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Abstract
We lay the foundations for a database-inspired approach to interpreting and understanding neural
network models by querying them using declarative languages. Towards this end we study different
query languages, based on first-order logic, that mainly differ in their access to the neural network
model. First-order logic over the reals naturally yields a language which views the network as a black
box; only the input–output function defined by the network can be queried. This is essentially the
approach of constraint query languages. On the other hand, a white-box language can be obtained by
viewing the network as a weighted graph, and extending first-order logic with summation over weight
terms. The latter approach is essentially an abstraction of SQL. In general, the two approaches
are incomparable in expressive power, as we will show. Under natural circumstances, however, the
white-box approach can subsume the black-box approach; this is our main result. We prove the
result concretely for linear constraint queries over real functions definable by feedforward neural
networks with a fixed number of hidden layers and piecewise linear activation functions.
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1 Introduction

Neural networks [11] are a popular and successful representation model for real functions
learned from data. Once deployed, the neural network is “queried” by supplying it with
inputs then obtaining the outputs. In the field of databases, however, we have a much richer
conception of querying than simply applying a function to given arguments. For example, in
querying a database relation Employee(name, salary), we can not only ask for Anne’s salary;
we can also ask how many salaries are below that of Anne’s; we can ask whether no two
employees have the same salary; and so on.
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9:2 Query Languages for Neural Networks

In this paper, we consider the querying of neural networks from this more general
perspective. We see many potential applications: obvious ones are in explanation, verification,
and interpretability of neural networks and other machine-learning models [8, 2, 25]. These
are huge areas [31, 7] where it is important [29, 22] to have formal, logical definitions for the
myriad notions of explanation that are being considered. Another potential application is in
managing machine-learning projects, where we are testing many different architectures and
training datasets, leading to a large number of models, most of which become short-term
legacy code. In such a context it would be useful if the data scientist could search the
repository for earlier generated models having certain characteristics in their architecture or
in their behavior, which were perhaps not duly documented.

The idea of querying machine learning models with an expressive, declarative query
language comes naturally to database researchers, and indeed, Arenas et al. already proposed
a language for querying boolean functions over an unbounded set of boolean features [3]. In
the modal logic community, similar languages are being investigated [26, references therein].

In the present work, we focus on real, rather than boolean, functions and models, as is
indeed natural in the setting of verifying neural networks [2].

The constraint query language approach. A natural language for querying real functions
on a fixed number of arguments (features) is obtained by simply using first-order logic over
the reals, with a function symbol F representing the function to be queried. We denote
this by FO(R). For example, consider functions F with three arguments. The formula
∀b′ |F (a, b, c) −F (a, b′, c)| < ϵ expresses that the output on (a, b, c) does not depend strongly
on the second feature, i.e., F (a, b′, c) is ϵ-close to F (a, b, c) for any b′. Here, a, b, c and ϵ can
be real constants or parameters (free variables).

The language FO(R) (also known as FO + Poly) and its restriction FO(Rlin) to linear
arithmetic (aka FO + Lin) were intensively investigated in database theory around the turn
of the century, under the heading of constraint query languages, with applications to spatial
and temporal databases. See the compendium volume [21] and book chapters [24, chapter 13],
[13, chapter 5]. Linear formulas with only universal quantifiers over the reals, in front of a
quantifier-free condition involving only linear arithmetic (as the above example formula), can
already model many properties considered in the verification of neural networks [2]. This
universal fragment of FO(Rlin) can be evaluated using linear programming techniques [2].

Full FO(R) allows alternation of quantifiers over the reals, and multiplication in arithmetic.
Because the first-order theory of the reals is decidable [5], FO(R) queries can still be effectively
evaluated on any function that is semi-algebraic, i.e., itself definable in first-order logic over
the reals. Although the complexity of this theory is high, if the function is presented
as a quantifier-free formula, FO(R) query evaluation actually has polynomial-time data
complexity; here, the “data” consists of the given quantifier-free formula [18].

Functions that can be represented by feedforward neural networks with ReLU hidden
units and linear output units are clearly semi-algebraic; in fact, they are piecewise linear.
For most of our results, we will indeed focus on this class of networks, which are widespread
in practice [11], and denote them by ReLU-FNN.

The SQL approach. Another natural approach to querying neural networks is to query
them directly, as graphs of neurons with weights on the nodes and edges. For this purpose
one represents such graphs as relational structures with numerical values and uses SQL to
query them. As an abstraction of this approach, in this paper, we model neural networks
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as weighted finite structures. As a query language we use FO(SUM): first-order logic over
weighted structures, allowing order comparisons between weight terms, where weight terms
can be built up using rational arithmetic, if-then-else, and, importantly, summation.

Based on logics originally introduced by Grädel and Gurevich [12], the language FO(SUM)
is comparable to the relational calculus with aggregates [19] and, thus, to SQL [23]. Logics
close to FO(SUM), but involving arithmetic in different semirings, were recently also used
for unifying different algorithmic problems in query processing [35], as well as for expressing
hypotheses in the context of learning over structures [36]. The well-known FAQ framework [28],
restricted to the real semiring, can be seen as the conjunctive fragment of FO(SUM).

To give a simple example of an FO(SUM) formula, consider ReLU-FNNs with a single
input unit, one hidden layer of ReLU units, and a single linear output unit. The following
formula expresses the query that asks if the function evaluation on a given input value is
positive:

0 < b(out) +
∑

x:E(in,x)

w(x, out) · ReLU(w(in, x) · val + b(x)).

Here, E is the edge relation between neurons, and constants in and out hold the input and
output unit, respectively. Thus, variable x ranges over the neurons in the hidden layer.
Weight functions w and b indicate the weights of edges and the biases of units, respectively;
the weight constant val stands for a given input value. We assume for clarity that ReLU is
given, but it is definable in FO(SUM).

Just like the relational calculus with aggregates, or SQL select statements, query evaluation
for FO(SUM) has polynomial time data complexity, and techniques for query processing and
optimization from database systems directly apply.

Comparing expressive powers. Expressive power of query languages has been a classical
topic in database theory and finite model theory [1, 24], so, with the advent of new models, it
is natural to revisit questions concerning expressivity. The goal of this paper is to understand
and compare the expressive power of the two query languages FO(R) and FO(SUM) on
neural networks over the reals. The two languages are quite different. FO(R) sees the model
as a black-box function F , but can quantify over the reals. FO(SUM) can see the model
as a white box, a finite weighted structure, but can quantify only over the elements of the
structure, i.e., the neurons.

In general, indeed the two expressive powers are incomparable. In FO(SUM), we can
express queries about the network topology; for example, we may ask to return the hidden
units that do not contribute much to the function evaluation on a given input value. (Formally,
leaving them out of the network would yield an output within some ϵ of the original output.)
Or, we may ask whether there are more than a million neurons in the first hidden layer. For
FO(R), being a black box language, such queries are obviously out of scope.

A more interesting question is how the two languages compare in expressing model
agnostic queries: these are queries that return the same result on any two neural networks
that represent the same input–output function. For example, when restricting attention to
networks with one hidden layer, the example FO(SUM) formula seen earlier, which evaluates
the network, is model agnostic. FO(R) is model agnostic by design, and, indeed, serves as a
very natural declarative benchmark of expressiveness for model-agnostic queries. It turns out
that FO(SUM), still restricting to networks of some fixed depth, can express model-agnostic
queries that FO(R) cannot. For example, for any fixed depth d, we will show that FO(SUM)
can express the integrals of a functions given by a ReLU-FNNs of depth d. In contrast, we
will show that this cannot be done in FO(R) (Theorem 6.1).

ICDT 2025



9:4 Query Languages for Neural Networks

The depth of a neural network can be taken as a crude notion of “schema”. Standard
relational query languages typically cannot be used without knowledge of the schema of the
data. Similarly, we will show that without knowledge of the depth, FO(SUM) cannot express
any nontrivial model-agnostic query (Theorem 6.2). Indeed, since FO(SUM) lacks recursion,
function evaluation can only be expressed if we known the depth. (Extensions with recursion
is one of the many interesting directions for further research.)

When the depth is known, however, for model-agnostic queries, the expressiveness of
FO(SUM) exceeds the benchmark of expressiveness provided by FO(Rlin). Specifically,
we show that every FO(Rlin) query over functions representable by ReLU-FNNs is also
expressible in FO(SUM) evaluated on the networks directly (Theorem 7.1). This is our
main technical result, and can be paraphrased as “SQL can verify neural networks.” The
proof involves showing that the required manipulations of higher-dimensional piecewise
linear functions, and the construction of cylindrical cell decompositions in Rn, can all be
expressed in FO(SUM). To allow for a modular proof, we also develop the notion of FO(SUM)
translation, generalizing the classical notion of first-order interpretations [16].

This paper is organized as follows. Section 2 provides preliminaries on neural networks.
Section 3 introduces FO(R). Section 4 introduces weighted structures and FO(SUM), after
which Section 5 introduces white-box querying. Section 6 considers model-agnostic queries.
Section 7 presents the main technical result. Section 8 concludes with a discussion of topics
for further research.

A full version of this paper with full proofs is available [14].

2 Preliminaries on neural networks

A feedforward neural network [11], in general, could be defined as a finite, directed, weighted,
acyclic graph, with some additional aspects which we discuss next. The nodes are also
referred to as neurons or units. Some of the source nodes are designated as inputs, and some
of the sink nodes are designated as outputs. Both the inputs, and the outputs, are linearly
ordered. Neurons that are neither inputs nor outputs are said to be hidden. All nodes, except
for the inputs, carry a weight, a real value, called the bias. All directed edges also carry a
weight.

In this paper, we focus on ReLU-FNNs: networks with ReLU activations and linear
outputs. This means the following. Let N be a neural network with m inputs. Then every
node u in N represents a function FN

u : Rm → R defined as follows. We proceed inductively
based on some topological ordering of N . For input nodes u, simply FN

u (x1, . . . , xm) := xi, if
u is the ith input node. Now let u be a hidden neuron and assume FN

v is already defined for
all predecessors v of u, i.e., nodes v with an edge to u. Let v1, . . . , vl be these predecessors,
let w1, . . . , wl be the weights on the respective edges, and let b be the bias of u. Then

FN
u (x) := ReLU(b+

∑
i

wiF
N
vi

(x)),

where ReLU : R → R : z 7→ max(0, z).
Finally, for an output node u, we define FN

u similarly to hidden neurons, except that the
application of ReLU is omitted. The upshot is that a neural network N with m inputs and n
outputs u1, . . . , un represents a function FN : Rm → Rn mapping x to (FN

u1
(x), . . . , FN

un
(x)).

For any node u in the network, FN
u is always a continuous piecewise linear function. We

denote the class of all continuous piecewise linear functions F : Rm → R by PL(m); that is,
continuous functions F that admit a partition of Rm into finitely many polytopes such that
F is affine linear on each of them.
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Hidden layers. Commonly, the hidden neurons are organized in disjoint blocks called layers.
The layers are ordered, such that the neurons in the first layer have only edges from inputs,
and the neurons in any later layer have only edges from neurons in the previous layer. Finally,
outputs have only edges from neurons in the last layer.

We will use F(m, ℓ) to denote the class of layered networks with m inputs of depth ℓ,
that is, with an input layer with m nodes, ℓ− 1 hidden layers, and an output layer with a
single node. Recall that the nodes on all hidden layer use ReLU activations and the output
node uses the identity function.

It is easy to see that networks in F(1, 1) just compute linear functions and that for every
ℓ ≥ 2 we have {FN | N ∈ F(1, ℓ)} = PL(1), that is, the class of functions R → R that can be
computed by a network in F(1, ℓ) is the class of all continuous piecewise linear functions. The
well-known Universal Approximation Theorem [9, 17] says that every continuous function
f : K → R defined on a compact domain K ⊆ Rm can be approximated to any additive
error by a network in F(m, 2).

3 A black-box query language

First-order logic over the reals, denoted here by FO(R), is, syntactically, just first-order logic
over the vocabulary of elementary arithmetic, i.e., with binary function symbols + and · for
addition and multiplication, binary predicate <, and constant symbols 0 and 1 [5]. Constants
for rational numbers, or even algebraic numbers, can be added as an abbreviation (since they
are definable in the logic).

The fragment FO(Rlin) of linear formulas uses multiplication only for scalar multiplication,
i.e., multiplication of variables with rational number constants. For example, the formula
y = 3x1 − 4x2 + 7 is linear, but the formula y = 5x1 · x2 − 3 is not. In practice, linear queries
are often sufficiently expressive, both from earlier applications for temporal or spatial data
[21], as well as for querying neural networks (see examples to follow). The only caveat is
that many applications assume a distance function on vectors. When using distances based
on absolute value differences between real numbers, e.g., the Manhattan distance or the max
norm, we still fall within FO(Rlin).

We will add to FO(R) extra relation or function symbols; in this paper, we will mainly
consider FO(R, F ), which is FO(R) with an extra function symbol F . The structure on
the domain R of reals, with the arithmetic symbols having their obvious interpretation, will
be denoted here by R. Semantically, for any vocabulary τ of extra relation and function
symbols, FO(R, τ) formulas are interpreted over structures that expand R with additional
relations and functions on R of the right arities, that interpret the symbols in τ . In this way,
FO(R, F ) expresses queries about functions F : Rm → R.

This language can express a wide variety of properties (queries) considered in interpretable
machine learning and neural-network verification. Let us see some examples.

▶ Example 3.1. To check whether F : Rm → R is robust around an m-vector a [32], using
parameters ϵ and δ, we can write the formula ∀x(d(x,a) < ϵ ⇒ |F (x) − F (a)| < δ). Here x

stands for a tuple of m variables, and d stands for some distance function which is assumed
to be expressible.

▶ Example 3.2. Counterfactual explanation methods [37] aim to find the closest x to an
input a such that F (x) is “expected,” assuming that F (a) was unexpected. A typical
example is credit denial; what should we change minimally to be granted credit? Typically
we can define expectedness by some formula, e.g., F (x) > 0.9. Then we can express the
counterfactual explanation as F (x) > 0.9 ∧ ∀y(F (y) > 0.9 ⇒ d(x,a) ≤ d(y,a)).

ICDT 2025
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▶ Example 3.3. We may define the contribution of an input feature i on an input a =
(a1, . . . , am) as the inverse of the smallest change we have to make to that feature for the
output to change significantly. We can express that r is such a change by writing (taking i = 1
for clarity) r > 0 ∧ (d(F (a1 − r, a2, . . . , am), F (a)) > ϵ ∨ d(F (a1 + r, a2, . . . , am), F (a)) > ϵ).
Denoting this formula by change(r), the smallest change is then expressed as change(r) ∧
∀r′(change(r′) ⇒ r ≤ r′).

▶ Example 3.4. We finally illustrate that FO(R, F ) can express gradients and many other
notions from calculus. For simplicity assume F to be unary. Consider the definition
F ′(a) = limx→c(F (x) − F (c))/(x − c) of the derivative in a point c. So it suffices to show
how to express that l = limx→cG(x) for a function G that is continuous in c. We can write
down the textbook definition literally as ∀ϵ > 0 ∃δ > 0 ∀x(|x− c| < δ ⇒ |G(x) − l| < ϵ).

Evaluating FO(R) queries. Black box queries can be effectively evaluated using the
decidability and quantifier elimination properties of FO(R). This is the constraint query
language approach [18, 21], which we briefly recall next.

A function f : Rm → R is called semialgebraic [5] (or semilinear) if there exists an FO(R)
(or FO(Rlin)) formula φ(x1, . . . , xm, y) such that for any m-vector a and real value b, we
have R |= φ(a, b) if and only if F (a) = b.

Now consider the task of evaluating an FO(R, F ) formula ψ on a semialgebraic function f ,
given by a defining formula φ. By introducing auxiliary variables, we may assume that the
function symbol F is used in ψ only in subformulas for the form z = F (u1, . . . , um). Then
replace in ψ each such subformula by φ(u1, . . . , um, z), obtaining a pure FO(R) formula χ.

Now famously, the first-order theory of R is decidable [33, 5]. In other words, there is
an algorithm that decides, for any FO(R) formula χ(x1, . . . , xk) and k-vector c, whether
R |= χ(c). Actually, a stronger property holds, to the effect that every FO(R)-formula is
equivalent to a quantifier-free formula. The upshot is that there is an algorithm that, given
a FO(R, F ) query ψ(x1, . . . , xk) and a semialgebraic function f given by a defining formula,
outputs a quantifier-free formula defining the result set {c ∈ Rk | R, f |= ψ(c)}. If f is
given by a quantifier-free formula, the evaluation can be done in polynomial time in the
length of the description of f , so polynomial-time data complexity. This is because there
are algorithms for quantifier elimination with complexity p(n) · e(q), where n is the size of
the formula, p is a polynomial, q is the number of quantifiers, and e is a doubly exponential
function [18, 5].

Complexity. Of course, we want to evaluate queries on the functions represented by neural
networks. From the definition given in Section 2, it is clear that the functions representable
by ReLU-FNNs are always semialgebraic (actually, semilinear). For every output feature j,
it is straightforward to compile, from the network, a quantifier-free formula defining the jth
output component function. In this way we see that FO(R, F ) queries on ReLU-FNNs are,
in principle, computable in polynomial time.

However, the algorithms are notoriously complex, and we stress again that FO(R, F )
should be mostly seen as a declarative benchmark of expressiveness. Moreover, we assume here
for convenience that ReLU is a primitive function. ReLU can be expressed in FO(R) using
disjunction, but this may blow up the query formula, e.g., when converting to disjunctive
normal form [2]. Symbolic constraint solving algorithms for the reals have been extended to
deal with ReLU natively [2].
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▶ Remark 3.5. In closing this Section we remark that, to query the entire network function,
we would not strictly use just only a single function symbol F , but rather the language
FO(R, F1, . . . , Fn), with function symbols for the n outputs. In this paper, for the sake
of clarity, we will often stick to a single output, but our treatment generalizes to multiple
outputs.

4 Weighted structures and FO(SUM)

Weighted structures are standard abstract structures equipped with one or more weight
functions from tuples of domain elements to values from some separate, numerical domain.
Here, as numerical domain, we will use R⊥ = R ∪ {⊥}, the set of “lifted reals” where ⊥
is an extra element representing an undefined value. Neural networks are weighted graph
structures. Hence, since we are interested in declarative query languages for neural networks,
we are interested in logics over weighted structures. Such logics were introduced by Grädel
and Gurevich [12]. We consider here a concrete instantiation of their approach, which we
denote by FO(SUM).

Recall that a (finite, relational) vocabulary is a finite set of function symbols and relation
symbols, where each symbol comes with an arity (a natural number). We extend the notion
of vocabulary to also include a number of weight function symbols, again with associated
arities. We allow 0-ary weight function symbols, which we call weight constant symbols.

A (finite) structure A over such a vocabulary Υ consists of a finite domain A, and
functions and relations on A of the right arities, interpreting the standard function symbols
and relation symbols from Υ. So far this is standard. Now additionally, A interprets every
weight function symbol w, of arity k, by a function wA : Ak → R⊥.

The syntax of FO(SUM) formulas (over some vocabulary) is defined exactly as for standard
first order logic, with one important extension. In addition to formulas (taking Boolean
values) and standard terms (taking values in the structure), the logic contains weight terms
taking values in R⊥. Weight terms t are defined by the following grammar:

t ::= ⊥ | w(s1, . . . , sn) | r(t, . . . , t) | if φ then t else t |
∑
x:φ

t

Here, w is a weight function symbol of arity n and the si are standard terms; r is a rational
function applied to weight terms, with rational coefficients; φ is a formula; and x is a tuple
of variables. The syntax of weight terms and formulas is mutually recursive. As just seen,
the syntax of formulas φ is used in the syntax of weight terms; conversely, weight terms t1
and t2 can be combined to form formulas t1 = t2 and t1 < t2.

Recall that a rational function is a fraction between two polynomials. Thus, the arith-
metic operations that we consider are addition, scalar multiplication by a rational number,
multiplication, and division.

The free variables of a weight term are defined as follows. The weight term ⊥ has no free
variables. The free variables of w(s1, . . . , sn) are simply the variables occurring in the si. A
variable occurs free in r(t1, . . . , tn) if it occurs free in some ti. A variable occurs free in ‘if φ
then t1 else t2’ if it occurs free in t1, t2, or φ. The free variables of

∑
x:φ t are those of φ

and t, except for the variables in x. A formula or (weight) term is closed if it has no free
variables.

We can evaluate a weight term t(x1, . . . , xk) on a structure A and a tuple a ∈ Ak

providing values to the free variables. The result of the evaluation, denoted by tA,a, is a
value in R⊥, defined in the obvious manner. In particular, when t is of the form

∑
y:φ t

′, we
have

tA,a =
∑

b:A|=φ(a,b)

t′A,a,b.

ICDT 2025
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Division by zero, which can happen when evaluating terms of the form r(t, . . . , t), is given
the value ⊥. The arithmetical operations are extended so that x+ ⊥, q⊥ (scalar multiply),
x · ⊥, and x/⊥ and ⊥/x always equal ⊥. Also, ⊥ < a holds for all a ∈ R.

5 White-box querying

For any natural numbers m and n, we introduce a vocabulary for neural networks with m

inputs and n outputs. We denote this vocabulary by Υnet(m,n), or just Υnet if m and n are
understood. It has a binary relation symbol E for the edges; constant symbols in1, . . . , inm
and out1, . . . , outn for the input and output nodes; a unary weight function b for the biases,
and a binary weight function symbol w for the weights on the edges.

Any ReLU-FNN N , being a weighted graph, is an Υnet-structure in the obvious way.
When there is no edge from node u1 to u2, we put wN (u1, u2) = 0. Since inputs have no
bias, we put bN (u) = ⊥ for any input u.

Depending on the application, we may want to enlarge Υnet with some additional
parameters. For example, we can use additional weight constant symbols to provide input
values to be evaluated, or output values to be compared with, or interval bounds, etc.

The logic FO(SUM) over the vocabulary Υnet (possibly enlarged as just mentioned) serves
as a “white-box” query language for neural networks, since the entire model is given and can
be directly queried, just like an SQL query can be evaluated on a given relational database.
Contrast this with the language FO(R, F ) from Section 3, which only has access to the
function F represented by the network, as a black box.

▶ Example 5.1. While the language FO(R, F ) cannot see inside the model, at least it
has direct access to the function represented by the model. When we use the language
FO(SUM), we must compute this function ourselves. At least when we know the depth of
the network, this is indeed easy. In the Introduction, we already showed a weight term
expressing the evaluation of a one-layer neural network on a single input and output. We
can easily generalize this to a weight term expressing the value of any of a fixed number of
outputs, with any fixed number m of inputs, and any fixed number of layers. Let val1, . . . ,
valm be additional weight constant symbols representing input values. Then the weight term
ReLU(b(u) + w(in1, u) · val1 + · · · + w(inm, u) · valm) expresses the value of any neuron u in
the first hidden layer (u is a variable). Denote this term by t1(u). Next, for any subsequent
layer numbered l > 1, we inductively define the weight term tl(u) as

ReLU(b(u) +
∑

x:E(x,u)

w(x, u) · tl−1(x)).

Here, ReLU(c) can be taken to be the weight term if c > 0 then c else 0. Finally, the value of
the jth output is given by the weight term evalj := b(outj) +

∑
x:E(x,outj) w(x, outj) · tl(x),

where l is the number of the last hidden layer.

▶ Example 5.2. We can also look for useless neurons: neurons that can be removed from
the network without altering the output too much on given values. Recall the weight term
evalj from the previous example; for clarity we just write eval. Let z be a fresh variable, and
let eval ′ be the term obtained from eval by altering the summing conditions E(x, u) and
E(x, out) by adding the conjunct x ≠ z. Then the formula |eval − eval ′| < ϵ expresses that
z is useless. (For |c| we can take the weight term if c > 0 then c else −c.)

Another interesting example is computing integrals. Recall that F(m, ℓ) is the class of
networks with m inputs, one output, and depth ℓ.
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▶ Lemma 5.3. Let m and ℓ be natural numbers. There exists an FO(SUM) term t over
Υnet(m, 1) with m additional pairs of weight constant symbols mini and maxi for i ∈
{1, . . . ,m}, such that for any network N in F(m, ℓ), and values ai and bi for the mini and
maxi, we have tN ,a1,b1,...,am,bm =

∫ b1
a1

· · ·
∫ bm

am
FN dx1 . . . dxm.

Proof (sketch). We sketch here a self-contained and elementary proof for m = 1 and ℓ = 2
(one input, one hidden layer). This case already covers all continuous piecewise linear
functions R → R.

Every hidden neuron u may represent a “quasi breakpoint” in the piecewise linear function
(that is, a point where its slope may change). Concretely, we consider the hidden neurons
with nonzero input weights to avoid dividing by zero. Its x-coordinate is given by the
weight term breakx(u) := −b(u)/w(in1, u). The y-value at the breakpoint is then given by
breaky(u) : = eval1(breakx(u)), where eval1 is the weight term from Example 5.1 and we
substitute breakx(u) for val1.

Pairs (u1, u2) of neurons representing successive breakpoints are easy to define by a
formula succ(u1, u2). Such pairs represent the pieces of the function, except for the very first
and very last pieces. For this proof sketch, assume we simply want the integral between the
first breakpoint and the last breakpoint.

The area (positive or negative) contributed to the integral by the piece (u1, u2) is easy to
write as a weight term: area(u1, u2) = 1

2 (breaky(u1) + breaky(u2))(breakx(u2) − breakx(u1)).
We sum these to obtain the desired integral. However, since different neurons may represent
the same quasi breakpoint, we must divide by the number of duplicates. Hence, our
desired term t equals

∑
u1,u2:succ(u1,u2) area(u1, u2)/(

∑
u′

1,u
′
2:γ 1), where γ is the formula

succ(u′
1, u

′
2) ∧ breakx(u′

1) = breakx(u1) ∧ breakx(u′
2) = breakx(u2). ◀

▶ Example 5.4. A popular alternative to Example 3.3 for measuring the contribution of an
input feature i to an input y = (y1, . . . , ym) is the Shap score [27]. It assumes a probability
distribution P on the input space and quantifies the change to the expected value of FN

caused by fixing input feature i to yi in a random fixation order of the input features:

Shap(i) =∑
I⊆{1,...,m}\{i}

|I|!(m− 1 − |I|!)
m!

(
E

(
FN (x) | xI∪{i} = yI∪{i}

)
− E

(
FN (x) | xI = yI

))
.

When we assume that P is the product of uniform distributions over the intervals (aj , bj),
we can write the conditional expectation E

(
FN (x) | xJ = yJ

)
for some J ⊆ {1, . . . ,m} by

setting {1, . . .m} \ J = : {j1, . . . , jr} as follows.

E
(
FN (x) | xJ = yJ

)
=

r∏
k=1

1
bjk

− ajk

·
∫ bj1

aj1

· · ·
∫ bjr

ajr

FN (x|xJ =yJ
) dxjr . . . dxj1

where x|xJ =yJ
is a short notation for the variable obtained from x by replacing xj with yj

for all j ∈ J . With lemma 5.3, this conditional expectation can be expressed in FO(SUM)
and by replacing J with I or I ∪ {i} respectively, we can express the Shap score.

More examples. Our main result will be that, over networks of a given depth, all of
FO(Rlin, F ) can be expressed in FO(SUM). So the examples from Section 3 (which are
linear if a Manhattan or max distance is used) apply here as well. Moreover, the techniques
by which we show our main result readily adapt to queries not about the final function F

represented by the network, but about the function Fz represented by a neuron z given as a
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1

−1

0 1

Figure 1 The function fS1,S2 of the proof of Theorem 6.1 for the set S1 consisting of the three
red points and the set S2 consisting of the three white points.

parameter to the query, much as in Example 5.2. For example, in feature visualization [8]
we want to find the input that maximizes the activation of some neuron z. Since this is
expressible in FO(Rlin, F ), it is also expressible in FO(SUM).

6 Model-agnostic queries

We have already indicated that FO(R, F ) is “black box” while FO(SUM) is “white box”.
Black-box queries are commonly called model agnostic [8]. Some FO(SUM) queries may, and
others may not, be model agnostic.

Formally, for some ℓ ≥ 1, let us call a closed FO(SUM) formula φ, possibly using
weight constants c1, . . . , ck, depth-ℓ model agnostic if for all m ≥ 1 all neural networks
N ,N ′ ∈

⋃ℓ
i=1 F(m, i) such that FN = FN ′ , and all a1, . . . , ak ∈ R we have N , a1, . . . , ak |= φ

⇔ N ′, a1, . . . , ak |= φ. A similar definition applies to closed FO(SUM) weight terms.
For example, the term of Example 5.1 evaluating the function of a neural network of

depth at most ℓ is depth-ℓ model agnostic. By comparison the formula stating that a network
has useless neurons (cf. Example 5.2) is not model agnostic. The term t from Lemma 5.3,
computing the integral, is depth-ℓ model agnostic.

▶ Theorem 6.1. The query
∫ 1

0 f = 0 for functions f ∈ PL(1) is expressible by a depth-2
agnostic FO(SUM) formula, but not in FO(R, F ).

Proof. We have already seen the expressibility in FO(SUM). We prove nonexpressibility in
FO(R, F ).

Consider the equal-cardinality query Q about disjoint pairs (S1, S2) of finite sets of reals,
asking whether |S1| = |S2|. Over abstract ordered finite structures, equal cardinality is
well-known not to be expressible in order-invariant first-order logic [24]. Hence, by the
generic collapse theorem for constraint query languages over the reals [21, 24], query Q is
not expressible in FO(R, S1, S2).

Now for any given S1 and S2, we construct a continuous piecewise linear function fS1,S2

as follows. We first apply a suitable affine transformation so that S1 ∪ S2 falls within the
open interval (0, 1). Now fS1,S2 is a sawtooth-like function, with positive teeth at elements
from S1, negative teeth (of the same height, say 1) at elements from S2, and zero everywhere
else. To avoid teeth that overlap the zero boundary at the left or that overlap each other,
we make them of width min{m,M}/2, where m is the minimum of S1 ∪ S2 and M is the
minimum distance between any two distinct elements in S1 ∪ S2.

Expressing the above construction uniformly in FO(R, S1, S2) poses no difficulties; let
ψ(x, y) be a formula defining fS1,S2 . Now assume, for the sake of contradiction, that

∫ 1
0 F = 0

would be expressible by a closed FO(R, F ) formula φ. Then composing φ with ψ would
express query Q in FO(R, S1, S2). Indeed, clearly,

∫ 1
0 fS1,S2 = 0 if and only if |S1| = |S2|.

So, φ cannot exist. ◀
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It seems awkward that in the definition of model agnosticity we need to bound the depth.
Let us call an FO(SUM) term or formula fully model agnostic if is depth-ℓ model agnostic for
every ℓ. It turns out that there are no nontrivial fully model agnostic FO(SUM) formulas.

▶ Theorem 6.2. Let φ be a fully model agnostic closed FO(SUM) formula over Υnet(m, 1).
Then either N |= φ for all N ∈

⋃
ℓ≥1 F(m, ℓ) or N ̸|= φ for all N ∈

⋃
ℓ≥1 F(m, ℓ).

We omit the proof. The idea is that FO(SUM) is Hanf-local [23, 24]. No formula φ can
distinguish a long enough structures consisting of two chains where the middle nodes are
marked by two distinct constants c1 and c2, from its sibling structure where the markings
are swapped. We can turn the two structures into neural networks by replacing the markings
by two gadget networks N1 and N2, representing different functions, that φ is supposed
to distinguish. However, the construction is done so that the function represented by the
structure is the same as that represented by the gadget in the left chain. Still, FO(SUM)
cannot distinguish these two structures. So, φ is either not fully model-agnostic, or N1 and
N2 cannot exist and φ is trivial.

▶ Corollary 6.3. The FO(R, F ) query F (0) = 0 is not expressible in FO(SUM).

7 From FO(Rlin) to FO(SUM)

In practice, the number of layers in the employed neural network architecture is often fixed
and known. Our main result then is that FO(SUM) can express all FO(Rlin) queries.

▶ Theorem 7.1. Let m and ℓ be natural numbers. For every closed FO(Rlin, F ) formula ψ
there exists a closed FO(SUM) formula φ such that for every network N in F(m, ℓ), we have
R, FN |= ψ iff N |= φ.

The challenge in proving this result is to simulate, using quantification and summation over
neurons, the unrestricted access to real numbers that is available in FO(Rlin). Thereto, we
will divide the relevant real space in a finite number of cells which we can represent by finite
tuples of neurons.

The proof involves several steps that transform weighted structures. Before presenting
the proof, we formalize such transformations in the notion of FO(SUM) translation, which
generalize the classical notion of first-order interpretation [16] to weighted structures.

7.1 FO(SUM) translations
Let Υ and Γ be vocabularies for weighted structures, and let n be a natural number. An n-ary
FO(SUM) translation φ from Υ to Γ consists of a number of formulas and weight terms over
Υ, described next. There are formulas φdom(x) and φ=(x1,x2); formulas φR(x1, . . . ,xk) for
every k-ary relation symbol R of Γ; and formulas φf (x0,x1, . . . ,xk) for every k-ary standard
function symbol f of Γ. Furthermore, there are weight terms φw(x1, . . . ,xk) for every k-ary
weight function w of Γ.

In the above description, bold x denote n-tuples of distinct variables. Thus, the formulas
and weight terms of φ define relations or weight functions of arities that are a multiple of n.

We say that φ maps a weighted structure A over Υ to a weighted structure B over Γ if
there exists a surjective function h from φdom(A) ⊆ An to B such that:

h(a1) = h(a2) ⇔ A |= φ=(a1,a2);
(h(a1), . . . , h(ak)) ∈ RB ⇔ A |= φR(a1, . . . ,ak);
(h(a0) = fB(h(a1), . . . , h(ak)) ⇔ A |= φf (a0,a1, . . . ,ak);
wB(h(a1), . . . , h(am)) = φA

w(a1, . . . ,an).

ICDT 2025



9:12 Query Languages for Neural Networks

In the above, the bold a denote n-tuples in φdom(A).
For any given A, if φ maps A to B, then B is unique up to isomorphism. Indeed, the

elements of B can be understood as representing the equivalence classes of the equivalence
relation φ=(A) on φdom(A). In particular, for B to exist, φ must be admissible on A, which
means that φ=(A) is indeed an equivalence relation on φdom(A), and all relations and all
functions φR(A), φf (A) and φw(A) are invariant under this equivalence relation.

If K is a class of structures over Υ, and T is a transformation of structures in K to
structures over Γ, we say that φ expresses T if φ is admissible on every A in K, and maps A
to T (A).

The relevant reduction theorem for translations is the following:

▶ Theorem 7.2. Let φ be an n-ary FO(SUM) translation from Υ to Γ, and let ψ(y1, . . . , yk)
be a formula over Γ. Then there exists a formula φψ(x1, . . . ,xk) over Υ such that whenever
φ maps A to B through h, we have B |= ψ(h(a1), . . . , h(ak)) iff A |= φψ(a1, . . . ,ak).
Furthermore, for any weight term t over Γ, there exists a weight term φt over Υ such that
tB(h(a1), . . . , h(ak)) = φA

t (a1, . . . ,ak).

Proof (sketch). As this result is well known and straightforward to prove for classical first-
order interpretations, we only deal here with summation terms, which are the main new aspect.
Let t be of the form

∑
y:γ t

′. Then for φt we take
∑

x:φγ
φt′(x1, . . . ,xk,x)/(

∑
x′:φ=(x,x′) 1).

◀

7.2 Proof of Theorem 7.1
We sketch the proof of Theorem 7.1. For clarity of exposition, we present it first for single
inputs, i.e., the case m = 1. We present three Lemmas which can be chained together to
obtain the theorem.

Piecewise linear functions. We can naturally model piecewise linear (PWL) functions from
R to R as weighted structures, where the elements are simply the pieces. Each piece p is
defined by a line y = ax+ b and left and right endpoints. Accordingly, we use a vocabulary
Υpwl

1 with four unary weight functions indicating a, b, and the x-coordinates of the endpoints.
(The left- and rightmost pieces have no endpoint; we set their x-coordinate to ⊥.)

For m = 1 and ℓ = 2, the proof of the following Lemma is based on the same ideas as
in the proof sketch we gave for Lemma 5.3. For m > 1, PWL functions from Rm to R are
more complex; the vocabulary Υpwl

m and a general proof of the lemma will be described in
Section 7.3.

▶ Lemma 7.3. Let m and ℓ be natural numbers. There is an FO(SUM) translation from
Υnet(m, 1) to Υpwl

m that transforms every network N in F(m, ℓ) into a proper weighted
structure representing FN .

Hyperplane arrangements. An affine function on Rd is a function of the form a0 + a1x1 +
· · · + adxd. An affine hyperplane is the set of zeros of some non-constant affine function (i.e.
where at least one of the ai with i > 0 is non-zero). A hyperplane arrangement is a collection
of affine hyperplanes.

We naturally model a hyperplane arrangement as a weighted structure, where the elements
are the hyperplanes. The vocabulary Υarr

d simply consists of unary weight functions a0, a1,
. . . , ad indicating the coefficients of the affine function defining each hyperplane.
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▶ Remark 7.4. An Υarr
d -structure may have duplicates, i.e., different elements representing

the same hyperplane. This happens when they have the same coefficients up to a constant
factor. In our development, we will allow structures with duplicates as representations of
hyperplane arrangements.

Cylindrical decomposition. We will make use of a linear version of the notion of cylindrical
decomposition (CD) [5], which we call affine CD. An affine CD of Rd is a sequence
D = D0, . . . ,Dd, where each Di is a partition of Ri. The blocks of partition Di are referred
to as i-cells or simply cells. The precise definition is by induction on d. For the base case,
there is only one possibility D0 = {R0}. Now let d > 0. Then D0, . . . ,Dd−1 should already
be an affine CD of Rd−1. Furthermore, for every cell C of Dd−1, there must exist finitely
many affine functions ξ1, . . . , ξr from Rd−1 to R, where r may depend on C. These are
called the section mappings above C, and must satisfy ξ1 < · · · < ξr on C. In this way, the
section mappings induce a partition of the cylinder C × R in sections and sectors. Each
section is the graph of a section mapping, restricted to C. Each sector is the volume above C
between two consecutive sections. Now Dd must equal {C × S | C ∈ Dd−1 and S is a section
or sector above C}.

The ordered sequence of cells C × S formed by the sectors and sections of C is called the
stack above C, and C is called the base cell for these cells.

An affine CD of Rd is compatible with a hyperplane arrangement A in Rd if every every
d-cell C lies entirely on, or above, or below every hyperplane h = 0. (Formally, the affine
function h is everywhere zero, or everywhere positive, or everywhere negative, on C.)

We can represent a CD compatible with a hyperplane arrangement as a weighted structure
with elements of two sorts: cells and hyperplanes. There is a constant o for the “origin cell”
R0. Binary relations link every i + 1-cell to its base i-cell, and to its delineating section
mappings. (Sections are viewed as degenerate sectors where the two delineating section
mappings are identical.) Ternary relations give the order of two hyperplanes in Ri+1 above
an i-cell, and whether they are equal. The vocabulary for CDs of Rd is denoted by Υcell

d .

▶ Lemma 7.5. Let d be a natural number. There is an FO(SUM) translation from Υarr
d to

Υcell
d that maps any hyperplane arrangement A to a CD that is compatible with A.

Proof (sketch). We follow the method of vertical decomposition [15]. There is a projection
phase, followed by a buildup phase. For the projection phase, let Ad := A. For i = d, . . . , 1,
take all intersections between hyperplanes in Ai, and project one dimension down, i.e., project
on the first i− 1 components. The result is a hyperplane arrangement Ai−1 in Ri−1. For the
buildup phase, let D0 := {R0}. For i = 0, . . . , d− 1, build a stack above every cell C in Di

formed by intersecting C×R with all hyperplanes in Ai+1. The result is a partition Di+1 such
that D0, . . . ,Di+1 is a CD of Ri+1 compatible with Ai+1. This algorithm is implementable
in FO(SUM). ◀

Ordered formulas and cell selection. Let ψ be the FO(Rlin, F ) formula under consideration.
Let x1, . . . , xd be an enumeration of the set of variables in ψ, free or bound. We may assume
that ψ is in prenex normal form Q1x1 . . . Qdxd χ, where each Qi is ∃ or ∀, and χ is quantifier-
free.

We will furthermore assume that ψ is ordered, meaning that every atomic subformula
is of the form F (xi1 , . . . , xim) = xj with i1 < · · · < im < j, or is a linear constraint of the
form a0 + a1x1 + · · · + adxd > 0. By using extra variables, every FO(Rlin, F ) formula can be
brought in ordered normal form.
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Consider a PWL function f : R → R. Every piece is a segment of a line ax+ b = y in R2.
We define the hyperplane arrangement corresponding to f in d dimensions to consist of all
hyperplanes axi + b = xj , for all lines ax+ b = y of f , where i < j (in line with the ordered
assumption on the formula ψ). We denote this arrangement by Af .

Also the query ψ gives rise to a hyperplane arrangement, denoted by Aψ, which simply
consisting of all hyperplanes corresponding to the linear constraints in ψ.

For the following statement, we use the disjoint union ⊎ of two weighted structures. Such
a disjoint union can itself be represented as a weighted structure over the disjoint union of
the two vocabularies, with two extra unary relations to distinguish the two domains.

▶ Lemma 7.6. Let ψ ≡ Q1x1 . . . Qdxd χ be an ordered closed FO(Rlin, F ) formula with
function symbol F of arity m. Let k ∈ {0, . . . , d}, and let ψk be Qk+1xk+1 . . . Qdxd χ. There
exists a unary FO(SUM) query over Υpwl

m ⊎Υcell
d that returns, on any piecewise linear function

f : Rm → R and any CD D of Rd compatible with Af ∪ Aψ, a set of cells in Rk whose union
equals {(v1, . . . , vk) | R, f |= ψ(v1, . . . , vk)}.

Proof (sketch). As already mentioned we focus first on m = 1. The proof is by downward
induction on k. The base case k = d deals with the quantifier-free part of ψ. We focus on the
atomic subformulas. Subformulas of the form F (xi) = xj are dealt with as follows. For every
piece p of f , with line y = ax+ b, select all i-cells where xi lies between p’s endpoints. For
each such cell, repeatedly take all cells in the stacks above it until we reach j − 1-cells. Now
for each of these cells, take the section in its stack given by the section mapping xj = axi + b.
For each of these sections, again repeatedly take all cells in the stacks above it until we reach
d-cells. Denote the obtained set of d-cells by Sp; the desired set of cells is

⋃
p Sp.

Subformulas that are linear constraints, where i is the largest index such that a1 is
nonzero, can be dealt with by taking, above every i− 1-cell all sections that lie above the
hyperplane corresponding to the constraint, if ai > 0, or, if ai < 0, all sections that lie below
it. The described algorithm for the quantifier-free part can be implemented in FO(SUM).

For the inductive case, if Qk+1 is ∃, we must show that we can project a set of cells down
one dimension, which is easy given the cylindrical nature of the decomposition; we just move
to the underlying base cells. If Qk+1 is ∀, we treat it as ¬∃¬, so we complement the current
set of cells, project down, and complement again. ◀

To conclude, let us summarise the structure of the whole proof. We are given a neural
network N in F(m, ℓ), and we want to evaluate a closed FO(Rlin, F ) formula ψ. We assume
the query to be in prenex normal form and ordered. We start with an interpretation that
transforms N to a structure representing the piecewise linear function FN (Lemma 7.3).
Then, using another interpretation, we expand the structure by the hyperplane arrangement
obtained from the linear pieces of FN as well as the query. Using Lemma 7.5, we expand
the current structure by a cell decomposition compatible with the hyperplane arrangement.
Finally, using Lemma 7.6 we inductively process the query on this cell decomposition, at
each step selecting the cells representing all tuples satisfying the current formula. Since the
formula ψ is closed, we eventually either get the single 0-dimensional cell, in which case ψ
holds, or the empty set, in which case ψ does not hold.

7.3 Extension to multiple inputs
For m > 1, the notion of PWL function f : Rm → R is more complex. We can conceptualize
our representation of f as a decomposition of Rm into polytopes where, additionally, every
polytope p is accompanied by an affine function fp such that f =

⋃
p fp|p. We call fp the
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component function of f on p. Where for m = 1 each pies of piece f was delineated by just
two breakpoints, now our polytope in Rm may be delineated by many hyperplanes, called
breakplanes. Thus, the vocabulary Υpwl

m includes the position of a polytope relative to the
breakplanes, indicating whether the polytope is on the breakplane, or on the positive or
negative side of it. We next sketch how to prove Lemma 7.3 in its generality. The proof of
Lemma 7.6 poses no additional problems.

We will define a PWL function fu for every neuron u in the network; the final result is then
fout. To represent these functions for every neuron, we simply add one extra relation symbol,
indicating to which function each element of a Υpwl

m -structure belongs. The construction is
by induction on the layer number. At the base of the induction are the input neurons. The
i-th input neuron defines the PWL functions where there is only one polytope (Rm itself),
whose section mapping is the function x 7→ xi.

Scaling. For any hidden neuron u and incoming edge v → u with weight w, we define an
auxiliary function fv,u which simply scales fv by w.

To represent the function defined by u, we need to sum the fv,u’s and add u’s bias; and
apply ReLU. We describe these two steps below, which can be implemented in FO(SUM).
For u = out, the ReLU step is omitted.

Summing. For each v → u, let Dv,u be the CD for fv,u, and let Av,u be the set of hyperplanes
in Rm that led to Dv,u. We define the arrangements Au =

⋃
v Av,u and A =

⋃
u Au. We

apply Lemma 7.5 to A to obtain a CD D of A, which is also compatible with each Au.
Every m-cell C in D is contained in a unique polytope pCv,u ∈ fv,u for every v → u. We can
define pCv,u as the polytope that is positioned the same with respect to the hyperplanes in
Av,u as C is. Two m-cells C and C ′ are called u-equivalent if pCv,u = pC

′

v,u for every v → u.
We can partition Rm in polytopes formed by merging each u-equivalence class [C]. Over
this partition we define a PWL function gu. On each equivalence class [C], we define gu as∑
v→u fpC

v,u
, plus u’s bias. The constructed function gu equals b(u) +

∑
v fu,v.

ReLU. To represent ReLU(gu), we construct the new arrangements Bu formed by the union
of Au with all hyperplanes given by component functions of gu, and B =

⋃
u Bu. Again

apply Lemma 7.5 to B to obtain a CD E of B, which is compatible with each Bu. Again
every m-cell C in E is contained in a unique polytope pCu of gu with respect to Au. Now two
m-cells C and C ′ are called strongly u-equivalent if they are positioned the same with respect
to the hyperplanes in Bu. This implies pCu = pC

′

u but is stronger. We can partition Rm in
polytopes formed by merging each u-equivalence class [C]. Over this partition we define a
PWL function fu′. Let ξCu be the component function of gu on pCu . On each equivalence class
[C], we define fu′ as ξCu if it is positive on C; otherwise it is set to be zero. The constructed
function fu

′ equals fu as desired.

8 Conclusion

The immediate motivation for this research is explainability and the verification of machine
learning models. In this sense, our paper can be read as an application to machine learning
of classical query languages known from database theory. The novelty compared to earlier
proposals [3, 26] is our focus on real-valued weights and input and output features. More
speculatively, we may envision machine learning models as genuine data sources, maybe in
combination with more standard databases, and we want to provide a uniform interface.
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For example, practical applications of large language models will conceivably also need to
store a lot of hard facts. However, just being able to query them through natural-language
prompts may be suboptimal for integrating them into larger systems. Thus query languages
for machine learning models may become a highly relevant research direction.

FO(SUM) queries will be likely very complex, so our result opens up challenges for
query processing of complex, analytical SQL queries. Such queries are at the focus of much
current database systems research, and supported by recent systems such as DuckDB [30]
and Umbra [20]. It remains to be investigated to what extent white-box querying can be
made useful in practice. The construction of a cell decomposition of variable space turned
out crucial in the proof of our main result. Such cell decompositions might be preproduced
by a query processor as a novel kind of index data structure.

While the language FO(R) should mainly be seen as an expressiveness benchmark,
techniques from SMT solving and linear programming are being adapted in the context of
verifying neural networks [2]. Given the challenge, it is conceivable that for specific classes of
applications, FO(R) querying can be made practical.

Many follow-up questions remain open. Does the simulation of FO(Rlin) by FO(SUM)
extend to FO(R)? Importantly, how about other activations than ReLU [34]? If we extend
FO(SUM) with quantifiers over weights, i.e., real numbers, what is the expressiveness gain?
Expressing FO(R) on bounded-depth neural networks now becomes immediate, but do
we get strictly more expressivity? Also, to overcome the problem of being unable to even
evaluate neural networks of unbounded depth, it seems natural to add recursion to FO(SUM).
Fixed-point languages with real arithmetic can be difficult to handle [6, 10].

The language FO(SUM) can work with weighted relational structures of arbitrary shapes,
so it is certainly not restricted to the FNN architecture. Thus, looking at other NN
architectures is another direction for further research. Finally, we mention the question of
designing flexible model query languages where the number of inputs, or outputs, need not
be known in advance [3, 4].
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