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A B S T R A C T

Ebola virus disease remains a threat in different Sub-Saharan African countries more particularly in the Dem
ocratic Republic of Congo, where persistent outbreaks are driven by human populations living in close proximity 
to animal reservoirs. While vaccines like Ad26.ZEBOV and MVA-BN-Filo are safe and immunogenic, the dy
namics of antibody responses after the two-dose regimen and booster vaccination are not fully understood. 
Within-host mathematical models offer valuable insights into disease dynamics and waning immunity, but data- 
driven mechanistic models of antibody kinetics remain scarce.

The present study seeks to elucidate the processes involved in antibody kinetics after the two-dose vaccine 
regimen with Ad26.ZEBOV and MVA-BN-Filo vaccines, followed by a booster dose vaccination with Ad26. 
ZEBOV, addressing challenges in inference for and implementation of within-host approaches.

By integrating established theoretical frameworks with recent empirical findings on antibody kinetics 
following Ebola vaccination, we illustrate how mechanistic modeling can enhance and refine our understanding 
of antibody dynamics. Specifically, we emphasize the distinction in the half-life of antibody responses at different 
vaccination time points and explore the role of vaccine antigens in eliciting an immunological response through 
the formation and activation of germinal center mediated response. Careful consideration was given to the 
development of a model that is both interpretable and practically feasible.

The half-life of the antibody response was found to be longer after booster vaccination compared to after the 
second vaccine dose, indicating a steadier decay process. This may be due to the improved quality of antibodies 
generated, the formation of memory B cells sustaining antibody production, and antigen-antibody binding.

This study highlights critical considerations for implementing within-host mechanistic models and the need for 
robust data to accurately estimate model parameters. Further research is essential to elucidate the decay dy
namics of memory B cells and long-lived plasma cells, as these processes play a pivotal role in sustaining 
antibody-mediated immunity.

1. Introduction

Ebola virus disease is a severe and often fatal viral disease primarily 
transmitted through direct contact with bodily fluids of infected 

individuals or contaminated surfaces. The disease is characterized by 
symptoms such as fever, bleeding, and organ failure, with outbreaks 
occurring in Sub-Saharan Africa, mainly in parts of West Africa and the 
Democratic Republic of Congo (DRC), particularly in North Kivu, Ituri, 
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and South Kivu [1]. Effective disease surveillance, training of special
ized health care workers, and access to advanced therapeutics and 
vaccines are considered crucial factors to prevent larger Ebola out
breaks. Thus, ongoing efforts to implement an effective vaccination 
strategy in high-risk populations remain essential.

Currently, two licensed vaccines are recommended for the preven
tion of Ebola infection and severe disease. The first being a single-dose 
replication-competent viral vector vaccine manufactured as ERVEBO® 
by Merck, targeting the Zaire strain of the Ebola virus, and used in ring 
vaccination (i.e., vaccinating contacts of confirmed Ebola infected in
dividuals) during ongoing Ebola outbreaks. A single dose of ERVEBO® 
has shown to be highly immunogenic, producing robust humoral re
sponses [2–4]. Furthermore, the vaccine has shown to be highly effi
cacious and safe when used during recent outbreaks in Guinea and the 
DRC [5,6]. The second vaccine was jointly formulated by Janssen Vac
cines & Prevention in collaboration with Bavarian Nordic, consisting of 
a two-dose heterologous vaccination regimen employing Ad26.ZEBOV 
(marketed as Zabdeno®) and MVA-BN-Filo (marketed as Mvabea®). The 
rationale of the two-dose vaccine regimen is to enhance and prolong 
both humoral and cellular responses. This prime-boost strategy has been 
shown to induce a robust and durable immune response in clinical 
studies with healthy individuals [7–11]. Ad26.ZEBOV is a monovalent 
vaccine designed to confer active, specific immunity against the Zaire 
Ebola virus. Meanwhile, MVA-BN-Filo is a polyvalent vaccine targeted 
to offer protection against a range of viruses, including the Sudan virus 
(SUDV), Ebola virus (EVD), Marburg virus (MARV), and the Tai Forest 
virus (TAFV). In addition, studies in children and people with HIV have 
shown that the booster dose with Ad26.ZEBOV has given an anamnestic 
immune response [12,13], suggesting its potential to enhance immunity 
in other populations. Nowadays, this vaccine regimen is recommended 
by the World Health Organization to be used during outbreaks for in
dividuals at risk of Ebola exposure, and preventively, before outbreaks, 
for national and international first responders.

Although extensive research has been carried out on safety and 
immunogenicity of the two-dose vaccine regimen in different regions of 
West Africa and the DRC, less attention has been paid to studying the 
dynamics that are responsible for antibody production. Traditionally, 
antibody kinetics have been assessed using phenomenological models, 
which quantify trends without describing underlying biological pro
cesses. Alternatively, within-host mechanistic models could be used to 
describe the evolution in various biological populations, such as cells, 
thereby unravelling how specific components of the immune system 
respond and interact [14,15]. Typically, these dynamics are translated 
into a set of Ordinary Differential Equations (ODEs) with both popula
tion- and individual-level parameters governing changes in the biolog
ical processes that are described. A recent systematic review by Garcia- 
Fogeda et al. [14] found that many studies have relied upon phenome
nological models rather than mechanistic ones. The latter can be further 
categorized into theory-driven and data-driven approaches. Theory- 
driven models, which were far more prevalent according to the sys
tematic review, solely focused on the intrinsic properties of the model, 
exploring the impact of interventions on model outputs without vali
dating them against observed data. In contrast, data-driven models use 
available data to inform and estimate model parameters and allow for 
the identification of the best-fitting model based on empirical data. By 
providing a deeper understanding of the biological mechanisms gov
erning antibody kinetics, mechanistic models can help optimize vacci
nation strategies and improve immunological outcomes, advancing 
vaccine research beyond the descriptive capabilities of phenomenolog
ical models.

To date, several studies have explored within-host mechanistic 
models to study the antibody kinetics following the two-dose schedule 
with Ad26.ZEBOV and MVA-BN-Filo [13,16–18], focusing on short- and 
long- term humoral responses. However, challenges like computational 
time and identifiability of model parameters emerged largely due to 
limited immunological data and the design of data collection. While 

research on short- and long-lived plasma cells has progressed, the un
derstanding of immune activation upon introduction of antigens and 
antibody dynamics post-booster dose remains limited.

This study focuses on the aforementioned two-dose vaccine regimen 
(Ad26.ZEBOV and MVA-BN-Filo) and booster dose with Ad26.ZEBOV, 
which was implemented in an open-label Phase II clinical trial 
(EBL2007, NCT04186000) in healthcare workers of Boende, DRC, which 
was part of the EBOVAC3 project [19]. Our primary aim is to generate 
new insights into the timing of vaccine-induced protection, evaluate the 
efficacy of prime-boost strategies, and quantify antibody decay. Partic
ularly, this is the first study to integrate the booster dose with Ad26. 
ZEBOV into a within-host mechanistic modeling framework. Using 
immunogenicity data from the EBL2007 trial, we inform the mechanistic 
model parameters to not only describe antibody decay but also to 
elucidate the underlying biological mechanisms, such as B cell activa
tion and memory cell formation. This mechanistic approach offers a 
level of biological interpretation that phenomenological models alone 
cannot provide, moving beyond descriptive patterns to a deeper un
derstanding of immune dynamics.

The paper is organized as follows. In the Methods section the data 
and methodology employed to address the aforementioned objectives is 
introduced. Subsequently, the Results section details the application of 
mechanistic approaches to analyse the EBL2007 trial data. Finally, the 
Discussion section highlights the insights gained and reflects on the 
implications and lessons learned.

2. Methods

2.1. Data description

The participants in the study were healthcare providers and front
liners recruited from the Tshuapa province in the DRC [19], divided into 
two cohort groups based on two different booster schedules. Within the 
first year of the study, both cohorts were vaccinated with the same 
vaccine regimen, Ad26.ZEBOV (5 × 1010 viral particles [vp]) as a first 
dose and MVA-BN-Filo (1 × 108 50 % infectious units [Inf U]) as a 
second dose vaccination at a 56-day interval between vaccine admin
istrations. Following the two-dose schedule, participants were ran
domized (1:1) to receive a booster dose of Ad26.ZEBOV either one 
(cohort 1) or two (cohort 2) years after the first dose. The reader is 
referred to Larivière et al. [19] for a comprehensive description of the 
study design.

The initial sample consisted of 700 participants, 676 meeting the per- 
protocol criteria, receiving both doses within the protocol-defined 
window, providing at least one post-vaccination immunogenicity sam
ple, and having no major protocol deviations affecting the immune 
response [19]. Seroprevalence at baseline was low, with no reported 
prior EVD or EBOV vaccination or infection, and no evidence of out
breaks involving strains other than ZEBOV in the region, suggesting 
minimal pre-existing immunity or cross-reactivity [20,21].

Among participants with available data on binding antibody re
sponses around 21 days after the second dose with MVA-BN-Filo, 95.2 % 
met the responder threshold (>2.5× lower limit of quantification 
(LLOQ)). Anti-ZEBOV IgG titers that were below the LLOQ were 
considered left-censored (9 % in total, of which 53.2 % belong to the 
baseline measurement). Fig. 1 illustrates individual log-transformed 
antibody titers (ELISA units/ml) over time, encompassing the baseline 
measurement, vaccination moments and additional measurements 
based on samples collected for both cohort groups (i.e., cohort 1 shown 
in red, cohort 2 in blue).

The present study utilizes phenomenological models to quantify the 
association between antibody titers and vaccination status. This pre
liminary analysis aimed to assess whether the two cohorts exhibited 
similar immunological responses to the vaccination schedule, particu
larly to the booster dose, which was administered at different time 
points across cohorts. Identifying significant differences between 
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cohorts would imply the need for cohort-specific parameters or struc
tural adaptations in the subsequent mechanistic modeling to adequately 
reflect the underlying biological dynamics.

Subsequently, a linear mixed-effects model (LMM) was fitted, 
including both fixed effects for population-level and random effects for 
individual-specific variation and this model was fitted for each cohort 
group. Let Yij be the log antibody titer for individual i at measurement j, 
with j = 0 for pre-booster and j = 1 for post-booster. The variable Booster 
is equals to 1 as post-booster and 0 otherwise. This model allows us to 
assess the average effect of booster vaccination while accounting for 
individual-level heterogeneity in both antibody levels prior and poste
rior to the booster dose. The model is defined as follows: 

Yij = (β0 + b0i) + (β1 + b1i)*Booster + εij,

εij ∼ N
(
0, σ2), b0i ∼ N

(
0, σ2

0
)
, b1i ∼ N

(
0, σ2

1
) (1) 

The terms b0i and b1i denote individual-specific random intercepts 
applicable to two different measurement occasions, respectively. This 
model allows us to assess the average effect of booster vaccination while 
accounting for individual-level heterogeneity in both antibody levels 
prior and posterior to the booster dose.

Additionally, an LMM was used to quantify the impact of the booster 
dose within each cohort, accounting for the dependency between 
repeated antibody measurements (Appendix B). This model allowed 
estimation and testing of differences in mean titers between cohorts at 
each time point, as well as differences in booster effects between co
horts. The CIs were computed using the confint() function from the lme4 
package in R, which uses the profile likelihood method. A significance 
level of 5 % and a p-value threshold of 0.05 were used for both analyses. 
These analyses were performed in R, version 4.2.3 [22].

While the linear mixed-effects model (LMM) was used to evaluate 
population-level changes in antibody titers and assess the comparability 
of cohort responses, it does not capture the underlying biological 
mechanisms that generate these dynamics. To address this, we applied a 
data-driven mechanistic modeling approach to gain deeper insight into 
the immunological processes involved in antibody production and decay 
following vaccination. Mechanistic models, described by ODEs (Eqs. 
(2)–(3)), consist of compartments representing biological processes 
involved in antibody production. To account for left-censored observa
tions, we employed a likelihood-based approach that integrates 
censored and non-censored data within a unified framework. Instead of 
imputing censored observations by using fixed values (e.g., LLOQ/2), a 

conditional likelihood formulation was used, ensuring that parameter 
estimation appropriately reflected the uncertainty introduced by 
censoring.

A variety of candidate models were considered in the process of 
identifying a biologically plausible yet parsimonious framework. These 
candidates were designed to reflect the key immunological mechanisms 
relevant to our study. While multiple structures were explored, the final 
model structure presented below was selected based on its alignment 
with the biological processes of interest and its ability to meet the se
lection criteria described at the end of this section.

2.2. Mechanistic model proposed by Nguyen et al. [23]

The proposed mechanistic model includes antigen (Ag), germinal 
center (GC) mediated response, and antibody (Ab) populations.

The antigen population represents the introduced (vaccine-)antigen, 
which is cleared by two processes: captured by antigen-presenting cells 
(APCs) and transported to the lymph nodes (rate δag), or binding with 
antigen-specific antibodies that form antigen-antibody complexes that 
are also deleted from the circulation (e.g. phagocytosed), with rate βag.

The GC mediated response is subject to a delay process entailing a 
series of events to process an immunological signal (with delay governed 
by parameter τag). This delay is not intended to capture the full mech
anistic detail of GC mediated response but rather to summarize, in a 
pooled form, the initiation of GC mediated response following antigen 
recognition. Once activated upon encountering an antigen induced in 
the Ag population, these events take place within the germinal center 
mediated response. Briefly, naïve B cells are activated by binding with 
antigens and engage with activated cognate T cells to initiate germinal 
center mediated response. This process leads to the migration of 
(mature) B cells into germinal centers, within the lymph nodes [24,25]. 
Afterwards, this process leads to B-cell proliferation, antibody affinity 
maturation, differentiation, proliferation, and consequently the pro
duction of antibodies, primarily through the generation of plasma cells. 
In this context, GC serves as a proxy for the integrated signal processing 
and functional output of GCs, particularly the activation of B cells and 
the subsequent differentiation that drives antibody production. Lastly, 
in the third equation, γab is the antibody production rate in the germinal 
center mediated response, βab is the antibody decay upon binding with 
the antigen, and δab represents the natural decay of antibodies. 

Fig. 1. Boxplots of log-transformed antibody concentrations expressed in ELISA units/ml. At the time of the baseline measurement the first vaccine dose was 
administered, and at day 56 the second dose was administered. An additional antibody concentration measurement was performed 78 days after the first dose. The 
additional Ad26.ZEBOV dose, referred to as the prime-booster, was administered either one year (Y1) or two years (Y2) after the initial dose for cohort group 1 (in 
red) and cohort group 2 (blue), respectively. Subsequently, a blood sample was taken seven days after booster vaccination. The individual dots within the boxplots 
represent the variability of individual times within the visits at which the blood sample and vaccine administration were evaluated.
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dAg
dt

= − δag*Ag − βag*Ag*Ab

dGC
dt

=
δag*Ag − GC

τag

dAb
dt

= γab*GC − βab*Ag*Ab − δab*Ab

(2) 

The aforementioned model was restructured to better reflect our 
study scenario, in which a booster dose is administered, aiming for a 
more accurate representation of the underlying biological mechanisms. 
We found this structure to offer a biologically meaningful simplification 
that improved model identifiability and interpretability. Fig. 2 illus
trates the schematic representation of the biological mechanisms 
incorporated into the restructured model (Eq. (3)), including antigen 
dynamics, germinal center mediated response, and antibody production 
following each vaccine dose and booster administration.

Building on the schematic representation shown in Fig. 2, the bio
logical processes were mathematically formalized through a system of 
ODEs. The resulting model is defined as follows:  

Ik(t) (k = 1, 2, 3, 4 ) represents an indicator function with value 1 
when a specific condition applies. The measurement denoted by u1 and 
u2 indicate the individual times of second-dose and booster adminis
tration, respectively.

The first antigen is introduced via the Ad26.ZEBOV vaccine at 
baseline, which consists of 8.75 infectious units on the log10 scale [26], 
followed by MVA-BN-Filo vaccine administration on day 57 since the 
first dose, which contains an amount of 7.8 infectious units on the log10 

scale [27]. The first antigen level is incorporated into the initial condi
tion of Ag1, while the infectious units from the second dose are specified 
in ∅1 using a Dirac delta function. In a similar manner, the population 
Ag3 describes the antigen of the booster dose, represented by ∅2 
implying a Dirac delta function.

The parameter τag represents the decay of the germinal center 
mediated response, rather than 1/τag as in Eq. (2). This adjustment is 
made because the activation of GCs following each vaccination moment 
is independent of their decay rate [28]. Limited antigen availability in 
the GCs after the first dose results in a response predominantly driven by 
naïve B cells that have matured and become activated upon encoun
tering the antigen. After the second dose, memory B cells play a more 
prominent role in this process, with higher levels of antigen available 
due to the antibodies generated after the first dose that facilitate effec
tive antigen presentation [28,29]. Specifically, the model incorporates 
two separate parameters, αs and αM, which are proportional to the nat
ural clearance rate of antigens (δag), representing the generation rates of 
short-lived plasma cells and memory B cells, respectively, from the GC 
mediated response. These are linked to antigen populations Ag1 (first 

and second dose with Ad26.ZEBOV and MVA-BN-Filo) and Ag3 (booster 
with Ad26.ZEBOV), respectively. While not explicitly included in the 
ODE system, αS and αm are incorporated through the generation rates of 
plasma cells as δagS = αS*δag and δagM = αM*δag. From a biological point 
of view, early responses following primary vaccination (Ad26.ZEBOV 
and MVA-BN-Filo) are typically driven by the activation and differen
tiation of naïve B cells, producing mainly short-lived plasma cells, given 
that there was not pre-existing immunity and that the MVA-BN-Filo 
vaccine, confers immunity against additional serotypes. On the other 

Fig. 2. Schematic diagram of the mechanistic model structure corresponding to Eq. (3), showing the antigen introduction, germinal center mediated response, and 
antibody production dynamics.

dAg1

dt
=

(
− δag*Ag1 − βag*Ag1*Ab

)
*(1 − I1(t) ) + (∅1)*I1(t)u1− ε≤t≤u1+ε

dAg3

dt
=

(
− δag*Ag3 − βag*Ag3*Ab

)
*(1 − I2(t) ) + (∅2)*I2(t)u2− ε≤t≤u2+ε

dGC
dt

= δagS*Ag1 + δagM*Ag3 − τag*GC

dAb
dt

= ( − δab*Ab)*I3(t)0<t≤u2 + γab*GC − (θab*Ab)*I4(t)t>u2 − βabP*
(
Ag1 + Ag3

)
*Ab

(3) 
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hand, memory B cell responses are more dominant following re- 
exposure (booster), when pre-existing antibodies and B cells enhance 
antigen presentation and GC mediated response, facilitating the gener
ation of memory B cells and long-lived plasma cells. While the model 
assumes a predominant contribution from short-lived plasma cells after 
primary vaccination and from memory B cells after the booster, we 
acknowledge that this representation may appear overly dichotomous. 
In reality, both cell types are likely generated following each dose, albeit 
in differing magnitudes and proportions. Due to the limited immuno
logical data available, we chose to model these responses separately per 
dose to ensure parameter identifiability.

The parameter γab reflects antibody production driven by plasma 
cells, irrespective of whether they originate from short-lived plasma 
cells or memory B cell. To evaluate antibody half-lives after the two-dose 
regimen and the booster, two decay parameters were estimated: δab 
(from Y1 data) and θab (from post-booster measurements). Initial values 
for δab and θab were informed by fitting separate LMM to their respective 
time interval, with time as a continuous covariate to log-transformed 
antibody concentrations. The slope coefficients from these models 
served an initial condition of the aforementioned decay rates. Addi
tionally, the parameter βabP is proportional, with proportionality factor 
ηab, to the decay of antigen after the formation of newly synthesized 
antibodies (βag). The reason for this relationship is that the presence of 
antigens drives antibody production, so their clearance rate directly 
influences the rate at which antibodies are produced or maintained [30].

2.3. Mechanistic model implementation

Our first exclusion criteria to evaluate the models were poor Sto
chastic Approximation Expectation Maximization (SAEM) and poor 
convergence assessment. The goal for the algorithm is to first reach a 
neighbourhood around the maximum likelihood (ML) estimates during 
the initial phase and then progressively converge to the ML estimates for 
the model parameters. The second step, referred to as the convergence 
assessment, allows to execute a workflow of estimated parameters 
several times using different initial values as well as different seeds, 
enabling to assess the robustness of the convergence of the parameters. 
SAEM and convergence assessment were performed in Monolix, version 
2023 [31].

Second, booster-related data as depicted in Fig. 1 (pre- and post- 
booster) were examined, and candidate models were fitted to the full 
dataset. Among models that met our selection criteria as described 
above, the best fit was determined based on Akaike’s Information Cri
terion (AIC) [32], for more details see Supplementary Material Table C3. 
Pre-existing work on within-host mechanistic models, particularly those 
applied to Ebola and Hepatitis A [13,16,33], were of particular interest 
for evaluation in this study due to their incorporation of the dynamics of 
short- and long-lived antibody secreting cells. However, the mechanisms 
derived from these models were challenging to implement and infer 
given the available data, as it had fewer sampling points, it did not 
provide sufficient resolution to reliably estimate all model parameters of 
the aforementioned studied. Consequently, as they did not meet our 
inclusion criteria and required more extensive data to fully inform the 
model we adopted the model proposed by Nguyen et al. [23], presented 
below in Eq. (2).

Due to identifiability issues with the candidate model, parameter 
profiling and sensitivity analyses were conducted to refine the model, 
using individual parameter estimates from the SAEM algorithm near the 
ML neighbourhood. To explore parameter correlations and assess 
convergence robustness, we first ran five independent chains with var
ied initial values and seeds. This preliminary step allowed us to detect 
patterns of parameter dependence and convergence issues. Based on the 
insights from these runs, we performed a more extensive follow-up 
analysis using ten chains, systematically evaluating pairwise correla
tions to identify combinations contributing to poor convergence. As a 
result, these analyses enabled us to understand how changes in one 

parameter value influence others and to identify a plausible range of 
values for these, contributing to the development of a more parsimo
nious model.

A normal distribution with a proportional error was assumed for the 
raw antibody concentration data. To ensure positivity, the population- 
level parameters (fixed effects) are estimated on the log scale, and 
random effects are assumed to follow a normal distribution. As a result, 
the individual-specific parameters follow a lognormal distribution. The 
variability of these random effects assumes an inverse-Wishart distri
bution. Additional information on inference and parameter estimation 
can be found in Appendix A.

Finally, a non-parametric bootstrap approach using 250 bootstrap re- 
samples, was used to obtain confidence intervals for the estimated pa
rameters of the final candidate model presented in the Results section. 
Sensitivity analyses and bootstrapping were conducted in R, version 
4.2.3 [22]. Additionally, sensitivity analyses were performed using the 
full dataset that included both responders and non-responders, as well as 
a dataset excluding non-responders, and found no significant impact on 
the main findings. See Supplementary Table C5.

3. Results

Table 1 presents an overview of the demographic variables and 
summary measures related to antibody concentrations measured at the 
different visits. Although Mpox vaccination status and sex were not 
included as a covariate in our mathematical model, they are presented in 
the table due to its demonstrated relevance in immune responses during 
previous analyses of this trial [10]. Differences between sex within the 
cohorts, may have been amplified by the exclusion of pregnant and 
breastfeeding women, a common practice in clinical trials [19].

Following, we present the results of the phenomenological models 
used to assess the impact of booster vaccination. Next, we examine 
antibody kinetics, fitting the proposed mechanistic model in Eq. (3) and 
address the identifiability issues.

Table 1 
Demographic variables and Anti-ZEBOV IgG measurements per healthcare 
worker (HCW) cohort and altogether. For continuous variables, mean and 
standard deviation (S.D.) are reported while for categorical variables, absolute 
frequencies (no.) and relative frequencies expressed as percentages (%) are 
shown. Y1 and Y2 refer to one year and two years after the initial vaccine dose, 
respectively.

Variable Cohort 1 
(n = 340)

Cohort 2 
(n = 336)

All HCWs 
(N = 676)

Age, in years, mean (S. 
D.)

45.42 (11.51) 44.62 (12.46) 45.01 (11.99)

Sex, no. (%)
Women 88 (25.88) 70 (20.83) 158 (23.37)
Men 252 (74.12) 266 (79.17) 518 (76.63)

Mpox vaccine, no. (%)
Yes 59 (17.35) 67 (19.94) 126 (18.64)
No 281 (82.65) 269 (80.06) 550 (81.36)

Geometric mean antibody concentrations (in ELISA units/ml), (S.D.)
Baseline 77.03 (4.74) 78.22 (5.08) 77.62 (3.44)
57 days post first dose 252.5 (13.44) 308.08 (18.09) 279.07 (10.99)
21 days post second 

dose
3825.67 
(288.36)

4496.32 
(341.47)

4144.98 
(219.61)

Y1 after the first dose 279.7 (15.49) 339.06 (20.92) 307.82 (12.69)
7 days after the prime 

booster
10,781.58 
(806.8)

– 10,781.58 
(806.8)

Y2 after the first dose 1945.07 (159) 281.66 (17.86) 732.35 (47.44)
7 days after the prime 

booster
– 10,770.94 

(873.08)
10,770.94 
(873.08)
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3.1. Phenomenological approach

Our objective with the phenomenological approach was to investi
gate whether the timing of prime-boost administration and the antibody 
response seven days post-booster exhibited comparable effects on anti
body concentrations within each cohort. Table 2 reveals the estimates of 
the coefficients from the LMM fitted to the measurements prior and after 
the prime-booster dose per cohort. The overlapping confidence in
tervals, together with the results of two independent t-tests (see Table B1 
in Appendix B), provide evidence of no statistically significant differ
ences in mean antibody titers between the cohorts.

3.2. Mechanistic approach

We now turn to biological understanding of antibody kinetics. First, 
the abovementioned model was fitted to the full dataset, using the 
parameter estimates obtained from fitting the model to the Y1 data as 
initial values. Proportionality factors were set to positive values, 
assuming that αS and αM were equal, and that ηab was equal to 1. On the 
other hand, initial decay rates of 0.009 and 0.004 were based on esti
mates from the LMM fitted to the Y1 data and the booster process. After 
running the model and applying the selection criteria defined in the 
Methods section, we examined bivariate plots to evaluate how changes 
in one parameter influenced values for others. The most divergent 
parameter was identified and fixed to the arithmetic mean of its con
ditional values across chains. This iterative process was repeated until 
the convergence criteria were met. As a result, Table 5 presents the most 
parsimonious model from Eq. (3), pooling all parameter estimates from 
the different chains (i.e., 10 in total), which are initialized using 
different starting values and seeds. Further details on the convergence 
assessment and sensitivity analyses can be found in Appendix D, with 
parameter definitions summarized in Table C4 of Appendix C.

Antigen clearance occurs through two processes with decay rates δag 
and βag. The first indicates the rate of antigen uptake by APCs and has a 
fixed value of 0.4, suggesting a half-life of 2 days. This value provides 
additional insight into the timing of antigen decay, which is consistent 
with literature stating that antigen clearance typically occurs within the 
first week post-vaccination [34,35]. The parameter βag reflects the 
effectiveness of the immune system in clearing antigens through the 
formation of antibody-antigen complexes. With a value of 0.07 (95 % CI: 
0.063, 0.075), this indicates that antigen clearance via antibody binding 
is relatively slow. This could be due to the lack of pre-existing antibodies 
prior to vaccination, or from the fact that most antigens are taken up by 
APCs.

The results displayed by the GC mediated response indicate that it 
takes approximately 4.17 days to create an immunological signal, 
consistent with prior findings [24,25]. Additionally, the proportional 
rates from the short-lived plasma cells and memory B cells (αS, αM) 
suggest that memory B cells are generated more rapidly, as their rate of 
response is higher than that of the short-lived plasma cells (7.71 vs 0.4) 
[28,36]. This is consistent with the longer lifespan of memory B cells 
compared to short-lived plasma cells, which are cleared after days 
following vaccination [13].

Turning to the antibody population, γab represents a rate parameter 
that quantifies the antibody production. This rate is determined by the 
number of plasma cells actively producing antibodies, which is esti
mated to be approximately 1041 plasma cells. Once antibodies bind to 
antigens, they are no longer available to neutralize additional antigens, 
and they are cleared in the process of an antigen-antibody interaction 
(βabP) with a rate of 0.27 (i.e., βag*ηab) with 95 %CI: (0.017, 0.020). The 
proportionality factor ηab of the aforementioned parameter exceeds one, 
indicating effective antigen clearance. Since the antigens peak at two 
days post vaccination and decay rapidly, making antibody clearance via 
binding (βabP) significant only when these antigens are still present after 
vaccination. Given this and the variability in data intervals informing 
antibody decay rates, we estimate half-lives relying on an exponential 
decay process rather than focusing on the mechanistic model’s analyt
ical solution for the antibody titers. The parameter δab represents the 
natural decay of the antibodies after the two-dose vaccine regimen 
(Ad26.ZEBOV, and MVA-BN-Filo 57 days later), with a half-life of 2 
months (62 days with 95 % CI: (57.76, 69.3) days). Meanwhile, the 
parameter θab reflects the antibody decay after the prime-booster dose 
(Ad26.ZEBOV), resulting in a half-life of approximately 3 months (94 
days with 95 % CI: (86.64, 105.02) days), indicating a higher persistence 
of antibodies following the booster dose with Ad26.ZEBOV. The 

Table 2 
Parameter estimates of the linear mixed effects model per cohort.

Parameter Estimate (SE) CI P-value

COHORT 1
Intercept 5.63 (0.06) (5.51, 5.75) < 0.01
7 days post-booster 3.64 (0.06) (3.52, 3.77) < 0.01

COHORT 2
Intercept 5.64 (0.06) (5.50, 5.77) < 0.01
7 days post-booster 3.65 (0.07) (3.50, 3.79) < 0.01

Table 5 
Parameter estimates using the most parsimonious model from Eq. (3) for cohorts 1 and 2, fixing the parameters {αs = 0.4, δag = 0.4, ηab = 3.88, τag = 0.24}, and 
assuming a normal distribution and a proportional error model for the raw antibody titers. The fixed effects are on the log-scale and the random effects follow a normal 
distribution. The standard error estimates (S.E.) for the estimators of the model parameters include within- and between-chain variability based on 10 chains that were 
initialized with different starting values. The standard error estimates for the transformed parameters are derived using the Delta Method. The bootstrap-based 95 % 
percentile confidence intervals (CIs) are calculated based on a non-parametric bootstrap approach with 250 bootstrap samples included.

Parameter Definition Parameter estimate 
(S.E.)

Transformed parameters 
(S.E.)

95 % CI

βag Decay of antigens when are combined with newly synthesized antibodies forming so- 
called antigen-antibody complexes

0.0413 (0.0015) 0.0700 (0.0039) (0.06393, 0.0756)

αM Proportional rate of memory B-cells 3.1243 (0.2285) 7.7069 (0.7007) (5.9434, 8.8697)
γab Proliferation of antibodies induced by plasma cells 352.1254 (16.3857) 1041.5965 (60.2009) (968.4236, 

1172.3990)
δab Natural decay of antibodies after the two-dose vaccine regimen 0.0097 (0.0001) 0.0112 (0.0002) (0.0108, 0.01150)
Ab(0) Baseline antibody titers 42.3501 (3.7263) 283.2544 (34.0430) (234.8518, 

322.0862)
θab Natural decay of antibodies after the booster dose 0.0057 (0.0001) 0.0074 (0.0002) (0.0068, 0.0078)
εβag Random effects of βag 0.5278 (0.0417) 

0.9028 (0.0539) 
1.0845 (0.0342) 
0.1449 (0.0144) 
1.900 (0.0818) 
0.2584 (0.0227)

εαM Random effects of αM

εγab Random effects of γab

εδab Random effects of δab

εAb(0) Random effects of Ab(0)
εθab Random effects of θab
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parameter Ab(0), estimated at 283.25 EU/mL, reflects the typical in
dividual’s baseline antibody level before vaccination, accounting for 
both left-censored observations and inter-individual variability. This 
value is derived from a population-level fit and may be higher than the 
empirical GMC due to model-based integration of uncertainty and data 
from subsequent timepoints.

Fig. 3 displays the observed data for each participant, as well as the 
predicted profiles given by the estimated individual-level model. 
Moreover, it can be observed that the predicted values correspond well 
with the observed data. Based on this graphical depiction, the model 
does not show a lack-of-fit to the available data. Since no substantial 
differences between cohorts were found in the phenomenological 
analysis, we assumed shared parameter values across cohorts in the 
mechanistic model. Due to identifiability and convergence issues, 
assessing cohort-specific mechanisms was not feasible and remains an 
open question for future study. Further model diagnostics are presented 
in Appendix D.

4. Discussion

The present study was designed to analyse the antibody dynamics 
using within-host mechanistic models. The first question sought to 
determine the antibody half-lives after the second dose and the subse
quent booster dose. The estimated half-lives are crucial for under
standing the waning processes and the persistence of immune responses 
against infection [37,38]. Our findings indicate antibody half-lives of 
two months (i.e., 62 days, 95 % CI: (57.76, 69.3) days) after the two- 
dose vaccine regimen and approximately three months (i.e., 94 days, 
95 % CI: (86.64, 105.02) days) after booster vaccination. In contrast, 
previous studies, such as those by Pasin et al. [13] and Alexandre et al. 
[16], estimated shorter antibody half-lives of around 24 days (95 % CI: 
22, 26) after the second dose, while others found a more prolonged 
persistence [9]. Studies using ERVEBO vaccine studies reported a half- 
life of 28 days [4]. These differences as compared to our estimates can 
be explained in part by the inclusion of three different decay rates for the 

Fig. 3. Predicted log-transformed IgG titer profiles given by the estimated individual-level model, which is the parsimonious model from the Eq. (3) with fixed 
parameters {α = 0.4, δag = 0.4, ηab = 3.88, τag = 0.24}.}. In the upper panel cohort 1 is represented in the grey boxes, and in the lower panel the cohort 2 is 
represented in light yellow boxes. The black dots represent the observed data, the red dashed curves are the approximated conditional mean curves from SAEM, and 
the blue curves depict the population-level fits based on the estimated fixed effects and individual-specific design characteristics, without incorporating individual- 
specific random effect estimates. The blue shaded areas represent the 2.5 % and 97.5 % predicted percentiles, which account for inter-individual variability by 
including random effects sampled from the estimated population-level distribution, rather than being based on individual-specific estimates.
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antibody population in our model, which allowed us to disentangle 
different processes contributing to the overall decrease of antibody 
levels. Antibody decay should be viewed in terms of overall levels over 
time, considering multiple overlapping processes. In this study, the 
antibody measurements were specific to the Zaire ebolavirus (ZEBOV) 
glycoprotein, as captured by the FANG ELISA assay. While this assay 
may pick up minimal background signal, significant cross-reactivity 
with other filovirus strains is unlikely and could not be directly 
modeled due to lack of specific antigenic data [28,39].

In particular, the mechanistic model allowed us to separately esti
mate decay rates linked to waning of antibody responses by physiolog
ical processes, antigen-driven clearance, and antibody production in 
response to booster-induced antigen presentation. This multi-process 
view provides a more nuanced understanding than models assuming a 
single decay rate. Our findings suggest that antibodies persist longer 
after the booster dose, thereby extending humoral immunity.

While this study focused on the half-lives of binding antibodies, it is 
also important to understand how antibody levels persist after they 
begin to decay. Our findings on antibody persistence, derived from the 
decay rates in the mechanistic model, indicate that by day 100 post first- 
dose, antibody levels are expected to decline with respect to the 2.5-fold 
increase above the LLOQ serving as a reference for the immunogenicity 
threshold. Following the booster dose, the decay is steadier, in particular 
it starts to decline towards the immunogenicity threshold at day 307. 
Individual variability in immune responses suggests that not all in
dividuals will reach this threshold at the same time, with many main
taining antibody levels above this value.

Consistent with literature, binding antibody concentrations were 
persisting for more than 3 years [11,40–43], although at lower levels 
than some studies have reported [46]. Choi et al. [44] observed antibody 
persistence lasting 4 to 5 years after the second dose and noted a 54-fold 
increase 7 days post-booster, whereas our study recorded a 44.75-fold 
increase 95 % CI: (35.38, 56.60)- and 34.79-fold increase 95 % CI: 
(22.79, 53.11) per cohort at the same interval. Similarly, Manno et al. 
[45] reported persistence beyond 3 years and found a 101- and 44-fold 
increase in antibody levels 21 and 7 days post-booster, respectively. 
These findings highlight the importance of carefully timed sampling to 
accurately assess long-term antibody titers. Comparing trials based on 
isolated cross-sectional data may therefore lead to misleading conclu
sions regarding the duration of antibody positivity, as there is no 
established correlate of protection (CoP). To accurately evaluate long- 
term antibody persistence, studies must account for the full trajectory 
of antibody decay.

Importantly, the phenomenological analysis revealed no substantial 
differences in antibody responses between cohorts, suggesting that the 
timing of booster dose administration could be relatively flexible. This 
has valuable implications for immunization strategies in remote or 
resource-limited areas [46]. The absence of observed differences in the 
overall antibody kinetics implies that the underlying parameters of the 
mechanistic model, such as antigen clearance, memory B cell response, 
or decay processes, may be similar between cohorts. However, this 
assumption remains to be verified. Due to data limitations and identi
fiability issues, our model did not allow us to robustly investigate 
whether such mechanistic processes were different across cohorts. 
Future studies should study this effect as a covariate, to determine 
whether these underlying immune mechanisms are truly shared.

Neutralizing antibodies are essential as they can neutralize antigens 
or viruses. While our study does not directly measure neutralizing an
tibodies, the parameter βabP in our model, with a proportionality factor 
of 3.88, suggests significant antibody-antigen binding, potentially indi
cating neutralization. To contextualize our findings, prior studies have 
demonstrated the persistence and variability of neutralizing antibodies 
following vaccination. Choi et al. [47] reported the presence of Anti- 
Ad26 neutralizing antibodies in small infants, while Bockstal et al. 
[40] observed robust neutralizing responses against Ebola virus, spe
cifically the Zaire strain (ZEBOV) but lower rates for SUDV and MARV. 

Mutua et al. [11] further found that neutralizing antibodies persisted up 
to day 360 following a two-dose regimen. This highlights the importance 
of future studies to determine whether the antigen-binding interactions 
identified in our model also translate into neutralizing functionality, 
which is critical for protective immunity.

These findings may be limited by the focus solely on binding anti
bodies, without fully capturing short- and long-term humoral responses. 
Short-lived antibody secreting cells provide an immediate response, 
while long-lived antibody secreting cells ensure sustained antibody 
production [48]. Recent studies suggest that short-term antibodies may 
persist for up to a year post-prime immunization [13,16], while long- 
term responses show a greater durability between 5 and 15 years 
[13,16]. While our model distinguishes between short-lived plasma cells 
and memory B cells in germinal center mediated response, additional 
follow-up data would strengthen these distinctions. Nonetheless, 
defining additional components of immunity further increases the need 
for sufficient data to infer all relevant processes [23]. Rather than just 
estimating antibody decay, we inferred meaningful biological quanti
ties, such as antigen-antibody binding rates, and the relative generation 
of memory vs. short-lived plasma cells in GCs. This is in particular re
flected in the parameters αM being much higher than αS, suggesting a 
robust memory B cell response following the booster dose, consistent 
with expected immunological mechanisms [49] [50]. On the other hand, 
including antigen decay dynamics (δag, βag) and their interaction with 
antibody levels provides insight into how long antigen is present to 
stimulate the immune system.

We recommend starting with simpler models before progressing to 
more complex ones, particularly given the challenges of computational 
time and parameter identifiability. While there is extensive literature on 
solving mechanistic approaches with standard ODE solvers (e.g., in 
MATLAB or R), software that integrate ODE solving with parameter 
estimation including random effects (e.g., mixed effects modeling) is less 
available. In these cases, software like Monolix (frequentist/Bayesian) 
[31]and JAGS (Bayesian) [14], as well as Stan, which uses MCMC with 
the no-U-turn sampler (NUTS) [51], are available. The choice between 
these tools often depends on the statistical approach, computational 
efficiency, flexibility in solving differential equations, user interface, 
and licensing constraints. Ultimately, model development should strive 
for parsimony while also considering practical feasibility, especially 
when working with limited data.

An important limitation of this study is the scarcity of immunological 
and longitudinal data, which constrains model accuracy. Direct infor
mation on the processes driving antibody dynamics was unavailable, 
leaving binding antibody levels as the only source of information. 
Parameter estimation relied on backward fitting, requiring fixed pa
rameters to address identifiability issues, which is a common challenge 
that often leads to simplified models [13,17]. By contrast, studies with 
richer longitudinal data have successfully identified key biological pa
rameters [33,52,53]. Further research should explore the data needed to 
fully inform these models. Despite these limitations, this study provides 
valuable insights into antibody kinetics and immune processes.

We did not assess the effect of covariates on our model parameters 
due to identifiability issues and the lack of sufficient data to support 
these analyses. Incorporating covariates would require estimating 
additional parameters, adding complexity to a model where parameter 
estimation was already challenging. However, previous studies have 
highlighted that factors such as sex, vaccination against Mpox, and 
geographic region have an influence on antibody kinetics 
[4,10,13,16,47]. While covariate effects have been partly studied using 
simpler models [10], it remains to be determined whether the parame
ters driving antibody production, such as those estimated in our mech
anistic framework, differ meaningfully between cohorts. Including such 
an analysis in our study would have largely replicated existing work, 
without providing further biological insight into the mechanistic pro
cesses specifically involved in the booster antibody response.

This study did not assess the role of B cell subpopulations, 
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specifically memory B cells (MBCs) nor long-lived plasma cells (LLPCs), 
but how the germinal center mediated response gets activated after each 
dose producing plasma cells which produce binding antibodies. This is 
important because within the GCs, some B cells differentiate into LLPCs, 
which reside in the bone marrow and produce high-affinity antibodies, 
ensuring long-term protection. Others become MBCs, which persist in 
circulation and can quickly differentiate into antibody-secreting cells 
upon re-exposure to the antigen. Unlike LLPCs, which maintain antibody 
production regardless of antigen presence, MBCs can contribute to a 
broader immune response and can recognize antigen variants. [25,26]. 
Recent work by Xu et al. [54] has further highlighted the complexity of 
these processes, demonstrating that antibody repertoire reshaping and 
memory dynamics are influenced by sequential or heterologous expo
sures to different viral infections. While our model distinguishes be
tween short-lived plasma cells and memory B cells indirectly, it does so 
through a simplified compartment representing the GC mediated 
response, abstracting away the full complexity of the cellular processes 
within GC mediated response. This modeling choice was deliberate, 
balancing biological plausibility with identifiability and data limita
tions. Detailed modeling of B cell activation, T cell help, and affinity 
maturation would require extensive immunological measurements not 
available in the current dataset. Instead, we tracked antigen and anti
body concentrations, two components for which direct data were 
available, using a structure that preserves the essential Ag → GC → Ab 
biological processes. In future investigations, both MBCs and LLPCs 
could be added as compartments, to better understand the longevity of 
immunity conferred by this vaccine regimen.

5. Conclusion

This study set out to assess the feasibility of implementing within- 
host mechanistic approaches to gain a deeper understanding of anti
body dynamics. Our findings reveal that antibody half-lives after the 
booster dose is greater than after the second dose. Additionally, we 
quantified key biological processes underlying antibody dynamics, 
contributing to a more comprehensive understanding of these 
mechanisms.

The challenges addressed in inferring these models have provided 
valuable insights into antibody responses and lay the groundwork for 
future research on binding antibodies and memory B-cell decay. Further 
research should refine these models and identify necessary data.

In conclusion, these findings, together with future investigations, can 
be used to develop targeted interventions aimed at when to implement 
vaccination schedules. While a definitive CoP for Ebola vaccines has not 
yet been established, estimating when antibody levels fall below certain 
thresholds may still offer valuable guidance for booster timing. Impor
tantly, our mechanistic model captures between-individual variation in 
immune responses, which can inform tailored guidance on vaccine 
schedules among healthcare workers in this case. This is especially 
relevant in resource-limited areas, where identifying subgroups at risk of 
earlier waning immunity may be critical for preventing future 
outbreaks.
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