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Abstract

The discovery of charaderistic rules is a well-known data mining
technique and hes lea to severa succesgul applicaions. Unfortunately,
typicdly a (very) large number of rules is discovered duing the mining
stage. This makes monitoring and control of these rules extremely costly
and dfficult. Therefore, a seledion d the most promising rules is
desirable. In this paper, we propose an integer programming model to
solve the problem of seleding the most promising subset of charaderistic
rules. The propcsed technique dlows to control a user-defined level of
overal quality of the model in combination with a maximum reduction of
the redundancy extant in the original ruleset. We use red-world data to
evauate the performance of the propcsed tedhnique against the well-
known RuleCover heuristic.



1 Introduction

Data mining is the automated search for hidden, previously unknown and potentially
useful information from large databases. Moreover, data mining is a aucial phase in
the KDD (Knowledge Discovery in Databases) process[Fayyad, Piatetsky-Shapiro &
Smyth 199q9. In fad, two important goals of KDD can be identified, more
specificadly prediction, i.e. the use of training data to construct a model to predict
unknown values of future instances, and description, i.e. the seach for interesting
patterns and their (re)presentation in an easy, understandable format. In this paper,
we ae especially interested in the latter objedive, namely description.

One of the most well-known data mining techniques to extract descriptive information
from data is the discovery of charaderistic rules. Among the advantages of
charaderistic rules are clearly its natural representation and the eae of integration of
the discovered rules with badground knowledge. Several successful applications
[Viveros, Neahos & Rothman 1996 Ali, Manganaris & Srikant 1997 Bloemer,
Brijs, Swinnen & Vanhoof 1999 demonstrate the usefulness of this tednique.
However, aso disadvantages of charaderistic rules can be identified. Firstly, often a
large number of rules is discovered during the mining stage. This makes monitoring
and control of these rules extremely costly and difficult. Secondly, charaderistic
rules often suffer from beingincomplete, i.e. not all instances are wvered by the set of
discovered rules, and not being mutually exusive, i.e. some instances may be cvered
by more than one rule. Previous reseachers have alrealy highlighted this problem.
In their study on the interestingness of association rules Klementtinen, Mannila,
Ronkainen, Toivonen & Verkamo [1994 concluded: 'A problem that remains is
redundancy. Large amounts of rules could pdentially be pruned, if there were
appropriate ways to remove redundant or nealy redundant rules. Indeed, with
charaderistic (and asciation) rule discovery, instances may be covered by multiple
rules with the cnsequence that some rules may be overlapping, i.e. describing the
same database rows. In this paper, we specificdly focus on this problem of
redundancy.

The objedive of this paper consists of constructing a method which is able to reduce
the redundancy extant in the set of rules discovered duing the mining stage.
However, we dso want to influence the pruning processin a sense that some overall
measure of quality of the reduced set can be @ntrolled. Indeed, several charaderistic
rule quality measures exist and therefore we should take some measure of overall
model quality into acmunt during the pruning process

The outline of the remainder of this paper isasfollows. Insedion 2, we introducethe
discovery of charaderistic rules and present a graphical illustration of the key issue of
this paper, i.e. redundancy reduction. Section 3 provides an overview of the previous
work on the isale of interestingress in order to put the key issue of this work in a
global perspedive. Sedion 4 formalizes the wncrete problem of redundancy
reduction and introduces a novel solution to reduce the redundancy in a set of
charaderistic rules by using integer programming tedhniques. In sedion 5, we
compare our models with the well-known RuleCover heuristic and discuss the
empirical results. Finally, sedion 6 summerizes our work.



2 Problem situation

2.1 Characteristicrules

Let A={ay, a, ..., &} be aset of literals, called attributes. Let D be adatabase of
instances, where eab instancel isaset of attributes such that | 0 A. Asciated with
each instanceis a unique identifier, called its TID. We say that an instance | contains
X, aset of some dtributesin A, if X O I.

Definition 1 Characteristic Rule
A characteristic rule is an implication of the formY O X, where X 0 A, Y O A, and
XnY=0. u

Definition 2 Completeness
TheruleY O Xiss% complete, if X covers s% of the instances stisfying Y. |

Definition 3 Discriminant power
TheruleY O Xisc% discriminart, if X covers (100- ¢) % of the - Yinstances. W

Different approaches to the charaderistic rule discovery problem exist. Recantly,
Maeada, Maki and Akimori [1998 proposed the CHRIS (Charaderistic Rule Induction
by Subspacesearch) rule induction algorithm which uses a utility measure to define
the interestingness of rules. It is designed to extract a user-defined number of rules
that have the highest utility measures among all possible rules.

The LCHR algorithm [Cai, Cercone, Han 1991]] takes database rows relevant to the
target class i.e. the concept to be described, and adopts the least commtment
principle (that is, commitment to minimally generalized concepts) by ascending a
concept tree only when necessary. LCHR produces rules that hold for al the
examples in the target class. However, the aithors aso propose extensions to the
LCHR tedhnique to produce taraderistic rules in the cae of exceptions or noisy
data.

The Kip3 algorithm [Piatetsky-Shapiro 1997 finds all simple exad (or aimost exaq)
charaderistic rules of the form condA) O condB). Kip3 is implemented with a
hashing structure and can be run in paralel. Extending Kip3 to more complex
conditions is also discussed.

In this paper, a different approach to charaderistic rule induction is applied. We use
asciation rules to generate all charaderistic rules for a given class that have a
minimum support within that given class. More specificdly, this procedure involves
the discovery of all frequent itemsets in that class excealing a minimum user-defined
support threshold. Infad, by using a minimum support threshold, we ae cetain that
all discovered rules are minimaly s% complete. The discovery of frequent itemsets
has been studied extensively in the literature on asciation rules [Mannila 1997,
Agrawal & Srikant 1994 Agrawal, Imielinski & Swami, 1993 of which the
following provides a short formal overview.



Definition 4 Frequency of an itemset
o (X, D) represents the frequency of itemset X in D, i.e. the fraction of transadions in
the database D that contain X. L

Definition 5 Frequent itemset
ltemset X is called frequent in D, if o (X, D) = swith sthe frequency threshold. W

If we constrain D to be the @lledion of transadions for which the target classequals
Y, then the frequency of the itemset X explicitly determines the completeness of the
rue Y O X. Thus by looking for frequent itemsets X within the mlledion of
transadions with target attribute Y, we can be sure to retain all characteristic rules
Y [0 X having a minimum completeness of s%.

A typicd approach [Agrawal, Mannila, Srikant, Toivonen & Verkamo 1994 to
discover all frequent itemsets X is to use the knowledge that al subsets of a frequent
itemset must also be frequent. This insight simplifies the discovery of all frequent
itemsets considerably, i.e. first find all frequent itemsets of size 1 by reading the data
once and reaording the number of times each attribute A occurs. Then form canddate
itemsets of size 2 by taking all pairs {B, C} of attributes such that {B} and {C} both
are frequent. The frequency of the candidate itemsets is again evaluated against the
database. Once frequent itemsets of size 2 are known, candidate itemsets of size 3
can be formed; these ae itemsets {B, C, D} such that {B, C}, {B, D} and {C, D} are
all frequent. This process is continued until no more candidate itemsets can ke
formed. Then, the presentation of characteristic rules is easy, i.e. for ead frequent
itemset X; aruleis constructed of theformY [0 A; O... OAcwith Ay, ...,Ac O Xi.

2.2 Redundancy: graphical problem illustration

In most applications, typicdly a (very) large number of charaderistic rules is
discovered. Furthermore, becaise charaderistic rules describe properties that are
common to many or all instances of a class, different rules may describe different
properties of the same instances. Consequently, mutual exclusivity in the discovered
set of rules cannot be guarantedl, i.e. some instances in the database ae wvered by
multiple rules. While the @ove-mentioned parameters completeness and discriminart
power present can be used to filter lessinteresting rules, these measures do not
guarantee mutual exclusivity in the discovered set of charaderistic rules. Therefore,
other methods are nealed to reduce the level of redundancy that is present in the
discovered set of charaderistic rules. Graphically, redundancy can be represented as
follows:

L egend:

Classl instance +
Class2 instance —
Charaderigticrule 5

Figure 1: Redundancy in charaderistic rules



In figure 1, it can be observed that rule number 4 (dashed line) does not cover any
instances in addition to the instances already covered by the other rules (rule 1 and
rule 3) in the model. We suggest that rule 4 is redundant and therefore, it should be
discarded. However, one must be caeful in cutting away charaderistic rules from the
model, because:

1. Discarding rules can result in reducing the covered instance spaceand this may
not be recommended.

2. The final set of seleded rules should describe & many positive instances as
possible and as few negative instances as possible when compared to the original
ruleset (i.e. discriminant power).

3 Previous work

Gago and Bento [1999 propose adistance metric' between rules to seled the most
heterogeneous st of rules that together gives a good coverage of the instance space
The method however has sveral drawbadks. Fist of al, the method can only be
applied if the underlying data follows a uniform distribution. Seoondly, three weight
parameters are specified in the distance function but there is no concrete guidance for
reasonable values of these parameters. Thirdly, outliers in the data can significantly
affed the percentage of overlap of two rules. And finally, the distance function can
return negative values while distancein literature is generally assumed to be positive.

In another approad, the use of rule mvers was proposed by [Toivonen, Klemettinen,

Ronkainen, Haonen & Mannila 1999 to reduce redundancy in a discovered set of
asvciation rules. The RuleCover algorithm is a heuristic method and its results will

be used as a benchmark against the results of our integer programming method (see
sedion 4).

In fad, the selection of a 'minimum redundancy' set of rules can be seen in the larger
framework of discovering interesting rules. Indeed, typically in data mining, only a
small fradion of the rules generated may adually be of interest to the user. In this
context, measures of rule interestingness must be used to filter out less interesting
rules. In general, two types of rule interestingness measures can be defined, i.e.
subjective and objedive measures. Subjedive measures are user-dependent, this
means that eat user may have different ideas about the interestingness of the
discovered set of rules. Subjedive interestingness measures include unexpectedness”
[Silberschatz & Tuzhilin 1995 Liu & Hsu 1996 Padmanabhan & Tuzhilin 1998
Freitas 1999 or actionahlity [Piatetsky-Shapiro & Matheus 1994 Adomavicius &
Tuzhilin 1997. The user can also define templates [Klemettinen, Mannila,
Ronkainen, Toivonen & Verkamo 1994, general impressons [Liu, Hsu & Chen
1997 or define item constraints [Srikant, Vu & Agrawal 1997. On the other hand,
objeaive measures of rule interestingness are based on the structure of the rules and

! The distance metric is inspired by a measure to cdculate the distance between cases
2 The more surprising arule, the more interesting it is for the user. This measureis aso called surprisingress.



the statistics associated with them. Objedive measures include J-measure [Smyth &
Goodman 1991, Wang, Tay & Liu 1998, certainty [Hong & Mao 1991, R
[Piatetsky-Shapiro 1991 and dstrength [Dhar & Tuzhilin 1993. More receit
measures of objedive interestingness include R-interestingness [Srikant & Agrawal
1999, intensity of implication [Suzuki & Kodratoff 1998 Guillaume, Guillet &
Philippé 1999, discrimination [Gray & Orlowska 1999. Kamber and Shinghal
[1999 propose specific measures of rule interestingnessfor charaderistic rules based
on necessty and sufficiency.

Specifically with respea to the issue of redundarty not so much work has been
caried out. Hoschka and Klosgen [199] deal with the problem of redundancy in
their Explora system. It uses partial orderings of attributes and attribute sets to avoid
presenting several kinds of redundant knowledge. Bayardo [1997] proposes a pruning
strategy called redundarty exploitation. The ideais to prevent continued effort at
classifying instances alrealy clasgfied by existing rules with high confidence. In the
reseach community involved in validation and verification of knowledge based
systems, redundancy has mainly been studied from the syntadical point of view
[Preecel99], Preece& Shingal 1994 Van Harmelen 1999.

4 Solution: integer programming

4.1 Algebraic problem definition
Consider the following instance-rule matrix (seetable 1):
Table 1: instance-rule matrix

Index | >

Rulel | Rule2 | Rule | Rule

K

% Instance 1 1 0 1
° Instance... 1 1 1
- Instance | 0 1 0
Instance J 0 0 1
Instance... 1 0 0
Instance N 0 1 0

The matrix shows K rules and N instances. Depending on the number of classes, the
instance spaceis subdivided in two or more groups. For example, in the &ove matrix
two groups of instances can be identified. One group belongsto afirst (positive) class
and carries the index values 1 to |, the other group of instances belongs to a second
(negative) class and caries the index values J to N. The matrix shows whether a
particular instancei is covered by a cetain charaderistic rulej or not. Formally, we
define:

1 if instancei is covered by rulej
di,j =
0 if instancei is not covered by rule]j

Now, consider the formulation of the following Integer Programming [I P] model:



4.2 Modd specification

MODEL 1. Maximal redundancy reduction

Let: i =number of instances
] = number of charaderistic rules

Given: di;
Decision variables; X
Target function: MinZ =5 3 d;0X;

Subject to: Oii=1-1): Y% 0dy ;21

The decision variable x; is binary-valued and specifies whether charaderistic rule |
will be included in the final ruleset. The target function specifies that the model
should look for patterns that have aminimum overlap of instances as possible in the
group of positive (class 1) instances. This means that the model seaches for
charaderistic rules that are & far apart as possible in the class 1 instance space The
constraint in the model is used to ensure that the original class 1 instance spaceis not
reduced so that the final ruleset will still cover all class1 instances that were covered
by the original ruleset. Otherwise, when regleding this constraint, the model would
seled no rules at al becaise the objedive function forces the model to select as few
charaderistic rules as possible.

While providing an optimal solution to the redudancy reduction problem, the model
presented above still suffers from a few imperfedions:

First of all, many real world problems are charaderized by certain levels of noise in
the data caused by inconsistencies in the data (i.e. the same entry is labeled as
belonging to two dfferent clases). Therefore, the model should be adapted to
acount for cetain levels of noise in the data. Seoondly, we should take the
discriminant power of charaderistic rules into acount (see definition 3). Indeed,
when selecting rules for the final (reduncancy reduced) ruleset, it is appropriate to
seled charaderistic rules that, as a group, cover as few negative (class2) instances as
possible.

To acomplish this, we introduce eplicit, user-defined bounds on the @verage of
positive and negative instances of the final ruleset. More specifically, consider the
statements below:

a = proportion of classl instances that are covered by the final ruleset

100- a = proportion of class 1 instances that are uncovered by the final ruleset

B = proportion of class2 instances that are uncovered by the final ruleset

100- B = proportion of class 2 instances that are covered by the final ruleset



When dll class 1 instances are wvered by the final ruleset, then a = 100 %. However,
to acount for a cetain level of noise in the data, we specify that it is allowed to leave
a cetain proportion (100 - a ) of the postive (class 1) instances uncovered. To
control the discriminant power, i.e. the proportion of negative (class 2) instances that
are overed by the final ruleset, we specify that no more than (100 - [3) percent of the
negative (class 2) instances can be mvered.

Integrating these improvements into the former model results in the following model.
MODEL 2: Incorporating noise and discriminant power

Let: i =number of instances
] = number of patterns

Given: di W W,.a.8

Decision variables: X

Target function: Minz :le::lz}jildi,j DX W, le\iJ Z}j(qdi,j UX;
Subject to: i =1-1):Y % 0dj+s21

Di(i=J - N):ZT:lXdeiyj—M 0§, <0
3 1.S <(100-a) 0l

3Lyt < (100- )TN 1)

In the &ove model, s and t; represent dack-variables and M represents an infinitely
large number. The W; and W, parameters are continuous weight values to correct for
possible bias in the target function as a result of a different number of instances in
each class When class 2 contains more instances than class 1, then Wy > W, i.e. Wy
= (N-I)/1. The dack-variables enable usto control the mverage of class1 and class2
instances by the final ruleset. For instance, when the sum of all s equals 10, this
implies that the final ruleset is allowed to leave 10 postive instances uncovered.
Therefore, the final two regtrictions gedfy that no more than 100 - a percent of the
class1 instances may be left uncovered and that no more than 100 - 3 percent of the
class2 instances can be cvered.

The model, however, is not guaranteed to read an optimal solution, depending on the
choice of the values of the parameter values a and . For example, if a and  are to
high, reading an optimal solution may be impossible. Inded, it will then be difficult
for the model to find a good set of rules having a low degree of redundancy but also
covering at least a percent of class1 instances and covering less than 100- 3 percent
of class 2 instances. When discussing the empiricd results (sedion 5), we will
elaborate on this and propose guidelines for appropriate settings for the a and 8
parameters.



5 Empirical evaluation

To as®ss the performance of the proposed method, we will use the results of a
previous reseach [Bloemer, Brijs, Swinnen & Vanhoof 198§. In short, in the latter
study, data from a austomer satisfadion survey, caried out by a leading Belgian bank,
were used to identify charaderistic rules for dissatisfaction. With these rules, latently
dissatisfied customers were identified. It turned out that 29 charaderistic rules for
dissatisfadion were found to be interesting®. However, closer observation of the
discovered set of rules revealed considerable redundancy. Therefore, as a post-
processing step, the integer programming methods, presented in sedion 4.2, will be
used to reducethe redundancy and seled a smaller set of rules.

We will compare the results of our integer programming method against those
obtained from the heuristic method of rule cvering proposed by [Toivonen,
Klemettinen, Ronkainen, Héobnen & Mannila 1995. In short, the RuleCover
algorithm works as follows. a greedy algorithm uses an original set I' (containing the
entire set of characetistic rules) and then iteratively seleds arule X; 00 Y to move it
into A. Inead passtherule is slected that covers the maximum number of instances
that are left over after having celeted the instances that were cvered by the rule that
was ®leded duing the previous pass This process continues until no instances are
left over. At the end, A contains the minimum rule wver of I'. In paragraph 5.1 and
5.2, the results of the empiricd reseach will be highlighted.

5.1 Maximal redundancy reduction (Model 1)

In the first experiment we compare the RuleCover heuristic with the proposed integer
programming model to seled a ruleset with minimal redundancy. In fad, this means
that for IP-model 1 in section 4.2, the redundancy in class 1 has to be minimized,
regardless of the performance of the ruleset in class2, i.e. without worrying about the
discriminant power of the final ruleset.

Empirical results show that the IP-model is able to seled fewer rules than the
RuleCover algorithm. RuleCover returns 15 rules while the integer programming
algorithm returns only 13 rules that are ale to cover all class 1 instances.
Furthermore, the redundancy is significantly different when comparing the two
tedhniques. When calculating the average number of times each class 1 instance is
covered by the final ruleset, for the RuleCover algorithm this figure amounts to 5.02
whereas for the optimal IP-model this figure only amounts to 4.34. This again
illustrates that RuleCover is a heuristic and therefore it cannot guarantee a optimal
solution for the redundancy reduction problem. 11 out of the 15 rules that were
seleded by the RuleCover algorithm were also seleded by our method. However, it
must be clea that no attention is paid to the discriminating power of the resulting
ruleset. In fad, it is possible that RuleCover returns more rules, i.e. it produces more
redundancy, but that the discriminant power in terms of the mverage of class 2
Instances is better (i.e. it covers fewer class 2 instances) than the one obtained by the

% Defined as the difference between the percentage coverage of positive instances and the percentage mverage
within the tota group of instances (i.e. positive and regative)



integer programming model. Therefore, we introduce model 2 to incorporate noise
and discriminant power.

5.2 Incorporating noise and discriminant power (model 2)

Firstly, the number of negative (class2) instances that is covered by the final ruleset,
asawhole, isan important indicator of the discriminant power of the final ruleset, and
therefore it should play a leading role in the seleaion of rules for the final ruleset.
Sewndly, noise in the data may cause the retention of too many charaderistic rulesin
order to cover al positive (class 1) instances. Indeead, charaderistic rule discovery
involves looking for rules that summerize one or more properties common to all (or
many) instances of a cetain class Most real-world phenomena, however, are
charaderized by uncertainty resulting in a cetain level of noise in the data. Therefore,
setting o equal to 100% would be irrealistic.

From the 15 petterns slected by RuleCover, the first four patterns are ale to cover
81% of the class 1 instances, which is very reasonable. However, the ruleset as a
whole also covers 62.4% of the class?2 instances (low discriminant power). Model 2
in sedion 4.2 can be used to seled the minimum set of rules that acdieves the same
coverage of classl instances while @vering less than 62.4% of the dass2 instances.
More specifically, by setting a equal to 81% and (1 - ) equal to 624%, the final
ruleset selected by the integer programming model covers 59% of the negative (class
2) instances. This indicaes that the parameter values for a and [ obtained from
examining the results of RuleCover are good lower (for a) and upper (for 1 - B)
bounds for the parameter values to be used in the optimization model. In general, the
coverage of negative (class 2) instances is high. However, while the primary
objeaive of the algorithm is to reduce redundancy and not to maximally discriminate
between the two target groups, the following results are more important. In analogy
with sedion 5.1, the degreeof redundancy can be expressed as the average number of
times each instance is covered by the final ruleset. For the ruleset obtained from the
RuleCover heuristic, this figure amounts to 154 whereas for the optimal |P-model
this figure only amountsto 1.32.

6 Conclusions

In this paper, we introduced two integer programming models to tadkle the problem of
redundancy in a set of charaderistic rules. The first model seaches for an optimal
seledion of rulesthat is able to maximally reduce redundancy under the constraint of
covering all (positive) instances that are covered by the original ruleset. Inthe second
model, the first model was adapted to aacount for noise in the data and to impose a
quality criterion, i.e. discriminant power, on the final ruleset. Both models were
empirically tested on real-world data and compared with the well-known RuleCover
heuristic. It was found that the IP models are indeal able to produce significantly
better results than the RuleCover heuristic. Firstly, in terms of the number of
charaderistic rules that are retained for the final ruleset. Secondly in terms of the
discriminant power of the final rulset and finally also in terms of the total redundancy
that remains in the final ruleset.
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