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Highlights

What are the main findings?

e UAV LiDAR allows us to distinguish between different fuel types and associated fuel
consumption rates.

e  Fuel consumption rates of heather vegetation were significantly higher than those of
nearby grass vegetation.

What are the implications of the main findings?

e  Such accurate and spatially explicit quantification can support the development of
vegetation-specific prescribed burning protocols.

e  These results can be used to support the integration of prescribed burning in overall
wildfire management.

Abstract

Accurate quantification of wildland fuel consumption is essential for effective fire man-
agement in Northern European heathland ecosystems, yet traditional assessment methods
remain spatially limited and labour-intensive. This study combined multitemporal UAV
LiDAR with SLIC superpixel-based classification to directly measure fuel consumption
following a prescribed burn in a Belgian heathland. Pre- and post-fire LIDAR surveys were
conducted to capture vegetation height changes. Superpixel segmentation successfully
classified three vegetation types (grassland, heather and trees with understory vegeta-
tion) with 97.8% accuracy. Fuel consumption analysis revealed remarkable differences
between vegetation types, with heather (mean £+ SD: 0.165 £ 0.102 m) exhibiting the
highest consumption compared to grass (0.089 £ 0.088 m) and tree understory vegetation
(0.091 & 0.068 m). Statistical analysis confirmed the significant differences between all
vegetation types (p-value < 0.001). This methodology provides quantitative evidence for
developing vegetation-specific burning protocols by demonstrating the critical importance
of both pre- and post-fire remote sensing data. The approach demonstrates the effectiveness
of UAV-based multitemporal LiDAR for precise fuel consumption assessment in heathland
fire management.
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1. Introduction

Wildfires are increasing globally in frequency, intensity and scale. In Europe, wildfire
patterns are changing in frequency, intensity and timing. Climate projections indicate
that wildfire risk will more than double by 2100 due to intensified droughts and reduced
summer precipitation [1]. While wildfire is an ancient phenomenon and an intrinsic
ecological process in many landscapes, rising temperatures and changing precipitation
patterns, along with structural socio-ecological shifts, are altering traditional fire regimes
across diverse ecosystems, including forests, shrublands, grasslands, peatlands, and urban
areas [2].

The scale of this challenge is evident: in 2008 alone, 45,000 forest fires burnt around
half a million hectares in southern Europe, causing severe ecological and socio-economic
impacts [3]. More recently, the European Forest Fire Information System reported that areas
burnt in central and northern Europe in the last decade were approximately 60 times larger
than the average in the previous decade [4].

Traditional fire management approaches focused on suppression and are nowadays
proving inadequate, as wildfire events increasingly exceed suppression capabilities. This
has led to calls for a paradigm shift from fire resistance to landscape resilience, essentially,
“living with fire” rather than fighting against it [5]. The European Union’s Climate Adap-
tation Strategy aims to make Europe resilient by 2050, recognizing fire management as a
critical component of this goal.

At the landscape level, wildfire ignition and spread result from complex interactions
between ignition sources, weather, topography, and land cover [2]. Crucially, land cover
represents the only landscape variable influencing fire behaviour that can be directly
manipulated through management interventions. Landscapes with continuous fuel loads
are prone to large and/or high-intensity fires, whereas fragmented landscapes can limit fire
spread, making landscape planning a critical tool for fire risk reduction [1]. In heathland
systems, in particular, prescribed burning is typically used as a management activity for
biodiversity conservation [6] and to reduce fire risks [7].

Accurate mapping of burnt areas and fuel loads is essential for understanding fire be-
haviour and emissions, yet fuel load estimation remains the largest source of uncertainty in
fire modelling [8]. Traditional ground-based fuel assessment methods are labour-intensive
and spatially limited, creating a need for innovative remote sensing approaches. Using pre-
and post-fire remote sensing data to estimate consumption of different fuel components pro-
vides essential information for understanding biomass consumption and carbon emissions
from wildfires. With both components, the full range of fuel consumption across wild-
land landscapes can be captured, making remote sensing a reliable approach, particularly
valuable for adaptive fire management and intervention strategies [9].

Currently, there is a variety of remote sensing technologies, particularly Airborne
Laser Scanning (ALS) and Unoccupied Aerial Vehicles (UAVs) equipped with LiDAR
(Light Detection and Ranging) and multispectral sensors, offering promising solutions
for fuel load mapping. Recent studies have shown to explain 14-71% of variance in fuel
consumption with canopy fuel models, consistently outperforming subcanopy models [10].
Other UAV-based approaches have shown superior performance compared to traditional
ALS methods with high-density point clouds (>150 points/m?), enabling detailed fuel
characterization [11].
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Despite all the recent advances, essential knowledge gaps remain in quantifying
actual fuel consumption patterns across different vegetation types in European heathland
ecosystems using multitemporal UAV LiDAR approaches. Most studies focus on fuel load
estimation rather than direct consumption measurements. This paper addresses these
gaps by combining pre- and post-fire UAV LiDAR surveys with RGB imagery to directly
quantify fuel consumption following a prescribed burn in a Belgian heathland ecosystem. It
is hypothesized that (1) superpixel-based classification will effectively identify the different
heathland vegetation types using LiDAR-derived structural attributes and spectral data,
and (2) structural variability among these vegetation types results in statistically significant
differences in fuel consumption. This research provides critical insights for evidence-
based prescribed burning strategies and landscape-scale fire management in temperate
heathland ecosystems.

2. Materials and Methods
2.1. Study Area

This research was conducted at Mechelse Heide, a heathland ecosystem located on
the Belgian Dutch border near Maasmechelen, in the eastern part of Belgium. The region
of interest is 1.3 hectares within a larger 400-hectare heathland complex (Figure 1a). The
terrain is characterized by relatively flat topography situated on sand deposits, which are
typical for the region’s geological history and primarily consists of fluvial and aeolian
sands [12]. The heathland vegetation consists primarily of three distinct vegetation types:
grass (Molinia caerulea), heather shrubland (Calluna vulgaris), and scattered deciduous trees
(mainly Quercus robur and Betula pendula) that were leafless during the study period in
March 2025. This specific area was chosen due to its vegetation composition that is represen-
tative of the Northern Belgian heathland ecosystems and prescribed burning was executed
by the land managers during the study period. In this study, it was chosen to align with the
FirEUrisk fuel type classification scheme, which was recently proposed in the context of the
FirEUrisk project [13], as part of the project’s overall goal of creating a European-integrated
strategy for fire danger assessment, reduction, and adaptation. This scheme employs
a hierarchical fuel classification scheme, which provides scalability, ensuring that more
detailed or generalized classifications can be used depending on the spatial scale of interest
for future research practices. As such, it is a multipurpose classification scheme, being able
to accommodate different applications and at different spatial scales, whereas it generalizes
all fuel type categories observed in the European continent. Considering the vegetation

types of our study area, ‘grass’ is aligned to the ‘low grassland’ FirEUrisk fuel type (code:
31), ‘heather’ to the ‘low shrubland’ fuel type (code: 21) and the trees to the ‘open broadleaf
deciduous forest” one (code: 1121).

Figure 1. (a) Study area (red line) located in the Mechelse Heide, east of Belgium (b,c) In field picture
from the prescribed fire, ignited at the downwind edge of the treated area and pulled in against
the wind.
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2.2. Prescribed Burning Operation

A controlled prescribed burn was conducted in March 2025 as part of routine ecologi-
cal management practices, aimed at creating a heterogeneous landscape mosaic within the
heathland ecosystem. The burning operation was executed under optimal weather condi-
tions characterized by a rainless day with moderate wind conditions. Fire management
protocols followed best practices, with ignition points strategically placed at the downwind
edge of the treatment area (Southeastern area), allowing the fire to be pulled against the
wind direction to maintain control and safety. The entire operation was supervised by
certified firefighters and experienced nature managers to ensure both ecological objectives
and safety standards were met (Figure 1b).

Two separate drone flights were conducted prior to the prescribed burn to capture
baseline conditions. The first flight was conducted with a DJI Mavic 3T (M3T) system
with an RGB camera, whereas the second employed a DJI M300 RTK drone carrying a
YellowScan Surveyor Ultra (HESAI XT32M2X) LiDAR system. Both flights were executed at
an altitude of 70 m above ground level with a flight speed of 5 m/s. During both flights, an
RTK (Real-Time Kinematic) connection was established with the reference station network
of the Flemish Positioning Service (FLEPOS). The M3T flight mission was set with a forward
and side image overlap of 80%, while the LiDAR flight employed an overlap of 50%.

Post-fire data collection was conducted approximately one hour after the completion
of the prescribed burn, maintaining identical flight parameters to ensure consistency with
pre-fire acquisitions. During this flight, residual burning in portions of the study area
created smoke plumes that were subsequently detected by the LiDAR sensor.

2.3. Initial Data Processing

The RGB imagery was processed using Pix4Dmapper software version 4.9.0 (Pix4D
S.A., Lausanne, Switzerland) to generate orthomosaics of 20 x 20 cm resolution. The
raw LiDAR point clouds were processed in sensor-specific YellowScan’s CloudStation
software version 2409.0.0. The trajectory was postprocessed with Applanix’ POSPac MMS
(version 8.9), which included the determination of the Smooth Best Estimated Trajectory
(SBET) based upon the sensor’s lever arms and the local RTK network FLEPOS. After
SBET processing, strip adjustment was performed based on the integrated ‘Robust’ method,
and classification of the point cloud (ground vs. non-ground) was carried out with the
default values of minimal object height (0.15 m) and point cloud thickness (0.10 m). Smoke
contamination in the post-fire LIDAR dataset was effectively removed by filtering points
with intensity values of zero, which corresponded to areas obscured by smoke plumes in
R-software version 4.3.2 [14] through the lidR package [15].

2.4. Height Difference Calculation and Quality Control

Vegetation height changes were calculated by subtracting pre-fire vegetation heights
from post-fire measurements. This was performed based on the corresponding canopy
height models with the same resolution as the orthophoto (20 x 20 cm). However, several
challenges emerged during this process, including apparent vegetation height increases
(negative losses) caused by wind-induced movement between flights and potential co-
registration errors between pre- and post-fire datasets. Additionally, extremely high vegeta-
tion loss values occurred where tree branches were captured in the initial flight but absent
in the post-fire acquisition, likely due to natural movement. These problematic values
were identified and removed from the dataset by assigning NA values to affected pixels,
ensuring data quality and analytical reliability. This paper relates the fuel consumption
volume to the difference in vegetation height before and after burning. If using these
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variables and relate them to the pixel size, in this case 0.04 m?2, then the fuel consumption
volume can be calculated by Equation (1):

FCV = (CHPrefire - CHPostfire ) 1

with FCV as the Fuel Consumption Volume, CH as the Canopy Height, either pre-fire and
post-fire and the area, being 0.04 m? with this project’s properties.

2.5. Fuel Type Classification Using Superpixel Analysis

Fuel type classification was implemented using the supercells package in R, which
employs the Simple Linear Iterative Clustering (SLIC) algorithm to generate superpixels
based on spectral similarity and spatial proximity. The superpixel approach was chosen to
reduce computational complexity while preserving ecologically meaningful spatial patterns
in the multispectral data by using the supercells package [16]. The input image consisted
of the pre-fire RGB values and the normalized vegetation height. The algorithm was
configured with 10,000 superpixels and a compactness parameter of 10, with these values
selected to balance computational efficiency with spatial detail retention. This approach
was visually validated and deemed suitable.

Following superpixel generation, k-means clustering was applied to the extracted RGB
and height values to identify three distinct vegetation types: grassland, heather shrubland,
and deciduous trees. This method has been proven to be a good method of classifying
high-resolution imagery as it significantly reduces the mixed pixel problem suffered by
most pixel-based methods by treating objects as aggregations of spatially proximate pixels
rather than individual pixels [17]. The selection of three clusters was based on the distinct
fuel characteristics and ecological functions of the three main vegetation types within the
heathland: Grass (Molinia caerulea), Heather (Calluna vulgaris) and trees. Classification
accuracy was assessed using 229 randomly distributed ground truth points collected
across the study area, with 37 points representing trees, 93 points for grassland areas,
and 99 points for heather shrubs. These points were used to generate confusion matrices
and calculate overall classification accuracy, producer’s accuracy, and user’s accuracy for
each vegetation class. The validation process employed spatial join operations to assign
predicted vegetation classes to ground truth locations, followed by statistical analysis using
the caret package in R-software [18].

2.6. Statistical Analysis

Burnt volume differences between fuel types were analyzed using non-parametric
statistical tests due to the non-normal distribution of the data. Kruskal-Wallis tests were em-
ployed to assess overall differences between vegetation types, followed by post hoc Dunn’s
test using the Benjamini-Hochberg adjustment. All statistical analyses were conducted in
R, with significance levels set at p = 0.05.

3. Results
3.1. Superpixel Generation and Vegetation Classification

The superpixel algorithm successfully segmented the 1.3-hectare study area into
2,580 distinct superpixels, each representing homogeneous areas based on height and
spectral similarity and spatial proximity. The k-means clustering analysis of the four
normalized input variables (red, green, blue, and vegetation height) resulted in three
distinct vegetation clusters with markedly different characteristics. Analysis of the cluster
centres demonstrated clear differentiation between vegetation types, based on both spectral
and structural properties (Table 1). Cluster 1, subsequently classified as low-vegetation
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(grass), exhibited moderate spectral values and low height. Cluster 2, identified as high-
vegetation (trees), showed similar spectral characteristics to grass but was distinguished
by greater height. Cluster 3, representing heather shrubs, displayed the lowest spectral
reflectance values across all visible bands, combined with low height, consistent with the
darker, denser canopy structure typical of heather vegetation.

Table 1. Cluster analysis based on the superpixel properties of the three vegetation types
(mean =+ Standard Deviation). The Red, Green and Blue band values are represented on a scale
from 0 to 255 with the vegetation height in metres.

Vegetation Cluster Red Band Green Band Blue Band Vegetation Height (m)
Cluster 1 1344 + 17.0 112.8 + 15.3 942 +12.2 0.29 £ 049
Grass
Cluster 2 175.4 £ 203 155.1 +20.2 130.6 +17.8 10.6 +2.87
Trees
Cluster 3 201.6 + 19.6 176.8 + 18.9 146.1 + 16.9 0.33 £ 0.71
Heather

3.2. Classification Accuracy Assessment

The vegetation classification achieved a high accuracy when validated against
229 ground truth points distributed across the study area. The overall classification accu-
racy reached 97.8% (95% CI: 94.96-99.28%) with a Kappa coefficient of 0.965, indicating
almost perfect agreement between predicted and actual vegetation classes.

Class-specific performance varied slightly among vegetation types. Tree classifica-
tion demonstrated the highest sensitivity (97.9%) but experienced minor confusion with
heather (2 misclassifications). Grass classification achieved perfect specificity and posi-
tive predictive value (100%) with high sensitivity (91.9%), with only 3 grass areas mis-
classified. Heather classification performed exceptionally well with perfect sensitivity
(100%) and high specificity (96.9%), though 4 heather areas were misclassified as other
vegetation types.

The confusion matrix revealed that most classification errors occurred between heather
and other vegetation types, with minimal confusion between grass and trees. This pat-
tern suggests that the spectral characteristics of heather vegetation occasionally over-
lap with grass and tree signatures, particularly in transition zones or areas with mixed
vegetation composition.

3.3. Spatial Distribution of Vegetation Types

The classified vegetation map reveals a heterogeneous landscape mosaic typical of
heathland ecosystems (Figure 2). Heather dominated the study area, comprising the
largest number of superpixels (1.527, which accounted for 8.015 m?), followed by grass
(878 pixels, resulting in 4.115 m?) and tree areas (175, resulting in 694 m?). The spatial
arrangement showed distinct patches of each vegetation type rather than a random distri-
bution, reflecting the natural ecological patterns and management history of the site.



Drones 2025, 9, 615

7 of 14

10 20 30 40m
)

Figure 2. Vegetation identification based on superpixels showing in total 2580 superpixels with a
combined area of 12,824 m?. This figure shows the dominant heather (pink coloured) spread out the
study area followed by grass (green) and trees (brown) only occurring locally.

3.4. Burnt Volume Analysis

Analysis of fuel consumption patterns revealed remarkable differences between
vegetation types in terms of burnt volume. When applying a 0.5 m threshold to re-
move extreme outliers (Figure 3), heather vegetation exhibited the highest mean fuel
consumption (mean & SD: 0.168 £ 0.113 m), followed by trees (0.097 £ 0.090 m) and grass
(0.096 &+ 0.103 m). The median values followed a similar pattern, with heather showing
0.149 m of fuel consumption compared to 0.069 m for trees and 0.059 m for grass.

Biomass burnt (m) Biomass burnt (m)

Figure 3. Comparing the raw biomass burnt values with the filtered burnt values at 0.5 m. (a) the
original burnt values have a continuous distribution across the study region with seemingly high
burnt values within the centre and some darker areas spread out. (b) Comparing the original data
with the filtered data reveals blank areas which indicates the presence of unnatural values or outliers.
These areas are mostly located in the centre where the trees and grass occur when comparing it with
Figure 2.

The distribution of burnt volume values differed markedly between vegetation types.
Heather demonstrated the most consistent burning pattern with relatively high median
values and moderate variability (Figure 4 and Table 2). In contrast, both grass and tree
areas showed highly skewed distributions with many areas experiencing minimal fuel
consumption but occasional patches of high burning intensity.
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Figure 4. Looking at the distribution of the burnt volume per vegetation type, grass and trees seem
to have a similar, more dense distribution with lower valued outliers compared to heather. This
vegetation type has a steadier distribution with higher valued outliers (thick black line) along with
a higher median value, indicated by the box and line, for burnt volume. All three vegetation types
differed significantly, indicated by the labels a, b and c. The effects of the filtering can be seen by the
abrupt stop of the distribution of burnt volume in each of the vegetation types.

Table 2. Description of burnt material per vegetation type for 95% CI (Confidence Interval).

Vegetation Cluster Count (Pixels) Mean (95%) Median (95%) SD (95%)

Cluster 1 67,747 0.091 0.091 0.068
Grass

Cluster 2 6545 0.089 0.059 0.088
Trees

Cluster 3

Heather 165,858 0165 o140 .

The Kruskal-Wallis test revealed significant differences in fuel consumption between
vegetation types (x? = 25,518, df = 2, p < 0.001). Post hoc pairwise multiple comparisons
using Dunn’s mean rank sum tests with Benjamini-Hochberg correction demonstrated
that all three vegetation types differed significantly from each other in terms of burnt
volume. Specifically, heather exhibited significantly higher fuel consumption than both
grass (p < 0.001) and trees (p < 0.001). Additionally, a significant difference was detected
between grass and tree fuel consumption (p < 0.001), though the magnitude of this difference
was smaller than the differences involving heather.

3.5. Data Quality Considerations

The analysis required substantial data filtering to ensure reliable fuel consumption
estimates. Initially, 82,438 observations (representing 0.33 ha of the 1.3 ha study area)
were excluded due to co-registration issues, wind effects during data collection, or smoke
contamination in the post-fire dataset. The remaining dataset contained 320,588 pixels for
analysis. Further filtering was applied to remove extreme values by retaining only burnt
volume measurements between 0 and 0.5 m, which resulted in the exclusion of an additional
8446 datapoints. The impact of this filtering varied by vegetation type: trees retained 6545 of
17,355 original datapoints (62.3% data loss), heather retained 163,858 of 200,363 datapoints
(18.2% data loss), and grass areas retained 67,747 of 102,870 datapoints (34.1% data loss).
The differential data loss across vegetation types reflects varying measurement challenges,
with trees experiencing the highest proportion of extreme or unreliable values. While
this data cleaning was essential for ensuring reliable fuel consumption estimates, it may
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have introduced bias by potentially excluding areas with extreme burning conditions or
significant measurement challenges, particularly affecting the representativeness of grass
vegetation analysis.

4. Discussion

This study aimed to develop and validate a UAV-based approach for directly quanti-
fying wildland fuel consumption patterns across different vegetation types in heathland
ecosystems following prescribed burning. One key finding is that heather shrubs consumed
significantly more fuel (mean: 0.168 m) compared to grassland (0.096 m) and trees (0.097 m),
providing the first direct measurements of differential fuel consumption in Belgian heath-
lands. This quantitative evidence of vegetation-specific burning patterns has important
implications for management strategies, as it enables managers to predict and plan for het-
erogeneous fuel consumption across heathland landscapes. In addition, it demonstrates the
potential of UAV data for detailed mapping of the variety in fuel types within a heathland
system. The successful integration of multitemporal UAV LiDAR with superpixel-based
classification offers a scalable methodology that can inform evidence-based prescribed
burning protocols and improve fuel load assessments for wildfire risk management in
temperate European heathlands.

4.1. Effectiveness of Superpixel-Based Vegetation Classification

The exceptional classification accuracy achieved in this study (97.8% overall accu-
racy, Kappa = 0.965) demonstrates the effectiveness of superpixel-based approaches for
vegetation discrimination in heathland ecosystems. Zhang et al. (2016) achieved similar
promising results using spatial contextual superpixel models for roadside vegetation classi-
fication, demonstrating the effectiveness of superpixel-based approaches [19]. These studies
both align with the growing recognition that superpixels can achieve better perceptual
representation of images than pixels by adhering to natural image boundaries [20].

The high accuracy obtained in this study can be attributed to several factors. Firstly,
the integration of structural (height) along with Red, Green and Blue (RGB) information
provided complementary data for vegetation discrimination, consistent with established
principles in vegetation mapping, where integration of environmental variables with
satellite images enhances regional-scale vegetation classification [21]. Furthermore, the
distinct normalized height differences between trees and grass or heather provided a clear
structural separator, while the RGB differences enabled discrimination between grass and
heather shrubs with similar heights. Future research should include systematic comparison
with traditional supervised classification approaches using RGB data alone to quantify the
specific contribution of structural information to classification accuracy and validate the
added value of the multisensor integration.

4.2. LiDAR-Based Fuel Consumption Assessment

The findings suggest that heather vegetation exhibited significantly higher fuel con-
sumption (0.168 £ 0.113 m) compared to grass (0.096 £ 0.103 m) and trees (0.097 £ 0.090 m)
and align with the already established understanding of heathland fire behaviour. In
heather-dominated temperate peatland and heathlands, both dead and live vegetation are
important for wildfire ignition and spread, with live fuels often comprising the largest
component of the fuel load [22,23]. This higher fuel consumption in heather areas reflects
the dense, continuous fuel structure characteristic of mature heather stands. The similarity
in fuel consumption between grass and tree fuel types can be explained by the conditions
set during the prescribed burning. This controlled setting prevented the trees from burning,
while only the grasses present in the understory were burnt.
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The successful application of LiDAR for fuel consumption quantification supports
the growing body of literature demonstrating LIiDAR’s effectiveness for fire-related ap-
plications. Studies have demonstrated that especially airborne LiDAR has proven useful
for landscape-scale fuel load and consumption mapping by directly sensing variation in
vegetation height and density [24], while other research has shown the potential of LIDAR
data for accurately estimating fine dead fuel loads in forest ecosystems [25]. The pre- and
post-fire LIDAR approach in this study extends this capability to direct measurement of
actual fuel consumption rather than just fuel load estimation.

4.3. Methodological Considerations and Data Quality

Several limitations of this study should be acknowledged. The relatively small study
area (1.3 ha) limits the generalizability of the findings to larger heathland landscapes
with greater environmental heterogeneity. Vegetation mapping accuracy is often scale-
dependent, with challenges arising from the composite nature of pixels in large-scale
mapping applications [26]. Future research should test this methodology across larger and
more diverse heathland systems to validate its broader applicability.

Additionally, the temporal aspects of fuel consumption could be better characterized
through additional post-fire monitoring campaigns. Multitemporal LiDAR acquisitions
can capture heterogeneity in fuel loads and consumption patterns, providing insights into
recovery dynamics and long-term ecosystem responses to prescribed burning [24]. Another
limitation linked with the fuel load estimation of this study is the absence of ground
reference measurements. Future studies should prioritize collecting field measurements of
pre- and post-fire fuel depths to validate the innovative method of remote sensing-derived
consumption estimates and establish the relationship between LiDAR-measured height
differences and actual biomass loss.

The substantial data loss (82,446 observations, approximately 25% of total data) due
to co-registration issues, wind effects, and smoke contamination represents a significant
methodological challenge that warrants further discussion. Similar challenges have been
documented in Mediterranean forest recovery studies, where LIDAR-derived forest vari-
ables extrapolated to multispectral imagery achieved moderate accuracy with R? values
ranging from 0.51 to 0.74 [27]. Remarkably, trees experienced the highest data loss (62.3%),
primarily due to wind-induced branch movement during the brief period between pre-
and post-fire data collection. Given the high spatial resolution (1.69 cm), even minor
branch displacement exceeded the pixel resolution, resulting in inconsistent detection of
the same branch locations across temporal acquisitions. The removed data is linked to
the 0.5m threshold that was established based on the distributional analysis of heather
vegetation outliers. Threshold sensitivity analysis could influence the number of removed
observations along all vegetation types. While this study successfully demonstrated the
potential of multitemporal UAV LiDAR for fuel consumption assessment, future studies
could incorporate ground reference measurements to evaluate the elevation accuracy. This
wind-induced movement between flights and potential co-registration errors highlight
the importance of optimal data collection conditions and robust processing workflows for
multitemporal LiDAR analysis.

The normalization approach applied in this study, where RGB values remained in
their original 0-255 range while height was normalized, may have introduced bias in the
clustering analysis. Accurate vegetation mapping requires careful consideration of data
preprocessing methods, as different sensors have different spatial, temporal, spectral and
radiometric characteristics that influence classification outcomes [21]. Future studies should
implement consistent scaling approaches across all variables to ensure equal contribution
to clustering algorithms.
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4.4. Implications for Fire Management in Heathland Ecosystems

The differential fuel consumption patterns identified between vegetation types have
important implications for prescribed burning strategies in heathland management. Cross-
landscape fuel moisture content and fuel characteristics are highly variable but not con-
sidered in existing fire danger assessments, making spatially explicit fuel characterization
critical for understanding wildland fire behaviour in fire-prone environments [28]. The
results from this study suggest that heather-dominated areas may require different burning
prescriptions and monitoring protocols compared to grassland or tree-dominated areas.

The spatial distribution of high fuel consumption areas identified through this study’s
approach could inform adaptive management strategies. Recent research has demon-
strated that forest structure varies significantly in response to fire frequency, with frequent
fire reducing vegetation structural complexity [29]. Understanding these patterns at the
landscape scale enables area management to design burning rotations that maintain de-
sired habitat mosaics, which is essential in heathland management [30] while minimizing
fire risk. These quantitative consumption measurements provide critical calibration data
for shrubland fuel category in the FirEUrisk classification. By integrating the consump-
tion values with the standardized FirEUrisk fuel type framework, fire spread models
can be parameterized with more accurate fuel consumption coefficients for Northern
European heathlands.

4.5. Broader Implications and Applications

While this study demonstrates the effectiveness of UAV-based multitemporal LIDAR
for wildland fuel consumption assessment in controlled prescribed burns, the practical
challenge of predicting wildfire locations for pre-fire data collection limits direct appli-
cation to unplanned fires. However, existing digital elevation models offer promising
alternatives for broader implementation. While the temporal resolution may be insufficient
for capturing rapid vegetation changes, such datasets could serve as baseline elevation
models for post-fire fuel consumption assessment when combined with high-resolution
post-fire UAV surveys. Similarly, emerging satellite-based LiDAR missions like GEDI offer
global coverage at lower spatial resolution, potentially suitable for landscape-scale fuel
consumption studies [31]. Furthermore, the integration of hyperspectral imagery with Li-
DAR data shows another promising pathway for further research, as the enhanced spectral
resolution could improve fuel type classification beyond the RGB-based approach, partic-
ularly for distinguishing between vegetation types with similar structural characteristics
but different spectral properties [32]. Along with the recent advances in UAV technologies
such as battery management systems, modelling approaches, state estimations and fault
diagnosis [33], larger areas can be investigated with a higher accuracy.

The methodology developed here shows a potential for broader applications across var-
ious vegetation types and ecosystems beyond heathlands. The combination of superpixel-
based classification, combined with the direct measurement capabilities of multitemporal
UAV LiDAR, could be adapted to various fuel types such as grasslands, forests and peat-
land or different landscape contexts. However, implementation requires validation of fuel
consumption relationships and adjustment of classification parameters to accommodate
different vegetation structures and spectral characteristics.

This work has great societal implications for fire management and environmental
monitoring across Europe. The results show that this near-real-time fuel consumption
mapping approach following wildfires could inform post-fire rehabilitation priorities,
helping land managers identify areas requiring immediate intervention versus leaving it as
natural recovery zones. Insurance companies could utilize quantified fuel consumption
data for more accurate risk assessment and damage evaluation in wildland-urban interfaces,
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while carbon accounting programs could benefit from precise biomass loss measurements,
supporting climate change mitigation efforts and carbon credit systems. The approach also
supports emergency response coordination by providing rapid assessment of burnt area
severity, enabling more effective allocation of firefighting resources during active incidents
and guiding post-fire flood and erosion risk assessment.

The spatial fuel consumption data generated by this methodology could enhance
existing fire danger rating systems by providing ground-truth data for fuel load models.
Current fire danger assessments rely heavily on weather and general vegetation classifica-
tions, but spatially explicit fuel consumption patterns could improve the accuracy of fire
behaviour predictions and risk assessments at local scales.

5. Conclusions

This study demonstrates that combining multitemporal UAV LiDAR with superpixel-
based classification effectively quantifies wildland fuel consumption patterns in heathland
ecosystems. The superpixel approach achieved high classification accuracy (97.8%) in
distinguishing between grassland, heather shrubs and trees, confirming the first hypothesis.
Significant differences in fuel consumption between vegetation types supported the second
hypothesis. Heather vegetation showed the highest fuel consumption, significantly exceed-
ing grass and trees. This reflects the dense fuel structure of mature heather stands and
provides quantitative evidence for developing vegetation-specific burning protocols. The
pre- and post-fire LIDAR approach shows promising results in estimating fuel consumption,
offering a valuable tool for fire management.
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