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Abstract
Certainty of classifications is crucialwhen it comes to the practical application ofmachine learningmodels.Model performance
measures such as accuracy are focused on the average performance of a model. However, when a model is used in a practical
setting, such as a medical clinic, it is more important to know how certain the model is of a given prediction or classification
than its average performance. Unfortunately, often models only provide a final classification label, usually of the class with
the highest probability. This output, however, is not sufficiently informative of the certainty of this particular classification,
especially in the presence of multiple classes: the highest probability might be only barely higher than the second highest.
Even when a probability distribution is provided, there is no established metric to determine if a particular classification
is more certain than a different one. In this article we propose a novel metric we have termed Multinomial Classification
Certainty, to represent the certainty of model predictions. We discuss why existing methods cannot represent this type of
certainty and we show the mathematical meaning behind important thresholds for this new measure.
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1 Introduction

1 2Certainty of classification is a difficult topic within
machine learning. Performance measures such as accuracy
are focused on the average performance of a model[1]. How-
ever, when a model is used in a practical setting, such as a
clinical environment, it is important to know how certain the
model is of each prediction or classification3. Uncertainty is
often distinguished into aleatoric or epistemic uncertainty.
Aleatoric uncertainty refers to uncertainty caused by inher-
ent random factors in the process and is therefore irreducible,
whereas epistemic uncertainty can be reduced with addi-
tional information[1, 2]. For the purposes of this article we
want to measure the predictive uncertainty[2] of a model. In
other words, how certain is the model of its own predictions.
Predictive uncertainty can have both aleatoric and epistemic

1 This research received funding from the Netherlands Organization
for Scientific Research (NWO): Coronary ARtery disease: Risk estima-
tions and Interventions for prevention and EaRly detection (CARRIER):
project nr. 628.011.212.
2 The authors have no competing interests to declare that are relevant
to the content of this article.
3 For the purposes of this article, we will be using the terms prediction
and classification interchangeably
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causes. We wish to measure the level of uncertainty at the
time of classification in order to determine how reliable this
classification is. Given this purpose, we will be looking at
aleatoric uncertainty.

Unfortunately, models commonly only provide a final
classification label, usually based on the label that has the
maximum probability[3]. This says nothing about the cer-
tainty of this particular classification; it may be the case
that the maximum probability is only barely higher than the
second-best option.

However, even when the set of probabilities for every
possible label is given, it is difficult to determine if one classi-
fication ismore certain than others, i.e. what the uncertainties
of the predicted class probabilities are. This is especially rel-
evant in a multinomial classification scenario, in other words
when there are more than two classes. For example, when
presented with the following two probability distributions
{0.51, 0.49, 0.0, 0.0} and {0.51, 0.48, 0.05, 0.05} there is no
established way to determine if one of these predictions is
more certain than the other. If one simply bases certainty
of the maximum probability then these two scenarios are
equivalent. However, an argument can be made that the sec-
ond scenario is more certain about the maximum probability,
as the difference with the second most likely probability is
bigger. This can be useful information in scenarios where
in addition to knowing the most likely label, we care about
how much more likely this label is than the other options.
It should be noted that in this article we do not consider the
uncertainty around the estimated probabilities.

In this article, we propose a novel method to measure the
certainty of the majority class classifications as made by a
particular model when predicting or classifying a new sam-
ple. We dub this type of certainty Multinomial Classification
Certainty (MCC). The ability to distinguish between dif-
ferent multinomial classification scenarios where the most
likely label is equally probable, but the probabilities of the
other labels differ, makes MCC a useful tool. To do this we
first define the type of certainty we are attempting to mea-
sure. We will then review the current approaches and discuss
how these are not fit for our purposes. Subsequently, we will
discuss our proposed measure. Finally, we will discuss the
potential uses.

1.1 Ameasure of certainty

In this article, we are specifically interested in how certain
a model is of its predictions when the predictions are based
on the most likely class label. We are not interested in the
correctness of the classification itself. It is entirely possible
that the model is very certain but also wrong.

In short, a model gives the following probability distribu-
tion {p(y1), p(y2), p(y3), ..., p(yn)} for a given individual
x , for all n possible labels, which result in the classification ŷ,

where ŷ is the label with the highest probability. We want to
know how certain the model is that ŷ corresponds to the true
label y† of individual x . This is often referred to as predictive
uncertainty[2]. We are not interested in what the underlying
cause of the uncertainty is; we simply want to measure it.

If the estimated probability distribution for the outcome is
uniform, the model cannot do better than provide a random
guesswhen classifying x . In this case, it would be completely
uncertain about its classification, as no label appears more
likely than any other option to the model. On the other end of
the spectrum, if one probability p(yk) = 1 then the model is
absolutely certain of its prediction as no other label is allowed
according to the given probability distribution. In addition
to these two extremes, there are several other scenarios of
interest which we can already rank intuitively.

For example, a scenario {p(y1), p(y2), p(y3)} where
p(y1) = p(y2) = 0.5, and p(y3) = 0, is better than a pure
uniform distribution, as at the very least p(y3) is no longer
relevant according to the model. However, the model is still
randomly guessing between y1 and y2 as they are equally
likely, which means there is still a high degree of uncer-
tainty left in this distribution. In contrast a distribution like
{0.5, 0.49, 0.01} could be considered better. While in both
scenarios the likelihood of the most probable label being the
true label is equal, the second scenario describes a situation
where the difference with the second most probable label is
bigger. This means that in this scenario the model is more
certain of the most probable label relative to how certain it
is about the other options. Concretely this means that in the
second scenario the model can distinguish between y1 and
y2 whereas in the first scenario it cannot distinguish between
those two.

To illustrate the different scenarios, we have included fig-
ure 1. Figure 1 shows3 classes: squares, triangles, and circles.
It also shows the borders between these classes according to
some model M . There are three individuals A, B,C which
need to be classified. A falls on the border between all three
classes, as such the probability distribution for A will be
{0.33, 0.33, 0.33} ({p(square), p(tr iangle), p(circle)}) as
the model cannot distinguish between any of the labels
for individual A. This would be a classification with high
uncertainty. Individual B falls on the border between 2
classes but is definitely not a part of the triangle class, as
such its probability distribution will look somewhat like this
{0.49, 0.02, 0.49}. This classification for B is more certain as
it has successfully eliminated 1 potential label, but it still has
a high uncertainty as it cannot decide between the remain-
ing two labels. IndividualC is solidly in the area classified as
squares, as such itwill have a probability that looks somewhat
as follows {0.95, 0.049, 0.001}. The model is very certain of
the classification for this model.

In a medical context, this could be viewed as patients and
their similarity to groups of patients in the training data. If
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Fig. 1 An illustrative example containing individuals belonging to 3
classes: squares triangles and circles. The class borders are indicated
using dotted lines. Three new individuals (A, B, and C) that need to be
classified are represented by white circles. The classification of indi-
vidual A is likely to be highly uncertain, as it is on the border of all
three labels. The classification of individual B should be more certain,
becausewhile it is still in the border regionof two labels, it is far removed
from the feature space occupied by the last label. The classification of
label C should have a low uncertainty as it is solidly in the feature space
occupied by one label

a given patient is very similar to a group of patients in the
training data with a certain outcome then the model will be
quite certain of its prediction.

In summary, what wewish tomeasure can be quantified as
the distance between this individual and a perfect example, in
otherwords the Platonic ideal, of themajority class according
to the current model, or conversely the distance between this
individual and all of the class-borders. The measure we pro-
pose needs to be able to distinguish between these scenarios.
To the best of our knowledge, there is no certainty measure
that can represent this concept, which, as mentioned before,
we propose to name Multinomial Classification Certainty.

Being able to distinguish between the given scenarios is
important. It can be used to determine the quality of specific
predictions. Currently, machine learning models are evalu-
ated by measuring such things as accuracy and AUC. These
measures give an indication of the average performance of a
model, but they provide no information about the certainty of
any given classification. They are simply average measures
of performance. The certainty of individual classifications is
an often-neglected aspect.

Individual certainty could be used to give an indication
of the quality of a single classification. Based on this qual-
ity decisions could be made. For example, a classification
with low certainty might warrant a second opinion from
a human expert. Additionally, a high uncertainty indicates

this model considers this individual to be close to a border
between classes, which is in itself useful information in cer-
tain scenarios. For example, automatic image segmentation
of biomedical images could use this measure to improve the
detection of the borders between two types of tissue is.

2 Current approaches

In this section, we will go over the various existing ways of
measuring certainty and will discuss how these measures are
unfit for the type of certainty we want to measure.

2.1 AUC, Accuracy, Agreement, and Additional
measures of Performance

As shortly mentioned before there are many existing meth-
ods to determine the performance of a model[4, 5], such as
accuracy, AUC or F-scores. An intuitive way to represent the
predictive certainty of a given classification would be to look
at the model as a whole. If a model has a high accuracy, it
should have high predictive certainty.

However, each of these measures share a crucial issue. All
of these measures are focused on the general performance of
the model. It is only an average performance, independent
of how difficult it is to classify this particular individual.
This makes these measures unfit to say anything about the
certainty of specific individual classifications. As such, these
measures can be dismissed for our purposes.

2.2 Confidence intervals & set-prediction

Certain models can provide a confidence interval[6, 7], or
provide a set prediction[8] or multinomial prediction, or pro-
vide a set prediction under ontic uncertainty [9], as opposed
to providing a single value as its prediction. This approach
allows a user to estimate certainty by looking at how big the
confidence interval, or predicted set of values, is.

An example of this approach would be conformal predic-
tion (CP) [10]. This is an online approach to tweak models
where one sets a significance level of α and the resulting
model will output predictions of sets, or confidence intervals
for continuous predictions, which contains the true label in
at least 1 − α% of the cases.

This approach more explicitly tries to grapple with the
concept of certainty and incorporates it in the training of the
model. However, it still has two major problems.

First, not all models can inherently give confidence inter-
vals or set-predictions, limiting the use of such approaches.
Additionally they might not always be practically viable. For
example, CP relies on a continuous feedback loop where
earlier predictions are validated. It may not be realistically
possible to precisely validate previous predictions, for exam-
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ple when validating previous predictions is costly, difficult or
time-consuming. Lastly, while this does allow a user to rank
predictions based on certainty (a smaller confidence interval
or smaller set is better), it does not say anything about where
within this confidence interval the true value lies. This still
leaves the user with a significant level of uncertainty, espe-
cially when the confidence interval includes thresholds that
decisions rely on. For example, let us say we have a model
which is predicting some label y and predicts y ∈ [0.4, 0.6]
for a given record. Given this prediction y = 0.4, y = 0.5,
and y = 0.6 are all equally likely. This becomes especially
problematic if there is a decision boundary present in the
given interval, such as the cut-off point for a medical inter-
vention. For example, if y > 0.5 is the decision boundary
in this particular case, then this prediction is wholly unin-
formative as model cannot tell on which side of the decision
boundary this particular individual falls.

2.3 Monte Carlo simulation

An alternative way to measure uncertainty is to use Monte
Carlo simulation[11]. This approach relies on repeatedly
sampling your data, based on some known distribution, and
creating an average classification based on these samples.

This approach allows one to create an average prediction
with standard deviations for any underlyingmodel. However,
it is dependent on the probability distributions already being
known. This means that this approach is only as accurate as
the available probability distributions, which are not always
known and might need to be approximated.

2.4 Dirichlet beliefs

Dirichlet beliefs have been used to measure uncertainty of
beliefs [12]. While this approach allows uncertainty to prop-
agate through a network of connected nodes, it does require
a starting point where the level of uncertainty is known.
As such, this approach is limited to scenarios where the
classification is based on some combination of beliefs with
known uncertainties. Since these uncertainties are not gen-
erally known in our scenario, this approach is insufficient to
represent MCC .

2.5 Outlier detection and classification with reject
option

Another potential alternative to measure uncertainty is to
work with outlier detection[13], or a combination of out-
lier detection and decision boundary detection [14]. This
approach tries to separate “outliers” from the “normal”
data points. For example, by using one-class support vec-
tor machines[15]. Alternatively, it may use some distance
function to determine how similar the individual that is to be

classified is to the training data that was used. The resulting
similarity score can then be incorporated into the prediction
in some capacity. For example, a model can provide as its
output both a probability of the predicted label, as well as
a measure of how familiar it is with the individual that has
been classified. If the individual is in a part of the feature
space the model is unfamiliar with the prediction would be
considered less certain.

In extremis this can even be used for classification with
reject option[16]. This is an approach where a model can
refuse to classify individuals that it is not sufficiently famil-
iar with. For example, one may refuse to classify models that
come from a low-density region[17], in other words, an indi-
vidual for which the model has not seen many comparable
training data points. The downside of this approach is that
outlier detection is completely dependent on the quality of
your training data. Unlike MCC which is independent of
your data quality.

Additionally, this approachwill viewall under-represented
groups as outliers. This may be problematic as datasets used
in science are historically biased towards certain popula-
tion groups[18]. Such biases would be magnified by outlier
detection, as these individuals will end up being outliers by
definition, whereas the aim of MCC is to not fall into this
same trap.

2.6 Shannon Entropy

Another potential measure for certainty is the Shannon
Entropy[19]. This is a measure commonly used to mea-
sure how “pure” a set is. It uses the following equation:
−∑

x∈X p(x) ∗ log(p(x)).
Shannon entropy can be used to measure the shape of

a probability distribution, indicating how non-uniform it is.
This can be used to measure howmuch of the set represented
by this probability distribution consists of purely the major-
ity class. Which can be viewed as a way of measuring of
how certain the model is that this individual represents the
majority class.

At first glance this seems perfect, the formula can easily
be used to rank scenarios, is applicable for every model that
outputs a probability distribution, and can be applied to indi-
vidual classifications as it does not depend on overall model
performance. This theoretically allows entropy to be used as
a measure of uncertainty, where a high entropy corresponds
to a low certainty for the prediction.

However, Shannon Entropy has one particular attribute
that makes it unfit. Namely, Shannon Entropy prefers to
reduce minority labels to 0 over maximizing the majority
label. For example, Shannon Entropy views {0.5, 0.5, 0.0,
0.0} as more favorable than {0.5, 0.49, 0.005, 0.005}. This
happens because the former has two probabilities that have
gone to zero, and as such no longer contribute to the entropy,
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whereas the latter still contains all 4 possible labels. How-
ever, in the former distribution it is impossible to distinguish
between the two most likely classes, whereas in the lat-
ter there is a difference between the two most likely labels
classes. Thismeans ShannonEntropywill not accurately rep-
resent the certainty of the most likely label.

2.7 Margin Confidence and Ratio Confidence

The margin confidence is a straightforward measure of cer-
tainty, which looks at the difference between the highest and
second highest probability [20, 21]. This measure is very
simple to implement and intuitive to understand. However, it
faces a number of problems. It only looks at the absolute dif-
ference between the two top probabilities. Consequently, it
will deem {0.5, 0.49, 0.01, 0.0} and {0, 26, 0.25, 0.25, 0.24}
to have an equivalent certainty. However, the second scenario
contains a higher level of uncertainty as the relative difference
between the top two probabilities is smaller. Additionally,
in the second scenario all four probabilities are relatively
speaking close together, whereas in the first scenario only the
top two probabilities are. Which is not captured by the mar-
gin confidence. Consequently, the margin confidence fails to
accurately represent the certainty of the most likely label.

The ratio confidence[20, 21] is a straightforward alterna-
tivewhere instead of the absolute difference the ratio between
the twoprobabilities is taken. This allows the ratio confidence
to avoid the problems the margin confidence has, but creates
a problem of its own. It cannot distinguish between scenar-
ios where the ratio between the top two probabilities is the
same, but the ratio with other probabilities has changed. For
example, {0.5, 0.5, 0.0} and {0.25, 0.24, 0.25} will have the
same ratio confidence. However, the second probability dis-
tribution clearly contains a higher level of uncertainty as the
most probable label has become less likely. While the ratio
confidence can be considered an improvement over the mar-
gin confidence, and comes closest to what we are looking for,
it still fails to fully grasp the certainty in the way we want.

3 Multinomial Classification Certainty

Having established that the existing measures are not a good
fit for the type of certainty we want to measure, we will now
define our novel measure in the following subsections.

3.1 Uncertainty

The ratio confidence will function as our starting point.
However, where the ratio confidence only looks at two prob-
abilities at any given time we will include the probabilities of
all labels. This will ensure that we look at the effects of every
probability in our probability distribution and not only at the

effects of the two most likely labels. To take into account
every label, we can simply take the sum of all the ratio con-
fidence between every label and the most likely label. First
let ŷ be the label for which p(ŷ) = max(p(Y )), where Y is
the full set of labels this will function as our base-uncertainty
and is shown in equation 1.

Ubase =
∑

y∈Y

p(y)

p(ŷ)
= 1

p(ŷ)
,where Y is the set of labels.

(1)

This measure also avoids the problems encountered by
Shannon Entropy, as it will focus on maximizing the gap
between most likely label and the rest of labels, whereas
Shannon Entropy focuses on minimizing the spread over
all labels. However, Ubase still has trouble distinguishing
between certain scenarios. For example {0.4, 0.3, 0.3, 0.0}
and {0.4, 0.2, 0.2, 0.2} will have the same uncertainty value.

To improve our base function so it can distinguish between
the scenarioswewill utilize the inverse of the ratio confidence
to represent the dominance[22] of the most likely label over
the second most likely label. Label ŷ is said to completely
dominate label y if p(y) � p(ŷ), as such the ratio confi-
dence can be used to represent the level of dominance. By
including the degree towhich themost likely label dominates
the second most likely label it will be possible to distinguish
between scenarios where the probability of the most likely
label is the same, but the degree of dominance over the sec-
ondmost likely label differs. First let β be the label for which
p(β) = max(p(Y \ ŷ)). This can be incorporated into our
base-uncertainty to create the function shown in equation 2.

Uimproved =
⎛

⎝
∑

y∈Y

p(y)

p(ŷ) × p(ŷ)
p(β)

⎞

⎠ = 1

p(ŷ)2/p(β)
= p(β)

p(ŷ)2

(2)

To improve the readability of the results wewill normalize
the function so that the uncertainty values fall within the
range [0, 1], the normalized function is shown in equation 3.

Unormali zed = p(β)

p(ŷ)2
/n, (3)

Where n is the number of possible labels.
An uncertaintyUnormali zed of 0 indicates perfect certainty,

and it will only happen when p(ŷ) = 1. An uncertainty
Unormali zed of 1 would indicate that every label is equally
likely.

Unormali zed is very similar to ratio confidence, however
becausewe incorporated the theoretical effects of every prob-
ability from the start, and not just the effects of the two most
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likely probabilities, the end result avoids the problems the
ratio confidence has. These effects are represented by the
normalization factor, as well as the summation over all pos-
sible probabilities, which can largely be simplified out of the
equation as shown in equation 2.

3.2 Multinomial Classification Certainty

Having created our uncertainty functionwe can now translate
this into the measure of certainty presented in equation 4 for
the most likely label ŷ.

p(β) = max(p(Y \ ŷ))

MCC(ŷ) = 1 −UNormali zed(ŷ) = 1 − p(β)

p(ŷ)2
/n,

If p(ŷ) = 0, then MCC(ŷ) = −∞
(4)

This can further be generalized to the following for any
given label y:

p(β) = max(p(Y \ y))

MCC(y) = 1 −UNormali zed(y) = 1 − p(β)

p(y)2
/n,

If p(y) = 0, then MCC(y) = −∞
(5)

This tells us how certain the model is of a given label x
based on the probability distribution it outputs as its clas-
sification. MCC will fall in the range [−∞; 1] with the
following two important thresholds. MCC(y) = 0 indi-
cates all labels are equally probable, and thus equally certain.
MCC(y) = 1 indicates themodel is absolutely certain of this
label y. The proves for these two thresholds can be found in
lemmas 1 and 2.

Lemma 1 When MCC(ŷ) = 0 then all probabilities are
equal.

Proof If MCC(ŷ) = 0, then the following holds:

1. 1 − p(β)

p(ŷ)2
/n = 0

2. p(β)

p(ŷ)2
/n = 1

3. p(β)

p(ŷ)2
= n

4. 1 = p(ŷ2)
p(β)

∗ n
5. By definition 1 ≥ p(ŷ) ≥ p(β) ≥ 0

6. If 1 ≥ p(ŷ) > p(β) ≥ 0 then p(ŷ)2

p(β)
> 1/n which

implies p(ŷ2)
p(β)

∗ n > 1 this would mean the equation in
step 3 does not hold. Thus p(ŷ) must be equal to p(β)

7. If p(ŷ) = p(β) then ŷ2

β
= p(ŷ) = 1/n

8. MCC(ŷ) = 0 → p(ŷ) = p(β) = 1/n → ∀y ∈
Y ; p(y) = 1/n

	

Lemma 2 When MCC(ŷ) = 1, then p(ŷ) = 1 and all other
labels have probability 0.

Proof If MCC(ŷ) = 1 then the following holds:

1. 1 − p(β)

p(ŷ)2
/n = 1

2. p(β)

p(ŷ)2
/n = 0, since 1 ≥ p(ŷ) ≥ p(β) ≥ 0, and n ≥ 1,

and n is finite, this can only occur when lim p(β) → 0
3. when lim p(β) → 0 then lim p(ŷ) → 1
4. MCC(ŷ) = 1 → p(ŷ) = 1, p(β) = 0 → ∀y ∈

(Y \ ŷ); p(y) = 0

	

This also provides us with the following two additional

relevant value ranges for MCC:

• MCC(y) < 0; this label is significantly less probable,
and thus less certain than some other labels. As such, it
should be dismissed.

• MCC(y) ∈ (0; 1]; this label is significantly more prob-
able, and thus more certain than some other labels

It should be noted that this means thatMCC is unbounded
below. Due to this lack of a lower bound it is difficult to
directly compare two labels y1 and y2 when MCC(y1) < 0
andMCC(y2) < 0.However, in practice 0 can be treated as a
soft lower bound. When MCC(y) falls below 0 the certainty
of y is so low that it can be dismissed out of hand in favor of
an alternative that has a higher certainty.

While in most scenarios we are only interested in
MCC(ŷ), where ŷ is the most probably label, there are cer-
tain scenarios, such as when utilizing it to make set-value
predictions, where we are also interested in the MCC of
other labels. These two ranges are especially relevant in such
scenarios. We illustrate how this can be used in section 3.4
for set value predictions.

Having shown the mathematical background of MCC we
will discuss some practical examples in the next sections.

3.3 MCC and improperly formed probability
distributions

So far MCC has been created under the assumption that the
probability distribution is properly formed and all probabili-
ties combined sum to 1. In this section we will briefly discuss
what happens when this is not the case.

Recall equation 2 this equation included the sum over all
probabilities, which can be simplified to 1. If we assume that
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Table 1 Class probabilities and
MCC for various examples
where the probability
distribution is improper, that is
to say the sum of probabilities
does not add up to 1. These
examples illustrate that lemmas
1 and 2 still hold. However,
when the sum of probabilities is
far higher, or lower, than 1
strange behavior can be
observed

Individual Label x Label y Label z MCC(y) MCC(x) MCC(z)

Example 1 0,400 0,400 0,400 0,000 0,000 0,000

Example 2 0,020 0,490 0,490 -407,333 0,320 0,320

Example 3 0,500 0,490 0,200 0,223 0,174 -3,859

Example 4 0,980 0,980 0,990 -0,014 -0,014 0,017

Example 5 0,049 0,950 1,000 -276,523 0,262 0,967

Example 6 0,000 0,200 1,000 −∞ -9,000 0,920

Example 7 1,000 1,000 1,000 0,000 0,000 0,000

Example 8 0,150 0,300 0,200 -1,889 0,519 -0,625

Example 8 0,100 0,100 0,100 0,000 0,000 0,000

Example 8 0,100 0,200 0,000 -1,000 0,833 −∞

the probability distribution is improperly formed this can no
longer be simplified. This would result in the following new
equation:

Uimproper =
⎛

⎝
∑

y∈Y

p(y)

p(ŷ) × p(ŷ)
p(β)

⎞

⎠

= 1

p(ŷ)2/p(β)
=

∑

y∈Y

p(y) ṗ(β)

p(ŷ)2
(6)

This would result in the following equation for MCC
when used with an improper probability distribution:

p(β) = max(p(Y \ ŷ))

MCC(ŷ) = 1 −
∑

y∈Y
p(y) ṗ(β)

p(ŷ)2

n
,

If p(ŷ) = 0, then MCC(ŷ) = −∞

(7)

This can further be generalized to the following for any
given label z:

p(β) = max(p(Y \ z))

MCC(z) = 1 −
∑

y∈Y
p(y) ṗ(β)

p(z)2

n
,

If p(z) = 0, then MCC(z) = −∞

(8)

When using MCC with improperly formed probability
distributions lemmas 1 and 2 still hold. This does mean that
MCC can still be used. However, it does introduce unex-
pected behavior in certain edge-cases. Table 1 illustrates this.
Going into more detail regarding these edge-cases is beyond
the scope of this paper. For the remainder of this paper we
will assume all probability distributions are properly formed.

3.4 Illustrative examples

In table 2, examples can be found of various toy scenarios,
which have been classified. For each of these examples the
MCC for each possible label is given. The examples in table
2 correspond to the examples in Fig. 2. These examples are
to illustrate how MCC would behave in a real scenario.

It should be noted that MCC is a stable metric when
looking at the most probable label ŷ, but displays less stable
behavior when looking at a less probably label y ∈ (Y \ ŷ).
This is due to the fact that relatively small changes in the
probability distribution can have a relatively large impact on
the certainty of these less likely labels.

As mentioned, the set-value predictions in table 2 are cre-
ated using using MCC(p(y)) ≥ 0 as inclusion criteria. This
behaves similarly to the naive criteria p(y ≥ 1/n. This is
expected based on lemma 1. However, it does not behave the
exact same as illustrated by individual F . To further illustrate
this we show a different set of scenarios in table 3. Here we
show the MCC values for scenarios with various numbers of
labels where pŷ = 1/n + 0, 02 and p(β) = 1/n + 0, 01, as
well as p(z) = 1/n. Despite the relatively small difference in
the probabilities of each label the MCC scores show amean-
ingful difference that could be utilized. This effect becomes
stronger as the numbers of potential labels grows, with p(z)
progressively becoming a less certain prediction when com-
pared to p(ŷ), despite the absolute difference between their
probabilities not changing. This is especially useful when the
most likely label remains relatively improbable. In this sce-
nario MCC can aid a user to determine if p(ŷ) is sufficiently
large compared to the other probabilities that the other labels
can be dismissed.

Table 4 further illustrates how even relatively small prob-
abilities remain relevant as the number of labels grows. In
this table p(ŷ) is fixed to a value of 0, 5, additionally p(β)

is set in such a way that MCC(β) = 0, 5, which can be
argued represents a scenario where β should be considered
a label with high certainty. In the scenario with four par-
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Table 2 Class probabilities and MCC for the individuals in the illustrative examples shown in figure 2. The final column shows the set prediction
based on the MCC values, using MCC(p(y)) ≥ 0 as the inclusion criteria in the set.

Individual Triangle Circle Square MCC(T ) MCC(C) MCC(S) set-values prediction

A 0,333 0,333 0,333 0 0 0 {Triangle,Circle, Square}
B 0,02 0,49 0,49 -407,333 0,32 0,32 {Circle, Square}
C 0,049 0,001 0,95 -130,889 -316665,667 0,982 {Square}
D 0 0 1 −∞ −∞ 1 {Square}
E 0,45 0,5 0,05 0,177 0,4 -65,667 {Triangle,Circle}
F 0,317 0,33 0,35 -0,108 0,05 0,093 {Square}

Fig. 2 Illustrative example containing 3 classes, squares triangles and
circles. The class borders are indicated using dotted lines. Several new
individuals that need to be classified are indicated. Table 2 provides the
class probabilities and MCC for each example, as well as set-values
prediction based on these scores

ties this results in p(ŷ) = p(β) and MCC(ŷ) = MCC(β),
however, in the scenario with a hundred parties this results
in p(ŷ) = 5 ṗ(β) and ŷ is nearly twice as certain as β, in
fact ŷ is starting to approach the limit of maximum certainty.
However, β remains relevant.

Lastly, table 5 illustrates how in scenarioswith larger num-
ber of potential labels MCC assigns the same certainty to
lower values probabilities of p(ŷ). This happens because
while the probability of p(ŷ) is lower, the model is certain
that ŷ is the correct choice over a larger amount of competing
labels.

3.5 Illustrating the relationship with accuracy

In this subsection the relationship between MCC and the
accuracy of the classifications made by the model is illus-
trated using a number of real datasets. A comparison with
Shannon entropy is shown to illustrate how MCC is more
closely related to accuracy.

To illustrate this relationship a Bayesian network was
trained on each dataset. In all cases the Bayesian network
uses theK2 algorithm for structure learning,with amaximum
of 5 parents per node, and the EM algorithm for parame-
ter learning. The WEKA framework[23] was used to train
the models. Performance was validated using k-fold cross-
validation. During 10-fold cross-validation we discretized
the classifications according to their MCC score. The fol-
lowing datasets where used: Iris[24], Autism[25], Asia[26],
Diabetes[27],and Mushroom[28]. These datasets were cho-
sen because they represent a variety of dataset sizes with a
mix of continuous and discrete attributes. This allows us to
illustrate behaviors across different datasets.

Figure 3 plots the accuracy across all datasets against the
various levels of MCC and Shannon entropy, additionally a
combined trendline is shown in each graph.

The MCC score shows a linear relation between certainty
and accuracy. This corresponds to the desired behavior as
classifications with a low certainty should represent "hard"
cases, which will have a below average accuracy, whereas
cases with a high certainty represent "easy" cases which have
a high accuracy. Outliers correspond to scenarios where only
a handful of predictions are in a specific MCC range. For
example, themodelmakes only one classification in the range
[0.6 − 0.7) for MCC for the Asia dataset. As this single
classification is correct it achieves a 100% accuracy for this
range.

Shannon entropy initially shows a largely stable accuracy
until the entropy increases above 0.5, at which point the accu-
racy suddenly plummets. While "hard" cases do indeed have
a higher level of entropy, the "medium" cases barely differ
from the "easy" cases in terms of accuracy. It should also be
noted that the Shannon entropy never rose above 0.7 for any
of the classification in this experiment.

The results of this experiment indicate that MCC is a
better indication of certainty than Shannon entropy as it is
better at identifying "easy" and "hard" cases.
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Table 3 MCC scores for the
three labels ŷ, β z in scenarios
with various numbers of labels,
where p(ŷ) = 1/n + 0, 2,
p(β) = 1/n + 0, 01, and
p(z) = 1/n. z is deemed
progressively more uncertain as
the number of labels grows.

Number of labels p( ŷ) p(β) p(z) MCC( ŷ) MCC(β) MCC(z)

4 0,270 0,260 0,25 0,108 0,001 -0,080

5 0,220 0,210 0,2 0,132 0,002 -0,100

6 0,187 0,177 0,166666667 0,155 0,003 -0,120

7 0,163 0,153 0,142857143 0,177 0,004 -0,140

8 0,145 0,135 0,125 0,197 0,005 -0,160

Table 4 MCC scores for the
labels ŷ and β in scenarios with
various numbers of labels,
where p(ŷ) = 0, 5, p(β) is
fixed in such a way that
MCC(β) = 0, 5. ŷ becomes
progressively more certain as the
numbers of labels grow, despite
β remaining equally certain.

Number of labels p( ŷ) p(β) MCC( ŷ) MCC(β)

4 0,500 0,500 0,500 0,500

5 0,500 0,447 0,642 0,500

10 0,500 0,316 0,874 0,500

20 0,500 0,224 0,955 0,500

50 0,500 0,141 0,989 0,500

100 0,500 0,100 0,996 0,500

Table 5 MCC scores for the
labels ŷ and β in scenarios with
various numbers of labels,
where p(ŷ) and p(β) are picked
in such a way that
MCC(ŷ) = 0, 9.

Number of labels Probability distribution p( ŷ) p(β) MCC( ŷ) MCC(β)

2 {0.854, 0.146} 0.854 0.146 0.900 0.789

3 {0.805, 0.195, 0} 0.805 0.195 0.900 0.701

4 {0.765, 0.235, 0, 0} 0.765 0.235 0.900 0.620

5 {0.732, 0.268, 0, 0, 0} 0.732 0.268 0.900 0.548

Fig. 3 Classification accuracy plotted against MCC score (left) and
Shannon entropy (right). MCC score shows a stable relation between
low certainty and low accuracy. Outliers correspond to scenarios where
only a handful of predictions are in a specific MCC range. For exam-

ple, the model makes only one classification in the range [0.6−0.7) for
the Asia dataset. Shannon entropy initially shows a largely stable accu-
racy until the entropy increases above 0.5, at which point the accuracy
suddenly plummets
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Fig. 4 ADICOM image (top left), alongside the classifications accord-
ing to max probability (top right). The bottom shows the borders as
drawn based on theMCC for ŷ (bottom left) and ShannonEntropy (bot-

tom right). High levels of uncertainty correspondwith the boundaries of
various types of tissue according to the classification. The boundaries
drawn based on Shannon entropy are less clean and showmore artifacts

3.6 Using uncertainty for image segmentation

To further illustrate the potential use of MCC , we now dis-
cuss a real-world use case for image segmentation. In surgical
oncology, there is a trend to analyze both the quantity and
quality of a patient’s muscle and fat tissue because it has
been shown to be predictive of outcome, especially in cer-
tain cancer types, like pancreatic and colorectal cancer, that
are associated with severe weight-loss and wasting, a pro-
cess called cancer cachexia[29–32]. Muscle and fat tissue
as visible on CT images at the 3rd lumbar vertebral level
are commonly used to estimate body composition of these
patients.Automaticmethods to segmentmuscle and fat tissue
are needed because doing it manually is too time-consuming
for clinical purposes.

Figure 4 shows an example CT image at L3 level. Addi-
tionally, on the right it shows the standard segmentation result

after taking assigning labels to pixels based on the maximum
probability.

Applying MCC to the per pixel class probabilities we
can derive a certainty measure for that pixel to visualize the
uncertainty of the segmentation as shown in Fig. 4. As can
be seen, there are areas where uncertainty is relatively high,
which mostly correspond to locations around tissue borders.
Additionally Fig. 4 shows the uncertainty as based on Shan-
non entropy. MCC provides cleaner, more distinct border
areas, this is especially clear when zooming in such as in
Fig. 5.

This information can be used to find the borders between
tissues more accurately, as intuitively the border would be
wherever the uncertainty is highest. Additionally in Fig. 6
we provide a zoomed in section of the image. In this zoomed
in picture, it is even more clearly visible that the areas with
high uncertainty correspond to the borders between tissue, as
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Fig. 5 Zoomed in snapshot of figure 4 comparing borders drawn based on MCC (left) with borders based on Shannon entropy (right). MCC
creates cleaner borders with fewer artifacts

Fig. 6 Zoomed in snapshot of
the heat map & classification of
figure 4. Uncertainty strongly
corresponds with border area, as
well as the occasional artifact
represented by a single pixel of
one class with no similar
neighbors

well as some potential artifacts, such as the occasional lone
pixel classified as subcutaneous fat surrounded by muscle.

4 Discussion

In this article, we have proposed a new measure of classi-
fication uncertainty called MCC and we have shown how
it works using illustrative toy examples as well as a real-
life use case. While we do not go into extensive detail, we
have shown that MCC can even be used in combination with
improperly formed probability distributions. MCC can cap-
ture aspects of uncertainty which existing measures, such
as Shannon Entropy, confidence intervals, and measures of
model performance, cannot: it does not measure the over-
all performance of a model but the uncertainty of a single
prediction; it captures the full uncertainty present within the
probability distribution, regardless of its origin; it avoids the
pitfalls inherent in confidence intervals; and, it does neither

rely on the quality of the training dataset, (unlike outlier
detection), nor on the quality of additional sources of infor-
mation (such as the accurate distributions required by Monte
Carlo simulation to sample from).

Its main use is to quantify the uncertainty of model pre-
dictions or classification, which can help prevent errors by
rejecting predictions with high uncertainty, especially sur-
rounding difficult to classify edge-cases. It can also be used in
combinationwith other uncertainty quantification techniques
such asMonte Carlo simulation by applying it to average out-
put probabilities across simulations.

Furthermore, it is especially useful in situations where
finding the border between two classes is valuable. This
is especially relevant when using machine learning models
such as support vector machines (SVMs) which rely on a
decision border. Additionally, this is also relevant in scenar-
ios where we are explicitly looking for borders of regions
such as in image segmentation. Predictions in border regions
inherently have high uncertainty. When this uncertainty is
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captured using MCC and used to create a heat-map, it will
draw clean borders, as the borders are the large connected,
but thin, regions of high uncertainty.

In fact, due to uncertainty naturally being high in border
regions, both the physical border regions in image segmen-
tation as well as the metaphorical border regions between
classes in a classification task,MCC can explicitly be viewed
as a distance function between the individual that is to be
classified, and the Platonic ideal of the most likely class,
according to the given model. Or conversely, as the distance
function between this individual and the nearest class bound-
aries. Additionally, it can be used to improve confidence in
machine learning models, as using MCC allows a model to
ask human experts, or other expert systems, for help should
a model not be sufficiently certain of its own classification.

While it is at its most valuable when used on the most
likely label, MCC can also be used on the other less likely
labels. Additionally, we have shown there are meaningful,
objective, thresholds that can be used to compare results.
This means there is no need to rely on arbitrary threshold
values and allows us to avoid any problems associated with
these values[33]. It should be noted that there is no hard
lower bound on MCC . However, in practice 0 can be treated
as a soft lower bound as MCC(y) < 0 indicates that y has
such a high level of uncertainty it is safe to dismiss y in
favor of more certain alternatives. It should be noted that at
this high level of uncertainty it also becomes meaningless to
compare the MCC score for different labels. That is to say,
both MCC(y1) = −1 and MCC(y2) = −2 should simply
be treated as uncertain and dismissed. This effectively turns
the soft-bound into a hard bound.

4.1 Conclusion

In this article,wehaveproposed anewmeasure of uncertainty
of individual classifications or predictions, which we have
dubbed the Multinomial Classification Certainty (MCC).
MCC captures the uncertainty present within the probabil-
ity distribution given by the prediction the model produced.
We have discussed the various methods currently used to
quantify uncertainty, none of which methods are appropriate
for multinomial classification. We have shown the various
thresholds that exist and to which meaning can be attributed.
This allows MCC to be used to identify if a given pre-
diction should be considered relevant. We have illustrated
how MCC behaves based on illustrative examples, various
datasets, as well as a concrete image segmentation example.
Additionally, we have illustrated a real-life use case in image
segmentation where MCC can be used to easily detect the
borders between different types of tissue. It is especially use-
ful in scenarios where one is interested in finding edge-cases,
the metaphorical border region between various classes, or

the real, physical, border between two objects in a segmen-
tation task.

4.2 Future work

Wewould like to implement themeasure in various scenarios
and see how it performs in practice. This will provide a much
needed empirical validation where MCC can be directly
comparedwith existingmeasures.Unfortunately, such exten-
sive validation and experimentation is beyond the scope of
this limited paper. Currently there are plans to use it as the
evaluation function in a decision tree, to use it to augment
image segmentation and recognition software in a medical
context, and to run experiments where noise is added to data
to verify the model becomes less certain as more noise is
present in the training data. Lastly, a more detailed explo-
ration of the behavior of MCC regarding improperly formed
probability distributions would be interesting.
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