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Abstract

The discovery of characteristic rules is a well -known data mining
technique and has lead to several successful applications.  Unfortunately,
typically a (very) large number of rules is discovered during the mining
stage.  This makes monitoring and control of these rules extremely costly
and diff icult.  Therefore, a selection of the most promising rules is
desirable.  In this paper, we propose an integer programming model to
solve the problem of selecting the most promising subset of characteristic
rules.  The proposed technique allows to control a user-defined level of
overall quality of the model in combination with a maximum reduction of
the redundancy extant in the original ruleset.  We use real-world data to
evaluate the performance of the proposed technique against the well -
known RuleCover heuristic.



1 Introduction

Data mining is the automated search for hidden, previously unknown and potentially
useful information from large databases.  Moreover, data mining is a crucial phase in
the KDD (Knowledge Discovery in Databases) process [Fayyad, Piatetsky-Shapiro &
Smyth 1996].  In fact, two important goals of KDD can be identified, more
specifically prediction, i.e. the use of training data to construct a model to predict
unknown values of future instances, and description, i.e. the search for interesting
patterns and their (re)presentation in an easy, understandable format.  In this paper,
we are especially interested in the latter objective, namely description.

One of the most well-known data mining techniques to extract descriptive information
from  data is the discovery of characteristic rules.  Among the advantages of
characteristic rules are clearly its natural representation and the ease of integration of
the discovered rules with background knowledge.  Several successful applications
[Viveros, Nearhos & Rothman 1996; Ali , Manganaris & Srikant 1997; Bloemer,
Brijs, Swinnen & Vanhoof 1998] demonstrate the usefulness of this technique.
However, also disadvantages of characteristic rules can be identified.  Firstly, often a
large number of rules is discovered during the mining stage.  This makes monitoring
and control of these rules extremely costly and difficult.  Secondly, characteristic
rules often suffer from being incomplete, i.e. not all instances are covered by the set of
discovered rules, and not being mutually exlusive, i.e. some instances may be covered
by more than one rule.  Previous researchers have already highlighted this problem.
In their study on the interestingness of association rules Klementtinen, Mannila,
Ronkainen, Toivonen & Verkamo [1994] concluded: 'A problem that remains is
redundancy.  Large amounts of rules could potentially be pruned, if there were
appropriate ways to remove redundant or nearly redundant rules'.  Indeed, with
characteristic (and association) rule discovery, instances may be covered by multiple
rules with the consequence that some rules may be overlapping, i.e. describing the
same database rows.  In this paper, we specifically focus on this problem of
redundancy.

The objective of this paper consists of constructing a method which is able to reduce
the redundancy extant in the set of rules discovered during the mining stage.
However, we also want to influence the pruning process in a sense that some overall
measure of quality of the reduced set can be controlled.  Indeed, several characteristic
rule quality measures exist and therefore we should take some measure of overall
model quality into account during the pruning process.

The outline of the remainder of this paper is as follows.  In section 2, we introduce the
discovery of characteristic rules and present a graphical il lustration of the key issue of
this paper, i.e. redundancy reduction.  Section 3 provides an overview of the previous
work on the issue of interestingness in order to put the key issue of this work in a
global perspective.  Section 4 formalizes the concrete problem of redundancy
reduction and introduces a novel solution to reduce the redundancy in a set of
characteristic rules by using integer programming techniques.  In section 5, we
compare our models with the well-known RuleCover heuristic and discuss the
empirical results.  Finally, section 6 summerizes our work.



2 Problem situation

2.1 Characteristic rules

Let A = { a1, a2, …, ak} be a set of literals, called attributes.  Let D be a database of
instances, where each instance I is a set of attributes such that I ⊆ A.  Associated with
each instance is a unique identifier, called its TID.  We say that an instance I contains
X, a set of some attributes in A, if X ⊆ I.

Definition 1  Characteristic Rule
A characteristic rule is an implication of the form Y ⇒ X, where X ⊂ A, Y ∈ A, and
X ∩ Y = ∅.  �
Definition 2  Completeness
The rule Y ⇒ X is s% complete, if X covers s% of the instances satisfying Y.  �
Definition 3  Discriminant power
The rule Y ⇒ X is c% discriminant, if X covers (100 - c) % of the ¬ Y instances. �
Different approaches to the characteristic rule discovery problem exist.  Recently,
Maeda, Maki and Akimori [1998] proposed the CHRIS (Characteristic Rule Induction
by Subspace search) rule induction algorithm which uses a utilit y measure to define
the interestingness of rules.  It is designed to extract a user-defined number of rules
that have the highest util ity measures among all possible rules.

The LCHR algorithm [Cai, Cercone, Han 1991] takes database rows relevant to the
target class, i.e. the concept to be described, and adopts the least commitment
principle (that is, commitment to minimally generalized concepts) by ascending a
concept tree only when necessary.  LCHR produces rules that hold for all the
examples in the target class.  However, the authors also propose extensions to the
LCHR technique to produce characteristic rules in the case of exceptions or noisy
data.

The KID3 algorithm [Piatetsky-Shapiro 1991] finds all simple exact (or almost exact)
characteristic rules of the form cond(A) ⇒ cond(B).  KID3 is implemented with a
hashing structure and can be run in parallel.  Extending KID3 to more complex
conditions is also discussed.

In this paper, a different approach to characteristic rule induction is applied.  We use
association rules to generate all characteristic rules for a given class that have a
minimum support within that given class.  More specifically, this procedure involves
the discovery of all frequent itemsets in that class exceeding a minimum user-defined
support threshold.  In fact, by using a minimum support threshold, we are certain that
all discovered rules are minimaly s% complete.  The discovery of frequent itemsets
has been studied extensively in the literature on association rules [Mannila 1997;
Agrawal &  Srikant 1994; Agrawal, Imielinski &  Swami, 1993] of which the
following provides a short formal overview.



Definition 4  Frequency of an itemset
σ (X, D) represents the frequency of itemset X in D, i.e. the fraction of transactions in
the database D that contain X. �
Definition 5  Frequent itemset
Itemset X is called frequent in D, if σ (X, D) ≥ s with s the frequency threshold. �
If we constrain D to be the collection of transactions for which the target class equals
Y, then the frequency of the itemset X explicitly determines the completeness of the
rule Y ⇒ X.  Thus by looking for frequent itemsets X within the collection of
transactions with target attribute Y, we can be sure to retain all characteristic rules
Y ⇒ X having a minimum completeness of s%.

A typical approach [Agrawal, Mannila, Srikant, Toivonen & Verkamo 1996] to
discover all frequent itemsets X is to use the knowledge that all subsets of a frequent
itemset must also be frequent.  This insight simplifies the discovery of all frequent
itemsets considerably, i.e. first find all frequent itemsets of size 1 by reading the data
once and recording the number of times each attribute A occurs.  Then form candidate
itemsets of size 2 by taking all pairs {B, C} of attributes such that {B} and {C} both
are frequent.  The frequency of the candidate itemsets is again evaluated against the
database.  Once frequent itemsets of size 2 are known, candidate itemsets of size 3
can be formed; these are itemsets {B, C, D} such that { B, C} , { B, D} and {C, D} are
all frequent.  This process is continued until no more candidate itemsets can be
formed.  Then, the presentation of characteristic rules is easy, i.e. for each frequent
itemset Xi a rule is constructed of the form Y ⇒ A1 ∧ ... ∧ Ak with A1, ...,Ak ∈ Xi.

2.2 Redundancy: graphical problem illustration

In most applications, typically a (very) large number of characteristic rules is
discovered.  Furthermore, because characteristic rules describe properties that are
common to many or all instances of a class, different rules may describe different
properties of the same instances.  Consequently, mutual exclusivity in the discovered
set of rules cannot be guaranteed, i.e. some instances in the database are covered by
multiple rules.  While the above-mentioned parameters completeness and discriminant
power present can be used to filter less-interesting rules, these measures do not
guarantee mutual exclusivity in the discovered set of characteristic rules.  Therefore,
other methods are needed to reduce the level of redundancy that is present in the
discovered set of characteristic rules.  Graphically, redundancy can be represented as
follows:

Legend:
Class 1 instance
Class 2 instance
Characteristic rule

Figure 1: Redundancy in characteristic rules
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In figure 1, it can be observed that rule number 4 (dashed line) does not cover any
instances in addition to the instances already covered by the other rules (rule 1 and
rule 3) in the model.  We suggest that rule 4 is redundant and therefore, it should be
discarded.  However, one must be careful in cutting away characteristic rules from the
model, because:

1. Discarding rules can result in reducing the covered instance space and this may
not be recommended.

2. The final set of selected rules should describe as many positive instances as
possible and as few negative instances as possible when compared to the original
ruleset (i.e. discriminant power).

3 Previous work

Gago and Bento [1998] propose a distance metric1 between rules to select the most
heterogeneous set of rules that together gives a good coverage of the instance space.
The method however has several drawbacks.  Fist of all , the method can only be
applied if the underlying data follows a uniform distribution.  Secondly, three weight
parameters are specified in the distance function but there is no concrete guidance for
reasonable values of these parameters.  Thirdly, outliers in the data can significantly
affect the percentage of overlap of two rules.  And finally, the distance function can
return negative values while distance in literature is generally assumed to be positive.

In another approach, the use of rule covers was proposed by [Toivonen, Klemettinen,
Ronkainen, Hätönen & Mannila 1995] to reduce redundancy in a discovered set of
association rules.  The RuleCover algorithm is a heuristic method and its results will
be used as a benchmark against the results of our integer programming method (see
section 4).

In fact, the selection of a 'minimum redundancy' set of rules can be seen in the larger
framework of discovering interesting rules.  Indeed, typically in data mining, only a
small fraction of the rules generated may actually be of interest to the user.  In this
context, measures of rule interestingness must be used to filter out less interesting
rules.  In general, two types of rule interestingness measures can be defined, i.e.
subjective and objective measures.  Subjective measures are user-dependent, this
means that each user may have different ideas about the interestingness of the
discovered set of rules.  Subjective interestingness measures include unexpectedness2

[Silberschatz & Tuzhilin 1995, Liu & Hsu 1996, Padmanabhan & Tuzhil in 1998,
Freitas 1998] or actionability [Piatetsky-Shapiro & Matheus 1994, Adomavicius &
Tuzhilin 1997]. The user can also define templates [Klemettinen, Mannila,
Ronkainen, Toivonen & Verkamo 1994], general impressions [Liu, Hsu & Chen
1997] or define item constraints [Srikant, Vu & Agrawal 1997].  On the other hand,
objective measures of rule interestingness are based on the structure of the rules and

                                               
1 The distance metric is inspired by a measure to calculate the distance between cases
2 The more surprising a rule, the more interesting it is for the user.  This measure is also called surprisingness.



the statistics associated with them.  Objective measures include J-measure [Smyth &
Goodman 1991, Wang, Tay & Liu 1998], certainty [Hong & Mao 1991], RI
[Piatetsky-Shapiro 1991] and strength [Dhar & Tuzhil in 1993].  More recent
measures of objective interestingness include R-interestingness [Srikant & Agrawal
1995], intensity of implication [Suzuki & Kodratoff 1998, Guillaume, Guillet &
Philippé 1998], discrimination [Gray & Orlowska 1998].  Kamber and Shinghal
[1996] propose specific measures of rule interestingness for characteristic rules based
on necessity and sufficiency.

Specifically with respect to the issue of redundancy not so much work has been
carried out.  Hoschka and Klösgen [1991] deal with the problem of redundancy in
their Explora system.  It uses partial orderings of attributes and attribute sets to avoid
presenting several kinds of redundant knowledge.  Bayardo [1997] proposes a pruning
strategy called redundancy exploitation.  The idea is to prevent continued effort at
classifying instances already classified by existing rules with high confidence.  In the
research community involved in validation and verification of knowledge based
systems, redundancy has mainly been studied from the syntactical point of view
[Preece 1991, Preece & Shingal 1994, Van Harmelen 1996].

4 Solution: integer programming

4.1 Algebraic problem definition

Consider the following instance-rule matrix (see table 1):

Table 1: instance-rule matrix

   Index  j
Rule 1 Rule 2 Rule

...
Rule
K

Instance 1 1 0 1
Instance ... 1 1 1
Instance I 0 1 0
Instance J 0 0 1
Instance ... 1 0 0
Instance N 0 1 0

The matrix shows K rules and N instances.  Depending on the number of classes, the
instance space is subdivided in two or more groups.  For example, in the above matrix
two groups of instances can be identified.  One group belongs to a first (positive) class
and carries the index values 1 to I, the other group of instances belongs to a second
(negative) class and carries the index values J to N.  The matrix shows whether a
particular instance i is covered by a certain characteristic rule j or not.  Formally, we
define:

1 if instance i is covered by rule j
di,j = 

0 if instance i is not covered by rule j

Now, consider the formulation of the following Integer Programming [IP] model:

In
de

x 
 i



4.2 Model specification

MODEL 1:  Maximal redundancy reduction

Let:  i = number of instances
j = number of characteristic rules

The decision variable xj is binary-valued and specifies whether characteristic rule j
will be included in the final ruleset.  The target function specifies that the model
should look for patterns that have a minimum overlap of instances as possible in the
group of positive (class 1) instances.  This means that the model searches for
characteristic rules that are as far apart as possible in the class 1 instance space.  The
constraint in the model is used to ensure that the original class 1 instance space is not
reduced so that the final ruleset will still cover all class 1 instances that were covered
by the original ruleset.  Otherwise, when neglecting this constraint, the model would
select no rules at all because the objective function forces the model to select as few
characteristic rules as possible.

While providing an optimal solution to the redudancy reduction problem, the model
presented above still suffers from a few imperfections:

First of all , many real world problems are characterized by certain levels of noise in
the data caused by inconsistencies in the data (i.e. the same entry is labeled as
belonging to two different classes).  Therefore, the model should be adapted to
account for certain levels of noise in the data.  Secondly, we should take the
discriminant power of characteristic rules into account (see definition 3).  Indeed,
when selecting rules for the final (reduncancy reduced) ruleset, it is appropriate to
select characteristic rules that, as a group, cover as few negative (class 2) instances as
possible.

To accomplish this, we introduce explicit, user-defined bounds on the coverage of
positive and negative instances of the final ruleset.  More specifically, consider the
statements below:

α  = proportion of class 1 instances that are covered by the final ruleset

100 - α  = proportion of class 1 instances that are uncovered by the final ruleset

β  = proportion of class 2 instances that are uncovered by the final ruleset

100 - β  = proportion of class 2 instances that are covered by the final ruleset

Given:

xd j
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When all class 1 instances are covered by the final ruleset, then α = 100 %. However,
to account for a certain level of noise in the data, we specify that it is allowed to leave
a certain proportion (100 - α ) of the positive (class 1) instances uncovered.  To
control the discriminant power, i.e. the proportion of negative (class 2) instances that
are covered by the final ruleset, we specify that no more than (100 - β) percent of the
negative (class 2) instances can be covered.

Integrating these improvements into the former model results in the following model.

MODEL 2: Incorporating noise and discriminant power

Let:  i = number of instances
j = number of patterns

In the above model, si and ti represent slack-variables and M represents an infinitely
large number.  The W1 and W2 parameters are continuous weight values to correct for
possible bias in the target function as a result of a different number of instances in
each class.  When class 2 contains more instances than class 1, then W1 > W2, i.e. W1

= (N - I)/I.  The slack-variables enable us to control the coverage of class 1 and class 2
instances by the final ruleset.  For instance, when the sum of all si equals 10, this
implies that the final ruleset is allowed to leave 10 positive instances uncovered.
Therefore, the final two restrictions specify that no more than 100 - α percent of the
class 1 instances may be left uncovered and that no more than 100 - β percent of the
class 2 instances can be covered.

The model, however, is not guaranteed to reach an optimal solution, depending on the
choice of the values of the parameter values α and β.  For example, if α and β are to
high, reaching an optimal solution may be impossible.  Indeed, it will then be difficult
for the model to find a good set of rules having a low degree of redundancy but also
covering at least α percent of class 1 instances and covering less than 100 - β percent
of class 2 instances.  When discussing the empirical results (section 5), we will
elaborate on this and propose guidelines for appropriate settings for the α and β
parameters.

Given:
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5 Empirical evaluation

To assess the performance of the proposed method, we will use the results of a
previous research [Bloemer, Brijs, Swinnen & Vanhoof 1988].  In short, in the latter
study, data from a customer satisfaction survey, carried out by a leading Belgian bank,
were used to identify characteristic rules for dissatisfaction.  With these rules, latently
dissatisfied customers were identified.  It turned out that 29 characteristic rules for
dissatisfaction were found to be interesting3.  However, closer observation of the
discovered set of rules revealed considerable redundancy.  Therefore, as a post-
processing step, the integer programming methods, presented in section 4.2, will be
used to reduce the redundancy and select a smaller set of rules.

We wil l compare the results of our integer programming method against those
obtained from the heuristic method of rule covering proposed by [Toivonen,
Klemettinen, Ronkainen, Hätönen & Mannila 1995].  In short, the RuleCover
algorithm works as follows: a greedy algorithm uses an original set Γ (containing the
entire set of characertistic rules) and then iteratively selects a rule Xi ⇒ Y to move it
into ∆.  In each pass the rule is selected that covers the maximum number of instances
that are left over after having deleted the instances that were covered by the rule that
was selected during the previous pass.  This process continues until no instances are
left over.  At the end, ∆ contains the minimum rule cover of Γ.  In paragraph 5.1 and
5.2, the results of the empirical research will be highlighted.

5.1 Maximal redundancy reduction (Model 1)

In the first experiment we compare the RuleCover heuristic with the proposed integer
programming model to select a ruleset with minimal redundancy.  In fact, this means
that for IP-model 1 in section 4.2, the redundancy in class 1 has to be minimized,
regardless of the performance of the ruleset in class 2, i.e. without worrying about the
discriminant power of the final ruleset.

Empirical results show that the IP-model is able to select fewer rules than the
RuleCover algorithm.  RuleCover returns 15 rules while the integer programming
algorithm returns only 13 rules that are able to cover all  class 1 instances.
Furthermore, the redundancy is significantly different when comparing the two
techniques.  When calculating the average number of times each class 1 instance is
covered by the final ruleset, for the RuleCover algorithm this figure amounts to 5.02
whereas for the optimal IP-model this figure only amounts to 4.34.  This again
il lustrates that RuleCover is a heuristic and therefore it cannot guarantee an optimal
solution for the redundancy reduction problem.  11 out of the 15 rules that were
selected by the RuleCover algorithm were also selected by our method.  However, it
must be clear that no attention is paid to the discriminating power of the resulting
ruleset.  In fact, it is possible that RuleCover returns more rules, i.e. it produces more
redundancy, but that the discriminant power in terms of the coverage of class 2
instances is better (i.e. it covers fewer class 2 instances) than the one obtained by the

                                               
3 Defined as the difference between the percentage coverage of positi ve instances and the percentage coverage
within the total group of instances (i.e. positive and negative)



integer programming model.  Therefore, we introduce model 2 to incorporate noise
and discriminant power.

5.2 Incorporating noise and discriminant power (model 2)

Firstly, the number of negative (class 2) instances that is covered by the final ruleset,
as a whole, is an important indicator of the discriminant power of the final ruleset, and
therefore it should play a leading role in the selection of rules for the final ruleset.
Secondly, noise in the data may cause the retention of too many characteristic rules in
order to cover all positive (class 1) instances.  Indeed, characteristic rule discovery
involves looking for rules that summerize one or more properties common to all (or
many) instances of a certain class. Most real-world phenomena, however, are
characterized by uncertainty resulting in a certain level of noise in the data. Therefore,
setting α equal to 100% would be irrealistic.

From the 15 patterns selected by RuleCover, the first four patterns are able to cover
81% of the class 1 instances, which is very reasonable.  However, the ruleset as a
whole also covers 62.4% of the class 2 instances (low discriminant power).  Model 2
in section 4.2 can be used to select the minimum set of rules that achieves the same
coverage of class 1 instances while covering less than 62.4% of the class 2 instances.
More specifically, by setting α equal to 81% and (1 - β) equal to 62.4%, the final
ruleset selected by the integer programming model covers 59% of the negative (class
2) instances.  This indicates that the parameter values for α and β obtained from
examining the results of RuleCover are good lower (for α) and upper (for 1 - β)
bounds for the parameter values to be used in the optimization model.  In general, the
coverage of negative (class 2) instances is high.  However, while the primary
objective of the algorithm is to reduce redundancy and not to maximally discriminate
between the two target groups, the following results are more important.  In analogy
with section 5.1, the degree of redundancy can be expressed as the average number of
times each instance is covered by the final ruleset.  For the ruleset obtained from the
RuleCover heuristic, this figure amounts to 1.54 whereas for the optimal IP-model
this figure only amounts to 1.32.

6 Conclusions

In this paper, we introduced two integer programming models to tackle the problem of
redundancy in a set of characteristic rules.  The first model searches for an optimal
selection of rules that is able to maximally reduce redundancy under the constraint of
covering all (positive) instances that are covered by the original ruleset.  In the second
model, the first model was adapted to account for noise in the data and to impose a
quality criterion, i.e. discriminant power, on the final ruleset.  Both models were
empirically tested on real-world data and compared with the well-known RuleCover
heuristic.  It was found that the IP models are indeed able to produce significantly
better results than the RuleCover heuristic.  Firstly, in terms of the number of
characteristic rules that are retained for the final ruleset.  Secondly in terms of the
discriminant power of the final rulset and finally also in terms of the total redundancy
that remains in the final ruleset.
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