-19. Nat Rev Immunol 2020;20(10):581-2.

Mesin L, et al. Restricted clonality and limited germinal center reentry characterize
memory B cell reactivation by boosting. Cell 2020;180(1):92-106.e11.

Viant C, et al. Antibody affinity shapes the choice between memory and germinal
center B cell fates. Cell 2020;183(5):1298-1311.e11.

Stan, Stan User’s Guide. 2024.

Keersmaekers N, et al. An ODE-based mixed modelling approach for B- and T-cell
dynamics induced by Varicella-Zoster Virus vaccines in adults shows higher T-cell
proliferation with Shingrix than with Varilrix. Vaccine 2019;37(19):2537-53.
White MT, et al. Dynamics of the antibody response to plasmodium falciparum
infection in African children. J Infect Dis 2014;210(7):1115-22.

Xu Z, et al. Dynamic modeling of antibody repertoire reshaping in response to viral
infections. Comput Biol Med 2025;184:109475.



